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Abstract

Worms are malicious programs that spread over the Internet without human

intervention. Since worms generally spread faster than humans can respond,

the only viable defence is to automate their detection.

Network intrusion detection systems typically detect worms by examining

packet or flow logs for known signatures. Not only does this approach mean

that new worms cannot be detected until the corresponding signatures are

created, but that mutations of known worms will remain undetected because

each mutation will usually have a different signature. The intuitive and

seemingly most effective solution is to write more generic signatures, but

this has been found to increase false alarm rates and is thus impractical.

This dissertation investigates the feasibility of using machine learning

to automatically detect mutations of known worms. First, it investigates

whether Support Vector Machines can detect mutations of known worms.

Support Vector Machines have been shown to be well suited to pattern recog-

nition tasks such as text categorisation and hand-written digit recognition.

Since detecting worms is effectively a pattern recognition problem, this work

investigates how well Support Vector Machines perform at this task.

The second part of this dissertation compares Support Vector Machines

to other machine learning techniques in detecting worm mutations. Gaussian

Processes, unlike Support Vector Machines, automatically return confidence

values as part of their result. Since confidence values can be used to reduce

false alarm rates, this dissertation determines how Gaussian Process compare

to Support Vector Machines in terms of detection accuracy. For further

comparison, this work also compares Support Vector Machines to K-nearest

neighbours, known for its simplicity and solid results in other domains.
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The third part of this dissertation investigates the automatic generation of

training data. Classifier accuracy depends on good quality training data – the

wider the training data spectrum, the higher the classifier’s accuracy. This

dissertation describes the design and implementation of a worm mutation

generator whose output is fed to the machine learning techniques as training

data. This dissertation then evaluates whether the training data can be used

to train classifiers of sufficiently high quality to detect worm mutations.

The findings of this work demonstrate that Support Vector Machines can

be used to detect worm mutations, and that the optimal configuration for

detection of worm mutations is to use a linear kernel with unnormalised

bi-gram frequency counts. Moreover, the results show that Gaussian Pro-

cesses and Support Vector Machines exhibit similar accuracy on average in

detecting worm mutations, while K-nearest neighbours consistently produces

lower quality predictions. The generated worm mutations are shown to be

of sufficiently high quality to serve as training data. Combined, the results

demonstrate that machine learning is capable of accurately detecting muta-

tions of known worms.
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Chapter 1

Introduction

1.1 The worm problem

Worms are malicious programs that spread over the Internet without human

intervention [1, 2]. Like some biological viruses they infect hosts through

known weaknesses, cause what damage they can, and then use the host as a

springboard to find other vulnerable victims.

The first Internet worm was unleashed in 1988 and brought down hun-

dreds of machines across the USA [3], at the time a significant portion of

the early Internet. Worms proliferated as the Internet matured into a global

network, wreaking havoc and causing considerable financial damage [4].

None of the damage, however, came close to the $2.6 billion caused by

Code Red [5, 6]. Code Red exploited a vulnerability in Microsoft’s Internet

Information Services (IIS) [7] web server to infect its victims. The first, rather

unsuccessful version of Code Red, attempted to spread itself by generating

a set of random IP addresses that it then tried to infect. Yet, there was a

fatal flaw in this version: it used a static seed to generate the IP addresses,

which meant that all infected hosts generated the same set of IP addresses.

This flaw prevented the worm from spreading far.

Several days after Code Red’s arrival, a change in its behaviour was ob-

served: it began to probe new hosts. The change in behaviour was due to an

updated version of Code Red, identical in all aspects except for the random

1
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number generator, which now used a dynamic random seed. This mutation

enabled it to infect 359, 000 hosts in less than 14 hours [6].

A worm that spread even faster was the Slammer [8] worm, which in-

fected most of its 75, 000 victims within 10 minutes. This worm was the first

Warhol [9] worm observed in the wild, a name coined from Andy Warhol’s fa-

mous quote that “in the future, everybody will have 15 minutes of fame” [10],

and based on the worm’s ability to spread to most vulnerable machines within

15 minutes.

Despite their prominence, Code Red and Slammer are just two of the

more infamous worms drawn from the large pool of lethal worms that have

swamped the Internet over the last decade. Study of those worms leads to

the following observations about worm behaviour:

• the initial release of each worm is typically followed by one or more

mutations

• each mutation tends to be more lethal than its predecessors, by refining

the attack or infection strategy

• they spread significantly faster than humans can respond

These observations suggest that an attractive defence strategy against worms

is to automate the detection of their mutations, and this strategy is the focus

of this dissertation.

Today’s network intrusion detection systems [11] – software designed to

detect security breaches such as worms – typically use either anomaly de-

tection or misuse detection. Anomaly detection [12] systems model normal

traffic and detect intrusions by looking for abnormalities. But normal traffic

is often hard to model, especially with traffic such as peer-to-peer and email

relaying exhibiting worm-like characteristics. Misuse detection [13] systems

match network traffic to models of intrusions known as signatures, which

means that only intrusions whose signatures are known can be detected.

Although there is substantial ongoing research into improving anomaly

detection systems, misuse detection systems have emerged as the de facto

standard since they are both simple and scalable. When it comes to rapidly

spreading intrusions such as worms, however, misuse detection systems have
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Figure 1.1: Automatically detecting worm mutations with ma-

chine learning. The learning phase is trained with network flows

labelled as malicious or benign (top), producing a classifier that

can distinguish between malicious and benign flows (bottom).

a serious limitation: generating the signature itself [14]. Signatures are typ-

ically created by security experts who manually analyse network logs after

intrusions have occurred, a time consuming and error-prone task. Given the

ferociousness of today’s worms, by the time a signature has been handcrafted

the worm may have already spread to the far ends of the Internet.

This work proposes to use machine learning based pattern recognition

techniques to eliminate that bottleneck with regard to worm mutations. The

idea is to train a machine learning classifier to distinguish between worm

(malicious) and benign flows, and so avoid the need to explicitly generate

signatures; by finding distinguishing patterns, machine learning techniques

implicitly generate signatures to classify unknown flows as malicious or be-

nign (Figure 1.1). In particular, this work investigates:
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• Support Vector Machines (SVMs) [15] are a machine learning

technique known to perform particularly well at pattern recognition

tasks such as text categorisation and hand-written digit recognition.

Since detecting worms is effectively a pattern recognition problem, this

work applies SVMs to detect mutations of known worms. Specifically,

this dissertation investigates the optimal configuration of SVMs and

associated kernel functions to classify worms.

• Comparison of SVMs to other machine learning methods. A

shortcoming of Support Vector Machines is that they do not return a

confidence value with their predictions, often leading to unnecessary

false alarms. Since Gaussian Processes (GPs) [16] automatically return

confidence values with their prediction, this work compares SVMs to

GPs in this particular domain. For further comparison, this disserta-

tion also compares SVMs to K-nearest neighbours [17], known for its

simplicity and solid results in other domains.

• Generating worm mutations for training data. Classifier accu-

racy depends on good quality training data – the more diverse the

training data, the higher the classifier’s accuracy. This work describes

the design and implementation of a worm mutation generator whose

generated mutations can be fed to the machine learning techniques as

training data. This work evaluates whether the quality of the generated

training data is sufficient for machine learning classifiers.

1.2 Thesis statement

Network intrusion detection systems typically detect worms by examining

packet or flow logs for known signatures. This means that worms cannot be

detected until after the signatures are created; in particular it means that

mutations of known worms will remain undetected since they usually have a

different signature.

I assert that it is possible to build an accurate network intrusion detection
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system that automatically detects mutations of known worms using machine

learning techniques. I will prove this assertion by:

1. Characterising the efficacy of different machine learning techniques for

detecting synthetic mutations

2. Applying the most accurate machine learning technique to a wide va-

riety of worm mutations

3. Devising an innovative technique for generating sufficient mutations of

known worms to train the chosen technique

1.3 Contributions

This work contributes to the defence against computer worms and their often

devastating effects in a number of ways:

• Demonstrating the feasibility of machine learning based pattern recog-

nition techniques to detect mutations of known worms

• Comparing how effectively the Support Vector Machines, Gaussian Pro-

cesses, and K-nearest neighbours machine learning techniques detect

worm mutations

• Designing a framework that automatically generates worm mutations

to be used as training data for machine learning classifiers

1.4 Publications

The work reported on in this dissertation has led to the following publication:

O. Sharma, M. Girolami, and J. Sventek, Detecting worm vari-

ants using machine learning, in CoNEXT 07: Proceedings of the

2007 ACM CoNEXT conference, (New York, NY, USA), pp. 112,

ACM, 2007 [18].
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1.5 Outline

The remainder of this work is organised as follows:

Chapter 2 provides background information on worms and network intru-

sion detection, and describes related work by examining existing worms

as well as intrusion detection systems optimised for detecting worms.

Chapter 3 presents an an overview of machine learning, followed by a de-

tailed overview of the three prominent machine learning techniques that

this work investigates: Support Vector Machines, Gaussian Processes,

and K-nearest neighbours.

Chapter 4 introduces a system that applies machine learning to detect

worm mutations. The chapter describes how network data is trans-

formed into a format that is understood by machine learning tech-

niques, and then proposes how to deploy machine learning techniques

to detect mutations of known worms.

Chapter 5 investigates whether machine learning techniques in general, and

Support Vector Machines in particular, are suited to detect worm mu-

tations. It describes and analyses a set of experiments used to test this

suitability.

Chapter 6 compares the Support Vector Machines’ results from the pre-

vious chapter to two alternative techniques – Gaussian Processes and

K-nearest neighbours – and discusses their relative advantages and dis-

advantages in detecting worm mutations.

Chapter 7 introduces a worm mutation generator to overcome lack of train-

ing data in the real world that threatens to starve machine learning

methods of training data. Specifically it examines whether the gen-

erated mutations offer sufficiently high quality training data for the

machine learning classifiers.

Chapter 8 summarises the suitability of machine learning for automatically

detecting worm mutations, in particular, the relative strengths and
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weaknesses of Support Vector Machines, Gaussian Processes, and K-

nearest neighbours. It also revisits the effectiveness of the training data

produced by the worm mutation generator.

Chapter 9 explores opportunities for future work. Possible opportunities

include defending against sophisticated worm attack strategies, design-

ing a custom kernel, alternative feature representation, real-time detec-

tion, online training, cascading classifiers, and scaling the infrastructure



Chapter 2

Worms and Intrusion Detection

The previous chapter highlighted the threat posed by worms and their mu-

tations. This chapter now turns to the existing defence mechanisms against

this worm menace. To better understand how worms can be detected, the

first part of this chapter devotes itself to background information on worms

– what kind of damage they cause, how they infect their hosts and how they

spread. The second part scrutinises existing network intrusion detection sys-

tems, focusing on recent systems designed to detect worms.

2.1 Worms

Worms1 [1, 2] are malicious programs that spread themselves to hosts on the

Internet by exploiting vulnerabilities [20, 21] such as buffer overflows [22], in

software applications. They are essentially computer viruses [23] that spread

without the need of human intervention. Although initial worm experiments

had already taken place in the early 1980’s [1], the first Internet worm wasn’t

released until 1988. Named after its author, the Morris worm brought down

hundreds of machines, at that time a significant portion of the Internet.

As the Internet evolved into a global network, worms emerged as a global

security threat. Several worms were released [4] in the decades that followed,

1The name worm originates from the tapeworm programs in the science fiction novel
The Shockwave Rider [19] published in 1975.

8
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wreaking havoc and causing considerable financial damage.

Even when worms are not designed to damage hosts but simply spread

as fast as possible, they still severely disrupt networks by generating vast

amounts of traffic [24] in similar ways that spam email is clogging the Inter-

net. However, worms usually also carry additional payloads to damage indi-

vidual hosts, rather than just negatively affecting their network connectivity.

This payload allows the worm to execute arbitrary and potentially malicious

code, with past damages ranging from defacing websites to corrupting files all

the way to erasing entire hard disks. The potential for damage is not limited

to software: even physical damage could be caused, for example by forcing

insufficiently cooled machines to overheat with incessant heavy workloads.

2.1.1 Challenges in defending against worms

There are a number of challenges in successfully defending against worm

attacks, including:

• Excessive number of vulnerabilities. Today’s Internet has mil-

lions of hosts, directly accessible through public Internet Protocol (IP)

addresses. Millions more are indirectly accessible behind gateways,

routers and firewalls. Combined with the thousands of software appli-

cations (and often hundreds of different versions of particular software

applications), worms are offered a vast number of potential backdoors

through which to spread.

• Immediate feedback. With today’s high speed Internet connections

and trunks, worm authors have close to immediate feedback on whether

their worm is successful. This enables worm authors to churn out new,

more lethal versions much more quickly than manually maintained net-

work intrusion detection systems can react.

• Ease of access. Coding worms was never easier. Websites provide all

the necessary ingredients to produce a successful worm, from tutorials

and source code, to entire development frameworks [25].
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2.1.2 Worm attack strategies

To defend against a worm intrusion one must understand its strategy and line

of attack. This section details the two stages in a worm’s attack: infection

and proliferation.

2.1.2.1 Infection

How do worms infiltrate their victims in the first place? Worms are just

computer programs, so for them to self-replicate and propagate, they must

be executed with sufficient privileges. If they cannot be executed or do not

have sufficient privileges once executed, they are rendered harmless.

But how can one bring a remote host to execute the worm programs?

Worms exploit low-level software vulnerabilities in services running on the

remote host. These vulnerabilities abound in today’s Internet, not least

thanks to the large number of hosts that run outdated software whose vulner-

abilities have been known for years. Common vulnerabilities include buffer

overflows [22], integer overflows [26], incorrect handling of format strings [27],

and faulty memory management [28, 29].

Vulnerabilities typically share the common trait of causing a computer’s

program counter to jump to the beginning of the worm’s executable payload,

thereby executing the worm program. From then on life is easy for the worm

since it then runs at the same privilege as the vulnerable service in question,

which more often than not means it has administrator (unrestricted) rights.

If not, it is possible to combine the infection vulnerability with a second

vulnerability that elevates the privileges of the worm.

2.1.2.2 Proliferation

Once the worm has successfully infected a vulnerable host, it typically self-

replicates and spreads itself over the network. There are several spreading

strategies it can use, ranging from simply generating a set of random IP

addresses, to more sophisticated spreading strategies such as systematically,

in a co-ordinated fashion, scanning ranges of IP addresses. The in-depth
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discussion of worm spreading strategies in [10] reveals just how rapidly worms

can spread when working in co-ordinated fashion.

As with some biological viruses, the number of hosts infected grows ex-

ponentially initially, until the majority of vulnerabilities have been infected.

In later stages, the growth slows, typically due to network congestion and

human intervention2.

The key defence strategy is to stop worms in their initial stages. Worms

such as Slammer [8] have demonstrated that the time window to line up a

defence is less than 15 minutes, too short for human intervention. The only

way, then, is to automate the detection of the worm and thus halt its spread

in that critical first quarter of an hour.

2.1.3 A brief case study of worms

This section deepens the conceptual understanding of the previous section

with concrete case studies of some of the most infamous worms. The case

studies focus on the worm’s infect-spread attack cycles.

2.1.3.1 Code Red

Code Red [6, 5] exploited a buffer overflow vulnerability in Microsoft’s Inter-

net Information Services (IIS) [7] web server to infect hosts. Once infected,

Code Red generated a set of random IP addresses to which it then tried to

spread. There was a fatal flaw in this worm: it used a static seed to generate

the IP addresses, which meant that all infected hosts generated the same set

of IP addresses. This flaw prevented the worm from spreading far.

Several days after Code Red’s initial appearance, a change in its behaviour

was observed: it began to probe new hosts. The change in behaviour was

due to an updated version of Code Red, identical in all aspects except for the

random number generator, which now used a dynamic random seed. This

mutation enabled it to infect 359, 000 hosts in less than 14 hours [6].

2Interestingly, computer worms spread similarly to human disease; for an approach
that uses a cyberspace equivalent of a Centre for Disease Control to help defend against
Internet worms, see [30]
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2.1.3.2 Slapper

Slapper [31] is a Linux worm that exploits a vulnerability in the OpenSSL [32]

module used by older versions of the Apache web server [33]. It was let loose

into the wild less than two months after the vulnerability in OpenSSL [32]

was disclosed in July 2002.

Although the Slapper worm caused nowhere near as much damage as

Code Red had in the previous year, it raised some interesting points. First,

it showed that Linux is also susceptible to worm infections, dispelling the

common myth of worms being a Windows problem. And second, it was the

first worm to build up a peer-to-peer overlay of infected hosts (known as a

botnet [34]) that enabled them to be remotely controlled for, say, distributed

denial of service attacks [35].

How does Slapper infect its hosts? Slapper is launched with a single

parameter – the target’s IP address. First, it fingerprints this host to check

if it is running a vulnerable version of Apache. It does this by sending an

invalid HTTP GET request to which Apache responds with its version number.

Slapper looks up this version in a hard-coded list, and if present proceeds

with the attack.

Next, Slapper initiates an SSL handshake [36] with the server by sending

a client hello message to OpenSSL. The server responds by sending the

client its certificate. Usually a client would now respond by sending the

server its public key together with the key’s length. But this is where the

vulnerability lies: OpenSSL does not check that the key’s length is within

certain bounds, facilitating a buffer overflow attack.

Slapper fakes its certificate and overstates the key’s length so that when

the server sends back the key it also sends additional data to Slapper. Since,

as the name suggests, OpenSSL is open source, Slapper knows exactly which

variables and data structures are returned as a result of requesting a too

large key. Among other information, OpenSSL returns a reference to a data

structure stored on the heap, which if overwritten allows arbitrary shell code

to be executed.

To overwrite the heap value Slapper overflows the buffer a second time.
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The second overflow only works because Apache’s connections are handled

by a process pool rather than a thread pool. Under normal circumstances

new connection requests are served from the pool, unless all processes are

busy, in which case a new child process is spawned. These child processes

are identical to their parents, including the heap allocations. To force a new

process to be spawned, Slapper exhausts the process pool by rapidly initiating

20 connections. The next request for a new connection is then guaranteed to

be a new child process.

All in all, this makes a total of 23 flows3 that Slapper needs to infect a

host. The actual code run in the exploit loads the worm’s source code from

the client to the server, compiles, and executes it.

Slapper serves as an excellent case study because it is one of the few

worms where the source code is easily available, and as such can be tailored

to the purposes of this work. Old versions of Linux and Apache are also

easier to obtain and install than legacy editions of Windows and the IIS web

server.

2.1.3.3 Slammer

A worm that spread even faster was the Slammer [8] worm, which infected

most of its 75, 000 victims within 10 minutes. Slammer, which was released

in January 2003, exploited a buffer-overflow vulnerability in Microsoft’s SQL

Server, which was reported 6 months earlier in July 2002. This worm was

the first Warhol [9] worm observed in the wild, a name coined from Andy

Warhol’s famous quote that “in the future, everybody will have 15 minutes

of fame” [10], and based on the worm’s ability to spread to most vulnerable

machines within 15 minutes.

Slammer’s strength lies in it’s simplicity: it does nothing more than infil-

trate the host using the above mentioned vulnerability, and then continuously

generates random IP address and spreads itself to those hosts if it finds them

to be vulnerable. Although Slammer does not perform anything malicious

on the host, the sheer volumes of traffic it generated caused large network

3One for the initial probe, 20 to exhaust the pool, and two for the buffer overflows.
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outages [8]. Slammer’s growth initially followed an exponential curve and

was later ironically slowed by the collapse of many networks due to denial of

service caused by Slammer itself.

The entire Slammer worm occupies only 376 bytes and fits in a single

UDP packet. Due to this small size and because it used UDP rather than

TCP, Slammer was often able to slip past heavily congested networks where

legitimate traffic could not. Using UDP also meant that the worms spread

was limited by available bandwidth rather than network latency, as is the

case with TCP-based worms such was Code Red. Another benefit of using

UDP over TCP is that UDP does not require a connection to be set up,

which meant that packets could simply be fired and forgotten, rather than

having to keep track of multiple connections, for example with threads which

are limited in number by the operating system, and drastically increase a

worm’s complexity.

Although Slammer was the first successful Warhol worm, it was not per-

fect. Moore et al [8] suggest that minor changes, such as a better random

IP address generator, could have further improved its spread. Additionally,

Slammer was eventually slowed down by blocking UDP port 1434, the MS

SQL server port; had it used a more popular service port, such as that of

HTTP or DNS, this strategy could have rendered the World Wide Web un-

usable.

2.1.3.4 Witty

A worm that targeted a buffer overflow vulnerability in several Internet Secu-

rity Systems (ISS) products was the Witty worm [37], which began to spread

in March 2004 and infected around 12, 000 hosts. The worm gets it’s name

from the payload it carries, which contains the phrase: insert witty message

here.

The witty worm is interesting due to several distinguishing features. First,

it was the first widely propagating worm that carried a destructive payload.

Second, it had the shortest known interval between disclosure of the vulnera-

bility and release of the worm, spreading only a day after the vulnerability was
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disclosed. And third, it was launched in an organised, highly co-ordinated

manner with numerous ground-zero hosts.

Witty’s attack cycle is fairly straightforward:

1. Seed the random number generator using system time.

2. Send 20, 000 copies of itself to random targets.

3. Select a hard disk at random.

4. If successful overwrite a randomly chosen block on this disk, and start

over with step 1.

5. If unsuccessful, start over with step 2.

This process repeats until either the infected machine is rebooted or crashes,

for example when Witty manages to overwrite a system critical section of

the hard disk.

The Witty worm was observed to have infected 110 hosts within the

first ten seconds and 160 at the end of 30 seconds, indicating that a large

number of initial hosts were seeded with the worm before launching the

first attack wave. Given that the worm began to spread only a day after

the vulnerability was disclosed, it is likely that these initial hosts had been

previously compromised.

Like the Slammer worm, the Witty worm used the UDP protocol and was

therefore bandwidth limited, rather than latency limited as is the case with

TCP worms. Additionally, Witty worm cloaked itself by padding its packets

with arbitrary data varying in size between 796 and 1307 bytes.

2.1.3.5 Blaster

The Blaster4 [38] worm was released into the wild in August 2003, and ex-

ploited a buffer overflow vulnerability in the Distributed Component Object

Model (DCOM) Remote Procedure Call (RPC) [39], a service for communi-

cating with objects distributed across networked hosts, in Microsoft Windows

4The Blaster worm is also referred to as the Lovesan worm because it carries the hidden
message “I just want to say LOV YOU SAN!!”
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XP and Windows 2000. As a side effect, the worm also caused instability in

the RPC service on other Windows versions, including Windows NT, Win-

dows XP 64, and Windows Server 2003.

The worm attacks as follows:

1. It connects to TCP port 135 and overflows the DOM RPC service with

excessive amounts of data.

2. The buffer overflow overwrites a critical memory section and facilitates

shell access on TCP port 4444 with local system access.

3. Via the newly granted shell access, Blaster invokes tftp.exe, an FTP

client to transfer its payload (mblast.exe). Transferring the payload

from the attacking host rather than hard-coded servers makes it more

difficult to detect the worm.

4. Blaster sets an entry in the Windows registry to launch the executable

on the next boot. This keeps Blaster alive on the target host even when

the machine is rebooted.

5. The worm reboots the system to launch the executable payload.

6. The infected host then listens on UDP port 69 for connections from

newly compromised hosts.

Once it has infected its host, Blaster launches attacks on a regular basis. If

the date is between August 15th and December 31st it continuously launches

distributed denial of service attacks against windowsupdate.com. Blaster also

repeats these attacks on the 15th of every month outside the date range. The

attack floods destination port 80 with 50 TCP SYN packets (40 bytes each)

per second.

To spread itself, Blaster first generates a random IP address of the form

A.B.C.0, where A, B, and C are random values between 0 and 254. It then

incrementally scans the entire subnet A.B.C.0 – A.B.C.254 for new victims.
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2.2 Intrusion detection systems

Network intrusion detection systems [11] are specialised intrusion detection

systems [40, 41] that monitor network traffic for security breaches such as

worms. These systems are typically deployed at network gateways, allowing

them to act as filters for all incoming traffic.

Since the machine learning worm detectors proposed in this work are in-

tended to augment or replace existing intrusion detection systems, it makes

sense to look at the common approaches to intrusion detection and better

understand how they work. This will be the task of the first part of this sec-

tion. The second part then presents an overview of popular network intrusion

detection systems, focusing on those features that deal with worms.

2.2.1 Approaches to intrusion detection

There are two common approaches to network intrusion detection: anomaly

detection and misuse detection. In anomaly detection [12], systems are

equipped with a model of normal traffic and detect intrusions by comparing

traffic to this model and looking for abnormalities. A weakness is that the

diversity of network traffic makes it difficult to demarcate normal traffic.

Email relaying and peer-to-peer queries, for example, exhibit worm-like traf-

fic characteristics. Matters are complicated further because abnormal traffic

does not necessarily constitute an intrusion.

In misuse detection [13], on the other hand, systems are equipped with

models of intrusions, known as signatures, which are matched to network traf-

fic. A signature is a fingerprint that can be used to identify intrusions. In its

simplest form, it consists of a string of characters (or bytes), but many cur-

rent intrusion detection systems [42, 43] also support regular expressions [44]

and even behavioural fingerprints [45]. A problem with misuse detection is

that only intrusions whose signatures are known can be detected.

Although there is substantial ongoing research into improving anomaly

detection systems, misuse detection systems have emerged as the de facto

standard for intrusion detection since they are both simple and scalable.
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When it comes to rapidly spreading intrusions such as worms, however, mis-

use detection systems have a serious limitation: generating the signature

itself [14].

Signatures are typically created by security experts who analyse network

and host logs after intrusions have occurred. This involves sifting through

thousands of lines of log files – an error-prone and time-consuming undertak-

ing. Given the ferociousness of today’s worms, by the time a signature has

been handcrafted the worm may have already spread to the far ends of the

Internet.

2.2.2 Case studies of intrusion detection systems

How are the approaches to network intrusion detection from the previous

section applied in practice? This section presents popular network intrusion

detection systems, focusing on their worm detection features.

2.2.2.1 Snort

Snort [43] is a popular open source network intrusion detection system that

belongs to the family of misuse detection systems. Snort works by string

matching observed network traffic to a database of known intrusions. To

be effective, this database must be updated frequently, which is why there

are several mechanisms in place to ensure that new signatures are shared

throughout the Snort community quickly and easily.

Snort first divides the traffic based on destination port number. Then a

rule (or signature) can restrict itself to particular known header values, or dig

deeper and perform content matching on the payload. Since string matching

is a relatively expensive operation, it is important to filter out as much as

possible before resorting to content inspection.

Initially Snort focused only on the inspection of single packets. After

several successful evasions [46], however, Snort was extended to support full

TCP flow reassembly. This enables Snort to perform pattern matching across

packet boundaries, greatly increasing its success rate.



CHAPTER 2. WORMS AND INTRUSION DETECTION 19

2.2.2.2 Bro

Bro [42] is another open source network intrusion detection system, although

its approach is more refined than Snort’s since it works at the application

protocol level. However, Bro can handle Snort signatures by means of a

conversion script that is shipped with Bro.

Bro works by first assigning a protocol analyser based on preliminary

information, primarily the protocol number, that it extracts from the first few

bytes of reassembled flows. The protocol analysers themselves then generate

events based on various protocol specific data exchanges. For example, a

hypertext transfer protocol (HTTP) analyser generates an event for every

HTTP GET request. These events in turn are parsed by policy scripts that

accompany the protocol analysers. These policy scripts are written in a

dedicated scripting language designed for easy manipulation of the received

events and data.

Bro’s stream assembly and protocol analysis is a heavy-weight process

and as such should only be done on flows where it is absolutely necessary.

To reduce the number of flows it analyses, Bro filters unwanted flows using

primitive packet filtering.

2.2.2.3 Earlybird

Earlybird [14] was one of the first research systems dedicated to fingerprinting

new worms, thereby automating the signature generation process. It does this

by building a histogram of all byte strings in all packets that it observes and

constructs signatures for the most frequent ones. Earlybird’s fundamental

assumption is that since worms try to spread to many hosts in a short period

of time, strings that occur frequently at widely dispersed network locations

must belong to a worm.

Earlybird reduces false alarm rates by comparing the current string with

lists of benign strings that are known to occur both frequently and appear at

widely dispersed network locations. These lists of benign strings are known

as white lists.
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2.2.2.4 Autograph

Autograph [47] takes the same approach as Earlybird by assuming that worms

generate bursts of similar traffic to widely dispersed network locations. It

improves over Earlybird, by (i) using a heuristic filter to narrow down the

traffic it has to inspect, and (ii) observing entire flows rather than just single

packets.

The heuristic filter simply classifies all flows originating from port-scanning

sources as suspicious, based on the observation that many worms scan IP ad-

dress ranges in search of vulnerable hosts. Autograph generates signatures

from the suspicious flow pool by dividing flows into content blocks, and then

applying a greedy algorithm to pick out the most prevalent blocks.

Like Earlybird, Autograph attempts to reduce false alarms with white

lists. The authors suggest a training period to collect information to produce

these white lists.

2.2.2.5 Polygraph

Polygraph [48] is a misuse detection system that generates signatures for

polymorphic worms by extracting string similarities in pools of suspicious

and innocuous flows. Polymorphic worms are worms that mutate themselves

at every hop when spreading throughout the network; the possible resilience

of the work proposed in this dissertation to polymorphic worms is discussed

in Section 5.1.1.3.

Polymorphic worms use a number of mutation strategies, such as cor-

rupting its own signature, and Polygraph suggests different string matching

algorithms, each optimised for a specific strategy. If the mutation strategy is

unknown, they suggest experimenting with each algorithm and selecting the

one that yields the least false alarms.

Polygraph extends Autograph’s framework to fingerprinting polymorphic

worms. The authors argue that continuous byte strings, such as used in sig-

natures for Autograph are not sufficient to describe polymorphic worms. The

underlying assumption is that a polymorphic worm, although it changes its

signature from hop to hop, has at least a small fraction of signature in com-
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mon at each incarnation. In most cases that common fraction is the exploit

code, which Polygraph tries to deduce with string matching algorithms such

as finding the longest common sub-sequence [49].

2.2.2.6 PayL

PayL [50, 51] is an anomaly-based detection system that builds traffic models

based on byte frequency distributions in packets.

In the modelling phase, PayL categorises packets according their desti-

nation port, length, and byte frequency distribution of their payload. It

generates these byte frequency distributions by iterating over the payload

using a sliding window of size one-byte, and storing a histogram of observed

bytes. The average frequency and standard deviation of each byte over all

histograms for packets with the same destination port and length are then

stored as the traffic models.

Likewise, in the classification phase packets are first categorised according

to their destination port, then length, and the distance of the payload’s byte

frequency distribution to the model’s byte frequency distribution. Anomalous

packets are those were this distance is above a certain predefined threshold.

An extension using n subsequent bytes rather than just single byte dis-

tributions was proposed in [51]; this technique, known as n-gram extraction,

is used in this dissertation and covered in detail in Section 4.4.

2.2.2.7 Ensemble of one-class classifiers

Similar to this dissertation, Perdisci et al [52] use Support Vector Machines

to detect intrusions. The fundamental difference is that Perdisci et al [52]

take the anomaly detection approach, while this dissertation takes the mis-

use detection approach. The model of normal traffic is based on PayL’s

n-gram extraction, except that higher n-grams are extracted with 2v-gram

approximation5.

5This technique uses a sliding window size of 2 and approximates greater values of n
by incrementing the window by v steps, when traversing the data.
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Another difference is that Perdisci et al [52] propose an ensemble of one-

class SVMs, while this dissertation proposes binary (two-class) Support Vec-

tor Machines. Furthermore, the one-class SVMs in Perdisci et [52] use only

a single kernel, whereas this work investigates a number of kernels. Kernels

and binary classifiers will be covered in the background section on Support

Vector Machines (Section 3.2).

The final difference is that Perdisci et al [52] investigate a wide range of

n-gram values with 2v-gram approximation. They show that 2v-grams yield

good results, however propose the use of multiple classifiers, each operating

in a different feature space, for optimal results. By contrast this dissertation

investigates only n-gram values in the range 1-3, and will demonstrate in

Section 5.3.3.1 that 2-grams yield solid results. Feature extraction using

n-grams is described in detail Section 4.4.

2.2.2.8 Vigilante

Vigilante [53] is a misuse detection system that, unlike other intrusion de-

tection systems discussed so far, monitors code executed on individual hosts

rather than network traffic flows. Vigilante determines whether a network

connection is malicious by running all instructions in a shielded virtual ma-

chine, where it monitors for illegal memory accesses and buffer overflows.

An advantage of Vigilante is that it can detect rapidly spreading worms

where exploits are unknown without blocking innocuous traffic. Another

advantage is that Vigilante can rapidly contain a worm in its early stages

because it disseminates any intrusion it detects to nearby Vigilante hosts,

effectively building a distributed worm detection system.

On the downside, being a host-based detection system by nature means

that Vigilante (i) has to be installed on each host in the network, (ii) monitor-

ing machine instructions in a virtual environment is computation-intensive,

and (iii) programming bugs such as pointer errors could be wrongly flagged

as intrusions, resulting in a high false alarm rate.
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2.2.2.9 Honeycomb

Honeycomb [54] is a misuse detection system that generates signatures by

observing traffic in honeypots. Honeypots [55] are virtual systems that have

been deployed on hosts that have not been assigned a domain name and

are not publicised in any way. They lure worms, based on the assumption

that any attempted communication with these machines must be malicious

since the only way of obtaining their IP address is through random probing.

Honeycomb generates a signature for incoming traffic by finding the longest

common substring in two network connections.

False alarms are easily generated if legitimate traffic reaches the honey-

pots, for example by attackers who deliberately send benign traffic to these

honeypots.

2.3 Summary

This chapter presented background information and related work on worms

and intrusion detection systems.

Worms are malicious programs that automatically spread themselves to

hosts on the Internet by exploiting vulnerabilities of known services, often

wreaking havoc and caused considerable financial damage. The exemplar

worms covered in this chapter were:

• Code Red, which exploited a vulnerability in Microsoft’s Internet In-

formation Services web server and infected 359, 000 hosts in less than

14 hours.

• Slapper, a Linux worm that exploited a vulnerability in the OpenSSL

module of the Apache web server, and built a peer-to-peer overlay of

infected hosts, allowing them to be remote controlled.

• Slammer, which was the first Warhol worm released into the wild

that spread to 75, 000 victims within 10 minutes using a vulnerability

in Microsoft’s SQL server.
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• Witty exploited a buffer overflow vulnerability in several Internet Se-

curity Systems just a day after the vulnerability was disclosed, and

cloaking its rapid spread by padding itself with arbitrary data.

• Blaster targeted Windows’ DCOM RPC with a buffer overflow, down-

loading its payload with an FTP call-back, and registering itself with

the Windows Registry to survive reboots.

Intrusion detection systems are special purpose monitoring systems that

attempt to detect intrusions such as worms. Generally. there are two ap-

proaches to network intrusion detection: anomaly detection, which builds

models of normal traffic and flags all traffic that does not conform to this

model, and misuse detection, which scans for signatures of known intrusions.

Exemplar intrusion detection systems covered in this chapter include:

• Snort and Bro, two widely used open source misuse detection sys-

tems. Snort matches network packets to rules with string matching,

while Bro works with protocol specifics (such as HTTP GET requests).

All rules must be handcrafted.

• Earlybird, Autograph, and Polygraph, three intrusion detection

systems that automatically generate signatures by using string algo-

rithms, such as finding the longest common subsequence, to differenti-

ate between pools of benign and malicious flows.

• PayL and One-Class, two anomaly detectors that use byte frequency

distributions to model the traffic.

• Vigilante, a host-based intrusion detection system that runs instru-

mented software in a shielded environment that monitors for malicious

code such as illegal memory accesses and buffer overflows.

• Honeycomb, an intrusion detection system that generates signatures

by observing traffic in virtual systems that have been deployed on decoy

hosts that have not been assigned a domain name and are not publicised

in any way.
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The following chapter presents background information of Machine Learn-

ing in general, and three techniques (Support Vector Machines, Gaussian

Processes, and K-nearest neighbours) in particular. Chapter 4 then combines

the background of this and the next chapter to present a network intrusion

detection system that uses machine learning to automatically detect worm

mutations.



Chapter 3

Machine learning

This chapter presents background information on Machine Learning, specif-

ically three prominent supervised learning methods: Support Vector Ma-

chines [15], Gaussian Processes [16], and K-nearest neighbors [17].

3.1 Introduction

Machine learning [56, 57, 58] is a sub-discipline of artificial intelligence that

involves developing algorithms to automatically recognise patterns using sta-

tistical classification. Examples of patterns it can recognise include finger-

prints, images, handwriting, voice recordings, and, as this dissertation will

show, worms.

Formally, in statistical classification [57] a pattern is represented by d

features occupying a point in a d-dimensional space (the feature space). The

d-dimensional vector defining a particular pattern is called the pattern vector.

Consider the pattern recognition problem of classifying a person as male or

female given only statistical facts about that person. A possible feature

set consists of the height, weight, and age. The feature space would be 3-

dimensional, and a 36 year old person weighing 72kg and measuring 1.80m

would occupy the pattern vector < 36, 72, 180 > in that feature space.

The aim of machine learning is to select features so that pattern vectors

belonging to different categories (such as male and female) can be partitioned

26
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into disjoint regions within the feature space. Seen from a different angle, the

effectiveness of a feature set is determined by how well it partitions pattern

vectors into different regions.

3.1.1 Why machine learning?

What makes machine learning attractive for worm detection? The answer is

that machine learning offers a number of key advantages over rival pattern

recognition methods.

One of the simplest such rival methods is template matching (for ex-

ample [59]), where the pattern to be recognised is matched against stored

prototypes (templates), taking into account possible mild alterations such as

rotation or scaling. Simple template matching is computationally demanding

and fails to recognise distortions to the pattern such as a change of viewpoint.

Most of all, template matching depends on the availability of templates to

match against, whereas machine learning techniques are able to learn these

patterns from training data.

Another rival pattern recognition method is the syntactic approach [57].

The underlying idea is that a pattern is composed of smaller sub-patterns that

are themselves composed of sub-patterns, and so on, down to the simplest

sub-patterns called primitives. The pattern can then be seen as a sentence

in a language where the primitives are the alphabet. A language syntax

– consisting of the alphabet and a set of grammatical rules – governs how

complex patterns can be created. Although intuitive, the challenges posed

by the syntactic approach is how to subdivide patterns in the first place,

especially when noise is introduced (as is often the case in network flows

carrying worms). Another drawback is the heavy computation required to

perform the subdivisions.

3.1.2 Supervised vs. unsupervised learning

In machine learning the learning stage can be either supervised or unsuper-

vised. In supervised learning the learning stage is told what class a training
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data item belongs to, for example that pattern < 36, 72, 180 > belongs to

the male class. In unsupervised learning only the pattern vectors but not the

class they belong to are fed to the learning stage, leaving it to the learning

stage to cluster the pattern vectors.

Another way of looking at the difference between supervised and unsu-

pervised learning is that in supervised learning the training data is already

grouped into regions before it enters the learning stage, and the goal is to

classify unknown pattern vectors based on their proximity to a particular

group. In unsupervised learning, on the other hand, the learning stage must

first discover groups of similar pattern vectors in the input data.

This dissertation will use supervised learning because of the similarity

between worm traffic and normal traffic [60].

3.1.3 Parametric vs. non-parametric methods

Besides supervised and unsupervised learning, machine learning techniques

can be either parametric or non-parametric. A parametric model is a data

set that can be described by a finite number of parameters, for example

a normally distributed data set can be defined by its mean and standard

deviation. A parametric method estimates the parameters of a model; this

learned model is then used for classification or regression.

Parametric methods are appealing: once the parameters are learned the

computations are highly efficient because they operate on the model param-

eters and not on the data items in that model. But parametric methods

have two severe drawbacks. First a bad model (caused by over-fitting or

insufficient data) could lead to gross errors in classification or regression.

And second, many real world problems (such as worm detection) cannot be

modelled accurately with a set of parameters.

Because of the risks posed by parametric models, this dissertation devotes

itself exclusively to non-parametric methods. Non-parametric methods have

the additional advantage that they require no prior knowledge about the

distribution and any inference can thus be made directly from the training

data. In other words, non-parametric models offer greater flexibility since
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they require only a similarity measure to be defined between objects.

3.2 Support Vector Machines

Support Vector Machines [61, 15, 62, 63] is a supervised learning method for

automatic pattern recognition. It emerged in the mid 1990s from a combi-

nation of two independent research streams:

• Advances in Computation Learning Theory, a mathematical discipline

that analyses machine learning algorithms, and

• Development of kernel functions [64, 65] that efficiently transform non-

linearly separable data into linearly separable data

Combining the two streams resulted in a machine learning method that uses

an optimisation algorithm rather than a time-consuming greedy search.

Since their inception, Support Vector Machines have been successfully

applied to solve a large number of real-world pattern recognition problems

including text categorisation [66], image classification [67], and hand-written

character recognition [15].

Support Vector Machines can be used for classification and regression.

Regression finds the curves of best fit for a given data set, while classification

categorises a given data set into two or more classes. This work is interested

in classification only, specifically in classifying network flows as malicious

(carrying a worm) or benign. For this reason the remainder of this section

will discuss Support Vector Machines in the context of classification only; for

information on regression, see [68].

The rest of this section is organised as follows. First comes an overview

of how Support Vector Machines work. This overview will provide an intro-

duction to Support Vector Machines in a systems context, with emphasis on

detecting worm mutations; interested readers can find the underlying math-

ematics in Appendix A1. This section then provides an example application

1For a formal treatment of Support Vector Machines, see also [63]
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Figure 3.1: Classification involves dividing the training data by

a separating hyperplane. In 2-dimensional space as in the above

figure the hyperplane is a line.

of Support Vector Machines. The final parts of this section are devoted to

kernels, which are needed to classify more complex data sets.

3.2.1 How Support Vector Machines work

Classification in general is achieved by dividing the training data into disjoint

groups. If the data is linearly separable, then in 2-dimensional space these

disjoint groups can be pictured as being separated by a dividing line, as

shown in Figure 3.1. More generally for higher dimensions the data will

be separated by a hyperplane, sometimes also called the decision surface.

Equipped with the hyperplane, the classifier can then label a given test data

point based on its position relative to the hyperplane.

For a given data set there may be more than one separating hyperplane,

as depicted in Figure 3.2, and individual classification techniques can be dis-

tinguished by which hyperplane they choose. In particular, the crucial dif-

ference between Support Vector Machines and other classification techniques

such as perceptrons [69] is that Support Vector Machines find the optimal

separating hyperplane by maximising the margin between the hyperplane

and a subset of training data points called the support vectors, pictured in
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Figure 3.2: There may be more than one separating hyperplane for

a given data set; x will be classified depending on which separating

hyperplane is used.

Figure 3.3. Support vectors are the key data points close to the hyperplane

that, if removed, would change the location of the hyperplane.

3.2.2 An example

As an example of how Support Vector Machines classify data, consider again

determining a person’s gender given only a set of statistical data about that

person. To make matters a bit simpler than in the earlier example, assume

that the features height and weight are enough to determine a person’s gen-

der.

Finding the hyperplane can be visualised as plotting the given heights

and weights in a two dimensional co-ordinate system and drawing a line (the

separating hyperplane) that divides the points into regions male and female.

While there are many possible separating lines, the optimal hyperplane would

be the one which maximises the distance between training points of the male
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(a) Removing a support vector affects the position of the hyperplane.




 



 



(b) Removing a vector that is not a support vector, does not affect the postion of the
hyperplane.

Figure 3.3: Support Vector Machines find the optimal separating

hyperplane by maximising the margin between the hyperplane and

a subset of the training data points called the support vectors. By

definition, removing a support vector moves the location of the

hyperplane.
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Figure 3.4: The optimal hyperplane maximises the distance from

any training point.

and female classes, as shown in Figure 3.4.

3.2.3 Non-linearly separable data and the kernel trick

As mentioned earlier in this section, given a set of pattern vectors and their

classification, Support Vector Machines determine the maximum margin sep-

arating hyperplane. Unfortunately, this is not always that straightforward –

it is often the case that data is simply not linearly separable. This is where

the so-called kernel trick [61] comes to the rescue.

A kernel is defined as a measure of similarity between two pattern vectors.

Conceptually, kernels equip Support Vector Machines with the ability to map

non-linearly separable data points into a different dimension where they are

linearly separable. Consider as an example the data points in Figure 3.5:

the data set on the left is not linearly separable, yet looking at the data, it

is easy to picture an elliptical boundary that distinguishes between the two

classes. The trick, then, is to map the data points into a dimension where

they are linearly separable, as shown in the right diagram.

Mapping data points to a higher dimension is seemingly costly. More di-

mensions would mean larger vectors, which in turn would mean larger mem-

ory requirements and longer calculation times. Thanks to kernels, however,
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Figure 3.5: Support vector machines deal with linearly inseparable

data by implicitly mapping it to a dimension where it is separable.

SVMs do not need to store these high dimensional vectors explicitly. Ker-

nels are a means of implicitly defining a feature space via the inner product

in that space. In other words, kernels encapsulate the mapping into higher

dimensions and the similarity calculations in that dimension without having

to store the mapped data points [63].

Since the kernel handles the critical job of finding a way to separate

– and thus classify – the data, it is the key parameter in a Support Vector

Machine. Unfortunately, there is no silver bullet choice of kernel: each kernel

has its advantages and disadvantages for the data in question. For this

reason, one of the aims of this work is to find the optimal kernel configuration

for Support Vector Machines to detect worms. To this end, the following

candidate kernels have been examined:

• Linear kernel [15]. This is the standard SVM kernel that tries to

find a dividing hyperplane by calculating the dot product on pattern

vectors in the original feature space (no mapping to a higher dimension

is performed). Being the standard kernel and operating in the input

feature space renders it a simple kernel as a basis for comparison.

• Radial basis function kernel (RBF) [15]. This kernel applies a
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Gaussian function to the pattern vectors, implicitly taking them to a

higher (infinite) space. Being a radial basis function it operates solely

on the length of the patterns and not the direction or position. The

RBF kernel has become popular thanks to its good performance in a

wide range of applications [66, 70].

• String kernel [71]. Originally developed for categorising text docu-

ments [71] such as spam email, the string kernel maps the input strings

into the feature space generated by all sub-strings of a given length,

to which it then applies the inner product. Since a network flow is a

stream of bit strings the string kernel offers itself as a strong candi-

date [72].

Of the above kernels, the RBF kernel is often suggested as a reasonable

first choice [73] because of its solid general-purpose performance, and unlike

the linear kernel it can deal with non-linearly separable data by implicitly

mapping the input feature space into a higher dimension. This dissertation

investigates in Chapter 5 whether this holds true for worm detection. Addi-

tionally, it has been shown that the linear kernel is a special case of the RBF

kernel [74] – intuitively a very wide and short Gaussian distribution can be

thought of as linear.

What about other kernels such as the polynomial and sigmoid kernels? A

disadvantage of the polynomial kernel [15] is that it has more hyperparame-

ters than the RBF kernel, making the search for an optimal combination more

time consuming. Additionally, the RBF kernel has less numerical difficulties,

while the sigmoid kernel has been shown invalid for certain parameters [75].

3.2.4 Support Vector Machines revisited

Figure 3.6 summarises the Support Vector Machines cycle discussed so far,

consisting of a learner and classifier stage. The learner is supplied with

labelled training data, from which it derives the Support Vectors with the

help of the kernel. Depending on the kernel, this will be in the input feature

space (as is the case for linear kernels) or in a richer feature space (as is the
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Figure 3.6: Support Vector Machines cycle. Training data

is fed into the learner, which then builds a model that allows the

classifier to classify unknown test data.

case with RBF or string kernels). Equipped with the support vectors, the

classifier can then classify test data by calculating the closeness of the test

data to each support vector, again using the kernel.

3.3 Gaussian Processes

An alternative machine learning technique that has proven its worth in clas-

sification is Gaussian Processes [16, 76, 77]. Like Support Vector Machines,

Gaussian Processes are a supervised learning method in which the classi-

fier is first trained with labelled training data from which it then infers its

predictions.

Unlike Support Vector Machines, which divide the training data into dis-

joint groups with a hyperplane and then classify test data based on its posi-

tion relative to the hyperplane, Gaussian Processes derive a function that fits

the training data and accurately predicts the classification for an unknown

test data point. More formally, given a training data set of N observations

(x1, y1), (x2, y2), ..., (xn, yn) where each xi is an input pattern vector and yi

its corresponding output, Gaussian Processes find a function f(x) such that
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f(xn) = yn ∀(xn, yn) ∈ N and that predictions can be made for unknown

values of x.

As with Support Vector Machines, there is an important distinction be-

tween regression and classification: if the function f(x) is continuous then

it can be used for data regression, while if f(x) is discrete it can serve for

data classification. Contrary to Support Vector Machines, however, where

regression and classification can be treated in separate discussions, the two

are inextricably linked in Gaussian Processes. In particular, classification in

Gaussian Processes involves first finding a regression (continuous) function

f(x) before applying a response function [16] that returns a discrete value

for classification.

The remainder of this section is structured as follows. The first part

argues the case for Gaussian Processes as a potentially attractive alternative

to Support Vector Machines, particularly for worm detection. This part also

outlines how Gaussian Processes fit into the this dissertation. The next part

explains how Gaussian Processes work; as with Support Vector Machines this

explanation will be from a systems design perspective. The final parts of this

section describe how squashing functions facilitate classification, and how

kernels (like their SVM counterparts) allow Gaussian Processes to handle

complex data sets.

3.3.1 Why Gaussian Processes?

What makes Gaussian Processes an attractive machine learning technique

compared to Support Vector Machines? A shortcoming of Support Vector

Machines is that they only return a classification, but no indication of how

confident they are that this classification is correct. Gaussian Processes, on

the other hand, automatically return confidence values as part of their result.

Confidence values add another angle to the classification that can help

reduce false alarm rates. Equipped with the confidence value, the classifier

can make a more informed decision, for example by accepting a proposed

classification only if the confidence value is above a certain threshold while

flagging it for further inspection otherwise.
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It should be noted that workarounds for calculating a confidence measure

in Support Vector Machines have been proposed, for example [78]. But due

to the ad hoc nature of these methods and unlike Gaussian Processes they

do not cater for the predictive variance in the regression function.

3.3.2 How Gaussian Processes work

As mentioned at the outset of this section, Gaussian Processes map the input

training data to a function f that can make predictions for all possible input

values. But given a set of training data there is a potentially infinite number

of functions that fit the training data points, so which function will yield the

most accurate predictions for unknown data values?

Conceptually, the basic idea [76] is to first narrow down the set of possible

functions to those more likely to fit the data at hand, for example because

they are smoother. This filtering occurs before any training data is seen

and the resulting function set is called the prior distribution; a sample is

pictured in Figure 3.7(a). The next step is to overlay the training data

points onto the prior as shown in Figure 3.7(b). Discarding the functions

that do not pass through all the training data points yields the posterior

shown in Figure 3.7(c).

In the posterior shown in Figure 3.7(c), the solid line is the mean of

the remaining (not-discarded) functions – this is the regression function f .

The shaded area stretches twice the standard deviation of a given x value

and denotes the confidence value at that x – the larger the area the lower

the confidence. The confidence around the training data items is high, as

expected.

An issue side-stepped in the above explanation is that the prior and pos-

terior distributions consist of an infinite set of (Gaussian) distributions, but

to be practically feasible the calculations must be performed in finite time.

Loosely speaking, the key concept is to group the infinite set of distributions

so that they can be treated as one entity and defined with a finite set of

properties. Applying this concept, a Gaussian distribution is a distribution

defined by its mean and standard deviation. A Gaussian process, still loosely
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Figure 3.7: The prior (a) is a pre-selected set of functions likely to

fit the task at hand. Overlaying the prior with training data points

(b), and discarding those functions that do not pass through all

training data points yields the posterior (c).
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speaking, can be thought of as a group of (possibly infinite) Gaussian distri-

butions, and that group can be defined by the mean and standard deviation

of all the distributions.

Seen from a slightly more formal angle, a Gaussian distribution can be

viewed as a function f(x) that operates on scalar values2 x, while a Gaussian

process operates on a set of i Gaussian distributions fi(x). The mean value

of the Gaussian distribution is that of evaluating f(x) for all x; the mean

value of the Gaussian process is that of evaluating all fi(x) for all x.

  




















        

Figure 3.8: Gaussian Processes can be seen as filling a long vector

where the entries hold the mean common to all Gaussian distribu-

tions in the process.

How does this help with the challenge of computing with infinite prior

and posterior distribution sets in finite time? Another way to look at a

function f(x) is as a very long vector, where the indices consists of the x

values and the entries for each index x are the corresponding f(x). Figure 3.8

extends this idea to Gaussian processes: the functions f1 − f3 are random

samples from the prior distribution. The crosses mark the training data

points {(1, 5), (3, 8), (6, 7)}, with corresponding entries in the function vector.

2Or more generally, vector values for multivariate distributions
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From a Gaussian process perspective, the vector entries can be seen as

buckets to be filled with Gaussian distributions where the mean is 5 when

x = 1, 8 when x = 3, and 7 when x = 6. The distributions common in all

buckets (shaded grey) are the posterior distributions; in Figure 3.8, only f1

and f2 meet that requirement.

Gaussian processes, then, effectively work backwards in computing the

posterior distributions by viewing the training data as the mean values com-

mon to all distributions in the posterior.

3.3.3 From regression to classification

The previous section explained how Gaussian processes, given a training data

set, derive a function that allows predictions of unknown test data. But there

is still a missing piece to the puzzle: the output of the regression stage is a

continuous function, which can lie in the range −∞ to ∞, and is therefore

unsuitable for classification.














Figure 3.9: The classification function g(x) is obtained by squash-

ing y(x) through the response function σ

The approach taken by Gaussian processes is to apply a response func-

tion [76]. The underlying idea is that classes are assigned numeric labels,

for example benign=0 and malicious=1, and the response function squashes

the regression from −∞ to ∞ to fit into the range [0, 1] (Figure 3.9). The

squashed result can then be used for classification.
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3.3.4 Kernel functions

Like Support Vector Machines, Gaussian Processes belong to the set of kernel

machines, with the kernel determining the similarity or closeness between

two data points. In the Gaussian Processes literature, kernels are commonly

referred to as covariance functions, but for consistency this dissertation will

continue to refer to them as kernel functions. The kernel heavily influences

the smoothness of the prior distributions, and as such it is a key ingredient

to the classifier.

The approach taken in this dissertation is to find the optimal kernel for

Support Vector Machines, and to use this kernel for comparison in Gaussian

Processes. The underlying rationale is that since a kernel measures similarity

between data points, for a given data type (such as network traffic) the kernel

should work equally under Support Vector Machines and Gaussian Processes.

For a rigourous treatment of kernel functions in Gaussian Processes, including

the conditions a function must fulfil to be considered a kernel, see [76].

3.4 K-nearest neighbours

K-nearest neighbours [17] is one of the simplest pattern recognition algo-

rithms that nonetheless often performs well. To classify an unknown test

data point, the K-nearest neighbour algorithm compares that test data point

to all given training data points and performs a majority vote on the classes

of the K nearest neighbours (Figure 3.10). The test data point is classified

under the class of the winner of that vote.

In contrast to Gaussian Processes, K-nearest neighbours is a classification

algorithm by nature. Although K-nearest neighbours is a supervised learning

method, unlike Support Vector Machines and Gaussian Processes it defers

all calculations until classification.

The naive implementation of the algorithm iterates over all training data

points and calculates the distance to the test data, orders the training data

points by that distance, and then casts a majority vote on the top K training

data points. While easily implemented, this implementation suffers from
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Figure 3.10: The K-nearest neighbour algorithm makes its pre-

diction by finding the K points that are closest to the point in

question (the star). It then takes a majority vote of the classes

of these K points to determine the prediction for the point in

question.

limited scalability as it grows linearly with the number of training data points.

For this reason a number of optimisations have been proposed, for example

partitioning the feature space [79].

Critical to the predication accuracy is the number of neighbours (K ).

The optimal value for K depends on the type of data, although in general

increasing K should raise the accuracy by mitigating the negative impact of

noise on the classification accuracy. On the downside, increasing K blurs the

boundaries between the classes. A common method for choosing K is cross-

validation, whereby the training data is split into an actual training data set

with the remaining data items used to validate the results. Note that for

K= 1 the algorithm degenerates to simply finding the nearest neighbour.

The K-nearest neighbour works for any types of data points, as long as a

function is available that returns the distance between two data points (for

some definition of distance). The standard distance function is the Euclidean

distance function, which also works well for multi-dimensional data points.

In this dissertation K-nearest neighbours serves two purposes. The first

is to determine whether a simple algorithm such as K-nearest neighbours can
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be applied to a complex pattern recognition problem such as detecting worm

mutations. And the second is to see how K-nearest neighbours compares to

the (more complex) machine learning techniques of Support Vector Machines

and Gaussian Process in detecting worm mutations.

3.4.1 Properties

K-nearest neighbours offers both positive and negative properties:

• Simplicity. Both from a conceptual and implementation point of view

the simplicity of K-nearest neighbours makes it an attractive machine

learning method.

• Incremental learning. A nice side effect of delaying calculations to

classification time is that K-nearest neighbours algorithm can learn

incrementally as new training data becomes available. Thus, unlike

Support Vector Machines and Gaussian Processes, it does not need to

be retrained with the entire (original plus new) training data set.

• Training data percentage sensitivity. A drawback is that classes

with a higher percentage of training data tend to dominate the predic-

tion simply by their larger presence. The dominance could be reduced

by taking into account the distances during the majority vote.

• Noise sensitivity. Another drawback is that the accuracy of K-

nearest neighbours can be severely affected by noise or other irrelevant

features, leading to over-fitting. As mentioned in the previous section

this can be counterbalanced by increasing the number of neighbours

(K ), but this has the negative effect of blurring the class boundaries.

3.5 Other machine learning techniques

What about other machine learning techniques? This section discusses some

of the other popular machine learning techniques used for classification, and

explains why this dissertation decided not to apply them to worm detection.
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Linear Discriminant Analysis (LDA) such as Fisher’s discriminant analy-

sis [80], tries to find a linear combination of features that separate two or more

classes. LDA projects the feature vectors down to a single dimension with a

linear discriminant function in order to classify the data. This dissertation

does not consider LDA because of known difficulties with non-linear data

(such as network traffic), and because it has been shown to be outperformed

by Support Vector Machines on standard benchmarks [81].

Quadratic Discriminant Analysis (QDA) is a generalisation of LDA that

dissects classes with a quadric surface, with the advantage that it does

not rely on the assumption that the covariance of all classes are identical.

Quadratic Discriminant Analysis has been shown to be outperformed by Sup-

port Vector Machines, for example in [82].

Decision tree learning [83] builds a decision tree from data by repeatedly

partitioning the input space until a node consists only of a single class. The

branches are conjunctions that lead to the classes, and classification involves

moving down the branches until hitting a leaf node. Although decision trees

are effective and efficient for small data sets, they do not scale well for large

data sets, winding up in complicated trees that consume large amounts of

memory. Since this dissertation expects to deal with large volumes of network

traffic data, decision trees were not further considered.

Another popular alternative classification technique is offered by Artificial

Neural Networks [84]. However, in recent years Gaussian Processes and Sup-

port Vector Machines have repeatedly been shown to outperform Artificial

Neural Networks [77, 85], one of the reasons being that they are less prone

to overfitting. Another reason is that Artificial Neural Networks are a para-

metric method, and as mentioned in Section 3.1.3, this dissertation favours

non-parametric models because of their flexibility in that only a similarity

measure between objects need to be defined.
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3.6 Summary

Machine learning is a sub-discipline of artificial intelligence that involves

developing algorithms that automatically recognise patterns using statistical

classification. Examples of patterns to be recognised include fingerprints,

images, handwriting, voice recordings, or as in this dissertation, worms.

This work focuses on three prominent supervised learning methods:

• Support Vector Machines learn patterns by dividing labelled train-

ing data into disjoint groups and finding the separating hyperplane that

maximises the margin between the hyperplane and the support vectors.

Equipped with the hyperplane, the classifier can then label a given test

data point based on its position relative to the hyperplane.

• Gaussian Processes learn patterns by mapping the input training

data to a function that can make predictions for all possible input

values. The basic idea is to first narrow down the set of possible func-

tions to those more likely to fit the data at hand, and then overlaying

the training data points and discarding the functions that do not pass

through all training data points. Gaussian Processes are an attractive

machine learning technique since, unlike Support Vector Machines, they

return a confidence value as part of their classifications.

• K-nearest neighbours is one of the simplest pattern recognition algo-

rithms that surprisingly often performs well. The K-nearest neighbour

algorithm classifies an unknown test data point by calculating the dis-

tance of this point to all given training data points and performing a

majority vote on the K nearest neighbours’ classes.

The following chapter ties together this chapter and the previous chapter

by showing how machine learning can be applied to worm detection.



Chapter 4

Applying machine learning to

worm detection

The last two chapters looked at intrusion detection systems and machine

learning as separate, standalone subjects. This chapter merges these two

subjects by presenting the design of an intrusion detection system that de-

tects worm mutations using machine learning.

The questions this chapter answers: (i) how to capture network traffic

accurately, (ii) how to convert the captured traffic to a format understood

by the machine learning classifier, (iii) where the machine learning modules

fit into the system, and (iv) where and how such a system can be deployed.

Before answering these questions, this chapter first defines a suitable

worm model that will serve as a basis for this dissertation.

4.1 Worm model

For the purposes of this dissertation, a worm can be thought of as a stream of

binary data that consists of the following three parts, illustrated in Figure 4.1:

1. Application specific data consisting of protocol headers and other

control information required to communicate with the vulnerable ser-

vice.

47
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Figure 4.1: The worm model used throughout this dissertation

consists of (i) application specific data required to communicate

with the vulnerable service, (ii) exploit code that attacks the vul-

nerability and injects the malicious code, and (iii) the executable

payload which is executed upon successful infiltration of the target.

2. Exploit code that attacks the service by exploiting a vulnerability,

and that injects the malicious code into the application.

3. Executable payload that runs upon successful infiltration of the sys-

tem by the exploit code; typically, this executable contains potentially

malicious actions and necessary information on how to spread further.

With this model in mind, how can one differentiate between two different

types of worms (for example Code Red vs. Slapper) and worm mutations

(such as Code Red version 1 and 1.1)?

This dissertation defines a worm mutation as a worm that carries the

same exploit but a different executable payload – that is, mutations of a worm

exploit the same vulnerability but execute a different payload on successful

infiltration. Figure 4.2 illustrates this difference: the bottom of the figure

shows that a worm that is identical to another in every aspect except the

exploit code is considered a different worm; on the other hand, worms, that

share the same exploit like those in the centre of the figure, no matter how

much they differ otherwise, are considered to be mutations of each other.

This definition of worm mutations is based on the understanding that

worm authors tend to refine either the damage that their worms cause, or

how the worms spread – both refinements that will alter the executable pay-

load. For example, Code Red 1.1 refined the executable payload of Code

Red 1 to find more potential victims by improving the random IP address

generator. The application specific data, while constant, will be similar to

application specific data of legitimate software communicating with the vul-
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Figure 4.2: This dissertation distinguishes between mutations of

the same worm and different worms by their exploit code. Worm

mutations share the same exploit code, while different types of

worm do not.

nerable service. This leaves the exploit code as (a) the most likely lowest

common denominator between worm mutations, and (b) the distinguishing

factor to legitimate traffic.

As mentioned in Section 2.2.1, intrusion detection systems typically iden-

tify worms by their signature, which can be thought of as a character string

or a regular expression, that is present in all mutations of the worm and not

in benign flows, and as such uniquely identifies the worm. The signatures in

existing intrusion detection systems typically only match part of the exploit

(if at all), plus additional code outside the exploit that matches the worm.

As such, these conventional signatures will usually not detect mutations.

Note that since this model treats worms as byte streams, the definition

of a worm mutation is a binary equivalence one. The model does not cater

for the possibility of changing the exploit code’s binary while keeping the

underlying semantics unchanged, for example by modifying the machine code

to use different registers or inserting NOOP instructions.
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Figure 4.3: High level architecture of the machine learning enabled

worm detector.

4.2 Architecture

Figure 4.3 presents a high-level architecture of a machine learning enabled

worm detector, consisting of three stages: capturing traffic, converting the

traffic into a format that is readable by machine learning techniques, and

classifying the flows as malicious or benign.

The rest of this chapter discusses each of these components in turn, and

then revisits the architecture with the information from these discussions.

4.3 Capturing network traffic

There are various levels at which the network traffic can be analysed, for

example, at the packet level by examining each packet individually. A dis-

advantage of examining traffic at this level is that malicious contents such as

worm exploits can easily be split up over several packets. Even when worm

authors themselves do not split their worms, if a large packet traverses a

network with a small maximum transmission size, the packet will be split

into smaller packets by routers along the way. Moreover, one of the routers

may experience congestion, causing the packets to arrive out of order. Thus

scanning at packet level is too fine-grained and will potentially miss worms

spanning multiple packets.

At the other end of the analysis spectrum is application protocol-level

analysis, as is done by Bro [42], discussed in Section 2.2.2.2. Protocol level

analysers generate events based on various protocol specific data exchanges.

For example, a hypertext transfer protocol (HTTP) analyser could generate

an event for every HTTP GET request. The events in turn are parsed by policy
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scripts that accompany the protocol analysers.

An advantage of application protocol-level analysis is the high abstraction

level it offers, allowing decisions to be made with greater certainty. Two

problems with application protocol-level analysis are that (i) they are heavy-

weight in terms of processing due to the overhead of parsing byte streams into

state machines of those protocols, and (ii) to make the most of this setup,

protocol-level analysers for all protocols would have to be written.

A third alternative is to analyse the network at the flow level. Flows are

typically defined as transmission control protocol (TCP) [86] or user data-

gram protocol (UDP) [87] packet streams, where a stream is identified by the

source Internet Protocol (IP) address, source port number, the destination IP

address, and the destination port number. In addition, TCP packets include

a sequence number that determines the order in which these packets are to

be reassembled, as the TCP protocol allows packets to arrive in arbitrary

order to handle the above mentioned queuing delays at routers.

Analysing flows rather than the individual packets that make up a flow

ensures that worms can be scanned in their entirety. Flows can then be

treated as byte arrays for pattern recognition. Because flow-level analysis

is flexible and fine-grained enough to allow worms to be scanned in their

entirety without incurring the overhead of parsing protocols, the machine

learning worm detector will work exclusively at the flow level. The impact

of flow-level analysis on real-time reassembly of these flows on high speed

networks is discussed in Section 9.4 as future work.

4.3.1 A sample implementation

To help understand how flows can be reassembled and scanned for signatures

concurrently, this section briefly discusses an implementation of a lightweight

packet capture and flow reassembly system.

The system consists of three main components: a packet capturer, a flow

table, and a flow analyser. The packet capturer simply takes one packet

from the wire at a time, using the the pcap [88] packet capturing library,

and adds it to the flow table, as illustrated in Figure 4.4. The flow table is
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Figure 4.4: Individual packets are sorted into flows as they arrive

on the wire.

a data structure that holds packets sorted by flow. The flow analyser runs

in its own thread, stepping through the flow table sequentially looking for

suspicious flows. In this multi-threaded architecture the flow analyser works

concurrently to the packet capturer1.

The flow analyser encapsulates the logic that labels flows malicious or

benign – this is where the machine learning algorithm sits, which could be

modularised to allow for multiple worm detectors. The flow table is imple-

mented as a hashtable to achieve lookup and insertion in constant time. The

hashtable’s key is the 5-tuple <source IP address, destination IP address,

source port, destination port, protocol> that uniquely describes a flow.

The flow data structure consists of two packet buffers and a read-write

lock, as illustrated in Figure 4.5. The packets are added to the working

buffer until the flow analyser arrives to inspect that flow. At this point,

the read-write lock is set and from that point any incoming packets land in

the holding buffer. When the flow analyser completes, the lock is released

1Note that conventional threads such as pthreads [89], are not well suited for high-rate
packet capturing, for reasons outlined in [90], which suggests Protothreads [91] as a viable
alternative.
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Figure 4.5: A flow consists of two packet buffers and a read-write

lock. Maintaining a holding buffer for when the flow analyser

examines the flow prevents packets from being discarded.

and the packets moved from the holding buffer to the working buffer. This

structure allows packets to be examined without having to block the entire

flow or dropping packets.

4.4 Feature extraction

As discussed in Section 3.1, machine learning techniques perform statistical

analysis on input data that can be captured in feature (or pattern) vectors.

A feature vector is a row of data where each column represents a specific

character in a fixed alphabet. Often, however, data such as images, text, or

as in this work, network flows, cannot readily be captured as feature vectors,

and features must be extracted explicitly. The remainder of this first section

explains in greater detail why features must be extracted from network flows

and then exactly how features are extracted.

4.4.1 Why features must be extracted

To better understand why features must be extracted, consider a case insen-

sitive feature vector that represents words by using 26 columns, one for each

letter in the alphabet. The value held in each column denotes the presence

(1) or absence (0) of that letter in the word. The word ELVIS, for example,

would then be represented by the feature vector shown in Figure 4.6(a).

A shortcoming of this simple representation is that any permutation of the
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(a) Uni-gram vector for ELVIS (or LIVES )







 



 



 



 



 





(b) Bi-gram vector for ELVIS







 



 



 



 



 





(c) Bi-gram vector for LIVES

Figure 4.6: Feature vectors representing the words ELVIS and

LIVES using uni-grams, and bi-grams.

word ELVIS would produce the same feature vector; for instance, LIVES and

LEVIS both collide as feature vectors with ELVIS. To overcome this problem,

one can use a feature vector that represents all possible combinations of two

characters, from AA to ZZ. Figures 4.6(b) and 4.6(c) show that the feature

vectors for ELVIS and LIVES are now different. Feature vectors with one

character per entry are called uni-grams, those with two characters are called

bi-grams, and the generalisation to n characters per entry are called n-grams.

The more characters one combines per entry in the feature vector, the

more precisely the word is represented, but the greater also the number of

columns. In the case of tri-grams, for example, ELVIS would be represented

by entries at ELV, LVI, VIS. Using 5-grams, the entire word can be represented

in one column of the feature vector, albeit at the cost of 265 columns in the

feature vector. In general, the number of columns grows exponentially with

n.

In addition to marking the presence or absence of character combinations,

one can keep frequency counts of these combinations in the feature vector
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columns. This technique is known as n-gram extraction. The frequency

counts can be normalised (scaled) to the total count to measure the relative

probability of a feature vector. Whether normalised feature vectors can bet-

ter detect worm mutations than unnormalised (that is, with raw frequency

counts) feature vectors is investigated in Section 5.3.3.2.

One would expect that, given infinite memory and processing time, the

higher the value of n, the more precise the information obtained. This,

however, is not the case. Essentially, the probability at which individual n-

grams occur is estimated by measuring their relative frequencies. Neverthe-

less, there will almost always be situations where one encounters an n-gram

that has not been seen before. Using frequency counts, this n-gram would

be estimated at a nonzero probability, even though its relative probability is

zero, a problem known as the zero frequency problem [92].

Lower values of n reduce the zero frequency problem. For example, using

5-grams an unlikely word such as SLIVE would receive a non-zero probability

even though it is improbable that it will reoccur. Using 3-grams, however,

SLIVE would occupy (among others) the features SLI and IVE, which are

more likely to occur again in words such as SLIDE and HIVE.

Section 5.1.3 evaluates the trade-offs involved in selecting the value of n

and how it impacts worm detection.

4.4.2 Implementing n-gram extraction

Since worms are often transmitted in the form of binary executables, the full

byte range is used as the alphabet. That is, rather than using just letters A

to Z or even displayable ASCII characters, the byte values 0 to 255 are used,

and hence no distinction between displayable and non-displayable characters

is made.

The fundamental data structure in the n-gram extractor implementation

is an integer array of frequency counts. The length of this array is dependent

on the n-gram size, requiring 256n elements, and is practically feasible only

for small values of n. Assuming 4-byte integers, frequency arrays for n-grams

sizes 1, 2, 3, and 4 consume 1 KB, 256 KB, 64 MB, and 16 GB of memory
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Figure 4.7: Feature extraction using a sliding window and bi-gram

frequency table.

respectively. For n-gram sizes of 4 and above, these frequency tables would

need to be implemented using data-structures such as hashtables or Bloom

filters [93] to be practically feasible. Alternatively, n-grams for higher values

could be estimated by, for example, using the 2v -gram [52] technique.

The frequency table is populated by a sliding window in the captured flow.

At each position of the sliding window, its value is read and the corresponding

count incremented in frequency table entry, as shown in Figure 4.7. Thus

the processing cost of n-gram extraction grows linearly with the flow size.

4.5 Machine learning classifiers

The previous section explained how to transform the network data into a form

that is readable by machine learning algorithms by extracting n-gram feature

vectors. This section now explains where the machine learning algorithms fit

into the picture, and how they detect worms by using feature vectors.

The machine learning algorithms operate in two phases: a training phase

and a prediction phase, as shown in Figure 4.8. In the training phase, the

machine learning algorithms are supplied with a set of flows that are marked

either malicious or benign, depending on whether they contain a worm. Con-

ceptually, the training phase then derives a pattern that distinguishes mali-
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Figure 4.8: Machine learning algorithms train classifiers to distin-

guish between malicious and benign flows.

cious and benign flows. For example, for Support Vector Machines this pat-

tern consists of the support vectors that define the separating hyperplane, as

covered in Section 3.2.2.

The product of the training phase is a machine learning classifier capable

of labelling unknown flows as malicious or benign. In a production envi-

ronment, the training phase may be performed offline, while the prediction

phase classifies live flows as they arrive on the wire.

4.6 Architecture revisited

Figure 4.9 summarises the stages involved in both the training and classifi-

cation phases. The training phase captures network traffic at the flow level,

extracts feature vectors using n-grams and then implicitly derives a pattern

to distinguish between malicious and benign feature vectors.

Similarly, in the classification stage, which is performed online, feature
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Figure 4.9: Stages involved in the training and classification

phases.

vectors are extracted from captured flows. The classifier then uses informa-

tion from the training phase to classify feature vectors.

4.7 Deployment

Network intrusion detection systems are typically deployed behind company

firewalls, acting as a second line of defence for the local area network, as

shown in Figure 4.10. Installing the intrusion detection system behind the

firewall makes sense. The firewall’s job is to block unwanted traffic, typically

by disabling traffic to ports that are known to be out of service or that are

intended for internal traffic only. Since the data blocked by the firewall is

unwanted, there is no point to load this traffic onto the intrusion detection

system since it would only needlessly increase its workload.

Where does the machine learning worm detector fit into the picture? It

could be deployed (a) as a module injected into an existing network intrusion
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Figure 4.10: Intrusion detection systems are typically deployed

behind an organisation’s firewall and provide the second line of

defence to all hosts on the local area network.

detection system such as Snort or Bro, (b) as a standalone system, or (c) in

parallel to other intrusion detection systems, working together for example

with majority voting. To keep the worm detector independent of the con-

straints and weaknesses of other intrusion detection systems, this dissertation

builds the worm detector as a standalone unit.

In advanced configurations the firewall and network intrusion detection

system work together as a team. In such configurations the network intrusion

detection system sends rules to the firewall upon detecting malicious traffic.

To keep the worm detector simple, this dissertation does not add co-operation

with firewalls to its worm detector.

4.8 Summary

This chapter described how machine learning techniques can be applied to

detect worm mutations:

• Worm model. The worm model used in this dissertation and defined

in this chapter is a stream of binary data that consists of three parts:

application-specific data, an exploit code, and an executable payload.
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A worm mutation is as a worm that exploits the same vulnerability as

the original worm, but executes a different payload on infiltration.

• Capturing network traffic. Network traffic is captured at the flow

level rather than at the packet level so that worms spanning multiple

packets can be scanned for in their entirety.

• Feature extraction is performed on captured flows to create feature

vectors that the machine learning algorithms can understand. The

feature vectors are n-grams, with optimal value of n to be determined

in later chapters.

• Machine learning algorithms operate in two phases. In the training

phase, the machine learning algorithm is supplied with a set of flows

that are labelled as either malicious or benign from which it implicitly

deduces a distinguishing pattern. The product of the training phase is

a classifier capable of classifying unknown flows.

• Deployment of the worm detector is intended behind company fire-

walls, acting as a second line of defence for the local area network.

This chapter set the scene for the following chapters, which investigate

whether the machine-learning enabled worm detector introduced in this chap-

ter can successfully detect worm mutations.



Chapter 5

Support Vector Machines for

worm detection

The previous chapter introduced an architecture that uses machine learning

to detect worm mutations. This chapter puts this architecture to the test.

Specifically, this chapter investigates whether Support Vector Machines

(SVMs) are suitable for detecting worm mutations. It compares the efficacy

of various SVM configurations and associated kernel functions in classifying

worm mutations. This chapter will show that Support Vector Machines are

suited for detecting mutations of known worms, and that the optimal con-

figuration is a linear kernel with unnormalised bi-gram frequency counts as

input.

5.1 Experiment design

The design of this chapter’s experiments fall into three parts: (i) the worm

mutations used for training and test data, (ii) the feature extraction from

network flows, and (iii) finding the optimal configuration of the Support

Vector Machine.

61
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Figure 5.1: Synthetic flows. Malicious flows consist of random

data but contain the worms signature at an arbitrary position,

whereas benign flows are just random data.

5.1.1 Synthetic mutations

A wide spectrum of training data is critical to the SVM’s success – the

wider the spectrum, the more likely the training phase can detect a pattern

common to the worm mutations. However, for a thorough investigation the

spectrum of available worm mutations is too narrow, which is why the exper-

iments in this chapter rely on synthetically generated flows. By synthetically

generating flows, the experiments gain not just control over the number of

mutations, but also their size and the contents of their payload.

The synthetic flows will either be malicious or benign, as shown in Fig-

ure 5.1. Malicious flows are where the worm’s signature has been injected

into the random data, effectively simulating a worm mutation. Recall from

the worm model definition in Section 4.1 that a signature is a string or reg-

ular expression that identifies the worm. To be consistent with this worm

model, the signatures injected into the flows are part of the exploit code.

Benign flows are simply random data simulating normal traffic.
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Figure 5.2: Synthetic worms loosely based on the Slapper worm

consist of random-sized chunks of SSL traces used as padding.

The challenge in using random padding lies in finding a random distri-

bution that realistically emulates normal traffic. To overcome this problem,

the synthetic flows are padded with randomly selected chunks of benign flow

traces. To verify this approach, the classifier’s performance on flows using

padding generated with a uniform random number generator and padding

generated from benign flow traces are compared.

Key to the validity of this chapter’s experiments is that although the

signature of a synthetically generated worm is known, this information is not

passed on to the SVM. The Support Vector Machine is only told whether the

flow is benign or malicious, and must deduce the signature itself.

5.1.1.1 Synthetic Slapper worm

To make the synthetic flows realistic, the injected worm signature is loosely

based on the Slapper [31] worm, which has a widely publicised and fairly

simple signature. The Slapper worm allows the attacker to run arbitrary and

potentially malicious code on the infected host before building a botnet1 of all

infected hosts. The Slapper worm exploited an OpenSSL [32] vulnerability

in older versions of the Apache web server, and has a signature that carries

1A botnet is a network of infected hosts that can be remote controlled to perform
malicious tasks.
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Figure 5.3: Continuous, split, and jumbled signatures.

the string TERM=xterm2. The synthetic flows were generated from randomly

selected benign SSL traces, with the string TERM=xterm injected into the

malicious flows (Figure 5.2).

5.1.1.2 Continuous, split, and jumbled signatures

Thus far this chapter has assumed that all signatures are continuous – a single

block of data as shown at the top of Figure 5.3(a). Given that continuous

data can be easily matched in network flows, worm authors have attempted

to distort their worms to escape detection.

The easiest way to distort the worm is by splitting the continuous blocks

at arbitrary locations, resulting in split signatures as shown in Figure 5.3(b).

A further refinement is to randomly rearrange the split blocks, leaving a

jumbled signature as depicted in Figure 5.3(c).

2Note that this is an oversimplified version of the signature used by Snort and Bro.
Both additionally consider some of Slapper’s other actions, such as probing servers and
exhausting their connection pools.
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5.1.1.3 Corrupted signatures

How does the classifier handle corrupted signatures? To answer this question,

a test set was created containing corrupted (or dirty) signatures. To create

this test set, parts of the signatures in the test set were randomly corrupted

to various degrees using a uniform random number generator. The classifier’s

accuracy distinguishing malicious from benign flows was then observed.

The detector sits at the TCP layer of the network stack, meaning it deals

with fully reassembled TCP flow payloads and therefore should not have

to worry about data corruption caused by communication errors, such as

dropped, reordered, or corrupted packets. Nonetheless there are two good

reasons to investigate how the classifier copes with corrupted signatures.

First, polymorphic worms often mutate themselves by corrupting their

signatures. Recall that polymorphic worms are worms that try to evade

detection by mutating themselves from hop to hop as they traverse the net-

work. Understanding, then, how the classifiers cope with corrupted signa-

tures would give insight as to how well they would be able to detect poly-

morphic worms.

And second, since a corrupted signature is by definition a worm mutation,

investigating corrupted signatures gives further insight into how robust the

classifiers are in detecting worm mutations.

5.1.2 Kernel configuration

The choice of kernel is arguably the most important Support Vector Ma-

chine parameter. Section 3.2.3 selected three candidate kernels to test: the

linear kernel, the radial basis function (RBF) kernel, and the string kernel.

Table 5.1 summarises the advantages and disadvantages of these kernels.

Within each kernel, optimal values for the following parameters need to

be determined:

• The linear kernel has only a single parameter that can be tuned –

the C value. This parameter determines the softness of the margin

classes. The softer the margin, the more erroneously placed data points
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Kernel Advantages Disadvantages

Linear • simplest kernel • works only in input space

• only one hyperparameter

RBF • good general performance • tune two hyperparameters

• implicitly maps data to vs. only one for linear

higher dimension

String • optimised for string matching • slow compared to linear

and RBF

Table 5.1: Comparison of the linear, radial basis function (RBF),

and string kernels.

it tolerates. Essentially it is the trade-off between fitting the training

data and maximising the margin.

• There are two parameters that can be tuned in RBF kernels: C and

gamma. The RBF’s C parameters serves the same purpose as the linear

kernel’s. The gamma value controls the width of the RBF kernel, and

hence the smoothness of the RBF.

• In the string kernel the two key parameters are the substring length,

and whether to consider all lengths up to the substring length or just the

given length itself. The effect of varying the substring length relative

to the signature length for both fixed and variable-length strings is

investigated.

After determining optimal parameter values for the individual kernels,

their performance is compared in terms of classification accuracy, training

time, and prediction time. Once these experiments yield an optimal kernel,

the optimal n-gram size and whether normalising extracted features improves

classifier performance is investigated.
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5.1.3 Feature extraction

As discussed in Section 4.4, feature extraction for SVMs involves extracting

n-gram frequency counts from the flow payloads. One of this chapter’s aims

is to investigate the trade-offs involved in selecting the value of n.

Since this work’s ultimate goal is to detect worms in a real-life environ-

ment – facing limited memory and processing power – this work restricts

itself to 1-, 2-, and 3-grams, consuming 1 KB, 256 KB, 64 MB respectively3.

Higher values of n and alternative representations are picked up again in

future work (Section 9.3).

Of the three candidate kernels introduced in Section 3.2.3, only the lin-

ear and RBF kernel require n-gram extraction since both require vectors as

inputs, whereas the string kernel works with character (byte) strings natively.

5.1.4 Training data size

As mentioned previously, a classifier’s accuracy can be greatly affected by

the spectrum of the training data. By employing synthetic worms the exper-

iments are not limited by the number of available worm mutations, which

leads to the question how sensitive the classifier accuracy really is to the

training data spectrum.

To answer this question, the experiments gauge the training data size to

test the impact on classifier accuracy. Ideally the classifier should demon-

strate good accuracy even for small training data sets, as the number of

available worm mutations to serve as training data in the wild will be lim-

ited.

5.1.5 Data-to-signature ratio

The worm model in Section 4.1 defined a worm mutation as a worm that

carries a different executable payload but uses the same exploit to gain access

into the remote system. But the executable payload is not limited to be the

same size as that carried by the original worm, which means that mutations

3These size values are calculated assuming 4-byte integers
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Worm Payload Signature Ratio

(bytes) (bytes)

Code Red 4039 396 9:1

Slammer 404 16 24:1

Witty 1184 64 18:1

Distcc 1740 307 6:1

Minishare 8600 2252 4:1

Table 5.2: Approximate data-to-signature ratios for past worms.

The values for Distcc and Minishare are based on the average sizes

of the mutations generated in Chapter 7.

of the same worm may have different sizes. Rather than compare worm

mutations in terms of their absolute size, this dissertation compares worms

based on the amount of total data relative to the size of exploit code – the

data-to-signature ratio.

Worm mutations in the real world thus have different data-to-signature

ratios, and so the experiments investigate the impact of mixed data-to-

signature ratios in training and test data sets on classifier accuracy. The

expected result is lower accuracy for higher ratios as the large amounts of

padding data swamp the signature.

Table 5.2 shows approximate data-to-signature ratios for the Code Red [6],

Slammer [8], Witty [37], Distcc [94] and Minishare [95] worms. All the worms

have a data-to-signature below 25:1; this chapter will use this figure as a

yardstick when evaluating the performance of the classifier.

5.1.6 False alarm rates

Thus far, accuracy served as the measure of how well flows are classified.

While accuracy is an intuitive measure, it does not tell the whole story. In

intrusion detection, the false alarm rate is important, since falsely classifying

flows as malicious (false positive) means that legitimate traffic is blocked.

Conversely, falsely classifying flows as benign (false negative) means that
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worms pass undetected.

Receiver operator characteristics (ROC) [96] curve analysis presents a

way of quantifying the trade-off between the detection rate and the false

alarm rate. ROC curves have their roots in signal detection and medical

decision-making, and have recently become a popular way of analysing ma-

chine learning classifiers. Appendix B provides a detailed overview of ROC

curve analysis.

The ROC curve for a classifier is generated by plotting the true positive

rate versus the false positive rate at various confidence intervals. The true

positive rate is calculated by dividing the number of true positives by the

total number of positives; similarly the false positive rate is calculated by

dividing the number of false positives by the total number of negatives. A

single classification will produce a single point in the ROC space and a curve

is obtained by varying the classifier’s confidence (see also Appendix B).

The performance metric that can be obtained from these curves is the

total area under the curve (AUC) [97]. The larger the area, the better the

classifier.

5.2 Experimental setup

All experiments were performed on an Intel Xeon with a 2.40GHz CPU and

1GB of RAM. Libsvm [98] version 1.8 was used as the Support Vector Ma-

chine implementation for linear and RBF kernels, and libs [99] version 1.3, a

libsvm modification, was used for string kernels.

As a baseline for each experiment, a training set of 100 flows, half ma-

licious and benign, was used. The implications of this training data size is

investigated in Section 5.3.4 below. A test set of size 1000, again half mali-

cious and half benign flows was used; each experiment was repeated 50 times4

with different data sets to obtain averages and standard deviations.

Note that the equal ratio of malicious to benign flows in the test set is

4The number of iterations (repeats) was investigated, showing that the accuracy levels
stabilised at 50 iterations.
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Figure 5.4: Prediction accuracy at various data-to-signature ratios

for flows padded with random and SSL data.

not representative of real network traffic, where the proportion of benign

flows is likely to be much higher. However, the aim of the experiments is to

determine with which accuracy the classifier can classify unknown network

flows, and for an unbiased result there should be an equal probability that it

receives either a malicious or a benign flow.

5.3 Analysis

This section presents the results of the experiments described in the previous

section.

5.3.1 Synthetic mutation format

Figure 5.4 shows the prediction accuracy at various data-to-signature ratios

for flows padded with random and SSL data. As expected, it is much harder

to distinguish between malicious and benign worms when padded with SSL

data. A likely explanation is that the SSL padding tends to have large chunks

repeated among all flows, thereby diluting the signature. Using uniform
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Figure 5.5: Prediction accuracy at various C values using the linear

kernel and a data-to-signature ratio of 100 : 1.

random data as padding, on the other hand, highlights the signature.

Since SSL padded flows are both more realistic and constitute a harder

problem, henceforth only results for SSL padded data are shown.

5.3.2 Choosing the optimal kernel

This section answers the question as to which is the optimal kernel for the

SVM. It does so by first examining each of the linear, RBF, and string ker-

nel in turn to find each kernel’s optimal configuration before comparing the

kernels themselves.

5.3.2.1 Configuring the linear kernel

The effect of varying the C parameter was investigated by performing a 10-

fold cross validation. A dataset of 1000 entries was split into 10 equal parts,

of which 1 was used to train the classifier and the other 9 to test it. This

was repeated with a range of C values.

As the graph in Figure 5.5 shows, altering the C value did not affect

the classifier’s performance; henceforth Libsvm’s default C value of 1 will be
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Figure 5.6: RBF kernel grid search plotting gamma against C.

used. The results indicate that the data classes are totally linearly separable.

5.3.2.2 Configuring the RBF kernel

A grid-based cross validation was performed to determine the optimal pa-

rameter values for the training data. That is, an exhaustive range of C and

gamma combinations were tested, each time using a 10-fold cross validation

as used in previous case with the linear kernel’s C value. Libsvm’s [98] grid.py

script was used to perform this cross-validation.

Figure 5.6 shows results obtained from this grid search using a data set

with a data-to-signature ratio of 25:1, with C ranging from 20 to 220 and

gamma ranging from 20 to 2−20. All points that achieved 100% accuracy are

optimal parameter combinations for the RBF kernel; henceforth a parameter

combination of C= 24 and gamma= 2−14 will be used.

5.3.2.3 Configuring the string kernel

Figure 5.7 shows the effect of varying the substring length relative to the

signature length for both fixed and variable-length strings. The results show

that fixed length substrings and variable length substrings achieve similar
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Figure 5.7: String kernel accuracy at various string-length to

signature-length ratios comparing fixed and variable length strings.

The data-to-signature ratio was 100:1.

prediction accuracies, with the performance peaking at a string-to-signature

ratio of approximately 0.5. Given the synthetic Slapper’s 10 character signa-

ture, this corresponds to a substring length of 5.

Although fixed and variable length substrings achieve comparable lev-

els of accuracy, the processing time with variable-length strings is orders of

magnitude greater than using fixed-length strings, due to the number of sub-

strings increasing exponentially when considering all possible substrings up

to a certain length rather than just the substring length itself.

Based on the above findings the optimal string kernel configuration – and

the one used henceforth – is a fixed length substring to signature ratio of 0.5.

5.3.2.4 Comparing prediction accuracy

Now that the the optimal parameter settings for the individual kernels has

been found, their classification accuracy can be compared. The graph in

Figure 5.8 shows that all three kernels show similar accuracies. By a small

margin the string kernel exhibits the best accuracy, closely followed by the
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Figure 5.8: The prediction accuracy at various data-to-signature

ratios for the linear, RBF, and string kernel.

linear kernel, and finally the RBF kernel. The accuracy trails off at 50% since

at this point the classifier is randomly guessing whether a flow is malicious

or benign, and hence is only as accurate as flipping a coin.

Since the results show no clear winner in accuracy, the performance in

training and prediction times are compared next.

5.3.2.5 Comparing training time

The graph in Figure 5.9 compares the time taken to train the classifier. As

expected, the time taken increases with data-to-signature ratio due to the

increase in total data. The results show that training SVMs using linear and

RBF kernels is considerably quicker than training with a string kernel.

5.3.2.6 Comparing prediction time

Arguably, the training time is not the key performance measure, since one can

train classifiers offline; prediction (classification), on the other hand, happens

online and is thus pivotal in the choice of kernel. Figure 5.10 shows the time

taken to predict a single flow’s class. As was the case with training time, the
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Figure 5.9: Time taken to train the linear, RBF, and string kernel.

This is the time for a single flow, and must be multiplied by the

training data size for an estimate of the total training time.
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string kernel’s prediction time is between one and two orders of magnitude

higher than for the linear and RBF kernels.

5.3.2.7 Summary

Which kernel is best? The string kernel proved only marginally more accurate

than its competitors, leaving classification time as the tie breaker. This takes

the string kernel out of the race since it is much slower in both training

and classification, and leaves only the linear and RBF kernel. Since the

RBF kernel is sensitive to it’s parameter values (C and gamma) and is more

complex than the linear kernel, the linear kernel was selected as the optimal

kernel for this scenario.

5.3.3 Feature extraction

Having established the linear kernel as the kernel of choice, the next step

is to examine the other factors that affect a classifier’s performance. This

section finds the optimal n-gram size, and determines whether normalising

the frequency count improves accuracy.

5.3.3.1 Optimal n-gram size

The graph in Figure 5.11 shows the prediction accuracy for uni-grams, bi-

grams and tri-grams (using a linear kernel). It illustrates that prediction

accuracy increases with higher values of n, as expected. Using tri-grams,

all flows at a data-to-signature ratio of approximately 12:1, up to a data-to-

signature ratio of 100:1 are classified with 90% accuracy.

Unsurprisingly, uni-grams perform considerably worse than bi-grams and

tri-grams. The accuracy gain of tri-grams over bi-grams is negligible, which

means the best choice for this scenario is to use the smaller of the two for

performance reasons.
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Figure 5.11: Prediction accuracy at various data-to-signature ra-

tios for uni-grams, bi-grams and tri-grams.
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Figure 5.12: Prediction accuracy versus data-to-signature ratios

for normalised (scaled) and unnormalised (unscaled) data.
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Figure 5.13: The effect of training data size on prediction accuracy

for various data-to-signature ratios.

5.3.3.2 Impact of normalising frequency counts

The graph in Figure 5.12 compares the accuracy of unnormalised versus

normalised frequency counts. Normalising improves accuracy as expected,

but only marginally so. Since normalising comes at a great computational

cost and with hardly noticeable accuracy gains, all further experiments are

conducted with unnormalised feature vectors.

5.3.4 Training data size

The graph in Figure 5.13 shows how accuracy varies with training data size.

As anticipated, the accuracy increases with training data size: the larger

the training data size, the higher the chance of the worm’s distinguishing

signature surfacing as the common pattern.

The results are highly encouraging. As shown in Table 5.2, worms tend

to have a data-to-signature lower than 25:1, for which the classifier achieves

above 90% accuracy even for the smallest training data size. Accuracy climbs

with increasing training data size, reaching 100% for training data sizes of

100 and above.
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Figure 5.14: Prediction accuracy at various data-to-signature ra-

tios for different synthetic worm models.

Regrettably, in a real-life setting, one cannot pick the training data size

as the number of available traces is constrained5. However, this information

can be used to guarantee certain levels of accuracy. Consider as an example,

that an accuracy of at least 90% needs to be achieved and that flows with

a data-to-signature ratio of 100 are used. This graph can then be used to

determine that a training data size of 100 is required to attain the desired

accuracy level.

5.3.5 Continuous, split, and jumbled signatures

The graph in Figure 5.14 shows the prediction accuracy for the different

signature classes, where the classifier was trained solely with continuous sig-

natures. The graph reveals that the classifier is still able to detect distorted

signatures, even when the signature is split or jumbled, albeit at a slight cost

of accuracy. Interestingly, split and jumbled signatures are recognised with

near identical accuracy, showing that the classifier is equally robust to the

5Chapter 7 suggests a workaround of this constraint by generating worm mutations
automatically from a given source worm.
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Figure 5.15: Prediction accuracy at various degrees of signature

corruption. Data-to-signature ratio is 25:1.

location and order of the worm signature.

Unlike jumbled signatures, which consist of split signature fragments that

have been reordered, jumbled with overlapping signatures do not respect

other signature fragments’ boundaries, and hence overlapping may occur.

This explains the bell shape of its graph. For small data-to-signature ra-

tios, the chances of overlapping fragments is significantly higher, thereby

corrupting the signature’s characters. This is confirmed by the relatively

poor accuracy for data-to-signature ratios of less than 10. Beyond that size

overlapping is mitigated, and the accuracy curve eventually approaches that

of split and jumbled signatures.

5.3.6 Corrupted signatures

Figure 5.15 plots accuracy against various degrees of corruption and shows

that the classifier remains reasonably accurate up to 10% corruption, after

which it declines steeply. These results are encouraging since they show that

the classifiers do not fail abruptly when a signature is corrupted, hinting at

resilience to polymorphic worms.
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5.3.7 Mixed data-to-signature ratios
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Figure 5.16: Prediction accuracy at various data-to-signature ra-

tios comparing classifiers trained and tested with a single data-to-

signature ratio and mixed data-to-signature ratio.

The graph in Figure 5.16 compares uniform with mixed data-to-signature

ratios. The mixed data-to-signature ratios were normally distributed so that

in each comparison, the mean of the mixed data-to-signature ratios was set

equal to the corresponding uniform data-to-signature ratio. The standard

deviation for the mixed data-to-signature ratios is 20 for this graph6.

The results indicate that the classification accuracy for mixed data-to-

signature ratios is lower than for data sets with uniform data-to-signature ra-

tios. Classifiers can cope better with mixed data-to-signature ratios for data

sets with low data-to-signature ratios (such as 25:1), but are more severely

affected for higher data-to-signature ratios (such as 100:1 and 200:1). This is

good news given that worms typically have data-to-signatures less than 25:1,

as shown in Table 5.2.

A likely explanation is offered by the way n-gram counts are extracted

6Standard deviations in the range 1 to 20 were tested; the trend was that accuracy
decreases with increasing standard deviation, as expected.
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Figure 5.17: ROC curve showing the trade-off between true and

false positive rates for various data-to-signature ratios.

from flows. By definition, flows with a higher data-to-signature ratio contain

more application specific data and executable payload, which the machine

learning classifier treats as noise. Mixed data-to-signature ratios may there-

fore dilute the signal (signature relative to data), making it harder for the

classifier to spot the signature.

5.3.8 False alarms

The graph in Figure 5.17 shows how the AUC decreases for increasing data-

to-signature ratios, as expected. Note that the AUC should never be less

than 0.5 since the diagonal line joining co-ordinates (0, 0) and (0, 1) signals

random guessing by the classifier. The confidence values were obtained by

calculating the distance to the hyperplane [78].

5.4 Summary

This chapter tested the suitability of Support Vector Machines for detecting

worm mutations, with encouraging results:
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• High accuracy for typical worm data-to-signature-ratios. Worms

typically have data-to-signature ratios below 25:1, and for these ratios

the classifier consistently achieved very high accuracy.

• Choice of the linear kernel as the optimal kernel. Although all

three kernels (linear, RBF, and string) demonstrated similar accuracies,

the linear kernel and RBF kernels clearly outperformed the string kernel

on training and classification time. The tie between the linear and RBF

kernels was ultimately decided in favour of the linear kernel due to its

simplicity.

• Choice of bi-gram feature vectors. Bi-gram feature vectors yielded

the best accuracy-performance trade-off, clearly outperforming uni-

grams on accuracy while closely matching the accuracy of tri-grams;

at the same time bi-grams occupy significantly less memory than tri-

grams.

• Choice of unnormalised feature vectors. Normalising the fre-

quency counts improves accuracy only marginally but at the cost of

significantly increasing training and prediction times.

• Resilience to signature distortions. SVMs demonstrated resilience

to split and jumbled signature mutations. SVMs also demonstrated

limited resilience to signature corruption, with accuracy hardly affected

until 10% corruption.

• Resilience to mixed data-to-signature ratios. Mixed data-to-

signature ratios reduce the accuracy only to minor degree for small

data-to-signature ratios.

• False alarm rates. Receiver operator characteristics graphs confirm

that the false alarm rates for low data-to-signature ratios is lower than

for high data-to-signature ratios.

The following chapter compares these results with two alternative ma-

chine learning techniques: Gaussian Processes, and K-nearest neighbours.



Chapter 6

Alternative machine learning

methods

The experiments in the previous chapter demonstrated that Support Vector

Machines can successfully detect worm mutations. Nevertheless, Support

Vector Machines exhibit some weaknesses, and this chapter explores whether

alternative machine learning techniques can match, or surpass, the perfor-

mance of Support Vector Machines.

One such weakness of Support Vector Machines, already alluded to in

Section 3.3.1, is that they do not return any measure of confidence with their

prediction; the only way to obtain such a confidence measure is with ad-hoc

workarounds such as calculating the distance to the hyperplane. Without

a confidence measure, the worm detector has no chance to second-guess or

override the prediction in uncertain cases.

Another weakness is that Support Vector Machines are natively binary

classifiers, but in practice it is often necessary to distinguish between more

than two classes. So far this dissertation was content with a binary classifier

that is trained with a single worm and can predict whether a flow carries

mutations of that specific worm. To extend the classifier to support multi-

ple worms, each worm would have to be assigned its own class, something

Support Vector Machines do not natively support. Workarounds have been

proposed, such as cascading multiple binary classifiers in one versus rest [56]

84
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fashion. For a comparison of methods to add multi-class classification to

Support Vector Machines, see [100].

In light of these weaknesses, are there better alternatives to Support Vec-

tor Machines to detect worm mutations? This chapter looks at two candi-

dates introduced in Chapter 3 and compares their performance to Support

Vector Machines:

• Gaussian Processes [16] return confidence values with their predictions,

and this chapter investigates whether these values could help reduce

false alarm rates relative to Support Vector Machines without sacrific-

ing speed. Gaussian Processes also natively support multiple classes.

• K-nearest neighbour [17] is a simple and intuitive algorithm, and this

chapter explores whether K-nearest neighbours can match the level

of accuracy of Support Vector Machines. Like Gaussian Processes,

K-nearest neighbours natively supports multiple classes, though like

Support Vector Machines it does not return confidence values.

Table 6.1 summarises the advantages and disadvantages of the three machine

learning techniques investigated in this chapter.

6.1 Experiment design

This section describes in-turn the configurations and experimental setup

of Support Vector Machines, Gaussian Processes and K-nearest neighbours

methods compared in this chapter’s experiments.

6.1.1 Support Vector Machines

The experiments will use the optimal Support Vector Machine configura-

tion established in the previous chapter, namely a linear kernel using unnor-

malised bi-gram feature vectors.
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Method Advantages Disadvantages

SVM • previous chapter demonstrated • no confidence value

suitable to detect worm mutations • multiple classes not

• highly optimised implementations natively supported

available

GP • returns confidence value • implementations

• multi-class support not optimised

KNN • simple and intuitive algorithm • no confidence value

• multi-class support • slow for large training

• supports incremental learning data sizes

Table 6.1: Advantages and disadvantages of Support Vector Ma-

chines, Gaussian Processes, and K-nearest neighbours.

6.1.2 Gaussian Processes

As mentioned at the outset of this chapter, a shortcoming of Support Vector

Machines is that they do not return a confidence value with their predictions,

while Gaussian Processes return such confidence values as part of their results

automatically. Since confidence values could be used to reduce the number

of false alarms, the aim is to show how effective Gaussian Processes are in

detecting worm mutations.

Like Support Vector Machines, Gaussian Processes are kernel machines,

with the kernel measuring the similarity between two points. Section 5.3.2

of the previous chapter showed that the linear kernel was the optimal kernel

for Support Vector Machines, implying that the data (the worm flows) are

linearly separable. Based on this finding, the experiments in this chapter will

employ the linear kernel for Gaussian Processes as well. Besides the kernel

there are no further configuration parameters for Gaussian Processes.

For the experiments in this work the Matlab implementation for the Gaus-

sian Processes classifier in [101] was ported to C so that it can be plugged

into the architecture described in Section 4.2. The implementation stays true

to the original Matlab implementation by using matrices and associated op-
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erations; the C port uses the Gnu Scientific Library (GSL) [102] to handle

matrix operations. The implementation was validated by comparing results

for a wide range of input test data with the original Matlab implementation.

6.1.3 K-nearest neighbours

K-nearest neighbours is arguably the most straightforward supervised ma-

chine learning algorithm. Like Support Vector Machines and Gaussian Pro-

cesses, K-nearest neighbours is a kernel machine. For the same reasons as

Gaussian Processes – the previous chapter established the data as linearly

separable and the linear kernel as the optimal kernel – this chapter’s exper-

iments use a linear kernel for K-nearest neighbours as well. This means all

three classifiers will be equipped with a linear kernel.

This leaves the K value, the number of nearest neighbours participating

in the majority vote, for which the experiments first need to find an optimal

value before comparing K-nearest neighbours to Support Vector Machines

and Gaussian Processes. As mentioned in Section 3.4, increasing K tends to

reduce the impact of noise, but simultaneously blurs the boundaries between

classes.

The implementation loads the training data into a GSL matrix [102], for

compatibility reasons with the more complex classifiers that heavily depend

on matrices. For the same reason, every entry of the test data is loaded into

a GSL vector [102] one at a time. The remaining implementation follows

straight forwardly from the algorithm:

1. Compute the measure of similarity (in this case the Euclidean norm)

between the current test datum and every training data entry.

2. Sort these distances to find the K smallest distances.

3. Look up the class for each of these K training data entries and perform

a majority vote.
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6.1.4 Combining classifiers

What happens to the accuracy if the three machine learning classifiers are

combined? While several methods of combining different classifiers have

been proposed [103, 104, 105], this chapter’s experiments take the simplest

approach, which casts a majority vote of the individual classifiers outputs.

6.2 Analysis

This section analyses the results of comparing Support Vector Machines with

two alternative machine learning techniques: Gaussian Processes (GPs) and

K-nearest neighbours (KNNs). Initially, this section first establishes the op-

timal K-nearest neighbours configuration to use in this comparison.

6.2.1 Optimal number of neighbours in KNN

The expected result is that accuracy rises with the number of neighbours,

K, up to a certain threshold. Beyond this threshold, the vote will include

relatively distant data points that will distort the vote and lead to wrong

classifications. The aim, then, is to find the optimal number of neighbours

just before that threshold is exceeded. Furthermore, the prediction time may

rise with the number of neighbours, and thus another aim of this section is

to determine whether there is an accuracy-speed trade-off for increasing K.

The graphs in Figure 6.1 show how the classification accuracy is affected

by the number of neighbours for various training data sizes, with the number

of neighbours varying from 1 to the corresponding training data size. The

results show that there is no optimal number K across the various training

data sizes, implying that for best results K must be tuned to the training

data size. Table 6.2 lists the tuned K values, extracted from the results in

Figure 6.1, with which K-nearest neighbours will be configured for the further

experiments in this chapter.

The graph in Figure 6.2 shows how prediction time varies with the number

of neighbours. The results show that, prediction time is unaffected by K.
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Figure 6.1: Impact of the number of neighbours on the accuracy of

KNN for various training data sizes. The data-to-signature ratio

was 25:1.
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Training data size Number of Neighbours (K )

4 1

10 2

20 3

50 11

75 11

100 11

Table 6.2: Tuned K values extracted from Figure 6.1, with which

K-nearest neighbours will be configured hence forth.

This is because K is only used in the algorithm once the training data items

have been compared to the test data and sorted by distance to the test

data, respectively taking O(n) and O(nlogn), where n is the training data

size. Only then are the K nearest neighbours looked up, which is a constant

operation.

6.2.2 Comparison of machine learning methods

Equipped with the optimal configuration for K-nearest neighbours, this sec-

tion compares the classifiers in terms of accuracy, confidence value, prediction

and training time, as well as training data size and false alarm rates.

6.2.2.1 Accuracy

Figure 6.3 compares the Gaussian Processes, K-nearest neighbours, and Sup-

port Vector Machines accuracy. The graph confirms that Gaussian Processes

exhibit a similar accuracy to Support Vector Machines, being only slightly

less accurate than the SVMs. For data-to-signature ratios below 100:1 it is

approximately 2% less accurate. The results are similar enough, however, to

consider GPs as a serious alternative to SVMs to detect worm mutations.

The results further show that the K-nearest neighbours algorithm per-

forms considerably worse than both the Gaussian Processes and the Support
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Figure 6.2: Impact of the number of neighbours on the prediction

time for various data-to-signature ratios.

Vector Machines. For data-to-signature ratios below 100:1 the KNN classifier

is approximately 20% to 25% worse than the other two classifiers.

6.2.2.2 Training data size

Section 5.3.4 showed that for Support Vector Machines, classification accu-

racy is affected by the training data size. The graph in Figure 6.4 shows that

Gaussian Processes are similarly affected by the number of training data en-

tries, with the prediction accuracy rising steadily with increasing training

data size.

Although the K-nearest neighbours algorithm does not train a classifier

as such (it only keeps a database of raw training data), it could still be

affected by the training data size, albeit to a lesser extent. The results

suggest, that unlike Support Vector Machines and Gaussian Processes, the

KNN’s classification accuracy does not increase steadily with training data

size. Rather, prediction accuracy hovers at 71−75%, reflecting that the value

of K is well-tuned to the training data size.
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Figure 6.3: Comparing the accuracy of SVMs, GPs, and KNN.

Training data size is 100.

6.2.2.3 Predictive likelihood

Since the previous section established that Gaussian Processes yield similar

accuracy to Support Vector Machines, this section investigates whether the

confidence value returned by the Gaussian Processes can help the decision

process to further improve the results, and possibly give Gaussian Processes

the edge over Support Vector Machines.

In Gaussian Processes the confidence measure is given by the predictive

likelihood, which is the average of the logarithms of all predictive posteriors.

A predictive likelihood of zero signals perfect confidence in the result. The

actual values for predictive likelihood – that is, which values indicate high or

low confidence – are problem specific and will be established in this section.

The graph in Figure 6.5 shows that the predictive likelihood decreases

as the data-to-signature ratio increases. This is in step with the accuracies

shown in the previous section implying that as the classification accuracy

decreases, so does the predictive likelihood. Overlaying the GP’s accuracies

from Figure 6.3 with the predictive likelihoods from Figure 6.5 reveals that

for a training data size of 100 a predictive likelihood between −0.655 and
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Figure 6.4: The impact of training data size on the prediction

accuracy for Support Vector Machines, Gaussian Processes, and

K-nearest neighbour. The data-to-signature ratio used is 25:1.

For KNN the number of neighbours is tuned to the training data

size as described in Section 6.2.1

−0.68 signals high confidence (above 90% accuracy).

The graph in Figure 6.6 shows the predictive likelihood of Gaussian Pro-

cesses at various training data sizes. As expected, the prediction confidence

also increases with training data size, in step with prediction accuracy. Over-

laying the GP’s accuracies from Figure 6.4 with the predictive likelihoods

from Figure 6.5 suggests that for a data-to-signature ratio of 25:1 a predic-

tive likelihood between −0.655 and −0.672 signals high confidence.

The results in this section confirm the predictive likelihood offers a prac-

tical guide as to when the classifier’s decision can be overruled.

6.2.2.4 Mixed data-to-signature ratios

Section 5.3.7 in the previous chapter showed that Support Vector Machines

can cope with mixed data-to-signature ratios for data sets with low mean

data-to-signature ratios (such as 25:1) at minimal loss of accuracy, but are

more severely affected for higher data-to-signature ratios (such as 100:1 and
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Figure 6.5: GPs predictive likelihood (confidence value) at various

data-to-signature ratios. Training data size is 100.

200:1).

The graph in Figure 6.7 compares Support Vector Machines to Gaussian

Processes and K-nearest neighbours at classifying data sets with fixed and

mixed data-to-signature ratios. The fixed data-to-signature ratio is 25:1 while

the mixed data-to-signature ratio is normally distributed with mean 25:1;

standard deviation of 20 was selected as in Section 5.3.7.

The results show that the accuracy obtained with Gaussian Processes

using mixed data-to-signature ratios is approximately 5% less than with fixed

data-to-signature ratios. By comparison, the gap in Support Vector Machines

is approximately 1%. The results for K-nearest neighbours show a drop of

approximately 13% in accuracy when the data-to-signature ratio is mixed.

As in the previous sections, the accuracy of the KNN algorithm at detecting

worm mutations of known worms remains significantly below that of Support

Vector Machines and Gaussian Processes.
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Figure 6.6: The impact of training data size on the prediction

confidence for Gaussian Processes at a data-to-signature ratio of

25:1.

6.2.2.5 False alarm rates

As with the Support Vector Machines in Section 5.3.8, Receiver Operator

Characteristics (ROC) graphs are used to investigate false alarm rates. Also

as in Section 5.3.8, the confidence measure for Support Vector Machines is

obtained by calculating the distance to the hyperplane. For K-nearest neigh-

bours instance ranking (based on the algorithm in [106]) was used. Gaussian

Processes as mentioned return the confidence measure natively.

Figure 6.8 compares the ROC curves for the Support Vector Machines,

Gaussian Processes, and K-nearest neighbours classifiers. The results confirm

that, as with accuracy, the KNN’s area under the curve (AUC) is considerably

less than both the Gaussian Processes or Support Vector Machines, meaning

that KNN suffers from a considerably higher number of false alarms.

As with accuracy, Gaussian Processes rival Support Vector Machines,

covering only a slightly less area under a curve.
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Figure 6.7: Prediction accuracy comparing SVMs, GPs, and KNN

trained and tested with a single fixed data-to-signature ratio and

a mixed data-to-signature ratio with comparable mean.

6.2.3 Combining classifiers

Figure 6.9 shows the prediction accuracy for classifier combinations using a

majority vote to obtain a classification. Normally it would make sense to

combine only an odd number of classifiers; for completeness, however, the

graph also shows the prediction accuracy for all possible pair combinations,

using a uniform random number generator to break ties where necessary.

From the results it can be seen that no combination beats the standalone

Support Vector Machines and Gaussian Processes classifiers. A probable

explanation is that Support Vector Machines and Gaussian Processes do not

complement each other well and show similar predictions for the same test

input data. K-nearest neighbours pulls down the average dramatically in

every duo in which it participates.

However, in combination with Support Vector Machines and Gaussian

Processes it appears to be outvoted most of the time, reducing the accuracy

only marginally.
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false positive rates for SVMs, GPs, and KNN. Data-to-signature

ratio is 100:1.

6.3 Summary

This chapter compared the performance of Support Vector Machines to that

of Gaussian Processes and K-nearest neighbours for detecting worm muta-

tions, with the following findings:

• SVMs and GPs show similar accuracies. Support Vector Ma-

chines and Gaussian Processes consistently showed similar accuracies,

with SVMs being marginally more accurate than GPs. Both Support

Vector Machines and Gaussian Processes achieve decisively higher ac-

curacy than K-nearest neighbour.

• Tuning the number of neighbours in KNN. The number of neigh-

bours in K-nearest neighbours needs to be tuned to the training data

size since there is no silver bullet value that works well across all train-

ing data sizes.

• GP confidence measures offer a practical guide. The confidence

measure returned by Gaussian Processes is low when accuracy is low,
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fiers. Data-to-signature ratio is 200:1, since it best illustrates the

trends of all data-to-signature ratios investigated.

rendering it a practical tool to further improve the accuracy of Gaussian

Processes.

• SVM and GP accuracy dependent on training data size. Ac-

curacy increases steadily with training data size for Support Vector

Machines and Gaussian Processes, the rise being steeper for Support

Vector Machines. K-nearest neighbours is tuned to training data size

and accuracy hovers just above 70% for all training data sizes.

• SVMs cope best with mixed data-to-signature ratios. Support

Vector Machines cope better with data sets of mixed data-to-signature

ratios than Gaussian Processes. K-nearest neighbours, however, does

not fare well with mixed data-to-signature ratios.

• SVMs and GPs have similar false alarm rates. Receiver oper-

ator characteristic graphs confirm that Gaussian Processes have only

a marginally higher false alarm rate than Support Vector Machines,

whereas K-nearest neighbours perform considerably worse.
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• Standalone SVM and GP classifiers work best. No combination

of classifiers (using majority vote) beats the standalone Support Vector

Machines and Gaussian Processes classifiers.

The final verdict is that Support Vector Machines and Gaussian Processes

were close rivals, with Support Vector Machines achieving a few percent

points higher accuracy on average. K-nearest neighbours were constantly

outperformed by Support Vector Machines and Gaussian Processes. The re-

sults also underline that for the techniques to work successfully, it is impor-

tant that a sufficient amount of training data is available. The next chapter

explores the possibility of automatically generating such training data.



Chapter 7

Generating worm mutations

The experiments in the previous two chapters showed that machine learning

techniques successfully detect worm mutations. More precisely, the results

showed that, given sufficient training data, the machine learning techniques

generate classifiers able to detect worm mutations.

However, as mentioned in Section 5.1.1, these experiments used synthetic

worm mutations for training data due to the lack of a wide spectrum of worm

mutations in the wild. For a real-life deployment of the machine learning

classifiers, obtaining a sufficiently large sample of training data poses a chal-

lenge. This chapter provides the missing link: a worm mutation generator

that automatically generates worm mutations.

This chapter first describes two approaches taken by the worm mutation

generator: structurally generating mutations by programmatically replacing

the executable payload, and randomly generating mutations by intercepting

malicious network flows and arbitrarily changing bytes in these flows. The

chapter then compares which of the two approaches yields the higher quality

training data in terms of classifier accuracy.

7.1 Structurally mutated worms

The concept of the structural worm mutation generator is to take a known

exploit and programatically change the executable payload to generate worm

100
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mutations. This approach is consistent with the worm model introduced in

Section 4.1, which defined worm mutations as worms sharing the same exploit

code, and reflects the approaches taken by past worm mutations such as Code

Red I and Code Red II.

Three real exploits were selected from the Metasploit framework [25], a

toolkit for exploit developers and security professionals, which provides a vast

collection of well documented exploits. The exploits were chosen according

to three key criteria. First, they had to be fairly straightforward to adapt

and so lend themselves well for creating worm mutations easily. Second, they

should blend into normal traffic in the sense that files such as those used for

the executable payload do not appear anomalous. And third, to be as diverse

from one another as possible in terms of communication protocol, payload

types and payload sizes, and so ensure that any results apply to a wide range

of worms.

The three worms created – named Distcc worm, Minishare worm, and

WarFTP worm after the services they exploit – are described in detail in the

following sections. These worms will also serve as the source worms for the

randomly mutated worms described later in Section 7.2.

7.1.1 Distcc worm

Distcc [94] is a C/C++ compiler framework for distributing builds across

several Linux machines on a network. An exploit [107] allowing arbitrary

execution of shell commands is made available by Metasploit.

The worm infection works in four stages:

1. Launching the exploit, which opens the door to execute arbitrary shell

commands on the target machine at the same user-level as the Distcc

daemon.

2. Uploading the worm’s executable payload in source code form. This is

achieved seamlessly by piping the source code into a temporary file on

the target host with the cat shell command.



CHAPTER 7. GENERATING WORM MUTATIONS 102

3. Compiling and executing the uploaded source code. This uses the gcc

(Gnu Compiler Collection) [108] command, which is present on most

Linux installations, and since Distcc is essentially a gcc wrapper, can

be safely assumed to be present on the victim.

4. Opening a backdoor telnet on port 4444 with a one line Perl command,

allowing arbitrary shell commands to be executed.

The executable payload would usually also include spreading logic, such

as generating a set of random IP addresses to probe next, and possibly some

potentially malicious behaviour, such as corrupting the infected machine’s

hard-drive. For this chapter’s experiments it suffices to infect the host and see

if the payload was executed, and so the worms do not include any spreading

logic or malicious payload.

7.1.2 Minishare worm

Minishare [95] is a trimmed-down web server for Microsoft Windows designed

for file sharing via a browser interface. A buffer overflow exploit [109] allowing

arbitrary Windows executables to be uploaded and executed is made available

by Metasploit.

The Minishare worm works in three stages:

1. The attacking host makes the executable payload available for down-

loading by binding to a known local port. The worm will call back on

this port once it has successfully infected the host.

2. The attacking host launches the exploit code against the target. If

successful, the worm then calls back on the attacking host to download

the executable payload.

3. The worm on the infected host launches the downloaded payload.

Unlike the Distcc worm, the Minishare worm does not download its ex-

ecutable payload in source form but as a binary executable. The download

callback is a simple HTTP request, which the attacking host serves with We-

brick [110], a minimalist web server that ships with Ruby. As with the Distcc
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worm, the executable payload injected by the generator into the Minishare

worm does not contain any spreading logic.

Since Minishare is primarily intended for file sharing, the uploading of

binary data will not appear anomalous. That would not be the case if Min-

ishare were intended for use as a regular web server where the dominant type

of file transferred would be text-based web pages.

7.1.3 WarFTP worm

WarFTP [111] daemon is a simple File Transfer Protocol (FTP) server for

Windows. A stack-based buffer overflow vulnerability [112] is available in

Metasploit that allows arbitrary Windows executables to be uploaded and

launched.

The WarFTP worm works similarly to the Minishare worm:

1. The attacking host makes the executable payload available for down-

load by binding to a known local port.

2. The attacking host launches the exploit code against the target, and

on success calls back to download the payload.

3. The worm on the infected host launches the downloaded payload.

The difference between the WarFTP worm and the Minishare worm goes

beyond the use of different vulnerable services. The WarFTP worm was cho-

sen because it can carry payloads considerably larger than both Minishare

and Distcc without appearing anomalous. This allows the experiments to

verify whether, as would be expected, the data-to-signature ratio plays a sig-

nificant part in the quality of generated classifiers. The reason the WarFTP

worm does not appear anomalous is that it exploits the FTP service, and as

such it would not be uncommon to observe large file transfers in everyday

traffic.
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7.2 Randomly mutated worms

The basic idea of the random worm mutation generator is to (i) intercept a

worm en route from an attacking host to a target host, (ii) generate a set of

mutations by randomly mutating the worm’s byte stream, and (iii) forward

the generated mutations to the original target. The next sections discuss in

detail the random mutation generator’s requirements and its architecture.

7.2.1 Requirements

The random worm mutation generator must:

• Intercept worms en route from one host to the next. In order

for the system to mutate intercepted worms, it must be able to capture

them in their entirety. This involves reassembling worms that may have

been split into several packets, as well as reordering packets that arrive

out of order.

• Work transparently. The generator must forward all packets so

that the attacker remains unaware of its existence, effectively acting as

a transparent proxy.

• Determine whether the target was successfully infected. Af-

ter the worm’s mutations have been forwarded to the worm’s original

target host, the generator must determine whether the target was suc-

cessfully infected. Without this check the mutation can not be labelled

as malicious or benign, and thus can not serve as training data.

• Store generated mutations. The final step after determining whether

a mutation is malicious or benign is to store it accordingly. This builds

up the training data set of labelled mutations that later will be fed into

the training stage.
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7.2.2 Architecture

The high-level architecture consists of three machines connected in series, as

shown in Figure 7.1. Machine A is the attacker from which the original worm

is launched and machine C is the worm’s target. Machine B sits between

machines A and C and acts as a transparent proxy that mutates worms.

A typical cycle in this architecture looks as follows:

1. Machine A launches the original worm at machine C

2. Machine B intercepts the worm by reassembling the packets in the flow

3. Machine B randomly mutates the intercepted worm

4. Machine B forwards the mutation to machine C

5. Machine B queries machine C whether the attack succeeded

6. Machine B stores the mutation if the attack succeeded

The worm model introduced in Section 4.1 defined a worm mutation as a

worm that exploits the same vulnerability as the original worm, but executes

a different payload upon successful infiltration. Thus an attack of random

mutation will only succeed if the mutation alters the executable payload

without affecting either the application specific data (which is required to

successfully transport the worm) or the exploit (which is required to infiltrate

the target). Only successful attacks will be labelled as malicious.

The random mutation generator is an attractive extension over the struc-

tural mutation generator since it offers a fully automated method to gener-

ating worm mutations. While the structural mutation requires knowledge

about the worm’s structure – in particular the location of its payload – the

random mutation generator treats worms as black boxes and requires no such

prior knowledge. The experiments in this chapter will tell whether the ran-

dom mutations can match their structural counterparts in serving as high

quality training data.
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Figure 7.1: How the worm mutation generator fits into the over-

all worm detection architecture. The worm mutation adds a pre-

learning phase that generates the training data (top) for the learn-

ing phase (middle).



CHAPTER 7. GENERATING WORM MUTATIONS 107

 45647

Figure 7.2: Gauging the mutation degree. A high mutation

probability and small chunk size (top) yields fine-grained muta-

tions. A large chunk size and low mutation probability (bottom)

produces more coarse-grained mutations.

7.3 Experiment design

The experiments will test the quality of the worms generated by the worm

mutation generator in two parts: first for the structurally mutated worms

and second for the randomly mutated worms.

To challenge the classifier, the benign mutations closely resembled their

malicious counterparts except that they were disarmed of the exploit code.

In the case of the WarFTP worm, for example, the benign trace consists

of an FTP file transfer of the executable payload, minus the exploit code.

Similarly, for Minishare the executable payload was uploaded to the file shar-

ing repository without launching it. For Distcc the benign traces remotely

compile the source code but do not execute it.

For the random mutation generator, the experiments will test the im-

pact of the mutation degree on classifier accuracy. Two parameters control

the mutation degree: the mutation probability and the mutation chunk size

(Figure 7.2). Thinking of the traffic as an array of bytes b, the mutation

probability determines whether an intercepted byte bi should be mutated.

The mutation chunk size n then controls how many of the subsequent bytes

bi, bi+1, . . . , bi+n−1 will be mutated. The experiments will investigate the im-

pact of both the mutation probability and the mutation chunk size on clas-
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sifier accuracy.

7.3.1 Isolated testing network

Due to the hazardous nature of worms the experiments were conducted in

an isolated testing network. This network consists of three machines inter-

connected via a hub1: (i) a client machine from which attacks are launched,

(ii) a server machine that runs the vulnerable software, and (iii) a machine

hosting the forwarding proxy, which sits between the attacker and the tar-

get, intercepting traffic between the two. This setup derives directly from

the architecture described in Section 7.2.2.

The machines used were AMD Athlon XP 2200 with 1 GB of physical

memory. The target machine was a dual boot system running Ubuntu Linux

7.04 and Microsoft Windows XP Service Pack 1. The reason for using a

dated Windows version was that it is known to contain many security holes,

and as such offers an ideal breeding ground for the worm mutations. The

other two machines ran Ubuntu Linux 7.04.

7.3.2 Implementation of a worm testing framework

In addition to the hardware setup described above, the experiments were

driven by a custom-built distributed worm testing framework. This frame-

work, implemented in Ruby, automates the execution of the experiments by

providing a central interface from which to (i) reset the testbed, (ii) select

an attack type, (iii) launch the attack, and (iv) verify whether the infection

was successful.

The framework’s distributed components map directly to the hardware

setup in the previous section and therefore consist of an attacker, a target,

and a forwarding proxy. These components run as agents on their hardware

counterparts using the Distributed Ruby API [110], and are remotely co-

ordinated by a central controller. The controller conducts the following event

1Note that a hub was used rather than an Ethernet switch since hubs forward traffic
on all ports thereby allowing communications to be tapped.
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Figure 7.3: Worm testing framework. Agent interaction during an

attack cycle.

sequence (Figure 7.3 shows the interaction of the agents for the first 5 steps):

1. Select a worm and arm the attacker with this worm

2. Launch the vulnerable service on the target

3. Start the forwarding proxy and recording the flow

4. Launch the attack

5. Query whether the target was successfully infected

6. Store the mutated flow under malicious or benign

7. Stop recording the flow and reset the target host

The central controller can sit on either of the three machines, or on a ded-

icated machine. For convenience, the experiments run the controller on the
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forwarding proxy machine. Each worm attack is encapsulated in a dedicated

class with the command design pattern [113].

For structurally mutated worms the proxy simply records the traffic flows

and then transparently forwards them to the target. For randomly generated

worms the proxy additionally randomly mutates bytes with a given proba-

bility as discussed in the outset of this Section.

The forwarding proxy uses sockets in a modified version of port proxy [114].

Sockets offer an attractive solution since they deal with the TCP flow’s

contents directly, freeing the mutation generator from having to reassemble

flows2. A drawback of the sockets approach is that the ports under attack

must be known in advance since they can only bind to fixed ports. While

this is adequate for the controlled environment of this chapter’s experiments,

it poses a restriction for production use. A workaround is to accept con-

nections from all ports, which could be implemented with an open source

routing gateway package such as the Click modular router [115].

The querying of the target is implemented by having the worm emit its

unique ID to a log file. For the Distcc worm this is easily implemented

with an echo command in the shell command sequence that is part of the

executable payload. For Minishare, which carries compiled C programs as its

executable payload, writing to the log file is achieved by injecting fprintf

statements into the programs’ source code. WarFTP, which carries binary

executables for which source code is not available, achieves this by wrapping

the executables in another executable that emits an fprintf before launching

the wrapped executable. The wrapper is a simple C program that embeds

the executable as a hex string generated by the xxd Unix utility.

7.3.3 Structurally mutated worms

Key experiments from the previous two chapters are repeated using struc-

turally mutated worms. In particular, the accuracy of Support Vector Ma-

chines, Gaussian Processes, and K-nearest neighbours at various training

2Flows would have to be reassembled manually if a packet capturing library such as
libpcap [88] were used.
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data sizes is compared for each of the worms.

A data set of 400 mutations was created for each worm. As in previous

experiments, half of these were malicious and the other half benign. Var-

ious training data sizes were investigated by selecting an equal number of

malicious and benign mutations as training data, and selecting 100 of the

remaining mutations (again half malicious and half benign) as test data. Ex-

periments were repeated 50 times to obtain averages and standard deviations.

For Distcc, mutations were created by substituting the source code file

that is uploaded and executed with typical C tutorial programs. As such the

Distcc worm mutations carry a small payload with an average trace size of

1.7KB at a standard deviation of 1.1. The exploit size is 0.3KB, resulting in

an average data-to-signature ratio of 5.7:1

Structural mutations of the Minishare worm were created by substituting

the executable payload with small binary executables. For this the set of C

tutorial programs from the Distcc worm was compiled, resulting in an average

trace size of 8.4KB and a standard deviation of 1.7. Given an exploit size of

2.2KB, this yields a low average data-signature-ratio of 3.8:1.

WarFTP structural mutations were created by substituting the executable

payloads with exemplar Windows executables. The average trace size was

82.4KB with standard deviation of 55.2. With an exploit size of 1KB,

WarFTP has the highest average data-to-signature ratio of the three worms

with 82.4:1. The experiments will show how well the classifier can cope with

such a high data-to-signature ratio.

7.3.4 Randomly mutated worms

These experiments compare classifiers trained with the structurally mutated

worms from the previous section with classifiers trained with randomly gen-

erated worm mutations. To allow for a fair comparison, the training data

for the latter consists solely of randomly generated mutations, while the test

data consists of the same structurally mutated worms and benign data used

in the previous section.

The experiments for the random mutation generator require a source
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Figure 7.4: Structurally mutated Distcc worm. Accuracy

vs. training data size for Support Vector Machines, Gaussian Pro-

cesses, and K-nearest neighbours.

from which random mutations are generated. For each of the three worms

the source worm was selected to be as close to the average size as possible.

7.4 Analysis

The analysis follows the structure of the experiment design. First the results

of repeating key experiments from the previous two chapters on structurally

mutated worm mutations are presented and discussed. The best performing

machine learning technique is then used to test the random mutations and

the two results are compared.

7.4.1 Effectiveness of structurally mutated worms

This section looks at the results for the Distcc, Minishare and WarFTP worm

mutations in turn.



CHAPTER 7. GENERATING WORM MUTATIONS 113

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 0  10  20  30  40  50  60  70  80  90  100

Ac
cu

ra
cy

 (%
)

Training data size

SVM
GP

KNN

Figure 7.5: Structurally mutated Minishare worm. Accu-

racy vs. training data size for Support Vector Machines, Gaussian

Processes, and K-nearest neighbours.

7.4.1.1 Distcc worm

Figure 7.4 compares the accuracy of Support Vector Machines, Gaussian Pro-

cesses, and K-nearest neighbours on the Distcc worm. The graph shows that

the accuracy increases for Support Vector Machines and Gaussian Processes

up to a training data size of 50, after which the accuracy levels off. For

training data sizes below 20, K-nearest neighbours lags not too far behind

Support Vector Machines and Gaussian Processes, while showing consider-

ably less accuracy for higher training data sizes.

As in the previous chapter, Support Vector Machines and Gaussian Pro-

cesses achieve similar high accuracy for training data sizes above 50, peaking

at 98% accuracy. For training data sizes below 50, Support Vector Machines

perform noticeably better than Gaussian Processes.

7.4.1.2 Minishare worm

Figure 7.5 compares Support Vector Machines, Gaussian Processes, and K-

nearest neighbours on structural Minishare mutations. As for the Distcc
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Figure 7.6: Structurally mutated WarFTP worm. Accuracy

vs. training data size for Support Vector Machines, Gaussian Pro-

cesses, and K-nearest neighbours.

mutations, classification accuracy increases with training data size for Sup-

port Vector Machines and Gaussian Processes.

The rise in accuracy is considerably steeper for Support Vector Machines

and Gaussian Processes than with Distcc, climbing to near 100% accuracy

for training data sizes as low as 10. The steep rise suggests that the training

stage is able to detect a pattern sooner than for Distcc, the most likely

explanation being the lower data-to-signature ratio.

As with Distcc, Support Vector Machines and Gaussian Processes perform

similarly well except for very small training data sizes. K-nearest neighbours

performs worse altogether, hitting a maximum of just over 60% accuracy.

7.4.1.3 WarFTP worm

Figure 7.6 compares Support Vector Machines, Gaussian Processes, and K-

nearest neighbours for structural WarFTP mutations. Compared to the

Distcc and Minishare results, the climb in accuracy for increasing training

data size is more gradual, indicating that the larger data-to-signature ratio
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makes it more difficult to extract a distinguishing pattern.

Of the three worms, WarFTP achieves the lowest maximum accuracy for

Support Vector Machines and Gaussian Processes, peaking at around 95%.

Again the most probable explanation is the high data-to-signature ratio. The

accuracy for K-nearest neighbours is considerably worse, consistently tailing

SVMs and GPs by around 25% from training data sizes larger than 50.

As with Distcc and Minishare, Support Vector Machines and Gaussian

Processes perform comparably.

7.4.1.4 Discussion

In summary, the results of the structural worm mutation experiments showed

that:

• As with synthetic worms, Support Vector Machines and Gaussian Pro-

cesses show higher classification accuracy than K-nearest neighbours

• Classification accuracy depends on the data-to-signature ratio, with

smaller data-to-signature ratios leading to higher accuracy

The results in this section have set the bar for the randomly mutated

worms investigated in the next section. The results obtained for the three

worms used in this section will now be compared directly to results obtained

using training data sets generated by the random worm mutation generator.

7.4.2 Effectiveness of randomly mutated worms

Are the randomly mutated worm mutations suitable as training data for

the machine learning classifiers? This section attempts to answer this ques-

tion by comparing classifiers trained with randomly mutated worms to those

trained with structurally mutated worms from the previous section. Based

on the results of the previous section, the results in this section will base its

comparison on Support Vector Machines.
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Figure 7.7: Randomly mutated Distcc worm. Prediction Ac-

curacy vs training data size for classifiers trained of the randomly

mutated Distcc worm. Mutation probability was 0.005 with a

chunk size of 300 bytes.

7.4.2.1 Distcc worm

Figure 7.7 compares the prediction accuracy of the structural mutations with

random mutations of the Distcc worm. The results are promising, and show

that classifiers trained with random mutations match that of structural mu-

tations up to training data sizes of 10, topping at 90% accuracy for training

data size 20.

For training data sizes greater than 20 accuracy drops, most likely due

to overfitting. Recall that the random mutations are generated from the

same source worm, and for larger training data sizes the training phase could

falsely pick up parts of the source code as being part of the exploit code,

especially if those parts have not been mutated by the random byte mutator.

7.4.2.2 Minishare worm

The results of the Minishare worm show a different trend to Distcc, but are

equally encouraging. Accuracy increases steadily for the random mutations
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Figure 7.8: Randomly mutated Minishare worm. Prediction

Accuracy vs training data size for classifiers trained with generated

Minishare worm mutations. Mutation probability was 0.005 with

a chunk size of 250 bytes.

with increasing training data size, but less gradually than the structural

mutations, suggesting that the training stage requires a larger spectrum of

random mutations than structural mutations to detect a common pattern.

The classifier reaches an encouraging maximum accuracy of 95% for ran-

dom mutations, just 5% below that of structural mutations.

7.4.2.3 WarFTP worm

Figure 7.9 shows the results for the WarFTP worm. Out of the three worms

investigated, this worm proved the most difficult for the classifiers, achieving

the lowest accuracy for classifiers trained with random mutations of just 55%

accuracy for smaller training sizes.

The most likely explanation for this poor result is both the high data-

to-signature ratio (82.4:1) and the large standard deviation of the average

payload size (standard deviation 55.2 for an average payload size of 82.4KB).
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Figure 7.9: Randomly mutated WarFTP worms. Prediction

Accuracy vs training data size for classifiers trained with generated

WarFTP worm mutations. Mutation probability was 0.0001 with

a chunk size of 1000 bytes.

7.4.2.4 Varying the mutation degree

The previous experiments kept the mutation degree fixed for each worm.

Figure 7.10 analyses the impact of varying the number of bytes mutated,

showing that accuracy increases as more bytes are mutated. Similarly Fig-

ure 7.11 analyses the impact of varying the mutation probability, showing

that accuracy increases with higher mutation probability.

Combined, the results suggest that a higher mutation degree leads to a

better trained classifier, as expected. As more bytes are mutated, the training

phase is able to narrow down the common pattern onto the exploit code.

7.4.2.5 Discussion

The results of the randomly mutated worms were encouraging. Especially

the Minishare experiments have shown that the random worm mutation gen-

erator is suitable to generate training data for machine learning classifiers,

albeit with less overall accuracy than for structural mutations



CHAPTER 7. GENERATING WORM MUTATIONS 119

 50

 60

 70

 80

 90

 100

3002501501001

A
c
c
u
ra

c
y
 (

%
)

Chunk size (bytes)

Figure 7.10: Impact of mutation chunk size (with a fixed prob-

ability of 0.005, and training data size of 20) on the prediction

accuracy of randomly mutated Distcc worms.

Unusual about the Distcc results was that accuracy dropped for larger

training sizes. Of the three worms, Distcc was the only one with a payload

in source code form rather than as a binary executable, hinting that the

classifier is prone to overfit purely-text based random mutations.

The results of the WarFTP worm were, however, less encouraging: with

an accuracy of 55%, the classifier was little more than guessing the predic-

tions. The poor results could be the result of the high data-to-signature

ratio (82.4:1). By comparison, Distcc has a data-to-signature ratio of 5.7:1

but achieves 90% accuracy, while Minishare achieves up to 95% accuracy

with a data-to-signature ratio of 3.8:1.

Gauging the mutation degree showed that accuracy improves as more

bytes are mutated. However, the trade-off here is time. For example, with a

mutation probability of 0.01 and a chunk size of 100 bytes, Distcc yielded a

malicious mutation every 25 mutation cycles. Given that a random mutation

cycle in the worm testing framework takes around 9 seconds to complete, the

total time to build a training data size of, say, 100 malicious mutations is

just over 6 hours.



CHAPTER 7. GENERATING WORM MUTATIONS 120

 50

 60

 70

 80

 90

 100

0.010.0050.0010.00050.0001

A
c
c
u
ra

c
y
 (

%
)

Mutation probability

Figure 7.11: Impact of mutation probability (with a fixed chunk

size of 100 bytes, and training data size of 20) on the prediction

accuracy of randomly mutated Distcc worms.

7.5 Summary

This chapter flagged the need to automatically generate worm mutations to

serve as training data for machine learning classifiers due to the lack of worm

mutations in the wild. In particular, this chapter investigated:

• How to generate training data. Described the design, implemen-

tation and deployment of a worm mutation generator to handle this

automation in two ways: structurally mutating worms by programati-

cally replacing executable payloads, and randomly mutating worms by

altering their byte streams arbitrarily.

• Effectiveness of generated structural mutations. Evaluated the

structural mutation generator of the machine learning algorithms (Sup-

port Vector Machines, Gaussian Processes, and K-nearest neighbours)

by repeating the key experiments of the previous chapter. The results

showed that the quality of the generated structural mutations are suf-

ficiently high to serve as training data.
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• Effectiveness of generated random mutations. Compared ran-

dom mutations to structural mutations using Support Vector Machines.

The results showed that for Distcc and Minishare the quality of the ran-

dom mutations is also sufficiently high to serve as training data, with

the added bonus that they require no prior knowledge about the worm.

To conclude, this chapter has shown that using the worm mutation generator

is a viable option for generating training data.



Chapter 8

Conclusion

8.1 Discussion

The worm problem affects us all. Today’s news is filled with stories about

spam flooding the Internet, phishing sites relieving people of their savings,

Trojans harvesting sensitive information for identity theft, and worms cloak-

ing as benign network traffic to sneak past firewalls and wreaking havoc.

Many network intrusion detection systems [43, 42, 14, 47, 53, 54] have

been written to protect both private users and large organisations, but no

matter how frequently the software is updated, it always seems to lag one step

behind worm authors. This dissertation has the ambitious goal of not just

levelling the playing field but to turn it upside down – to leverage the power

of machine learning to automatically detect mutations of known worms.

Detecting worms has often been likened to finding a needle in a haystack.

Machine learning [56, 57, 58], and in a larger context artificial intelligence,

have long been hailed for their successes in recognising patterns [15, 66, 67],

and it is this power that this dissertation attempts to harness.

Conceptually, by feeding machine learning techniques a training set, ma-

chine learning techniques are able to find distinguishing features in the train-

ing data that enables them to classify unknown data. The approach of this

dissertation was to build an intrusion detection system that is fed both worm

(malicious) traffic and normal (benign) traffic as training data, so that it can

122
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automatically filter worm mutations out of everyday network traffic.

The past years have witnessed rapid growth and advances in the field

of machine learning, and so one of the key decisions of this dissertation was

which machine learning algorithm to use. Of all machine learning techniques,

Support Vector Machines [15] have risen to prominence since the 1990’s.

The popularity of Support Vector Machines is not unfounded: they have

successfully been applied to a large number of real-world pattern recognition

problems including categorisation [66], image classification [67], and hand-

written character recognition [15].

With such a good track record of detecting patterns, can Support Vec-

tor Machines find that proverbial needle in the haystack? Answering this

question was the task of the first part of this dissertation, with encourag-

ing results: the classifier reached 99% accuracy for the most common worm

data-to-signature ratio of 25:11. Even more encouraging was that Support

Vector Machines are resilient to a fair degree of distortion, a popular tech-

nique with worm authors to cloak their worms. The results also suggest

that Support Vector Machines could detect polymorphic worms [116], which

bypass conventional intrusion detection systems by mutating themselves at

each network hop.

The solid results for Support Vector Machines in detecting worms raised

additional questions addressed by this dissertation: how do other machine

learning techniques fare in detecting worm mutations? Can the results of

Support Vector Machines be bettered by other popular machine learning

techniques? The second part of this dissertation was devoted to answer-

ing these questions by comparing Support Vector Machines with Gaussian

Processes [16] and K-nearest neighbours [17].

Gaussian Processes have a theoretical edge over Support Vector Machines

in that they return a confidence measure with their classification, which

a secondary classifier (for example a human) could leverage to potentially

1Interestingly, worm authors strive for a highly compact executable payload for faster
spreading, effectively reducing the data-to-signature. The results show that the smaller the
data-to-signature ratio, the higher the accuracy of the classifier. Conversely, a less skilled
worm author who produces larger code might make it more difficult on the classifier.
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reduce the number of false alarms. K-nearest neighbours, being a very simple

and intuitive algorithm, offered another angle on how good the results of

Support Vector Machines really were.

Support Vector Machines and Gaussian Processes were close rivals, with

Support Vector Machines achieving a few percent points higher accuracy

than Gaussian Processes, on average. While Support Vector Machines and

Gaussian Processes proved to be a close call, K-nearest neighbours was out-

performed by both Support Vector Machines and Gaussian Processes, and

that despite the number of neighbours being tuned to the training data size.

Comparing Support Vector Machines, Gaussian Processes and, to a lesser

extent also K-nearest neighbours, underlined that training data size is piv-

otal to the success of detecting worm mutations. This poses a challenge for

deploying such classifiers in the real-world: the number of worm mutation

traces in the wild is limited, potentially starving such a classifier of its key

resource needed to detect worms.

The mission of the third and final part of this dissertation, then, was to

find a way to secure the vital training data that fuels the classifiers. The

result was a worm mutation generator that automatically generates worm

mutations in two ways: (i) structurally mutating a source worm by replacing

its executable payload, and, (ii) randomly mutating chunks of its trace. The

results showed that the quality of the generated structural worm mutations

were of high quality, suitable to serve as training data. The random worm

mutations showed encouraging results as well, generating good quality train-

ing data for the two of the three worms investigated, with the important

added bonus that they require no prior knowledge of the worm aside from

being in possession of a known, lethal trace of the original worm.

This dissertation achieved its ambitious goal of putting network intrusion

detection systems one step ahead of worm authors by automatically detect-

ing worm mutations. It has laid the groundwork to yield a powerful weapon

against the worm threat: a network intrusion detection system armed with a

Support Vector Machine classifier, fed by the worm mutation generator with

training data. This system should be powerful and accurate enough to au-
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tomatically detect mutations of worms with little to no human intervention.

This dissertation has laid a solid foundation, and the next chapter will look

at how this solid foundation can be further extended.

8.2 Contributions

This work contributes to the defence against computer worms in the following

ways:

• Feasibility of Support Vector Machines in detecting worm mu-

tations. A thorough investigation into the feasibility of using machine

learning based pattern recognition techniques to detect worm muta-

tions was conducted. In particular, the optimal configuration of Sup-

port Vector Machines, including choice of kernel, n-gram extraction

size, and training data sizes was investigated. The resilience to signa-

ture mutations and signature corruption, as well as the ability to cope

with mixed data-to-signature ratios, was also investigated.

• Comparison of alternative machine learning techniques in de-

tecting worm mutations. Support Vector Machines were compared

to two alternative machine learning techniques, Gaussian Processes and

K-nearest neighbours, with regards to how effectively they detect worm

mutations. The results demonstrated that Support Vector Machines

show slightly higher accuracy than Gaussian Processes, while K-nearest

neighbours perform considerably worse. Gaussian Processes return a

confidence value with their predictions, and this confidence was shown

to offer a practical guide when the classifier is uncertain.

• Automatically generating training data. A worm mutation gen-

erator was developed in order to overcome the problem of limited avail-

ability of training data in the wild. The results confirmed the encour-

aging results from the previous chapters, as well as that training data

for the machine leaning techniques can be generated using structural

and, to a lesser degree, random mutation strategies.



Chapter 9

Future work

This dissertation has successfully shown that machine learning techniques are

suitable for detecting worm mutations. Yet this is just the beginning. The

machine learning techniques explored in this dissertation must now prove

themselves in the real world, and this opens some interesting and exciting

opportunities for future work.

This chapter looks into some of these opportunities: defending against

sophisticated worm attack strategies, designing a custom kernel, alternative

feature representation, real-time detection, online training, cascading classi-

fiers, and scaling the infrastructure.

9.1 Sophisticated worm attack strategies

Worm authors often go to great lengths to maximise the potency and lethality

of their worms. This has led to highly sophisticated attack strategies, which

begs the question how robust the approach proposed in this work is to such

strategies. This section describes some of these attack strategies and discusses

how the work of this dissertation could be made more robust against such

attacks.

126
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9.1.1 Polymorphic blending attack

As mentioned in Section 2.1.2, polymorphic worms are worms that mutate

themselves in such a way that their signature changes at every hop when

traversing a network. Anomaly detection systems, by their nature of search-

ing for anomalies rather than intrusions, lend themselves well to the detection

of polymorphic worms.

An attack strategy that takes polymorphic worms to the next level are

polymorphic blending attacks [117]. These attacks essentially consist of poly-

morphic worms that not only mutate from hop to hop, but also mutate in

such a way that they blend in with normal traffic. Polymorphic blending

attacks have been shown to successfully evade byte frequency based anomaly

detection systems by morphing in such a way that their extracted features

blend with normal traffic [117].

Since the approach advocated by this work uses n-gram based feature

extraction, it is possible that it would be bypassed by polymorphic blending

attacks. Consequently it would be interesting to investigate how the mecha-

nism proposed in this work copes with polymorphic blending attacks, and to

ascertain whether alternative feature representations such as those discussed

in Section 9.3 improve the performance.

9.1.2 Zero day vulnerabilities

Vulnerabilities are typically discovered months before worms that exploit

them are released. It is possible, however, that a worm author discovers a

previously undisclosed vulnerability and releases a worm on the same day.

Such worms are known as zero day worms. This dissertation focuses on

detecting mutations of known worms and as such will not be capable of

detecting worms on which it has not been trained, whether they are zero day

worms or not.

However, classifiers in this dissertation are built using training data that

contains both benign and malicious flows, and the classifiers learn to distin-

guish between the two classes. Using a confidence measure, such as provided

by Gaussian Processes, it may be possible to flag new and unknown flows for
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further investigation. This mechanism could be used to defend against zero

day exploits.

9.1.3 Poisoning of benign traffic

A form of attack that has been shown to fool automatic signature generators,

such as Polygraph [48], is to poison benign traffic by deliberately injecting

well-crafted noise [118]. This poisoning can be accomplished by sending

out an instance of benign traffic for every instance of malicious traffic. For

example, for every attack of a vulnerable service, a worm could also perform

a benign request to that service, which includes the exploit code, with the

only difference that the exploit will not be executed.

By poisoning the benign traffic, it becomes increasingly difficult to dis-

tinguish between malicious and benign flows. The problem is that signature

generators are at their most vulnerable in the training phase. The same is

true for machine learning based classifiers: if given mislabelled training data

they will not be able to build a good classifier.

This dissertation builds on the assumption that training data is correctly

labelled and has not been deliberately poisoned. It would be interesting

to investigate how susceptible machine learning is to poisoned traffic, and,

if found to be highly susceptible, how the classifiers could be made more

robust. A way to carry out this investigation is to feed the training stage

with deliberately mislabelled data, for example labelling 5% of the benign

data as malicious.

9.2 Designing a custom kernel

As mentioned in Section 3.2.3, a kernel conceptually measures the similarity

between two data points in a given feature space. Kernels such as the RBF

kernel deal with non-linearly separable data by implicitly mapping the data

to a higher dimensional feature space. As such, the accuracy of the classifier

depends on how suitable the feature space can represent the data at hand.

For cases where the feature space cannot readily represent the data, the



CHAPTER 9. FUTURE WORK 129

focus of recent work was to build a custom kernel [119, 71, 120]. Indeed,

the string kernel [71] used in this dissertation is a custom kernel originally

designed to categorise text documents, with good results that closely rivalled

the linear and RBF kernels but did not match their classification times (Sec-

tion 5.3.2.6).

Left for future work is the development of a custom, more discriminatory

kernel based on the model of the structural and random byte mutation gener-

ators. This could take into account the degree of mutation, data-to-signature

ratios and training data size, as well as cater natively for split, jumbled and

corrupted signatures. A guide to constructing kernels is given in [56].

9.3 Alternative feature representation

As discussed in Section 4.4, this dissertation uses n-grams to extract fea-

tures for the linear and RBF kernels. The findings of Section 5.3.3.1 suggest

that bi-grams offer superior performance over tri-grams at only marginally

less accuracy. This dissertation side-stepped values n > 3 because the num-

ber of features and hence memory requirements grow exponentially with n.

However, higher values of n could improve the classifier’s accuracy, and in-

vestigating how accuracy is affected by larger n will be insightful.

To be practically feasible, higher values of n must be approximated. One

approximation technique are 2v-grams suggested by Perdisci et al [52] as

an improvement over PayL [50], two network intrusion detection systems

outlined in Section 2.2.2. 2v-grams approximate higher numbers of n by

using a sliding window of size v + 2 when traversing the data. The idea is

to extract information about higher n-grams (n > 2) by measuring only the

occurrence frequency of byte pairs that are v bytes apart in the flow.

An advantage of 2v-grams is that they work well with sophisticated at-

tack strategies such as polymorphic blending attacks, where normal bi-grams

perform poorly [52]. On the downside, however, 2v-grams are still prone to

the curse of dimensionality, although Perdisci et al [52] suggest to reduce the

feature space by a feature clustering algorithm. Note that 2v-grams are a
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generalisation of n-grams; for v = 0 the technique degenerates to standard

bi-grams.

Another alternative approximation technique is Content-based Payload

Partitioning as used by Autograph [47] and Earlybird [14], both discussed in

Section 2.2.2. This technique divides the payload into variable length blocks

by computing Rabin fingerprints [121] over a sliding window, with the sliding

window stopping when a predefined Rabin fingerprint is matched.

Rabin fingerprints can be efficiently computed over sliding windows [121],

and have been shown to be robust to byte insertions, deletions and replace-

ments [47] – common cloaking techniques by worm authors. However, Rabin

fingerprints sometimes generate very short blocks, yielding unspecific fea-

tures and consequently a high number of false alarms. At the other extreme,

Rabin fingerprints may match the entire flow payload, leading to long signa-

tures that are unsuitable for detecting worms. The workaround suggested in

Autograph [47] is to impose maximum and minimum block lengths.

9.4 Real-time detection

In this dissertation, the machine learning classifiers enjoyed the comforts of

a lab environment where the focus was accuracy rather than speed, but to

compete in the real world they need to meet strict real-time requirements.

This section outlines how real-time performance can be improved by (a) opti-

mising flow reassembly, (b) partial flow classification, (c) dedicated hardware,

and (d) reducing the memory footprint.

9.4.1 Optimising flow reassembly

The approach taken by this work is to detect worms in reassembled flows

since this ensures that worms can be scanned in their entirety, even if they

are divided into several, potentially reordered, packets. The machine learning

classifier thus sits at the top of the network stack, freed from worrying about

packets and seeing the network traffic simply as a continuous byte stream

that it can match to its training data.
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Figure 9.1: Real-time flow reassembly using a circular buffer. The

circular buffer keeps track of two regions by way of three pointers:

(i) a sequence of unprocessed packets, and (ii) packets that the flow

analyser has requested to retain. Keeping the retained packets in

the buffer as long as possible avoids spilling them to the heap.

However, this may break strict real-time requirements if deployed in high

speed locations with immense traffic volumes, such as border gateways in

university campuses and large corporations. There is significant overhead

involved in copying data packets between physical memories, such as from

the network card to main memory, as well as copying memory between kernel

and user level. Typically, when dealing with line-rate classification, dedicated

hardware enables working off the network interface’s memory directly, rather

than resorting to copying packets into main memory.

The impact of real-time flow reassembly and possible ways of achieving it

on high speed network links was presented in [90]. Real-time flow reassembly

in [90] is accomplished through the use of special-purpose network capturing

interfaces and a circular buffer, several hundred megabytes large, as shown in

Figure 9.1. The system fills the buffer and in parallel reassembles the flows

directly from the buffer, thereby avoiding expensive memory copies.
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Figure 9.2: Partial flow classification

9.4.2 Partial flow classification

Besides possibly breaking real-time requirements, another disadvantage of

scanning fully reassembled flows is that the worm’s attack cycle must be

completed, allowing the entire flow to be reassembled, before the machine

learning classifiers begin their detection. By the time a malicious flow has

been reassembled, passed to the classifier and categorised by the classifier,

the worm may have already infiltrated the host.

A logical solution is to initiate classification when the first packets arrive

on the wire, rather than waiting for the flow to be reassembled in its entirety.

Figure 9.2 suggests how such on-the-fly classification could work in practice.

The idea is to continuously classify flows while they are being reassembled

and to use the confidence measure (as provided by Gaussian Processes) to

determine whether the information seen so far is sufficient to label the flow

as malicious or benign.

On-the-fly classification offers challenging opportunities for future work.
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What is the optimal confidence threshold? What is the average number of

packets required to make a sufficiently accurate classification? And, most

importantly, can partial classification accuracy match that of full flow clas-

sification? Exploring such questions will be an interesting addition to this

work.

9.4.3 Dedicated hardware

A further possibility worthy of investigation is to improve real-time perfor-

mance by running the classifier (in whole or in part) on dedicated hardware.

To be effective, the dedicated hardware should sit as close as possible to

the network hardware, such as border routers and gateways, preferably even

share the same physical memory so that network flows can be examined

instantly.

The dedicated hardware could take the form of a custom-designed inte-

grated circuit (IC) chip, which offers the maximum possible performance.

On the downside, a classifier fully hardwired into a circuit will be hard to

upgrade, tune and debug. Greater flexibility, albeit at a slight performance

cost, could be gained by using configurable hardware such as that provided

by NetFPGA [122].

9.4.4 Reducing the memory footprint

As mentioned in Section 4.4.2, even with bi-gram extraction a feature vector

consists of 65, 536 entries, possibly straining the available memory resources

for a large number of flows in a real-time environment. Future work could

investigate reducing the memory footprint, for example using the following

methods:

• Feature selection. This involves selectively removing features from

the feature space and repeating the experiments to see if the accuracy

can be maintained without the removed features. Libsvm ships with a

tool that performs this selective feature removal [123].
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• Sparse matrices. Instead of storing all entries of the feature vector

in an array, only the non-zero items could be stored in a sparse repre-

sentation. Libsvm offers the option to store feature vectors as dense or

sparse matrices [98].

9.5 Online training

The machine learning classifiers used in this work separated training and

classification not just by function but also by time: training is done offline

and the results fed to the classifier for online use. As it stands, the only way

to update the classifier is to train a new classifier offline in the background

and hotswapping it in when ready.

Retraining the classifier online offers the advantage of being able to contin-

uously improve classifiers while they are in operation, potentially improving

their accuracy. The basic approach is to keep training classifiers incremen-

tally with fresh training data, as for example shown in [124]. Incremental

learning raises a number of intriguing questions for future work:

• Should the fresh training data be added when new training data is

available, or should the training data be collected and bundled before

updating the classifier? If bundled, what bundle size will yield the best

speed-accuracy trade-off?

• Should fresh training data (bundled or not) be added as soon as it is

available, or only when the system is under light load? Is it possible to

add the training data without risking that worms slip past during the

update?

• How does legacy data affect the classifier’s speed and accuracy? Can

legacy data be phased out as fresh training data is phased in?
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Figure 9.3: Manual analysis in uncertain cases.

9.6 Cascading classifiers

As a stand-alone classifier, Support Vector Machines have consistently per-

formed more accurately than Gaussian Processes throughout this disserta-

tion. At the same time, the confidence measure returned by Gaussian Pro-

cesses has been shown to be a valuable tool since it offers another angle on the

classification – it can be flagged for further processing when the confidence

is low.

It would thus be interesting to investigate how accurately a chain of clas-

sifiers performs with Gaussian Processes as the primary classifier, handing

off to a secondary classifier in cases of uncertainty. What are possible can-

didates for the secondary classifier? Two possible options are a) to involve a

human operator to manually analyse the prediction, and b) to hand off fur-

ther analysis to a refined machine learning classifier that is slower but more

accurate.

9.6.1 Manual analysis

A possibility is to transfer control to a manual analysis stage where a human

operator examines the flow. The manual analysis stage could be used both

as a last resort if all else fails, and as a reinforcement mechanism for the

machine learning algorithms in the early stages when the training data is

still fresh.
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Figure 9.4: Adding new training data in manual analysis.

How might an interface for a human operator look? When the classifier

is uncertain about it’s classification, the human analysis stage is notified

and prompts the operator as in Figure 9.3. The operator can then decide

whether to accept the classification, ignore it or view details. The details of

the worm mutation could be displayed in tcpdump format augmented with

flow statistics, such as byte frequency distributions, for the human operator

to make an informed decision.

The operator’s input affects the accuracy of future predictions. If the

operator rejects the classification, then the system will be less confident upon

the next similar encounter. If the operator accepts the classification, the

system will be more confident.

After asking the operator the same question a number of times (say, 10

times), the system can prompt the operator as in Figure 9.4. The operator

can then decide whether the system should continue to prompt him, perform

the action automatically, or add the discovered mutation to the database.

Adding the signature to the database triggers the machine learning technique

to retrain its classifiers.

9.6.2 Refined machine learning analysis

Rather than introducing a human operator into the loop, another option is

to use an automated, more refined second machine learning classifier. This
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classifier is slower – based on the understanding that only a fraction of the

predictions by the Gaussian Processes will require further attention – but

must be more accurate than the primary Gaussian Processes classifier.

Which machine learning classifier meets these requirements for the sec-

ondary classifier? One possibility is to equip the secondary classifier with

a special-purpose kernel for detecting worm mutations, as outlined in Sec-

tion 9.2. Another possibility is to use a different feature representation such

as higher n-gram values, as discussed in Section 9.3.

9.7 Scalability

The approach taken by this dissertation is to build a binary classifier for a

single worm that determines whether a flow is a mutation of that worm. This

implies that a classifier must be built for each known worm. A question left

for future work is whether this system scales well with a large number of

worms, and if not, how the system can be made more scalable.

A potential option to increase scalability is to build multi-class classifiers

that can distinguish between more than two classes (worms). Gaussian Pro-

cesses, and K-nearest neighbours support multi-class classification natively,

while Support Vector Machines have to resort to workarounds such as one-

versus-rest [56]. It would be insightful to repeat the experiments in this

dissertation on popular SVM extensions for multi-class classification, such as

those compared in [100].

Another approach to scale the system is to build multiple binary classifiers

(that is, one for each worm) and distribute them over to multiple machines,

for example, one per classifier. There are a number of pitfalls when dis-

tributing to multiple machines, including but not restricted to unnecessary

and time-consuming copying of data between machines. Considerable care

must be taken that only necessary information flows between machines.

A lighter approach to distribute the system is to physically factor out the

training to dedicated machines that build classifiers and upload these to the

classification machines when ready.
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9.8 Summary

This chapter explored opportunities for future work:

• Defending against sophisticated worm attack strategies. Worm

authors often go to great lengths to ensure their worms evade detection,

for example by building polymorphic worms that mutate themselves

at each network hop, or by poisoning benign traffic with fake worms.

Future work could investigate how robust the machine learning classifier

is to such sophisticated worm attack strategies.

• Designing a custom kernel. A kernel measures the similarity be-

tween two data points in a given feature space, and as such the accuracy

of the classifier depends on how well the feature space can represent

the data at hand. Left for future work is the development of a custom,

more discriminatory kernel based on the model of the mutation gener-

ators. Future work can investigate whether such a custom kernel can

further improve the accuracy of this dissertation’s classifier.

• Alternative feature representation. This work investigated uni-

grams, bi-grams and tri-grams to extract features for the linear and

RBF kernels, but higher value n-grams could improve the classifier’s

accuracy further. Since the number of features grows exponentially

with n, this requires approximation techniques such as 2v-grams or

Content-based Payload Partitioning.

• Real-time detection. Future work can improve real-time perfor-

mance by a) optimising flow reassembly by directly accessing the net-

work interface’s physical memory, b) classifying worms with only par-

tially reassembled flows, and c) placing the classifier on dedicated hard-

ware such as custom-built integrated circuit boards or reconfigurable

hardware.

• Online training. This work’s machine learning classifiers perform

training offline, meaning that when new training data arrives a new

classifier has to be built and hotswapped with the old classifier. Future
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work could investigate whether training the classifier online can fur-

ther improve its accuracy. A possible approach is incremental learning,

where the classifier is fed with new training data during live operation.

• Cascading classifiers. While the standalone Support Vector Ma-

chines has consistently performed more accurately than Gaussian Pro-

cesses, it would still be interesting to see how effectively Gaussian Pro-

cesses and its confidence value work in a chain of classifiers. Possible

candidates for the secondary classifier handling uncertain cases are a

human operator performing manual analysis, and a refined machine

learning classifier that is slower but more accurate.

• Scalability. A task open for future work is to investigate the scala-

bility of this work’s implementation for large numbers of worms. One

approach is to upgrade the binary classifier to a multi-class classifier.

Another approach is to distribute the system, for example by separat-

ing the training and classification stages onto two machines. A step

further is to distribute the system onto one machine per classifier.



Appendix A

Formulas of Support Vector

Machines

In its basic, linear form, Support Vector Machines is a hyperplane that max-

imises the distance to the support vectors in a training data set. The distance

of vector x to the hyperplane is given by:

u = !w · !x− b (A.1)

where w is the normal vector to the hyperplane. The separating hyperplane

is defined by u = 0, and the nearest points line on the planes which u = ±1.

Thus the margin m is

m =
1

||w||2 (A.2)

The problem of maximising the margin can be stated as an optimisation

problem [63]

min
1

2
||!w||2 subject to yi(!w · !x− b) ≥ 1,∀i (A.3)

where xi is the ith training data item and yi ∈ {1,−1} its corresponding label.

By applying a Lagrangian the optimisation problem can be converted into

a Quadratic Programming problem where the objective function Ψ depends

140
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solely on the Lagrange multiplier α:

min
!α

Ψ(!α) = !α
min

1

2

N∑

i=1

N∑

j=1

yiyj(!xi · !xj)αiαj −
N∑

i=1

αi (A.4)

where N is the number of training data items. The Lagrangian is constrained

by the inequality

αi ≥ 0,∀i (A.5)

and the linear equality
N∑

i=1

yiαi = 0 (A.6)

The normal vector !w and the value of b can be calculated once the the

Lagrange multipliers have been found:

!w =
N∑

i=1

yiαi !xi, b = !w · !xk − yk for some αk > 0 (A.7)

For non-linearly separable data sets there will be no separating hyper-

plane, yielding an infinite solution in the above formula. Cortes and Vap-

nik [15] modified the optimization problem in Equation A.3 to allow (but

penalize) cases when no correct margin can be reached:

min
!w,b,!ξ

1

2
||!w||2 + C

N∑

i=1

ξi subject to yi(!w · !x− b) ≥ 1− ξi,∀i (A.8)

where ξi are slack variables that take into account margin errors, and the C

parameter is the softness of the margin – it trades off margin width with the

number of margin errors. Transforming the optimisation problem into dual

form changes the constraint in Equation A.4 into a box constraint:

0 ≤ αi ≤ C,∀i (A.9)



Appendix B

Receiver Operator

Characteristics Graphs

Receiver operator characteristics (ROC) [96] curve analysis presents a way

of quantifying the trade-off between the detection rate (true positives) and

the false alarm rate (false positives). ROC curves have their roots in signal

detection and medical decision-making, and have recently become a popu-

lar way of analysing machine learning classifiers. This chapter presents an

overview of ROC curve analysis, following [125].

B.1 ROC graphs

ROC graphs are a two-dimensional depiction of the accuracy of a signal

detector plotting the true positive (y-axis) rate against the false positive

rate (x-axis) respectively as shown in Figure B.1. The true positive rate is

calculated by dividing the number of true positives by the total number of

positives, and the false positive rate is calculated by dividing the number of

false positives by the total number of negatives.

These two rates change in relation to another. That is, when the true pos-

itive rate is high, the false positive rate will be low, and vice versa. Naturally

this means that these two rates can be equal somewhere in the middle.

The basic idea of ROC graphs is to provide a visualisation of the trade-off
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Figure B.1: Receiver operator characteristics (ROC) graph space

showing (i) the line of random performance, (ii) liberal and con-

servative regions, (iii) the point of perfect performance, and (iv)

the points of all positive and all negative classifications.

between the true and false positive rates, and hence an understanding of the

accuracy of a classifier.

There are several general areas of interest in a ROC graph, as illustrated

in Figure B.1. First, the diagonal dividing line that connects the bottom left

to the top right corner represents random performance (guessing). Points

that lie above this line are better than random and points below this line are

worse than random. In theory, for classifiers there should be no points below

this dividing line because classifiers that perform worse than random could

be mirrored into the top half by simply inverting their outputs.

The top half of this diagonal line can be further split in half with a

perpendicular line. The left half of this new division shows conservative

(higher true positive than false positive rates) classifiers, whereas the right
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(c) Poor performance

Figure B.2: Receiver operator characteristics curves for various

performances.

half shows liberal (lower true positive than false positive rates) classifiers.

Classifiers in the conservative region make fewer false positive decisions,

with the extreme point being the bottom left corner which indicates a clas-

sifier that classifies all instances as negative. This means, on the one hand,

that it will not produce any false positives, but on the other hand, will not

produce true positives either.

In the liberal region classifiers exhibit a good true positive rate but com-

mit a significant amount of false positives. Again, with the extreme case

being the top right corner, which represents a classifier that marks every-

thing as true.

Finally, the point in the top left corner represents a perfect classifier.

This classifier has a 100% true positive rate and a 0% false positive rate.

This point can also be used as a reference point whereby other points on the

ROC graph can be ranked by their distance to it.

B.2 ROC curves

The true advantage of ROC graphs does not come from single point interpre-

tation, but from the ability to characterise a classifier’s performance model

as a curve. Figures B.2(a), B.2(b), and B.2(c), show the curves for an almost
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perfect classifiers, a good classifier, and a poor classifier respectively.

To aid the interpretation of ROC curves, it is important to understand

how they are constructed. Obtaining a single point in the ROC space from a

classifier is straightforward by simply calculating the true and false positive

rates for a classification. But how can a single run like this be transformed

into a curve?

Curves are obtained from classifiers that attach a probability or ranking

to each prediction. For each possible probability1 or ranking a point is plot-

ted in the ROC space. These points joined together form the ROC curve.

As with the ROC graph itself, the left half of the curve represents the classi-

fier’s performance under high (conservative) decision thresholds and the left

represents the classifiers performance under low (liberal) decision thresholds.

Curves can also be obtained for classifiers that do not yield a probability

or ranking with each prediction. One method is to obtain a confidence value

in an ad-hoc manner, such as calculating the distance to a SVM’s separating

hyperplane. Another way of obtaining an estimate is to sort the test set’s

individual classifications by their confidence values and then iterating over

these values, computing true and false positive rates for all classifications up

to and including the current value.

B.3 Area under curve

A single metric that can be obtained from these curves is the total area

under the curve (AUC) [97]. Classifiers with larger areas perform better, on

average, than classifiers with lower areas. Nevertheless, it is still possible for

classifiers with lower AUC’s to perform better than classifiers with higher

AUC’s for some regions of the graph.

1The default decision or probability threshold of classifiers is typically 0.5.



Glossary

Anomaly detection In intrusion detection, anomaly detection systems are

equipped with a model of normal traffic. The idea is to detect in-

trusions by searching for traffic that does not correspond with this

model.

Botnet A network of infected hosts that can be remote controlled to perform

potentially malicious tasks.

Data-to-signature ratio The amount of data (padding) relative to the size

of the signature.

Decision surface see separating hyperplane.

Distributions (mathematics): generalisation of functions and probability

distributions

False negative Erroneously classifying something as negative, for example,

erroneously classifying malicious data as benign.

False positive Erroneously classifying something as positive, for example,

erroneously classifying benign data as malicious.

Flow see TCP/IP flow.

Gaussian Processes A machine learning technique that yields similar re-

sults to Support Vector Machines, with the addition of returning a

confidence value as part of its result.

Hyperplane See separating hyperplane.
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Intrusion detection systems Intrusion detection systems are special pur-

pose monitoring systems that attempt to identify break-ins.

K-nearest Neighbours A simple machine learning technique that surpris-

ingly often performs well.

Kernel Conceptually, kernels equip machine learning techniques such as

Support Vector Machines, with the ability to map non-linearly sep-

arable data points into different dimensions where they are linearly

separable.

Linear kernel The standard SVM kernel that tries to find a dividing hyper-

plane by calculating the dot product on pattern vectors in the original

feature space.

Machine learning A sub-discipline of artificial intelligence and involves de-

veloping algorithms that allow computers to learn.

Misuse detection In intrusion detection, misuse detection systems are equipped

with models of known intrusions (or signatures). These models, known

as signatures, are used to identify intrusions by looking for matches in

the network traffic.

N-gram extraction A feature extraction technique counts occurrences of

all character combinations of size n, typically by linearly scanning the

data.

Network intrusion detection systems Network intrusion detection sys-

tems, are specially designed to focus on network related intrusions.

These systems are typically deployed at network gateways in organi-

zations, allowing them to act as filters for any incoming traffic.

Perceptron A type of artificial neural network that builds linear classifiers.

Predictive likelihood The confidence measure in Gaussian Processes, which

is the sum (or in some cases the average) logarithms of all predictive

posteriors.
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Radial basis function (RBF) kernel A kernel that applies a Gaussian

function to the pattern vectors, implicitly taking them to a higher

space.

Separating hyperplane A line (2-dimensions), or hyperplane (higher di-

mensions) that divides the training data into disjoint groups. Equipped

with a separating hyperplane, a classifier can then label a given test

data point based on its position relative to the hyperplane.

Signature Effectively a fingerprint that can be used to uniquely identify

intrusions, such as worms. In its simplest form, it consists of a string

of characters (or bytes).

String kernel A kernel, originally developed for categorising text docu-

ments, that maps the input strings into the feature space generated by

all sub-sequences of a given size, where it applies the inner product.

Supervised learning Learning with labelled training data.

Support Vector Machines A machine learning technique known to per-

form particularly well at pattern recognition tasks such as text cate-

gorisation and hand-written digit recognition.

Support vectors In Support Vector Machines, support vectors are the key

data points close to the hyperplane that, if removed, would change the

location of the hyperplane.

TCP/IP flow Transmission Control Protocol (TCP) or User Datagram

Protocol (UDP) packet streams, where a stream is identified by the

source Internet Protocol (IP) address, source port number, destination

IP address, and destination port number.

True negative Correctly classifying something as negative, for example,

classifying benign data as benign.

True positive Correctly classifying something as positive, for example, clas-

sifying malicious data as malicious.
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Unsupervised learning Learning with unlabelled training data, such as

clustering.

Worm Worms are malicious programs that spread themselves to hosts on

the Internet by exploiting vulnerabilities in software applications.
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