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Abstract

One of the important challenges in Systems Biology is reasoning and per-

forming hypotheses testing in uncertain conditions, when available knowledge

may be incomplete and the experimental data may contain substantial noise.

In this thesis we develop methods of probabilistic reasoning and inference

that operate consistently within an environment of uncertain knowledge and

data. Mechanistic mathematical models are used to describe hypotheses about

biological systems.

We consider both deductive model based reasoning and model inference from

data. The main contributions are a novel modelling approach using continuous

time Markov chains that enables deductive derivation of model behaviours and

their properties, and the application of Bayesian inferential methods to solve the

inverse problem of model inference and comparison, given uncertain knowledge

and noisy data.

In the first part of the thesis, we consider both individual and population

based techniques for modelling biochemical pathways using continuous time

Markov chains, and demonstrate why the latter is the most appropriate. We

illustrate a new approach, based on symbolic intervals of concentrations, with

an example portion of the ERK signalling pathway. We demonstrate that the

resulting model approximates the same dynamic system as traditionally defined

using ordinary differential equations. The advantage of the new approach is

quantitative logical analysis; we formulate a number of biologically significant

queries in the temporal logic CSL and use probabilistic symbolic model checking

to investigate their veracity.

In the second part of the thesis, we consider the inverse problem of model

inference and testing of alternative hypotheses, when models are defined by

non-linear ordinary differential equations and the experimental data is noisy

and sparse. We compare and evaluate a number of statistical techniques, and

implement an effective Bayesian inferential framework for systems biology based

on Markov chain Monte Carlo methods and estimation of marginal likelihoods

by annealing-melting integration. We illustrate the framework with two case

studies, one of which involves an open problem concerning the mediation of

ERK phosphorylation in the ERK pathway.
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Computer Science is no more

about computers than

astronomy is about telescopes.

Edsger Dijkstra
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Chapter 1

Introduction

Overview

In this chapter we give a general background to the thesis and provide

motivation for our work. We briefly describe the benefits of our work.

1.1 Challenges of Systems Biology

Systems Biology is a discipline of science which studies biological systems and

their behaviour in an integrative way, using methods of mathematical modelling

and analysis.

Burbeck and Jordan (2006) emphasise the central challenge of Systems Bi-

ology to assist in understanding how the various parts of a biological system fit

and function together, and provide a list of major themes and focus areas which

have emerged in Systems Biology:

• Modelling. Descriptive mathematical models are built to summarise and

organise data.

• Simulation. Mathematical models are built to use researchers’ knowledge

about the parts of a biological system to better understand the implications

of their interactions.

• Automated analysis. Automated analysis techniques to make inferences

and predictions from accumulated knowledge and data.

14
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• Integration of computational biology and experimental biology. Compu-

tational results are used to guide new experimentations followed by addi-

tional computational analysis and modelling of the new data.

All these themes play an important role in shaping Systems Biology, and a

cyclic workflow from experimentations to computational analysis and back to

experimentalists is a commonly accepted way to unravel the complexities of

biological systems.

We consider Systems Biology as a methodological framework to operate on

knowledge, experimental data, and hypotheses about biological systems, and

assist in the development of a unified understanding of the involved biological

processes.

In the scope of this thesis we concentrate our efforts on methods for compu-

tational analysis of biological data and knowledge in conditions of uncertainty.

We focus on biochemical pathways and networks for practical applications for

the methods considered in this thesis.

To establish the cyclic workflow between computational analysis and bio-

chemical experimentation, we consider the methods of interest within the sci-

entific method paradigm. The scientific method is a body of techniques for

investigating phenomena and acquiring new knowledge, as well as for correcting

and integrating with previous knowledge. It is based on gathering observable,

empirical, measurable evidence, subject to principles of reasoning. Having the

roots in ancient philosophy, it was preconditioned by the works by Sir Francis

Bacon, René Descartes, and first formally introduced by Newton.

The scientific method suggests the following guideline for the research:

1. Formulate hypotheses;

2. Perform experiments and collect evidence;

3. Analyse the collected evidence and test the hypotheses formulated at the

first step;

4. Interpret the result and draw conclusions that serve as a starting point for

new hypotheses.

Sir Harold Jeffreys’ book on Scientific Inference (Jeffreys 1937) argues for

reasoning on probability inversion, the basis of what is known today as Bayesian
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inference; this book emphasises the consistency of Bayesian inferential methodol-

ogy with the scientific method, and demonstrates many examples from different

areas of science on how this method is applied to provide sound and consistent

evidential reasoning.

One of the important features in the life sciences is that there can be many

competing hypotheses and corresponding models to explain some phenomenon.

When evidence is collected all these competing hypotheses have to be tested.

We propose to represent such competing hypotheses with mathematical models,

and employ formal methods for the analysis and comparison of such models.

This thesis focuses on methods of formal reasoning and inference which allow

knowledge and hypotheses to be operated in a natural and sound way according

to established scientific method.

1.2 Models as Knowledge Representation

Mathematical models are used to represent knowledge and hypotheses about the

structure and dynamics of a biological system. Generally speaking, there are two

meta-approaches to biological systems modelling. The first one is data-driven

modelling, and the second one is mechanistic modelling.

A data-driven modelling approach means that the main goal of the mod-

els is to mimic the observed behaviour of the model. Such models are often

quantitative, and their main advantage is a precise simulation of the observed

dynamic behaviour of the biological system. An example of a data-driven model

is described in Example 1.1. There are a number of approaches to data-driven

modelling ranging from Gaussian processes (see Rasmussen and Williams 2006)

to S-systems (see Voit 2000). Data-driven models can sometimes be used to pre-

dict system behaviour in yet untested experimental conditions, however, their

explanatory capabilities are limited due to a lack of structural information about

the studied system.

Example 1.1 (Data-Driven Model of a Feedback Amplifier)

A feedback amplifier is a system which amplifies the input signal utilising a

negative feedback to gain stability of amplification (see Figure 1.1). This struc-

ture can be found in many biological systems, this is possibly due to the evolu-

tionary pressure to sustain a stable behaviour while amplifying some stimuli.
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Input
A

β

Output

Figure 1.1: Feedback Amplifier

The basic idea of a feedback amplifier is to feed the output of the system back

to the input of an amplification cascade with a negative feedback, thus inhibiting

amplifier’s input.

The data-driven model for the feedback amplifier does not consider the parts

of the system separately, but rather defines the law by which the output of the

system can be obtained from its input:

Output =
A

1 + βA
· Input,

where A is the amplifier’s gain, and β is the strength of the negative feedback.

Mechanistic models are used not only to mimic the observed behaviour but

also to describe processes involved in producing such behaviour. A mechanistic

model usually considers a system to be built from parts which interact with

each other. In biological modelling, mechanistic models often employ the laws

of molecular kinetics to describe the processes which contribute to the system

behaviour. An example of a mechanistic model of a feedback amplifier is given

in Example 1.2.

Example 1.2 (Mechanistic Model of a Feedback Amplifier)

Consider the same system as in Example 1.1. When modelling this system

mechanistically, we consider a structural model of the feedback amplifier described

using biochemical terms.

The structure depicted in Figure 1.2 gives more details about the processes

involved in a feedback amplifier system. For example, one can see that the nega-

tive feedback is achieved through the competitive inhibition of the input I by the

output O.

The system of differential equations which defines the dynamics of the mech-
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I
Ai

A

Oi

O

Ir

Figure 1.2: Structure of a Feedback Amplifier

anistic feedback amplifier model is the following:

İ = −Vf · I ·O
Kf + I

,

İr =
Vf · I ·O
Kf + I

,

Ȧi = −Va · Ai · I
Ka + Ai

+
Vd · A
Kd + A

,

Ȧ =
Va · Ai · I
Ka + Ai

− Vd · A
Kd + A

,

Ȯi = −Vo ·Oi · A
Ko +Oi

+
Vp ·O
Kp +O

,

Ȯ =
Vo ·Oi · A
Ko +Oi

− Vp ·O
Kp +O

.

In this thesis we will mainly use mechanistic biochemical models because

these include more information about the structure of the modelled system, and

consequently are more expressive when used to define the working hypotheses.

1.3 Reasoning and Inference

Deductive reasoning is a logical framework proposed by Aristotle in the 4th

century B.C. which relies on the application of logical rules such as:

A→ B,A ` B, also known as Modus Ponens;

A→ B,¬B ` ¬A, also known as Modus Tollens.

For example, if we take A ≡ “It is raining” and B ≡ “The sky is cloudy” the

above logical rules define the following deductions:
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• The sky is cloudy when it is raining, and it is raining, therefore the sky is

cloudy;

• The sky is cloudy when it is raining, and the sky is not cloudy, therefore

it is not raining.

This kind of reasoning is the most desirable in practise, but unfortunately, we

may not have all the information to apply deductive reasoning.

In the situations when the essential information is not available to perform

deductive reasoning, plausible reasoning can be employed. Consider again the

example above. Deductively, we cannot conclude that it is going to rain if the

sky is cloudy, but we can say that it is more plausible that it will start to rain if

the sky is cloudy. Plausible reasoning relies on a number of logical rules which

allow one to make such conclusions, for instance:

A→ B,B ` A becomes more plausible,

A→ B,¬A ` B becomes less plausible.

In the first case, observing the consequence B makes the reason A more

plausible, when in the second case eliminating one of the reasons for B makes it

less plausible.

We can assign a degree of plausibility to propositions or events using the

Bayesian interpretation of probability. Bayesian theory defines the concept of

probability as a degree to which a person believes in a proposition. This def-

inition was first proposed by Ramsey (1931), and Bayesian theory was later

developed on this foundation.

The name “Bayesian” comes from the use of Bayes’ theorem which takes an

important place in this theory. Bayes’ theorem states how to update or revise

beliefs in light of new evidence:

P (A|B) =
P (B|A)P (A)

P (B)

where

• P (A) is the prior probability of A, which does not take into account any

information about B;

• P (A|B) is the posterior probability of A taking B into account;
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• P (B) is the prior probability of B;

• P (B|A) is the conditional probability of B given A, or in other words the

likelihood of B given A.

Automated inference and reasoning are useful not only for faster decision

making, but also to investigate a large number of almost identical hypotheses.

The goal of this thesis is to introduce automated approaches to assist reasoning

about biological systems.

1.4 Thesis Statement

One of the important challenges in Systems Biology is to enable objective hy-

potheses testing and reasoning about models of biological systems. A major

problem for such reasoning is uncertainty of knowledge and experimental obser-

vations.

We propose that model-based reasoning and inference based on probabilistic

foundations are appropriate for tackling the problem of uncertainty representa-

tion. We demonstrate a novel modelling approach using continuous time Markov

chains which enables quantitative model-based reasoning and develop an imple-

mentation of the Bayesian inferential framework for biological applications.

Both methodologies are applied to case studies in signal transduction path-

ways, thus demonstrating the feasibility of the proposed approaches.

1.5 Thesis Contribution

The problem of consistent reasoning and inference for Systems Biology in un-

certain conditions is investigated.

Mechanistic mathematical models are used to describe the working hypothe-

ses in biological research. A novel modelling approach using continuous time

Markov chains (CTMCs) is proposed that enables deductive derivation of model

behaviours and their properties; a Bayesian inferential methodology allows the

inverse problem of model inference using uncertain knowledge and noisy data to

be solved.

Alternative methods of model definition are considered in context of mod-

elling using CTMCs, and the population-based approach is selected as the most
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appropriate for modelling biochemical pathways. We demonstrate that the re-

sulting models approximate the same dynamic system as traditionally defined

using ordinary differential equations. Probabilistic symbolic model checking is

then applied to derive model behaviours and investigate their properties.

A variety of algorithms which implement Bayesian inference methods are

investigated and critically compared to solve the inverse problem of model infer-

ence and testing of alternative hypotheses. Markov chain Monte Carlo methods

are selected as the “gold standard” as these are based on the least constrained

foundations. Hypotheses testing using noisy experimental data is a challenging

problem which requires the latest developments in applied statistics. We se-

lect path sampling methods to obtain stable results; this is demonstrated with

several case studies in Systems Biology.

1.6 Outline of the Dissertation

The following diagram (see Figure 1.3) depicts the relationship between two

major parts of this thesis.

Modelling Observation

Reasoning: to enable logical analysis of
stochastic models

Inference: to find suitable model parameters
from observed data, and perform model

selection

Figure 1.3: Schematic relationship between two parts of thesis.

From left to right, methods for probabilistic, logical reasoning about stochas-

tic models allow us to analyse and map behaviours of such models to observed,

experimental behaviour. In the opposite direction, inference based on the ob-

served behaviour allows us to find suitable model parameters and perform model
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selection.

In Chapter 2 we give an overview of the state of the art.

In Chapter 3 we describe the methods developed for quantitative reasoning

about the dynamic behaviour of models of biological systems. We give examples

of how this kind of reasoning can be applied to the analysis of signal transduction

pathways.

In Chapter 4 we describe the implementation of Bayesian inference method-

ology in a biological context, considering the problems and solutions for model

identification, hypotheses testing, and predictions. Section 4.3 contains two case

studies which demonstrate how the proposed methods and algorithms can be

employed to solve realistic research problems in Systems Biology.

We review our results and achievements and discuss ideas for future work in

Chapter 5.

Summary

We have provided a brief outline of our work and its motivation.



Chapter 2

Related Work

Overview

In this chapter we review existing approaches in the areas of mod-

elling, reasoning and inference for biological systems.

2.1 Ordinary Differential Equations

Modelling with differential equations is currently the most widely used approach

in Systems Biology (see Voit 2000 de Jong 2003).

Definition 2.1: An ordinary differential equation (ODE) is an equation which in-

volves functions of only one independent variable, and one or more of its derivatives.

For example,

ẏ = y

is an ordinary differential equation, where ẏ denotes the first derivative of the

function y by time. An alternative notation is dy
dt

.

In the context of biological modelling, the independent variable is usually

time, and dependent variables correspond to measurable quantities, e.g. protein

concentrations.

The most common approach to building models of biological systems us-

ing ODEs relies on the use of kinetic laws, such as decay dynamics or binding

dynamics.

23
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Models defined with ODEs can be used to produce predictions of system

behaviour by solving an initial value problem.

Definition 2.2 (Initial value problem): An initial value problem consists of a

differential equation and the initial values which must belong to the solution.

Example 2.1 (A Model of biochemical binding)

Consider a biochemical system of two proteins which can bind each other.

We associate variables x, y, and z with the concentrations of the first protein,

the second protein, and their complex respectively. Initially, at time t = 0, the

concentrations of the proteins are x|t=0, y|t=0 and z|t=0. At each instant of time,

there is a chance that a molecule of the first protein will bind to a molecule of

the second protein. The speed of protein concentration change depends on these

concentrations at a given time. A system of ordinary differential equations which

describes how the concentrations of the proteins change over time is
ẋ = −k · x · y

ẏ = −k · x · y

ż = k · x · y

(2.1)

where k ≥ 0 is a model parameter, usually called the binding rate. This type

of chemical kinetics is called the mass action kinetic law (for more details see

Stryer 1995).

Initial value problems are not always solvable analytically due to the struc-

ture of differential equations. Numerical solution methods can be employed in

such situations. There is a wide range of differential equation solvers available

at the moment (for an overview see Press et al. 2002). Different solvers are

usually specialised for better performance on some classes of ordinary differen-

tial equations. For example, the Rosenbrock method is an implicit form of the

Runge-Kutta solver that allows stiff1 systems of ordinary differential equations

1Stiff systems of ordinary differential equations are those which cannot be solved effectively
by basic adaptive step size solvers. This is mainly due to the fast changes in some dependent
variables which require the step size of the solver to be reduced to very small values. Unfor-
tunately, there is no formal definition of the stiff system of ODEs, and a system is usually
declared stiff if the Runge-Kutta solver fails.
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to be solved effectively in the cases when a Jacobean matrix of the system is

available.

2.2 Petri Nets

Petri nets depict the structure of a distributed system as a directed bipartite

graph with annotations. A Petri net has place nodes (depicted with circles in

Figure 2.1), transition nodes (squares in Figure 2.1), and directed arcs connecting

places with transitions.

At any one time during a Petri net’s execution, each place can hold zero or

more tokens. Unlike more traditional data processing systems that can process

only a single stream of incoming tokens, Petri net transitions can consume tokens

from multiple input places, act on them, and output tokens to multiple output

places. Before acting on input tokens, a transition waits until the required

number of tokens appears in every one of its input places. Transitions act on

input tokens by a process known as firing. When a transition fires, it consumes

the tokens from its input places, performs some processing task, and places a

specified number of tokens into each of its output places. It does this atomically,

in one step. A set of tokens allocated at the places of Petri net is called marking

of the Petri net.

Petri net representations can be used for qualitative modelling of biochemical

networks (Goss and Peccoud 1998 Pinney et al. 2003 Sackmann et al. 2006 Heiner

et al. 2004). In such applications species in the network are represented with

places of the Petri net, and reactions are represented with transitions. The

marking of this model with tokens represents the presence of some species in the

system at different points of time.

Example 2.2 (Petri Net model of a biochemical reaction)

Protein P is activated (to become protein P*) in presence of enzyme E. The

reaction which converts P into P* is possible only when some E is available. The

concentration of enzyme E will not be changed during the reaction.

The initial state of the system is depicted in Figure 2.1(a). The initial mark-

ing (tokens in places P and E) corresponds to the presence of protein P and

enzyme E in the system. As all input places for the transition have tokens, the

transition can be fired and the Petri net will change its state to the one in Fig-
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P

P*

E

(a) before firing

P

P*

E

(b) after firing

Figure 2.1: Petri Net representation of an enzymatic activation

ure 2.1(b). In this state P* is present in the system. At the same time, enzyme

E is still present, as it was consumed and then reproduced during the transition.

Above is an example of a catalytic reaction, which can usually be described

with a pair of arcs in the Petri net, corresponding to consuming/producing the

token at the catalyst place.

In general, inhibitory modifications are more difficult to formalise than cat-

alytic ones. For example, a complementary place can be used to define a negated

state of the system. Figure 2.2 illustrates Petri net for Kholodenko’s model of the

MAPK cascade (Kholodenko 2000), this model includes an inhibitory (negative)

feedback loop. This system has been formalised using Petri nets (M. Heiner,

private correspondence).

Petri nets enable a number of qualitative logical analysis techniques, such as

automatic detection of loops in the system and checking of general topological

properties. Additionally, some logical properties can be verified using temporal

logic and model checking algorithms (see Clarke et al. 1999).

A number of extensions of this formalism have been created, such as Petri

nets with inhibitory arcs, coloured Petri nets, stochastic Petri nets, timed Petri

nets, and hybrid functional Petri nets. Using some of these extensions it is

possible to simulate quantitative dynamics of the biochemical networks. We

give a brief overview of a hybrid functional Petri nets approach, focusing on new

capabilities provided and some limitations. Hybrid functional Petri nets extend
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Ras/MKKKK

MKKK MKKK-P

MKK MKK-P MKK-PP

MAPK MAPK-P MAPK-PP

No MAPK-PP

Figure 2.2: Petri net model of the MAPK cascade (features a complementary
place for inhibition labelled “No MAPK-PP”)

the basic definition of Petri nets allowing processing of continuous values on

tokens; real continuous dynamics can be described using special kinds of places

and transitions. This formalism also includes connectivity extensions such as

inhibitory arcs. Another additional connectivity extension is a test arc (drawn

as a dashed arrow) which defines a requirement for non-zero marking in a given

place to allow a transition to proceed. This arc, however, defines that performing

a transition does not impact the marking in a place connected to the transition

with a test arc. Hybrid functional Petri nets are useful for illustrating system

behaviour and mature simulation algorithms exist for these models. However

these algorithms have several significant drawbacks, which we demonstrate with

examples below. We refer to Cell Illustrator (Doi et al. 2004), which implements

the hybrid functional Petri nets algorithms.
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Example 2.3 (Hybrid functional Petri net model of a biochemical reaction)

The enzymatic activation of a protein with the following dynamics (2.2):
Ṗ = − E · P · 2.7

(E + 0.51) · (P + 0.7)

Ṗ ∗ =
E · P · 2.7

(E + 0.51) · (P + 0.7)

Ė = 0

(2.2)

E|t=0 = 0.05, P |t=0 = 2.5, P ∗|t=0 = 0;

can be described with the hybrid functional Petri net depicted in Figure 2.3.

P

P*

E

2.5

0.0

0.05

(E•P•2.7)/((E+0.51)•(P+0.7))

Figure 2.3: Hybrid functional Petri net model of enzymatic activation

Figure 2.4 shows the simulation results produced with MATLAB’s (Moler

2004) ode15s differential equation solver (Moler 2004) (Figure 2.4(a)) and Cell

Illustrator (Figure 2.4(b)). This comparison illustrates that the simulation re-

sults are the same.

However, due to the simulation strategy of hybrid functional Petri nets, the

simulation results for some models can be incorrect. To illustrate this we con-

structed the following example. Consider a hypothetical biochemical network

depicted in Figure 2.5(a). This model consists of six species x1, x2, x3, m1, m2,

and m3. There are four reactions. All the reactions have mass action kinetics

with coefficients k1, k2, k3, and k4. For this example the following coefficients

values have been chosen: k1 = 0.013, k2 = 1.0, k3 = 2.5, k4 = 0.087, and the
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(a) ODE solution
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(b) Hybrid functional Petri net simula-
tion

Figure 2.4: Enzymatic activation simulation results

initial concentrations for the species are the following: x1|t=0 = 10, x2|t=0 = 10,

x3|t=0 = 1, m1|t=0 = 0, m2|t=0 = 0, m3|t=0 = 0. The network topology is

depicted in Figure 2.5(a). The ODE model for this network is

ẋ1 = −k1 · x1 ·m3 − k2 · x1 · x3,

ẋ2 = −k3 · x2 · x3,

ẋ3 = k1 · x1 ·m3 − k2 · x1 · x3 − k3 · x2 · x3,

ṁ1 = k2 · x1 · x3 − k4 ·m1 ·m2,

ṁ2 = k3 · x2 · x3 − k4 ·m1 ·m2,

ṁ3 = k4 ·m1 ·m2 − k1 · x1 ·m3,

(2.3)

k1 = 0.013, k2 = 1.0, k3 = 2.5, k4 = 0.087,

x1|t=0 = x2|t=0 = 10.0, x3|t=0 = 1.0, m1|t=0 = m2|t=0 = m3|t=0 = 0.0.

We solved this problem with MATLAB’s ode15s solver and compare it with

the hybrid functional Petri net (HFPN) simulation produced with Cell Illustra-

tor. The results are plotted in Figure 2.5(b). The comparison shows that the

hybrid functional Petri nets approach does not produce the same behaviour as

the ODEs. This is due to the fact that the simulation algorithm for hybrid

functional Petri nets can evaluate a flux through only one reaction at each given

time. The reaction to be performed is chosen randomly. In this case, the reac-

tion x2+x3 → m2 has been chosen first, and this reaction consumed all available

x3. This took the model into a deadlock. But, continuous dynamics consume

x3 in both x2 + x3 → m2 and x1 + x3 → m1 reactions simultaneously, which

produces the correct trace. We conclude that hybrid functional Petri nets do
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(a) Schematic representation of
model structure. Circles corre-
spond to chemical species and rect-
angles correspond to reactions.
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(b) A comparison of ODE solution result to a hybrid
functional Petri net simulation.

Figure 2.5: An example of a biochemical model for which hybrid functional Petri
nets predict an incorrect behaviour.

not produce correct predictions for this model.

We found that HFPN simulation algorithm also fails when analysing stiff

models. In such a case, the simulation algorithm uses a very small value for the

simulation step size, and the simulation cannot be completed in reasonable time.

On the other hand, fixing the step size on larger values does not give suitable

precision of the simulation results. Thus, hybrid functional Petri nets cannot be

used for modelling stiff systems.

Stochastic Petri Nets can be used for modelling biochemical systems in a way

similar to the approach proposed in Chapter 3. However, such Petri net models

become quite complex to understand when the models become larger.

We conclude that the Petri nets can be quite illustrative for small examples,

but they do not allow any quantitative reasoning and simulation of complex

pathways are often imprecise or incorrect. This motivates the development of

alternative modelling techniques which support structural view of the system,

and also allow quantitative modelling.

2.3 Hybrid Systems

Hybrid systems describe both discrete signals (or variables) and continuous sig-

nals or variables. There have been several attempts to use hybrid systems
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for modelling and analysis of biochemical networks (Alur et al. 2002 Belta

et al. 2004 Lincoln and Tiwari 2004).

The state space of possible variable values can be partitioned into rectangular

domains, in which the flow is qualitatively identical. From this we derive a

qualitative transition system, consisting of the set of all domains, the set of

all transitions between the domains, and a labelling function that associates

the sign of the derivatives of the concentration variables to every domain. A

sequence of states in the qualitative transition system is called a path. A path

describes a possible behaviour of the system. The qualitative transition system is

designed such that it provides an conservative approximation of the dynamics of

the original system, in the sense that to every solution of the model corresponds

a path in the state transition graph. Note, that the converse is not true: some

paths may not correspond to any solution, and therefore represent spurious

behaviours.

The qualitative transition system can be used for model validation with

model checking techniques. As the transition system is labelled with the signs of

the derivatives, model checking queries can only describe trends of the concen-

tration plots. Usually Computational Tree Logic (CTL) (see Clarke et al. 1999)

is used to describe such model properties.

time

x

(a) Possible simulation trace

time

x

(b) Another simulation trace

time

x

ẋ > 0 ẋ < 0 ẋ > 0

(c) Derivative sign pattern

Figure 2.6: Qualitative properties for hybrid systems analysis

For example, the following is a property:
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EF(dsign x = 1 ∧ EF (dsign x = -1 ∧ EF(dsign x = 1))),

where dsign x is a built-in variable for the sign of the derivative of variable x,

and the EFφ quantifier means that there must exist at least one path on which

φ eventually holds. The expression above defines a property for the value of x

as depicted in Figure 2.6(c). Note that this property describes both possible

behaviours plotted in Figure 2.6(a) and Figure 2.6(b).

The analysis of realistic models leads to large state transition graphs, which

make verification of dynamic properties practically infeasible.

It is possible to implement another approximation of model behaviour, that

conserves the quantitative characteristics of the system. In this case, the state

space of the system is decomposed into a number of hyperrectangles defining

approximation domains. The behaviour of the modelled system is approximated

with a linear behaviour in each of these domains. It is possible to evaluate more

quantitative properties using specialised reasoning algorithms. This approach

can be successfully applied to modelling of small networks, but does not scale

up to larger models. For example, a model of the MAPK cascade proposed by

Schoeberl et al. (2002) consists of 94 species, therefore the state space for this

model will have 94 dimensions. The problem to generate a decomposition of this

space into a number of domains is infeasible by itself. Even an approximation

with three linear segments per specie is described with 394 > 1044 rectangles.

We conclude that due to the complexity of state space decomposition into

multiple domains, this approach cannot be applied effectively to the simulation

and analysis of large biological systems.

2.4 Chemical Master Equation and Stochastic

Simulation

Stochastic simulation involves modelling individual molecules. Most simulations

abstract away from location and motion of individual molecules, which is justified

if one assumes that the system is well stirred, which means that the molecules

of all kinds are uniformly distributed through the spatial volume. The following

is usually assumed when considering stochastic simulations: the system is in

thermodynamic equilibrium, and the volume is fixed. The state of such system

is described by a vector X(t) = (X1(t), X2(t), . . . , XN(t)), where Xi(t) is a non-
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negative integer which expresses a number of molecules of the ith kind at time

t. X(0) describes the initial state of the system.

At each time when one of the reactions takes place, vector X(t) can change

its value. This leads to the Chemical Master Equation (CME), which is a system

of ODEs, one ODE per each possible state of the system. At time t, the kth

equation defines the probability that the system is in the kth state. Unlike the

models considered in Section 2.1, the dimensionality of such a system depends

not on the number of chemical species N , but on the number of possible states

of the system X, which in turn depends on the total number of molecules.

Usually, the dimension of the CME is so huge that it is not possible to work

with it either analytically or numerically.

Gillespie (1977) proposed a stochastic simulation algorithm which produces

model behaviours using the CME indirectly. Instead of solving the system of

ODEs to get the probability distribution over the possible states of the system

at each time t, the algorithm produces samples from such distributions.

In spite of the simplicity of the Gillespie’s algorithm, it can be quite inefficient

when some reactions take place frequently. The basic algorithm can be improved

by “lumping together” several reactions, and changing the state vector only when

several reactions took place. This method is called tau-leaping approximation

(see Wilkinson 2006). The error of this approximation is small in the cases where

the system state changes are small.

Several software platforms implement the algorithm (see Kierzek 2002 Adal-

steinsson et al. 2004 Gillespie et al. 2006), but they do not offer additional

reasoning or analysis capabilities (beside simulation).

2.5 Process Algebras and Process Calculi

2.5.1 π-Calculus and Stochastic π-Calculus

The original π-calculus (sometimes referenced as pi-calculus) was developed by

Milner (1999) as a formal language for concurrent computational processes. The

π-calculus provides a framework for representation, simulation, analysis and ver-

ification of mobile communicating systems. In fact, the π-calculus, just as the

µ-calculus (see Kozen 1983), is so minimal that it does not contain primitives

such as arithmetic (no numbers, no operations), boolean values, flow control
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statements usual for programming languages, data structures, variables or func-

tions.

When modelling biochemical systems with π-calculus, individual molecules

and their domains are treated as computational processes, while their comple-

mentary structural and chemical determinants correspond to communication

channels. Processes can be composed in parallel, which means that they are per-

formed at the same time, and communication between such processes is achieved

through rendezvous. Communication channels between computational processes

express chemical bonds between molecules or molecular domains. Biochemical

interaction and subsequent modification is usually expressed with communica-

tion involving channel transmission. Biochemical reactions are modelled by pass-

ing the communication channels from one process to another, thus altering the

communication topology, and therefore describing new bonds between molecules

and molecular domains. For an example of how a model of a signal transduction

pathway can be defined with π-calculus see (Regev et al. 2001).

There exists a number of analysis techniques which can be applied to π-

calculus models of biochemical systems, such as simulation or reachability anal-

ysis.

The basic formulation of π-calculus does not allow quantitative dynamics.

Therefore, only qualitative analysis is possible on such models. However, there

exists a number of extensions which allow association of stochastic time delays

with interactions to be made. One of such extensions is the stochastic π-calculus

(see Priami 1995), and there is a specific implementation of stochastic π-calculus

tools for modelling and simulation of biochemical networks called BioSPi (see

Priami et al. 2001).

Considering analysis techniques for the stochastic π-calculus, these are lim-

ited to quantitative simulations of model behaviour which is usually achieved

with the Gillespie algorithm (see Section 2.4). Since π-calculus and its stochas-

tic extension consider individual molecules as basic components of a model,

there is a problem of a state-space explosion. These approaches, however, are

suitable for modelling systems with only a few molecules, such as protein-DNA

interactions, transcription and translation modelling.

We conclude that, as no tools for quantitative reasoning or inference are

available at the moment, these modelling formalisms are mostly suitable for

simulation.
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2.5.2 Performance Evaluation Process Algebra (PEPA)

PEPA (see Hillston 1996) is a stochastic process algebra which has also been ap-

plied to modelling biochemical systems (see Calder, Gilmore and Hillston 2006).

Unlike π-calculus, the PEPA models do not consider protein structure directly,

but operate on the level of abstract interactions associated with biochemical

reactions. Instead of describing molecular domains and binding them together

using communication channels, PEPA models assign symbolic names to different

species involved in a biochemical network.

Semantically, PEPA is different to stochastic π-calculus, as the former is a

proper process algebra. This allows a natural comparison of models to be made

(e.g. by bisimulation).

Considering an algorithmic support of modelling using PEPA, there exist

a number of software frameworks which implement steady state and transient

analysis of models, for example with the PEPA workbench (see Gilmore and

Hillston 1994). The PRISM model checker (see Kwiatkowska et al. 2002) also

supports stochastic model checking and Monte-Carlo simulation of such models.

PEPA allows multi-way synchronisation (synchronous actions for more than

two processes at the same time) therefore allowing more abstract modelling

of biochemical reactions which involve multiple reactants. A stochastic rate

can be associated with each event in this process algebra, therefore enabling

quantitative modelling of dynamic systems. In some cases a component can be

passive with respect to some activity. This means that the rate of the activity

will be left unspecified (denoted >) and is determined upon cooperation, by the

rate of the activity on the other component.

Calder, Gilmore and Hillston (2006) model the RKIP inhibited ERK path-

way using this process algebra. Two different models of the system have been

developed: a reagent-centric model and a pathway-centric one. In the former

model, each protein in the system is associated with a computational process,

while the reactions are the actions performed by the processes. The performance

rate is associated with each reaction, which allows the reaction speed to be con-

trolled; all the proteins can have only two states: low concentration and high

concentration. In the low state the protein cannot participate in reactions as a

reagent, but can be a product of a different reaction. If the protein is produced,

it changes its state from low to high.

In the pathway-centric model, parts of the pathway are considered as pro-
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cesses. Such pathways can be synchronised together to reproduce a behaviour

of the complete network.

Calder, Gilmore and Hillston (2006) provided extensive analysis of these

models. It was shown that both models are bisimilar, and therefore define the

same observable network behaviour. This could be useful at the stage of building

the model. For example, users can abstract from defining fine-grained players

of the network, concentrating on pathway composition. Particular players can

be defined at the next stage. This approach allows different networks to be

compared, and decide whether they simulate each other.

2.6 Pathway Logic

Pathway Logic (Eker et al. 2002) is a qualitative analysis technique based on

term rewriting.

Pathway Logic is currently used for modelling and analysis of signal trans-

duction and metabolic networks. Pathway Logic models are represented using

the Maude term rewriting system (see Clavel et al. 2003). Models can be queried

and computational experiments can be carried out using the execution, search

and model-checking tools of the Maude system. Some current capabilities of

Pathway Logic include:

• Models with different levels of detail. This means that a model can be

described either on the scale of species and reaction, or on the scale of

molecular domains. For example, it is also possible to define cellular com-

partments and therefore model spacial characteristics of the system, and

molecule transport.

• Analysis of models using search and model-checking. This allows one to

verify logical properties of the models in addition to performing simula-

tions. Though, this approach does not allow quantitative modelling, as

the steps of rewriting do not carry the timing information.

• Transformation to Petri nets for analysis and visualisation.

Using Pathway Logic, biological molecules, their states, and their roles in

network elements can be modelled at very different levels of abstraction. For

example, a complex signalling protein can be modelled either according to an
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overall state or as a collection of functional domains (protein functional domains,

PFDs) and their internal or external interactions (Talcott et al. 2004). The same

hierarchy of organisation levels can be modelled with π-calculus (see Section

2.5.1), but not with, for example, Petri nets.

The main disadvantage of Pathway Logic is that it does not support quanti-

tative modelling, as neither time nor variables can take quantitative values.

2.7 BIOCHAM

BIOCHAM (Chabrier and Fages 2003) is a logical approach which allows classical

model checking algorithms to be applied for biochemical network analysis. In

particular, BIOCHAM translates biological models into model definitions for the

SMV model checker (see Clarke et al. 1994), which then can be used to perform

property validation.

The basic approach uses qualitative models. Chabrier-Rivier et al. (2004)

propose a number of logical properties, which have biological meaning, using

Computational Tree Logic, CTL (Clarke et al. 1999). Example queries are

• Does the system have a stable state?

• Given an initial state of the system, is there a series of reactions that will

produce some compound P?

• Is state s2 a necessary checkpoint for reaching state s?

The basic approach is extended with quantitative kinetic parameters. The

system behaviour can then be simulated using these parameters. Calzone et al.

(2005) introduce additional features to allow quantitative reasoning. These ex-

tensions enable checking LTL (Linear Temporal Logic) properties on quantitative

simulation traces. Some machine learning techniques are proposed in (Calzone

et al. 2006) which allow model reconstruction and parameter search to fit model

behaviour to the LTL properties.

In the case of quantitative model checking, each time point of the system

trace is represented by a different state of a transition system. A simulation

trace is therefore a sequence of states with unlabelled transitions between them,

as depicted in Figure 2.7. The properties can be described using LTL extended

by constraints over variable values and their derivatives.
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...

Figure 2.7: Transition system generated from the model simulation trace. t
denotes time, a and b are model variables, a′ and b′ are their derivatives, respec-
tively.

The parameter search is implemented by iterative scanning through the in-

tervals of possible parameter values.

BIOCHAM implements algorithms for qualitative reasoning about struc-

tural models, and quantitative model checking of properties of model simulation

traces. In Chapter 3 we extend the idea by enabling quantitative model checking

of structural models.

This concludes our review of the approaches for modelling biological systems.

In the following sections we review alternative methods for model identification

using experimental data as the main source of information.

2.8 Maximum Likelihood Estimation for Infer-

ence

Maximum likelihood estimation is a method used to make inferences about pa-

rameters of an underlying model from experimental data. The goal is to find

parameters that fit the experimental data as closely as possible.

This approach can work with any parametric quantitative model provided

the likelihood function, which defines the probability that the model reproduces

the experimental data, is defined. We assume that models are formulated using

ODEs, however, the arguments below are relevant to any kind of quantitative

models used within the maximum likelihood estimation framework.

The problem of finding values of model parameters which maximise the likeli-

hood is not trivial, as many of models of biological systems are nonlinear. There

are numerous algorithms for maximum likelihood estimators, e.g. simulated an-

nealing (Kirkpatrick et al. 1983),, genetic algorithms (Crosby 1973), stochastic

gradient descent (Spall 2003), tabu search (Glover and Laguna 1997).

Maximum likelihood estimators propose a single value representing the “best
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estimate” of the model parameters. This is so-called point estimation problem.

Note that, in such formulation, the final answer is an element of the parameter

space, with no explicit recognition of the uncertainty involved. Pragmatically, a

point estimate may be motivated as being the simplest possible summary of the

inferences to be drawn from the experimental data about the value of the model

parameters.

There is a number of methods designed for estimation of corresponding un-

certainty for the point estimates. This is achieved either through confidence

limits estimation (see e.g. Cox and Hinkley 1974), through local approximations

to the posterior density (these will be discussed in more detail in Section 4.1.2),

or using Markov chain Monte Carlo to “inflate” the modes around the maxi-

mum likelihood point estimate to evaluate the local variance of the posterior

(this method is referred as “ensemble” method and discussed in great detail by

Brown et al. (2004)). The main problem with these methods is that none of

them considers the complete parameter posterior and thus will fail to account

for alternative inferences following from possible multimodal posteriors or pos-

teriors of peculiar shape. Non-trivial posterior distributions are not rare when

considering models of biological systems due to nonlinearities involved.

The hypotheses testing problem and the problem of model comparison are

usually solved with either simple likelihood ratio test (which would prefer more

complex hypotheses over simple ones as long as they provide better fit to data)

or, in an attempt to compensate for that effect, using the Akaike Information

Criterion (see Akaike 1973). We discuss different Information Criteria in detail

in Section 4.1.4. The Akaike Information Criterion is well justified for cases

when predictions of the prior2 are compatible to those of the likelihood, and not

in the more usual situation when prior information is small in comparison to

the information provided by the data. Another major problem with the Akaike

Information Criterion is that it is based on an asymptotic approximation to the

parameter posterior, and therefore it is only valid when the posterior distribution

is approximately multivariate normal.

The latter problem with the Akaike Information Criterion (as well as several

other methods based on the same principle, which are discussed in Section 4.1.4)

is the major drawback of this approach, because nonlinear parameter posteriors

2Knowledge about possible model parameter values available before the experimental data
is observed.
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are very common in biological modelling3 context.

2.9 Bayesian Networks

Bayesian network inference algorithms (Sachs et al. 2002), (Li and Chan 2004),

(Woolf et al. 2005), (Werhli et al. 2006), (Sachs et al. 2005) construct graphs in

which nodes represent the measured species, and arcs represent statistical rela-

tions and dependencies between species. There are several attractive properties

of Bayesian networks for the inference of signalling pathways from biological data

sets. As emphasised by Sachs et al. (2005), Bayesian networks can represent com-

plex stochastic nonlinear relationships among multiple interacting species, and

their probabilistic nature can accommodate noise that is inherent in biologically

derived data. Such networks can describe direct molecular interactions as well

as indirect influences that proceed through additional unobserved components.

Therefore, very complex relationships can be modelled and discovered.

The key problem for applying Bayesian networks to signal transduction path-

ways studies (which are considered as case studies in this thesis) is that this ap-

proach requires quantitative data for every player involved in a biological system

(e.g. every specie of a biochemical network) to be available. Bayesian networks

are capable of inferring the models which include only the players which are

observed. Collection of all this data is very difficult in most cases due to the

limitations of current experimental methods. The vast majority of the species

would, therefore, be omitted from the network identified with the Bayesian net-

works approach, and replaced with arcs which specify statistical dependency of

the observed species. The most discouraging evidence against the application

of Bayesian networks is that, in practice, the amount of available data is very

small, especially when the study of a network is at an early stage.

2.10 Discussion

Some of the modelling approaches considered in this section aim to reproduce

qualitative properties of modelled systems, these are basic Petri nets, original

3As mentioned earlier, nonlinear models are common in biological applications, and very
often such models have peculiar parameter posteriors, and in some cases even multimodal
ones.
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(non-stochastic) π-calculus, Pathway logic or the qualitative part of the method-

ology implemented in BIOCHAM. Other approaches are essentially quantitative:

ODEs, hybrid systems and hybrid functional Petri nets, stochastic calculi and

process algebras, and the quantitative methodology in BIOCHAM.

The overview provided in this chapter demonstrates that the majority of the

existing quantitative approaches are aimed primarily for simulation of model

behaviours. In the following chapters, we develop a modelling methodology and

an inference framework which allow reasoning and inference about models of

biological systems.

BIOCHAM supports logical matching of simulation traces to behaviour tem-

plates. However, this kind of logical analysis can hardly be used for deductive or

inferential reasoning about biological models. PEPA supports stochastic descrip-

tions of biological models, and supports some quantitative analysis techniques

(including model simulation/bisimulation checking), we suggest a closely related

modelling approach presented in Chapter 3 which allows logical reasoning about

temporal properties using probabilistic symbolic model checking. In Chapter 3

we build upon the idea of using abstract levels of concentration for quantitative

modelling, and propose to use multiple symbolic intervals of the concentration

for more precise quantitative modelling.

We discussed some drawbacks of the inferential methodology based on maxi-

mum likelihood estimation methods. In Chapter 4 we propose to adopt Bayesian

inferential methodology which overcomes these problems.

Bayesian nets seem to be an interesting approach which allows model infer-

ence from empirical data, but this approach requires large amounts of experi-

mental data. Whilst good quality data is available in some areas of biological

research (such as metabolic networks research), it is very expensive and mostly

unavailable in other areas. The methodology we propose in Chapter 4 operates

on predefined mechanistic models of biochemical pathways, so instead of recon-

structing the models from data, we propose evidence-based hypotheses testing,

treating these models as a description of working hypotheses.

Summary

We have provided an overview of the existing modelling and reason-

ing approaches in Systems Biology. We considered several qualitative

modelling methodologies: Petri Nets, Pathway logic, BIOCHAM,
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and π-calculus. We also considered quantitative methodologies, such

as stochastic simulation and the Chemical Master Equation, systems

of ordinary differential equations, stochastic π-calculus, and PEPA.

We reviewed existing methods for analysis and inference of quanti-

tative models using the methods of maximum likelihood estimation.

We identified some weaknesses of the existing approaches and suggest

a methodology to tackle those weaknesses in the following chapters.



Chapter 3

Model-Based Reasoning

Overview

In this chapter we investigate how the methods of probabilistic model

checking on continuous time Markov chains can be employed to rea-

son about behaviours of biological systems.

3.1 Background

Traditionally, systems of differential equations are employed for modelling bi-

ological systems; models are usually defined using ordinary differential equa-

tions or, in some cases, partial differential equations. In this chapter we con-

sider stochastic modelling approaches, namely those based on continuous time

Markov chains. There exist a number of alternative stochastic approaches, such

as Chemical Master Equation which can be simulated using the Gillespie algo-

rithm (see Gillespie 1977), or stochastic π-calculus (see Priami 1995). The main

problem with these approaches is that they are mainly designed for simulation

of model behaviour and little, if any, logical analysis methods are developed for

them. The approach proposed in this chapter is designed to allow logical analy-

sis of the models. Additionally, it overcomes some of the drawbacks with ODE

modelling, namely

• The structure of the ODE system is flat, thus it is hard to recognise par-

ticular interactions in system behaviour;

• ODEs are mainly suitable for simulation of system behaviours and not for

reasoning;

43
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• ODEs are deterministic and therefore they may over-specify the knowledge

about biological systems.

The approach described in this chapter resolves these problems; as follows:

1. The structure of a biological system is preserved in a natural way, making

interactions between components clear.

2. There are logical analysis and reasoning methods for stochastic models

described with continuous time Markov chains. We employ probabilistic

model checking of Continuous Stochastic Logic (CSL) for reasoning. CSL

was shown to be decidable (Aziz et al. 1996).

3. It is possible to reason about system behaviours in a semi-quantitative

way, for example, using intervals instead of fixed values.

We start this chapter with a concise overview of the underlying theory of

continuous time Markov chains and Continuous Stochastic Models, and then

demonstrate how these concepts can be applied to modelling and reasoning about

biological systems.

3.1.1 Continuous Time Markov Chains

This section gives a brief introduction to the concept of CTMCs. The definitions

are taken from (Kwiatkowska 2003).

Definition 3.1: A continuous time Markov chain (CTMC) is a tuple (S, s̄,R, L)

where

1. S is a finite set of states

2. s̄ is an initial state

3. R : S × S → R≥0 is the rate matrix, and

4. L : S → 2AP is a labelling with atomic propositions from set AP .

If R(si, sj) > 0 for a pair of states si, sj we say that there is a transition

from state si to state sj. The elements of matrix R are rates for the transitions,

meaning that the probability that a transition from state si to state sj will
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be taken within time t is 1 − e−R(si,sj)t. If for a pair of states si, sj the rate

R(si, sj) = 0, then we say that there is no direct transition from state si to state

sj.

Note, that these chains have the Markov property, as the exponential distri-

bution used to define the transition rates is “memoryless” and thus the stochastic

process is conditioned only by its current state.

In the cases when R(si, sj) > 0 for more than one state sj, a race (often

referenced as a racing condition) between the outgoing transitions from s exists.

That is, the probability P(s, s′) of taking a transition from s to s′ in a single

step equals the probability that the delay of going from s to s′ is smaller than

the delays for any other outgoing transition from s.

Definition 3.2: A path in a CTMC is a non-empty sequence s0t0s1t1s2 . . . where

R(si, si+1) > 0 and ti ∈ R≥0 for all i ≥ 0. The value ti represents the amount of

time spent in the state si.

Analysis of CTMCs is based on transient (the state of the CTMC at a par-

ticular time instant) and steady-state (the state of the CTMC in the long run)

behaviour.

Definition 3.3: The transient probability πs,t(s
′) is defined as the probability, hav-

ing started in state s, of being in state s′ at time instant t.

Definition 3.4: The steady-state probability πs(s
′) is defined as limt→∞ πs,t(s

′).

An example of a CTMC is given in Example 3.1.

Example 3.1 (A continuous time Markov chain)

Consider a set of states S = {s0, s1, s2, s3, s4, s5}, state s0 is the initial state;
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transition matrix:
s0 s1 s2 s3 s4 s5

R =

s0

s1

s2

s3

s4

s5



0 2 1 0 0 0

0 0 0 2 0 1

0 0 0 0 1 2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


the set of atomic propositions:

AP = {A = 0, A = 1, A = 2, B = 0, B = 1, B = 2, C = 0, C = 1, C = 2}

and labelling:

L =



s0 → {A = 2, B = 0, C = 0}

s1 → {A = 1, B = 1, C = 0}

s2 → {A = 1, B = 0, C = 1}

s3 → {A = 0, B = 2, C = 0}

s4 → {A = 0, B = 0, C = 2}

s5 → {A = 0, B = 1, C = 1}

The CTMC (S, s0,R, L) is schematically depicted in Figure 3.1.

S0

A = 2
B = 0
C = 0 S4

A = 0
B = 0
C = 2

S1

A = 1
B = 1
C = 0

S2

A = 1
B = 0
C = 1

S5

A = 0
B = 1
C = 1

S3

A = 0
B = 2
C = 0

2

2

21

1

1

Figure 3.1: Structure of the CTMC.

Transient probabilities for states s1, s2, and s3 are plotted in Figure 3.2.

Steady-state probabilities for all of the states are:

πs0(s0) = 0 πs0(s3) = 4/9

πs0(s1) = 0 πs0(s4) = 1/9

πs0(s2) = 0 πs0(s5) = 4/9
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Figure 3.2: Transient probabilities for some states in the CTMC

3.1.2 Continuous Stochastic Logic

Properties of CTMCs can be described using continuous stochastic logic (CSL,

see Aziz et al. 1996) which is based on computational tree logic (CTL, see

Emerson 1990) and contains probabilistic operators evaluated with respect to

path-based measures on CTMCs. Some definitions of CSL (e.g. Kwiatkowska

et al. 2005) also include a steady-state operator.

Consider a CTMCM = (S, s̄,R, L) with labelling L over atomic propositions

AP . Two types of formulae are used to define CSL: state formulae (which are

true or false in a specific state), and path formulae (which are true or false along

a specific path).

Definition 3.5: A state formula is defined inductively:

1. a ∈ AP is a state formula,

2. if φ1 and φ2 are state formulae, then so are ¬φ1, φ1 ∧ φ2, φ1 ∨ φ2.

3. if ψ is a path formula, then P≶c(ψ) is a state formula, where c ∈ [0, 1], and

≶∈ {<,≤,≥, >},

4. there are no other state formulae.

Definition 3.6: Path formulae are formulae of the form

φ1U[a1,b1]φ2U[a2,b2] . . . φn,
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where φ1, φ2, . . . φn are state formulae, and ∀i ∈ [1 . . . n] (ai ∈ R≥0, bi ∈ R≥0).

Definition 3.7: Continuous stochastic logic is the set of state formulae generated

by the above rules.

Note, that CSL contains only state formulae; path formulae are used only in

definitions of some state formulae.

The formal semantics for continuous stochastic logic can be found in (Aziz

et al. 1996). The only unusual operator requiring explanation is a time limited

until:

P≶c(φ1U[a,b]φ2). (3.1)

Formula (3.1) holds at a state si if and only if the probability to reach a state

which satisfies φ2, from the state si, passing only through states which satisfy

ψ1 within time interval [a, b], is π ≶ c.

3.1.3 Verification of CTMCs

Properties of CTMCs expressed in CSL can be verified using model checking

techniques. Kwiatkowska (2003) argues that the complexity of CSL model check-

ing is linear in the size of the formula, and polynomial in the state space of

CTMC.

Some properties of interest for Example 3.1 are given in Example 3.2.

Example 3.2 (CSL properties for the CTMC defined in Example 3.1)

• A = 2 – all the states of the CTMC have labelling A = 2. This property

does not hold.

• P≥1((true)U[0,+∞](B = 2)) – a state with labelling B = 2 is eventually

reachable in infinite time with probability 1. This property does not hold,

as once a state with C > 0 is reached it is not possible to get to a state

where B = 2 any more.

• P≥0.4((true)U[0,+∞](B = 2)) – a state with labelling B = 2 is reachable in

infinite time with probability greater or equal to 0.4. This property holds

as the probability to reach a state where B = 2 is equal to 4
9
, which is

greater than 0.4.
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3.1.4 The PRISM Model Checker

The PRISM model checker is a tool for defining and analysing stochastic mod-

els. It supports a description language to define models with continuous time

Markov chains. It also supports discrete time Markov chains and Markov deci-

sion processes, however we confine our interest to CTMCs. PRISM allows users

to define properties of CTMCs in CSL, and check them, employing numerical

solutions of linear equation systems and linear optimisation problems. For a

detailed description see Kwiatkowska et al. (2005).

The PRISM model description language is based on the Reactive Modules

formalism of Alur and Henzinger (1999).

In this section we give a short overview of the PRISM language; the complete

syntax and semantics of this language can be found in the PRISM user’s guide

(see Kwiatkowska et al. 2006).

The fundamental components of the PRISM description language are mod-

ules and variables. A model consists of modules which can interact with each

other. Variables can be either local (in the scope of a module) or global (acces-

sible to all modules in a model). Each variable has a type: boolean, integer or

real. A module contains local variables. The local state of a module is a vector

of values for local variables of this module. The global state of the model is

determined by the global variables together with the local state of all modules.

The behaviour of each module is defined by a set of commands. A command

is defined as:

[a] g → λ : v′i = fi(v1, . . . , vn)& . . .&v′j = fj(v1, . . . , vn);

The guard g is a predicate over all the variables in the model (including

variables which belong to other modules). a is a symbolic label associated with

this command, it is usually called an action, and is used for synchronisation.

A transition is specified by giving the new values of the variables in the mod-

ule, possibly as an expression formed from other variables or constants using

assignment expressions:

v′i = fi(v1, . . . , vn),

where v′i denotes the new value for variable vi, which determines a new local

state of the module which is the destination of the transition defined with such

a command. The expression λ assigns a rate to the transition.
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The CTMC defined in Example 3.1 can be described using one module with

the following PRISM language definition (see Example 3.3):

Example 3.3 (CTMC from Example 3.1 defined in PRISM language.)

ctmc

module module1

pA: [0..2] init 2;

pB: [0..2] init 0;

pC: [0..2] init 0;

[] (pA > 0)&(pB < 2) -> 2: (pA’ = pA - 1)&(pB’ = pB + 1);

[] (pA > 0)&(pC < 2) -> 1: (pA’ = pA - 1)&(pC’ = pC + 1);

endmodule

The keyword ctmc specifies that the model is a continuous time Markov chain.

Note, the overlapping guards indicate a racing condition between transitions.

The CTMC generated from the PRISM language description is the parallel

composition of all the modules. PRISM supports multi-way synchronisation in

the style of process algebras. To enable such synchronisation, commands are

labelled with actions given within square brackets. A multi-modular model with

synchronisation is illustrated in Example 3.4:

Example 3.4 (A PRISM model with multiple modules)

The following defines the CTMC from Example 3.1:

ctmc

const double lambda = 2;

const double gamma = 1;

module module1

pA: [0..2] init 2;

[action1] (pA > 0) -> lambda: (pA’ = pA - 1);
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[action2] (pA > 0) -> gamma: (pA’ = pA - 1);

endmodule

module module2

pB: [0..2] init 0;

[action1] (pB < 2) -> 1: (pB’ = pB + 1);

endmodule

module module3

pC: [0..2] init 0;

[action2] (pC < 2) -> 1: (pC’ = pC + 1);

endmodule

The action1 action in the following command:

[action1] (pA > 0) -> lambda: (pA’ = pA - 1);

is used to force two or more modules to make transitions simultaneously (i.e. to

synchronise). For example, in state (pA = 2, pB = 0, pC = 0), the model can

move to state (pA = 1, pB = 1, pC = 0), synchronising over action1. The

rate of the synchronised transition is the product of the individual rates for the

synchronising action (in this case, lambda · 1 = lambda).

Note that by default all modules are synchronised over all their common ac-

tions.

PRISM also supports definition and verification of properties based on re-

wards, therefore enabling reasoning about expected values. The basic idea is to

associate numerical values with states or transitions of the model. Rewards can

be associated with models using the rewards...endrewards construct. State

rewards can be specified using multiple reward items, each of the form:

guard : reward;

where guard is a predicate (over any variables of the model) and reward is an

expression (containing any variables or constants from the model). For example,
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rewards

x = 0: 100;

x > 0 & x < 10 : 2*x;

x = 10: 100;

endrewards

assigns a reward of 100 to states satisfying x = 0 or x = 10 and a reward of 2∗x
to states satisfying x > 0 &x < 10. Any states which do not satisfy the guard of

any reward will have no reward assigned to them. For the states which satisfy

the guards of several rewards, the reward assigned is a sum of the rewards for

all the corresponding reward items. Rewards can also be assigned to transitions

of a model (see Kwiatkowska et al. 2006). We do not use transition rewards for

our analysis.

Properties in PRISM are expressed in a language based on CSL and a number

of additional customisations and extensions are supported. One of the customi-

sations is evaluation of a property to a numeric value. This is achieved by

replacing the probability bounds in CSL properties with “=?” and is illustrated

in the following example:

Example 3.5 (Evaluation of property probabilities using PRISM)

Some probabilities evaluated using PRISM on the CTMC defined in Exam-

ple 3.1:

• P=?((true)U[0,+∞](B = 2)) = 0.444

• probabilities P=?((true)U[t,t](B = 1)) and P=?((C = 0)U[t,t](B = 1)) for

different values of t are plotted in Figure 3.3.

Note that the probabilities are evaluated on the paths which start in the initial

state of a CTMC.

The satisfaction of a property (i.e. whether it is true or false) is defined for

a single state of a model. When analysing a property, PRISM considers it to

be true if it is satisfied in all the states of the model, and false otherwise. The

satisfaction of a property in a particular state can be verified by considering

subsets of model states. This is expressed in CSL by formulae of the form:

φ→ ψ.
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Figure 3.3: Property probabilities computed with the PRISM model checker.

Such a formula holds when ψ is satisfied at all the states satisfying φ. This is

illustrated by the following example:

Example 3.6 (Verifying properties in a subset of model states)

Consider the model defined in Example 3.1 and the CSL property

P>0.4((true)U[0,+∞](B = 2)).

PRISM evaluates this property to false because when C > 0 no state with B = 2

can be reached, but this property holds at the initial state of the model (as proba-

bility of reaching B = 2 from the initial state is 0.444 as shown in Example 3.5).

The expression above can be extended with an implication to evaluate this prop-

erty only on the initial state thus:

(A = 2)→ P>0.4((true)U[0,+∞](B = 2)).

This property is evaluated to be true. Note that

(A = 2)→ P>0.5((true)U[0,+∞](B = 2)).

is evaluated to false, since 0.444 is less than 0.5.

The operator S≶c(φ) is used for steady-state properties. In the cases when ≶ c

is substituted with “=?”, the actual steady-state probability will be evaluated.
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This is illustrated by the following example:

Example 3.7 (Steady-state properties in PRISM)

Consider the CTMC defined in Example 3.1. Some steady-state properties

and their evaluations are as following:

• S=?(B > 0) = 0.888

• S=?(C > 0) = 0.555

• (A = 2)→ S>0.75(B > 0) = true

• (A = 2)→ S>0.75(C > 0) = false

• (A = 2)→ S<0.75(C > 0) = true

Reward-based properties are specified using the operator R in a similar fash-

ion to the P and S operators. The following are some typical examples:

• R=?[I = 100] – “what is the expected reward value at exactly 100 sec-

onds?”;

• R=?[C ≤ 24] – “what is the expected sum of rewards reachable within 24

seconds?”;

• R<10[S] – “is the expected steady-state reward less than 10?”.

Here I stands for instantaneous, C for cumulative, and S for steady-state reward

value. The time units are, of course, model specific, and are usually interpreted

in the context of each particular model.

This concludes our overview of PRISM. In Section 3.2 we model one bio-

chemical reaction and evaluate some of the model’s properties using PRISM. In

Section 3.3 we build a stochastic model of a complex signalling pathway and

demonstrate how the analysis can be performed using PRISM.

3.2 Modelling Single Reaction with CTMCs

In this section we demonstrate two approaches to modelling biochemical re-

actions using CTMCs. The first approach is based on modelling individual
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molecules while the second one is based on modelling populations. In this sec-

tion we demonstrate both modelling approaches with reference to the following

example of a single biochemical reaction:

Example 3.8 (Single biochemical reaction: protein binding)

Consider a system consisting of one (reversible) biochemical reaction binding

proteins A and B together to form a complex AB:

A+B
k1=1←→

k2=0.5
AB.

Assume that molecules of proteins A and B are uniformly distributed in one

spatial compartment, the probability of binding proteins to form a complex AB

is proportional to the probability that molecules will meet in the space, and the

proportion factor is some affinity coefficient which corresponds to the likelihood

of binding when molecules meet in space.

The probability that molecules will meet in space is proportional to the number

of molecules. The proportionality coefficient is not usually considered separately

from the affinity coefficient: they are both combined in a common kinetic rate.

There is also a probability that complex AB will decompose producing proteins

A and B. The probability of this event is proportional to the likelihood of such

an unbinding event.

The mean dynamic behaviour of a (reversible) binding reaction is traditionally

modelled using the following system of differential equations:
Ȧ = −k1 · A ·B + k2 · AB,

Ḃ = −k1 · A ·B + k2 · AB,
˙AB = k1 · A ·B − k2 · AB.

(3.2)

Assume that initially we have an equal concentration of proteins A and B,

both 10 millimolars1 (10 mmol/L), the compartment size is 1 millilitre. No

complexes AB are present initially.

Solving the initial value problem, we obtain the simulation trace depicted in

Figure 3.4.

1The Molar (M) is a unit of concentration, or molarity, of solution equal to 1 mol/L.
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Figure 3.4: Simulation of a reversible binding reaction. A|t=0 = 10, B|t=0 = 10,
AB|t=0 = 0.

3.2.1 Modelling Individual Molecules

Heath et al. (2006) propose the following approach for modelling interactions of

individual molecules with CTMCs. In the case of modelling individual molecules,

stochastic effects of individual molecule-molecule interactions form the basis of

the model.

Consider Example 3.8 above. To model this system the following atomic

propositions are defined:

• A = 1 – a molecule of protein A present,

• A = 0 – no molecules of A present,

• B = 1 – a molecule of protein B present,

• B = 0 – no molecules of B present,

• AB = 1 – a molecule of a complex AB present,

• AB = 0 – no complexes.

The system described in Example 3.8 can be modelled as individual molecu-

les, with a CTMC consisting of two states: s1 and s2. The labelling for these

states is the following:

• L(s1) = {A = 1, B = 1, AB = 0} ,
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• L(s2) = {A = 0, B = 0, AB = 1} .

Below is the PRISM model for this system. The rate of protein binding is

λ1; the rate of unbinding is λ2. The variables A, B and AB denote the pres-

ence/absence of a molecule of A, B or the complex AB respectively. Initially,

there is one molecule each of A and B, and none of AB.

ctmc

rate k1 = λ1;

rate k2 = λ2;

module binding

A: [0..1] init 1;

B: [0..1] init 1;

AB:[0..1] init 0;

[bind] (A = 1)&(B = 1) -> k1: (A’ = 0)&(B’ = 0)&(AB’ = 1);

[unbind] (AB = 1) -> k2: (A’ = 1)&(B’ = 1)&(AB’ = 0);

endmodule

Assume that constants λ1 and λ2 are the kinetic rates defined in the original

example (i.e. λ1 = 1, and λ2 = 0.5). This assumption is sound if we consider the

system within a fixed volume of uniform size. Adjustments for system volume

are required otherwise.

To calculate the probability that there will be a molecule of AB at time point

t, we check the following property:

P=?(trueU[t,t](AB = 1))

The result of this formula over the range of t [0, 10] is depicted in Figure 3.5.

We also employ rewards to evaluate the probability that there is molecule

AB at time t. To do so we define the following reward:

rewards

(AB > 0) : 1;

endrewards
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Figure 3.5: Probability that there is complex AB at time t

thus assigning a reward of 1 point to each state where AB > 0 (only s2 in

this case). The expected value for this reward is evaluated using the following

property:

R=?[I = t].

The result obtained with this experiment is precisely equivalent to the one de-

picted in Figure 3.5. Thus we can employ any of the methods to compute such

probabilities.

Figure 3.5 suggests that the probability that there is a molecule of the com-

plex initially rises, and then stays at the same level. This suggests that the

system reaches an equilibrium state, which is indeed one of the features of this

system.

The concentrations of proteins and complexes can be determined from the

model of individual molecules using the following rewards (by scaling the num-

ber of molecules to concentrations with a factor of 10, because the maximal

concentration possible is the model is 10 M.):

• true:(A*10); for protein A,

• true:(B*10); for protein B,

• true:(AB*10); for complex AB.

The concentration of complex AB is compared to the one found by simulation of

the ODEs in Figure 3.6. Notice, however, that the concentration produced with

these rewards does not match the behaviour simulated with the ODE model
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Figure 3.6: Predicted concentration of complex AB.

(introduced in Example 3.8 and originally depicted in Figure 3.4). We propose

that this is due to the lack of the population dynamics in the molecule-based

model. Namely, the rates of actions do not take the numbers of molecules into

account.

A B

A1

A2

B1

B2

bind11
bind12

bind21

bind22

Figure 3.7: Possible binding events for two molecules of protein A and B.

Below, we demonstrate how to represent population dynamics in the case of

a small number of molecules. Consider the case of two molecules. Each molecule

of protein A can bind to any of the molecules of protein B, thus we consider

four possible binding events (see Figure 3.7). Initially, all four binding events are

enabled, thus a racing condition exists in the corresponding CTMC; reflecting

the impact of population size onto the dynamics of this reaction. Example 3.9

defines a model with two molecules of A, B and AB each:

Example 3.9 (PRISM model of a small population of individual molecules)

ctmc

rate k1 = λ1;

rate k2 = λ2;
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module A1

A1:[0..1] init 1;

[bind11] (A1=1) -> k1:(A1’=0);

[bind12] (A1=1) -> k1:(A1’=0);

[unbind11] (A1=0) -> 1:(A1’=1);

[unbind12] (A1=0) -> 1:(A1’=1);

endmodule

module A2

A2:[0..1] init 1;

[bind21] (A2=1) -> k1:(A2’=0);

[bind22] (A2=1) -> k1:(A2’=0);

[unbind21] (A2=0) -> 1:(A2’=1);

[unbind22] (A2=0) -> 1:(A2’=1);

endmodule

module B1

B1:[0..1] init 1;

[bind11] (B1=1) -> 1:(B1’=0);

[bind21] (B1=1) -> 1:(B1’=0);

[unbind11] (B1=0) -> 1:(B1’=1);

[unbind21] (B1=0) -> 1:(B1’=1);

endmodule

module B2

B2:[0..1] init 1;

[bind12] (B2=1) -> 1:(B2’=0);

[bind22] (B2=1) -> 1:(B2’=0);

[unbind12] (B2=0) -> 1:(B2’=1);

[unbind22] (B2=0) -> 1:(B2’=1);

endmodule
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module A1B1

A1B1:[0..1] init 0;

[bind11](A1B1=0) -> 1:(A1B1’=1);

[unbind11](A1B1=1) -> k2:(A1B1’=0);

endmodule

module A1B2

A1B2:[0..1] init 0;

[bind12](A1B2=0) -> 1:(A1B2’=1);

[unbind12](A1B2=1) -> k2:(A1B2’=0);

endmodule

module A2B1

A2B1:[0..1] init 0;

[bind21](A2B1=0) -> 1:(A2B1’=1);

[unbind21](A2B1=1) -> k2:(A2B1’=0);

endmodule

module A2B2

A2B2:[0..1] init 0;

[bind22](A2B2=0) -> 1:(A2B2’=1);

[unbind22](A2B2=1) -> k2:(A2B2’=0);

endmodule

We can analyse the transient probabilities concerning quantities of molecules

A, B or AB at any given time using the following CSL properties:

• P=?((true)U[t,t](A1 = 1)|(A2 = 1)) - at least one molecule of A is present

at time t;

• P=?((true)U[t,t](B1 = 1)|(B2 = 1)) - at least one molecule of B is present

at time t;
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• P=?((true)U[t,t](A1B1 = 1)|(A1B2 = 1)|(A2B1 = 1)|(A2B2 = 1)) - at least

one molecule of AB is present at time t;

The evaluation results for these properties are depicted in Figure 3.8.
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Figure 3.8: Transient probabilities for a CTMC model of individual molecules.
The solid line corresponds to the probability that at least one molecule of A and
B (out of two available) is present at a certain time. Initially, this probability
equals 1, but then the probability decreases, until stabilising between 0.5 and
0.6. The dashed line corresponds to the analogous property for complex AB.
Initially, probability equals 0, and then it increases and stabilises between 0.9
and 1.

We can also compute the concentrations of proteins using rewards. For ex-

ample, for AB such a reward is

rewards

(true):(A1B1 + A1B2 + A2B1 + A2B2)*5;

endrewards

Now, we use the scaling factor of 5 in order to map the maximal amount of

complex molecules (2 in this case) on to the allowed range of concentrations

(0 to 10 Molars). The computed (PRISM) concentration plot is depicted in

Figure 3.9. This time the result is closer to the simulation trace produced with

ODEs (introduced in Example 3.8 and originally depicted in Figure 3.4), but

there is still a significant difference as the population dynamics is simulated

by the racing condition between parallel binding events. The quality of this

approximation will improve if a model with a larger population of molecules is

used. We investigated how the results change when using larger populations of
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Figure 3.9: Comparison of protein concentrations obtained with a model of
individuals using PRISM rewards with ODE results.

molecules by building a programme which generates individual-based models for

a given size of molecules population.

Figure 3.10 demonstrates how the result for the concentration of AB ap-

proaches the simulation trace generated with the ODE model as the number of

molecules increases.
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Figure 3.10: Estimates generated from CTMC models with different number of
molecules.

The size of the CTMCs, however, increases dramatically when modelling

larger populations. Table 3.1 lists sizes of CTMCs for different models of Exam-

ple 3.8. Notice that models of 6 or 7 molecules per species fitted into computer’s

memory, however, we could not calculate the estimated concentrations as reward

computations became intractable (e.g. took more than 3 days on a state of art

desktop computer).
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Number of Molecules
per species

States Transitions

1 2 2
2 7 16
3 34 126
4 209 1088
5 1546 10450
6 13327 111312
7 130922 1306046
8 Does not fit to computer’s memory

Table 3.1: Sizes of CTMCs for models of individual molecules.

Models of larger populations are intractable for both the description (because

a separate variable, or a module is required for each molecule, and a separate

command is required for each possible binding event) and computational exper-

iments.

We conclude that due to complexity limitations (state space and time) it is

problematic to employ the individual-based modelling approach of Heath et al.

(2006) for systems with large populations of molecules when population dy-

namics plays an important role. However, this approach may be suitable when

modelling systems consisting of few molecules, where population dynamics does

not serve an important role in shaping the system behaviour.

We propose that the scalability problem can be resolved by adopting a

population-based approach as defined in the following section (see Section 3.2.2).

3.2.2 Population-Based Modelling

To resolve the scalability problem demonstrated in the previous section we pro-

pose an approach which takes the population dynamics directly into account.

This means considering concentrations rather than individual molecules. We

extend an approach published in (Calder, Gilmore and Hillston 2006) which was

implemented in PEPA. Instead of considering two symbolic levels of concen-

tration (“high” and “low” in (Calder, Gilmore and Hillston 2006)) we propose

to use multiple intervals of the concentration. Additionally, we propose a new

form of analysis of such models using probabilistic symbolic model checking. We

reported some of this work in (Calder, Vyshemirsky, Gilbert and Orton 2006).

The key concept is the introduction of discrete concentrations for each bio-
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chemical species.

Each species has a concentration which changes with time, i.e. m = f(t),

where m is a concentration of the species and t is time. We make discrete

abstractions as follows. When the maximum concentration is M , then for a

given N , the abstract values 0 . . . N represent the concentration intervals [0, 1 ∗
M/N), [1 ∗M/N, 2 ∗M/N), . . . [(N − 1) ∗M/N,N ∗M/N ]. We refer to 0 . . . N

as levels of concentration. We note that we could define a different N for each

species but in this chapter, without loss of generality, we assume the same N ,

for all species.

To model a biochemical system we associate a concurrent, computational

process with each of the proteins in the network and define these processes by

PRISM modules. We note that this description could be produced automatically

from a topological description of the pathway. Consider a model of a binding

reaction (Example 3.10) described in Example 3.8.

Example 3.10 (Population model for Example 3.8.)

ctmc

const double M=10.0;

const int N=3;

const double L=M/N;

rate k1=1.0;

rate k2=0.5;

module A

A: [0..N] init N;

[bind] (A>0) -> A*L: (A’ = A - 1);

[unbind] (A<N) -> 1: (A’ = A + 1);

endmodule

module B

B: [0..N] init N;

[bind] (B>0) -> B*L: (B’ = B - 1);

[unbind] (B<N) -> 1: (B’ = B + 1);
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endmodule

module AB

AB: [0..N] init 0;

[bind] (AB < N) -> 1: (AB’ = AB + 1);

[unbind] (AB > 0) -> AB*L: (AB’ = AB - 1);

endmodule

module Constants

x: bool init true;

[bind] (x) -> k1/L: (x’=true);

[unbind] (x) -> k2/L: (x’=true);

endmodule

rewards

(true) : AB*L;

endrewards

The model begins with the keyword ctmc, consists of some preliminary con-

stants:

• M – the maximal (continuous) concentration of any species,

• N – the number of discrete abstract concentration levels,

• L – the length of each interval, an abbreviation for M/N ;

and four modules: A, B, AB, and Constants. Consider the first three modules,

representing species A, B, and AB. Each module has the form: a state variable

which denotes the species concentration (we use the same name for process and

variable, the type can be deduced from the context) followed by commands with

actions [bind] and [unbind].

In order to define the rates of the transitions, we distinguish species which

are spent in a reaction (reactants) from species which are produced in a reaction

(products). Since the transitions are synchronised on common actions, the rate

of each transition will be a product of rates defined in individual modules. We

assign these rates to the concentration of reactants (in corresponding modules)
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multiplied by the scaling coefficient L, which corresponds to the length of the

discrete interval. The rates in modules which correspond to products are set to

1.

There is a fourth module, Constants. This module simply defines the coef-

ficients for reaction kinetics. This module uses a “dummy” state variable called

x, and (two) always enabled transitions with actions bind and unbind.

The assignments for the transitions of reactants decrease the value of corre-

sponding variables by 1, thus decreasing corresponding species’ concentration.

The assignments for products increase corresponding variables by 1.

All the transitions with the same action are synchronised. For example, the

resulting transition from the initial state for action bind has rate:

λ =
N · L ·N · L · k1

L
= 30. (3.3)

The resulting CTMC consists of 4 states and 6 transitions. The schematic

representation of this CTMC is depicted in Figure 3.11.

S0
A = 3
B = 3
AB = 0
X

S1
A = 2
B = 2
AB = 1
X

S2
A = 1
B = 1
AB = 2
X

S3
A = 0
B = 0
AB = 3
X

30 13.3333 3.3333

0.5 1 1.5

Figure 3.11: CTMC for model from Example 3.10.

Consider the soundness of this modelling approach. The crucial question

is how do the transition rates compare with, or relate to, the binding kinetics

explained in Example 3.8?

First, consider how the variables relate to each other: the system of differen-

tial equations (3.2) in Example 3.8 refers to continuous concentrations, whereas

the PRISM model operates on discrete natural concentration levels. Let mi be

a continuous variable (e.g. m1 = A, m2 = B and m3 = AB in (3.2)). and let

md
i be the corresponding PRISM variable (e.g. A, B, AB). Then

mi = md
i · L = md

i ·
M

N
(3.4)

Second, derive a rate expressed in terms of the PRISM variables. From the
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continuous rate:
dm3

dt
= k1 ·m1 ·m2 (3.5)

the simplest way to derive a new concentration m′
3 from m3 is by Euler’s method

thus:

m′
3 = m3 + (k ·m1 ·m2 ·∆t) (3.6)

But the discrete (PRISM) concentrations can only increase in units of 1 level of

concentration, or M
N

molars, so the time to perform such concentration change

is:

∆t =
M

k1 ·m1 ·m2 ·N
(3.7)

PRISM implements rates as “memoryless” negative exponential, that is for given

rate λ, P (t) = 1− e−λt is the probability that the transition will be taken before

time t. Taking λ as 1
∆t

, in this example we have

λ =
k1 ·m1 ·m2 ·N

M
(3.8)

Replacing the continuous variables by their discrete forms, we have

λ =
k1 · (md

1 · M
N

) · (md
2 · M

N
) ·N

M
(3.9)

or

λ =
md

1 · L ·md
2 · L · k1

L
(3.10)

which in an initial state of Example 3.10 is

λ =
N · L ·N · L · k1

L
= 30, (3.11)

which is exactly the rate given in (3.3).

Now consider simulation of behaviour predictions using these population-

based models. In Example 3.10, we included the factor (/L) in the Constants

module, and multiply the concentrations by the scaling factor L in the protein

processes. The following reward

(true) : AB*L;

can be used to determine the expected concentration of complex AB. The

scaling factor L is used again to convert the discrete concentration to the scale
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of continuous concentrations. The estimated concentration of AB for different

values of N are compared with the simulation trace produced with ODEs in

Figure 3.12.
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Figure 3.12: Model behaviour predictions for different values of N . Note, that
in comparison to Figure 3.10, the predicted behaviours here provide better ap-
proximations to the behaviour simulated with ODEs.

The size of CTMCs when using this approach depends linearly on the number

of intervals employed. Table 3.2 lists sizes of CTMCs for different population-

based models of Example 3.8.

N States Transitions

1 2 2
2 3 4
3 4 6
4 5 8
7 8 14
10 11 20
50 51 100
200 201 400

Table 3.2: Sizes of CTMCs for population-based models.

This illustrates how, using a population-based approach, we have overcome

the problem of model complexity. At the same time we have managed to achieve

a more precise simulation of population dynamics. In the next section (see Sec-

tion 3.3) we apply this methodology to a more complex biochemical pathway.
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3.3 Modelling a Pathway with CTMCs

In this section we consider modelling and analysing the RKIP inhibited ERK

pathway. Here we give only a brief overview of the pathway structure, further

details are presented in (Cho et al. 2003).

This pathway is a ubiquitous pathway that conveys mitogenic and differen-

tiation signals from the cell membrane to the nucleus.

The kinase inhibitor protein RKIP inhibits activation of Raf and we conjec-

ture that it can reduce the strength of the signal passing through the pathway.

m1

Raf-1*

m2

RKIP

m3

Raf-1*/RKIP

k1/k2

k3/k4

k9/k10

k6/k7
k5

k11

k8

m4

Raf-1*/RKIP/ERK-PP

m5

ERK

m7

MEK-PP

m8

MEK-PP/ERK

m6

RKIP-P

m10

RP

m11

RKIP-P/RP

m9

ERK-PP

Figure 3.13: The RKIP inhibited ERK pathway

We consider the pathway as given in the graphical representation of Fig-

ure 3.13. This figure is taken from (Cho et al. 2003), where a number of nonlin-

ear ordinary differential equations (ODEs) representing the kinetics are given.

We take Figure 3.13 as our starting point, and explain informally, its meaning.

Each node is labelled by a protein (or species). For example, Raf-1*, RKIP and

Raf-1*/RKIP are proteins, the last being a complex built up from the first two.

A suffix -P or -PP denotes a (single or double, resp.) phosphorylated protein, for

example RKIP-P and ERK-PP. Each protein has an associated concentration,

given by m1, m2 etc. Reactions define how proteins are built up and broken

down. Propagation of a signal corresponds to the “wave” of binding/unbinding
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events. In Figure 3.13, bidirectional arrows correspond to both forward and

backward reactions; unidirectional arrows to forward reactions. Each reaction

has a rate given by the rate constants k1, k2, etc. These are given in the rect-

angles, with kn/kn + 1 denoting that kn is the forward rate and kn + 1 the

backward rate. Initially, all concentrations are equal to zero, except for m1, m2,

m7, m9, and m10 (Cho et al. 2003). The dynamic behaviour of the pathway

is quite complex, because proteins are involved in more than one reaction and

there are several feedbacks. We note that the example system is part of a larger

pathway which can be found elsewhere (e.g Kholodenko et al. 1999 Schoeberl

et al. 2002).

ERK-PP is a protein which is capable of entering the cell nucleus, and for

this reason is usually considered the “output” of the signalling pathway.

We model this biochemical pathway employing the population-based ap-

proach described in Section 3.2.2.

Example 3.11 (PRISM model of the RKIP inhibited ERK pathway.)

ctmc

const double M=3.0;

const int N=12;

const int I1=floor((2.5*N)/3.0);

const int I2=N;

const double L=M/N;

rate k1=0.53;

rate k2=0.0072;

rate k3=0.625;

rate k4=0.00245;

rate k5=0.0315;

rate k6=0.8;

rate k7=0.0075;

rate k8=0.071;

rate k9=0.92;

rate k10=0.00122;

rate k11=0.87;
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module RAF1

RAF1: [0..I1] init I1;

[r1] (RAF1 > 0) -> RAF1*L: (RAF1’ = RAF1 - 1);

[r2] (RAF1 < I1) -> 1: (RAF1’ = RAF1 + 1);

[r5] (RAF1 < I1) -> 1: (RAF1’ = RAF1 + 1);

endmodule

module RKIP

RKIP: [0..I1] init I1;

[r1] (RKIP > 0) -> RKIP*L: (RKIP’ = RKIP - 1);

[r2] (RKIP < I1) -> 1: (RKIP’ = RKIP + 1);

[r11] (RKIP < I1) -> 1: (RKIP’ = RKIP + 1);

endmodule

module RAF1RKIP

RAF1RKIP: [0..I1] init 0;

[r1] (RAF1RKIP < I1) -> 1: (RAF1RKIP’ = RAF1RKIP + 1);

[r2] (RAF1RKIP > 0) -> RAF1RKIP*L:(RAF1RKIP’ = RAF1RKIP - 1);

[r3] (RAF1RKIP > 0) -> RAF1RKIP*L:(RAF1RKIP’ = RAF1RKIP - 1);

[r4] (RAF1RKIP < I1) -> 1: (RAF1RKIP’ = RAF1RKIP + 1);

endmodule

module ERKPP

ERKPP: [0..I1] init I1;

[r3] (ERKPP > 0) -> ERKPP*L: (ERKPP’ = ERKPP - 1);

[r4] (ERKPP < I1) -> 1: (ERKPP’ = ERKPP + 1);

[r8] (ERKPP < I1) -> 1: (ERKPP’ = ERKPP + 1);

endmodule

module RAF1RKIPERKPP

RAF1RKIPERKPP: [0..I1] init 0;

[r3] (RAF1RKIPERKPP < I1) -> 1:(RAF1RKIPERKPP’ = RAF1RKIPERKPP + 1);

[r4] (RAF1RKIPERKPP > 0) ->RAF1RKIPERKPP*L:

(RAF1RKIPERKPP’ = RAF1RKIPERKPP - 1);

[r5] (RAF1RKIPERKPP > 0) ->RAF1RKIPERKPP*L:

(RAF1RKIPERKPP’ = RAF1RKIPERKPP - 1);
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endmodule

module ERK

ERK: [0..I1] init 0;

[r5] (ERK < I1) -> 1: (ERK’ = ERK + 1);

[r6] (ERK > 0) -> ERK*L: (ERK’ = ERK - 1);

[r7] (ERK < I1) -> 1: (ERK’ = ERK + 1);

endmodule

module RKIPP

RKIPP: [0..I1] init 0;

[r5] (RKIPP < I1) -> 1: (RKIPP’ =RKIPP + 1);

[r9] (RKIPP > 0) -> RKIPP*L: (RKIPP’ =RKIPP - 1);

[r10] (RKIPP < I1) -> 1: (RKIPP’ =RKIPP + 1);

endmodule

module RP

RP: [0..I2] init I2;

[r9] (RP > 0) -> RP*L: (RP’ = RP - 1);

[r10] (RP < I2) -> 1: (RP’ = RP + 1);

[r11] (RP < I2) -> 1: (RP’ = RP + 1);

endmodule

module MEKPP

MEKPP: [0..I1] init I1;

[r6] (MEKPP > 0) -> MEKPP*L: (MEKPP’ = MEKPP - 1);

[r7] (MEKPP < I1) -> 1: (MEKPP’ = MEKPP + 1);

[r8] (MEKPP < I1) -> 1: (MEKPP’ = MEKPP + 1);

endmodule

module MEKPPERK

MEKPPERK: [0..I1] init 0;

[r6] (MEKPPERK < I1) -> 1: (MEKPPERK’ = MEKPPERK + 1);

[r7] (MEKPPERK > 0) -> MEKPPERK*L:(MEKPPERK’ = MEKPPERK - 1);

[r8] (MEKPPERK > 0) -> MEKPPERK*L:(MEKPPERK’ = MEKPPERK - 1);

endmodule
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module RKIPPRP

RKIPPRP: [0..I1] init 0;

[r9] (RKIPPRP < I1) -> 1: (RKIPPRP’ = RKIPPRP + 1);

[r10] (RKIPPRP > 0) -> RKIPPRP*L: (RKIPPRP’ = RKIPPRP - 1);

[r11] (RKIPPRP > 0) -> RKIPPRP*L: (RKIPPRP’ = RKIPPRP - 1);

endmodule

module Constants

x: bool init true;

[r1] (x) -> k1/L: (x’ = true);

[r2] (x) -> k2/L: (x’ = true);

[r3] (x) -> k3/L: (x’ = true);

[r4] (x) -> k4/L: (x’ = true);

[r5] (x) -> k5/L: (x’ = true);

[r6] (x) -> k6/L: (x’ = true);

[r7] (x) -> k7/L: (x’ = true);

[r8] (x) -> k8/L: (x’ = true);

[r9] (x) -> k9/L: (x’ = true);

[r10] (x) -> k10/L: (x’ = true);

[r11] (x) -> k11/L: (x’ = true);

endmodule

The model defined in Example 3.11 uses special constants I1 and I2 to tackle

different maximal concentration for different species. For example, the original

model (see Cho et al. 2003) of this pathway states that the initial concentration

for RP is 3.0 Molars, while the initial concentrations for Raf-1*, RKIP, ERK-

PP and MEK-PP are 2.5 Molars. Thus, we define I1 as an integer part of 2.5·N
3.0

which is the discrete value for 2.5 Molars, and I2 equal to N which is the discrete

value for 3.0 Molars.

We use PRISM rewards to evaluate the estimates for protein concentrations.

The following reward:

rewards

true: ERKPP*L;

endrewards

produces the estimate for the MEK-PP concentration. To compare simulation

results between this stochastic model and the deterministic model defined by the
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system of differential equations (3.2), consider the concentration of MEK-PP,

over the time interval [0 . . . 100]. Concentration is the vertical axis. Figure 3.14

demonstrates the results, using the ODE model and two instances of our stochas-

tic model, with N = 6 and N = 12. The “upper” curve is the ODE simulation,

the “lower” curve is the stochastic simulation, when N = 3; the curve in between

the two is the stochastic behaviour when N = 7. As N increases, the closer the

plots; with N = 12 the difference is barely discernible.
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Figure 3.14: Concentration estimates for ERK-PP

In this model the size of the CTMCs depends entirely on the number of

abstract concentration levels. This is due to concurrency and interleaving in this

model, e.g. binding of Raf-1* to RKIP can either precede or succeed binding

of RKIP-P to RP. The sizes of CTMCs for different numbers of concentration

levels are given in Table 3.3.

While it is very interesting to see that a stochastic model produces the be-

haviour very similar to the one produced with the deterministic ODE model,

even when employing quite a small number of concentration levels, the primary

motivation for this methodology is logical analysis, with respect to temporal

logic properties.
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N States Transitions

2 13 30
3 73 276
6 1974 12236
8 4326 28896
10 16071 118932
12 47047 372372
16 175644 1485848

Table 3.3: Sizes of CTMCs for models of the RKIP inhibited ERK pathway.

Temporal logics are powerful tools for expressing temporal queries which may

be generic (e.g. state reachability, deadlock) or application specific (e.g. refer-

ring to variables representing application characteristics). Whereas simulation

is the exploration of a single behaviour over a given time interval, model check-

ing allows us to investigate the truth (or otherwise) of temporal queries over

(possibly infinite) sets of behaviours over (possibly) unbounded time intervals.

For this example, we consider three different kinds of temporal property:

1. steady state analysis of stability of a protein, i.e. a protein reaches a level

and then remains there, within certain bounds,

2. steady state analysis of protein stability when varying reaction rates, i.e.

a protein is more likely to be stable for certain reaction rates,

3. transient analysis of protein activation sequence, i.e. concentration peak

ordering.

3.3.1 Stability of Protein in Steady State

This type of property is particularly applicable to the analysis of networks where

temporary and sustained signal responses can produce markedly different cel-

lular outcomes. For example, a transient signal could lead to cell proliferation,

whereas a sustained signal would result in differentiation.

Consider the concentration of Raf-1*. Stability for this protein (at level D)

is expressed by the CSL formula:

S=?[(RAF1 = D)] (3.12)
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The results are given Figure 3.15, with D ranging over 0 . . . 12 (N = 12).

They illustrate that Raf-1* is most likely to be stable at level 1, with a relatively

high probability of stability at levels 0, 2 or 3. It is unlikely to be stable at levels

4 or more.
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Figure 3.15: Stability of Raf-1* at level D in steady state.

3.3.2 Protein Stability in Steady State while Varying Rates

This type of property is particularly useful during model fitting, i.e. fitting the

model to experimental data. As an example, consider evaluating the probability

that Raf-1* is stable in concentrations interval [0.25 . . . 0.5] mM (discrete level

2) in the steady state, whilst varying the rate of the reaction r1 (the reaction

which binds Raf-1* and RKIP). We vary the parameter k1 (which determines

the rate of r1) over the interval [0 . . . 1]. The stability property is expressed by:

S=?[RAF1 = 2] (3.13)

Consider also the probability that Raf-1* is stable at level 1 ([0 . . . 0.25] mM);

the formula for this is:

S=?[RAF1 = 1] (3.14)

Figure 3.16 depicts results for both these properties, when N = 12. The

probability density of property (3.13) (solid line) peaks at k1 = 0.2 and then

decreases; the probability density of property (3.14) (dashed line) increases dra-

matically, reaching a maximum when k1 > 0.6.
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Figure 3.16: Stability of Raf-1* for different values of rate k1

3.3.3 Activation Sequence Analysis

The last example illustrates queries over several proteins: sequences of protein

activations. Consider two complexes: Raf-1*/RKIP and Raf-1*/RKIP/ERK-

PP. Is it possible that the (concentration of the) former “peaks” before the

latter?

Let M be the peak level of Raf-1*/RKIP/ERK-PP, and D be the level of

Raf-1*/RKIP. The formula for this property is:

P=?[(RAF1RKIPERKPP < M)U(RAF1RKIP = D)] (3.15)

This property expresses “What is the probability that the concentration of

Raf-1*/RKIP/ERK-PP does not exceed level M , until Raf-1*/RKIP reaches

concentration level D?” The results of this query, for N = 6, D ranging

over {1, 2} and M ranging over {1, 2, 3, 4, 5} are given in Table 3.4. For ex-

ample, the probability Raf-1*/RKIP reaches concentration level 2 before Raf-

1*/RKIP/ERK-PP reaches concentration level 5 is 98.7%, the probability Raf-

1*/RKIP reaches concentration level 2 before Raf-1*/RKIP/ERK-PP reaches

concentration level 2 is 90.9%.

To confirm these results, we conducted the inverse experiment – is it possible
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M = 1 M = 2 M = 3 M = 4 M = 5

D = 1 100% 100% 100% 100% 100%
D = 2 73.1% 90.9% 95.9% 97.5% 98.7%

Table 3.4: Protein activation sequence (Property (3.15)).

for Raf-1*/RKIP/ERK-PP to reach concentration level 5 before Raf-1*/RKIP

reaches concentration level 2 with N = 6? The property is:

P=?[(RAF1RKIP < D)U(RAF1RKIPERKPP = M)] (3.16)

This property expresses “What is the probability that the concentration of Raf-

1*/RKIP is less than level D until Raf-1*/RKIP/ERK-PP reaches concentra-

tion level M?” The results are given in Table 3.5 which is complementary to

Table 3.4: for example, the probability Raf-1*/RKIP/ERK-PP reaches concen-

tration level 5 before Raf-1*/RKIP reaches concentration level 2 is 1.39%. This

confirms the results obtained with property (3.15).

M = 1 M = 2 M = 3 M = 4 M = 5

D = 1 0% 0% 0% 0% 0%
D = 2 26.9% 9.1% 4.1% 2.5% 1.3%

Table 3.5: Inverse protein activation sequence (Property (3.16)).

3.4 Discussion: Population-Based Modelling and

Deductive Reasoning

We have described a new population-based modelling and quantitative deduc-

tive analysis approach for signal transduction networks. We model the dynamics

of networks by continuous time Markov chains, making discrete approximations

to concentrations. We describe the models in the high level PRISM modelling

language: proteins are synchronous processes and concentrations are state vari-

ables. We have illustrated our approach with an example, the RKIP inhibited

ERK pathway, a pathway previously modelled by ODEs (Cho et al. 2003).

The PRISM model checker has been a useful tool for model checking, ex-

perimentation, and even simulation. All computations have been tractable on a

single standard processor (the times are trivial and have been omitted).
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The main advantage of our approach is that using a continuous time stochas-

tic logic and the PRISM model checker, we can perform quantitative analysis

such as what is the probability that a protein reaches a stable concentration level?

and how does varying a reaction rate affect that probability? The approach offers

considerably more expressive power than simulation or qualitative analysis. We

can also perform standard simulations and we have compared our results with

traditional ordinary differential equation-based (simulation) methods. An inter-

esting and useful result is that in the example pathway, only a small number

of discrete data values is required to render the simulations practically indistin-

guishable.

In Section 3.2.2 we showed how our population based PRISM model relates

to mass action kinetics as defined by ODEs. While simulation is not the pri-

mary goal of our approach, in Section 3.3 we demonstrated that with small N ,

our model provides (more than) sufficient simulation accuracy, for the example

system. This is because the example pathway has reactions which are all on a

similar scale. If we were to apply our approach to a pathway where the changes

of concentrations are on different scales, i.e. the corresponding ODE model is

a set of stiff equations, then we could still reason about the stochastic model

using temporal logic queries. However, simulations would not be as accurate,

for small N . If more accuracy of simulation was required, then we would have

to increase N .

We demonstrated how deductive reasoning using temporal logic properties

can be performed to show that the pathway model considered in Section 3.3

reaches the steady state, and to verify that one of the proteins (Raf-1*/RKIP)

is likely to “peak” earlier than another one (Raf-1*/RKIP/ERK-PP).

3.5 Model Analysis: from Reasoning to Infer-

ence

In this chapter we have developed a deductive reasoning approach to analyse

model behaviour. We have assumed that the structure of a model and partic-

ular quantitative kinetic parameters are known: the aim of the reasoning is to

derive model behaviours and deduce properties of such behaviours. We formu-

lated models using Continuous Time Markov Chains (defined with a high level

language), and expressed properties using CSL.
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In the next chapter we consider an inferential approach which solves the

inverse problem: given observed behaviour, we search for suitable model pa-

rameters and compare alternative model topologies. Models will be formulated

using ODEs, since these are traditional models for time course data.

Summary

In this chapter we considered two modelling approaches for quan-

titative reasoning about biological systems. Both approaches use

continuous time Markov chains. Initially, we considered an approach

proposed by Heath et al. (2006) that is based on modelling individ-

ual molecules. We have demonstrated that while being suitable for

some cases when only a few molecules are involved in a model (such

as Protein-DNA interaction models) this approach is inadequate for

modelling systems where any impact of population dynamics is im-

portant. We tried to fix this flaw by explicitly defining small popu-

lations of molecules. We have shown how several molecules can be

modelled using this approach, however this solution does not appear

to be practical, as it leads to a well known state space explosion

problem.

To resolve these problems, we proposed a novel population-based

modelling approach which employs abstract discrete concentration

levels. These provide approximations for continuous concentration

values. We compared the simulated model behaviours to the solu-

tions of the traditional ODE models, and found that even a small

number of abstract concentration levels can be sufficient for a satis-

factory simulation of biochemical system dynamics.

The main advantage of the proposed modelling approach is the ability

to apply model checking techniques to enable logical reasoning. We

have demonstrated how this can be done on a case study of the

RKIP inhibited ERK pathway by proposing and verifying a number

of logical properties described with Continuous Stochastic Logic.



Chapter 4

Model-Based Inference

Overview

In this chapter we consider a problem of model inference and test-

ing of alternative hypotheses, when models are defined by non-linear

ordinary differential equations and the experimental data is noisy

and sparse. We compare and evaluate a number of statistical tech-

niques, and implement an efficient Bayesian inferential framework for

Systems Biology based on Markov chain Monte Carlo methods and

estimation of marginal likelihoods by annealing-melting integration.

We illustrate the application of this framework with two case studies,

one of which involves an open problem concerning the mediation of

ERK phosphorylation in the ERK signal transduction pathway.

4.1 Background

In this chapter we develop an inferential framework for Systems Biology. The

inferential framework consists of methods to perform inference and hypotheses

testing tasks. It requires alternative hypotheses to be defined with paramet-

ric statistical models. The initial knowledge and beliefs have to be defined as

prior distributions of model parameters. The likelihood function which com-

pares behaviour produced by a model to the experimental data allows us to

infer plausible posterior distributions of the model parameters that explain the

observed data. Alternative models can be ranked by the degree of their support

by experimental data. The main contribution of this chapter is the selection of

82



CHAPTER 4. MODEL-BASED INFERENCE 83

methods that perform well with nontrivial models used in modelling biochemical

systems.

As we base the inferential framework for Systems Biology on the founda-

tions of Bayesian theory, we begin this chapter with an introduction of the main

concepts of Bayesian analysis, and practical methods for Bayesian inference.

This overview should be considered as a general one, though sufficient to under-

stand the work described in this chapter. A complete overview of the Bayesian

inference philosophy, background and methods can be found in, for example,

(Lindley 1965 Box et al. 1983 Bernardo and Smith 1994 Jaynes 2003).

4.1.1 Bayesian Inference

(Bernardo and Smith 1994) demonstrate how Bayesian theory is built on the

foundation of axiomatic utility theory, and therefore is conceptually sound. In

this section we introduce the main concepts for Bayesian inference, and provide

an overview of the methods which can be used to perform such inference.

Formally, Bayesian inference is statistical inference in which evidence or ob-

servations are used to update or to infer the probability that a hypothesis may

be true. To perform such inference we need to define a way to express our initial

beliefs and describe the process by which some evidence or observations can be

used to update these beliefs.

Applying Bayesian inference methods requires formal representation of the

available knowledge. This should include the statistical model for the problem,

and a priori information about the model parameters, as we assume that the

statistical model is parametric.

In the cases when we have several competing hypotheses about some phe-

nomenon, and therefore several competing models of it, we also associate an a

priori probability p(Mi) to each model, which describes the degree of initial be-

lief that a particular model is the most appropriate one to describe the observed

phenomenon.

Our initial beliefs (initial state of information) about the values of parameters

of each available statistical model of the system are, most often, uncertain and

therefore distributed according to some probability density function p(θi|Mi).

This probability distribution function is called “a prior distribution of model

parameters”.

When some new information D about the modelled phenomenon is acquired,
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we update our beliefs according to Bayes’ theorem. The updated distribution

of our beliefs is called “a posterior distribution of model parameters”. D can

correspond to the data from a newly performed experiment, or new information

published in a recent paper. Bayes’ theorem defines how the posterior can be

obtained from the prior, generally:

p(θi|Mi, D) =
p(D|Mi, θi) · p(θi|Mi)∫
p(D|Mi, θi) · p(θi|Mi)dθi

.

Here the probability p(D|Mi, θi) to produce dataD with modelMi given parame-

ters θi is called “the likelihood” (see, for example, Cox and Hinkley 1974 Gelman

et al. 1995).

Consider Example 4.1 as an illustration of a consistent beliefs update using

this methodology:

Example 4.1 (Inference about a genetic probability)

This example is proposed by Gelman et al. (1995) to illustrate how inference

can be performed using Bayes’ theorem.

Human males have one X-chromosome and one Y-chromosome, whereas fe-

males have two X-chromosomes, each chromosome being inherited from one par-

ent. Haemophilia is a disease that inhibits X-chromosome-linked recessive inher-

itance, meaning that a male who inherits the gene which causes the disease on

the X-chromosome is affected, whereas a female carrying the gene on only one

of her two X-chromosomes is not affected. The disease is generally fatal for

women who inherit two such genes, and this is very rare, since the frequency of

occurrence of the gene is low in human populations.

Consider a woman who has an affected brother, which implies that her mo-

ther must be a carrier of the haemophilia gene with one “good” and one “bad”

X-chromosome. We are also told that her father is not affected; thus the woman

herself has a fifty-fifty chance of having the gene. The unknown quantity of

interest, the state of the woman, has only two possible values: the woman is a

carrier of the gene (θ = 1) or not (θ = 0). Based on the information provided

thus far, the prior distribution for the unknown θ can be expressed as: p(θ =

1) = p(θ = 0) = 1
2
.

The new information which is used for inference is the status of the woman’s

sons. Suppose she has two sons, neither of whom is affected. Let di = 1 or
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0 mean affected or unaffected son, respectively. We assume that sons are not

identical twins, therefore the outcomes are independent. The likelihood takes the

following form:

p(d1 = 0, d2 = 0|θ = 1) = (0.5)(0.5) = 0.25

p(d1 = 0, d2 = 0|θ = 0) = (1)(1) = 1.

Bayes’ theorem can now be used to update our beliefs in whether the woman

is a carrier of a haemophilia gene. Using D to denote the joint data (d1, d2), the

posterior probability that the woman is a carrier is:

p(θ = 1|D) =
p(D|θ = 1)p(θ = 1)

p(D|θ = 1)p(θ = 1) + p(D|θ = 0)p(θ = 0)

=
(0.25)(0.5)

(0.25)(0.5) + (1.0)(0.5)
=

0.125

0.625
= 0.20.

Intuitively it is clear that if a woman has unaffected children, it is less proba-

ble that she is a carrier, and Bayes’ theorem provides a formal mechanism for

determining the extent of the correction.

In Example 4.1 we were in a (very rare) position, when we were able to iterate

through the finite space of the available options, and compute the likelihoods

and the priors by simple enumeration of possible outcomes.

Analytical inference of parameter posteriors is also possible in some spe-

cial cases when the likelihood belongs to the exponential family, e.g. Normal,

Bernoulli, Poisson) and a conjugate prior is used. This approach is not consid-

ered in this thesis as it is not applicable to the class of models used. A detailed

description of the conjugate priors approach can be found in (Bernardo and

Smith 1994).

In this chapter we consider several complex models as our case studies. These

are formulated using non-linear ordinary differential equations. We argue that, in

the majority of realistic applications within Systems Biology, it is not possible to

perform inference analytically due to the complexity of the integrals involved. In

such cases we need some numerical methods to be able to evaluate the posteriors.

A large family of such numerical methods is called Monte Carlo methods, which

we consider in Section 4.1.3.
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4.1.2 Deterministic Approximations to the Posterior

In this section we consider an analytical method of inferring parameter posteriors

using a Taylor series expansion of the likelihood around the maximal likelihood

estimate of the parameter.

This approach is justified for the cases when the posterior is almost multivari-

ate normal. This, however, is rare when the models are defined using nonlinear

differential equations, and only a few variables can be observed.

In some cases, analytical methods cannot be applied for inference mainly due

to complexity of evaluating an integral of the form:

E [g(θ)|D] =

∫
θ∈Θ

g(θ)p(θ|D)dθ, (4.1)

where p(θ|D) is derived from a predictive model, and g(θ) is some real-valued

function of interest. Often, g(θ) is a first or second moment, and p(θ|D) is given

by

p(θ|D) =
p(D|θ)p(θ)∫

θ∈Θ
p(D|θ)p(θ)dθ

.

In order to evaluate (4.1) using Laplace’s method (see Tierney and Kadane 1986)

we first express the integrand in the form exp {log(g(θ)p(θ|D))} and then expand

log(g(θ)p(θ|D)) as a function of θ in a quadratic Taylor series around its mode

θ0:

log(g(θ)p(θ|D)) ≈ log(g(θ0)p(θ0|D))− 1

2
(θ − θ0)

TA(θ − θ0) + . . . ,

where

A = − ∇2 log (g(θ)p(θ|D))
∣∣
θ=θ0

, (4.2)

Aij = − ∂2

∂θi∂θj

log(g(θ)p(θ|D))

∣∣∣∣
θ=θ0

. (4.3)

This method assumes that θ0, as a mode of a multivariate Gaussian distribution,

is the maximum a posteriori estimate of the model parameters.

g(θ)p(θ|D) can then be approximated by an unnormalised Gaussian

q∗(θ) = g(θ0)p(θ0|D)exp

{
−1

2
(θ − θ0)

TA(θ − θ0)

}
, (4.4)
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and the normalising constant Zq for this Gaussian is

Zq = g(θ0)p(θ0|D)

√
(2π)n

detA
, (4.5)

where n is the dimensionality of the parameter space.

For the cases when matrix A cannot be evaluated analytically, numerical

derivation methods can be used. Though, this approximation is valid, as already

mentioned, it is only valid in the cases when the posterior is unimodal and almost

multivariate normal. For more complex cases, for example, when the likelihood

is multimodal or differs significantly from a normal distribution (as in the case

studies considered in Sections 4.3.1 and 4.3.2), the Laplace approximations are

not valid. In more complex cases, other methods, for example, Monte Carlo

methods, must be applied.

4.1.3 Monte Carlo Methods

As we stated above, we need to evaluate complex probability distributions when

performing inference over model parameters from observed data. A straightfor-

ward evaluation of these probabilities is problematic, as the likelihood function

can involve complex nonlinear forms. Monte Carlo methods are computational

techniques developed to generate samples from a desired probability distribution

p(x) and to compute integrals of the form (4.1). The generated samples can be

used to estimate the probability densities of interest. We start with a concise

introduction to Monte Carlo integration, and then consider three Monte Carlo

methods in this chapter: rejection sampling, Metropolis-Hastings sampling and

Gibbs sampling.

Monte Carlo Integration

Monte Carlo methods are computational techniques developed to generate sam-

ples
{
θ(r)
}R

r=1
from a desired probability distribution p(θ|D) and to compute

integrals of the form (4.1):

E [g(θ)|D] =

∫
θ∈Θ

g(θ)p(θ|D)dθ,

The probability distribution p(θ|D), which in this case is called target den-
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sity, might be a distribution of model parameters arising in biological modelling,

for example, the posterior distribution of model parameters given some observed

data.

If the first part of the problem, generating a sample from the target density,

is solved, then the value of the integral can be estimated as

E [g(θ)|D] =

∫
θ∈Θ

g(θ)p(θ|D)dθ,≈ 1

R

R∑
r=1

g(θ(r)). (4.6)

As the number of samples R increases, the variance of this estimate will decrease

as σ2/R, where σ2 is the variance of g(θ),

σ2 =

∫
θ∈Θ

p(θ|D)(g(θ)− E [g(θ)|D])2dθ.

An important property of Monte Carlo integration methods is that the ac-

curacy of the Monte Carlo estimate (4.6) depends only on the variance of g(θ)

and not on the dimensionality of the space sampled. So, regardless of the di-

mensionality of the parameter space, it may be that as few as a dozen samples{
θ(r)
}

suffice to estimate E [g(θ)|D] satisfactorily.

We consider three popular Monte Carlo methods of generating a sample from

a target density: rejection sampling, the Metropolis-Hastings method and Gibbs

sampling.

Rejection Sampling

The general background for this method is described in (Robert and Casella

2004) and (MacKay 2003) as the following:

Assume that we need to generate a sample from a univariate probability

density p(x) = p∗(x)/Z, and it is difficult to sample from such distribution

directly. We assume that we have a simpler proposal density q(x) which we can

evaluate (within some multiplicative factor Zq, such that q(x) = q∗(x)/Zq), and

from which we can generate samples. We further assume that we know the value

of a constant c such that

∀x(cq∗(x) > p∗(x)). (4.7)

A schematic picture of such functions is depicted in Figure 4.1.

To produce a sample from p(x) we generate two random numbers. The first,
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x

p*(x)
cq*(x)

Figure 4.1: The functions involved in rejection sampling. p∗(x) is too complex
to sample from directly, so some simple distribution cq∗(x) is chosen in a way
that its density is always larger than p∗(x).

x, is generated from the proposal density q(x). We then evaluate cq∗(x) and

generate the second random number, u, from a uniform distribution over the

interval [0, cq∗(x)]. At the next stage we evaluate p∗(x) and accept or reject

sample x by comparing the value of u with the value of p∗(x). If u > p∗(x), then

the sample x is rejected; otherwise it is accepted, which means that we add x to

our set of samples
{
x(r)
}
.

This procedure generates samples from p(x) because the proposed point (x, u)

comes uniformly from the area underneath the curve cq∗(x) (see Figure 4.1), and

the rejection rule rejects all the points that lie above the curve p∗(x). So the

points (x, u) which are accepted are uniformly distributed in the area under

the curve p∗(x). This implies that the probability density of the x-coordinates

of the accepted points must be proportional to p∗(x), so the samples must be

independent samples from p(x).

Rejection sampling will work best if the proposal distribution q(x) is close

to p(x). However, in the cases when q(x) is significantly larger (in terms of the

area under the curve cq∗(x)) than p(x), then rejection sampling will be very

inefficient, as the majority of the proposed points (x, u) will be rejected. This

problem becomes a significant drawback when applying this method to sampling

from multidimensional distributions, as the acceptances become very rare indeed.
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The Metropolis-Hastings Method

We stated that rejection sampling is very inefficient when sampling from complex

multidimensional distributions. The Metropolis-Hastings algorithm employs a

different approach which overcomes the efficiency problems of rejection sampling.

This algorithm originates in statistical physics (see Metropolis et al. 1953) where

it is used to investigate properties of large two- and three-dimensional systems of

interacting particles. Later, this method was employed as a Bayesian inference

machine by Grenander (1983) and Geman and Geman (1984) in the context of

image analysis.

The Metropolis-Hastings algorithm uses a proposal density Q which depends

on the current sample x(r). This proposal density q(x′, x(r)) can be any fixed

density from which we can draw samples.

As before, we assume that we can evaluate p∗(x) for any proposed x. A

tentative new x′ is generated from the proposal density q(x′, x(r)), to decide

whether to accept this value into our sample, we have to compute the value:

a =
p∗(x′)

p∗(x(r))
· q(x

(r), x′)

q(x′, x(r))
. (4.8)

If a ≥ 1 then x′ is accepted into the sample. Otherwise, x′ has to be accepted

with probability a. If x′ is accepted into the sample, then it will be taken as

the base for the proposal distribution of x(r+1) at the next sampling iteration.

Otherwise, the last accepted value x(r) has to be duplicated: x(r+1) = x(r).

The Metropolis-Hastings algorithm is an example of the Markov Chain Monte

Carlo (MCMC) method (see Gilks et al. 1995 Robert and Casella 2004 Gamer-

man 2006). In contrast to rejection sampling where the accepted values
{
x(r)
}

are independent samples from the desired distribution, MCMC methods use a

partial realisation
{
x(r)
}N

r=0
from a Markov chain with stationary distribution

p(x) (see below for definitions).

We now give some basic background from the theory of Markov chains rele-

vant to MCMC.

Definition 4.1 (Markov chain): A Markov chain is a sequence of random variables

X0, X1, . . . taking values in X with the Markov property:

Pr
(
X t+1 = x

∣∣X t = xt, . . . X
1 = x1, X

0 = x0

)
= Pr

(
X t+1 = x

∣∣X t = xt

)
.
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X is called the state space of a Markov chain.

For simplicity, we focus on Markov chains with countable state space X .

For a deeper theoretical background, especially with regard to continuous state

spaces, see, for example, (Tierney 1994) or (Athreya et al. 1992).

Definition 4.2: A Markov chain is called time homogeneous if

Pr
(
X t+1 = x

∣∣X t = y
)

= Pr
(
X t = x

∣∣X t−1 = y
)

for all t.

While considering MCMC methods we use time homogeneous Markov chains,

thus we assume this property for all the subsequent definitions.

Definition 4.3: The transition kernel p(x→ x′) of a Markov chain is defined by

p(x→ x′) = Pr
(
X t+1 = x′

∣∣X t = x
)
.

Definition 4.4: The n-step transition kernel pn(x → x′) of a Markov chain is

defined by

pn(x→ x′) = Pr
(
X t+n = x′

∣∣X t = x
)
.

Definition 4.5: A Markov chain is irreducible if there is a positive probability to

get from any state to any state.

Definition 4.6: A period dx of the state x is

dx = gcd {n ≥ 0 : pn(x→ x′) > 0} .

A Markov chain is aperiodic if ∀x ∈ X (dx = 1).

Definition 4.7: π(x) is a stationary distribution of a Markov chain if

∀x′ ∈ X

(∑
x∈X

π(x)p(x→ x′) = π(x′)

)
.

Definition 4.8: Let Tx = inf {t ≥ 1 : X t = x |X0 = x}, a Markov chain is called
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positive recurrent if, and only if, ∀x ∈ X (E[Tx] <∞), where E[Tx] is the expected

value of Tx.

Theorem 4.1 (Ergodic theorem): A Markov chain which is aperiodic, irreducible,

and positive recurrent has a unique stationary distribution.

More details about ergodicity and the ergodic theorem can be found in (Feller

1968) or (Iosifescu 1980).

The key feature of the Markov chain theory for MCMC is that the empir-

ical distribution of an aperiodic, irreducible, positive recurrent Markov chain

converges to its stationary distribution (see Levental 1988).

It was demonstrated (see e.g. Hastings 1970 Neal 1993) that the Metropolis-

Hastings algorithm builds an aperiodic, irreducible, positive recurrent Markov

chain with the stationary distribution p(x) (or more precisely, performs a random

walk in such Markov chain), which means that after a large number of initial

steps it produces a sample from p(x).

Example 4.2 (Demonstration of the Metropolis-Hastings algorithm.)

The Metropolis-Hastings algorithm is often used for multidimensional prob-

lems, as it avoids the common problems of rejection samplers. Many imple-

mentations of this algorithm employ a proposal distribution with a length scale ε

which is short relative to the scale L of the desired distribution (see Figure 4.2).

The reason for such choice is that for multivariate problems a large random step

from a typical point is very likely to end in a state which has very low probability;

such steps are unlikely to be accepted.

Figure 4.2: Traditional proposal density for a Metropolis-Hastings algorithm in
two dimensions (see MacKay 2003).
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For a demonstration we use the Metropolis-Hastings algorithm to draw sam-

ples from a two-dimensional normal distribution:

N

(
x

∣∣∣∣∣µ = (3, 2) ,Λ =

[
1 0.9

0.9 1

])
.

We use

N

(
x(r+1)

∣∣∣∣∣µ = x(r),Λ =

[
0.15 0

0 0.15

])
as the proposal distribution. Figure 4.3 depicts a comparison of samples gener-

ated using Metropolis-Hastings algorithm to the samples drawn directly from the

target distribution.

The smaller sample produced with the Metropolis-Hastings algorithm (see Fig-

ure 4.3(a)) has not converged enough to the target; as a result the initial random

walk (a trail in the left part of Figure 4.3(a)) significantly distorts the sample.

At the same time the larger sample produced with Metropolis-Hastings algorithm

with the same parameters (see Figure 4.3(c)) is much closer to the target.
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(a) Metropolis-Hastings, N = 1000
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(b) Direct, N = 1000
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(c) Metropolis-Hastings, N = 10000
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(d) Direct, N = 10000

Figure 4.3: Metropolis-Hastings sampling for a toy problem. Samples (a) and
(c) were produced with the Metropolis-Hastings algorithm, while samples (b)
and (d) were drawn directly from the target distribution.
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Gibbs Sampling

Gibbs sampling (see e.g. MacKay 2003 Thomas et al. 1992) is a method of sam-

pling from distributions of at least two dimensions. This method is used when

conditional distributions of the joint target distribution can be easily evaluated.

It is assumed that, while p(x) is too complex to draw samples from directly, its

conditional distributions P
(
xi

∣∣∣{xj}j 6=i

)
are tractable to work with. This holds

for many simple statistical models, but is generally not applicable to models of

most biological systems described with nonlinear differential equations, since the

likelihood function in such cases cannot be reduced to conditional probabilities.

The iterative procedure of the Gibbs sampler is similar to the Metropolis-

Hastings algorithm described above, the only difference is how the proposal step

is performed. In a general case of a system with K parameters, a single proposal

step is performed by sampling each parameter separately, conditioned on the

values of the rest of parameters:

x
(r+1)
1 ∼ P

(
x1

∣∣∣x(r)
2 , x

(r)
3 , . . . x

(r)
K

)
x

(r+1)
2 ∼ P

(
x2

∣∣∣x(r+1)
1 , x

(r)
3 , . . . x

(r)
K

)
· · ·

x
(r+1)
K ∼ P

(
x1

∣∣∣x(r+1)
1 , x

(r+1)
2 , . . . x

(r+1)
K−1

)
(4.9)

The convergence of the Gibbs sampler to the target distribution follows from

the fact that this sampler is a special case of the Metropolis-Hastings algorithm,

and therefore the probability distribution of x(r) tends to p(x) as t→∞.

Both the basic Metropolis-Hastings algorithm and the Gibbs sampler suffer

from the same defect that the state space is explored by a slow random walk.

This can be easily observed when some of the parameters are strongly correlated,

in such cases the acceptance rate of both algorithms reduces usually to very small

values (only few proposed steps become accepted).

Adaptive Proposals

To overcome the problem with inefficient proposals in a general Metropolis-

Hastings algorithm, Gelman et al. (1995) proposes to use an adaptive proposal

distribution, resetting the Markov chain several times until a good acceptance

rate is achieved.
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Suppose there is a model with K parameters, and the posterior distribu-

tion of the parameters θ = (θ1, . . . , θK). Gelman et al. (1995) propose to take

draws using the Metropolis-Hastings algorithm with a symmetric normal pro-

posal distribution of the same shape as the current approximation of the target

distribution: that is

Q
(
θ(r)
∣∣θ(r−1)

)
= N

(
θ(r)
∣∣µ = θ(r−1) ,Λ = c2Σ

)
,

where Σ is an estimate of the posterior’s variance-covariance matrix. In practice,

among this class of proposal distributions, the most efficient1 has scale c ≈
2.4/
√
K (see Gelman et al. 1995). The optimal acceptance rate for multivariate

problems is about 0.23. This improved proposal suggests the following adaptive

sampling algorithm:

1. Start the simulation with a fixed proposal distribution using a standard

version of the Metropolis-Hastings or Gibbs algorithm.

2. After some number of iterations, update the proposal distribution as fol-

lows:

(a) Adjust the covariance of the proposal distribution to be proportional

to the posterior covariance matrix estimated from the simulated sam-

ple.

(b) Increase or decrease the scale of the jumping distribution if the ac-

ceptance rate of the simulations is much too high or low, respectively.

The goal is to bring this acceptance rate to the approximate optimal

value between 0.44 and 0.23.

Note, that when using this adaptive algorithm, the simulation of the Markov

chain has to be restarted when the proposal distribution is updated, the sample

can be expected to converge to the target distribution only once the proposal is

fixed after a number of updates.

Convergence monitoring

As we already stated in the overview of Markov chain theory, the chains built

with MCMC algorithms converge to some stationary distribution, and the Metropolis-

1Gelman et al. (1995) justify this choice by their practical experience with many statistical
problems.
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Hastings algorithm builds the chains in a way that the desired parameter poste-

rior is this stationary distribution. We immediately can see the main technical

problem for MCMC sampling: how many samples are required to be sure that

the sample is produced from the stationary distribution?

The actual number of required “burn-in”2 samples can not be precisely de-

fined. Some methods, however, have been developed to detect whether the

sampler reached a stationary distribution. In our practice, we use a method

published by Gelman et al. (1995). This method suggests running several simi-

lar Markov Chains in parallel, and assessing the level of mixing3 of the samples

produced by them.

The method of Gelman et al. (1995) is used to monitor the mixing of param-

eter samples by computing a mixing statistic for each parameter separately, and

when the values of this statistic is small enough for each of the parameters, we

assume that the Markov chains have converged.

For each scalar parameter p, we label the draws from J parallel samplers

of length n as pij (i = 1, . . . , n; j = 1, . . . , J). For each scalar parameter we

compute its between- and within-sequence variances, B and W correspondingly.

B =
n

J − 1

J∑
j=1

(p̄·j − p̄··)2, W =
1

J

J∑
j=1

s2
j ,

where

p̄·j =
1

n

n∑
i=1

pij, p̄·· =
1

J

J∑
j=1

p̄·j, s2
j =

1

n− 1

n∑
i=1

(pij − p̄·j)2.

The between-sequence variance, B, contains a factor of n because it is based on

the variance of the within-sequence means, p̄·j, each of which is an average of n

values pij. If only one sequence is simulated, B cannot be calculated.

The marginal posterior variance of parameter p can be estimated by a weighted

average of W and B:

v̂ar(p|D) =
n− 1

n
W +

1

n
B,

which overestimates the marginal posterior variance assuming the starting dis-

2Burn-in is an initial part of the sample which is discarded to give the Markov chain some
time to converge to the target distribution.

3Mixing of samples means that the samples are produced from the same probability distri-
bution.
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tribution is overdispersed4.

For any finite n, the within-sequence variance W should be an underestimate

of var(p|D) because the individual sequences have not had time to range over

all the target distribution and, as a result, will have less variability; in the limit

as n→∞, the expectation of W approaches var(p|D).

Gelman et al. (1995) propose to monitor convergence of the iterative simu-

lation by estimating the factor by which the scale of the current distribution for

p might be reduced if the simulations were continued in the limit n→∞. This

potential scale reduction is estimated by

R̂ =

√
v̂ar(p|D)

W
,

which declines to 1 as n → ∞. If the potential scale reduction is high, then

we have reason to believe that proceeding with further simulations may improve

our sample from the target distribution.

4.1.4 Model Comparison and Bayes Factors

The methodology presented in this section allows one to rank competing hy-

potheses by the evidential support from experimental data, and therefore eval-

uate relative confidence values for such hypotheses. A complete comprehensive

overview of Bayes factors and model comparison can be found in e.g. (Kass and

Raftery 1995).

In the cases when a discrete set of competing hypotheses is considered, the

hypotheses can be ranked by the ratio of their posterior probabilities. For a pair

of hypotheses H1 and H2 represented with models M1 and M2 the ratio is

p (M1|D)

p (M2|D)
. (4.10)

Taking a prior distribution of beliefs in preference of each hypotheses π into

account, and in the case when hypotheses are represented by parametric models,

this ratio is:

p(M1|D)

p(M2|D)
=
π (M1)

π (M2)
× p (D|M1)

p (D|M2)
=
π (M1)

π (M2)
×
∫
p(D|M1, θ1) · p(θ1|M1)dθ1∫
p(D|M2, θ2) · p(θ2|M2)dθ2

(4.11)

4Overdispersion in this context means that the variance of the initial population of parallel
chains is significantly higher than the variance of the posterior distribution.
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Definition 4.9: The ratio of the marginal likelihoods for two competing hypothe-

ses: ∫
p(D|M1, θ1) · p(θ1|M1)dθ1∫
p(D|M2, θ2) · p(θ2|M2)dθ2

is called the Bayes factor.

Bayes factors are used to test competing hypotheses, and update correspond-

ing beliefs using formula (4.11).

Example 4.3 (Bayes factors applied to Example 4.1.)

The genetics example given as Example 4.1 can be reintroduced in terms of

Bayes factors, considering two competing hypotheses:

H1: the woman is affected,

H2: the woman is not affected.

That is θ = 1 and θ = 0 in terms of Example 4.1. The prior odds are

π(H2)

π(H1)
= 1,

as we consider both hypotheses to be equally probable: π(H1) = π(H2).

The Bayes factor of data that the woman has two unaffected sons is

p(y|H2)

p(y|H1)
=

1.0

0.25
.

The posterior odds are thus
p(H2|y)
p(H1|y)

= 4.

Which means that it is four times more likely that the woman is unaffected if

she has two unaffected sons. This result matches the one obtained by applying

Bayes’ theorem directly in Example 4.1.

We propose that reasoning employing Bayes factors is much more compre-

hensible and more natural than that given in Example 4.1.

Example 4.3 demonstrates how Bayes factors are calculated when only dis-

crete options are considered. When using models with continuous parameter

space the problem becomes more complex, as Bayes factors have to be evalu-
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ated by integration. In the vast majority of practical problems these integrals

cannot be evaluated analytically, and therefore numerical methods are required

to estimate them. These integrals are called marginal likelihoods, and we give a

brief overview of some numerical methods to estimate them in the next section

(see Section 4.1.5).

The Bayes factor is a summary of the evidence provided by the data in favour

of one hypothesis, represented by a model, as opposed to another. Jeffreys (1961)

suggested interpreting Bayes factors in half-units on the log10 scale. Pooling two

of his categories together for simplification we demonstrate his scale in Table 4.1.

log10(B) B Evidence support
0 to 1/2 1 to 3.2 Not worth more than a bare mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
> 2 > 100 Decisive

Table 4.1: Interpretation of the Bayes factor as evidence support categories
according to Jeffreys (1961)

These categories are not a calibration of the Bayes factor, as it already pro-

vides a meaningful interpretation as probability, but rather a rough descriptive

statement about standards of evidence in scientific investigation.

Kass and Raftery (1995) propose a slight modification to this scale, and use

natural logarithms instead. This modified scale is demonstrated in Table 4.2.

2 loge(B) B Evidence support
0 to 2 1 to 3 Not worth more than a bare mention
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
> 10 > 150 Very strong

Table 4.2: Interpretation of the Bayes factor as evidence support categories
according to Kass and Raftery (1995)

There are a number of publications on the controversy between Bayesian and

non-Bayesian testing procedures. The following four issues are usually consid-

ered:

1. P values used in non-Bayesian significance testing are not similar to the

posterior probability that the null hypotheses is correct. Jeffreys (1961)
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demonstrates this problem and considers the results obtained with both

approaches.

2. Non-Bayesian tests tend to reject null hypotheses in very large samples,

whereas Bayes factors do not. This has been a problem in sociology, where

the data sets can contain thousands of cases. Facing this problem, sociolo-

gists have taken to ignoring significance tests and using other criteria and

informal methods when comparing models. An example with number of

samples n = 113, 566 was discussed by Raftery (1986), where a meaningful

model that explained 99.7% of the deviance was rejected by a standard chi-

squared test with a P value of about 10−120 but was nevertheless favoured

by the Bayes factor. Bayes factors are now widely used in sociology, usually

with BIC (Bayesian Information Criterion) as an approximation.

3. Bayes factors can be applied to both nested5 and non-nested models, while

application of non-Bayesian significance tests to non-nested models is dif-

ficult. This problem is briefly discussed in (Kass and Raftery 1995).

4. Non-Bayesian significance tests were designed for comparison of two mod-

els, but practical data analysis often involves more than two models, at

least implicitly. In such a case, performing multiple significance tests to

guide a search for the best model can give very misleading results (e.g.

Freedman 1983). This problem can be avoided by taking model uncer-

tainty into account and employing Bayes factors (e.g. Raftery et al. 1993).

Arkinson (1978) has noted some examples when Bayes factors favoured the

simpler model H0 even when a more complex model H1 was correct. Smith and

Spiegelhalter (1980) demonstrated that this occurs only when the models are

so close that there is almost no loss in predictive power when cutting back to

the simpler model, so that Bayes factors can be considered as a fully automatic

Occam’s razor6.

Akaike (1973) proposed yet another criterion for model comparison, which

also takes the complexity of the models into account. This criterion suggests to

5Nested models are statistical models with model parameters arranged in a hierarchical
structure.

6Occam’s razor is a principle which states that the explanation of any phenomenon should
make as few assumptions as possible. Thus, the simplest model which explains the evidence
sufficiently should be chosen as the most appropriate one.
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choose the model which minimises AIC (Akaike information criterion):

AIC = −2(log maximum likelihood) + 2(number of parameters). (4.12)

There are two main justifications for this criterion. The first one is based on

the predictive argument. Suppose that, given current data and a set of possible

models, we are seeking for a predictive distribution of a future datum. Then, if

the predictive distribution is conditional on a single model and on its estimated

parameters, the AIC picks the model that gives the best approximation, asymp-

totically, in the Kullback-Leibler sense. AIC tends to overestimate the number

of parameters needed, even asymptotically. The second main justification for

the AIC is Bayesian. Akaike (1983) claimed that model comparisons based on

the AIC are asymptotically equivalent to those made with Bayes factors. But

this is true only in the situations when predictions of the prior are compatible

to those of the likelihood, and not in the more usual situation when prior infor-

mation is small in comparison to the information provided by the data. In the

latter (and more usual situation) the Bayesian Information Criterion (BIC), also

known as Schwartz criterion, indicates that the model with the highest posterior

probability is the one which minimises

BIC = −2(log maximum likelihood) + (logN)(number of parameters), (4.13)

where N is a number of observations.

Comparing Equations (4.12) and (4.13) indicates that BIC tends to favour

simpler models than those chosen by the AIC criterion.

The deviance information criterion (DIC) (see Spiegelhalter et al. 2002) is

sometimes used for model comparison when parameter posteriors were obtained

with Markov chain Monte Carlo simulation. This criterion allows one to avoid

marginal likelihood estimation and is more convenient than AIC and BIC as it

does not require maximum likelihood estimation. Like AIC and BIC it is an

asymptotic approximation. It is only valid when the posterior distribution is

approximately multivariate normal. DIC indicates that the model which min-

imises

DIC = 2D̄ −D(θ̄) (4.14)
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should be preferred over the rest. In Equation (4.14)

D(θ̄) = −2 log(p(D|M, θ̄)),

where θ̄ is the expectation of the parameter posterior; and

D̄ = Ep(θ|D,M)[−2 log(p(D|M, θ))]

is the expectation of −2log(p(D|M, θ)) on the posterior sample.

Using hypotheses testing approaches based on asymptotic approximations

(AIC, BIC, DIC) sometimes provides unreliable results, as these methods are

justified only for the cases when parameter posteriors are unimodal and almost

multivariate normal. This is a very rare case in modelling biological systems,

as the majority of the involved models are nonlinear. Employing asymptotic

methods with such models often provides confusing and incorrect results. For

example, the definition of DIC assumes that the likelihood estimate of the aver-

age parameter value produces the maximum likelihood value, which is incorrect

in the case of multimodal or nonlinearly shaped posteriors.

In our Case Studies we rely on the hypotheses testing results obtained with

Bayes factors. However, computing such Bayes factors is a challenging problem,

as the marginal likelihoods for nonlinear models have to be evaluated to obtain

these. In the following section we discuss alternative methods for estimation of

the marginal likelihoods.

4.1.5 Estimation of the Marginal Likelihoods

Evaluation of marginal likelihoods can be successfully avoided in estimation of

the posterior parameter distribution by employing Metropolis-Hastings sampling

algorithm. However, in Section 4.1.4 we demonstrated that marginal likelihoods

are required to perform hypotheses testing and model comparison with Bayes

factors. A review of different methods for evaluating marginal likelihoods can

be found in (Newton and Raftery 1994 Kass and Raftery 1995 Chib 1995).

The main problem is that the marginal likelihood

p(D|M) =

∫
p(D|M, θ) · p(θ|M)dθ
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can be evaluated analytically only in very special cases, e.g. when the likelihood

belongs to the exponential family, and conjugate priors are used. The majority

of the mechanistic biological models considered in this thesis are based on non-

linear ordinary differential equations that contribute to the likelihood. In such

cases analytical integration of the marginal likelihood is impossible, and there-

fore we will not consider this method in our case studies. Brute force numerical

integration can be applied to low-dimensional problems. This approach, how-

ever, becomes computationally intractable for more complicated applications

(this estimate becomes impractical in more than two-dimensional case, as its

computational complexity depends exponentially on the dimensionality of the

parameter space). The artificially constructed models considered in Case Study

1 are defined in 5 to 8 dimensions, and the realistic models from Case Study 2 are

defined in over 100 dimensions each. Brute force numerical integration cannot

be performed effectively in such parameter spaces, and therefore this method

will not be considered.

The reasons of complexity discussed above leave us with the only practical

option of considering methods for approximate evaluation of marginal likeli-

hoods. Many of these approximate methods are limited by very strong condi-

tions. For example, Laplace approximations or DIC are large sample approxima-

tions around the maximum a posteriori estimate, which can be difficult to find

in some cases of complex problems. Moreover, such asymptotic approximations

rely on almost-normality of the target distribution, which is often wrong for non-

linear problems. For example, see Figure 4.14(b) from Case Study 1 (page 132),

strong interaction of the model parameters causes significant curvature of the

posterior distribution density.

The reversible Jump MCMC approach (Green 1995), where Markov chains

are constructed in a special way, allow jumps between alternative models in

accordance with Metropolis-Hastings ratio, and in principle, can be tuned for

any problem. Such an approach, however, creates significant technical difficul-

ties, as the rate of jumps between alternative models has to be maintained at

some acceptable level, to obtain a satisfactory result. Friel and Pettitt (2006)

investigated the problem of estimates stability for the Reversible Jump MCMC

approach, they suggested to introduce a correction to the relative prior pref-

erence between the alternative models to achieve acceptable precision. Such

correction sacrifices the possibility to use uneven priors over alternative models,
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and consequently limits the analysis possibilities.

Two more methods which can be applied in a general case are importance

sampling estimators (Newton and Raftery 1994) and thermodynamic integration

or path sampling (Ogata 1989 Gelman 1998).

In this section, we give a detailed description and practical comparison of

three estimators from the above classes: the prior arithmetic mean estimator,

the posterior harmonic mean estimator, and annealing-melting integration.

Importance Sampling Estimators

Importance sampling estimation consists of generating a sample

{
θ(i); i = 1, . . . ,m

}
from an unnormalised density π∗(θ). Under quite general conditions, an estimate

of integral

I =

∫
p(D|M, θ)p(θ|M)dθ

is

Î =

∑m
i=1 ωi · p(D|M, θ(i))∑m

i=1 ωi

, (4.15)

where ωi = p(θ(i)|M)
/
π∗(θ(i)); the function π∗(θ) is known as the importance

sampling function.

The simplest application of this method is to use the prior as the importance

sampling function π∗(θ) = p(θ|M), in which case (4.15) produces the prior

arithmetic mean estimator (see McCulloch and Rossi 1991):

p(D|M) ' 1

m

m∑
i=1

p(D|M, θ(i)); θ(i) ∼ p(θ|M). (4.16)

A well known problem with this estimator is that the high-likelihood region

can be very small. Therefore, unless m is very large, the sample drawn from the

prior will contain virtually no points from the high-likelihood region, resulting

in a very poor estimate of the marginal likelihood. Lewis and Raftery (1997)

reference a study in which to reduce the standard error to an acceptable level, it

was necessary to use a sample of roughly 50 million draws from the prior distri-

bution. We investigated the effectiveness of this estimate using linear regression
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models in Example 4.4. The relative error of the Bayes factor, which relies on

two marginal likelihood estimates, when using 500,000 samples from the prior

is 25%, is significantly worse than the estimates achieved with thermodynamic

integration methods.

An alternative application of importance sampling estimation, proposed by

Newton and Raftery (1994), is to use the parameter posterior as the importance

sampling function π∗(θ) = p(θ|D,M). A sample from the parameter posterior

can be obtained using MCMC sampling. Such a sample should be significantly

better in covering the high-likelihood region. Substituting the parameter poste-

rior into (4.15) results in the posterior harmonic mean estimator, we obtain:

p(D|M) ' Î =

∑m
i=1 ωi · p(D|M, θ(i))∑m

i=1 ωi

=

∑m
i=1

p(θ(i)|M)

π∗(θ(i))
· p(D|M, θ(i))∑m

i=1
p(θ(i)|M)

π∗(θ(i))

=

∑m
i=1

p(θ(i)|M)p(D|M)

p(D|M,θ(i))p(θ(i)|M)
· p(D|M, θ(i))∑m

i=1
p(θ(i)|M)p(D|M)

p(D|M,θ(i))p(θ(i)|M)

=

∑m
i=1 p(D|M)∑m

i=1
p(D|M)

p(D|M,θ(i))

=
m · p(D|M)

p(D|M) ·
∑m

i=1
1

p(D|M,θ(i))

=
m∑m

i=1
1

p(D|M,θ(i))

=

(
1

m

m∑
i=1

1

p(D|M, θ(i))

)−1

; θ(i) ∼ p(θ|D,M). (4.17)

The main problem with this estimate is that, in many practical situations, its

variance is infinite, because of the occasional occurrence of a value of θ(i) with a

small likelihood and hence a large effect on the final result. As we demonstrate in

Example 4.4 on simple regression models, this estimate is very unstable because

of the reasons described above.

There exists a number of modifications of this approach proposed by New-

ton and Raftery (1994) which propose to combine sampling from the posterior

with sampling from the prior, for example, by using a mixture δp(θ|M) + (1 −
δ)p(θ|D,M) as the importance sampling function, where δ is small. The forms

for an estimate for this case can be found in (Newton and Raftery 1994).

Thermodynamic Integration

The method of thermodynamic integration originates in Statistical Physics (for

an overview see Neal 1993), where the marginal likelihood is equivalent to the
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so-called partition function and its logarithm to the free energy. The computa-

tions required to perform thermodynamic integration are computationally more

intensive, but the results are usually more stable (Gelman 1998).

This method is based on the following principles: suppose that there are two

unnormalised distributions q0(θ) and q1(θ), defined on the same parameter space

Θ. We can normalise these densities dividing them by normalisation constants.

pi(θ) =
1

Zi

qi(θ), i = 0, 1,

where

Zi =

∫
Θ

qi(θ)dθ, i = 0, 1

To perform the evaluation of log-ratio

µ = ln

(
Z1

Z0

)
= lnZ1 − lnZ0

a continuous and differentiable path (qβ)0≤β≤1 can be defined in the space of

unnormalised densities, joining q0 and q1. Similarly,

pβ(θ) =
1

Zβ

qβ(θ),

Zβ =

∫
Θ

qβ(θ)dθ.

Taking the derivative of lnZβ with respect to β:

∂ lnZβ

∂β
=

1

Zβ

∂Zβ

∂β
=

1

Zβ

∂

∂β

∫
Θ

qβ(θ)dθ

=
1

Zβ

∫
Θ

∂qβ(θ)

∂β
dθ =

∫
Θ

1

qβ(θ)

∂qβ(θ)

∂β

qβ(θ)

Zβ

dθ

=

∫
Θ

∂ ln qβ(θ)

∂β
pβ(θ)dθ = Epβ(θ)

[
∂ ln qβ(θ)

∂β

]
, (4.18)

where Epβ(θ) [· · · ] is the expectation with respect to pβ(θ). Defining the potential

U(θ) =
∂ ln qβ(θ)

∂β
,
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we obtain
∂ lnZβ

∂β
= Epβ(θ) [U ] .

Integrating over [0, 1] yields the log-ratio µ:

µ = lnZ1 − lnZ0 =

∫ 1

0

∂ lnZβ

∂β
dβ =

∫ 1

0

Epβ(θ) [U ] dβ.

To compute this integral, a Markov chain Monte Carlo simulation is usually

run for particular values of β, in which qβ is used as an unnormalised density

in the Metropolis-Hastings ratio. By definition, this produces a sample from pβ.

Expectations of the potential can then be estimated as averages on this sample.

This computation is repeated for a series of values of β spaces between 0 and 1,

which implies running a separate chain for each value of β.

The log-ratio µ can then be estimated by numerical integration using trape-

zoidal (as in Friel and Pettitt 2006) or Simpson’s scheme (as in Lartillot and

Philippe 2006).

A particular integration scheme employed in this thesis is called annealing-

melting integration according to Lartillot and Philippe (2006) or power-posteriors

integration according to Friel and Pettitt (2006).

Assuming that q0(θ) above is the prior p(θ|M), and q1(θ) is the unnormalised

posterior p(D|M, θ)p(θ|M), and the corresponding normalisation constants are

Z0 = 1 (as the prior is already normalised) and Z1 = p(D|M), the resulting

log-ratio µ is the logarithm of the marginal likelihood.

Defining qβ(θ) as a path in the probability densities space which connects

the prior and the posterior:

qβ(θ) = p(D|M, θ)βp(θ|M),

the potential takes a simple form:

U(θ) =
∂ ln qβ(θ)

∂β
= ln p(D|M, θ).

And the logarithm of the marginal likelihood we are seeking an estimate for

is

ln p(D|M) = µ = lnZ1 − lnZ0 =

∫ 1

0

Epβ(θ) [ln p(D|M, θ)] dβ.
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The stability improvement was explained by Gelman (1998) by using “bridge”

densities to effectively shorten the distances between target densities Z0 and Z1,

distances that are responsible for large errors with the standard importance

sampling methods.

There are a number of ways to select a schedule for β to estimate this integral.

In the case studies considered in this chapter, we use the schedule proposed by

Friel and Pettitt (2006), and select these values as

βi = ac
i , ai =

i

N
, i = 0, . . . , N.

Good results can usually be achieved with N ∈ [20, 100] and c = 4 or c = 5.

In Example 4.4 we compare four methods of estimating the marginal likeli-

hoods by calculating the error of the Bayes factor estimate for two simple linear

regression models.

Example 4.4 (Model comparison for linear regression models.)

Williams (1959) described a linear regression example which has traditionally

been used as a benchmark for model comparison approaches. Table 4.3 describes

the maximum compression strength parallel to the grain yi, the density xi, and

the resin-adjusted density zi for 42 specimens of radiata pine. This dataset has

been examined in (Han and Carlin 2001), (Carlin and Chib 1995), (Bartolucci

and Scaccia 2004) and (Friel and Pettitt 2006), where they compared several

methods to estimate the Bayes factor between two non-nested competing models.

Two competing models are the following:

M1 : yi = α+ β(xi − x̄) + εi, εi ∼ N(0, σ2).

M2 : yi = γ + δ(zi − z̄) + ηi, ηi ∼ N(0, τ 2).

The following priors have been used in the above studies: N(3000, 106) for

α and γ, N(185, 104) for β and δ, and IG(3, 1/(2 · 3002)) for σ2 and τ 2, where

IG(a, b) is an inverse Gamma distribution with density

f(x) =
1

exp(1/bx)Γ(a)baxa+1
.

Green and O’Hagan (1998) computed the Bayes factor B21 = 4862 by brute

force numerical integration.
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i yi xi zi i yi xi zi i yi xi zi

1 3040 29.2 25.4 15 2250 27.5 23.8 29 1670 22.1 21.3
2 2470 24.7 22.2 16 2650 25.6 25.3 30 3310 29.2 28.5
3 3610 32.3 32.2 17 4970 34.5 34.2 31 3450 30.1 29.2
4 3480 31.3 31.0 18 2620 26.2 25.7 32 3600 31.4 31.4
5 3810 31.5 30.9 19 2900 26.7 26.4 33 2850 26.7 25.9
6 2330 24.5 23.9 20 1670 21.1 20.0 34 1590 22.1 21.4
7 1800 19.9 19.2 21 2540 24.1 23.9 35 3770 30.3 29.8
8 3110 27.3 27.2 22 3840 30.7 30.7 36 3850 32.0 30.6
9 3160 27.1 26.3 23 3800 32.7 32.6 37 2480 23.2 22.6

10 2310 24.0 23.9 24 4600 32.6 32.5 38 3570 30.3 30.3
11 4360 33.8 33.2 25 1900 22.1 20.8 39 2620 29.9 23.8
12 1880 21.5 21.0 26 2530 25.3 23.1 40 1890 20.8 18.4
13 3670 32.2 29.0 27 2920 30.8 29.8 41 3030 33.2 29.4
14 1740 22.5 22.0 28 4990 38.9 38.1 42 3030 28.2 28.2

Table 4.3: Radiata pine dataset from (Williams 1959): yi – maximum pine wood
compression strength parallel to the grain, xi – wood density, zi – resin-adjusted
wood density.

In this example we compare four marginal likelihood estimators on the exam-

ple described above. We estimated the marginal likelihoods for alternative mod-

els M1 and M2 and computed the Bayes factor B21 using the prior arithmetic

mean estimator, the posterior harmonic mean estimator, the annealing-melting

integration and the Laplace approximation based estimator. Each estimate was

evaluated 100 times, so the standard and relative errors of the estimates can be

computed.

Mean = B̂21 =
1

100

100∑
i=1

B̂21,i

Standard error =

√√√√ 1

100

100∑
i=1

(B̂21,i −B21)2

Relative error =
1

B21

√√√√ 1

100

100∑
i=1

(B̂21,i −B21)2

where B21 is the true value of the Bayes factor. The comparative overview of the

estimates is demonstrated in Table 4.4.

MCMC sampling was performed in all of the compared estimators by the

Metropolis-Hastings algorithm. The initial burn-in period was 1,000,000 sam-

ples. The length of the utilised sample was 500,000 samples.
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True value for B21 4862

Prior arithmetic mean B̂21 estimate
mean: 5052.58

standard error: 1229.93
relative error: 25.30%

Posterior harmonic mean B̂21 estimate
mean: 6412.43

standard error: 6094.93
relative error: 125.36%

Annealing-Melting integration B̂21 estimate
mean: 5007.63

standard error: 203.86
relative error: 4.19%

Laplace approximation B̂21 estimate
mean: 3215.17

standard error: 2568.55
relative error: 52.83%

Table 4.4: Error comparison for different marginal likelihood estimators.

For the annealing-melting estimator we used 101 different values of βi dis-

tributed within [0, 1] as the following:

βi = a5
i , ai =

i

100
, i = 0, 1, . . . , 100.

The true Bayes factor value (4862) lies within the error for each of the com-

pared estimates, however using the annealing-melting integration provides signif-

icantly smaller estimate error.

We also computed AIC, BIC and DIC values for both of the alternative re-

gression models to demonstrate that in this case the results achieved using large

sample based criteria are consistent with the results obtained using Bayes factors:
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AIC(M1) = 612.58064± 5.5× 10−4

BIC(M1) = 617.79365± 5.5× 10−4

DIC(M1) = 1522.8535± 3.01× 10−2

AIC(M2) = 595.52311± 6.7× 10−4

BIC(M2) = 600.73612± 6.7× 10−4

DIC(M2) = 1480.5757± 3.27× 10−2

Table 4.5: AIC, BIC and DIC values for the comparison of regression models.

The values of all the information criterions listed in Table 4.5 suggest pre-

ferring the second model over the first one, which is consistent with the result

obtained using Bayes factor. The success of applying AIC, BIC and DIC is

caused by the fact that the parameter posteriors for both of the alternative mod-

els are distributed almost normally.

This example justifies the use of the annealing-melting integration in the case

studies.

In this section we presented the fundamental concepts of Bayesian theory

and introduced main methods that will be employed to implement an inferential

framework for Systems Biology. In the next section we describe how such a

framework can be built by making certain practical decisions on model imple-

mentation and MCMC sampling methods.

4.2 A Bayesian Inference Framework for Sys-

tems Biology

The Bayesian inferential methodology can be applied to model identification and

model comparison (and therefore hypotheses testing) of any kind of models, as

long as the likelihood function is provided.

Evaluating the likelihood is crucial for parameter inference and it is also

required for estimation of marginal (integrated over parameter space) likeli-

hoods for model comparison. The likelihood functions can be provided in a

quite straightforward way for ODE models by using a normalised metric which

provides the distance from the predicted behaviour to the observed data. For

example, consider Figure 4.4. The solid line in Figure 4.4 (a) depicts a system

behaviour predicted with a model, while points (depicted with crosses) corre-
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(a) The simulated behaviour depicted with a solid line 
      is matched against the experimental data depicted
      with crosses.

(b) A crossection made along x=1 line. A gaussian is put
      centered at the value predicted by the model; L1 and
      L2 correspond to probabilities that the experimental 
      data belongs to the gaussian.

(c) Analogous to (b), for x=3, L3 and L4 correspond to 
     the probabilities that the experimental data belongs
     to the gaussian.

Figure 4.4: Likelihood evaluation. The predicted behaviour is compared to the
experimental data by putting a Gaussian centred at the predicted value at each
time point and then evaluating the probability for the experimental data points
under this Gaussian. L1, L2, L3, and L4 are such probabilities for four data
points in this example. Multiplying these values together produces the overall
likelihood value L1 · L2 · L3 · L4 = 0.1343.

spond to the measured data. At each of the time points, where the experimental

data is available, we put a Gaussian centred at the value predicted with the

model and measure probabilities of the corresponding experimental data under

this Gaussian. In Figures 4.4 (b) and (c) these probabilities are marked L1, L2,

L3, L4. Multiplying these values together produces the overall likelihood value.

For the general case a definition of such likelihood function for N data points is:

p(D|M, θ) =
N∏

i=1

NDi
(φ(M, θ, xi), σi), (4.19)

where xi is the time when Di was measured, σi is the variation of experimental

error, and φ(M, θ, xi) produces the value predicted with model M using param-

eters θ for time point xi where Di was measured.

The likelihood function in Equation 4.19 assumes a normal distribution of

errors. In some cases, e.g. when data is produced using microarrays, when

the measurement error is not normally distributed, this distribution has to be

replaced with a different probability distribution. Khanin et al. (2007) proposed

to use the log-normal distribution to define likelihood function in the cases when

experimental data were produced using microarrays. This decision was made to
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model the microarray saturation effect which causes larger experimental errors

when larger data values are observed.

Example 4.5 (The likelihood based on Equation (4.19))

Consider an example depicted in Figure 4.4. The experimental data is mea-

sured at two time points, when x = 1 and x = 3. For each of the time points we

have two data:
x = 1 x = 3

D1 : y(x) = 0.6 D3 : y(x) = 0.05

D2 : y(x) = 1.4 D4 : y(x) = 0.4
We model the observed system with function

y(x) = 2e−x. (4.20)

Our model M is defined using equation 4.20 which has no parameters, so the

set of model parameters θ is empty. The overall statistical model has four noise

parameters σ1, σ2, σ3, σ4. The likelihood, according to (4.19), is:

p(D|M, θ) =
4∏

i=1

NDi
(φ(M, θ, xi), σi)

We chose σi = 0.5 for all i ∈ {1, 2, 3, 4}. And therefore:

p(D|M, θ) = ND1(2e
−1, 0.5) ·ND2(2e

−1, 0.5) ·ND3(2e
−3, 0.5) ·ND4(2e

−3, 0.5) =

= L1 · L2 · L3 · L4 = 0.7690 · 0.3302 · 0.7940 · 0.6661 = 0.1343,

where L1, L2, L3, L4 are the values defined in Figures 4.4 (b) and (c).

Such a likelihood function can be defined for any models which are capable

of producing deterministic quantitative system behaviour predictions, e.g. mod-

els based on ordinary or partial differential equations. Without restricting the

generality of the approach, in this thesis we consider case studies which employ

systems of ordinary differential equations (see Section 2.1) as models of biolog-

ical systems. We discuss the technical problems experienced with ODE models

of biological systems, and the solutions to tackle these problems in Section 4.2.2.
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4.2.1 Biochemical Data Interpretation

The next problem is how the experimental data is interpreted, and how it can

be used in a form suitable to formulate a likelihood function as in (4.19). The

solution to this problem largely depends on a technique used to acquire the

experimental data. We suggest that each particular case study has to include a

dedicated discussion on how the laboratory measurements are interpreted. For

some common techniques there already exist traditional ways of quantifying and

interpreting the data.

In the case studies we consider in this chapter, the experimental technique

employed is Western blotting (see Voet and Voet 1995). This technique is used

to measure protein concentrations in studied cells. The main characteristics of

this technique are:

• It only provides a relative measure of concentration of interest within a

range of experiments. For example, if a range of experiments corresponds

to different time points (e.g. 1 min, 2 min, 5 min after cells stimulation)

it will only be possible to say the relative concentrations of the measured

protein y, e.g. y(2)/y(1), y(5)/y(1), etc.

• It is only possible to compare the concentrations for the same protein, as

for different proteins different antibodies with different affinity are used,

and the results cannot be compared properly.

• It is difficult to compare the values from different experimental runs (differ-

ent gels), as environmental conditions and experimental protocols can be

slightly different. Measurement scaling is usually performed in such a case.

The same experiment is performed in both experimental runs (alongside

other experiments), assuming that it should provide the same outcome,

the measured values are then scaled in a way that both results (from dif-

ferent runs) are matched. However, it introduces a significant degree of

imprecision and uncertainty in the experimental data.

• Despite the fact that quantified values of the blots can be obtained with

very high precision, the blots usually contain significant experimental er-

rors. So, the data produced using this technique usually demonstrate sig-

nificant variability.
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• This experimental technique is a low throughput one: production of the

data is slow and expensive. Therefore, we cannot expect large amounts of

data to be available.

In our main case study (Case Study 2, Section 4.3.2) the methods for an

appropriate data quantification were discussed with biologists. Starting with

a table of relative values for protein concentration (concentrations of only one

protein were measured in the laboratory) in different experimental conditions

for different time points, all the relative values were scaled in the way that the

biggest one became a 100% of the available protein, while the rest were expressed

as a smaller percentage. When the models for the studied systems were built

using ODEs, we introduced a likelihood function based on such relative values.

E.g. if the model predicts that a concentration of the measured protein is 1

Molar out of 10 Molars theoretically achievable, we assign a value of 10% to the

model variable used as a predictive output.

4.2.2 Technical Problems and Solutions

We experienced a number of technical problems while investigating the appli-

cations of Bayesian inference to ODE models of biological systems. All these

problems are mainly due to the performance of initial value problem solvers.

MCMC sampling requires the likelihood to be evaluated many times. In our

case studies it was required to perform likelihood evaluations several million

times. As a result, solving the initial value problems became a bottleneck of the

sampling process.

The performance problems can be separated into two general classes:

1. Performance problems due to stiffness of a model.

2. Performance problems due to the number of initial value problems.

Consider both performance problem classes with possible technical solutions.

Stiffness

As soon as one deals with more than one first-order differential equation, the

possibility of a stiff set of equations arise.
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Definition 4.10: An initial value problem is called stiff, if it causes numerical

problems while solving it using non-specialised solvers.

This definition is very vague, but there is no better definition. Stiffness occurs

in a problem where there are two or more very different scales of the independent

variable on which the dependent variables are changing. A conventional solver

(such as Runge-Kutta method, see Press et al. (2002)) will require the integration

step size to be reduced to very small values, therefore making very little progress

through the large time intervals required for the solution. Since this problem

was discovered, a number of specialised solvers have been developed to overcome

the performance issues with stiff problems. The most widely used ones are

Rosenbrock methods (see Press et al. 2002), and Bader-Deuflhard method (see

Bader and Deuflhard 1983).

We use a specialised solver for stiff problems developed in the Lawrence-

Livermore National Laboratory, USA (see Hindmarsh et al. 2005). This solver

is publicly available and demonstrates performance compatible with proprietary

patented algorithms (e.g. ones implemented in Matlab).

Number of Initial Value Problems

While computing the likelihood as in (4.19), it is sometimes possible to com-

pute the predicted values φ(M, θ, xi) for different experimental conditions xi in

parallel.

For the model M and the set of model parameters θ, the values of φ(M, θ, xi)

can be computed independently for different values of xi. For the case studies

presented in this chapter, we compute such predictions simultaneously using a

distributed computing cluster. The results for separate values of xi are then

combined to produce the overall value of the likelihood function.

Our distributed algorithm runs a number of initial value problem solvers in

parallel on a cluster, submitting the parameter values θ, the models M , and

experimental conditions xi to each of the solvers (see Figure 4.5). The results

from the solvers are then substituted into equation (4.19) to compute the value

of the likelihood.

In a case study considered in Section 4.3.2 this distributed computations

algorithm allowed us to produce the inference results within reasonable time,

while a single threaded version of the inference algorithm was too slow. For
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Figure 4.5: Distributed algorithm for the likelihood evaluation. The central
sampler submits a proposed set of model parameters to several initial value
problem solvers to evaluate the likelihood in different experimental conditions.
The results are then returned to the central sampler where they are multiplied
to produce the overall likelihood. Ri = NDi

(φ(M, θ, xi), σi)

each proposed value of model parameters we had to solve eleven initial value

problems to compute the likelihood function. The distributed algorithm allowed

us to solve these initial value problems in parallel. The required communication

overhead, however, impacts the theoretical speedup factor and the practical

benefit of this distributed algorithm is slightly lower than eleven times. In the

case study in Section 4.3.2, the MCMC sampling took about three weeks on a

distributed cluster of 42 workstations able to sustain the average performance

of 5.267 GFLOP/s7.

4.2.3 Parameter Inference

The first and core application of the Bayesian inferential methodology is the

inference of model parameters from observed data. Given a parametric model M

with parameters θ, and a set of experimental observationsD = {d1, d2, . . . , dn} in

experimental conditionsX = {x1, x2, . . . , xn}, the goal is to infer the distribution

of parameters θ to reproduce the experimental observations.

We start with the prior distribution of the parameter values p(M, θ). Then

we employ MCMC sampling to produce a sample from the parameter posterior.

The posterior is a parameter distribution learned from the experimental data

taking into account, and updating the prior knowledge.

Consider the details of the inference process:

7A GFLOP/s is a measure of computational system performance equal to a billion floating
point arithmetical operations per second.



CHAPTER 4. MODEL-BASED INFERENCE 118

Prior Probabilities

In the absence of any experimental evidence we note that there is a large amount

of existing literature and subjective knowledge based around studied systems.

This information can be employed in defining the prior probabilities for the

models and the associated parameter values. In the case when the priors are

defined by p(M, θ), we can assume that the choice of the model structure or

systems of equations describing the physical process will not affect a priori the

range of feasible values, and thus the prior, on the associated parameters in this

case p(M, θ) = p(M)p(θ).

Structured priors can now be designed to best reflect the levels of subjective

knowledge and uncertainty in the prior beliefs regarding the parameter values.

In many cases such structured priors can be suggested based on the physical

laws involved. In our case studies, we use Gamma distributions to define the

priors of model parameters, as the laws employed in our models do not allow

negative parameter values. Moreover, these distributions have non-zero density

on all R+, which corresponds to our ignorance about the parameter values.

Posterior Distributions and Predictions

Having made our experimental observations and collected data D, we are in a

position to update our strength of belief in the values of the model parameters a

posteriori. Bayes’ theorem provides us with the required posterior distribution

in terms of our likelihood and prior distributions

p(θ|X,D,M) =
p(D|X,M, θ)p(Mi, θ)∫
p(D|X,M, θ)p(Mi, θ)dθ

. (4.21)

This is an important level of inference as now the distribution p(θ|X,D,M)

will provide us with valuable insights into the plausible range of the parame-

ter values within the model. This improves vastly on the maximum likelihood

estimates (see Section 2.8) as the posterior distribution over parameter values

indicates how informative the experimental data has been in reducing our un-

certainty in parameter values.

It also means that predictions on new experimental conditions can be made

from model M , and again we can now integrate over our levels of posterior
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uncertainty such that

p(Dnew|Xnew,M) =

∫
p(Dnew|Xnew,M, θ)p(θ|X,D,M)dθ '

' 1

N

N∑
i=1

p(Dnew|Xnew,M, θi) θi ∼ p(θ|X,D,M).

(4.22)

Now we have a distribution for the predictions and thus consistent levels

of confidence can be assigned based on the above distribution with takes into

account the prior beliefs and how these have been updated in the light of exper-

imental evidence {X,D}.
The problem with multidimensional integrals can be resolved by employing

MCMC sampling from the posterior distributions (see Section 4.1.3).

Parameter Identifiability Issues

Non-linear models are motivated by the laws of chemical kinetics, but the in-

creased complexity means that such models, in some cases, become overparam-

eterised. In such situations, some parameters of the model are unidentifiable.

In other words, different combinations of unidentifiable parameters lead to the

same likelihood, making it impossible to select single maximum likelihood esti-

mates of the parameter values. This, however, does not cause a methodological

problem for the Bayesian inferential approach, as all alternative combinations of

non identifiable parameters are considered as a part of the parameter posterior.

Considering the hypotheses testing methodology, a consistent framework of

Bayesian inference, as introduced in this chapter, demonstrates a significant ad-

vantage over maximum likelihood ratio methods due to considering such alter-

native combinations of parameter values. The identifiability issues are properly

addressed when marginal likelihoods are evaluated, as information about the

whole parameter distribution is taken into account. This contributes to the

capability of Bayes factors to implement Occam’s razor concept, as simple mod-

els with less unidentifiable parameters will be preferred to unnecessarily more

complex models.

MCMC convergence problems, which are often observed when sampling from

parameter posteriors of non identifiable models, can be resolved by adopting an

adaptive proposal distribution idea as discussed in Section 4.1.3.

We conclude that all identifiability issues are naturally addressed in the
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Bayesian inferential framework by considering full distributions of parameter

posteriors. The corresponding uncertainty is naturally carried through Bayesian

analysis methods, and can be resolved at the final stage if proper informative

prior on all the parameters is specified. For detailed discussion of this issue, see

(Hills 1987) and (Section 4.5 of Florens et al. 1990).

4.2.4 Hypotheses Testing

Consider the case where there are two competing hypotheses described by models

M1 and M2. We employ Bayes factors (see Section 4.1.4) for model comparison,

i.e.
p(M1|D,X)

p(M2|D,X)
=
p(D|X,M1)p(M1)

p(D|X,M2)p(M2)
(4.23)

In the case when no preference over competing hypotheses is suggested, we

assign equal prior probabilities for both of the alternative models considered

p(M1) = p(M2). These probabilities can, however, be different, if the prior

knowledge suggests preference of one hypothesis over another.

Now we can see that to compare our models the marginal likelihood under

each model is required, i.e. for a kth indexed model

p(D|X,Mk) =

∫
θk∈Θ

p(D|X,Mk, θk)p(Mk, θk)dθk. (4.24)

Different methods of computing these marginal likelihoods are discussed in Sec-

tion 4.1.5. We will demonstrate some of them in the case studies considered in

Section 4.3.

4.3 Applications to Signal Transduction Path-

ways

In this section we develop our contribution with two case studies which demon-

strate the applications of the Bayesian inference framework implementation. The

first case study (Section 4.3.1) investigates alternative hypotheses formulated

with artificially generated models and uses simulated data for parameter infer-

ence. This case study demonstrates how the Bayesian inference methods can be

applied to ODE models. The second case study (Section 4.3.2) investigates the
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complex problem of testing hypotheses about the structure of a realistic signal

transduction pathway.

4.3.1 Case Study 1: Artificial Biochemical Networks

In this case study we consider four alternative models of a biochemical sys-

tem. The models are artificially constructed to demonstrate the essence of the

proposed methodology and demonstrate its main points and advantages on an

example with a known result.

The schematic diagrams for the models are depicted in Figure 4.6. The

entities in circles represent proteins involved in a biochemical network, while

arrows correspond to biochemical reactions. Enzymatic behaviour is indicated

by an arrow with a circle as head. For example, see Figure 4.6(b) where S in an

enzyme for activation of R. Kinetic parameters of the reactions are depicted as

text beside the arrows e.g. k1, V1. These networks represent realistic networks,

and they all have a structure which is very common in nature.

Model 1 This model defines a common motif of signalling pathways that is

a stage in a signal transduction cascade. The input signal is represented by

the concentration of protein S depicted in the top left of the diagram (see Fig-

ure 4.6(a)). This protein activates the next stage of the cascade by binding to

protein R forming complex RS, and activating R into its phosphorylated form

Rpp. Protein Rpp can then be deactivated. Model 1 also defines input signal

degradation by converting protein S into its degraded form dS. This is added to

demonstrate a nontrivial quantitative behaviour of the cascade stage.

To perform quantitative analysis of this system we formally describe a model

using ordinary differential equations. All the proteins used in this model (de-

picted with ellipses in Figure 4.6(a)) will be represented as dependent variables

in our ODE model. As we are interested in modelling and analysis of temporal

behaviour, the independent variable is time.

The dephosphorylation reaction Rpp → R is defined using the Michaelis-

Menten kinetic law, while the rest of the reactions (arrows in Figure 4.6(a)) are

defined using the Mass Action kinetic law with parameters depicted as textual

remarks beside the arrows in model diagram (e.g. k1, k4). The following system
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(a) Model 1: A model of a signal trans-
duction cascade. Protein S represents the
input signal. S can degrade to dS. At
the same time S activates protein R from
its inactive state, to an active state Rpp
by binding and activation. Protein Rpp
can then be deactivated. This model was
used to generate the experimental data.

(b) Model 2: A simplified version of a sig-
nal transduction cascade. It represents
the same process as described by Model
1, but a mechanistic description of the ac-
tivation process is omitted and replaced
with more general functions.

(c) Model 3: A model of a signalling cas-
cade which is significantly different to the
rest of the models in this case study. This
model does not describe degradation of
protein S. Our goal is to demonstrate that
this model will gain much smaller evi-
dential support at the hypotheses testing
stage.

S dS

R

RS

Rpp

RppPhA

PhA
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(d) Model 4: An overcomplicated version of
Model 1. This model mechanistically describes
how protein Rpp is deactivated by phosphotase
PhA.

Figure 4.6: Models constructed for Case Study 1.
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of ODEs defines this model:

Ṡ = −k1 · S − k2 · S ·R + k3 ·RS + k4 ·RS
˙dS = k1 · S

Ṙ = −k2 · S ·R + k3 ·RS +
V ·Rpp

Km+Rpp

ṘS = k2 · S ·R− k3 ·RS − k4 ·RS

˙Rpp = k4 ·RS −
V ·Rpp

Km+Rpp

We fix the initial values for the variables in this model. We could have added

these initial values as additional parameters of our model if inferring these was

required. For demonstration purposes we avoid introducing these as additional

parameters, and define them as the following:

S|t=0 = 1 dS|t=0 = 0 Rpp|t=0 = 0

R|t=0 = 1 RS|t=0 = 0

This model has six kinetic parameters: k1 . . . k4, V,Km.

Model 2 The model depicted in Figure 4.6(b) was constructed as a simplified

representation of the signal transduction cascade stage. It essentially represents

the same system as defined with Model 1, but uses different kinetic laws to define

reactions.

The system of ODEs used in this model is

Ṡ = −k1 · S
˙dS = k1 · S

Ṙ = −V1 ·R · S
k2 +R

+
V2 ·Rpp
k3 +Rpp

˙Rpp =
V1 ·R · S
k2 +R

− V2 ·Rpp
k3 +Rpp

The following initial values were chosen for this model

S|t=0 = 1 R|t=0 = 1

dS|t=0 = 0 Rpp|t=0 = 0.
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The model has five kinetic parameters: k1, k2, k3, V1, V2.

Model 3 The model depicted in Figure 4.6(c) is a version of Model 2 with

degradation of protein S removed. As protein S cannot degrade, we would not

observe any signal decrease in system behaviours, and therefore we would expect

to see behaviours which are significantly different to the ones produced with other

models in this case study. Our goal for this model is to demonstrate through

hypotheses testing, that this model gains significantly smaller evidential support

from data than the rest of the models.

The system of ODEs used in this model is

Ṡ = 0

Ṙ = −V1 ·R · S
k1 +R

+
V2 ·Rpp
k2 +Rpp

˙Rpp =
V1 ·R · S
k1 +R

− V2 ·Rpp
k2 +Rpp

The following initial values were chosen for this model

S|t=0 = 1 R|t=0 = 1 Rpp|t=0 = 0.

The model has four kinetic parameters: k1, k2, V1, V2.

Model 4 The model depicted in Figure 4.6(d) is an overcomplicated version of

Model 1. Phosphatase PhA depicted in the bottom of the diagram deactivates

protein R. This model was constructed to demonstrate how it would be penalised

for complexity according to Occam’s razor concept in Bayesian hypotheses test-

ing.
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The system of ODEs used in this model is

Ṡ = −k1 · S − k2 · S ·R + k3 ·RS + k4 ·RS
˙dS = k1 · S

Ṙ = −k2 · S ·R + k3 ·RS + k7 ·RppPhA

ṘS = k2 · S ·R− k3 ·RS − k4 ·RS
˙Rpp = k4 ·RS − k5 ·Rpp · PhA+ k6 ·RppPhA
˙PhA = −k5 ·Rpp · PhA+ k6 ·RppPhA+ k7 ·RppPhA

˙RppPhA = k5 ·Rpp · PhA− k6 ·RppPhA− k7 ·RppPhA

The following initial values were chosen for this model

S|t=0 = 1 dS|t=0 = 0 Rpp|t=0 = 0

R|t=0 = 1 RS|t=0 = 0 PhA|t=0 = 1

RppPhA|t=0 = 0

This model has seven kinetic parameters: k1 . . . k7.

Data Generation

In this case study we use data artificially generated from Model 1. To generate

the data we simulated the behaviour of Model 1 with the following values for

kinetic parameters:

k1 = 0.07 k2 = 0.6 k3 = 0.05

k4 = 0.3 V = 0.017 Km = 0.3

by solving an initial value problem, and generated the time series of variable

values (protein concentrations).

We decided to generate a data set for further experiments as a time series of

Rpp values measured at the following time points: t ∈ {2s, 5s, 10s , 20s, 40s, 60s,

100s}. We added observation noise with variance 0.01 to the simulated values

at each of the time points. The data set D contains twenty one samples. The

obtained values are depicted in Figure 4.7.
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Figure 4.7: Data set generated from Model 1.

Overall Statistical Models

Performing Bayesian inference of model parameters and testing corresponding

hypotheses involves likelihood estimation as defined in Section 4.2. We added

only one additional noise parameter σ to each of the models, because we used

the same noise value when the data was generated. The same noise parameter

will be substituted to the normal distributions placed at each of the time points

when evaluating the likelihood (4.19). The resulting statistical models contain

the parameters given in Table 4.6.

Model Number of Parameters Parameters
Model 1 7 σ, k1 . . . k4, V,Km
Model 2 6 σ, k1 . . . k3, V1, V2

Model 3 5 σ, k1, k2, V1, V2

Model 4 8 σ, k1 . . . k7

Table 4.6: Parameters used in models for Case Study 1.

We discarded any information about the parameter values used to generate

data for our experiments with Model 1; and defined the prior for model parame-

ters. As none of the parameters can take a negative value, we defined the priors

for all of the parameters of all the models to be distributed according to Gamma

distribution Γ(1, 3). This prior is depicted in Figure 4.8.
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Figure 4.8: The shape of the prior distribution density used for all the parameters
in Case Study 1.

Parameter Inference

MCMC sampling from parameter posteriors for all the models was performed.

We used 20 instances of the Metropolis-Hastings sampler in parallel to ensure

that the chains have mixed well before producing the actual sample for the pa-

rameter posteriors. Chain mixing was assessed using a method proposed by Gel-

man et al. (1995)8. An adaptive proposal distribution referenced in Section 4.1.3

was used to achieve faster convergence of Markov chains to the posterior distri-

bution.

200,000 samples were generated from parameter posteriors after convergence

of the chains was achieved9. The posterior for parameters of Model 1 is plotted

in Figure 4.9. The parameter values used for data generation are also indicated

in Figure 4.9, this demonstrates that the parameter posteriors were inferred

correctly.

We can see that the posterior has diverged from the prior, which corresponds

to the fact that some new information has been extracted from the experimental

evidence. This additional information allowed us to update our beliefs, quanti-

tative characteristics of which are expressed with these distributions.

Notice, that the identified amount of observational noise was somewhat un-

derestimated (posterior mean is at about 0.005, while the value used for data

generation is 0.01). This, however, is not an inference problem, but a charac-

teristic of this particular data set. As at each time point we generated only

8See Section 4.1.3 for more details.
9Convergence of the chains was achieved after about 1,400,000 burn-in samples.
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 0

 1

 2

 3

 4

 5

 6

 0.6 0.5 0.4 0.3 0.2

p
(k

4
|M

1
,D

)

k4

Posterior

Parameter value used
to generate data

(e) Parameter k4 of Model 1
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Figure 4.9: Posterior distribution for kinetic parameters of Model 1.
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three experimental values, the amount of real noise is not necessary equal to the

true standard deviation of the noise generator due to the small sample size. To

prove this we computed the amount of the observational noise, and our results

are listed in Table 4.7. The average amount of the true observational noise is

0.005394 which agrees well with the infered results depicted in Figure 4.9(a).

Time Point Computed standard deviation of the dataset

2 0.0075045
5 0.007388366
10 0.003265294
20 0.005031623
40 0.004247883
60 0.004336995
100 0.005981922

Table 4.7: The true amount of the observational noise in our dataset.

The distributions for parameters in Figure 4.9 are marginalised posterior dis-

tributions, and do not demonstrate the complete picture about the full posterior.

In our case with 7 parameters for Model 110, the full posterior is a distribution

in 7 dimensions. Nevertheless, we can investigate some properties of this poste-

rior, such as its correlation. The resulting correlation matrix indicates possible

dependencies between different model parameters. Correlation matrixes11 for all

four of our models are depicted with heat maps in Figures 4.10 – 4.13.

In Figure 4.10 one can see that parameters V and Km, and also k2 and k4 of

Model 1 have high covariance values, and are likely to be dependent. We have

plotted their joint posterior distributions (marginalised from the rest of model

parameters) in Figure 4.14. Indeed, parameters V and Km are two parameters

of the same reaction, and the found dependency is a well known characteristic

of the Michaelis-Menten kinetic law. In the second case, for smaller values of k2

larger values of k4 have been proposed and vice versa. Consider the diagram for

Model 1 in Figure 4.6(a). Parameter k2 is the forward rate of binding protein R

to S to form complex RS, and parameter k4 is the rate of dissociation reaction

for complex RS that produces Rpp and S. Maintaining the inferred dependency

between parameter values allows the system to maintain the same flux from R

10The number of parameters for other models can be found in Table 4.6.
11Absolute values of the correlation coefficients were taken for these matrices, as we are not

interested in the sign of correlation.
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Figure 4.10: A heat map of the correlation matrix of the parameter posterior
for Model 1.
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Figure 4.11: A heat map of the correlation matrix of the parameter posterior
for Model 2.

to Rpp, that means the inferred dependency can be explained by the laws of

chemical kinetics.

Note that the values for these parameters used for data generation:

k2 = 0.4 k4 = 0.4 V = 0.017 Km = 0.3

lie within the area of high posterior probability density in Figure 4.14.
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Figure 4.12: A heat map of the correlation matrix of the parameter posterior
for Model 3.
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Figure 4.13: A heat map of the correlation matrix of the parameter posterior
for Model 4.

Predictions

Having obtained samples from the posterior distribution of model parameters

we now can generate predictions for the system behaviour. We consider two

initial conditions for our prediction experiments. The first one is exactly the

same condition which was used for data generation. Using the initial values for

variables as defined in model description and parameter values from the identified
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Figure 4.14: Joint posterior distribution for parameters of Model 1 inferred from
simulated data.

parameter posterior we produce a family of solutions for the concentration of

Rpp, as we consider it to be the output of the models. The family of predicted

behaviours is depicted in Figure 4.15. The solid line in the middle of each plot

corresponds to the mean of the predicted behaviours family, while two bounding

lines correspond to the standard deviation of the identified observation noise.

Note, that different models predict different amounts of such noise.

The predictions made with Models 1, 2 and 4 (see Figures 4.15(a), 4.15(b)

and 4.15(d)) match the data well, while the predictions made with the incorrect

model (Model 3) in Figure 4.15(c) are not capable of reproducing the data

properly. We will perform model comparison using Bayes factors in Section 4.3.1

to decide which one of the models is necessary for faithful modelling.

Additionally, we produce system behaviour predictions for a new experimen-

tal condition. Assume, we are interested in how the system behaves in the case

when we use double the concentration of protein S is used, which corresponds

to two times stronger input signal into our system. To perform these prediction

experiments, we substituted a new initial value for variable S in our initial value

problem:

S|t=0 = 2,

took the parameter values from the identified parameter posterior, and solved

the new initial value problem 200,000 times producing the predictions for the

concentrations of Rpp. The results of this prediction experiment is depicted in
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(a) Predictions made with Model 1 (originally used for data generation)
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(b) Predictions made with Model 2 (simplified one)
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(c) Predictions made with Model 3 (incorrect one)
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(d) Predictions made with Model 4 (overcomplicated one)

Figure 4.15: Predictions for the original experiment used to produce data set D
plotted against original data from data set D.
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Figure 4.16.

Model Comparison

In the final stage of our case study, we compute estimates for marginal likeli-

hoods of each of our models, and perform model comparison (and corresponding

hypotheses testing) using Bayes factors.

We compare different estimators for marginal likelihoods by computing re-

quired Bayes factors using posterior harmonic means estimator, prior arithmetic

means estimator, Laplace approximations and the annealing-melting integration

(see Section 4.1.5). We use large (about 600,000 each) samples from each dis-

tribution qβ(θ). The chosen schedule for β in annealing-melting integration is

defined as

βi = a4
i , ai =

i

40
, i = 0 . . . 40.

The obtained estimates for the marginal likelihoods for each of the models

using each of the methods are given in Table 4.8.

Once again, an estimator based on annealing-melting integration principles

demonstrates significant superiority in the stability of obtained estimates. These

estimates produce the following pairwise Bayes factors for model comparison:

p(M1|D)

p(M2|D)
= 1.636× 107 p(M2|D)

p(M1|D)
= 6.114× 10−8

p(M1|D)

p(M3|D)
= 2.377× 1020 p(M2|D)

p(M3|D)
= 1.454× 1013

p(M1|D)

p(M4|D)
= 5.862× 104 p(M2|D)

p(M4|D)
= 3.584× 10−3

p(M3|D)

p(M1|D)
= 4.206× 10−21 p(M4|D)

p(M1|D)
= 1.706× 10−5

p(M3|D)

p(M2|D)
= 6.880× 10−14 p(M4|D)

p(M2|D)
= 2.790× 102

p(M3|D)

p(M4|D)
= 2.466× 10−16 p(M4|D)

p(M3|D)
= 4.056× 1015

these correspond to the following relative ranking of the four competing models:

p(M1|D) > p(M4|D) > p(M2|D) > p(M3|D)



CHAPTER 4. MODEL-BASED INFERENCE 135

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

[R
pp

]

Time

(a) Predictions made with Model 1 (originally used for data generation)
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(b) Predictions made with Model 2 (simplified one)
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(c) Predictions made with Model 3 (incorrect one)
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(d) Predictions made with Model 4 (overcomplicated one)

Figure 4.16: Predictions for a new experimental condition.
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Prior arithmetic means estimator
Model Estimate mean Standard deviation of the estimate
Model 1 2.89× 106 5.64× 106

Model 2 2.40× 106 3.78× 106

Model 3 3.35× 10−1 3.21× 10−2

Model 4 2.68× 1010 7.11× 1010

Posterior harmonic means estimator
Model Estimate mean Standard deviation of the estimate
Model 1 2.03× 1031 2.46× 1031

Model 2 2.80× 1019 1.70× 1019

Model 3 8.11 4.46
Model 4 1.64× 1024 1.29× 1024

Annealing-melting integration
Model Estimate mean Standard deviation of the estimate
Model 1 7.98× 1019 1.49× 1019

Model 2 4.87× 1012 2.82× 1011

Model 3 3.36× 10−1 4.47× 10−3

Model 4 1.36× 1015 1.27× 1014

Laplace approximations
Model Estimate mean Standard deviation of the estimate
Model 1 5.85× 1018 1.91× 1018

Model 2 1.14× 1011 2.30× 1010

Model 3 1.76× 10−3 1.12× 10−4

Model 4 4.67× 1013 4.69× 1013

Table 4.8: Estimated marginal likelihoods for models in Case Study 1.

The incorrect model (Model 3) gained the smallest evidential support and

its marginal likelihood is dwarfed by the marginal likelihoods of other models.

Model 1, which was used for data generation, has the maximal marginal likeli-

hood, and therefore should be preferred over the rest of the models. Model 4,

which was constructed to be an overcomplicated version of Model 1, has a smaller

marginal likelihood value, and therefore is rated second. This demonstrates that

Bayesian hypotheses testing accounts for the complexity of models, and imple-

ments Occam’s razor principle.

According to the evidence support categories by Kass and Raftery (1995) de-

fined in Table 4.2, the evidence suggests “very strong” preference of the original

Model 1 over the rest of the models.
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An interesting detail is that Laplace approximations based estimate produces

the correct ordering of the models while maintaining second best relative error.

The error, however, grows with the complexity of the model which corresponds

to the known limitations of this estimator.

Applying information criteria approach for hypotheses testing in this case

study produces correct model order when using AIC or BIC. However, DIC fails

dramatically (producing completely inconsistent results with infinite variance of

DIC score) due to the fact that posterior distributions are not normal. DIC

is designed using an assumption that the mode of the posterior distribution

matches its mean, which does not hold in this case.

Summary of Case Study 1

In the first case study we considered four alternative models. All the models

were artificially constructed to allow testing of the proposed methodology on

an example with a known result. We generated the “experimental” data used

for parameter inference from one of the suggested models; selecting the original

model as the most probable one on the model comparison stage, was a crucial

result to demonstrate the correctness of our approach. We demonstrated how

the principle of Occam’s razor works in this framework, as the more complicated

model was not preferred to the original one despite it being capable of reproduc-

ing the experimental data precisely enough. At the same time, the framework

does not blindly select the simplest model, as the simplified alternative model

was not preferred to the original due to poor likelihood of reproducing the ex-

perimental data. The control experiment using a structurally different model

which was not capable of reproducing the general trends of system behaviour

was also successful, as we demonstrated that this model was rated significantly

lower than the rest of the alternatives.

Additionally to model comparison (and the underlying hypotheses testing)

we performed parameter inference and behaviour predictions using all of the al-

ternative models. Precisely as we expected, the parameter values used for initial

data simulation were identified to belong to the high probability parts of the

parameter posterior. The predictions made with the models using the inferred

parameter posteriors demonstrate how model simulation traces reproduce the

experimental data, but at the same time allow us to make predictions and plans

for new experiments in yet untested experimental conditions.
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In the next case study, we apply this inferential approach to a systems biology

problem. The topic is a current problem in signal transduction pathways study

about the structure of the ERK signalling network.

4.3.2 Case Study 2: The ERK Signal Transduction Path-

way

In the second case study we consider an application of Bayesian inference to

an ongoing research investigation. For this research we collaborated with the

research group of Professor M. D. Houslay. Members of Prof. Houslay’s group

performed biochemical experiments in a laboratory, while we conducted the

analysis of the experimental data and assessment of competing hypotheses.

The aim of this case study is to analyse the ERK signal transduction pathway

using different biochemical interventions to decide which of the alternative hy-

potheses (presented below) about the pathway topology is better supported by

the experimental evidence. This will allow us to test the alternative hypotheses

about the pathway structure, make better predictions for future experiments,

and will contribute to a better understanding of the underlying pathway.

Biological Background and Pathway Description

Epidermal Growth Factor (EGF) and Nerve Growth Factor (NGF) mediate the

different biological processes of cellular proliferation and differentiation (Marshall

1995). It is known that NGF stimulation produces long term activation of Ex-

tracellular Signal-Regulated Kinase (ERK) whilst EGF provides a transient ac-

tivation of ERK and both effects are mediated through the same ERK pathway

(Marshall 1995 Kao et al. 2001). Both growth factors clearly employ ERK in

a different manner to produce either cell differentiation or proliferation but the

biochemical mechanisms underlying this diversity are unknown. The receptors

for NGF and EGF are different and thus may explain why NGF and EGF medi-

ate different biological responses. Indeed there are various Ras and Raf isoforms

which may also lead to the observed differences in response and as both MEK

and ERK are well conserved, they do not contribute to this difference. We are

motivated to consider the role that the isoforms of Ras and Raf play in these

different responses.

It is known that Ras activates c-Raf and generally accepted that Rap1 acti-
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vates B-Raf (York et al. 1998 Wang et al. 2005), each of which directly activates

MEK and subsequently ERK. In (Dhillon et al. 2002) it is observed that c-Raf

is transiently active whilst B-Raf is constantly active. To explain the difference

between NGF and EGF responses, our hypothesis is that NGF employs c-Raf

and B-Raf to sustain the activation of ERK, whilst EGF employs only c-Raf.

Therefore, if c-Raf is inhibited then we would be able to confirm this hypothesis.

It is known that Protein Kinase A (PKA), which is activated by cyclic adenosine

monophosphate (cAMP), inhibits c-Raf (Wu et al. 1993 Dhillon et al. 2002).

To investigate the ERK pathway our collaborators performed experiments

on PC12 cells generated by Greene and Tischler (1976) from a transplantable

rat adrenal pheochromocytoma line.

It is now appreciated that regulation of degradation of cAMP by cAMP

phosphodiesterases (PDEs) plays a pivotal role in controlling intracellular cAMP

concentrations and crosstalk with signalling pathways such as ERK (Houslay

and Kolch 2000). Eight PDE families are involved in cAMP regulation, with

the PDE3 and PDE4 families performing a dominant role in many cell types.

Here we use cilostamide, a specific inhibitor of PDE3, to evaluate the effect of

inhibiting cAMP degradation in PC12 cells by PDE3 on the activity status of

ERK.

For this case study, we focused our interest on the activation of the ERK

pathway by EGF which triggers specifically the proliferation of the cell. The

mechanisms through which EGF activates cell proliferation are not fully under-

stood and other pathways may also be responsible for such regulation. In this

context we consider the cAMP pathway, which activates molecules that have

been shown to be involved in ERK pathway regulation (Houslay and Kolch 2000).

These molecules are PKA and a guanine nucleotide exchange factor (EPAC or

cAMP-GEF). The biologists used a crosstalk between the ERK and the cAMP

pathways to introduce biochemical interventions into the pathway dynamic be-

haviour, and thus were able to collect data which might be useful for model

inference of the ERK signalling pathway.

Working Hypotheses

There are two alternative hypotheses on how the ERK pathway mediates the

phosphorylation of ERK. The first one, supported by Brown et al. (2004) and

Schoeberl et al. (2002), considers a single path of ERK activation by EGF sig-
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nalling (see Figure 4.17(a)): EGF → EGFR → Grb2 → SOS → Ras → c-Raf

→ MEK → ERK. An alternative hypothesis, proposed in the paper by Kao

et al. (2001), considers two ways of ERK activation by EGF signalling (see Fig-

ure 4.17(b)). This second hypothesis consider the second way of ERK activation

through the EGF→ EGFR→ Crk→ C3G→ Rap1→ B-Raf→ MEK→ ERK

cascade (right hand path in Figure 4.17(b)). Kao et al. (2001), Brown et al.

(2004), and Schoeberl et al. (2002), we also consider the possibility that Ras

activates B-Raf, as it was demonstrated by Marais et al. (1997).

EGF

EG
FR

EG
FR

Grb2Sos
Ras

c-Raf BRaf

MEK

ERK

(a) Pathway model supported by Brown
et al. (2004) and Schoeberl et al. (2002).
ERK (Extracellular Signal-Regulated Ki-
nase) is at the bottom of the diagram. We
study regulation of this kinase activity by the
pathway depicted above it. EGF (Epidermal
Growth Factor) is at the top of the diagram,
as it initiates the activation of this particular
pathway. This model (and the corresponding
hypothesis) considers only one way of pass-
ing the signal – through the left and only
branch (EGF, EGFR, Grb2, Sos, Ras, c-Raf
or BRaf, MEK and ERK).

EGF

EG
FR

EG
FR

Grb2 CRKSos C3G
Ras Rap1

c-Raf BRaf

MEK

ERK

(b) Pathway model supported by Kao et al.
(2001). As in Figure 4.17(a) ERK is at
the bottom of the diagram, and EGF is
at the top. There are two ways of pass-
ing the signal from EGF down to ERK: the
first one is through the left branch (EGF,
EGFR, Grb2, Sos, Ras, c-Raf or BRaf, MEK
and ERK) and the second one is through
the right branch (EGF, EGFR, CRK, C3G,
Rap1, BRaf, MEK and ERK).

Figure 4.17: Hypotheses about the topology of the ERK signalling pathway

Crosstalk of the EGF signalling pathway with the cAMP pathway is achieved

through small molecules activated by cAMP. These molecules are PKA and

EPAC (Houslay and Kolch 2000 Baillie and Houslay 2005), and the structure of

the crosstalk is depicted in Figure 4.18. The nature of this crosstalk can take a

variety of different forms that are selectively utilised in different cell types and
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may lead to cAMP either activating or inhibiting the ERK signalling or both.

Here we model both inhibitory and stimulatory cAMP inputs that are mediated

through c-Raf and B-Raf respectively. Experimentally, biologists demonstrated

that PDE3 activity regulates cAMP input into the ERK signalling pathway in

PC12 cells.

EGF

EG
FR

EG
FR

Grb2Sos C3G
Ras Rap1

c-Raf BRaf

MEK

ERK

cAMP

AMP

PDE

Cilostamide

PKA
cAMP

PKA Agonist

EPAC
cAMP

EPAC Agonist

Figure 4.18: Other processes taking place in the cell can impact signalling
through the ERK pathway. We particularly consider a case when another net-
work of biochemical reactions, called the cAMP pathway, interacts with the
signalling processes in the ERK pathway. cAMP (cyclic adenosine monophos-
phate) is an important second messenger involved in many biological processes.
If the cell is stimulated with specific drugs targeted to regulate the levels of
cAMP then the dynamics of signalling through the ERK pathway changes. We
use three of such drugs: cilostamide, EPAC agonist and PKA agonist. The
schematic interactions of these drugs with cAMP and the ERK pathway are
depicted in this diagram.

A series of experiments have then been designed to assess the validity of

the single and dual path hypotheses and the experimental data measured is

then employed in devising single and dual path models to objectively assess the

support of each hypothesis.
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Experimental Data

The biologists performed a number of experiments using PC12 cells generated

by Greene and Tischler (1976) from a transplantable rat adrenal pheochromocy-

toma line to investigate the dynamic behaviour of the ERK pathway. To do so,

they measured the activation of ERK by quantifying the phosphorylation of this

molecule using the Western blotting technique (see Voet and Voet 1995). Cells

were starved for 3 hours in serum-free medium prior to any of the experiments.

Then they were pre-treated for 10 minutes with cAMP analogues that activate

specifically EPAC or PKA. Cilostamide was also used, which is a phosphodi-

esterase inhibitor that increases the level of cAMP within the cell. Next, the

cells were stimulated with EGF for 0, 2, 5, 10, 20 and 40 minutes to activate

the ERK signalling pathway. At the next stage the cells were lysed in lysis

buffer containing protease and phosphatase inhibitors. Cell debris was removed

by centrifugation. The protein concentration of each cell lysate was measured

and normalised to the same concentration in each experiment to load the same

amount of protein in each gel. Proteins were separated by NuPAGE R©Novex

4-12% Bis-Tris gels electrophoresis and transferred on nitrocellulose membranes

to perform Western blots. The membranes were immunoblotted with specific

antibody directed against phosphorylated or non-phosphorylated ERK. These

primary antibodies were detected using fluorescent secondary antibodies that

emit at different wavelengths. The membranes were analysed using an infrared

scanner (Licor, ODYSSEY) that detects the fluorescent secondary antibodies.

As the infrared scanner is able to scan two bands of the spectrum at the same

time, two different antibodies were used on the same gel. The first scanned

band (green) corresponds to the total amount of ERK in the cell lysade, and

the second one (red) corresponds to the amount of the phosphorylated from of

ERK. Consequently, the ratio of the phosphorylated form to the total amount

of ERK can be calculated.

EGF stimulation A number of experiments was performed by stimulating

PC12 cells with EGF only. The cells were stimulated for 0, 2, 5, 10, 20 and

40 minutes after being starved for 3 hours in serum-free medium. 100 ng/ml of

EGF was used for stimulation. This experiment was replicated 4 times. The

results are given in Table 4.9.
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Time Experiment 1 Experiment 2 Experiment 3 Experiment 4
0 9.03% 3.78% 3.29% 3.34%
2 7.03% 4.77% 3.78% 2.75%
5 34.49% 34.49% 30.66% 24.31%
10 23.71% 20.26% 34.49% 34.49%
20 9.03% 6.67% 7.41% 5.09%
40 7.90% 5.10% 4.85% 3.91%

Table 4.9: Data for Case Study 2: control set, stimulation with EGF only.

Cilostamide stimulation PC12 cells were used after being starved for 3 hours

in serum-free medium. The cells were then stimulated with Cilostamide (10 µM)

for ten minutes. At the second stage the cells were stimulated with EGF (100

ng/ml) for 0, 2, 5, 10, 20, and 40 minutes. This experiment was replicated 3

times. The results are given in Table 4.10.

Time Experiment 1 Experiment 2 Experiment 3
0 5.04% 4.47% 3.74%
2 6.72% 3.63% 2.22%
5 61.72% 77.92% 52.82%
10 45.93% 87.52% 54.62%
20 16.96% 18.48% 11.11%
40 6.04% 5.96% 4.39%

Table 4.10: Data for Case Study 2: stimulation with Cilostamide and EGF.

A similar experiment was performed when no EGF stimulation was provided,

and only Cilostamide (10 µM) was used. This experiment has shown no activa-

tion of ERK at all.

EPAC agonist stimulation The cells were stimulated with EPAC agonist

(10 µM) for ten minutes. In the second stage the cells were stimulated with

EGF (100 ng/ml) for 0, 2, 5, 10, 20, and 40 minutes. This experiment was

replicated 3 times. The results are given in Table 4.11.

An experiment when no EGF stimulation was provided was also performed,

and only EPAC agonist (10 µM) was used. This experiment has shown no

activation of ERK at all.

PKA agonist stimulation The cells were stimulated with PKA agonist (10

µM) for ten minutes. In the second stage the cells were stimulated with EGF
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Time Experiment 1 Experiment 2 Experiment 3
0 3.96% 2.84% 3.92%
2 7.63% 7.57% 6.60%
5 61.12% 56.63% 56.75%
10 39.83% 49.63% 51.54%
20 10.33% 9.00% 6.94%
40 5.40% 4.91% 4.14%

Table 4.11: Data for Case Study 2: stimulation with EPAC agonist and EGF.

(100 ng/ml) for 0, 2, 5, 10, 20, and 40 minutes. This experiment was replicated

3 times. The results are given in Table 4.12.

Time Experiment 1 Experiment 2 Experiment 3
0 4.16% 3.15% 3.40%
2 4.33% 3.19% 3.23%
5 24.69% 27.04% 16.98%
10 16.86% 21.82% 24.87%
20 8.03% 5.41% 4.82%
40 5.87% 4.51% 3.68%

Table 4.12: Data for Case Study 2: stimulation with PKA agonist and EGF.

A similar experiment was also performed when no EGF stimulation was

provided, and only PKA agonist (10 µM) was used. This experiment has shown

no activation of ERK at all.

Cilostamide and EPAC agonist stimulation The cells were stimulated

with EPAC agonist and Cilostamide (10 µM each) for ten minutes. In the

second stage the cells were stimulated with EGF (100 ng/ml) for 0, 2, 5, 10, 20,

and 40 minutes. This experiment was replicated 3 times. The results are given

in Table 4.13.

Cilostamide and PKA agonist stimulation The cells were stimulated with

PKA agonist and Cilostamide (10 µM each) for ten minutes. In the second

stage the cells were stimulated with EGF (100 ng/ml) for 0, 2, 5, 10, 20, and

40 minutes. This experiment was replicated 3 times. The results are given in

Table 4.14.
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Time Experiment 1 Experiment 2 Experiment 3
0 5.89% 3.57% 4.02%
2 22.48% 22.99% 5.09%
5 73.63% 90.76% 66.43%
10 51.31% 46.28% 78.12%
20 10.88% 16.14% 11.64%
40 5.32% 6.84% 4.81%

Table 4.13: Data for Case Study 2: stimulation with EPAC agonist, Cilostamide,
and EGF.

Time Experiment 1 Experiment 2 Experiment 3
0 6.53% 4.16% 2.56%
2 9.73% 6.00% 5.64%
5 78.98% 80.19% 52.69%
10 53.42% 67.72% 49.20%
20 10.27% 12.86% 10.25%
40 8.17% 4.55% 4.23%

Table 4.14: Data for Case Study 2: stimulation with PKA agonist, Cilostamide,
and EGF.

EPAC and PKA agonists stimulation The cells were stimulated with PKA

and EPAC agonists (10 µM each) for ten minutes. In the second stage the cells

were stimulated with EGF (100 ng/ml) for 0, 2, 5, 10, 20, and 40 minutes. This

experiment was replicated 3 times. The results are given in Table 4.15.

Time Experiment 1 Experiment 2 Experiment 3
0 5.06% 4.11% 3.75%
2 10.36% 7.27% 4.77%
5 46.72% 38.85% 30.17%
10 50.00% 32.02% 27.09%
20 10.44% 6.52% 6.02%
40 6.65% 4.04% 4.55%

Table 4.15: Data for Case Study 2: stimulation with EPAC and PKA agonists;
and EGF.

EPAC and PKA agonists, plus Cilostamide stimulation The cells were

stimulated with PKA and EPAC agonists, and Cilostamide (10 µM each) for ten

minutes. In the second stage the cells were stimulated with EGF (100 ng/ml)

for 0, 2, 5, 10, 20, and 40 minutes. We replicated this experiment 3 times. The
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results are given in Table 4.16.

Time Experiment 1 Experiment 2 Experiment 3
0 6.92% 3.26% 3.51%
2 38.56% 26.06% 20.21%
5 100.00% 64.48% 63.24%
10 73.15% 58.24% 46.89%
20 9.12% 10.23% 9.41%
40 7.00% 6.16% 4.20%

Table 4.16: Data for Case Study 2: stimulation with EPAC and PKA agonists;
Cilostamide and EGF.

Models

Three simplifications to the pathway models were made. These were done to

reduce the size of the model by removing parts which are not covered by the

experiments described above. The following simplifications of the models are

adopted:

1. For simplification we consider that cilostamide is a direct activator of

EPAC and PKA as it exerts its action solely by increasing cAMP;

2. cAMP itself (along with AMP, and PDE3) will not be considered as a part

of the model, as we have no data available for this part of the pathway;

3. Receptor adaptor proteins activation process will be simplified (as in Brown

et al.’s (2004) model), and defined as EGFR → Sos → Ras and EGFR →
C3G → Rap1 pathways.

The goal of our analysis is to test the main hypothesis concerning the path-

way: Whether the pathway topology is best described by the utilisation of one

or both branches.

We consider two ODE models (see below: Model 1, Model 2) to test these

hypotheses. Model 1 is defined using only one branch of the pathway, and Model

2 has both branches.

Model 1

This model considers only one path of ERK activation through the pathway

stimulated with EGF. The model topology is depicted in Figure 4.19(a). The
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(a) Model 1: The ERK pathway model
with only one activation path defined. Rap1
can still be activated by EPAC, however
there are no reactions which can activate
Rap1 by EGFR receptor.
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(b) Model 2: The ERK pathway model
with two activation paths defined. In this
case Rap1 can be activated by the receptor
through C3G activation.

Figure 4.19: Models used in Case Study 2.

Rap1→ B-Raf→MEK→ ERK path is also present in this model, but it cannot

be activated by the receptor.

Model 2

This model considers both paths of ERK activation through the pathway stim-

ulated with EGF. The model topology is depicted in Figure 4.19(b).

The overall statistical models used for inference also include noise parameters

for the likelihood function depicted in equation 4.19. Following the previous

definitions of the likelihood in Section 4.2, forty-seven noise parameters were

added to each of the models. These noise parameters were inferred from the

data in the same way as the rest of the model parameters.

Non-zero initial concentrations (measured in abstract concentration units, as

no proper calibration is possible when using relative data) used in our models

are:

unboundEGFR|t=0 = 500 inactiveSos|t=0 = 1200 inactiveRas|t=0 = 1200

inactivePKA|t=0 = 1000 inactiveEPAC|t=0 = 1000 inactiveRap1|t=0 = 1200

BRaf |t=0 = 1500 MEK|t=0 = 3000 ERK|t=0 = 10000

Gap|t=0 = 2400 cRaf |t=0 = 1500

We choose the concentrations of drugs used for the experiments as follows:

the concentration of EGF is 1000, which corresponds to the fact that the cells
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are treated with a large amount of EGF to ensure maximal activation. The

concentrations for Cilostamide; EPAC and PKA agonists are chosen to be 100,

which corresponds to the fact that the cells are treated with a tiny amount of

those drugs to ensure that they do not cause signal activation by themselves.

The models are defined in SBML (Hucka et al. 2003) and in average contain

29 species and 28 reactions. They are omitted here due to their size, but elec-

tronically submitted with this theses as supplementary material. The models

can also be obtained from the author.

An application of the Bayesian framework will now be demonstrated to per-

form posterior parameter inference of these models, which in its turn allows

us to generate predictive posterior distributions of the system behaviour taking

the overall underlying uncertainty into account. This analysis is then concluded

with an application of Bayesian Inference for objective model comparison, which

allows testing of the above formulated hypotheses about the pathway topology.

Analysis results

Wide Gamma priors were used for the parameters of our models which corre-

sponds to our ignorance about the parameter values. The important properties

of such Gamma priors are

1. Priors have only positive support, so negative values for the parameters

will not appear in the posterior. This is quite reasonable, given the kinetic

laws used to define our models.

2. Priors are not limited to the right (unlike uniform priors) and therefore

vary large values for the parameters can be considered during the MCMC

simulation.

A description of the kinetic parameters and corresponding priors are listed

in Appendix A.

We applied our implementation of the Bayesian inference algorithms on a

case study of the ERK signal transduction pathway described above. One of

the important features of the Bayesian inferential machinery is how knowledge

is updated when new experimental evidence is considered. To illustrate this

feature we performed posterior inference over parameters in two stages:

1. Wide Gamma priors for model parameters were used and posterior sam-

pling was performed using a subset of the experimental protocols. The
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experiments involving PKA agonist stimulation were intentionally omit-

ted. Therefore, the process of PKA activation by the PKA agonist is

not covered with experimental observations. The obtained posterior for

the PKA activation parameter is depicted in Figure 4.20(a) which demon-

strates that the posterior hardly diverged from the uninformative prior,

so from a diagnostic perspective we can assess how informative a suite of

experiments has been about certain parts of the network topology;

2. By including the data from PKA activation by the PKA agonist we see in

Figure 4.20(b) a significant divergence of the posterior from the uninformed

prior.

 0  5K  10K  15K  20K

Posterior
Prior

(a) Limited dataset. The posterior dis-
tribution is very similar to the prior dis-
tribution which means that there was
no information in the dataset to update
available knowledge about this parameter
value.

 0  5K  10K  15K  20K

Posterior
Prior

(b) Complete dataset. In this case pos-
terior diverged from the prior in a signif-
icant degree. This means that there was
information which allowed us to identify
the parameter more precisely.

Figure 4.20: Distributions for PKA activation by the PKA agonist parameter
Km.

We also computed the correlation of the posterior samples for both mod-

els. Heat maps of the correlation matrices are depicted in Figure 4.21 and

Figure 4.22.

Bayesian model comparison was performed to assess the proposed hypotheses

about the pathway structure embodied in models 1 and 2. Bayes factors were

computed for hypotheses testing.

The marginal likelihoods for the alternative models were estimated using

annealing-melting integration (see Section 4.1.5):

log(p(D|M1)) = −1355.178 log(p(D|M2)) = −1344.778445
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Figure 4.21: A heat map of the correlation matrix for the parameter posterior
of Model 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50

 0

 10

 20

 30

 40

 50

Figure 4.22: A heat map of the correlation matrix for the parameter posterior
of Model 2.
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The obtained Bayes factor:

p(D|M1)

p(D|M2)
≈ 3× 10−5,

p(D|M2)

p(D|M1)
≈ 32845.

The double logarithm of Bayes factor p(D|M2)/p(D|M1) is approximately 20.8,

which is bigger than 10. This, according to Kass and Raftery (1995) (see Ta-

ble 4.2), suggests “Very Strong” preference of the two-branched pathway topol-

ogy over the single-branched one.

After we identified two-branched Model 2 to be the best supported one, we

resampled the model parameter values from the identified posterior distribution

and generated some behavioural predictions using the preferred model. We

simulated two experimental conditions for these predictions as following:

1. Condition 1: The cells are treated with PKA and EPAC agonists for 10

minutes and then stimulated with EGF (Epidermal growth factor). This

corresponds to one of the performed experiments, so we will be able to

compare model predictions to the real data.

2. Condition 2: C3G is knocked out using a specific siRNA; and the pathway

is stimulated with Epidermal Growth Factor.
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(a) Condition 1: PKA and EPAC ago-
nists + EGF Stimulation. The widest
part of the predicted behaviours distribu-
tion corresponds to a time interval where
no data was collected, and therefore we
still some uncertainty as to how the sys-
tem behaves there.
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(b) Condition 2: C3G knockout + EGF
Stimulation. This is another example of
how the identified model preserves the
amount of uncertainty, as it predicts a
very wide range of possible behaviours in
such condition.

Figure 4.23: Behaviours predicted with Model 2 using the identified parameter
values.
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The predictions are depicted in Figure 4.23. The top line corresponds to

the 95% percentile of the predicted behaviours distribution, and the bottom one

to the 5% percentile. The median is depicted with a dashed line between the

percentiles. The widest part of the envelope corresponds to the time intervals

where the model behaviour cannot be predicted with enough certainty. These

time intervals are located in the areas where model behaviour is transient and

changes rapidly. When planning subsequent experiments these time intervals

will be the best candidates in which to perform additional measurements.

We conclude that the proposed experimental condition when C3G knockout

is simulated is a good candidate for subsequent experiments, as reducing the

uncertainty in this condition should significantly improve our confidence.

Summary of Case Study 2

In this case study we applied the methods of Bayesian inference to an open prob-

lem in Systems Biology of a realistic size. We employed distributed computations

system to produce samples from the parameter posteriors of the alternative mod-

els of the studied system. Each of the statistical models considered in this Case

Study contains over 100 parameters, which causes performance difficulties when

sampling from the parameter posteriors.

We managed to produce the posterior samples, behaviour predictions and

compute Bayes factors for these models. We demonstrated that the experimental

data, collected in the laboratory supervised by Prof. Houslay, supports the

hypotheses of two signalling pathways involvement in this signalling network

significantly stronger than the alternative one which considers only one pathway.

This case study, due to its complexity, also helped us to identify problems

and bottlenecks of the proposed methodology. We discuss possible improvements

of the methods in Chapter 5.

4.4 Discussion

In this chapter we have investigated how the methods of Bayesian inference can

be applied to problems in Systems Biology.

We compared alternative methods to perform Bayesian inference and found

that deterministic approximations to the parameter posterior around the max-

imum a posteriori estimate are quite simple to formulate, however, their appli-
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cation is justified only when the parameter posterior is unimodal and approxi-

mately normal. This condition may not be satisfied when dealing with nonlinear

ODE models. And ever though this method produces quite satisfactory results

with some of the models, its correctness and reliability cannot be guaranteed in

a general case.

We selected Markov chain Monte Carlo methods to perform Bayesian infer-

ence over ODE models, as these are the least constrained in applicability. The

practical use of the MCMC samplers, however, exposed a number of technical

challenges which had to be addressed to guarantee proper convergence of the

Markov chains to the target distribution within reasonable time. We employed

parallel sampling of multiple chains with convergence monitoring, and adaptive

proposal distributions to address these technical challenges.

Evidential hypotheses testing in turn presented another methodological chal-

lenge as it requires estimation of the marginal likelihoods integrated over the

whole parameter space. We had to employ the latest developments in applied

statistics, such as thermodynamic integration methods built upon the path sam-

pling ideas) to produce stable (repeatable with small variation of the result)

estimates of the marginal likelihoods. At the same time we have demonstrated

that alternative methods for model comparison, such as information criteria,

cannot guarantee the correct result on a general case due to the methodological

restrictions.

The selected methods were applied to actual problems in Systems Biology,

demonstrating applicability, tractability and the value of the proposed approach.

The results were produced taking the uncertainty of the data and available

knowledge into account; this was not achievable using traditional methods based

on maximum likelihood estimates.

Summary

In this chapter we developed a Bayesian inferential framework to

enable quantitative plausible reasoning about models of biological

systems. The methods of Bayesian inference were demonstrated,

with a discussion about how model parameters can be inferred from

the data, and how different models can be compared for evidence

driven hypotheses testing. Through two case studies, we applied

Bayesian inference methods to models of biochemical pathways and
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demonstrated how this approach supports the scientific method in

biological research.

The first case study describes four alternative models of a small bio-

chemical network which were specifically built to demonstrate the

proposed methods on a small example with a known solution. We

generated the experimental data from the first of four proposed mod-

els by adding some noise to the selected parameter values. Then, we

discarded all the information about the parameter values used for

data simulation, and assigned wide Gamma priors to the model pa-

rameters. Parameter posteriors were then inferred using these priors

and the data simulated from the first model. Inferred parameter

posteriors for the first model essentially support the original values

used for data simulation: this confirms the correctness of the chosen

method. We also performed Bayesian model comparison to test al-

ternative hypotheses expressed with the models. The correct model

gained the most of evidence support from the simulated data.

In Case Study 2, we performed Bayesian inference and analysis of

an open problem. We consider two alternative hypotheses about

the topology of the ERK signalling pathway. The first hypothe-

sis assumes that only one of the signalling branches is involved in

passing the signal from the EGF receptor. The second hypothesis

assumes that two parallel branches are used. Starting with wide

uninformative parameter priors, we performed Bayesian inference of

the model parameters; and then estimated a Bayes factor to test

the hypotheses about the pathway topology. The two branched

model has been found to be “significantly stronger” (in terms of Kass

and Raftery 1995) supported by the experimental evidence than the

single-branched one.

In both of our case studies we produced possible behaviour predic-

tions from the inferred models.



Chapter 5

Conclusions and Further Work

Overview

In this chapter we summarise the contributions of our work, and de-

scribe its limitations. We also discuss the future of our work, includ-

ing possible improvements and extensions to the proposed method-

ology as well as other work which may be inspired by it.

5.1 Conclusions

Reasoning based on available evidence is the foundation for consistent research

in life sciences.

This thesis demonstrates how mathematical models can be used to describe

hypotheses about the structure of biological systems, and how the methods of

probabilistic reasoning and inference can be used to test alternative hypotheses

and perform plausible reasoning in uncertain conditions.

A probabilistic reasoning methodology proposed in Chapter 3 enables quan-

titative logical analysis of models of biological systems. The proposed methodol-

ogy suggests modelling biological systems using continuous time Markov chains.

Probabilistic model checking is used to verify logical properties of biological

models and to produce estimates of system behaviours. The consistency of the

proposed modelling technique is demonstrated as an approximation of ODE so-

lutions. A practical application of the reasoning methodology is demonstrated

on an example involving the RKIP inhibited ERK pathway. The main contri-

butions made in the area of probabilistic modelling and model-based reasoning

155
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are the following. The problem of faithful stochastic modelling of large chemical

populations is investigated, demonstrating that traditional modelling of indi-

vidual molecules does not perform sufficiently well. Individual-based models

either lead to enormous state spaces or largely misrepresent the dynamics of

large populations. A population-based modelling approach is proposed, obser-

vational uncertainty is addressed by employing symbolic intervals to abstract

from numerical values for model variables. Behaviour simulation and quan-

titative reasoning about the proposed models is performed using probabilistic

symbolic model checking.

A Bayesian inferential approach to plausible reasoning about models of bi-

ological systems is considered in Chapter 4. A variety of algorithms which im-

plement Bayesian inference methods are investigated and critically compared.

Markov chain Monte Carlo methods are selected as the “gold standard” as these

are based on the least constrained foundations. The most challenging problem

is hypotheses testing using noisy experimental data. This requires the latest

developments in applied statistics, such as path sampling methods, to be used

to obtain stable results. We demonstrated the effectiveness of our methods with

two case studies, one of which is an open problem in Systems Biology.

Our approach enables consideration of uncertain knowledge and data at all

stages, this is not possible using traditional maximum likelihood methods.

Parameter inference for ODE models of biological systems is achieved by

Markov chain Monte Carlo sampling using the Metropolis-Hastings algorithm.

The identified parameter posteriors are then used to produce model behaviour

predictions, taking the underlying uncertainty about the parameter values into

account. Alternative models which correspond to competing hypotheses about

the system structure are then systematically compared by the evidence support,

evaluated as the marginal (integrated) likelihoods of the experimental data con-

ditioned by each model. The employed hypotheses testing approach is consistent

with the scientific method paradigm, and implements Occam’s razor principle

which allows the simplest model sufficiently explaining observed data to be se-

lected.

We demonstrate applications of the proposed Bayesian inferential framework

implementation on two case studies in the area of signal transduction pathways.

The first case study operates on artificially designed models and generated data

to demonstrate consistency of the proposed methodology and introduce main
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analysis capabilities on simple models where the correct answers are known.

The second case study demonstrates an application of the proposed inferen-

tial methodology to an open problem in Systems Biology. In this study we

perform model parameter inference and consequent hypotheses testing to de-

termine which of the alternative hypotheses about the structure of the ERK

signal transduction pathway is better supported by the evidence collected in a

biochemical laboratory. The models considered in the second case study are sig-

nificantly more complex than the ones traditionally considered in this context.

Many solutions to nontrivial scientific challenges were investigated and adopted

to enable sufficient performance of the inference algorithms. The main solutions

which allowed inference over realistically large models are simulating several

Markov chains in parallel monitoring their convergence to the common target

distribution, use of adaptive proposal distributions which adjust their shape to

match the current approximation to the posterior, use of marginal likelihood

estimator based on thermodynamic integration principles.

The case studies have also demonstrated the main problems and bottlenecks

of the current methods. We will discuss some ideas for improvements and ex-

tensions in the next section.

5.2 Further Work

There are three main areas where the work presented in this thesis can be sig-

nificantly improved or extended.

The first opportunity for future improvement is to apply the inferential

methodology discussed in Chapter 4 to the stochastic models of biological sys-

tems proposed in Chapter 3.

As structural models of biological systems defined with the PRISM language

are parametric, it would be beneficial to implement inference methods for such

stochastic models. But since the method for model behaviour prediction de-

scribed in Chapter 3 provides only the mean estimate for system behaviour,

it would not be appropriate to substitute this estimate directly into equation

(4.19) defined in Section 4.2 (see page 112), because this would not address the

variance of such predictions properly. A more sophisticated method of likeli-

hood definition is required to implement inference over stochastic models. If a

sound likelihood is defined for the stochastic models, we then could infer model
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parameters for these models from experimental data, and consequently evidence-

based model comparison and a sound description of uncertainty for parameter

values. On the other hand, the models identified with the inferential methodol-

ogy can then be analysed deductively using the reasoning methods discussed in

Chapter 3.

The second area for further improvement is performance of the Monte Carlo

samplers proposed in Chapter 4. Producing a sample from the posterior distri-

bution of model parameters of a nonlinear model in parameter space of many

dimensions is indeed the biggest challenge and the toughest bottleneck for the

methodology proposed in Chapter 4. As mentioned in Section 4.2.2, the analysis

of Case Study 2 (Section 4.3.2), the problem of a realistic size, has taken three

weeks of computing time on a large computer cluster.

We propose to investigate and apply two of the promising methods for im-

proving the sampling performance: Hamiltonian MCMC sampling (MacKay

2003) and population Monte Carlo sampling (Iba 2001). The former method

utilises gradient information to reduce random walk behaviour, and, conse-

quently, to reduce the time required to obtain effectively independent samples

from the posterior distribution. The population-based Monte Carlo methods

are also designed to improve sampling performance by simulating several ran-

dom walks through the parameter space in parallel and allowing such parallel

samplers to share the information about the shape of the target distribution.

Evolutionary Monte Carlo algorithm (Liang and Wong 2001), for example, sim-

ulates a population of parallel Markov chains updating such a population us-

ing genetic operations of mutation and crossover. The chains are embedded at

different temperature ladders to incorporate the attractive features of parallel

tempering.

The third option for future extensions is development of a methodology to

utilise expert knowledge for formulation of informative priors which then can be

utilised more effectively (than noninformative ones) in inferential analysis.

When performing Bayesian inference and evidential hypotheses testing it is

required to formulate the prior knowledge first. In the work presented in this the-

sis we use only highly uninformed assumptions to formulate the initial knowledge

and corresponding priors. However, using informative priors for the hypotheses

enables utilisation of some additional knowledge when performing the inference.

Such knowledge will then be updated using information from experimental ev-
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idence while the inference is performed. An example of an informative prior

can be some information about a plausible model parameter value which can be

estimated using additional experimentation using a different technique. In the

case when this kind of more particular information about the parameter value

is available, it is possible to formulate a more complex hypothesis assignment to

the confidence distribution for this parameter: for example, a narrow Gamma

distribution located at the estimated value with variance related to the experi-

mental error. In such a case, the value estimated with an additional technique

is efficiently defined as the most likely one, but other values are still taken into

consideration if the experimental evidence strongly suggests alternative options.

Another valuable source of initial knowledge is published biological litera-

ture. The main challenge here, however, is not only to find appropriate articles

and formalise the knowledge contained therein, but also to assign proper con-

fidence distributions to the found statements. This problem is quite complex

as there is inconsistent knowledge published in different articles, so alternative

hypotheses should be taken into account. In the case where several alternatives

are described in the published literature, we can consider the number of pub-

lications supporting each of the hypotheses as an initial confidence assignment

for the prior. For example, the number of articles found in PubMed1 weighted

with a journal impact factor can be utilised as a relative probability for each of

the hypotheses.

Expert questionnaires can also be used to collect subjective confidence to

formulate informative priors. The experts can be asked to rate the alternative

hypotheses on a semantic scale (saying that they would, for example, strongly

prefer hypotheses X over hypotheses Y). The relative probabilities then can be

assigned to alternative hypotheses on a scale similar to the one proposed in

Table 4.2.

New work which can be developed on the foundation established in this thesis

can be done along the following two directions:

The first one is to build upon the predictive possibilities of the uncertain

models, especially the ones with parameter distributions inferred with Bayesian

methodology. The next step in this direction can be investigation of optimal

experimental design methods to suggest the most promising experiments for fu-

ture investigation to be performed first. For example, in the cases when two

1A literature database for biomedical publications
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alternative hypotheses cannot be distinguished effectively using the available

experimental evidence the predictions can be drawn using each of the alterna-

tive models for a number of future experiments. Then, the experiment which

proposes the largest difference in the predicted outcomes with different mod-

els should be performed first as it is likely to provide more valuable data for

hypotheses testing.

The second direction is utilisation of approximate methods either to perform

approximate inference or to guide the MCMC sampler during the initial random

walk, thus optimising sampling performance. For example, Laplace approxima-

tions can be used to perform approximate parameter posterior inference, and

then the approximate posterior distribution can be used as a proposal distri-

bution for the Metropolis-Hastings sampler to produce a sample from the true

posterior more effectively. Another method we plan to consider in our future

work is usage of Gaussian processes (see Rasmussen and Williams 2006 Gibbs

and MacKay 2000) for likelihood approximation. Such likelihood approximation

can serve either as a quick guide for the initial random walk, as a sampling

distribution for a part of particle population in population-based Monte Carlo

methods, or as a proposal distribution for the Metropolis-Hastings sampler.

We plan to investigate possible improvements and usage of approximate

methods, and also to address the issues of optimal experiment design in follow-up

projects to this work.

Summary

Probabilistic methods for model-based reasoning and inference pro-

posed in this thesis address the problem of reasoning and hypotheses

testing for Systems Biology in uncertain conditions.

The main scientific contributions of this work are

1. A novel population-based stochastic modelling approach is pro-

posed to model biological systems which involve large chemical

populations.

2. Probabilistic reasoning is performed over the proposed stochas-

tic models enabling logical analysis of possible model behaviours.

3. A Bayesian inferential framework implementation is developed

to enable parameter inference and evidential model comparison

on ODE models of biological systems.
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4. Different methods for estimation of the marginal likelihoods are

compared, and the method based on annealing-melting integra-

tion is selected and implemented to enable hypotheses testing

using realistically sized nonlinear ODE models to describe al-

ternative hypotheses.

5. The proposed methods are applied to perform modelling, rea-

soning and inference in the area of signal transduction pathways.

The work described in this thesis opens several directions for further

extensions and improvements.



Appendix A

Model Parameters for Case

Study 2

The following table defines the parameters for Model 1 used in Case Study 2:

Table A.1: Parameters for Model 1 in Case Study 2

Parameter

index

Description Prior

1 Sos inhibition by ERKPP, Kcat Γ(1.1111, 9.0)

2 Sos inhibition by ERKPP, Km Γ(2.0, 3333.0)

3 Sos activation, Kcat Γ(1.1111, 9.0)

4 Sos activation, Km Γ(2.0, 3333.0)

5 Binding of the EGF to the receptor, for-

ward, mass action k

Γ(1.1111, 9.0)

6 Binding of the EGF to the receptor, back-

ward, mass action k

Γ(2.0, 3333.0)

7 Sos deactivation, Km Γ(2.0, 3333.0)

8 Sos deactivation, V Γ(2.0, 3333.0)

9 Ras activation, Kcat Γ(1.1111, 9.0)

10 Ras activation, Km Γ(2.0, 3333.0)

11 Ras deactivation by Gap, Kcat Γ(1.1111, 9.0)

12 Ras deactivation by Gap, Km Γ(2.0, 3333.0)

13 cRaf activation, Kcat Γ(1.1111, 9.0)

14 cRaf activation, Km Γ(2.0, 3333.0)
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15 cRaf deactivation, Km Γ(2.0, 3333.0)

16 cRaf deactivation, V Γ(2.0, 3333.0)

17 MEK activation, Kcat Γ(1.1111, 9.0)

18 MEK activation, Km Γ(2.0, 3333.0)

19 MEK deactivation, Km Γ(2.0, 3333.0)

20 MEK deactivation, V Γ(2.0, 3333.0)

21 ERK activation, Kcat Γ(1.1111, 9.0)

22 ERK activation, Km Γ(2.0, 3333.0)

23 cRaf inhibition by PKA, Kcat Γ(1.1111, 9.0)

24 cRaf inhibition by PKA, Km Γ(2.0, 3333.0)

25 PKA activation by PKA agonist, Kcat Γ(1.1111, 9.0)

26 PKA activation by PKA agonist, Km Γ(2.0, 3333.0)

27 PKA activation by Cilostamide, Kcat Γ(1.1111, 9.0)

28 PKA activation by Cilostamide, Km Γ(2.0, 3333.0)

29 PKA deactivation, Km Γ(2.0, 3333.0)

30 PKA deactivation, V Γ(2.0, 3333.0)

31 EPAC activation by EPAC agonist, Kcat Γ(1.1111, 9.0)

32 EPAC activation by EPAC agonist, Km Γ(2.0, 3333.0)

33 EPAC activation by Cilostamide, Kcat Γ(1.1111, 9.0)

34 EPAC activation by Cilostamide, Km Γ(2.0, 3333.0)

35 EPAC deactivation, Km Γ(2.0, 3333.0)

36 EPAC deactivation, V Γ(2.0, 3333.0)

37 Rap1 activation by EPAC, Kcat Γ(1.1111, 9.0)

38 Rap1 activation by EPAC, Km Γ(2.0, 3333.0)

39 Rap1 deactivation by Gap, Kcat Γ(1.1111, 9.0)

40 Rap1 deactivation by Gap, Km Γ(2.0, 3333.0)

41 BRaf activation by Rap1, Kcat Γ(1.1111, 9.0)

42 BRaf activation by Rap1, Km Γ(2.0, 3333.0)

43 BRaf deactivation, Km Γ(2.0, 3333.0)

44 BRaf deactivation, V Γ(2.0, 3333.0)

45 MEK activation by BRaf, Kcat Γ(1.1111, 9.0)

46 MEK activation by BRaf, Km Γ(2.0, 3333.0)
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47 BRaf activation by Ras, Kcat Γ(1.1111, 9.0)

48 BRaf activation by Ras, Km Γ(2.0, 3333.0)

49 ERK deactivation, Km Γ(2.0, 3333.0)

50 ERK deactivation, V Γ(2.0, 3333.0)

The following table defines the parameters for Model 2 used in Case Study 2:

Table A.2: Parameters for Model 2 in Case Study 2

Parameter

index

Description Prior

1 Sos inhibition by ERKPP, Kcat Γ(1.1111, 9.0)

2 Sos inhibition by ERKPP, Km Γ(2.0, 3333.0)

3 Sos activation, Kcat Γ(1.1111, 9.0)

4 Sos activation, Km Γ(2.0, 3333.0)

5 Binding of the EGF to the receptor, for-

ward, mass action k

Γ(1.1111, 9.0)

6 Binding of the EGF to the receptor, back-

ward, mass action k

Γ(2.0, 3333.0)

7 Sos deactivation, Km Γ(2.0, 3333.0)

8 Sos deactivation, V Γ(2.0, 3333.0)

9 Ras activation, Kcat Γ(1.1111, 9.0)

10 Ras activation, Km Γ(2.0, 3333.0)

11 Ras deactivation by Gap, Kcat Γ(1.1111, 9.0)

12 Ras deactivation by Gap, Km Γ(2.0, 3333.0)

13 cRaf activation, Kcat Γ(1.1111, 9.0)

14 cRaf activation, Km Γ(2.0, 3333.0)

15 cRaf deactivation, Km Γ(2.0, 3333.0)

16 cRaf deactivation, V Γ(2.0, 3333.0)

17 MEK activation, Kcat Γ(1.1111, 9.0)

18 MEK activation, Km Γ(2.0, 3333.0)

19 MEK deactivation, Km Γ(2.0, 3333.0)

20 MEK deactivation, V Γ(2.0, 3333.0)
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21 ERK activation, Kcat Γ(1.1111, 9.0)

22 ERK activation, Km Γ(2.0, 3333.0)

23 cRaf inhibition by PKA, Kcat Γ(1.1111, 9.0)

24 cRaf inhibition by PKA, Km Γ(2.0, 3333.0)

25 PKA activation by PKA agonist, Kcat Γ(1.1111, 9.0)

26 PKA activation by PKA agonist, Km Γ(2.0, 3333.0)

27 PKA activation by Cilostamide, Kcat Γ(1.1111, 9.0)

28 PKA activation by Cilostamide, Km Γ(2.0, 3333.0)

29 PKA deactivation, Km Γ(2.0, 3333.0)

30 PKA deactivation, V Γ(2.0, 3333.0)

31 EPAC activation by EPAC agonist, Kcat Γ(1.1111, 9.0)

32 EPAC activation by EPAC agonist, Km Γ(2.0, 3333.0)

33 EPAC activation by Cilostamide, Kcat Γ(1.1111, 9.0)

34 EPAC activation by Cilostamide, Km Γ(2.0, 3333.0)

35 EPAC deactivation, Km Γ(2.0, 3333.0)

36 EPAC deactivation, V Γ(2.0, 3333.0)

37 Rap1 activation by EPAC, Kcat Γ(1.1111, 9.0)

38 Rap1 activation by EPAC, Km Γ(2.0, 3333.0)

39 Rap1 deactivation by Gap, Kcat Γ(1.1111, 9.0)

40 Rap1 deactivation by Gap, Km Γ(2.0, 3333.0)

41 BRaf activation by Rap1, Kcat Γ(1.1111, 9.0)

42 BRaf activation by Rap1, Km Γ(2.0, 3333.0)

43 BRaf deactivation, Km Γ(2.0, 3333.0)

44 BRaf deactivation, V Γ(2.0, 3333.0)

45 MEK activation by BRaf, Kcat Γ(1.1111, 9.0)

46 MEK activation by BRaf, Km Γ(2.0, 3333.0)

47 C3G activation, Kcat Γ(1.1111, 9.0)

48 C3G activation, Km Γ(2.0, 3333.0)

49 C3G deactivation, mass action k Γ(2.0, 3333.0)

50 Rap1 activation by C3G, Kcat Γ(1.1111, 9.0)

51 Rap1 activation by C3G, Km Γ(2.0, 3333.0)

52 BRaf activation by Ras, Kcat Γ(1.1111, 9.0)
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53 BRaf activation by Ras, Km Γ(2.0, 3333.0)

54 ERK deactivation, Km Γ(2.0, 3333.0)

55 ERK deactivation, V Γ(2.0, 3333.0)

Detailed semantics of these parameters and the kinetic laws used for mod-

elling biochemical reactions can be found in a formal model definition using

SBML format (see Hucka et al. 2003) which can be obtained from the author.
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