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Abstract 
 

Trypanosoma brucei is an evolutionarily divergent eukaryotic parasite of mammals in sub-

Saharan Africa and is transmitted by the tsetse fly vector.  To evade the mammalian 

immune response, T. brucei utilises antigenic variation, which involves switches in the 

Variant Surface Glycoprotein (VSG) expressed on the cell surface.  Such reactions can 

occur at very high rates (~10-3 switches/cell/generation) and occur primarily by the 

recombination of VSG genes, selected from an enormous silent archive, into specialised 

expression sites.  It has been previously shown that such VSG switching is a form of 

homologous recombination, as mutation of RAD51 and a related gene, RAD51-3, impairs 

the process. 

BRCA2 has emerged as a significant regulatory factor during RAD51-catalysed 

recombination.  In humans, BRCA2 contains eight BRC repeats, six of which have been 

shown to bind RAD51.  Similar repeats are present in BRCA2 from other organisms, 

though normally in smaller numbers.  This thesis describes a T. brucei BRCA2 homologue 

that appears exceptional in that it contains up to 12 BRC repeats.  Furthermore, the 

sequence degeneracy that is observed between the BRC repeats in most organisms is 

absent in T. brucei, with all but the C-terminal proximal repeat being identical.  It was 

hypothesised that this unusual BRCA2 organisation is due to the high levels of RAD51-

directed recombination needed during antigenic variation.   

To examine the function of the putative T. brucei BRCA2 homologue, mutants were 

generated and found to display impaired growth, sensitivity to induced DNA damage, 

impairment in the ability to form sub-nuclear RAD51 foci, a reduced ability to recombine 

DNA constructs into their genome and a reduction in frequency of VSG switching, all of 

which are consistent with roles for BRCA2 in DNA repair and recombination.  

Furthermore, genome instability in the mutants was observed through the loss of silent 

VSG gene copies and substantial reductions in the size of the mega-base chromosomes.  

Interestingly, other chromosome classes (the so-called mini- and intermediate-

chromosomes) appear not to be susceptible to such instability.  

A potentially novel function for BRCA2 was identified through DNA content analysis of 

the T. brucei BRCA2 mutants.  Mutation of BRCA2 was shown to result in an accumulation 

of cells with aberrant DNA content that is most readily explained by an increased number 

of cells that undergo cytokinesis without having completed nuclear division, phenotypes 

that are not observed in other T. brucei recombination mutants, such as RAD51.  This result 
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suggests that BRCA2 has a role in the regulation of cell division, with mutation causing 

impaired replication of T. brucei nuclear DNA, but without a cell cycle stall, leading to the 

accumulation of chromosomal aberrations.   

In order to investigate the potential role of T. brucei BRCA2 in DNA replication and the 

unusual BRC repeat organisation phenotypes further, various truncations of BRCA2 were 

expressed in a mutant background.  Cell lines expressing BRCA2 with only 1 BRC repeat 

displayed reduced efficiency in recombination, DNA repair and RAD51 foci formation, 

indicating that the large BRC repeat expansion in T. brucei BRCA2 plays a critical role in 

the proteins function.  Expression of a BRCA2 variant encompassing only the region of the 

protein, C-terminal to the BRC repeats appeared able to function, at least partially, in 

regulating cell cycle progression.  Moreover, this DNA replication role appears not to be 

provided by conserved DNA binding motifs present within the C terminus of BRCA2 since 

a fusion of T. brucei BRCA2 and the parasites homologue of the replication protein A 70 

kDa subunit was impaired in cell division, but was proficient in repair of DNA damage.  

Taken together, these data infer that T. brucei BRCA2 possesses a function that is distinct 

from BRCA2’s role as a regulator of RAD51, and acts in DNA replication or cell division. 

In addition to the above research on BRCA2, I sought to examine the factors that interact 

with RAD51 in T. brucei.  This work demonstrated that it is possible to add an epitope tag 

for tandem affinity purification (TAP) to the N-terminus of RAD51 in both the 

bloodstream and procyclic stages of T. brucei without disrupting its function.  Preliminary 

data suggest that TAP is potentially a feasible way of examining RAD51 interacting 

factors.   
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1.1 General introduction 
Trypanosoma brucei is a protozoan parasite which belongs to the family 

Trypanosomatidae, of the class Kinetoplastida and the phylum Euglenozoa.  The 

Kinetoplastida are highly divergent and present an unusual aspect of biology, such as 

extensive trans-splicing and RNA editing (Sogin et al., 1986;Sogin et al., 1989).  

Phylogenetic analysis of many eukaryotic protein sequences suggest that Kinetoplastida 

diverged from a common ancestor approximately 1.98 billion years ago (figure 1.1) 

(Hedges et al., 2004).  They are characterised by the possession of the kinetoplast, which is 

an unusual DNA network that forms an integral part of the mitochondrial system.  The 

Trypanosomatidae include many vertebrate parasites (Maslov et al., 2001), such as 

Leishmania, Trypanosoma and Endotrypanum, all of which are transmitted by insects.  The 

Trypanosoma genus includes Trypanosoma cruzi, which causes Chagas disease in the New 

World, and the African Salivarian branch including Trypanosoma congolense, 

Trypanosoma vivax and Trypanosoma brucei, which causes Human African 

Trypanosomiasis (or Sleeping sickness) in humans and Nagana in cattle. 

African trypanosomes are typically distinguished from other organisms belonging to the 

Kinetoplastida by their ability to survive extra-cellularly, due to having evolved antigenic 

variation processes for immune evasion.  They undergo antigenic variation through the 

periodic switching of their major surface antigen, Variant Surface Glycoprotein (VSG).  

This process allows the parasite to establish chronic infections in the vertebrate hosts, 

which can often be fatal.  Most research to date has been conducted on T. brucei, due to it 

being the only one to infect humans, and because in vitro growth is relatively easy in 

laboratory conditions.  T. congolense and T. vivax, whilst not being infective to humans, 

are important livestock pathogens, with the former being the most widespread and the 

latter, the most pathogenic. 

T. brucei is classified into three subspecies: T. brucei brucei, which does not have the 

ability to infect humans and T. brucei gambiense and T. brucei rhodesiense, which are 

human infective.  T. b. brucei is believed to be incapable of infecting humans due to a 

high-density lipoprotein, called trypanosome lytic factor (TLF), that is found in human 

serum and lyses the parasites (Hajduk et al., 1992;Smith and Hajduk, 1995;Smith et al., 

1995).  T. brucei gambiense and T. brucei rhodesiense, conversely, are resistant to lysis in 

vitro by human serum and are therefore capable of infecting humans, a phenotype which 

has been attributed to the action of one or a few genes (Turner et al., 2004).  In T. b. 

rhodesiense, the product of the serum resistance associated gene (SRA) has been 



Claire Louise Hartley, 2008   Chapter 1, 3 

determined as being responsible for this phenotype (Oli et al., 2006).  However, the extent 

to which these subspecies are truly distinct has recently been called into question, with the 

presence of an intermediate phenotype in T. b. brucei being uncovered, which has the 

ability to develop resistance upon prolonged exposure to human serum (Turner et al., 

2004).  This intermediate phenotype could well have arisen due to genetic exchange 

occurring between the subspecies (section 1.1.2). 

 
Figure 1.1 – A phylogenetic tree of a number of eukaryotes.  A phylogenetic tree of a number 
of eukaryotic organisms was constructed based upon a number of protein sequences and used to 
calculate the divergence of various organisms from the tree.  T. brucei belongs to the Euglenozoan 
order, circled in red.  Taken from Hedges et al., 2004.   
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1.1.1 Symptoms, prevalence and treatment of Human African 

Trypanosomiasis 

African trypanosomes are extracellular parasites, which proliferate in the lymphatic and 

vascular systems of their mammalian host.  The early stage of the disease is characterised 

by fever, anaemia, lack of appetite and wasting caused by interstitial inflammation and 

necrosis within the capillaries of major organs (Vickerman, 1985).  If the infection is 

allowed to progress, the parasites eventually cross the blood brain barrier.  This late stage 

infection is characterised by motor and sensory disorders, sleep disturbances, followed by 

seizures and finally coma.  If untreated, sleeping sickness is always fatal (Sternberg, 2004). 

In 1986, the World Health Organisation estimated that 70 million people lived in areas 

where T. brucei disease transmission could take place, namely in sub-Saharan and 

equatorial Africa.  In 1998, almost 40,000 cases were reported, but it was estimated tha

the actual number of cases was between 300,000 and 500,000.  The seriousness of the

disease was fu

t 

 

rther highlighted by the fact that in certain areas sleeping sickness was 

considered to be a greater cause of mortality than HIV or AIDS.  By 2005, surveillance had 

 the continent had 

ted 

oblems, including side effects and an increasing rate of treatment failure 

(Barrett et al., 2003;Kennedy, 2004).  Pentamidine is used in the treatment of the first stage 

 

cond stage cases of T. b. gambiense and T. b. 

rhodesiense infections.  Fatalities have been known to occur with this treatment, but the 

ulsions.  

been reinforced and the number of new cases reported throughout

substantially reduced.  Currently, the estimated number of cases lies between 50,000 and 

70,000 (http://www.who.int/mediacentre/factsheets/fs259/en/). 

Only four drugs are registered for the treatment of sleeping sickness, and all are associa

with major pr

of a T. b. gambiense infection and is a diamidine compound with antiprotozoal activity.  

Some of the observed side effects from pentamidine treatment include nephrotoxicity and

pancreatic damage.  A second drug, suramin, is used for first stage T. b. rhodesiense 

infections and is a complex derivative of urea with antiprotozoal activity.  This drug has 

the ability to enter extracellular spaces but cannot cross the blood-brain barrier.  Some of 

the observed adverse effects are heavy proteinuria, stomal ulceration, exfoliative 

dermatitis, severe diarrhoea, prolonged high fever and prostration.  Melarsoprol is an 

organic arsenical compound that has the ability to enter the central nervous system, thereby 

making it a suitable drug for treating se

most common side effects include headache, tremor, slurring of speech and conv

Finally, eflornithine is used for the treatment of both early and late stage T. b. gambiense 

infections.  It is an ornithine derivative that acts by inhibiting the enzyme ornithine 
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decarboxylase, which is involved in polyamine synthesis in trypanosomes.  The most

common side effects include diarrhoea, anaemia, leukopenia, thrombocytopenia and 

convulsions.  

1.1.2 The life cycle of T. brucei 

T. brucei has a complex life cycle, proliferating in both the bloodstream of the mam

host, and in the midgut and salivary glands of the tsetse fly (Glossinidae family).  Each of 

these provides a contrasting environment and the parasite has therefore developed sever

distinct life cycle stages, which allow it to proliferate and transmit through each stage 

(figure 1.2). 

The metacyclic form of the trypanosome is transmitted into the mammalian host when the 

tsetse fly takes its blood meal, injecting trypano

 

malian 

al 

somes below the skin.  Metacyclic form 

cells develop in the salivary glands of the tsetse fly and possesses an MVSG (Metacyclic 

Variant Surface Glycoprotein) coat (Tetley et al., 1987), which serves to not only protect 

against the alternative complement system, but also to hide the invariant surface molecules 

from the hosts acquired immune system.  In order for the trypanosome to be capable of 

transmitting from the fly into a vertebrate host, the cell cycle arrests, lying in the G0 phase.  

If the metacyclic form cells fail to transmit into a mammalian host, the cells die (Matthews 

and Gull, 1997;Shapiro et al., 1984).   

Once present in the mammalian bloodstream, the non-dividing metacyclic form 

trypanosomes differentiate into the long slender bloodstream form trypanosomes.  These 

are distinguishable physiologically, and also by the fact that the MVSG coat is replaced 

with bloodstream form VSGs and the cells proliferate by rapid mitotic division.  An 

infection is capable of establishing and being maintained in the mammalian host by the 

trypanosome population evading the host’s immune system.  This is achieved by antigenic 

variation, which occurs by periodic, spontaneous changes of the VSG being expressed, 

which contributes to peaks of parasitaemia that correspond to parasite populations 

f 

eir 

tiation of 

expressing antigenically distinct VSGs (Capbern et al., 1977).  The fluctuations in 

parasitaemia result from immune reactions generated against VSGs causing destruction o

a majority of the parasite population.  However, a small proportion that switched th

VSG to an antigenically distinct variant manages to escape.  These continue to proliferate 

and establish another parasitemic peak, but are, in turn, eliminated by host immunity.  

Another contributing factor to this succession of parasitemic waves is the differen
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long slender form trypanosomes into non-dividing short stumpy forms, which occurs

parasitaemia peaks (Gruszynski et al., 2006).   

 as the 

 
Figure 1.2 – The T. brucei life cycle.  T. brucei life cycle stages are shown as scanning electron 
micrographs, shown to scale; an erythrocyte is shown next to the long slender bloodstream stage 
for comparison.  The host organism and the name of the life cycle stage are indicated.  Circular 

t 

transmitted to the tsetse fly when the fly feeds (Turner et al., 1995).  In addition, the short 

Once ingested by the tsetse fly, short stumpy form trypanosomes differentiate into 

 

arrows represent replicative stages, whereas straight arrows represent differentiation and 
progression through the life cycle.  Taken from Barry and McCulloch, 2001.   

This differentiation is density dependent, which occurs due to the accumulated secretion of 

a low molecular weight factor, termed stumpy induction factor (SIT), from the long slender 

form trypanosomes.  The SIT induces a growth arrest through a cyclic adenosine 

monophosphate (cAMP) signalling pathway (Vassella et al., 1997).  The short stumpy 

form trypanosomes, similar to the metacyclic forms, have a finite life if they are no

stumpy form trypanosomes are pre-adapted to life in the tsetse fly, with metabolic changes 

which allow them to switch from the glucose energy source in the bloodstream to the 

proline energy source found in the tsetse fly midgut (Hendriks et al., 2000).  However, 

despite this, the majority of trypanosomes do not survive long enough to differentiate to 

procyclic form cells (Van den Abbeele et al., 1999). 

procyclic form cells within hours of the tsetse fly ingesting its feed (Hendriks et al., 

2000;Matthews et al., 2004).  This differentiation involves cell lengthening, re-positioning
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of the kinetoplast, expression of procyclins on the cell surface and release from cell cycle 

arrest (Roditi et al., 1998;Liniger et al., 2004).  The procyclin coat consists of different 

variants of procyclins, each of which are composed partly by internal amino acid repeat 

motifs, and expressed differentially throughout the tsetse infection (Acosta-Serrano et al., 

clin contains internal Glu-Pro repeats, whilst 

n the tsetse 

l 

en Abbeele et al., 1999). 

, 

 

uting to 

on of 

ate 

riman et al., 2005), and 

represent a haploid genomic content of 26 Mb, containing 9068 predicted genes that 

includes ~900 pseudogenes and ~1700 T. brucei specific genes.  Megabase chromosomes 

vary in size from 0.9 to over 6 Mb and have been named I to XI in order of increasing size 

2001;Roditi and Liniger, 2002).  EP procy

GPEET procyclin contains Gly-Pro-Glu-Glu-Thr repeats.  Whilst the exact function of the 

procyclin coat is unknown, it is thought to protect against trypanocidal factors i

midgut and prevent differentiation from tsetse specific factors (Roditi and Liniger, 2002). 

Procyclic form trypanosomes continue to proliferate in the midgut of the tsetse fly before 

migrating to the anterior end of the midgut and differentiating into the very long 

mesocyclic form.  Mesocyclic form trypanosomes enter the tsetse fly’s foregut and 

proboscis whilst simultaneously replicating their DNA to become 4N.  An asymmetrica

division then occurs, which results in a small daughter cell that differentiates into the 

epimastigote form and a larger daughter cell, which is presumed to be unable to 

differentiate and therefore fails to survive (Van d

Epimastigote form trypanosomes are proliferative cells and migrate to the salivary glands

where they become attached.  It is here that genetic exchange between different T. brucei

strains is thought to take place (Tait and Turner, 1990;Gibson et al., 1995), contrib

genetic diversification of the parasite (Schweizer et al., 1988).  Finally, differentiati

the epimastigote form trypanosomes results in the mammalian infective metacyclic form 

trypanosomes, completing the life cycle.  

It is important to note that some laboratory strains have lost the ability to be transmitted 

through the fly and have been termed monomorphic as only the long slender bloodstream 

form is present in the vertebrate stage.  Other strains, which are capable of completing the 

life cycle, have subsequently been termed pleomorphic (Matthews and Gull, 1994;Wijers 

and Willet, 1960). 

1.1.3 The genome of T. brucei 

The T. brucei genome consists of 11 diploid megabase chromosomes, a set of intermedi

sized chromosomes and a large number of mini-chromosomes.  The megabase 

chromosomes of the strain TREU 927/4 have been sequenced (Ber
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(Melville et al., 1998).  Genomic content can vary by as much as 25 % between T. brucei 

d 

, 

ediate chromosomes and vary in the length of non-repetitive 

subtelomeric sequences they possess (Wickstead et al., 2004).  It has been suggested that 

the 

sion 

for 

t 

El Sayed et al., 2003;Johnson et 

al., 1987).  Mature mRNA is produced from the polycistronic transcript by a process of 

olves the addition of a 39 nt capped 

strains, as can the sizes of individual chromosomes between allelic copies in the same 

strain (Melville et al., 2000;El Sayed et al., 2000).  This large degree of fluctuation is 

thought to be largely due to telomeric and subtelomeric rearrangements that are associate

with antigenic variation (Callejas et al., 2006).   

The intermediate chromosomes vary in number between strains (between 1and 7), are of 

uncertain ploidy and range in size from 200-900 kb (Wickstead et al., 2004).  The ~100 

mini-chromosomes range from 50-150 kb and are composed of mainly repetitive, 

palindromic sequences, known as the 177 bp repeats, which are also present in the 

intermediate chromosomes (Wickstead et al., 2004;El Sayed et al., 2000;Wickstead et al.

2003a).  The 177 bp repeats have been shown to be present in the core of these smaller 

chromosomes in an inverted symmetry (Wickstead et al., 2004).  These repeats are less 

abundant in the interm

these 177 bp repeats play an important role, whereby they help in the maintenance of 

mini-chromosomes and intermediate chromosomes through associating with replication 

bubbles (Weiden et al., 1991).  To date, only VSG and expression site associated genes 

have been found on the minichromosomes (Wickstead et al., 2004;Rudenko et al., 

1998;Melville et al., 2000), and none have been found to possess an active VSG expres

site, unlike in the intermediate chromosomes.  This therefore suggests that in order 

these VSGs to be expressed, they must either be duplicated into an active expression site or 

be part of a telomere exchange with one (El Sayed et al., 2000).   

1.1.4 Transcription and translation 

The genes of T. brucei are orientated unidirectionally over long distances and are though

to be transcribed polycistronically (Berriman et al., 2005;

trans-splicing and polyadenylation.  Trans-splicing inv

RNA, termed the ‘spliced leader’ to the 5′ end of mRNA, whilst polyadenylation of 

mRNAs occurs at the 3’ end (Ullu et al., 1993;Matthews and Gull, 1994;Clayton, 2002).  It 

appears that the trans splicing and polyadenylation are inextricably linked, since inhibiting 

either process prevents the other (Ullu et al., 1993).  Addition of the spliced leader RNA 

adds a cap to the mRNA, and this structure appears unique to kinetoplastids, consisting of 

7-methylguanosine and 4 methylated nucleotides (Bangs et al., 1992).  Polyadenylation 

signals also appear unusual, due to being poorly defined and occurring at a fixed distance 
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upstream of the splice signal of the downstream gene in the polycistron (Matthews

Gull, 1994). 

T. brucei transcription also appears unusual in the action of the polymerase enzymes 

involved.  In most eukaryotes, transcription is mediated by 3 types of RNA polymerase: 

RNA pol I generates rRNA, RNA pol II produces mRNA, and RNA pol III yields tRNA 

(Rutter W Jr et al., 1976;Cramer, 2002;Tamura et al., 1996).  In T. brucei, it is RNA po

 and 

l II 

that appears to be primarily responsible for polycistronic transcription (Devaux et al., 

pol 

 

the 

al 

ensed an alteration in the environment.  

Instead, many organisms have adopted a strategy which generates diversity in the 

 environmental changes and continue the infection.  The 

variety 

echanism is found in Haemophilus influenzae.  H. influenzae is 

2006).  Notable exceptions are found in VSG and procyclin expression, which are 

transcribed by RNA pol I (Navarro and Gull, 2001).  This is the only example of RNA 

I transcription directing expression of protein-coding mRNAs, and is thought to occur in 

order to allow for the high of levels transcription needed for these abundant proteins 

(Gunzl et al., 2003).  In contrast, tubulin-encoding mRNAs, which are transcribed by RNA

polymerase II, are found in relatively similar abundance because multiple copies of 

gene are found in the genome (Kooter and Borst, 1984). 

1.2 Phase and antigenic variation 
Pathogenic organisms face many challenges in order to ensure their long term surviv

within a host.  These include the crossing and colonisation of novel surfaces, such as 

endothelia, and the host’s specific immune response.  Often it is too late if the organism 

only activates a phenotypic change once it has s

population before the challenge arises.  Such a strategy is the spontaneous mutation of a set 

of genes that have been termed contingency genes (Moxon et al., 1994).  These 

contingency genes undergo spontaneous mutation at rates that are higher than the 

background rate of housekeeping genes (10-6) (Barry et al., 2003) and provide the 

organism with a level of diversity within the population that should allow for selection of 

individuals that can respond to

functions of these contingency genes are diverse and include attachment to host surfaces, 

cell invasion and cell protection.  Moreover, such contingency genes are found in a 

of pathogens, including viruses, fungi, bacteria and protozoans (Deitsch et al., 1997).   

Phase variation is a reversible process that allows two distinct states to be switched 

between using mechanisms such as promoter inversion mediating gene transcriptional 

switching, recombination-mediated genetic rearrangements and slipped strand mis-pairing.  

An example of the latter m
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one of the causative agents of bacterial meningitis and escapes specific immune response

by the lipopolysaccharide (LPS) on its cell surface undergoing structural changes.  

Through the loss and gain of tandem repeats (CAAT) in the coding region of LPS 

biosynthesis genes, translation initiation codons are placed in and out of frame, resulting in 

the switching on and off of gene expression (Levinson and Gutman, 1987).  Examples of 

recombination mediated genetic rearrangements are present in Escherichia coli and 

Neisseria gonorrhoea, which utilise site specific recombination in the fimA gene and recA-

dependent homologous recombination involving the pilin genes, respectively (Kulasekara

and Blomfield, 1999;Mehr and Seifert, 1998). 

Antigen

s 

 

ic variation is another important mechanism in prolonging pathogen survival, but 

differs from phase variation in that the process is not phenotypically reversible and, indeed, 

tween multiple states, rather than 

ion 1.3.  Well-studied examples of antigenic variation in 

Plasmodium falciparum, the causative agent of malaria, infects erythrocytes in the host 

e 

) 

olecules are encoded by the var genes, 

 

is more complex by virtue of a progressive switching be

switching between two states.  The purpose of antigenic variation is to evade the acquired 

immune system of the host and, as such, occurs by switches solely involving surface 

molecules (antigens).  

Arguably, the best studied example of antigenic variation is in T. brucei, and this will be 

discussed at length in sect

protozoa are found in Plasmodium (Kraemer and Smith, 2006) and Giardia (Nash, 2002).  

In bacterial systems, antigenic variation has been documented in the spirochetes Borrelia 

hermsii (Dai et al., 2006) and B. burgdorferi (Zhang et al., 1997), as well as in Anaplasma 

marginale (Futse et al., 2005) and Neisseria gonorrhoeae (Sechman et al., 2005;Zhang et 

al., 1992). 

bloodstream, causing their surface morphology to alter and subsequently be targeted for 

destruction in the spleen.  The parasite counteracts this by adhering to endothelia of th

host blood vessels by expressing PfEMP1 (P. falciparum erythrocyte membrane protein 1

molecules on the red blood cell surface.  PfEMP1 m

and the parasite avoids destruction by acquired immunity against PfEMP1 through 

transcriptional switching between a repertoire comprising 50 -150 var genes copies (Kyes

et al., 2007;Deitsch et al., 1997).  Giardia lamblia, the causative agent of giardiasis, also 

utilises transcriptional control mechanisms to switch between a repertoire of 150 genes, 

which encode the variant surface protein (VSP) (Mowatt et al., 1991;Kulakova et al., 

2006). 
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1.3 Antigenic variation in T. brucei 
Trypanosoma brucei was the first organism discovered to undergo antigenic variation as a 

means of escaping the immune defence system (Vickerman, 1978;Borst, 1986;Borst and 

Greaves, 1987) and remains one of the best-studied examples of this process (reviewed in 

Barry and McCulloch 2001; McCulloch 2004; Pays 2006; Taylor and Rudenko 2006 and 

http://www.VSGdb.org/). 

Infections with T. brucei are characterised by successive waves of parasitaemia, in which 

the Variant Surface Glycoproteins (VSG) expressed during one wave are different from

those of the preceding ones (Pays, 1985;Roth et al., 1991;Borst and Rudenko, 1994;Cross, 

 

1990).  This typical pattern of infection is displayed in figure 1.3 and demonstrates how the 

is treated or dies of the disease (Molyneux, 1983). infection persists until the host 

 
Figure 1.3 – Parasitic wave of a T. brucei infection in a cow. Chronic infection of a cow
brucei strain ILTat 1.2.  The timeline of the 70-day infection is shown on the x-axis, wherea
parasite density in the cow is shown as prepatent period on the y-axis; the number of days for 
parasitaemia to reach a certain level following inoculation of an immunosuppressed mouse with 
cattle blood.  Figure taken from Morrison et al., 2005.   

Antigenic variation in T. brucei is mediated by VSGs, which generate thick glycoprotein 

coats that completely envelope the bloodstream stage parasites.  The VSG coat serves 

hide invariant antigens on the cell surface and also helps to protect against innate

responses, such as phagocytosis (Cross, 1975;Turner et al., 1988).  Generally, a single T. 

brucei cell expresses a single VSG at a time.  Throughout an infection subpopulations of 

trypanosomes expressing antigenically different VSGs arise due to reactions that cause 

switches in the expressed VSG.  As a result of such switching, these subpopulations are 

able to escape the antibody mediated response to the parental populations expressing the 

preceding VSG.  In turn, the switched subpopulations are cleared by antibodies against the 

VSG, but further subpopulations expressing novel VSGs are continually ge

 with T. 
s 

to 

 immune 

nerated, 

allowing the infection to continue.  The extent of the antigenic variation is determined by 

e large number of VSG genes in the genome that are devoted to antigenic variation, and th



Claire Louise Hartley, 2008   Chapter 1, 12 

the mechanism involved in the switching process (see below).  Despite the potential for 

antigenic variation to generate thousands of distinct VSGs, hosts that have been 

continuously exposed to infection eventually acquire a degree of immunity to re-infection 

(Browning and Gulbransen, 1936).  However, repeated immunological responses can 

eventually lead to prolonged immuno-depression, which in turn is detrimental to the host. 

1.3.1 VSG in T. brucei 

Variant Surface Glycoprotein molecules cover the surface of bloodstream form T. brucei 

cells in a densely packed monolayer (figure 1.4).  It is this packaging that serves to protect 

the invariant surface molecules from the immune system (Borst and Fairlamb, 

1998;Overath et al., 1994) and also protects against innate responses (Turner et al., 1988).  

VSG-specific antibody responses are raised against a small part of the VSG molecule 

(Cross, 1990), the hypervariable N-terminal domain (Berriman et al., 2005). 

The surface of each T. brucei cell possesses approximately 5.5 x 106 VSG homodimers 

(Cross, 1975;Auffret and Turner, 1981), which are attached to the plasma membrane by a 

glycosylphosphatidylinositol (GPI) anchor (Ferguson et al., 1988).  The VSGs are 

continuously endocytosed and recycled at a high rate via the flagellar pocket (Overath and 

Engstler 2004).  The VSG homodimers typically consist of 400 to 500 amino acid residues 

and are composed of an elongated N terminal domain consisting of 350-400 residues and 

one or two smaller C terminal domains consisting of 40-80 residues each (Pays et al., 

2007).  Whilst the sequences of VSGs display high levels of diversity, the three 

dimensional structures appear to be well conserved (Blum et al., 1993;Chattopadhyay et 

al., 2005).  Greater levels of diversity are found within the N terminus, which adopts an 

alpha helical coiled-coil structure containing exposed surface loops.  Conversely, greater 

levels of conservation are observed at the carboxyl terminus, where the VSGs are anchored 

at the parasite membrane by GPI linkage to ethanolamine (Ferguson et al., 1988).  Each 

VSG is defined as a combination of an N terminal type and a C terminal type, based on the 

distribution of cysteine residues in the molecule (Carrington et al., 1991). 
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Figure 1.4 – The cell surface of bloodstream form T. brucei.  (A) A three dimensional depiction
of the tightly packed VSG dimers present on the cell surface of bloodstream form T. brucei.  (B) A 
schematic representation of the cell surface of bloodstream form T. brucei.  VSG dimers (attached 
to the GPI anchor via the C-terminal domain), a transferrin receptor and a hexose transporter a
shown associated with the plasma membrane.  A transferrin and immunoglobulin G (IgG2) 
molecule are also shown for size comparison.  Taken from Borst and Fairlamb, 1998. 

 

 

 

re 
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The T. brucei genome contains a huge repertoire of silent VSG genes, which facilitate the 

 

nd 

 

e 

 al., 2005;Marcello and Barry, 2007b): 

only 5 % have been shown to be fully intact, encoding all known features of functional 

meaning they are predicted not to be 

shifts 

 are 

The annotation of the VSG repertoire raises an important question: are the location and 

functional degeneration of the VSGs, unusual for organisms employing antigenic variation 

of surface antigens?  The answer is almost certainly no.  Pseudogenes are known to 

contribute to immune evasion, by providing substrates for gene conversions (see below), in 

bacterial systems such as in the spirochetes Borrelia hermsii (Dai et al., 2006), and B. 

burgdorferi (Zhang et al., 1997;Craig and Scherf, 2003).  Locating most of the VSG genes 

at the subtelomeres of chromosomes is also not an unusual phenomenon (Barry et al., 

2003).  Indeed, this strategy is employed in other pathogens such as Pneumocystis carinii 

(Keely et al., 2005) and P. falciparum (Scherf et al., 2001), with Giardia lamblia (Adam, 

2000;Arkhipova and Morrison, 2001) providing a notable exception whereby the vsp genes 

are located interstitially.  Subtelomeric locations are thought to contribute to antigenic 

variation due to the fact that they are prone to recombine ectopically during mitotic, and 

perhaps meiotic, recombination, promoting not only gene conversion reactions but also the 

expansion and sequence diversification of the gene families involved in antigenic variation 

(Barry et al., 2003;Freitas-Junior et al., 2000). 

process of antigenic variation.  It was previously thought that the genome contained

approximately 1000 VSGs (Van der Ploeg et al., 1982).  However, with the aid of the 

genome sequencing project looking at strain TREU927, this has recently been updated, a

the number of VSGs on the megabase chromosomes has now been estimated at

approximately 1600, with a further ~200 present on minichromosomes, plus ~20 at th

VSG transcription loci known as bloodstream expression sites (see below) (Berriman et al., 

2005;Wickstead et al., 2004;Marcello and Barry, 2007b;Marcello et al., 2007).  940 of the 

VSGs in the main contigs of chromosomes have been analysed and, remarkably, the 

majority have been shown to be pseudogenes or gene fragments located at the 

subtelomeres of chromosomes (figure 1.5) (Barry et

VSGs; 9 % of the VSGs were described as ‘atypical’, 

accurately folded or modified; 62 % were full length pseudogenes, containing frame 

or stop codons; and 19 % were gene fragments (Barry et al., 2005). 

It has recently emerged that the archives of surface antigens for protozoan pathogens

commonly found at subtelomeric locations.  The reason for this is thought to be due to 

their proneness for ectopic recombination, thereby enabling the expansion of contingency 

gene families and promoting antigenic variation (Barry et al., 2003).  
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Figure 1.5 – Schematic representation of the silent VSG repertoire on the megabase 
chromosomes of T. brucei strain TREU 927/4.  Chromosomes are represented by horizontal 
lines, with the chromosome number in a grey box to the left of each chromosome.  Arrays of VSGs 
are depicted by black blocks; the orientation of sets of VSGs is shown by the position of the box 
above or below the line.  The provisional number of VSGs in each array is shown.  Breaks in 
contiguation are represented by oblique lines.  Figure taken from Barry et al., 2005.   

Metacyclic form trypanosomes also encode a VSG coat, known as metacyclic VSG 

(MVSG).  MVSG proteins are structurally indistinguishable from VSG proteins expressed 

in the bloodstream stage, but appear to be a specific type, of which 27 have been identified 

by immunological methods (Turner et al., 1988).  MVSGs are expressed for several days 

following infection of the vertebrate host, before the parasite replaces them with the 

bloodstream specific VSGs (Ginger et al., 2002).   

1.3.2 The expression sites of T. brucei 

In order for VSGs to be expressed, they need to be localised in special polycistronic 

transcription units known as expression sites (ES) (Pays et al., 2001).  Up to 20 of these 

transcription sites are used in the bloodstream stage of the parasite.  These are known as 

bloodstream expression sites (BESs) (figure 1.6) and are located at the telomeres of 

megabase and intermediate chromosomes (Becker et al., 2004).  In addition to the BESs, 

there is a set of expression sites reserved for VSG expression in the metacyclic stage of the 

parasite, known as metacyclic ESs (MESs) (figure 1.6) (Graham et al., 1999;Bringaud et 

al., 2001).  MESs are also telomerically located. 
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Figure 1.6 – The expression sites of T. brucei.  (A) Th
1.2CR, VSG10.1, 221ES, VO2 ES and Bn-2 ES.  The VSG

e BESs shown are AnTat 1.3A, ETat 
 is indicated by a white box, the 50-bp 

and 70-bp repeat arrays (not to scale) by striped boxes, and the promoters by flags.  The ESAGs 

) 
and pseudo-ESAGs (indicated by ψ) are represented by numbered grey and black boxes.  
Retrotransposon Hot Spot genes (RHS) are annotated R, and Serum Resistance Associated (SRA
genes SRA.  Taken from Berriman et al., 2002.  (B) Two MESs are shown.  The ES promoters are 
indicated by a white flag, the 70 bp repeats by striped boxes, the ESAGs and pseudo-ESAGs 
(indicated by ψ) by white boxes, arrows indicate direction of transcription and black boxes 
represent the VSGs.  Taken from Rudenko, 2000. 
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The BESs can vary in size from 40 kb to 100 kb, but all retain a conserved structure, with 

the VSG gene located closest to the telomere (Becker et al., 2004;Berriman et al., 2002).

Upstream of the VSG lies a set of short repetitive sequences known as the 70 bp repeat

(Liu et al., 1983).  These 70 bp repeats can span a distance of up to 20 kb in the BES, an

are also found, albeit in shorter arrays, upstr

  

s 

d 

eam of most silent VSGs (>90 %) within the 

genome (Barry et al., 2005;McCulloch et al., 1997).  These repeats define the boundaries 

eir 

arasites to uptake iron from the host (Schell et al., 

1991;Ligtenberg et al., 1994;Steverding et al., 1994;Berriman et al., 2002).  Allelic 

 

establish 

ore 

l 

c 

as 

of many of the regions involved in VSG gene conversion reactions (section 1.4.2.3), 

leading to a hypothesis that the 70 bp repeats were involved in the initiation of VSG 

switching (Barry, 1997).  However, deletion of the 70 bp repeats from the active 

expression sites did not affect duplicative transposition of VSG genes from silent 

expression sites (McCulloch et al., 1997), showing that the reaction can occur in th

absence. 

Further upstream of the 70 bp repeats lies between 8 and 10 expression site associated 

genes (ESAGs) (Pays et al., 1989).  ESAGs 6 and 7 are the only ESAGs to date that have 

been identified in each BES, and have been found to encode the two subunits of a 

transferrin receptor, which allows the p

variants of ESAGs 6 and 7 are found throughout the BESs and are thought to provide 

different affinities for transferrin from different hosts.  It has been postulated that through

the parasites use of different BESs, it can adapt to different hosts and therefore 

host specificity (Bitter et al., 1998).  However, this hypothesis has been questioned 

recently in a series of in vitro experiments (Salmon et al., 2005).  ESAG 4 has been 

identified as encoding an adenylate cyclase (Paindavoine et al., 1992) and the Human 

Serum Resistance gene (SRA) has also been identified within some BES, and theref

constitutes an ESAG (Xong et al., 1998).  The products of most of the other ESAGs stil

remain uncharacterized and none have been discovered to be directly involved in antigeni

variation (Borst and Rudenko, 1994;Cross, 1996). 

Transcription of the active BES is carried out by RNA polymerase I (Gunzl et al., 2003).  

Directly upstream of the BES promoter lies a large array of repetitive sequences known 

the 50 bp repeats, which can span up to 50 kb (Zomerdijk et al., 1990;Zomerdijk et al., 

1991).  This repeat region is thought to function as a barrier between the upstream 

sequences and the BES transcriptional unit (Sheader et al., 2003). 

MESs, like BESs, are also found in subtelomeric locations and are transcribed by RNA 

polymerase I (Graham et al., 1999;Barry and McCulloch, 2001;Berriman et al., 2002).  
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Where they differ is in their much simpler structure, which consists of a single VSG gene, 

located adjacent to the telomere, followed upstream, by a stretch of 70 bp repeats and a 

promoter (figure 1.6).  This means that the MESs also differ from BESs and from the 

cistronically 

any 

rst, 2002).  In T. brucei, this may be 

explained by the discovery of a sub nuclear body, known as the expression site body (ESB) 

on with 

 organisms; Diplonema and Euglena, and may help to explain the mono 

allelic expression of VSGs (Borst and van Leeuwen, 1997;van Leeuwen et al., 

ydroxymethyluracil, or base J, which is 

 

thin 

 in 

 transcription activation or elongation (van 

Leeuwen et al., 1996).  The ESB could therefore be involved in the removal of J, resulting 

2) 

r 

e 

 

re 

 

less base J, but are also incapable of synthesising J in newly generated telomeric arrays 

majority of kinetoplastid genes, by the fact that they are transcribed mono

(Alarcon et al., 1994;Nagoshi et al., 1995). 

In bloodstream form T. brucei, the parasite ensures that only one VSG is expressed at a 

time by mechanisms that ensure that only one BES is actively transcribed at a time.  M

organisms utilise such mono allelic expression (Bo

(Navarro and Gull, 2001).  The ESB is distinct from the nucleolus, contains RNA 

polymerase I and the single actively transcribed BES.  Exactly how the ESB exhibits 

control over VSG transcription is unknown, but it is thought that the factors for BES 

transcription are sequestered in the ESB, and are therefore unavailable to the silent BESs.  

This body has been linked to a role in antigenic variation, not only for its associati

transcribing BESs, but also due to the fact that it has only been observed in bloodstream 

form cells (Navarro and Gull, 2001).   

Another unusual biological feature has been discovered in kinetoplastids, as well as in two 

distantly related

1998;Dooijes et al., 2000).  This is β-D-glucosyl-h

a modified version of uracil and replaces a subset (~0.2 %) of thymine residues within the

T. brucei genome (Gommers-Ampt et al., 1991;Gommers-Ampt et al., 1993;van Leeuwen 

et al., 1997).  The function of base J has not been clearly defined, but it has been 

implicated to have a role in antigenic variation.  Base J has been localised to repeated 

sequences within the genome, telomeric repeats and in VSGs and other sequences wi

the silent BESs.  Its notable absence from active BESs led to the hypothesis of a role

BES silencing, in which J directly blocks

in BES activation.  J is known to be bound by two J-binding proteins (JBP1 and JBP

(Cross et al., 1999;Cross et al., 2002;Dipaolo et al., 2005).  The latter of these is a membe

of the SWI2/SNF2 family and functions in chromatin remodelling, leading to an alternativ

hypothesis for J function, not involving antigenic variation.  In this hypothesis, J acts as an

epigenetic marker of heterochromatin (Borst and Ulbert, 2001;Pays et al., 2004).  Mo

recently, JBP2 null mutants have been generated in T. brucei and not only contain five fold
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(Kieft et al., 2007).  Further research is currently underway to finally determine J’s 

biological role. 

1.3.3 The mechanisms of VSG switching in T. brucei 

Multiple mechanisms exist by which a trypanosome can switch from one VSG to anoth

The switching events can be broadly described as being transcriptional-based or 

recombinational-based events.  A third class of switching has also been proposed

multiple point mutations arise either during the generation of a copy of a VSG gen

within the VSG silent archive (Donelson, 1995).   

As previously mentioned, prolonged syringe passaging between mammalian hosts can 

result in loss of the parasites ability to differentiate beyond the long slender bloodstream 

stage.  The resulting ‘monomorphic’ trypanosome cell lines also have a greatly depressed

rate of antigenic variation, 

er. 

 in which 

e or 

 

the causal reason of which is unknown, and switch at an overall 

rate of 10-6 to 10-7 switches/cell/generation (Lamont et al., 1986).  ‘Pleomorphic’ 

ferentiation from long slender to short stumpy 

tion 

7 

 

Transcriptional, or in situ, switching occurs by activating transcription from a silent BES 

 is not 

rs still remain unknown.  

However, it is generally considered that DNA rearrangements are not required, except in 

trypanosome cell lines that can undergo dif

forms, in contrast, can switch at much higher rates of 10-2 to 10-3 switches/cell/genera

(Turner and Barry, 1989;Turner, 1997).  It should be noted that all of the work in this 

thesis was performed on the monomorphic, low switching cell lines, in the strain Lister 42

(Cross, 1975). 

1.3.3.1 Transcriptional (in situ) switching

and silencing transcription from the active BES (in situ; figure 1.7).  This mechanism

considered to significantly contribute to VSG switching, at least in the pleomorphic cell 

lines, since it is only able to occur between the BESs and therefore only a small number of 

VSGs (Robinson et al., 1999).  In monomorphic cell lines, however, transcriptional 

switching is considered to predominate, as the recombinational switches have been 

proposed to be repressed (Barry, 1997). 

The mechanisms by which transcriptional switching occu

rare cases where the active BES is deleted (Cross et al., 1998).  The possibility that DNA 

repair mechanisms are involved, however, cannot be discounted, since it has been shown 

that genome wide DNA damage can trigger transcriptional activation of silent BESs 

(Sheader et al., 2004).  Some recent work may support this possibility by implicating that 
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the DNA repair factors RAD51 and RAD51-3 may be involved (McCulloch and Barry, 

1999;Proudfoot and McCulloch, 2005). 

Another potential mechanism proposed to explain transcriptional switching is telomere 

silencing, which was first discovered in Saccharomyces cerevisiae (Gottschling et al.

1990).  This process represses transcription in telomere proximal regions of the genome 

and was proposed to contribute to VSG expression regulation (Horn and Cross, 

1995;Rudenko et al., 1995).  However, more recently d

, 

oubt has been cast on the 

importance of telomere silencing in transcriptional-based VSG switching, due to the fact 

ch 

1.3.3.2 Recombinational switching 

ssed 

ents 

 

G 

.  

In monomorphic cell lines, the gene conversion reactions can utilise homology from much 

further upstream.  These reactions occur between BESs (ES GC; figure 1.8) and can use 

homology at least up to 6 kb upstream of the VSG, beyond the 70 bp repeats (Lee and Van 

der Ploeg, 1987).  That these reactions need not rely on the 70 bp repeats is demonstrated 

by no observed effect on antigenic variation by their deletion (McCulloch et al., 1997). 

that VSG promoters appear to lie too far away from the telomere for this process to have 

an effect.  Additional support is provided by the deletion of genes that are likely to be 

involved in telomere silencing and the deletion of telomeric repeats, the results of whi

did not affect antigenic variation (Pays et al., 2004;Horn and Barry, 2005;Alsford et al., 

2007;Glover et al., 2007). 

DNA recombination is the most common route for VSG switching to occur since the 

majority of the VSG repertoire is located in non-transcribed loci, and can only be expre

through recombination into the active BESs.  The major routes of recombination in VSG 

switching are duplicative transposition reactions, which occur by gene conversion ev

whereby genetic information is transferred from a silent locus into the active BES, deleting 

the existing VSG gene (Robinson et al., 1999).   

Duplicative transposition is largely thought to occur through gene conversion events 

involving the replacement of the VSG at the active BES with a silent VSG from a tandem

array in a megabase chromosome (array VSG GC; figure 1.7), from a silent BES (ES VS

GC; figure 1.7), or from the subtelomere of a minichromosome (MC VSG GC; figure 1.7)

These gene conversion reactions generally occur using the 70 bp repeats as upstream 

homology (Liu et al., 1983;Matthews et al., 1990) and the 3’ end of the VSG ORF as 

downstream homology (Michels et al 1983), although this can extend beyond the ORF to 

the 3’ UTR (Michels et al., 1983;Timmers et al., 1987). 



Claire Louise Hartley, 2008   Chapter 1, 21 

Another type of duplicative transposition reaction is a telomere conversion event (telomere 

 

described above, though it has been proposed that this pathway may occur by break 

) (Dreesen and Cross, 2006). 

Telomere reciprocal exchange is another mechanism which utilises recombination events 

to drive VSG switching.  Unlike gene conversion events, however, this reaction involves a 

simple crossover event between telomeric VSGs, with both VSGs remaining intact at 

telomeric locations.  Homology can be obtained from the 70 bp repeats or further upstream 

in the BES (Pays et al., 1985;Shea et al., 1986).  This reaction is generally considered to 

occur less commonly than gene conversion events since it is limited to the telomeric VSGs. 

Finally, mosaic gene formation has been described to occur in VSG switching (mosaic gene 

formation; figure 1.8) (Thon et al., 1990;Barbet and Kamper, 1993).  This mechanism 

occurs by using two or more segmental gene conversion events from silent VSGs, which 

allows pseudogenes to contribute to antigenic variation.  Rather than using flanking 

homology regions as used in duplicative transposition reactions, it utilises short regions of 

homology within the VSG ORFs.  This pathway was originally considered to occur 

relatively late in infections when the intact VSGs has been recognised by the immune 

system and contribute to only a small percentage of VSG switching events (Barbet and 

Kamper, 1993).  However, in light of the genome sequencing project, where it has been 

uncovered that the majority of VSGs that exist in the genome are in fact non-functional 

(Berriman et al., 2005;Marcello and Barry, 2007b;Marcello and Barry, 2007a), it appears 

that mosaic gene formation has more of an important role than was previously considered.  

Indeed, it has been proposed that segmented gene conversion is key to the success of 

antigenic variation (Barbet and Kamper, 1993;Marcello and Barry, 2007b), allowing long-

term survival in a single host and for anti-VSG immunity in host herds. 

conversion; figure 1.8) (Shah et al., 1987;de Lange et al., 1983).  This gene conversion 

reaction again uses homology from the 70 bp repeats upstream (and could, in theory 

initiate further upstream from another BES), but the 3’ end extends down to the telomere. 

Clearly, therefore, this reaction is limited to switches between telomeric VSGs.  It is 

unclear whether this is a distinct mechanism from the duplicative transposition events 

induced replication (BIR
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Figure 1.7 – VSG switching mechanisms used in T. brucei.  A schematic representation of 
mechanisms of VSG switching.  See text for full explanations.  Horizontal grey lines represent 
chromosomal DNA, whereas vertical grey lines represent the end of a telomere.  A flag depicts the 
BES promoter, and transcription from this promoter is shown by a horizontal black arrow.  VSGs 
and VSG pseudogenes are represented by coloured squares and rectangles respectively.  70 bp 
repeat tracts are shown by black and white striped boxes, whilst the 177 bp repeats found in the 
mini-chromosomes are shown by grey and white striped boxes. The black lines show the extent of 
sequence copied into the expression site.  GC – gene conversion.  Adapted from C. Proudfoot, 
PhD thesis, 2005.   
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Figure 1.8 – VSG switching mechanisms used in T. brucei (cont.).  A schematic representation 

e 
t of 

t, 
   

of mechanisms of VSG switching.  See text for full explanations.  Horizontal grey lines represent 
chromosomal DNA, whereas vertical grey lines represent the end of a telomere.  A flag depicts the 
BES promoter, and transcription from this promoter is shown by a horizontal black arrow.  VSGs 
and VSG pseudogenes are represented by coloured squares and rectangles respectively.  70 bp 
repeat tracts are shown by black and white striped boxes, whilst the 177 bp repeats found in th
mini-chromosomes are shown by grey and white striped boxes.  The black lines show the exten
sequence copied into the expression site.  GC – gene conversion.  Adapted from C. Proudfoo
PhD thesis, 2005.
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1.3.4 Use and timing of different switching mechanisms 

 an 

d antibodies are generated 

against the BES VSG, recombination mechanisms are likely to play a role in activating the 

hing 

which 

 

 

locations are preferentially activated (Liu et al., 1985;Morrison et al., 2005), followed by 

t is the 

 

The difference between monomorphic and pleomorphic cell lines in VSG switching 

appears not only to affect the rate of switching but also the mechanisms used.  Early in

infection, monomorphic cell lines are thought to primarily utilise in situ switching 

mechanisms, as demonstrated by two separate studies (50 % and 59 %) (Liu et al., 

1985;Aitcheson et al., 2005).  As the infection progresses, an

silent VSGs.  Pleomorphic cell lines, however, appear to utilise VSG gene conversion 

events throughout an infection.  It remains unclear exactly how frequently in situ switc

mechanisms are used, but it appears that despite studies demonstrating an early 

transcriptional switching event, these generally occur infrequently (~ 9 %) (Robinson et 

al., 1999;Morrison et al., 2005).  

A feature that is common to antigenic variation in a number of pathogens is the ‘ordered 

expression’ of variant antigens, meaning that specific surface molecules appear at 

somewhat predictable times in an infection (Barry, 1986;Capbern et al., 1977).  This 

ordered pattern of expression is based upon the probability of activation of each VSG and 

allows variants to arise gradually, rather than the co-expression of many variants 

could overwhelm the host and therefore prove detrimental to the success of antigenic

variation.  In the hierarchy of activation in T. brucei, it appears that VSGs within telomeric

intact VSGs located in arrays (Lee and Van der Ploeg, 1987;Timmers et al., 1987) and 

finally by mosaic genes (Thon et al., 1990).  Recent research has also revealed that i

activating VSG that determines which VSG is activated, not the previously active one 

(Morrison et al., 2005). 

Within mosaic genes, there also exists a suborder of variants.  Early mosaic genes express 

similar VSGs and are thought to arise from recombination between close homologues.  As

the infection progresses, mosaic genes gradually diverge to distinct variants due to the 

assembly of genes encoding antigenically novel VSGs (Marcello and Barry, 2007b). 
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1.4 DNA double strand break repair 
DNA double strand breaks (DSBs) arise frequently during DNA replication and can also 

to cancer an ately death (Khanna and Jackson, 2001). 

The repair of these DSBs is mediated by two independent pathways; non-homologous end-

joining (NHEJ) and homologous recombination (HR).  These pathways differ in their 

requirement for a homologous DNA template and the fidelity of the repair reaction, but 

both appear to be conserved in eukaryotes.  NHEJ occurs without a template and involves 

the re-ligation of the broken strands, which can lead to sequence changes.  The primary 

proteins required for this process are Ku70/Ku80, the catalytic subunit of the DNA-

dependent protein kinase and a DNA ligase heterodimer, composed of DNA ligase IV and 

XRCC4 (Chu, 1997).  Homologous recombination, or the exchange of strands between 

homologous DNA molecules, not only repairs DNA damage but also ensures chromosome 

segregation and accurate genome duplication.  The key protein that catalyses this reaction 

in bacteria is the RecA recombinase, which recognises homology between DNA 

molecules, pair homologous strands and mediates exchange (West et al., 1981).  In 

eukaryotes, the orthologue of RecA is named Rad51, while it is called RADA in archaea. 

NHEJ appears to be the DNA repair mechanism that is favoured in mammalian cells whilst 

lower eukaryotes, such as budding yeast, appear to favour HR (Liang et al., 1998).  

However, both mechanisms exist in most eukaryotes, and many prokaryotes, and it was 

once postulated that they competed against each other for the broken DNA ends at a DSB 

(Van Dyck et al., 1999).  It now appears that this is not the case and, in fact a number of 

determinants effect which pathway is chosen.  One of these determinants is the cell cycle 

stage at which the DNA damage occurs.  For instance, it has been established in chicken 

cells that if DNA damage occurs at G1-early S phase, the predominating pathway appears 

to be NHEJ, whilst at late S-G2 phase, HR appears to be favoured (Takata et al., 1998).  

The position of a DSB along the chromosome is also considered to have a determining role 

on the repair mechanism, with NHEJ being favoured when the break it situated proximal to 

the telomere (Ricchetti et al., 2003).  Finally, the DNA substrate has also been shown to 

have an influence, with HR preferring to act on long ssDNA that is generated at DSBs 

(Ristic et al., 2003). 

be induced by ionising or UV radiation, by mutagenic chemicals and by free radicals 

(Kuzminov, 1995).  Severe consequences can occur if DSBs remain unrepaired, including 

chromosomal fragmentation and translocation, which in multi-cellular organisms can lead 

d ultim
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Figure 1.9 – Pathways of eukaryotic DNA double strand break repair.  A schematic 
representation of DSB repair mechanisms in eukaryotic cells, including NHEJ and HR pathwa
DNA containing a DSB is represented by black lines, intact duplex DNA by blue lines, newly 
synthesised DNA by dashed lines, and NHEJ machinery by red ovals.  Taken from J.S. Bell, PhD 
thesis 2002.   

ys.  
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Other additional roles exist for both NHEJ and HR, beyond the general repair of DSBs.  In

V(D)J recombination and meiosis, DSBs are caused deliberately in order to generate 

diversity (Xu et al., 2005), and the repair of these DSBs is mediated by NHEJ and HR, 

 

respectively.  HR is also involved in the repair of stalled replication forks (Michel et al., 

revent the occurrence of DNA damage rather than to repair damage (Michel, 

2000).  HR proteins can also help to reverse stalled replication forks, allowing them to be 

reset without any DNA damage (Michel et al., 2001;Seigneur et al., 1998).  In addition, 

HR has also been shown to rescue telomere length in yeast cells lacking telomerase 

(Lundblad and Blackburn, 1993;Le et al., 1999).   

1.4.1 Non-homologous end joining 

Non-homologous end joining (NHEJ) involves the repair of a DSB by a re-ligation of the 

DNA ends (figure 1.9 – a).  Very little (2-4 bp) or no sequence homology is required for 

this reaction to occur, though sequence changes often occur at the DSB site.  The main 

components of the NHEJ machinery are the DNA dependent protein kinase catalytic 

subunit (DNA-PKcs), the Ku heterodimer (composed of Ku70 and Ku80), and the DNA 

ligase IV – XRCC4 complex (figure 1.10). 

The MRX complex (composed of the proteins Mre11/Rad50/Xrs2 in yeast) also has a role 

in NHEJ, serving to act in the early stages by removing any proteins that may already be

 

t, 

 MRX, the Ku heterodimer binds to the DNA ends and translocates 

rving to provide end protection (Mimori 

on, 

er.  

2004;Krogh and Symington, 2004) which can arise for many reasons, including DNA 

damage in the replication substrates and blockage of the replication machinery.  

Recombination proteins can target blocked replication forks and have been found to 

actually p

 

bound to the DNA ends and bridging the ends together (Stracker et al., 2004;Connelly and

Leach, 2002).  This complex has been shown to provide an essential role in NHEJ in yeas

with deletion of each protein causing NHEJ to reduce by more than 70 fold (Moore and 

Haber, 1996).  The severity of this may be due to the absence of DNA-PKcs in yeast. 

Following on from

along the DNA in an ATP dependent manner, se

and Hardin, 1986) and stabilising the binding of the DNA-PKcs (Smith and Jacks

1999).  Ku acts as the DNA binding component of the DNA-dependent kinase multim

However, quite how DNA-PK operates is currently unknown, though it is known to belong 

to the PIKK family, which includes ATM and ATR, and is known to phosphorylate p53, 

Ku, XRCC4 and itself (Smith and Jackson, 1999).  It has been postulated that this 

phosphorylation is not essential, however, due to a DNA-PK being absent from yeast 



Claire Louise Hartley, 2008   Chapter 1, 28 

(Critchlow and Jackson, 1998;Featherstone and Jackson, 1999).  Finally, the DNA lig

IV – XRCC4 complex is recruited to the ends forming a tetrameric structure in which 

ligation of the ends occurs (Siband

ase 

a et al., 2001). 

 et al., 

NHEJ also appears to be conserved in at least some bacteria, where a homodimeric Ku 

homologue is found, plus NHEJ-specific ligases.  Why a gene duplication has occurred to 

result in the 2 Ku copies found in eukaryotes is unknown (Della et al., 2004;Wilson

2003).   

 
Figure 1.10 – Non-homologous end joining.  A schematic representation of the process of non-
homologous end joining (NHEJ).  Following a DSB the Ku heterodimer binds to the DNA ends and 
recruits the catalytic subunit of the DNA protein kinase.  The DNA ligase IV – XRCC4 complex is 
finally recruited to complete the ligation reaction.  The Ku70/Ku80 heterodimer is represented by 2 
blue circles whilst the DNA protein kinase catalytic subunit is depicted by a green oval.  DNA ligase 
IV is represented by a red pentangle and XRCC4 by a grey square.  PKcs - DNA protein kinase
catalytic subunit; 70 – Ku70; 80 – Ku80; IV – DNA ligase IV; X4 – XRCC4. 

 

1.4.2 Homologous recomb

 

ination 

Homologous recombination (HR) involves the accurate repair of a DSB utilising 

DNA molecule as a template.  The process is 

HEJ, 

homologous sequence in an unbroken 

conserved from bacteria to humans (Cromie et al., 2001) and is more complex than N

involving a greater number of proteins (figure 1.11).  In addition, HR can be divided into a 

number of different mechanisms, including single strand annealing, break induced 

replication and gene conversion events.  Despite these processes appearing quite distinct 
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(figure 1.9, b – e), they all share the use of a homologous template.  Moreover, these 

processes follow essentially the same catalytic steps of pre-synapsis, synapsis and post

synapsis (Hamatake et al., 1989). 

-

Pre-synapsis is the first stage and involves processing the ends of the DSB by resecting the 

or HR.  Following this is synapsis, in which the 3’ 

 Holliday 

A duplex 

at all, but rather homology is found in the flanking regions surrounding the DSB (Paques 

up, 

02).  

dy stated, Rad51 is the key member of this group and is the eukaryotic homologue 

of bacterial RecA.  This protein forms a helical nucleoprotein complex on ssDNA, and this 

f 

 

ntary 

regions within the 3’strands flanking the break site.  These complementary sequences are 

able to anneal to each other to repair the break, thereby eliminating the need for a strand 

5’ ends to provide 3’ ssDNA substrates f

overhangs invade homologous DNA during strand exchange.  Finally, the reaction 

terminates with post-synapsis, which can be mediated through different mechanisms 

depending on whether both strands of the DSB have invaded duplex DNA.  If both ends of 

the DSB invaded the duplex, a four stranded branched DNA structure known as a

junction can form (Holliday, 1964), which requires specific enzymes to be resolved.  

Alternatively, the invading DNA strand can re-anneal with the broken DNA in a process 

known as synthesis dependent strand annealing (SDSA) (Nassif et al., 1994).  Both of 

these reactions can result in gene conversion events and are the main form of HR found in 

eukaryotes (Chen et al., 2007).  Other, perhaps more minor, HR reactions also occur, 

however.  If only one end of a DSB invades the duplex DNA, a process known as break 

induced replication (BIR) occurs (Paques and Haber, 1999).  Finally, single strand 

annealing (SSA) is a process whereby the broken DNA ends do not invade a DN

and Haber, 1999).  

HR in eukaryotes utilises a large number of proteins known as the Rad52 epistasis gro

which was originally identified in S. cerevisiae.  The proteins included in this group are 

Rad50, Rad51, Rad52, Rad54, Rad55, Rad57, Rad59, Mre11 and Xrs2 (Symington, 20

As alrea

structure facilitates DNA strand exchange to occur when it interacts with homologous 

dsDNA.  The other proteins appear to promote Rad51 activity, either operating upstream o

the formation of the Rad51 filament, aiding formation of or stabilising the filament or 

acting in the strand exchange step. 

1.4.2.1 Single strand annealing 

Single strand annealing (figure 1.9 – b) occurs on repetitive DNA sequences and is a 

Rad51-independent pathway, which usually involves some loss of genetic material (Paques

and Haber, 1999).  Following a DSB, the 5’ ends are resected, exposing compleme
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invasion step.  Although this reaction occurs without the need for Rad51, Rad54, Rad55 or 

Rad57, it does require Rad52 and Rad59 (Ivanov et al., 1996;Sugawara et al., 2000).  

Following the annealing of sequences, the 3’ non-homologous ends are excised and DNA 

synthesis and ligation completes the repair.   

1.4.2.2 Break induced replication 

Break induced replication (BIR) involves the invasion of only one end of the DSB (f

1.9 – c) and can occur by both Rad51-dependent and Rad51-independent mechanisms 

(McEachern and Haber, 2006).  BIR reactions often remain undetected in WT cells d

the high amount of gene conversion reactions (see below) that occur (Davis and 

Symington, 2004).  Once the 5’ end of a DSB is resected, the 3’ ssDNA overhang invad

a homologous chromosome.  Following this invasion, a replication fork is established

the chromosome is copied for up to 100 kb, normally up to the chromosome end.  Rad5

dependent BIR is much more efficient than Rad51-independent BIR and involves the same 

co-factors that are required for gene conversion reaction (see section 1.4.2.3) (Malkova et 

al., 2005;Davis and Symington, 2004).  Rad51-independent BIR requires shorter lengths o

homologous substrate than Rad51 dependent BIR and involves the proteins Rad52, R

and Rad59 (Ira and Haber, 2002;Bosco and Haber, 1998;Signon et al., 2001).   

igure 

ue to 

es 

 and 

1-

f 

ad50 

1.4.2.3 Gene conversion  

m one 

 

alian 

for 

a 3’ 

hat 

d 

f the 

Gene conversion events (figure 1.9, d – e) allow the transfer of genetic material fro

DNA molecule to its homologue in a uni-directional manner.  This occurs most often 

between two alleles of a gene, but also occurs between homologous sequences on different

chromosomes, and is the most common mechanism of HR in DSB repair (Chen et al., 

2007). 

Following the introduction of a DSB, both 5’ ends are resected in a 5’ to 3’ manner by 

exonucleases, leaving 3’ ssDNA overhangs that can be thousands of bp long (figure 1.11) 

(White and Haber, 1990;Sun et al., 1991).  The MRX complex in yeast or its mamm

homologue, the MRN complex (Mre11/Rad51/Nbs1), was thought to be responsible 

this resection (Trujillo et al., 1998).  However, the nuclease activity of Mre11 acts in 

to 5’ polarity, leading to the suggestion that its role is not one of resection, but rather t

of tethering and cleaning up the DNA ends through a conformational change (Krogh an

Symington, 2004;de Jager et al., 2001;Moreno-Herrero et al., 2005).  The resection o

DSB ends therefore appears to be created by other, perhaps redundant, nucleases. 
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In S. cerevisiae, the 3’ ssDNA tails that result from DSB resection are subsequently coated 

with Replication Protein A (RPA) (figure 1.11), a homologue of the bacterial ssDNA 

binding protein, SSB (Sugiyama et al., 1997).  This protein serves to protect the DNA 

nucleases and also removes any secondary structures (Sugiyama et al., 1997).   

from 

The single stranded tails then become bound by Rad51 in eukaryotes (figure 1.11) (RecA 

 

rs 

this 

.  Brca2 appears to be conserved in most eukaryotic 

organisms with the notable exception of S. cerevisiae (Kowalczykowski, 2002).  Why 

1 

 

al., 

-

52.  

C2 (designated the BCDX2 complex) and Rad51C-

XRCC3 (Masson et al., 2001b;Liu et al., 2004).  Their precise roles remain unclear, 

 

Shu 

in bacteria and RadA in archaea) (Brendel et al., 1997;Seitz et al., 1998), forming a 

characteristic nucleoprotein filament on the ssDNA that has a key role in recombination 

(Shinohara et al., 1992).  However, in order for Rad51 to be able to bind to ssDNA 

efficiently, the RPA protein needs to be removed (Sung, 1997a;Sung, 1997b).  In both 

yeast and mammals Rad52 facilitates the removal of RPA (Sung, 1997a;Benson et al., 

1998), but Rad52 is notably absent from D. melanogaster, C. elegans and T. brucei.  

Evidence exists that the breast cancer susceptibility protein, Brca2 (see below) can act 

preferentially at the interface between dsDNA and ssDNA, resulting in the displacement of

RPA from the overhang (Yang et al., 2002;Martin et al., 2005).  This mechanism appea

to assist the loading of Rad51 onto ssDNA and could provide an explanation of how 

occurs in the absence of Rad52

mammals utilise both Rad52 and Brca2 is unclear. 

Most eukaryotes also express multiple Rad51-related proteins (often called Rad51 

paralogues) that also aid Rad51 function.  Rad55 and Rad57, which form a heterodimer, 

are examples in S. cerevisiae (Sung, 1997b).  Rad55-57 helps the formation of the Rad5

nucleoprotein filament in a mechanism that is distinct to that of Rad52 (Gasior et al., 

1998).  Notably, an absence of either of these proteins can be compensated for in vivo by

an over-expression of either Rad51 or Rad52 (Johnson and Symington, 1995;Hays et 

1995).  The situation is more complicated in mammals due to the existence of five Rad51

related proteins (Rad51B, Rad51C, Rad51D, XRCC2 and XRCC3) in addition to Rad

These paralogues have been shown to form two distinct protein complexes in vivo; 

Rad51B-Rad51C-Rad51D-XRC

though, it has been demonstrated that the BCDX2 complex can bind ssDNA, gaps in 

dsDNA and nicks in duplex DNA (Masson et al., 2001b), whilst the Rad51C-XRCC3 

complex has been shown to have a DNA binding activity that might be important in 

resolving Holliday junctions (Liu et al., 2004).  Each of the mammalian Rad51 paralogues

appears to possess an important role, since their disruption causes lethality in mice and an 

impaired ability to undergo recombination and repair in hamster and human cell lines (
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et al., 1999;Deans et al., 2000;Pittman and Schimenti, 2000;Johnson et al., 1999;Pierce et 

al., 1999;French et al., 2002;Godthelp et al., 2002).  The repertoire of RAD51 paralogues

in T. brucei appears to be greater than that of S. cerevisiae and more similar to that of 

mammals, with four Rad51 paralogues being uncovered recently (Proudfoot and 

McCulloch, 2005).   

 

Once the mature Rad51 nucleoprotein filament has formed onto the ssDNA tails, the 

quences and 

atin remodelling proteins (Lisby and Rothstein, 

004;Eisen et al., 1995;Emery et al., 1991).  Rad54 interacts with Rad51 to aid chromatin 

remodelling, using the ATP hydrolysis function of Rad54 to supercoil and separate the 

trands of the homologous DNA (Alexiadis and Kadonaga, 2002;Van Komen et al., 

2000;Sigurdsson et al., 2002). 

Following the formation of the D-loop, leading strand and lagging strand DNA synthesis 

ccurs, using the 3’ end as a primer for new DNA synthesis and the donor strand as a 

template (Paques and Haber, 1999;Holmes and Haber, 1999).  In a process known as 

3’ end of broken DNA also invades the D-loop, followed 

olvase that 

ng 

o 

to its ability to act on recombination intermediates (Boddy 

et al., 2001;Chen et al., 2001). 

 events 

protein uses the sequence of the DNA to scan the genome for homologous se

then catalyses invasion of the DNA into the duplex in a process known as ‘strand invasion’ 

(figure 1.11).  This leads to the formation of a displacement loop (D-loop), a bubble of 

unwound DNA in which the complementary strand has been displaced from the intact 

duplex.  Strand invasion is aided by Rad54, a dsDNA-dependent ATPase which is also a 

member of the Swi2/Snf2 family of chrom

2

s

o

second end capture, the second 

subsequently by DNA synthesis and ligation of the nicks, leading to the formation of a 

structure with two Holliday Junctions (HJs).  Cleavage of the two HJs then occurs, yielding 

either a non-crossover (gene conversion) or a crossover product.  The HJ res

catalyses this step in eukaryotes is as yet unknown, but it has been postulated that in 

human cells it could be the Rad51C-XRCC3 heterodimer, which is capable of resolvi

HJs in vitro (Liu et al., 2004;Liu et al., 2007).  The Mus81-Eme1 endonuclease als

appears to be a contender, due 

The above model predicts that the resolution of HJs occurs in two orientations, leading to 

the generation of an equal amount of crossover and non-crossover outcomes.  However, 

mitotic recombination events result in an extremely low occurrence of crossover

(<8%) (Esposito, 1978;Haber and Hearn, 1985;Kupiec and Petes, 1988).  To account for 

this low occurrence of crossovers, the synthesis-dependent strand annealing (SDSA) model 

was proposed (Nassif et al., 1994;Paques and Haber, 1999).  In this model, following 
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strand invasion and D‑loop extension, the newly synthesized strand is displaced from the 

template and anneals to the other 3’ssDNA tail, allowing DNA synthesis to occur on the 

receiving strand, followed by ligation of nicks (Haber et al., 2004;Ira et al., 2006).  Thi

model generally yields only non-crossover products, but can allow for cross-over ev

(Ferguson and Holloman, 1996). 

s 

ents 

 
Figure 1.11 – Proteins involved in the early stages of eukaryotic homologous 
recombination.  The black lines represent duplex DNA that has suffered a DSB and grey lines 
represent intact duplex used as a template for the repair of the damaged strand.  The 5′ ends of the 
DSB are resected with the aid of the MRN complex (MRX in yeast) and other nucleases to form 3′ 
ssDNA tails.  The ssDNA tails becomes coated with RPA to eliminate any secondary structure.  
The loading of the RAD51 nucleoprotein filament is aided by RAD52, the RAD51 paralogues and 
BRCA2, which also act to remove RPA.  The tails then actively ‘scan’ the genome for homologous 
sequences in a ‘strand invasion’ process that is aided by RAD54.  Following this one tail invades 
the homologous DNA duplex forming a displacement (D)-loop, which is then extended by DNA
synthesis.  See text for further details. 
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1.4.3 Mismatch repair 

The mismatch repair (MMR) system has a vital role in maintaining genomic integrity and 

serves to recognise and repair any base mismatches that may arise during replication or due 

to mutagenesis by alkylating agents, such as MNNG (N-methyl-N'-nitro-N-

onserved from bacteria to higher eukaryotes, 

ismatched bases are recognised by the MutS 

97).  

r the 

s 

f the mis-paired DNA strand requires the UvrD helicase 

(Dao and Modrich, 1998) and a ssDNA exonuclease before the DNA can be re-synthesised 

2005).  Eukaryotes appear 

nitrosoguanidine), or by cisplatin (Jiricny, 2006).  Just as importantly, it also acts to 

prevent HR between non-identical sequences, thereby reducing the levels of HR and 

ensuring that exchanges only occur between homologous sequences (Datta et al., 

1996;Elliott and Jasin, 2001). 

The basic processes of MMR appear to be c

involving a number of proteins.  In bacteria, m

protein (MSH2/MSH6 or MSH2/MSH3 heterodimers in eukaryotes) (Allen et al., 19

This is followed by the recruitment of MutL (MLH1/PMS1, MLH1/PMS2 and 

MLH1/MLH3 heterodimers in eukaryotes) (Galio et al., 1999), which is required for the 

activation of MutH.  MutH is an endonuclease, which nicks the DNA in preparation fo

removal of the mis-paired bases (Au et al., 1992), though no eukaryotic homologue ha

been found.  In bacteria, excision o

by DNA polymerase III and DNA ligase (Kunkel and Erie, 

somewhat different, in that mismatch repair can be reconstituted in vitro without a 

helicase, and requires ExoI, RPA, DNA polymerase δ, DNA ligase I and the non-histone 

chromatin factor HMGB1 (Jiricny, 2006). 

 
Figure 1.12 – Mismatch repair system in bacteria.  The mismatch is recognized by MutS w
together with MutL, initiates MutH, an endonuclease which nicks the DNA.  This is followed by the 
exonuclease degradation of DNA until the mismatched base is removed.  This is subsequently 
filled in by DNA polymerase, which inserts the correct nucleotide.  Figure adapted from Sancar, 
1999. 

hich, 
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1.5 BRCA2 
Breast cancer is one of the most common causes of cancer related deaths in women and 

approximately 5-10 % of individuals who develop the disease are genetically predisposed 

to it (Lynch et al., 1984).  Linkage analysis identified the first breast cancer susceptibility 

gene, BRCA1, in 1991 (Hall et al., 1990).  A failure to assign all cases of breast cancer to a 

mutation in this gene led to the search for a second breast cancer susceptibility gene and in 

1995, BRCA2 was identified (Wooster et al., 1995).  Since then it has been established that 

women possessing an abnormal copy of BRCA1 or BRCA2 have up to an 85 % risk of

developing breast cancer by the 

 

age of 70 (www.breastcancer.org).  The products of these 

n et al., 

genes both participate in gene conversion events and therefore contribute a critical role in 

the maintenance of genome stability (Moynahan et al., 1999;Moynahan et al., 2001;Xia et 

al., 2001).  However, they are remarkably different proteins, most notably in terms of their 

size and the proteins with which they interact (see figure 1.13).  For example, BRCA1 

interacts with the MRN complex (Scully et al., 1997), whilst BRCA2 interacts with Rad51 

(Sharan et al., 1997;Chen et al., 1998b;Marmorstein et al., 1998) and BRCA1 (Che

1998a).  Since the work in this thesis concentrates primarily on BRCA2, the following 

sections will focus solely on this protein. 

 
Figure 1.13 – The BRCA1 and BRCA2 proteins displaying the functional domains and 
interacting proteins.  Both BRCA1 and BRCA2 are large polypeptides (1863 and 3418 amin
acids respectively) which interact with each other and several other proteins.  BRCA2 interacts w
the histone acetylase P/CAF, BRAF35, RAD51 and DSS1.  The sites of the eight BRC repeats (s
of which interact with RAD51), the oligonucleotide binding (OB) domains and the nuclea
localisation signal (NLS) sequences are indicated.  Figure taken from West, 2003. 
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1.5.1 The structure of BRCA2 

The human BRCA2 protein is a large polypeptide consisting of 3418 amino acids.  

Following a wealth of research into the protein in the last 13 years, BRCA2 is

to directly regulate the recombinase Rad51 and form an essential part of the HR pathwa

(Jasin, 2002).  Not only this, but it has also been shown to interact with several other 

proteins involved in the process of DNA repair and clues to the exact function of the 

protein are now being uncovered. 

1.5.1.1 Rad51 binding occurs at the BRC repeats 

Initial inspections of the gene revealed no obvious similarities to any other genes within 

available published sequences (Wooster et al., 1995).  However, the BRC repeat domain 

was identified and located to exon 11  following the failure to detect any similarity 

between BRCA2 and BRCA1 (Bork et al., 1996).  The BRC repeat domain contains a 

series of eight degenerate motifs which are approximately 30 amino acids long and are 

interspersed along a 1200 amino acid central region (see figure 1.13). 

A major breakthrough in understanding the function of BRCA2 came when it was 

discovered that BRCA2 int

 now known 

y 

eracted with Rad51.  This was evidenced by yeast two hybrid 

analyses and co-immunoprecipitation (Sharan et al., 1997;Chen et al., 1998b;Marmorstein 

 of 

ld 

 

 

et al., 1998b), and are the most diverged 

repeats.  This has led to the current thinking, that in vivo, only 6 out of the 8 BRC repeats 

uld 

et al., 1998).  In addition to this, it was observed that BRCA2 and Rad51 co-localise to 

DNA damaged induced foci, and that Rad51 foci fail to form in the absence of BRCA2 

(Yuan et al., 1999;Tarsounas et al., 2003).  Further research identified the region of this 

interaction as the BRC repeat domain (Wong et al., 1997;Chen et al., 1998b).  A notable 

degree of sequence divergence exists across the 8 BRC repeats within BRCA2 in H. 

sapiens, with BRC1, BRC3, BRC4, BRC7 and BRC8 exhibiting the highest levels

similarity.  It might be considered that this level of diversity across the BRC repeats cou

represent an example of evolutionary tuning, with the aim of producing binding sites with

a range of affinities for Rad51.  Indeed, this theory is supported by the demonstration that 

although all BRC repeats have the ability to bind Rad51 in vitro, some bind with a stronger 

affinity than others (Wong et al., 1997;Chen et al., 1998b): BRC3 and BRC4 have been

shown to display a very strong interaction with Rad51, whilst BRC5 and BRC6 display a 

very weak interaction (Wong et al., 1997;Chen 

in human BRCA2 bind Rad51.  It has since been postulated that BRC5 and BRC6 co

represent binding sites for other recombination factors (Pellegrini and Venkitaraman, 

2004).   
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The large number of BRC repeats present within BRCA2 was originally considered to be 

necessary in order to deliver a sufficient number of Rad51 molecules onto the ssDNA at 

the site of the DSB, thereby allowing the nucleoprotein filament to be stabilised (

and Venkitaraman, 2004).  It was postulated that the BRC repeats with the weakest affinity 

would be the first to release Rad51 onto the damaged DNA, whilst those with the stron

affinity would be the last to release Rad51  (Pellegrini and Venkitaraman, 2004).  

However, recent investigations have shown that functional BRCA2 orthologues exist in

many other eukaryotes, including the smut fungus Ustilago maydis and the nematode 

Caenorhabditis e

Pellegrini 

gest 

 

legans, both of which have been shown to possess only 1 BRC repeat 

(Kojic et al., 2002;Martin et al., 2005).  This therefore leaves the possibility that the 

 

 the DNA 

binding properties of Rad51.  Not only was the formation of the Rad51 nucleoprotein 

t in 

1 

g the 

d51 

-ray 

vealed that the residues F-TASGK, 

which are conserved within the BRC repeats, are critical in mediating hydrophobic 

additional repeats in higher eukaryotes could fulfil a different role or roles, or it could 

simply be indicative of the more complex biological systems.  

Experiments with synthetic peptides corresponding to the BRC repeats have demonstrated

that the interaction between Rad51 and BRC3 or BRC4 actually inhibited

filament prevented, but it was actually disrupted when the BRC peptides were presen

molar excess of Rad51 (Davies et al., 2001;Tarsounas et al., 2004;Davies and Pellegrini, 

2007;Esashi et al., 2007).  In light of this research, it appeared that the role of BRCA2 

might be to provide a negative control mechanism over Rad51, possibly by keeping Rad5

inactive until it is needed for repair (Tarsounas et al., 2004).  Indeed, this hypothesis 

appeared to be supported by the in vivo overexpression of the BRC4 motif reducin

ability of cells to form Rad51 foci at sites of DNA damage (Chen et al., 1999a). 

Further insight into the mechanism of the interaction between the BRC repeats and Ra

was provided when the structure of BRC4 bound to the core of Rad51 was solved by X

crystallography (Pellegrini et al., 2002).  This study re

interactions with Rad51.  Further evidence highlighting the critical nature of this motif 

arose from cancer-predisposing mutations being found within these residues 

(http://research.nhgri.nih.gov/bic/) (Bork et al., 1996;Bignell et al., 1997;Davies et al., 

2001).  It could therefore be postulated that the differences in affinity for Rad51 arise not 

sidues but due to divergence in the flanking non-

 Rad51 

rs to 

due to differences in the conserved re

conserved residues (Pellegrini et al., 2002).  The crystal structure of BRC4 bound to

also provided evidence for the mechanism of the interaction.  Through the comparison of 

this structure to the crystallographic RecA filament, it was revealed that BRCA2 appea

interact with Rad51 by mimicking the structure of the interaction domain between adjacent 
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Rad51 monomers.  It also became apparent that the interaction between a BRC repeat

a Rad51 monomer prevents the ability of Rad51 monomers to interact with each oth

thereby blocking filament formation (Pellegrini et al., 2002).  This would therefore allow 

the BRC repeats to maintain the Rad51 molecules in a monomeric state, which would only 

be able to form a nucleoprotein filament once deposited onto ssDNA.  Indeed, this

hypothesis has recently been shown to be accurate with the demonstration that only Rad51

monomers can bind to the BRC repeats and not Rad51 filaments (Davies and Pellegrini, 

2007;Esashi et al., 2007). 

A feature common to all orthologues of BRCA2 that have been identified to date, 

 and 

er and 

 

 

is the 

presence of at least one BRC repeat.  This observation, along with the conservation of the 

er, 

h 

legans BRCA2, which 

has only one BRC repeat (Martin et al., 2005). 

n 

d the TR2 

region by Esashi et al., (2005) and has not only been demonstrated to bind Rad51, but has 

a extracts (Esashi et al., 2005) on serine 3291 

 

 addition to this, the induction of DNA 

damage has been shown to cause rapid de-phosphorylation of this site, thereby allowing 

critical residues in the BRC repeat sequence between several different species appears to 

suggest that these domains are essential to the function of BRCA2 (Bignell et al., 1997).  

Indeed, mutations located within the BRC repeats have been shown to associate with 

familial ovarian cancer (Gayther et al., 1997), providing further evidence of their 

importance to the functioning of BRCA2.  Generally, it appears that simpler organisms 

possess a smaller number of BRC repeats, whilst more complex, multicellualr organisms 

such as higher eukaryotes possess a larger number of repeats (Lo et al., 2003).  Howev

exceptions to this rule do exist, most notably in the Trypanosoma brucei homologue whic

is predicted to contain 15 BRC repeats, 14 of which are identical and are separated by 

exactly 20 amino acids (see chapter 3 for further details), and in C. e

1.5.1.2 Rad51 also binds to the C-terminus of BRCA2 

In addition to Rad51 binding to the BRC repeats, it has been uncovered that there is also a

unrelated Rad51 binding site located at the carboxyl terminus, situated within exon 27 of 

human BRCA2 (Mizuta et al., 1997;Sharan et al., 1997).  This has been name

also been found to be phosphorylated in HeL

(S3291), a reaction that is mediated by cyclin-dependent kinases (CDK’s).  This 

phosphorylation has been shown to have a direct effect on Rad51 binding, with interactions

only occurring when S3291 is de-phosphorylated.  The S3291 phosphorylation status 

fluctuates throughout the cell cycle, with low levels of phosphorylation observed in S-

phase and high levels as cells enter mitosis.  In

Rad51 to bind.   
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These results appear to indicate that the phosphorylation status of S3291 may pro

‘molecular switch’, through which HR can be down-regulated as cells approach mitosis 

and up-regulated in response to DNA damage.  Indeed, this hypothesis is supported by a

increase in tumour susceptibility when either exon 27 is deleted or mutations are located 

within the Cdk target site (McAllister et al., 2002;Donoho et al., 2003). 

More recently, it has been uncovered that the TR2 region is only capable of binding

multimeric forms of Rad51, such as filaments or rings, and cannot support the binding of 

Rad51 monomers (Esashi et al., 2007;Davies and Pellegrini, 2007). 

vide a 

n 

 

 In addition, it has 

been demonstrated that the TR2 region can also act to protect Rad51 filaments from the 

 in 

ted 

sites 

l., 

 

t ssDNA, 

mains in the C terminal region of BRCA2 (figure 1.13). 

disruption caused by the BRC repeats.  The importance of an alternative Rad51 binding 

site and mode is underlined by the apparent conservation of this activity in other 

orthologues of BRCA2.  For example, the BRCA2 homologue in C. elegans (CeBRC-2) 

has been revealed to bind Rad51 in a similar manner to the TR2 region through a site 

located at the N-terminal domain (Petalcorin et al., 2007).  Furthermore, the Ustilago 

maydis homologue (Brh2) has also been demonstrated to contain a similar site (CRE), 

located at the C terminal domain (Zhou et al., 2007). 

Taken together, these findings have contributed to the current thinking of how BRCA2 

operates within the HR pathway in that the BRC repeats and the TR2 region provide 

functionally distinct mechanisms (see section 1.5.1.4). 

1.5.1.3 DNA binding domains  

Apart from the Rad51 binding domains, the BRCA2 protein contains several other 

functional motifs lying downstream of the BRC repeats (figure 1.13).  It was discovered

1999 that the final third portion of the human BRCA2 protein associates with a highly 

acidic 70 amino acid polypeptide, DSS1 (Marston et al., 1999), a protein which is muta

in split hand/split foot syndrome (Crackower et al., 1996).  DSS1 has been shown to 

provide a critical role for DNA damage induced Rad51 focus formation and for the 

maintenance of genomic stability (Gudmundsdottir et al., 2004).  Furthermore, it has been 

speculated that DSS1 is required for the BRCA2-Rad51 complex to associate with the 

of DNA damage, possibly due to its acidic nature mimicking ssDNA and thereby 

facilitating the accessibility of BRCA2 onto damaged DNA sites (Gudmundsdottir et a

2004).  Co-expression of DSS1 along with the C terminal region of H. sapiens BRCA2 has

allowed the X-ray crystallographic structure of this part of the breast cancer protein to be 

determined (Yang et al., 2002).  Structures were determined both with and withou

revealing five distinct do



Claire Louise Hartley, 2008   Chapter 1, 40 

The first domain is described as the helical domain due to its 190 amino acids consisting 

mainly of α-helices.  Lying further downstream are three oligonucleotide/oligosaccharide 

binding folds (OB1, OB2 and OB3), which are structurally similar to the OB folds present 

in the prokaryotic ssDNA-binding-protein (SSB) and the eukaryotic replication-protein-A 

(RPA), both of which also bind ssDNA.  Indeed, the entire C terminal region of BRCA2 

was shown to bind to ssDNA with high affinity.  Located within OB2 exists a 130 amino 

acid insertion, which has been named the tower domain due to its tower-like structure 

protruding from the OB fold.  DSS1 was found to associate with residues spanning the α-

helical domain, OB1, the tower domain and OB2, whilst the tower domain is implicated in 

providing an additional role in dsDNA binding (Yang et al., 2002). 

In light of this structure, it was proposed that BRCA2 could be responsible for targeting 

Rad51 to the ssDNA/dsDNA junction at the sites of processed DSBs.  Indeed, the affinity 

of the C terminal domain of BRCA2 for binding to ssDNA/dsDNA junctions could serve 

to displace the RPA molecules and thereby allow the formation of the Rad51 nucleoprotein 

filament (Martin et al., 2005;Powell et al., 2002;Wilson and Elledge, 2002). 

1.5.1.4 The function of BRCA2 in HR 

 

onstrated to be essential for genomic stability in eukaryotes, with 

hibiting an accumulation of chromosome 

breaks and radial chromosomes (Sharan et al., 1997;Patel et al., 1998;Yu et al., 

et al., 1996).   

Despite the purification of the entire BRCA2 protein from any organism, so far proving

unsuccessful, a number of experiments with smaller subunits of the protein have yielded a 

wealth of information.  Not only this, but extensive research into organisms with BRCA2 

deletions or tumour cells with mutations of BRCA2 have provided a clearer view of how 

the protein functions within the HR pathway. 

BRCA2 has been dem

BRCA2 deficient murine and human cells both ex

2000;Moynahan et al., 2001;Tutt et al., 2001).  These phenotypes were presumed to result 

from the failed DNA repair of DSBs, since BRCA2 has been shown to co-localise with 

Rad51 in nuclear foci following damage (Tarsounas et al., 2004).  Indeed, this hypothesis 

was supported by the lack of Rad51 foci in the BRCA2 deficient pancreatic cancer cell line, 

CAPAN-1 (Yuan et al., 1999).  This cell line possesses only one BRCA2 allele, which 

encodes a truncated protein consisting of only 6 BRC repeats and no DNA binding 

domain.  In addition to its impaired ability to form Rad51 foci, this cell line also displays 

hypersensitivity to DNA damaging agents (Goggins 
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Similar phenotypes have also been exhibited in lower eukaryotes deficient in BRCA2.  For 

example, Ustilago maydis cells deficient in Brh2 display defects in DNA repair, 

recombination and meiosis (Kojic et al., 2002).  Similarly, the absence of Cebrc-2 in C. 

elegans caused defective DSB repair, induced by both ionising radiation and meiosis.  

These phenotypes were shown to result from an in ability to target Rad51 to the sites of th

DSBs (Martin et al., 2005).  Taken together, these findings confirm a role for BRCA2 i

DSB repair by directly regulating the 

e 

n 

recombinase Rad51 in the HR pathway.   

at 

due to the discovery of an 

additional, unrelated Rad51 binding domain (TR2) located at the C terminus of human 

ly 

l 

 

n of S3291 also occurs.  This 

modifying event activates the TR2 region, which supports the formation of the Rad51 

It has been known for some time that the BRC repeats were responsible for interacting 

with Rad51(Wong et al., 1997;Chen et al., 1998b) and originally it was presumed th

these allowed Rad51 to be recruited to the sites of damaged DNA.  However, this model 

has since been forced to be updated, not only due to evidence implicating the BRC repeats 

in a negative role over Rad51 (Davies et al., 2001;Chen et al., 1999a;Tarsounas et al., 

2004;Davies and Pellegrini, 2007;Esashi et al., 2007), but also 

BRCA2 (Esashi et al., 2005).  Indeed, with the recent discovery that the BRC repeats on

support the binding of Rad51 monomers (see above), and the TR2 region supports the 

binding of Rad51 filaments (Esashi et al., 2007;Davies and Pellegrini, 2007), a new mode

has been proposed (Lord and Ashworth, 2007;Petalcorin et al., 2007) (figure 1.14).  This 

model proposes that in a normal cell, BRCA2 holds Rad51 in an inactive monomeric form

at the BRC repeats.  However, when DNA damage is induced, not only does BRCA2 

localise to the sites of damage, but de-phosphorylatio

nucleoprotein filament.  This, in turn, allows HR to progress and the DSB to be repaired.  

Finally, HR is halted when a cyclin dependent kinase phosphorylates S3291, causing the 

inactivation of TR2, which thereby allows the BRC repeats to disrupt the Rad51 

nucleoprotein filament. 
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Figure 1.14 –BRCA2’s role in the HR pathway and its interaction with Rad51.  (a) Without 

d 

Bs 
d 

 

teracts 

DNA damage Rad51 oligomers are disrupted by the BRC repeats of BRCA2 (b) and remain boun
in a monomeric form.  (c) When DNA damage is detected, the site S3291 becomes 
dephosphorylated, activating the TR2 region.  The TR2 region supports the binding of the Rad51 
nucleoprotein filament, allowing the progression of homologous recombination.  (d)  When DS
are repaired the site S3291 becomes phosphorylated by CDKs, inactivating the TR2 regions an
allowing the BRC repeats to disrupt the nucleoprotein filament.  Figure taken from Lord and 
Ashworth, 2007. 

 

1.5.1.5 BRCA2 interacting proteins 

Apart from Rad51 and DSS1, which have already been mentioned, BRCA2 is also known

to associate with a number of other proteins (figure 1.13).  In 1998, it was discovered that 

BRCA2 and BRCA1 co-exist in a complex and co-localise to sub-nuclear foci in somatic 

cells (Chen et al., 1998a).  In the same year, it also became apparent that BRCA2 in

with p53 (Marmorstein et al., 1998) and a transcriptional co-activator protein, P/CAF, 

which possesses histone acetyltransferase activity.  The interaction with P/CAF was 

demonstrated both in vitro and in vivo and was found to be mediated by the H. sapiens 

BRCA2 residues 290-453 (Fuks et al., 1998).  
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Three years later, Marmorstein et al., (2001) identified a 2 MDa BRCA2-containing 

complex within which they were able to identify a structural DNA binding component, 

which they named BRCA2-Associated factor 35 (BRAF35) (Marmorstein et al., 2001).  In 

2003, the N-terminal region of BRCA2 was discovered to co-immunoprecipitate with

RPA, both in vitro and in vivo (Wong et al., 2003).  Not only this, but exon 3 of BRCA2 

was found to associate with EMSY, a protein which is am

 

plified in breast and ovarian 

cancer (Hughes-Davies et al., 2003). 

et al., 2007;Reid et al., 2007). 

 

 

.  

C1, 

ut 

ed 

C. 

BRCA2 has also been discovered to interact with the mitotic Polo-like kinase (Plk1) in cell 

extracts (Lin et al., 2003).  This interacting domain has been localised to the region 

spanning the BRC repeats but, perhaps more interestingly, it has been discovered that the 

regions within the BRC repeats and not the BRC repeats themselves are phosphorylated by 

Plk1 as cells approach mitosis (Lee et al., 2004).  This phosphorylation event has also been 

discovered to cause the dissociation of P/CAF from BRCA2.   

BRCA2 has also been found to function within the Fanconi Anemia (FA) pathway (see 

section 1.5.1.6).  This finding was confirmed through co-immunoprecipitation and yeast-

two-hybrid studies which revealed that BRCA2 interacts with FANCD2, a component of 

the FA pathway (Hussain et al., 2004) and FANCG (Hussain et al., 2003).  Furthermore, 

BRCA2 function has also been demonstrated to require another binding partner, PALB2 

(Xia et al., 2006a), which has been recently identified as FANCN, another component of 

the FA pathway (Xia 

An interaction between BRCA2 and the meiosis-specific homologue of RAD51, DMC1, in

A. thaliana has previously been described (Siaud et al., 2004) and mapped to BRC2 (Dray 

et al., 2006).  More recently, this interaction has also been confirmed between the human

proteins, highlighting the importance of BRCA2 in meiosis (Thorslund et al., 2007)

Through a series of yeast two-hybrid analysis, protein interaction assays and peptide 

arrays, this interaction has been mapped to residues 2386-2411 in human BRCA2 and has 

been named the PhePP motif (Thorslund and West, 2007).  Unlike A. thaliana, this motif is 

unrelated to the BRC repeats, and only supports interactions between BRCA2 and DM

not Rad51.  The PhePP motif appears to be highly conserved throughout vertebrates, b

appears to have diverged in U. maydis and C. elegans.  Recently, it has been discover

that the PhePP motif in C. elegans interacts with Rad51 (Petalcorin et al., 2007).  This 

fundamental difference between these eukaryotes could be explained by the lack of DMC1 

in C. elegans.  Instead, C. elegans expresses Rad51 at a high level in order to promote 

meiosis (Takanami et al., 2000).  A potential further difference between vertebrates and 



Claire Louise Hartley, 2008   Chapter 1, 44 

elegans, is shown by the fact that the TR2 region of BRCA2 was shown to be dispensabl

for meiosis in vertebrates (Thorslund and West, 2007).  Taken together, it is possible th

these variations suggest considerable flexibility in the functions adopted by BRCA

beyond RAD51 interact

e 

at 

2 

ion. 

arrow 

d 

je 

y, 

, 

st 

e 

rcia-

i-

d to the 

 

CA2 

NCG and XRCC3 (Wilson et al., 2008).  

f the remaining proteins, it is known that FANCA, FANCB, FANCC, FANCE, FANCF, 

FANCG, FANCL and FANCM interact to form a multi-subunit nuclear complex, along 

ith the FANCA associated polypeptides (FAAP), FAAP24 and FAAP100 (Meetei et al., 

2005;Garcia-Higuera et al., 2001;Ciccia et al., 2007;Ling et al., 2007;Mathew, 2006).  

This complex is known to have multiple roles involving the activation, re-localisation, and 

monoubiquitylation of FANCD2 and FANCI (D'Andrea and Grompe, 2003;Takata et al., 

1.5.1.6 BRCA2 is also a member of the Fanconi Anaemia pathway 

Fanconi anaemia (FA) is an autosomal recessive disorder characterised by bone m

failure, compromised genome stability, and a predisposition to cancer (D'Andrea and 

Grompe, 2003).  The FA pathway has been implicated to function in DNA repair mediate

through the HR pathway, and in the protection of stalled replication forks (Niedzwiedz et 

al., 2004;Taniguchi and D'Andrea, 2006;Takata et al., 2006;Yang et al., 2005).  The role in 

DNA repair was initially hypothesised due to observations that cells derived from FA 

patients exhibited sensitivities to cross linking agents (Grompe and D'Andrea, 2001;Joen

and Patel, 2001).  There are currently 13 proteins proposed to function in the FA pathwa

which include FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, 

FANCG, FANCI, FANCJ, FANCL, FANCM and FANCN, but their precise roles still 

remain unclear (Joenje and Patel, 2001;Smogorzewska et al., 2007;Levitus et al.

2006;Meetei et al., 2005). 

The proteins of the FA pathway have been discovered to function closely with the brea

cancer susceptibility proteins, BRCA1 and BRCA2.  For example, BRCA1 is known to b

required for the efficient foci formation of FANCD2 (Vandenberg et al., 2003;Ga

Higuera et al., 2001), whilst cell lines defective in FANCD1 have been shown to carry b

allelic mutations in BRCA2 (Howlett et al., 2002).  This latter observation, along with the 

discovery that BRCA2 can complement for the defect in FANCD1 cell lines, le

conclusion that BRCA2 and FANCD1 are in fact one in the same (Howlett et al., 2002).  

Further evidence displaying the relationship between the BRCA proteins and HR comes

from the discovery that BRCA2 interacts with FANCD2 and FANCN (Hussain et al., 

2004;Reid et al., 2007;Xia et al., 2007).  More recently it has been implicated that BR

also forms a complex with FANCD2, FA

O

w
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2006;Smogorzewska et al., 2007).  An example of this is found following exposure to 

 damage, whereDNA  the FA core complex monoubiquitylates FANCD2, causing it to re-

locate to sub-nuclear foci with BRCA1 and Rad51 (Taniguchi and D'Andrea, 2006;Garcia-

 

et al., 1992;Sauvageau et al., 

2004).  Recombinant forms of Rad51 have been shown to form oligomeric ring structures 

 

 et 

s 

eukaryotes, such as S. cerevisiae and T. brucei’s Kinetoplastid relatives, Leishmania major 

cKean et 

, 

prepares 

 

Higuera et al., 2001).  Here, FANCD2 is thought to promote the loading of BRCA2 

(FANCD1) into chromatin complexes, facilitates the assembly of Rad51 foci and thereby

promoting HR (Wang et al., 2004;Hussain et al., 2004). 

1.6 Rad51 
Rad51, the eukaryotic homologue of bacterial RecA, is a relatively small protein (38kDa) 

that possesses a core domain structure containing Walker A and B motifs, which are 

responsible for ATP binding and hydrolysis (Walker et al., 1982).  This domain is 

homologous to the catalytic domain of E. coli RecA and also exhibits a high level of 

similarity to the Walker motifs present in DMC1 (Bishop 

of 7 or 8 monomers in the absence of DNA (Shin et al., 2003;Kinebuchi et al., 2004).  

However, when associated with DNA, Rad51 becomes functionally active and forms a 

highly ordered right-handed helical nucleoprotein filament which possesses homologous

pairing and strand exchange activities (Benson et al., 1994;Conway et al., 2004;Sehorn

al., 2004).  Although recombinant forms of Rad51 and RecA can perform these function

alone in vitro, in vivo many other factors are required (Sung et al., 2003;Symington, 2002) 

(see section 1.4.2.3). 

When bacteria are exposed to DNA damage, RecA induction is observed to increase more 

than 15 fold in a ‘SOS response’ (Little and Mount, 1982;Walker, 1984).  Mammalian 

cells do not exhibit such an induction (Tarsounas et al., 2004), which may be surprising 

since the activity of human Rad51 in strand exchange assays has been shown to be 

comparatively much lower than that of RecA (Baumann et al., 1996).  Indeed, other 

and T. cruzi, do up-regulate Rad51 levels after damage (Shinohara et al., 1992; M

al., 2001; Regis-da-Silva et al., 2006).  Beyond up-regulation of expression, another 

response to DNA damage appears to be ubiquitous.  When DNA damage is detected

Rad51 and other repair proteins that are normally diffused throughout the nucleus of 

eukaryotes (Haaf et al., 1995;Scully et al., 1997) are rapidly relocated and concentrated 

into sub-nuclear complexes that are microscopically detected as foci.  This creates an 

overall effect that increases the local concentration of repair enzymes as the cell 

for repair (Tarsounas et al., 2004).  In addition to this re-localisation occurring with the
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onset of DNA damage, Rad51 foci formation is also observed to occur in undamaged S-

phase cells, where they are proposed to repair broken replication forks (Tashiro et al.

1996).  Similar focal 

, 

localisations of bacterial RecA have recently been described 

(Renzette et al., 2005). 

ct 

 

., 1996).  

Although BRCA1 and BRCA2 have been shown to co-localise with Rad51 in damaged 

 

f 

 to 

West, 

 

Of the five Rad51 paralogues which exist in vertebrates, Rad51 has been shown to intera

with just Rad51C and XRCC3 through yeast two hybrid analysis (Masson et al., 

2001b;Masson et al., 2001a;Schild et al., 2000).  In addition to this however, several other 

proteins have been shown to associate with Rad51, including Rad52 (Kurumizaka et al., 

1999;McIlwraith et al., 2000), Rad54 (Mazin et al., 2003), RPA (McIlwraith et al., 2000), 

BRCA1 (Scully et al., 1997), BRCA2 (Wong et al., 1997;Chen et al., 1998b), c-Abl (Chen

et al., 1999b), p53 (Sturzbecher et al., 1996;Buchhop et al., 1997;Linke et al., 2003), 

UBL1 (Li et al., 2000), Pir51 (Kovalenko et al., 1997) and UBE2I (Shen et al

induced foci (Scully et al., 1997;Chen et al., 1998b), it has since become clear that it is

BRCA2 and Rad51 which interact (see section 1.5.1.1), and it is through the interaction o

BRCA1 and BRCA2 that allows BRCA1 and Rad51 to associate (Sharan et al., 

1997;Wong et al., 1997).  It is important to note that damage induced Rad51 foci fail

form in BRCA2 deficient cells (Yu et al., 2000), but S-phase foci remain unaffected, 

indicating that these foci must be distinct from each other (Tarsounas et al., 2003).  In 

addition, other major HR proteins, including Rad52 and Rad54, also co-localise to DNA 

damage induced Rad51 foci (Haaf et al., 1995;Tan et al., 1999;Liu and Maizels, 

2000;Essers et al., 2002b;Tarsounas et al., 2004).  Indeed, the damaged induced Rad51 

foci are predicted to be sites of DNA damage, not only due to their formation shortly after 

DNA damage induction, but also due to the presence of ssDNA within a focus 

(Raderschall et al., 1999).  Despite this, the exact size, composition and number of breaks 

per foci remains unclear (van Gent et al., 2001;West, 2003;Rouse and Jackson, 2002).  

However, it is currently presumed that a single focus represents more than one DSB (

2003;Essers et al., 2002b) and potentially these represent ‘repair centres’ containing 

multiple catalytic or regulating factors. 
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1.7 DNA repair, recombination and antigenic variation in 

s 

 DNA repair and 

recombination pathways.  This line of research began in 1999 with the generation of 

mbination were 

ence of one or more pathways that can compensate for the 

absence of RAD51.   

A number of other DNA repair proteins have subsequently been investigated, and have 

f 

ce of Ku70 and Ku80 in the T. brucei genome, and their function in telomere 

maintenance, no evidence has yet been provided that NHEJ actually functions in vivo 

ither DNA ligase IV 

or XRCC4 could be detected (Burton et al., 2007).  Instead, it appears that 

ly 

use 

.  

1-/- mutants (Conway et al., 2002c). 

Research has revealed that T. brucei possesses a functional MMR system, with 

homologues of MSH2, MSH3, MSH6, MLH1 and PMS1 present (Bell et al., 2004).  

Mutation of either MSH2 or MLH1 caused an increased frequency of homologous 

recombination between both perfectly matched and diverged DNA sequences (Bell et al., 

2004).  The same mutation also resulted in an increase in the rate of sequence variation at a 

number of microsatellite loci, and an increased tolerance to the alkylating agent N-methyl-

N'-nitro-N-nitrosoguanidine, both of which are consistent with mismatch repair 

impairment (Bell et al., 2004).  Despite this, no detectable difference was observed on 

T. brucei 
In order to investigate the process of antigenic variation in T. brucei, a number of protein

have been identified and studied, which in other eukaryotes function in

rad51-/- mutants in T. brucei (McCulloch and Barry, 1999).  These parasite mutants 

displayed an impaired growth phenotype, sensitivity to a DNA damaging agent, an 

impaired ability to perform homologous recombination and, more importantly, a defect in 

the ability to switch VSG coat.  Although VSG switching and DNA reco

both reduced, neither process was completely abolished, with DNA recombination being 

found to occur using short lengths of sequence homology (Conway et al., 2002c).  These 

results therefore suggest the pres

produced some interesting and sometimes surprising results.  Despite the demonstration o

the presen

(Conway et al., 2002b).  The potential absence of NHEJ in T. brucei has recently been 

supported by bioinformatics analyses, revealing that homologues of ne

microhomology-based repair occurs, indicated by the fact that T. brucei cell extracts can 

support the end-joining of linear DNA molecules in reactions that take place independent

of the Ku heterodimer.  These reactions are further distinguished from NHEJ by their 

of short stretches of sequence microhomology (5-15 bp in length) (Burton et al., 2007)

Furthermore, these microhomology mediated reactions observed in vitro are highly 

reminiscent of reactions observed in vitro in rad5
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VSG switching, indicating either that MMR acts too subtly to be detected by the assays or 

that mismatch selection does not act on VSG recombination reactions (Bell and 

McCulloch, 2003).   

Further insights into homologous recombination were discovered through the generation of 

mre11-/- mutants (Robinson et al., 2002).  These mutants displayed an impaired growth 

phenotype and an impaired ability to perform mologous recombination, phenotypes 

highly comparable to those of rad51-/- mutants.  However, notable differences to rad51-/- 

mutants were discovered, including a lack of sensitivity to MMS and an accumulation of 

gross chromosomal rearran ortance of Mre11 in the 

repair of chromosomal dam  most surprising result 

was that mre11-/- mutants did not display any defects in VSG switching, despite the clear 

importance of Mre11 in homologous recombination (Robinson et al., 2002). 

ore recently, further insight has been provided into homologous recombination and 

tigenic variati es: DMC1, 

RAD51-3, RAD5 5).  To date, 

however, the interactions of these proteins with each other and with RAD51 remain 

unknown.  Although damage-induced RAD51 foci have been demonstrated to form in T. 

brucei (Proudfoot and McCulloch, 2005;Proudfoot and McCulloch, 2006) their precise 

nature and composition also remains unclear.  RAD51-3 and RAD51-5 mutants have been 

generated and display growth impairment, sensitivity to DNA damaging agents and an 

impaired ability to perform homologous recombination.  However, only RAD51-3 was 

seen to have an effect on VSG switching, with the results being highly reminiscent of those 

obtained for rad51-/- mutants whereby VSG switching events still occurred at a low level.  

These results suggest that the family of RAD51 proteins present in T. brucei have assumed 

specialized functions in homologous recombination, comparable with related proteins in 

metazoan eukaryotes (Proudfoot and McCulloch, 2005).  dmc1-/- mutants, however, 

behaved quite similarly to that of wild type cells, suggesting that DMC1 does not have an 

important role in homologous recombination or VSG switching, at least in the bloodstream 

stage of T. brucei (Proudfoot and McCulloch, 2006). 

In summary, therefore, to date, only two proteins have been identified in T. brucei that 

have been shown to function in VSG switching, despite the characterisation of a range of 

repair proteins.  It is highly unlikely, however, that these are the only proteins to influence 

antigenic variation in this organism. 

 ho

gements.  These results indicate the imp

age and DSBs in T. brucei.  Perhaps the

M

an on in T. brucei with the discovery of five RAD51-related gen

1-4, RAD51-5 and RAD51-6 (Proudfoot and McCulloch, 200
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1.8 Aims of the thesis 
The overall aim of this thesis was to further examine the factors th

variation in Trypanosoma brucei, with the hope that this woul

at regulate antigenic 

d shed further light in the 

d homologous recombination. 

 high 

ins. 

 

 area of investigation in this thesis was the role and molecular composition of T. 

brucei RAD51 sub-nuclear foci (Proudfoot and McCulloch, 2005).  The hypothesis was 

es containing multiple homologous recombination 

relationship between VSG switching an

The first aspect examined in this thesis was the T. brucei homologue of BRCA2.  In part, 

this stemmed from the suggestion that the T. brucei BRCA2 homologue has a highly 

unusual organisation, in that it is proposed to contain 15 BRC repeats, a much higher 

number than observed in any other organism (Lo et al., 2003).   

A clear hypothesis is that this unusual structural organisation is a consequence of the

levels of recombination needed by T. brucei during antigenic variation.  This was tested in 

a number of approaches:  

(i) Examination of the BRCA2 structure in a number of T. brucei and Trypanosome stra

(ii) Generation of T. brucei BRCA2 knockout mutants in order to determine the proteins 

function. 

(iii) Generation of T. brucei BRCA2 mutants with decreased numbers of BRC repeats in

order to determine why T. brucei BRCA2 has so many BRC repeats. 

The second

tested that the foci are repair centr

factors and specific sites of DNA lesions.  To do this, the tandem affinity purification 

(TAP) method (Rigaut et al., 1999) was used to attempt to identify RAD51 interacting 

factors, before and after induced DNA damage. 
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2.1 Trypanosome culture 

2.1.1 Trypanosome strains and their growth 

2.1.1.1 Bloodstream stage cells 

The bloodstream form Trypanosoma brucei strains used in this thesis are Lister 427 MITa

1.2a (McCulloch et al., 1997;Rudenko et al., 1996) and its transgenic derivative, 3174.2.  

The Lister 427 strain MITat1.2a (expressing VSG221), was derived from many syringe

passages through rodents over a number of years, although its exact derivation is unce

(Melville et al., 2000).  This is a monomorphic strain, which usually only displays the long 

slender bloodstream form.  The switching frequency of the VSG being expressed is 

approximately 1 x 10

t 

 

rtain 

 

 (Proudfoot and McCulloch, 2006).  To keep a working culture of T. 

brucei bloodstream stage cell lines, cells were passaged three times weekly by the addition 

 density of ~ 4 x 106 cells.ml-1) to 1.5 ml HMI-9 

medium in a 24-well plate.  Bloodstream stage T. brucei were grown in petri dishes in 

s of cells for experiments.  In vivo growth was 

an 

 

ed twice weekly by addition of approximately 1000 µl of a log-phase culture 

(at a density of ~ 8 x 106 cells.ml-1) to 9 mls SDM-79 medium in a 25 cm2 tissue culture 

n in 75 cm2 tissue culture flasks in volumes of 

6 to 1 x 107 switches/cell/generation.  The 3174.2 strain contains 

hygromycin and G418 resistance genes in the expression site containing VSG221, which 

allows the analysis of VSG switching.  In vitro growth of T. brucei bloodstream stage cells

was carried out using HMI-9 growth medium (Hirumi and Hirumi, 1989) at 37 °C in a 

humidified 5 % CO2 incubator.  The population doubling time of this strain is 

approximately 8 hours

of 20 µl of a log-phase culture (at a

volumes of 25 mls to obtain large number

carried out using adult female ICR mice (approximately 25 g) infected by intraperitoneal 

injections. 

2.1.1.2 Procyclic form cells 

The procyclic form Trypanosoma brucei cells used in this study are of strain East Afric

Trypanosomiasis Research Organisation (EATRO) 795.  In vitro growth of procyclic form

trypanosomes was carried out using SDM-79 growth medium (Brun and Schonenberger, 

1979) at 27 °C.  To keep a working culture of T. brucei procyclic form cell lines, cells 

were passag

flask.  Procyclic form T. brucei were grow

up to 100 mls to obtain large numbers of cells for nuclear extracts.   



Claire Louise Hartley, 2008   Chapter 2, 52 

2.1.2 Stabilate preparation and retrieval 

For the long term storage of trypanosomes, stabilates were prepared by adding 100 µl of 

sterile 100 % glycerol to 900 µl of T. brucei culture at a density of ~ 2 x 106 cells.ml-1 

(bloodstream stage cells) or ~ 7 x 106 cells.ml-1 (procyclic form cells).  These 1 ml aliquots 

were placed in 1.2 ml cryotubes (Nunc), before freezing at - 80 ˚C overnight and then 

 retrieval of stabilates from liquid nitrogen, the cells 

d in 

Zimmerman post-fusion medium (5 M NaCl, 1 M KCl, 1 M Na2HPO4, 1 M KH2HPO4, 1 

D-glucose (ZMG), at a 

ested, phenol-chloroform 

extracted and ethanol precipitated was routinely used for transformations.  After 

 10 mls of HMI-9 for three population doubling times 

in 

 

.  

ld 

al, so long as less than 80 % of the wells contain living cells 

(Wickstead et al., 2003b).   

n 

transferring to liquid nitrogen.  For

were defrosted at 37 ˚C (bloodstream stage cells) or 27 ˚C (procyclic form cells), and 

placed in 10 mls HMI-9 growth medium (bloodstream stage cells) or 5 mls SDM-79 

growth medium (procyclic form cells) overnight; the cells were then passaged normally as 

described above.   

2.1.3 Transformation of trypanosomes 

2.1.3.1 Transformation of bloodstream stage trypanosomes 

T. brucei bloodstream stage cultures were grown to a density of 1-2 x 106 cells.ml-1 and 

centrifuged at room temperature for 10 minutes at 583 x g.  The cells were resuspende

M MgOAc, 0.2 M CaCl2, pH 7.0) supplemented with 1 M 

concentration of 1 x 108 cells.ml-1.  5 x 107 cells per transformation were electroporated in 

0.5 mls ZMG at 1.5 kV and 25 µF capacitance using a BioRad Gene Pulser II.  

Approximately 5 µg of purified DNA that had been restriction dig

electroporation, cells were placed in

(normally 24 hours) before being subjected to antibiotic selection.  For this, the recovered 

cells were centrifuged at room temperature for 10 minutes at 583 x g and resuspended 

HMI-9 containing the appropriate antibiotic at a concentration of 5 x 105 cells.ml-1.  1-2 x

107 cells (unless otherwise stated) were plated out in 1.5 ml aliquots over 24 well plates

Transformants were counted after 7-10 days by looking at the plates under a light 

microscope (Leitz) and counting the number of wells that contained growing cells.  The 

population of cells in a well should have descended from a single transformant, and cou

therefore be considered as clon

2.1.3.2 Transformation of procyclic form trypanosomes 

T. brucei procyclic form cultures were grown to a density of 1-2 x 106 cells.ml-1 and 

centrifuged at room temperature for 10 minutes at 580 x g.  The cells were resuspended i
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Zimmerman post-fusion medium (5 M NaCl, 1 M KCl, 1 M Na2HPO4, 1 M KH2HPO4, 1

M MgOAc, 0.2 M CaCl

 

 

t had 

 

bling times (normally 24 hours) before being subjected to 

antibiotic selection.  The recovered cells were resuspended in SDM-79 containing the 

and 107cells in 10 ml cultures.  

 

.  

s cloned by plating out 1 cell 

per well over 96 well plates containing conditioned media and the appropriate antibiotic. 

l 
6 

cells.ml .  For procyclic form T. brucei, a 2 ml culture was inoculated at 5 x 105 cells.ml-1, 

f 7 x 106 cells.ml-1.  The numbers of cells were 

 using a haemocytometer (Bright-line, 

ted as a mean of the population doubling times 

calculated. 

 x 106 

 

l

2, pH 7.0) (ZM), at a concentration of 1 x 108 cells.ml-1.  5 x 107

cells per transformation were electroporated twice in 0.5 mls ZM at 1.5 kV and 25 µF 

capacitance using a BioRad Gene Pulser II.  Approximately 5 µg of purified DNA tha

been restriction digested, phenol-chloroform extracted and ethanol precipitated was

routinely used for transformations.  After electroporation, cells were placed in 10 mls of 

SDM-79 for three population dou

appropriate antibiotic at concentrations of 104,105,106 

Cultures containing less than 106 cells were either supplemented with 106 wild type cells or 

were placed in conditioned media (75 % SDM-79, 10 % FBS, 15 % SDM-79 conditioned

by growth of procyclic form cells to approximately 8 x 106.ml-1, centrifuged and filter 

sterilised to remove trypanosomes).  Transformants typically grew through after 7-14 days

After this period, the transformant polyclonal population wa

These were left to grow for 10-14 days before identifying clonal wells under a light 

microscope (Leitz).   

2.1.4 Analysis of growth 

2.1.4.1 Analysis of in vitro growth 

In vitro growth analysis was carried out on bloodstream stage T. brucei by inoculating 2 m

cultures with 5 x 104 cells.ml-1, previously grown in culture to a density of 1-2 x 10
-1

previously grown in culture to a density o

counted at 24, 48, 72 and 96 hours subsequently

Sigma). Three or four repetitions of each cell line were carried out and the results plotted 

on a semi-logarithmic scale.  The population doubling times were calculated by examining 

the linear phase of the graph and represen

2.1.4.2 Analysis of in vivo growth 

In vivo growth rates were examined by intraperitoneally injecting ICR mice with 1

trypanosomes, previously grown in culture to a density of 1-2 x 106 cells.ml-1.  The density

of trypanosomes was determined every 24 hours up to a maximum of 120 hours before 

sacrificing the mice.  A small volume of b ood was removed from the tail of each mouse 

and placed into heparin-coated capillary tubes (Hawksley).  1 µl samples of blood were 
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diluted in 99 µl of 0.85 % ammonium chloride.  This solution preferentially lyses red blood

cells, therefore allowing the T. brucei to be visualised and counted in a haemocytometer

(Bright-line, Sigma).  The results were plotted on a semi-logarithmic scale and population 

doubling times calculated. 

2.1.5 Cell cycle analysis 

In order to examine the cell cycle, trypanosomes were prepared for microscopy analysis b

DAPI staining (4, 6-diamidino-2-phenylindole) (Vector Laboratories Inc.) (section 2.11.1). 

Differential interface contrast (DIC) was used to visualise intact cells and UV to visualise 

DAPI.  Cells were counted according to the number of nuclei and kinetoplast they 

contained.  Cells in G1 phase of the cell cycle contain 1 nucleus and 1 kinetoplast (1N 1K).

Kinetoplast division then occurs resulting in cells with 1 nucleus and 2 kinetoplasts (1N 

2K).  After this, the nucleus divides leading to cells containing 2 nuclei and 2 kinetoplasts

(2N 2K).  Completion of cell division forms two daughter cells in G1 phase, containin

 

 

y 

 

  

 

g 1 

nucleus and 1 kinetoplast (1N 1K).  Any cells that were observed not to be in these cell 

 were described as ‘others’.   

y of 2 x 

ining an 

MMS concentration of 0, 0.0001, 0.0002, 0.0003 or 0.0004 %.  Four repetitions for each 

site population 

mber of wells growing on the plate without 

ber of wells growing through on the MMS 

g 

cycle phases were noted as being aberrant cell types and

2.1.6 Analysis of DNA damage sensitivity 

Sensitivities of T. brucei cell lines to methyl methane sulphonate (MMS) were assayed by 

a clonal survival assay and an Alamar blue assay.  The Alamar blue assay was also utilised 

to measure the sensitivities of T. brucei cell lines to phleomycin. 

2.1.6.1 Clonal survival assay 

The clonal survival assay was performed by growing cultures to a maximum densit

106 cells.ml-1  and plating out one cell per well over five 96 well plates, conta

strain were carried out and the number of wells containing a viable para

after 20 days of growth was counted.  The nu

MMS was taken as being 100 % and the num

containing plates calculated relative to this, thereby removing any errors due to platin

efficiency and growth rates.   

2.1.6.2 Alamar blue assay 

Reduction of Alamar blue (resazurin) was examined by growing cultures to a maximum 

density of 2 x 105 cells.ml-1 and placing 100 µl into 11 wells each containing 100 µl of 

media with serially decreasing amounts of drug (either MMS or phleomycin).  After 48 
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hours of growth, 20 µl of Alamar blue (12.5 mg.ml-1 resazurin, Sigma) was added.  The 

plates were left for a further 24 hours for the cells to metabolise the resazurin, which is 

blue and non-fluorescent.  When resazurin is reduced to resorufin is becomes pink and 

highly fluorescent (O'Brien et al., 2000;Raz et al., 1997;Onyango et al., 2000).  This 

fluorescence was then measured on a Perkin Elmer LS55 Luminometer at 539 nm 

excitation and 590 nm emission.  Three repetitions were performed, IC50’s calculated and 

mean IC50s plotted graphically. 

2.1.7 Transformation efficiency assay 

To examine the ability of T. brucei cells to undergo recombination, a transformatio

was used.  This assay involves the transformation of an antib

n assay 

iotic resistance marker (for 

the work in this thesis it was hygromycin), flanked by tubulin intergenic sequences into the 

n 

 for 

ls, 

d expressed as the number of 

transformants per 106 cells plated out. 

es 

cell lines.  The construct, named tubHYGtub, targets to the TUBULIN array, replacing a

alpha tubulin gene and conferring hygromycin resistance.   

In each transformation, 5 x 107 cells were electroporated with 5 µg of construct DNA as 

described in section 2.1.3.  The transformed cells were recovered in 10 mls of media

three generations before being plated out in selective media containing 5 µg.ml-1of 

hygromycin (Roche).  5 x 106 cells were plated out over 24 wells for the wild type and 

heterozygous cells, whilst 2 x 107 cells was plated out over 48 wells for homozygous cel

where fewer transformants were expected.  The number of wells containing antibiotic 

resistant transformants were counted after 14 days an

2.1.8 VSG switching analysis 

The method used in this study to analyse the frequency and mechanism of VSG switching 

is based upon that used by McCulloch et al (1997), McCulloch and Barry (1999) and 

Proudfoot and McCulloch (2005, 2006). 

2.1.8.1 Analysis of VSG switching frequency 

Mice were generated with acquired immunity primarily against VSG221 by injecting 

intraperitoneally 2 x105 wild type 3174.2 cells that had previously been grown on 

hygromycin (5 µg.ml-1) and G418 (2.5 µg.ml-1) for a period of 5 days.  The trypanosom

were allowed to proliferate in the mice for 3 to 4 days before curing the mice by injection 

of cymerlarsan (Rhone Merieux; 5 mg.kg-1).  In order to generate switched variants, cell 

lines previously grown on hygromycin (5 µg.ml-1) and G418 (2.5 µg.ml-1) for a period of 5 
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days were removed from antibiotic selection for a period of 9 generations before injectin

4-8 x 10

g 

arters 

mM 

y centrifuging 2 x 0.4 ml of exsanguinated mouse blood at 

5000 rpm in a micro-centrifuge for 5 minutes.  The centrifugation separated the blood into 

ite blood cells and T. brucei cells in the middle layer 

 

I-

o 2 weeks 

re 

e.  

or 

2.2.1 Isolation of genomic DNA 

 alone was prepared using the Qiagen 
6

 

 

 

y 

7 cells into the immune mice.  After 24 hours, the mice were exsanguinated by 

cardiac puncture, and the blood withdrawn into 5 % sodium citrate anticoagulant in C

Balanced Salt Solution (CBSS - 0.023 M HEPES, 0.12 M NaCl, 5.41 mM KCl, 0.55 

CaCl2, 0.4 mM MgSO4, 5.6 mM Na2HPO4, 0.035 M glucose, 0.04 mM phenol red, pH 

adjusted to 7.4) (0.15 ml CBSS/5 % sodium citrate per 0.85 ml blood).  The surviving T. 

brucei cells were recovered b

red blood cells in the bottom layer, wh

and plasma in the top layer.  In order to isolate clonal switched variants, the top and middle

layers were removed with a 1 ml syringe and a 19 gauge needle and added to 40 mls HM

9, before plating out over 2 x 96 well plates.  Cells were allowed to grow for up t

before identifying the number of wells that had grown under a light microscope (Leitz).  

Variations of this assay, using Lister 427 MITat1.2a cells are discussed in the results. 

2.1.8.2 Analysis of VSG switching mechanism 

The mechanisms of VSG switching that had been used in the switched variants were 

determined through growth on antibiotic selection and through PCR-amplification of 

resistance cassettes.  10 µl of the cells that were recovered from the immunised mice we

passaged into 1.5 mls HMI-9 containing either hygromycin (5 µg.ml-1), G418 (2.5 µg.ml-1) 

or no drug.  After a period of 10 days the cells were scored for their antibiotic resistanc

The cells grown on no drug were then passaged into 5 ml cultures of HMI-9 and grown f

a further 2 days before preparing genomic DNA.  PCR analysis was performed on the 

genomic DNA to determine the presence or absence of the hygromycin and G418 

resistance genes (primers are described in the text and listed in appendix 1). 

2.2 Isolation of material from trypanosomes 

Genomic DNA that was to be utilised for PCR

DNeasy® Tissue kit.  5 mls of bloodstream stage T. brucei grown to a density of ~ 4 x 10  

cells.ml-1 or 2 mls of procyclic form T. brucei grown to a density of ~ 8 x 106 cells.ml-1 

were harvested by centrifugation at 1620 x g for 10 minutes at room temperature.  The cell

pellet was resuspended in 200 µl PBS, before 20 µl proteinase K (>600 mAU.ml-1) and 200

µl Buffer AL were added to the sample and mixed by vortexing.  Following an incubation

at 70 °C for 10 minutes, 200 µl of 100 % ethanol was added to the sample and mixed b
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vortexing.  The sample was subsequently added to a DNeasy Mini spin column placed in a 

2 ml collection tube.   The samples were centrifuged at 6000 x g in a micro-centrifuge for 1 

minute and the flow through discarded.  500 µl of Buffer AW1 was added to the column 

for 1 minute.  The flow through was 

  

 

mperature, and resuspended in 500 µl of trypanosome lysis buffer (1 mM 

ethylenediaminetetraacetic acid (EDTA), 100 mM NaCl, 50 mM Tris-HCl, pH 8).  50 µl of 

teinase K solution were 

then added, and the solution incubated at 37 ˚C overnight to lyse the trypanosomes and 

aximum speed in a micro-centrifuge for 30 minutes at 4 ˚C.  

The 100 % ethanol was removed by aspiration and the nucleic acid pellet washed by 

followed by centrifugation at 16000 x g in a micro-

he 70 % ethanol was removed by 

dH2O or TE buffer (100 mM Tris, 10 mM EDTA, pH 7.4).  

and centrifuged at 6000 x g in a micro-centrifuge 

discarded and 500 µl of Buffer AW2 added to the column.  The column was then 

centrifuged at 14000 x g in a micro-centrifuge for 3 minutes, to dry the DNeasy membrane.

The flow through was discarded and the column centrifuged again at 14000 x g in a micro-

centrifuge for 1 minute to ensure that all residual ethanol was removed.  The DNeasy 

column was placed in a fresh eppendorf and 200 µl of Buffer AE added directly onto the

membrane.  After a 1 minute incubation the DNA was eluted from the column by 

centrifuging at 6000 x g in a micro-centrifuge for 1 minute. 

Genomic DNA that was to be subsequently used for restriction digestion and Southern 

analysis was prepared using the following protocol.  25 mls of bloodstream stage T. brucei 

grown to a density of ~ 4 x 106 cells.ml-1 or 10 mls of procyclic form T. brucei grown to a 

density of ~ 8 x 106 cells.ml-1 were harvested by centrifugation at 1600 x g for 10 minutes 

at room te

10 % sodium dodecyl sulphate (SDS) and 2.5 µl of a 20 µg.µl-1 pro

digest the proteins.  The DNA was recovered from the lysis reaction by phenol/chloroform 

extraction and ethanol precipitation (section 2.2.11). 

2.2.1.1 Phenol: Chloroform extraction and ethanol precipitation 

An equal volume of a 1:1 mixture of phenol/chloroform (Sigma) was added to the lysis 

reaction and mixed by gentle inversion.  The phenol and aqueous phases were then 

separated by centrifugation at 16000 x g in a micro-centrifuge for 1 minute at room 

temperature.  The upper aqueous phase containing the DNA was transferred to a new 

eppendorf tube, where 2 volumes of 100 % ethanol and 1/10 volume 3 M sodium acetate 

(pH 5.2) were added.  This solution was mixed by inverting the tube several times, and 

incubated at - 20 ˚C for 30 minutes to overnight.  The DNA was harvested by pelleting 

through centrifugation at m

addition of 100 µl 70 % ethanol, 

centrifuge for 2 minutes at room temperature.  T

aspiration and the pellet air-dried.  The genomic DNA was resuspended typically in a 

volume of 30 µl of sterile 
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DNA was quantified spectrophotometrically at 260 nm and multiplied by 50 to give the 
-1 of 

 of 

25 mls of bloodstream stage T. brucei grown to a density of ~ 4 x 106 cells.ml-1, or 10 mls 

 density of ~ 8 x 106 cells.ml-1, were harvested by 

llowing the 

 

 discarding the flow-

through.  The column was washed by applying 700 µl of Buffer RW1 and centrifuging for 

d to a new collection tube before 

25 mls of bloodstream stage T. brucei grown to a density of ~ 4 x 106 cells.ml-1, or 10 mls 

r 

approximate concentration in µg.ml  of double-stranded DNA.  When the concentration 

DNA was not sufficient to quantify spectrophotometrically, the amount of DNA was 

visualised under UV induced fluorescence emitted by ethidium bromide.  The DNA 

quantification was estimated by comparing the sample to that of a known standard.  In this 

case, the 1 kb DNA ladder was used (Invitrogen), where the 1.6 kb band contains 10 %

the mass applied to the gel. 

2.2.2 Isolation of total RNA 

of procyclic form T. brucei grown to a

centrifugation at 1600 x g for 10 minutes at room temperature and removing the 

supernatant.  Total RNA was isolated using the RNeasy® mini kit (Qiagen) fo

manufacturer’s instructions.  The pelleted cells were resuspended and lysed in 600 µl of 

Buffer RLT (containing the appropriate amount of 2-mercaptoethanol).  The sample was 

homogenised by passing the lysate 5 times through a 25 gauge needle fitted to a RNase-

free 1 ml syringe.  600 µl of 70 % ethanol was added to the sample and mixed by pipetting. 

700 µl of this solution was applied to a RNeasy column placed in a 2ml collection tube, 

and centrifuged for 15 seconds at 16000 x g in a micro-centrifuge,

15 seconds at 16000 x g.  The column was transferre

applying 500 µl of Buffer RPE and centrifuging for 15 seconds at 16000 x g.  The flow-

through was discarded and a final wash step carried out by applying another 500 µl of 

Buffer RPE to the column and centrifuging for 2 minutes at 16000 x g.  RNA was eluted 

from the column by placing it in an RNase-free eppendorf tube, adding 30 µl of RNase-

free dH2O and centrifuging for 1 minute at 16000 x g.  RNA was quantified 

spectrophotometrically at 260 nm and multiplied by 40 to give the approximate 

concentration in µg.ml-1 of single-stranded RNA. 

2.2.3 Isolation of protein extract 

of procyclic form T. brucei grown to a density of ~ 8 x 106 cells.ml-1, were harvested by 

centrifugation at 1620 x g for 10 minutes at room temperature and washed twice in PBS.  

The pelleted cells were resuspended in 1 ml of PBS before centrifuging at 2400 x g for 10 

minutes in a micro-centrifuge.  The pellet was resuspended in SDS-PAGE sample buffe

(0.5 M Tris-HCL, pH 6.8, 10 % Glycerol, 10 % SDS, 5 % 2-mercaptoethanol, 0.05 % 
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(w/v) bromophenol blue) to a concentration of 109 cells.ml-1 and PBS to a concentrat

5 x 10

ion of 

. 

ice 

PSG 

 adding an equal volume of pre-warmed 1.4 % 

low melting agarose (agarose for PFGE sample preparation, Sigma) made with dH20.  This 

disposable plug moulds (BioRad) with 50 µl of 

 ˚C 

ase K 

rage 

e nuclear extract preparation 

Nuclear extracts were prepared by the method described in Bell and Barry (1995).  3 x 109 

tes 

ded in 

er 

 

TT, 25 % glycerol and protease inhibitors) to a 

concentration of 1010 cells.ml-1, and the pellet homogenised with a further 50 strokes of a 

ing used in the TAP 

purification. 

2.3 Electrophoresis 
DNA and RNA electrophoresis gels were visualised using a trans-UV illuminator and Gel 

Doc software (BioRad).  

8 cells.ml-1.  Protein extracts were denatured at 95 °C for 5 minutes prior to loading

2.2.4 Preparation of genomic plugs 

Each genomic agarose plug prepared for the work in this thesis contained 5 x 107 

bloodstream stage T. brucei.  Bloodstream stage T. brucei were grown to a density of ~2 x 

106 cells.ml-1, centrifuged at 583 x g for 10 minutes at room temperature and washed tw

in 10 mls PSG (1 x PBS, 1 % w/v glucose).  The pellet was then resuspended in 50 µl 

and warmed at 37˚C for 1 minute, before

mixture was swirled to mix before filling 

the agarose/trypanosome solution and placing at 4 ˚C for ~ 4 h to set.  The agarose plugs 

were then removed from the moulds, incubated in NDS buffer, pH 9.0 (0.5 M EDTA, 10 

mM Tris base and 34.1 mM lauroyl sarcosine) containing 1 mg.ml-1 proteinase K at 55

for ~ 24 h and then transferred into NDS buffer pH 8.0 containing 1 mg.ml-1 protein

at 55 ˚C for ~ 24 h.  The plugs were finally transferred into NDS buffer pH 8.0 for sto

at 4 ˚C.   

2.2.5 Trypanosom

procyclic form trypanosomes were harvested by centrifugation at 1600 x g for 10 minu

at 4°C and washed twice in ice cold PBS.  The pelleted trypanosomes were resuspen

two packed cell volumes of Buffer A (20 mM Tris, pH 7.9, 10 mM NaCl, 0.5 mM DTT 

and protease inhibitors).  The cells were lysed with 60 strokes of a Dounce homogenis

(Type A pestle).  To pellet the nuclei, the homogenate was centrifuged at 3700 x g for 5

minutes at 4°C.  The nuclei were then resuspended in Buffer C (50 mM Tris, pH 7.9, 400 

mM NaCl, 0.2 mM EDTA, 0.5 mM D

Dounce homogeniser.  This homogenate was then mixed by rotation for 30 minutes at 4 

°C.  This nuclear lysate was then centrifuged at 25000 x g for 30 minutes at 4 °C.  The 

supernatant was then dialysed against the 50 volumes of the buffer be
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2.3.1 DNA electrophoresis 

Standard DNA separations were performed on 1.0 % agarose gels (Seakem LE agarose, 

tions) made with 1 x TAE buffer (40 mM Tris, 19 mM 

gma) or 

r 

 

0 V in 

r, using a commercial 0.5 – 9.0 kb (New England Biolabs) ladder as a size 

marker.  RNA samples (typically 10-20 µg) were added to 20 µl RNA loading buffer (7.38 

 

 by the circulation of 2 litres of 0.1 % SDS overnight 

at 20 ˚C.  The tank was then rinsed twice by circulating dH2O for ~ 1 h at 15 ˚C, and once 

ctrophoresis buffer for ~ 1 h at 15 ˚C.  1 x TB1/10E (90 

mM Tris base, 90 mM boric acid, 2 mM EDTA) was used for the separation of mega-base 

DTA, 

t 

lecular 

, 

 the PFGE system, keeping 

the remainder at 37 ˚C.  After the agarose gel had set, the comb was removed, agarose 

genomic plugs placed into the wells, and the wells sealed with the remaining agarose.  The 

BioWhittaker Molecular Applica

acetic acid, 1 mM EDTA, pH 8.0) and containing 0.2 µg.ml-1 ethidium bromide (Si

1.25 X.ml-1 SYBRSafe (Invitrogen).  Typically, the separations were run in 1 x TAE buffe

at 100 V.  A commercial 1 kb DNA ladder was used as a size marker (Invitrogen) and 

apparatus was supplied by Gibco BRL, BioRad or Sigma.  Separating genomic DNA 

digests for Southern blotting analysis was carried out on 0.8 % agarose gels, made with 1 x

TAE buffer, electrophoresed in 1 x TAE buffer at ~ 30 V overnight. 

2.3.2 RNA electrophoresis 

RNA molecules were separated by electrophoresis on 1 % agarose gels (Seakem LE 

agarose, BioWhittaker Molecular Applications) made with 0.4 x MNE buffer 

(MOPS/Sodium acetate/EDTA buffer: 1 x: 0.024M MOPS, 5mM NaOAc, 1mM EDTA, 

pH 7.0) and containing 2.46 M formaldehyde.  Gels were typically run for ~16 h at 3

1 x MNE buffe

M formaldehyde, 20 % v/v formamide, in 1 x MNE buffer) and 1 µl ethidium bromide at

0.2 µg.ml-1, and incubated at 65 ˚C for 5 minutes before loading.  

2.3.3 Pulsed field gel electrophoresis 

Prior to electrophoretic separation, the pulsed field gel electrophoresis (PFGE) apparatus 

(CHEF-DR III, BioRad) was cleaned

by circulating the appropriate ele

chromosomes, whereas 0.5 x TBE (45 mM Tris base, 45 mM boric acid, 10 mM E

pH 8.0) was used for the separation of intermediate and mini chromosomes.  Gels were 

electrophoresed in 2 litres buffer, which was circulated in the tank for at least 30 minutes a

15 ˚C before the gel was run.   

All separations were conducted using 1.2 % agarose (Seakem LE, BioWhittaker Mo

Applications).  Agarose was dissolved in 150 mls of the appropriate electrophoresis buffer

and 140 mls used to prepare a gel using the tray provided with
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agarose genomic plugs had been prepared by 3 rounds of dialysis in the appropriate 
-1 for 144 

fer 

 

ld be 

visualised clearly by UV illumination.   

% 

 Sigma) to 

facilitate the polymerisation of the acrylamide between 2 glass plates. The gels were 

t 

 

 

protein bands was achieved by placing the gels in destaining solution (10 % glacial acetic 

t on a 

electrophoresis buffer.  Gels were electrophoresed at 15 ˚C, either at 2.5 V.cm

hours with an initial switch time of 1400 seconds and final switch time of 700 seconds for 

the separation of megabase chromosomes, or at 5.8 V.cm-1 for 24 hours with initial and 

final switch times of 20 seconds for the separation of intermediate and mini chromosomes.  

Chromosomes were visualised by placing agarose gels in 200 mls of electrophoresis buf

containing 4 µl ethidium bromide at 10 µg.ml-1 and placing on a rocking table for ~ 30

minutes.  They were then de-stained in dH2O for ~ 30 minutes, or until they cou

2.3.4 Protein electrophoresis 

Protein samples were fractionated on either Bio-Rad Ready Gels (10 % Tris-HCL), 12 

NuPAGE® Novex® Bis-Tris mini gels (Invitrogen), or on SDS-polyacrylamide gels made 

up to the desired percentage using 37 % acrylamide (Sigma), 10 % APS (ammonium 

persulphate) and TEMED (N, N, N’, N’ – Tetramethylethylenediamine,

electrophoresed in 1 x SDS running buffer (0.19 M Glycine, 0.025 M Tris, 0.03 M SDS) a

175 V, using either the Mini-PROTEAN 3 Cell system (Bio-Rad) or the XCell Surelock™

Mini-Cell (Invitrogen). 

The gels were either prepared for Western blots by transfer to a nylon membrane (see 

section 2.4.3), or proteins were visualised by Coomassie or Sypro Ruby (Bio-Rad) 

staining.  For Coomassie staining, gels were placed in Coomassie stain solution (0.25 g

Coomassie brilliant blue R [Sigma] in 90 ml of methanol: water [1:1 v/v] and 10 mls 

glacial acetic acid), and placed on a rocker for 45 minutes to 4 hours.  Visualisation of 

acid, 40 % methanol) for 1-3 hours. 

For Sypro Ruby staining, gels were placed in 50 ml Sypro Ruby and left overnigh

rocker.  Gels were destained by washing in 10 % methanol, 7 % acetic acid and visualised 

using a trans-UV illuminator and Gel Doc software (BioRad). 
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2.4 Blotting 

2.4.1 Southern blotting 

Agarose gels to be Southern blotted were photographed on a UV transilluminator, 

alongside a ruler, parallel to the gel in order to allow calculation of the sizes of fragments 

purinate the DNA, the 

e 

 M 

inutes.  

 SSC transfer buffer (3 M 

NaCl, 300 mM NaOAc, pH 7.0).  The DNA was subsequently transferred to a nylon 

ences) by overnight capillary blotting 

(Sambrook et al., 1989) using 20 x SSC transfer buffer.  Following transfer, the DNA was 

ing on a UV Stratalinker 

ere 

lly 

ansilluminator, 

alongside a ruler, parallel to the gel to allow calculation of the sizes of fragments 

 (see section 1.5).  Gels were soaked in sodium 

hybridised by radioactively labelled DNA (see section 1.5).  To de

gels were soaked in 125 mM HCl for 15 minutes and then rinsed with distilled water.  Th

DNA was then denatured by placing the gel in denaturation solution (0.5 M NaOH, 1.5

NaCl) for 30 minutes.  Following rinsing with distilled water, the gel was placed in 

neutralisation solution (1 M Tris base, 1.5 M NaCl, 186 mM HCl, pH 7.2) for 30 m

The gel was rinsed again in distilled water, before rinsing in 20 x

membrane (Hybond XL, Amersham Biosci

cross-linked to the membrane using the auto-crosslink sett

(Stratagene).   

Pulsed field gels were Southern blotted essentially as described above, but with slightly 

different wash treatments, due to the chromosomes being tightly bound within the agarose.  

After ethidium bromide staining, the chromosomes were nicked by soaking the gels twice 

in 125 mM HCl for 7 minutes.  After rinsing in distilled water the chromosomes w

denatured by soaking in denaturation solution twice for 15 minutes.  The treatment then 

resumed as with the above protocol, apart from the capillary blotting, which was usua

performed for at least 48 hours. 

2.4.2 Northern blotting 

Agarose gels to be northern blotted were photographed on a UV tr

hybridised by radioactively labelled DNA

phosphate (10 mM Na2HPO4,/NaH2PO4, pH 6.5) for 15 minutes to remove any residual 

formaldehyde, before the transfer of RNA to a nylon membrane (Hybond XL, Amersham 

Biosciences) by overnight capillary blotting (Sambrook et al., 1989) using sodium 

phosphate as the transfer buffer.  The RNA was then cross-linked to the membrane using 

the auto-crosslink setting on a UV Stratalinker (Stratagene).   
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2.4.3 Western blot transfer 

Western blotting of protein gels was carried out using the Mini Trans-Blot® 

l (Bio-Rad).  Gels and Trans-Blot® nitrocellulose membrane 

nol, 

cleotides 

 a final reaction volume of 36 µl.  The DNA was denatured 

by incubation at 95 ˚C for 5 minutes.  10 µl of 5 x dATP or dCTP primer buffer, 2 µl of 

µl-1) 

ed at 37 ˚C for 4-10 minutes.  The probes were then 

purified from any unincorporated nucleotides by size exclusion chromatography using 

 Biosciences) according to the manufacturer’s protocol.  

n. 

tion 

 then 50 

mls of 0.2 x SSC, 0.1 % SDS for another 30 minutes.  After washing, the filters were 

Electrophoretic Transfer Cel

were equilibrated in transfer buffer (0.19 M Glycine, 0.025 M Tris base, 200 ml metha

800 ml dH20, pH 8.0), before assembling the gel sandwich.  The sandwich consisted of the 

gel and the nitrocellulose membrane, surrounded by filter paper and foam, sandwiched 

between a plastic cassette.  An ice block was placed alongside the cassette to prevent 

overheating.  Transfer was carried out by electrophoresing at 100 V for 1 hour. 

2.5 Radiolabelling and hybridisation of DNA probes 

2.5.1 Probe manufacture by random hexamer labelling of DNA 

The DNA fragments used for probe manufacture were specific PCR products amplified as 

described in section 2.7.1, separated on an agarose gel and purified using the Qiagen gel 

extraction kit, following the manufacturer’s protocol (section 2.7.1.2). 

Radio-labelling of these fragments was performed using the Prime It II kit (Stratagene).  

Approximately 25 ng of DNA was mixed with 10 µl random hexameric oligonu

(27 OD units.ml-1) and dH20 in

α32P-labelled dATP or dCTP (~ 0.74 MBq) and 1 µl Klenow DNA polymerase (5 U.

were added and the reaction incubat

Microspin columns (Amersham

After purification, the probes were denatured at 95 ˚C for 5 minutes before hybridisatio

2.5.2 Hybridisation of radiolabelled DNA probes 

Nylon filters blotted with DNA or RNA (sections 2.4.1 and 2.4.2) were placed in 

hybridisation tubes (Hybaid) with approximately 50mls of pre-warmed 0.5 M Church 

Gilbert solution (342 mM Na2HPO4, 158 mM NaH2PO4, 7 % SDS, 1 mM EDTA, pH 7.2) 

and pre-hybridised for a minimum of 1 hour at 65 ˚C in a rotating hybridisation oven.  The 

denatured, radiolabelled probe (section 1.5) was then added to the Church Gilbert solu

in the hybridisation tube and allowed to hybridise to the blot overnight at 65 ˚C in a 

rotating hybridisation oven.  Following hybridisation, the filters were washed in a rotating 

hybridisation oven with 50 mls of 2 x SSC, 0.1 % SDS for 30 minutes at 65 ˚C and
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blotted with filter paper (Whatman) to remove any excess liquid, before sealing in plastic 

 

d detection of antibodies 

 to 

g the 

or 15 

BS-T (PBS, 

ally rinsed in PBS for a few seconds before 

applying the SuperSignal® West Pico Chemiluminescent Substrate.  The substrate was 

s before exposing the 

membranes of bound antibodies, membranes were placed in a 

container with 20 mls of Restore™ Western Blot Stripping Buffer (Pierce) and rocked for 

and exposing to a phosphorimaging screen (Fuji) at room temperature for 4-72 hours 

(depending on the strength of the signal).  The phosphorimaging screen was then visualised 

using a Typhoon 8600 phosphorimager (Amersham Biosciences).   

2.5.3 Stripping of hybridised nylon membranes 

To strip nylon membranes of hybridised probe DNA, membranes were placed in a heat-

proof container, with boiling 0.1 % SDS.  After allowing the solution to cool to room 

temperature, the SDS solution was poured off and the procedure repeated.  Successful 

stripping was checked by exposure to a phosphorimage screen (Fuji) for 24 h and

visualisation using a Typhoon 8600 (Amersham Biosciences).   

2.6 Western blot detection 

2.6.1 Binding an

Membranes were placed in blocking buffer (PBS, 5 % Milk, 0.1 % Tween), for 1 hour

overnight, on a rocker.  This blocking step avoided the unspecific binding of antibodies.  

Membranes were rinsed in blocking buffer before placing in blocking buffer containin

primary antibody for 1 hour.  Membranes were rinsed three times in blocking buffer f

minutes, before placing in blocking buffer containing the secondary antibody for 1 hour.  

In this thesis, all secondary antibodies were horse radish peroxidise conjugated.  

Membranes were rinsed twice in blocking buffer for 15 minutes, and once in P

0.1 % Tween).  The membranes were fin

applied to the membrane and placed in the dark for 5 minute

membrane to an X-ray film (Kodak) for 5 seconds to overnight.  X-ray films were 

visualised by developing in a Kodak M-35-M X-omat processor. 

2.6.2 Stripping Western blots 

To strip the nitrocellulose 

30 minutes.  Successful stripping was checked by applying SuperSignal® West Pico 

Chemiluminescent Substrate to the membrane and exposing it to an X-ray film (Kodak).  

X-ray films were visualised by developing in an X-omat (Kodak).  Membranes were 

finally rinsed in PBS before being re-probed. 
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2.7 Polymerase chain reaction (PCR) 

2.7.1 Standard PCR 

PCRs were normally set up in volumes of 25 µl for diagnostic reactions and 50 µl for 

reactions intended to amplify DNA fragments for cloning or transformations.  The amount 

of reagents used in 25 µl reactions were exactly half those used in the 50 µl reactions.  Th

50 µl reactions contained either 1 µl of Taq (ABGene, at 5U.µl

e  

gene, 

, MgCl2 was typically added to a final concentration of 1.5 mM, although this 

was occasionally increased to improve efficiency.  For Herculase-based PCRs, the reaction 

 increased by addition of 

 to a 

 

cle of 72 ˚C for 10 minutes.  PCR products were routinely 

purified using the Qiagen PCR Purification and Gel Extraction kits, following 

d in the appendix, and specific 

primers are referred to in the text.   

2.7.1.1 PCR purification 

ication kit (Qiagen).  Five volumes of 

s 

 

.  The 

ny 

 

inute. 

-1) or Herculase (Strata

at 5U.µl-1) DNA polymerase, 5 µl of the manufacturer’s 10 x reaction buffer, 2 µl of 10 

mM dNTPs and 2 µl of forward and reverse oligonucleotide primers (5 mM).  For Taq-

based PCRs

buffer provides 2.0 mM Mg++, although this was also occasionally

MgCl2, up to a maximum concentration of 6 mM.  In both reactions, dH2O was added

final volume of 50 µl.  PCR was conducted either in Robocycler (Stratagene) or PCRSprint 

(Hybaid) machines.  Reaction conditions were typically 95 ˚C for 5 minutes, followed by

30 cycles of 95 ˚C for 1 minute, 50-60 ˚C for 1 minute, and 72 ˚C for 1 minute per kb of 

expected product, and a final cy

manufacturer’s instructions.   

A list of oligonucleotides used for PCRs are displaye

PCR products were purified using the PCR purif

Buffer PB was added to one volume of pooled PCR samples and mixed.  750 µl of thi

sample was applied to a QIAquick spin column in a 2 ml collection tube and centrifuged at 

16000 x g in a micro-centrifuge for 1 minute.  The flow-through was discarded and the

spin column re-used for the remaining sample.  In order to wash the column, 750 µl of 

Buffer PE was added and centrifuged at 16000 x g in a micro-centrifuge for 1 minute

flow-through was discarded and the column centrifuged again at 16000 x g in a micro-

centrifuge for an additional minute.  This step was performed in order to remove a

residual ethanol.  The DNA was eluted by placing the column in a clean eppendorf and 

adding 30 µl of dH20 or EB buffer (10mM Tris-Cl, pH 8.5).  The column was left to stand

for 1 minute and then centrifuged at 16060 x g in a micro-centrifuge for 1 m
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2.7.1.2 Gel extraction 

PCR products were extracted from agarose gels using the gel extraction kit (Qiagen).  

DNA fragments to be purified were excised from the agarose using a scalpel and dissolved 

in 3 volumes of Buffer QG (e.g., a gel fragment weighing 100 mg was dissolved in 300 

of buffer) by incubation at 50 °C for 10 minutes.  In order to increase

µl 

 the yield of DNA 

fragments between 500 bp and 4 kb, one gel volume of isopropanol was added to the 

lied to a QIAquick spin column in a 2 ml 

 x g in a 

 

A with Taq DNA Polymerase (ABgene) and the primers Tb 

BRCA2 for and Tb BRCA2 rev to provide a substrate for MVR mapping.  These PCR 

he 

 

C 

 

incubation 

at 65 °C for 20 minutes.   

 

 mM 

binant 

solution and mixed.  750 µl of the sample was app

collection tube and centrifuged at 16000 x g in a micro-centrifuge for 1 minute.  The 

column was washed by addition of 750 µl of Buffer PE and centrifuged at 16000

micro-centrifuge for 1 minute.  The flow-through was discarded and the column 

centrifuged again at 16000 x g in a micro-centrifuge for an additional minute to ensure that

all the ethanol was removed.  The DNA was eluted from the column by adding 30 µl of 

dH20 or EB buffer and centrifuging at 16000 x g in a micro-centrifuge for 1 minute. 

2.7.2 MVR-PCR 

For each T. brucei strain or subspecies, the complete BRCA2 ORF was initially PCR-

amplified from genomic DN

products were then used in 25 µl MVR PCR reactions, which contained 5 µM of t

primers TbBRCrepfor and TbBRCreprev, 2.5 µl of 10 x Taq buffer and 3 mM MgCl2 and 5

U of Taq DNA polymerase (ABgene). PCR was performed for 18, 21 or 28 cycles of 95 °

for 1 min, 55 °C for 1 min and 72 °C for 4 min, and the products separated by 

electrophoresis on a 1.5 % agarose gel.  

2.7.3 Reverse transcriptase PCR (RT-PCR) 

Total RNA was treated with DNAaseI to remove any genomic DNA contamination prior to

cDNA preparation.  To do this, 1 µg of RNA was incubated with 1 µl of DNAaseI 

(Invitrogen, 1U.µl-1) and 1 µl of 10 x DNAaseI buffer in a final reaction volume of 10 µl.  

The reaction was terminated by the addition of 1 µl 0.25 mM EDTA pH 8.0 and 

cDNA was prepared from DNase-treated RNA using the Superscript First-Strand Synthesis 

System for RT-PCR kit (Invitrogen), according to the manufacturer’s instructions.  50 ng 

of random hexamers and 1 µl of dNTPs were added to 5 µl of DNAase-treated RNA and

the mixture incubated at 65 °C for 5 minutes and on ice for 1 minute.  4 µl of 25

MgCl2, 2 µl of 0.1 M DTT, 2 µl of 10 x RT buffer and 1 µl of RNaseOUT recom
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ribonuclease inhibitor were added, and incubated for 2 minutes at 25 °C.  1µl of 
-1

 

g cDNA 

 µl of 

A.   

eactions were scaled up to a 

tion 

n 

he 

 

 

Superscript II reverse transcriptase (RT; 200 U.µl ) was then added, and the reaction 

incubated at 25 °C for 10 minutes, followed by 42 °C for 50 minutes.  For each RT 

reaction, a duplicate reaction was set up using the same RNA, but without RT, thereby

acting as a control for DNA contamination in downstream experiments.  Followin

generation, RT was heat-inactivated at 70 °C for 15 minutes.  Finally, 1 µl RNaseH (3.8 

U.µl-1) was added and the reaction incubated at 37 °C for 20 minutes to remove any 

remaining single-stranded RNA.  cDNA prepared in this way was used directly in PCR 

reactions, with 1 µl of undiluted cDNA routinely acting as a substrate in 25 µl reaction 

volumes.   

2.8 Restriction enzyme digestion of DNA 
Routinely, restriction digestions were carried out in a final reaction volume of 30 µl, 

containing 1-10 µg of DNA, 3 µl of restriction enzyme (NEB at 10 or 20 U.µl-1) and 3

10 x buffer (NEB) as recommended by the manufacturer.  Digests were incubated at the 

appropriate temperature for the enzyme(s) for approximately 2 hours for plasmid DNA, or 

overnight for genomic DN

If larger quantities of digested DNA were required, the r

maximum of 50 µl per 1.5ml eppendorf and were subsequently phenol: chloroform 

extracted and ethanol precipitated (section 2.2.1.1). 

2.9 Cloning of DNA fragments 

2.9.1 Cloning using T4 DNA ligase 

DNA fragments for cloning were prepared either by PCR-amplification, purifica

(section 2.7.1) and restriction digestion, or by restriction digestion from a plasmid (sectio

2.8).  When vectors were restriction digested using a single enzyme, self-ligation was 

prevented by the treatment of calf intestinal phosphatase (CIP; Roche), which removes t

5’ phosphate groups.  To do this, 1 µl of CIP (10 U.µl-1) was added to the restriction 

digestion reaction and incubated at 37 ˚C for 1 hour.  After CIP treatment, vectors were 

purified by agarose gel extraction following electrophoresis using the Qiagen gel 

extraction kit according to manufacturer’s instructions as described in section 2.7.1.2. 

Inserts for cloning, either derived by PCR or by plasmid digestion, were also purified by

gel extraction following agarose gel electrophoresis.   
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Ligation of DNA fragments into a plasmid vector were carried out in a 20 µl reaction 

volume, containing 1 µl of T4 DNA ligase (400 U.µl-1, New England Biolabs) and 2 µl of 

ligase buffer (New England Biolabs), and were incubated at room temperature for 4 hours 

 overnight.  2 µl of the 20 µl ligation reaction was used to 

transform 60-120 µl of E. coli XL-1 blue MRF’ cells (section 2.10). 

single 

adenosine overhang that is present on all PCR products generated by Taq DNA 

 

 

 cells 

li and plasmid retrieval 
 coli cells was carried out using either 

heat shock or electroporation, whilst TOP10 F’ (Invitrogen) E. coli cells was carried out 

 2 µl of the 

d 

50 

 

illed 

 

at room temperature or 16 ˚C

2.9.2 Cloning into the TOPO vector 

Cloning DNA fragments into the TOPO TA vector (Invitrogen) occurs using the 3’ 

polymerase.  PCR products generated by Herculase DNA polymerase do not generate these

3’ adenosine overhangs and therefore needed to be treated with the addition of 1µl of Taq 

DNA polymerase per 50 µl reaction and incubated at 72 ˚C for 10 minutes prior to TOPO 

TA cloning.  For either Taq or Herculase PCRs, 0.5 - 4 µl of PCR product was incubated 

with 1 µl of salt solution (provided with the vector) and 1 µl TOPO TA vector, made up to

a final reaction volume of 6 µl with dH2O and incubated for 5 minutes at room 

temperature.  2 µl of this reaction was then used to transform 25 µl TOP10 F’ E. coli

(Invitrogen) (section 2.10). 

2.10 Transformation of E.co
Transformation of XL-1 blue MRF’ (Stratagene) E.

using heat shock.  Transformations by heat shock were performed by incubating

ligation reaction and 80 µl of cells on ice for 20 minutes.  The cells were then heat-shocke

at 42 ˚C for 45 seconds before transferring to ice for 2 minutes.  Cells were allowed to 

recover before antibiotic selection by adding either 900 µl SOC (XL-1 blue MRF’) or 2

µl SOC (TOP10 F’) to the transformed cells and incubating at 37 ˚C for 1 hour.  Since all 

plasmids used in this study encode ampicillin resistance, transformants were therefore 

selected by spreading 150 µl of recovered cells onto L-agar plates containing ampicillin at

a final concentration of 100 µg.ml-1 (Sigma) and incubated overnight at 37 ˚C.   

Transformations by electroporation were performed by incubating 2 µl of the ligation 

reaction and 40 µl of cells on ice for 5 minutes.  The cells were then placed in a pre-ch

0.1 cm gene pulser® cuvette (Bio-Rad) and electroporated at 1.2 kV using a Bio-Rad 

micro-pulser.  Cells were allowed to recover before antibiotic selection by immediately

adding 900 µl SOC to the transformed cells and incubating at 37 ˚C for 1 hour. 

Transformants were then selected as above. 
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2.10.1 Small scale plasmid retrieval 

Single colonies from bacterial plates were picked and used to inoculate 3 mls of L-broth 

containing ampicillin (Sigma) at a final concentration of 100 µg.ml-1 and grown up 

overnight at 37 ˚C in a shaking incubator.  Plasmids were purified from 1.5 ml of the 

overnight culture using the Qiagen miniprep kit®, following the manufacturer’s 

instructions.  Cells were pelleted by centrifugation at 16000 x g in a micro-centrifuge for 1 

16000 x g for 1 minute.   

 

 

s.  

 

g this 

ed by adding 12 mls of column preparation 

solution to the column, which was subsequently centrifuged at 3000 x g for 2 minutes.  

Half of the cleared lysate was expelled through the filter syringe into the binding column, 

and centrifuged at 3000 x g for 2 minutes.  The eluate was discarded, and this step was 

repeated with the other half of the lysate.  The column was washed by the addition of 

12mls of wash solution 1 and centrifuging at 3000 x g for 2 minutes.  The eluate was 

discarded before applying 12 mls of wash solution 2 and centrifuging at 3000 x g for 5 

minutes.  The plasmid DNA was eluted by transferring the binding column to a clean 50 

minute.  The supernatant was discarded and cells were resuspended in 250 µl of Buffer P1.  

250 µl of Buffer P2 was added to lyse the cells and the solution mixed by inverting the 

eppendorf tube 4-6 times.  350 µl of Buffer N3 was added to neutralise the solution and 

mixed as above, before centrifuging at 16000 x g in a micro-centrifuge for 10 minutes.  

The supernatant was applied to a QIAprep column in a collection tube, centrifuged at top 

speed in a micro-centrifuge for 1 minute, and the flow-through discarded.  750 µl of Buffer 

PE was added to the column and centrifuged at 16000 x g in a for 1 minute, the flow-

through discarded, and the column centrifuged for an additional 1 minute to remove 

residual ethanol.  Plasmid DNA was eluted from the column by addition of 50 µl of dH2O 

or EB buffer to the column, which was placed in a clean eppendorf tube and centrifuged at 

2.10.2 Large scale plasmid retrieval 

When larger amounts of DNA were required, plasmids were purified from 150 ml of an

overnight culture using a maxi prep kit (Sigma), according to the manufacturer’s 

instructions.  Cells were pelleted by centrifugation at 5000 x g for 10 minutes, then 

resuspended in 12 mls of resuspension solution by pipetting or vortexing.  Cells were lysed

by the addition of 12 mls of lysis solution and mixed by inversion of the tube several time

The solution was neutralised by the addition of 12 mls of neutralisation solution, before the

addition of 9 mls of binding solution.  The tube of cells was inverted twice and 

immediately applied to the barrel of a filter syringe, and left for 5 minutes.  Durin

incubation step, the binding column was prepar
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ml collection tube and applying 3 mls of elution solution or dH2O, before centrifuging at 

3000 x g for 5 minutes. 

2.11 Microscopy. 

2.11.1 DAPI staining 

DAPI (4, 6-diamidino-2-phenylindole) (Vector Laboratories Inc.)  stain binds to DNA and 

fluoresces under UV light, allowing the DNA

10 mls of a T. brucei blood of 1-2 x 106 cells.ml-1, 

or 5 mls of a T. brucei pro f 5 x 106 cells.ml-1, were 

centrifuged at room temperature for 10 minutes at 583 x g.  The cells were washed twice in 

PBS before being resuspended in 1 ml PBS.  10 µl samples were spotted onto microscope 

des (C.A.Hendley Ltd) and allowed to air dry.  The cells were then fixed by soaking in 

ethanol for 10 minutes at room temperature.  The slides were allowed to air dry before 

pl

po

Differential isualise 

DAPI using

.11.2 Immunofluorescence 

Two methods of fixation were utilised for performing immunofluorescence on 

trypanosome cells.  The fixation methods utilised were either methanol or formaldehyde 

fixing.  For methanol fixation, trypanosomes from culture were harvested by centrifugation 

at 583 x g for 10 minutes at room temperature.  The pellet was washed 10 mls of PBS, 

resuspended in 1 ml PBS, centrifuged at 5000g for 10 minutes and resuspended in 40 µl of 

PBS.  10 µl of the resuspension was smeared across the slides and allowed to air dry. The 

slides were subsequently fixed by submersion in methanol for 10 minutes and allowed to 

air dry.  The slides were re-hydrated by placing in PBS for 5 minutes, before blocking in 

PBS containing 1 % Tween-20 and 3 % BSA (PBS-T-BSA) for 10 minutes.  The slides 

were drained of the blocking solution and transferred to a dark humid chamber before 

adding the primary antibody, diluted in PBS containing 1 % Tween-20 and 3 % BSA 

(PBS-T-BSA).  The incubation occurred at room temperature for 90 minutes before the 

slides were washed three times with PBS-T-BSA for 5 minutes.  The slides were then 

returned to the humid chamber where the secondary antibody diluted in PBS-T-BSA was 

added and left to incubate for 30 minutes.  Following this incubation, the slides were 

 content of fixed cells to be analysed. 

stream form culture, grown to a density 

cyclic form culture, grown to a density o

sli

m

acing 2 drops of vectashield with DAPI (Vector Laboratories Inc.) onto the slide, 

sitioning a cover slip and sealing the slide with clear nail varnish (Boots 17).  

 interface contrast (DIC) was used to visualise intact cells and UV to v

 a Zeiss Axioskop microscope. 

2
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washed twice with PBS contain

washing buffer and allowed

ing 1 % Tween-20 (PBS-T).  The slides were drained of 

 to air dry at room temperature.  Once dried, the slides were 

the 

ss) 

t 

f PBS 

t 

es, 

trifuged 

ed by 

 diluted in dH20.  The cells were resuspended in 30 µl 

of 1 % BSA/dH20 solution.  10 µl of the resuspension was smeared across the slides and 

 in 

as 

e 

5 

d twice in 

PBS for 5 minutes and allowed to air dry.  Once dried, the slides were mounted by adding 

itioning a 

mounted by adding 2 drops of vectashield with DAPI (Vector Laboratories Inc.) onto 

slide, positioning a cover slip and sealing the slide with clear nail varnish (Boots 17).  

Fluorescence microscopic analysis was performed using an Axioskop 2 microscope (Zei

and images obtained with Openlab software (Improvision).  

For formaldehyde fixation, trypanosomes from culture were harvested by centrifugation a

583 x g for 10 minutes at room temperature.  The pellet was resuspended in 1 ml o

and centrifuged at 5000 x g in a micro-centrifuge for 10 minutes.  900 µl of the supernatan

was removed and the cells resuspended completely in the remaining 100 µl of PBS.  1 ml 

of 1 % (v/v) formaldehyde in PBS was added and the eppendorf inverted several tim

before incubating at 4 °C for 1 hour.  Following the incubation, the cells were cen

at 6000 x g for 1 minute.  The pellet was washed twice in 1ml of chilled PBS, follow

a wash in 500 µl of chilled 1 % BSA

allowed to air dry for 3 hours. 

The slides were re-hydrated by placing in PBS for 5 minutes, before blocking the slides

50 % Foetal Bovine Serum in PBS (FBS/PBS) for 15 minutes.  The blocking solution w

removed and the slides transferred to a dark humid chamber before adding the primary 

antibody diluted in 3 % FBS/PBS for 45 minutes.  The slides were subsequently washed 

twice in PBS for 5 minutes.  The slides were returned to the humid chamber where th

secondary antibody, diluted in 3 % FBS/PBS was added to the slides and incubated for 4

minutes at room temperature.  Following the incubation, the slides were washe

2 drops of vectashield with DAPI (Vector Laboratories Inc.) onto the slide, pos

cover slip and sealing the slide with clear nail varnish (Boots 17).  Fluorescence 

microscopic analysis was performed as above. 
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As a means to begin asking if T. brucei utilises the same repertoire of RAD51 regulators as 

other eukaryotes, it was decided to search the T. brucei genome for a homologue or 

homologues of BRCA2.  This would develop further our understanding of homologous 

recombination in T. brucei and advance our understanding of VSG switching. 

This chapter describes the identification of a single BRCA2 homologue in the 

trypanosomatids, and characterisation of the protein in terms of conserved functional 

motifs, genomic organisation and T. brucei life cycle expression. 

3.2 Identification of BRCA2 in the trypanosomatids 
The second hereditary breast cancer susceptibility gene, BRCA2, was localized in H. 

sapiens to chromosome 13q12-q13 in 1994 (Wooster et al., 1994).  Shortly after its 

localisation, it was identified as being the gene responsible for germline mutations in breast 

cancer families (Wooster et al., 1995).  In recent years, homologues of human BRCA2 

3.1 Introduction 
aintenance of genomic stability is a well conserved process, which most likely 

occurs in all organisms, both eukaryotic and prokaryotic.  Genomic stability is maintained 

via a number of different pathways, with homologous recombination being an essenti

process for providing error free repair (Pastink et al., 2001).  An array of proteins are 

involved in homologous recombination, with RAD51 being the central eukaryotic repair 

enzyme,  performing the role of DNA strand exchange (Sonoda et al., 2001).  At least in 

vivo, a number of different factors mediate and regulate RAD51-catalysed strand 

exchange.  Of these, five RAD51-related genes have been discovered to date in T. bruc

(Proudfoot and McCulloch, 2005): DMC1, RAD51-3, RAD51-4, RAD51-5 and RAD51-6

RAD51-3 and RAD51-5 have been shown to function with RAD51 in homologous 

recombination (McCulloch and Barry, 1999;Proudfoot and McCulloch, 2005) in 

bloodstream stage T. brucei, whilst DMC1 appears not to act in this life cycle stage 

(Proudfoot and McCulloch, 2006). 

BRCA2 has recently emerged as an important regulator of homologous recombination 

(Venkitaraman, 2002;Davies et al., 2001), at least part of whose function is to sequester 

RAD51 until DNA damage occurs, when it transports the repair enzyme to the sites of 

damage.  At least in vivo, it appears that in the absence of BRCA2, RAD51 may not be 

able to target these sites, thereby preventing homologous recombination from
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have been uncovered in many different eukaryotes, including vertebrates, plants, fungi and 

nem s (Bignell et al., 1997;Siaud et al., 2004;Kojic et al., 2002;Martin et al., 2005). 

Putative trypanosomatid BRCA2 proteins were identified through BLAST searches of the 

T. brucei, T. congolense, T. vivax, T. cruzi and L. major genome databases using the Gene 

DB server (Sanger; http://www.genedb.org/

atode

).  Initially, a BLASTp search was performed 

usin apiens BRCA2 (AAB07223) as the query protein sequence against the T. brucei 

database.  This revealed a hypothetical gene (Tb927.1.640), situated on chromosome 1, 

encoding a predicted protein of 1648 amino acids, that showed substantially greater 

hom an any others.  Though the overall sequence identity of this protein with 

hum A2 is low (see section 3.5), the likelihood that this is indeed a BRCA2 

orthologue is strengthened by the prediction of a BRCA2 repeat region detected between 

residues 80 and 686, corresponding to fourteen putative BRC repeats.  Our confidence in 

this protein being a legitimate orthologue of BRCA2 is further enhanced by the previous 

identification of this protein by Lo, T. et al (2003) and by Warren et al., (2003) predicting 

fifteen BRC repeats in this T. brucei protein.   

BLA arches were next performed using the putative T. brucei BRCA2 homologue 

protein as the query protein sequence against the T. congolense, T. cruzi, T. vivax, and L. 

maj e databases.  The T. congolense database revealed a hypothetical gene 

(congo695a05.p1k_18), situated on chromosome 1, encoding a protein of 1179 amino 

acids.  Here, the genome annotation of this protein predicted a BRCA2 repeat region 

between residues 80 and 211 with three BRC repeats.  The T. cruzi database revealed a 

putative DNA repair gene, inferred from homology as BRCA2 (Tc00.1047053505999.40), 

encoding a protein of 1030 amino acids, though no BRC repeats were annotated.  The T. 

viva se revealed a hypothetical gene (tviv192h02.q1k_9) encoding a protein of 

117  acids, with a predicted BRCA2 repeat region between residues 62 and 96 

containing one BRC repeat.  Finally, the L. major database revealed a hypothetical gene 

(Lm 60), situated on chromosome 20, encoding a protein of 1165 amino acids in 

which a BRCA2 repeat region was annotated between residues 106 and 178, predicting 

two peats.  Together, these preliminary data suggest that each of the above 

tryp atids contains a likely BRCA2 homologue, though with variable numbers of 

BRC repeats predicted, and no other functional domains identified. 

g H. s

ology th

an BRC

STp se

or genom

x databa
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3.3 The genomic environments of the putative 

figure 

f 

in 

s retrieve 

likely gene synteny with that 

imilar 

ing is seen 

zi, 

ease gene, 

and in L. major, which lacks the phosphate repressible phosphate permease gene in this 

trypanosomatid BRCA2 genes 
The genomic environments of the putative BRCA2 genes were investigated by examining 

the surrounding sequences on Gene DB.  Analysis of the genes predicted around the 

putative T. brucei BRCA2 gene (Hall et al., 2003;Berriman et al., 2005) is shown in 

3.1 and reveals a T. brucei anti-silencing gene, encoding ASF1-like protein, downstream o

BRCA2.  Further downstream is a phosphate repressible phosphate permease gene (Hall et 

al., 2003;Berriman et al., 2005).  The surrounding sequence also contains a number of 

conserved hypothetical ORFs, which exhibit similarities to hypothetical proteins from 

other organisms and unlikely hypothetical ORFs, which are predicted to encode a prote

of less than 150 amino acids.  BLAST searches of nucleotide and protein database

only insignificant alignments.  Analysis of the genomic environments surrounding the 

putative BRCA2 gene from the other trypanosomatids reveals 

of T. brucei (figure 3.1), since the 2 downstream conserved genes are found in s

positions in 3 of the 4 other genomes, and broadly similar ORF size and position

upstream and downstream of BRCA2 in all.  The only notable exceptions are in T. cru

which has a putative duplication of the phosphate repressible phosphate perm

region.  This confirms that the genes identified in each trypanosomatids by BLAST 

searches with the putative T. brucei BRCA2 polypeptide are orthologues. 



Figure 3.1 – The genomic environ logues of the trypanosomatids.  The putative BRCA2 genes are displayed in grey, whilst genes encoding 
known proteins are shown in yellow, oteins, which exhibit similarities to hypothetical proteins from other organisms are shown in orange and 
unlikely hypothetical proteins, which are protein of less than 150 amino acids are shown in blue (GeneDB).

 
ment of the BRCA2 ortho
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Phylogenetic analysis was carried out us

ins which 

(Takata et al., 2002), Homo sapiens (Wooster et 

, 

3.4 Phylogenetic analysis 
ing the polypeptide sequences of BRCA2 

homologues from a wide range of organisms.  This analysis considered the prote

have already been functionally examined and a number which remain uncharacterised.  

The functionally examined proteins were Arabidopsis thaliana (Siaud et al., 2004), 

Caenorhabditis elegans (Martin et al., 2005), Canis familiaris (Ochiai et al., 2001), Felis 

catus (Oonuma et al., 2003), Gallus gallus 

al., 1994), Mus musculus (Sharan and Bradley, 1997), and Ustilago maydis (Kojic et al.

2002).  The uncharacterised proteins came from Drosophila melanogaster, Dictyostelium 

discoideum, Entamoeba histolytica, Giardia lamblia, Leishmania major, Toxoplasma 

gondii, Trichomonas vaginalis, Trypanosoma brucei, Trypanosoma congolense, 

Trypanosoma cruzi, Trypanosoma vivax and Plasmodium falciparum.  The uncharacterised 

proteins were obtained through searching the NCBI database 

(http://www.ncbi.nlm.nih.gov/) and a series of BLASTp searches on Gene DB 

(http://www.genedb.org/), Toxo DB (http://www.toxodb.org/) and Giardia DB 

(http://www.mbl.edu/Giardia/).  The polypeptide sequences used in this analysis are 

presented in table 3.3 and accession numbers are indicated in the appendix. 

The polypeptide sequences were compared by Clustal W (http://www.ebi.ac.uk/clustalw/) 

(Chenna et al., 2003) to generate a phylogenetic tree, which was then visualised using 

Treeview (Page, 1996).  The results from the phylogenetic analysis are shown in figure 3.2 

and display that the putative BRCA2 polypeptides from the trypanosomatids form a 

discrete grouping, suggesting a level of conservation within the kinetoplastida.  
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Figure 3.2 – Phylogenetic tree of BRCA2 proteins.  The polypeptide sequences of BRCA2 from  
Arabidopsis thaliana (Athaliana), Caenorhabditis elegans (Celegans), Canis familiaris (Cfamlili
Drosophila melanogaster (Dmelanogaster), Felis catus (Fcatus), Gallus gallus (Ggallus)
sapiens (Hsapiens), Mus musculus (Mmusculus), Dictyostelium discoideum (Ddiscoideum
Ustilago maydis (Umaydis), Entamoeba histolytica (Ehistolytica), Giardia lamblia (Glambli
Leishmania major (Lmajor), Toxoplasma gondii (Tgondii), Trichomonas vaginalis (Tvagi
Trypanosoma brucei (Tbrucei), Trypanosoma congolense (Tcongolense), Trypanosom
(Tcruzi), Trypanosoma vivax (Tvivax) and Plasmodium falciparum (Pfalciparum) were com
Clustal W (Chenna et al., 2003).  The sequence comparison was then used to generate a 
phylogenetic tree and visualised using Treeview (Page, 1996).  The red oval highlights the 
clustering of BRCA2 from the trypanosomatids. 

nali
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3.5 Alignments of the putative T. brucei BRCA2 

s 

, 

polypeptide with eukaryotic BRCA2 orthologue
A global multiple alignment of the putative T. brucei BRCA2 polypeptide with 

characterised BRCA2 orthologues from G. gallus, H. sapiens, A. thaliana and U. maydis

as well as the predicted orthologues from T. cruzi and L. major (section 3.2) was produced 

using CLUSTAL W (http://www.ebi.ac.uk/clustalw/) (Chenna et al., 2003).  This was then 

visualised using the Boxshade server 

(http://www.ch.embnet.org/software/BOX_form.html), as shown in figure 3.3.  The 

alignment shows that there is little sequence conservation observed throughout the B

polypeptides from these eukaryotes.  This was confirmed by determining the sequence 

identities of BRCA2 from these eukaryotes by pair-wise comparisons, which were 

performed using AlignX (Vector NTI) and the percentage sequence identities calcu

(see table 3.1); a graphical representation of this analysis is shown in figure 3.4.  The 

putative T. brucei BRCA2 polypeptide shares between only 6.4 % and 11.7 % sequence 

identity with the BRCA2 proteins from H. sapiens, G. gallus, A. thaliana and U. maydis

Such low levels of homology are true also for the T. cruzi and L. major proteins when 

compared with these eukaryotes, indicating that this divergence is not peculiar to 

In fact, such low level global identity is true throughout, with only H. sapiens and 

gallus sharing substantially higher levels (30.1 %).  The trypanosomatids proteins, as 

might be expected, are more closely related to each other than to other eukaryotes. 

The results from the multiple alignment and pair-wise comparisons reveal little about the 

basis for the conservation of function between BRCA2 from different organism

the reasons for this low level of conservation is likely to be due to the large diff

the size of the proteins (table 3.3).  For example, the smallest trypanosomatid BRCA2 

homologue, at 1030 amino acids from T. cruzi, is less than 1/3

RCA2 

lated 

.  

T. brucei.  

G. 

s.  One of 

erences in 

an rd the size of the hum

protein, so homology between sequences would be difficult to observe.  Indeed, even 

smaller proteins have been identified, the most extreme of which is around 10 % of the 

human BRCA2 size in C. elegans, but functions analogously (Martin et al., 2005).  For this 

reason, we decided to consider the conservation of functional domains of the protein, 

rather than the protein as a whole (section 3.7).



 

Tbrucei       1 ------------------------------------------------------------------------------------------------------------------------ 
Tcruzi        1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor        1 ------------------------------------------------------------------------------------------------------------------------ 
Ggallus       1 MAYKSGKRPTFFEVFKAHCSDSDLGPISLDWFEELSSEAPPYEPKLLGEPEGPIGWFDQT FKTPKAKSSTDSQLASTPLIFKEQNT-MPPFSSPGKELDQKKMETSRENLLSPSMAGRK 
Hsapiens      1 MPIGSKERPTFFEIFKTRCNKADLGPISLNWFEELSSEAPPYNSEPAEESEHKNNNYEPN LFKTPQRKPSYNQLASTPIIFKEQGLTLPLYQSPVKELDKFKLDLGRNVPNSRHKSLRT 
AthalianaA    1 ------------------------------------------------------------------------------------------------------------------------ 
Umaydis       1 ------------------------------------------------------------------------------------------------------------------------ 
 
Tbrucei       1 ------------------------------------------------------------------------------------------------------------------------ 
Tcruzi        1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor        1 ------------------------------------------------------------------------------------------------------------------------ 
Ggallus     119 T DQENQILASPHGICHNYTAASPAIVRNPCRTPQRSNIPGPYGSLFCTPKFLEIP-TPKRI SESLGAEVDPEMSWTSSLATPPTLGVTVIIARENDSISGAKQQDERAEIVLHNFLSE 
Hsapiens    120 V KTKMDQADDVSCPLLNSCLSESPVVLQCTHVTPQRDKSVVCGSLFHTPKFVKGRQTPKHI SESLGAEVDPDMSWSSSLATPPTLSSTVLIVRNEEASETVFPHDTTAN--VKSYFSN 
AthalianaA    1 ------------------------------------------------------------------------------------------------------------------------ 
Umaydis       1 ------------------------------------------------------------------------------------------------------------------------ 
 
Tbrucei       1 ------------------------------------------------------------------------------------------------------------------------ 
Tcruzi        1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor        1 ------------------------------------------------------------------------------------------------------------------------ 
Ggallus     236 DDG YTAKNDTSLLSIPETVKLNARDDIKDLESEVLDGLFGETNSFEDSFNLPAESSGILLSPR ALDAIEKCEIKIDEAQEKSDVLSEQHMRRKSTISQEVKAANWTEKSCCVEVKDSI 
Hsapiens    236 HDE SLKKNDRFIASVTDSENTNQR--------EAASHGFGKTSGNSFKVNSCKDHIGKSMPNV LEDEVYETVVDTSEEDSFSLCFSKCRTKNLQKVRTSKTRKKIFHEANADECEKSK 
AthalianaA    1 ------------------------------------------------------------------------------------------------------------------------ 
Umaydis       1 ------------------------------------------------------------------------------------------------------------------------ 
 
Tbrucei       1 ------------------------------------------------------------------------------------------------------------------------ 
Tcruzi        1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor        1 ------------------------------------------------------------------------------------------------------------------------ 
Ggallus     354 IQNTN EDIMDSKDNCLLGHEKELEYLRIAGNLQDNRTQKSSVNEKLVKDVLSSSSQWSQLNLSGL ECNSSGMSICSSPQSDSCREKGLERESVLMTKDDAVETSLLNTSGLRNAQELS 
Hsapiens    346 NQ--- ----VKEKYSFVSEVEPNDTDPLDSNVAHQKPFESGSDKISKEVVPSLACEWSQLTLSGL N----GAQMEKIPLLHISSCDQNISEKDLLDTENKRKKDFLTSENSLPRISSL 
AthalianaA    1 ------------------------------------------------------------------------------------------------------------------------ 
Umaydis       1 ------------------------------------------------------------------------------------------------------------------------ 
 
Tbrucei       1 ------------------------------------------------------------------------------------------------------------------------ 
Tcruzi        1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor        1 ------------------------------------------------------------------------------------------------------------------------ 
Ggallus     472 SASLSEN GSDTKISKNNPMSEITPVKPVCASPKLVKGYAHEDVSGMSFLNCSSFLIESTNVMEYSVV YNSTFSTHLKATSQSVVTDVLSHPLICSAASPDNCSDLHLRNSENTLRKSN 
Hsapiens    453 PKSEKPL NEETVVNKRDEEQHLESHTDCILAVKQAISGTSPVASSFQGIKKSIFRIRESPKETFNAS FSGHMTDPNFKKETEASESGLEIHTVCSQKEDSLCPNLIDNGSWPATTTQN 
AthalianaA    1 ------------------------------------------------------------------------------------------------------------------------ 
Umaydis       1 ------------------------------------------------------------------------------------------------------------------------ 

 

 
 
 

 
 



 

Tbrucei       1 ------------------------------------------------------------------------------------------------------------------------ 
Tcruzi        1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor        1 ------------------------------------------------------------------------------------------------------------------------ 
Ggallus     590 FKSLN---M LSRLRKKSKRFIYTINNTLVYQEENVQKEVTSESPDNPVLTHLESDLHEFKDCQVATDGN QDCLLSAERQSNIKENNLNTLTIKVDIMDNSSDNSVNN-----RLKQEL 
Hsapiens    571 SVALKNAGL ISTLKKKTNKFIYAIHDETFYKGKKIPKDQKSELINCSAQFEANAFEAPLTFANADSGLL HSSVKRSCSQNDSEEPTLSLTSSFGTILRKCSRNETCSNNTVISQDLDY 
AthalianaA    1 ------------------------------------------------------------------------------------------------------------------------ 
Umaydis       1 ------------------------------------------------------------------------------------------------------------------------ 
 
Tbrucei       1 ------------------------------------------------------------------------------------------------------------------------ 
Tcruzi        1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor        1 ------------------------------------------------------------------------------------------------------------------------ 
Ggallus     700 SESGKNAREYQ PATSFKCLKASHTESEDTTDCLNSGRISNIKHKVLTSAYLMARRHSRLFPEDCCL----- ----------------RKGKNDTYTVSNVNSRAAVPWSPKGQPPQSS 
Hsapiens    689 KEAKCNKEKLQ LFITPEADSLSCLQEGQCENDPKSKKVSDIKEEVLAAACHPVQHSKVEYSDTDFQSQKSL LYDHENASTLILTPTSKDVLSNLVMISRGKESYKMSDKLKGNNYESD 
AthalianaA    1 ------------------------------------------------------------------------------------------------------------------------ 
Umaydis       1 ------------------------------------------------------------------------------------------------------------------------ 
 
Tbrucei       1 ------------------------------------------------------------------------------------------------------------------------ 
Tcruzi        1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor        1 ------------------------------------------------------------------------------------------------------------------------ 
Ggallus     797 PSCSDCLIDMHHG TAFVTNSKFNNTLSHIKFGMNRVSSNSCNKILADKRRASDQLSVAECREIVAPLGIN--- -------------CLENNSTSLKQRGKEDVDENQETLS------- 
Hsapiens    807 VELTKNIPMEKNQ DVCALNENYKNVELLPPEKYMRVASPSRKVQFNQNTNLRVIQKNQEETTSISKITVNPDS EELFSDNENNFVFQVANERNNLALGNTKELHETDLTCVNEPIFKN 
AthalianaA    1 ------------------------------------------------------------------------------------------------------------------------ 
Umaydis       1 ------------------------------------------------------------------------------------------------------------------------ 
 
Tbrucei       1 ------------------------------------------------------------------------------------------------------------------------ 
Tcruzi        1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor        1 ------------------------------------------------------------------------------------------------------------------------ 
Ggallus     892 --------IKSSENP QAAAWNNESIEVAEEFLDCIDNSLNEVVSEEDRQVAPVYFNTKPIESLEHKGKSSGDLNA CSSSLSFGGFQTASNKQIKFSESSIAKGKMLFKDIENEFFEAS 
Hsapiens    925 STMVLYGDTGDKQAT QVSIKKDLVYVLAEENKNSVKQHIKMTLGQDLKSDISLNIDKIPEKNNDYMNKWAGLLGP ISNHSFGGSFRTASNKEIKLSEHNIKKSKMFFKDIEEQYPTSL 
AthalianaA    1 ------------------------------------------------------------------------------------------------------------------------ 
Umaydis       1 ------------------------------------------------------------------------------------------------------------------------ 
 
Tbrucei       1 ------------------------------------------------------------------------------------------------------------------------ 
Tcruzi        1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor        1 ------------------------------------------------------------------------------------------------------------------------ 
Ggallus    1002 SMERVRNFSNRVQKENI FSSDLESKTGSTSSGLQTRCMQYIPRKVDLCKNSPRNQLSVQEPNQSLTASQEAEIAELS NILEETGSQFEFTQFRKQSNMIQSHIQQFGATNVENASEAG 
Hsapiens   1043 ACVEIVNTLALDNQKKL S----KPQSINTVSAHLQSSVVVSDCKNSHITPQMLFSKQDFNSNHNLTPSQKAEITELS TILEESGSQFEFTQFRKPSYILQKSTFEVPE---------- 
AthalianaA    1 ------------------------------------------------------------------------------------------------------------------------ 
Umaydis       1 ------------------------------------------------------------------------------------------------------------------------ 
 
 
 

 
 
 



 

Tbrucei       1 ------------------------------------------------------------------------------------------------------------------------ 
Tcruzi        1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor        1 ------------------------------------------------------------------------------------------------------------------------ 
Ggallus    1120 EDTNFYSTLKSENHVINDE YCSKSKNENECKMVEYEKEDTVVFHKNKREVTFTNLDRNESRISSHESCPVPLRDSFSNF VGFTSAGGKKINISKAALTRSAELFKDLDDDNFLFKSSG 
Hsapiens   1147 ---NQMTILKTTSEECRDA DLHVIMNAPSIGQVDSSKQFEGTVEIKRKFAGLLKNDCNKSASG------YLTDENEVGF RGFYSAHGTKLNVSTEALQKAVKLFSDIENISEETSAEV 
AthalianaA    1 ------------------------------------------------------------------------------------------------------------------------ 
Umaydis       1 ------------------------------------------------------------------------------------------------------------------------ 
 
Tbrucei       1 -----------------MSHKKGRQGSNSGARQNSDTPQRNRTKCRSDAPKRQRSRSGES VQGKSPLQERETRIQPRRDRTYGTEN----GQESTAVQGNSTDVPTLFVSAAGKPITVS 
Tcruzi        1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor        1 ------------------------------------------------------------------------------------------------------------------------ 
Ggallus    1238 TNTRCCNSDERVSSNWNFLRC QTKEDEGGILCVPNIKSIGPISHHSEKKYAENISSPCEENTENWTEILSDNVDFSCTNGG YSASGMRNSPSSFKKPHQNCKNSDQF----LNQGNSE 
Hsapiens   1256 HPISLSSSKCHDSVVSMFKIE NHNDKTVSEKNNKCQLILQNNIEMTTGTFVEEITENYKRNTENEDNKYTAASRNSHNLEF DGSDSSKNDTVCIHKDETDLLFTDQHNICLKLSGQFM 
AthalianaA    1 ------------------------------------------------------------------------------------------------------------------------ 
Umaydis       1 ------------------------------------------------------------------------------------------------MSTASPSVAHAFPFGSADPLFDDD 
 
Tbrucei      99 E SSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTENGQ ESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARAR-MNTENGQESTAVQGNSTDV 
Tcruzi        1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor        1 ------------------------------------------------------------------------------------------------------------------------ 
Ggallus    1352 VEGCLQEDTSYLICLGDNITSAE EHDLNVSDEMENLSPNQKEDRKQEDEHLLLNRQAADTDAVSISDSSFRSSLRDLNVQCGE RDTGVSEKSSKQKTNSVSVEGEDSTYKNLFVSESE 
Hsapiens   1374 KEGNTQIKEDLSDLTFLEVAKAQ EACHGNTSNKEQLTATKTEQNIKDFETSDTFFQTASGKNISVAKESFNKIVNFFDQKPEE LHNFSLNSELHSDIRKNKMDILSYEETDIVKHKIL 
AthalianaA    1 ---------------MSTWQLFPDSSGDGFRWEVAGRILQSVSDSTPTKALESTAPLPSMADLLLQGCSKLIAREEAMPGEIP------------------------------------ 
Umaydis      25  IAATQQSILEELHTISEEALSANSDHSESHINSHIIDQSYGAETQGEHDGIHSDASSSGL SQLLMSRFASQQGAQLSIPASSEHNMEHSPAAPHIAE--------------------- 
 
Tbrucei     216 P-- -----TLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKPI TVSESSLQVARARMN--------------------------------TENGQEST 
Tcruzi        1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor        1 ------------------------------------------------------------------------------------------------------------------------ 
Ggallus    1470 IK-IGSNQRHQVPSEQEMDVDKNKV KGTYLTGFCTASGKKITIADGFLAKAEEFFSENNVDLGKDDNDCFEDCLRKCNKSYVKDR DLCMDSTAHCDADVLNFKDKLIPQEPGDRLKQT 
Hsapiens   1492 KESVPVGTGNQLVTFQGQPERDEKI KEPTLLGFHTASGKKVKIAKESLDKVKNLFDEKEQGTSEITSFSHQWAKTLKYREACKDL ELACETIEITAAPKCKEMQNSLNNDKNLVSIET 
AthalianaA   69 - ------MFRTGLGKSVVLKESSIAKAKSILAEKVTYSDLRNTNCSIPQMRQVDTAETLP- --------------------------------------------------------- 
Umaydis     122 -- --------RSGFEQEAPSPTPPIMADGSEITSQTADDGTNSNVVKITPLQADIEESVVTL ES------------------------------------------------------ 
 
Tbrucei     295 AVQGN STDVPTLFVSAAGKPITVSESSLQVARAR---------MNTENGQESTAVQGNSTDVPTL FVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKPI 
Tcruzi        1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor        1 -------------------------------------------------------------------------------------------------------------MKPIACPHCTF 
Ggallus    1587 IEESPIIQA---VNHDSIKVGAFINVD EDCERNLAAPCANKEAYVRPGRSEVESLP---------VHGNNSLSRTLLLEDRKRFAER DVEYSATKRDNPESKPDSSLKCATSLHLTKV 
Hsapiens   1610 VVPPKLLSDNLCRQTENLKTSKSIFLK VKVHENVEKETAKSPATCYTNQSPYSVIENSALAFYTSCSRKTSVSQTSLLEAKKWLREG IFDGQPERINTADYVGNYLYENNSNSTIAEN 
AthalianaA  122 ------------------------------------------MFRTASGKSVPLKESSIAKAM SILGSDKIIDSDNVLPRESGFGVSNSLFQTASNKKVN----------VSSAGLARA 
Umaydis     176 ---- --------------------------------------LPQRSDPQSATPLSSSILAPTQ TLNTTPEPPDAAPSQMDASFELDHADLFDGIEPDAFDDIELSPPTRRHVALPLK 
 
 
 

 
 
 



Tbrucei     404 TVSESSL QVARARMN---------------TENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQ VARARMNTENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARMN 
Tcruzi        1 ---------------------------------------------------------------------MGLEPDNVCAHCT-----FINAPGR-----------VRCSMCFRN------ 
Lmajor       12  INPPSKVK---------------CGVCLRLLRKRERTVDDASPATPSRGRKGTPSPSSTP PEHDAP----ATGASQVRCDTTKSPMPLAAPESS------------------------ 
Ggallus    1693 SSHLADNSVPGGIIQTVSAEDSCKSNQSF LLPRGSVPRSTSPY-------LNCGNKEIDLKRLNEPCSNTDSFTNTVDNAHQEQSEFDL PEDETNLTCLQETSLNAESQKSDLKQVFS 
Hsapiens   1728 DKNHLSEKQDTYLSNSSMSNSYSYHSDEV YNDSGYLSKNKLDSGIEPVLKNVEDQKNTSFSKVISNVKDANAYPQTVNEDICVEELVTS SSPCKNKNAAIKLSISNSNNFEVGPPAFR 
AthalianaA  189 KALL GLEEDDLN----------------GFNHVNQSSSSSQQHGWSGLKTHEEFDATVVKHHSG TPGQYEDYVSGKRSEVLNPSLKVPPTKFQTAGGKSLSVS--------------- 
Umaydis     252 EPPQSL AGLDSGLD---------------SDEFINDESPQLPPGSQTMSFLQPCFVGFQTGHGKQV KLSDKALEKARKLMMQLDDTTDLLPPAQTSQSSLH----------------- 
 
Tbrucei     507 TENGQESTA VQGNSTDV--------PTLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDV PTLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVPTLFV 
Tcruzi       30  -------------------------------------IRKRIR-----EGAAEIGSELHL PHLSVSNQ-------------------SEKQQE--------GCVATLFSTASGQPVVV 
Lmajor       87 -- -------------------------------------STASAQAVQPPDVEAMAAAPPLV PTLFSTASGKPVTVRRESLQKVAERLGDLAAPD------MEARVPTLFETGRGKTV 
Ggallus    1804 TAKGKAVSVSESALASIRQMFQTDCDASVKS EIETKSGTNQTAIAG-SSSFSIHAGGPGFATFLDTRKSEMNVAAPHFINGNGNLIENNHQ GANMFADADSVPGFQMQCFEQKSKLLG 
Hsapiens   1846 IASGKIVCVSHETIKKVKDIFTDSFSKVIKE NNENKSKICQTKIMAGCYEALDDSEDILHNSLDNDECSTHSHKVFADIQSEEILQHNQNM SGLEKVSKISPCDVSLETSDICKCSIG 
AthalianaA  276 ------ ------------------------------------AEALKRARNLLGDPELGSFFDDVA GGDQFFTPEKDERLSDIAINNGSANRGYIAHEEKTSNKHTPNSFVSPLWSSS 
Umaydis     338 -------- --------------------------------------KRIHTTGSLPQALQSFGNAPSM LSTVTRTPMQEIVPKQRTAAINESEKCALAEEDKVASVQATSQVTALPAA 
 
Tbrucei     617 SAAGKPITVSE SSLQVARARMNTENGQEST------------------------------------AVQGN STDVPTLFVSAAGKPITVSESSLQVARARMNTENGQESTAV------ 
Tcruzi       79 SE KSLQAARERLDADDAQIPL------------------------------------THGNG DAAVATLFSTASGQPVVVSEKSLQAARERVDADN---------------------- 
Lmajor      160 TVQK RSLVKAKASMDSLG-----------------------------------------ADGAP CTSAPALSATPGGAAVRVPTVPMQPPAEHLRLRSLSDK---------------- 
Ggallus    1921 HFPVPDKQMEQSGPSGNLGFFSTASGKPVQLSE ESLKKARQLFSEMEGSHSSGLQDAHLL-EDVEKSTNHGEVFPREMQLLLPRGKENASTDK ISSPALGFSTASGKQVTISESAYQK 
Hsapiens   1964 KLHKSVS------SANTCGIFSTASGKSVQVSD ASLQNARQVFSEIEDSTKQVFSKVLFKSNEHSDQLTREENTAIRTPEHLISQKGFSYNVV NSSAFSGFSTASGKQVSILESSLHK 
AthalianaA  352 KQFSSVNL ENLASGGNLIKKFD-----------------------------------------AAVDE TDCALNATHGLSNNRSLASDMAVNNSKVNGFIP----------------- 
Umaydis     410 QAPTTRRIEP HPFTTPKQTRNGRLP-----------------------------------------VRQN LASPMRTPATAPGLRFTTPQPSKRISLGMLPRAEIG------------ 
 
Tbrucei     693 ------------- ---------------------------------------------------------------------------------------------------------- 
Tcruzi      139 ---- ------------------------------------------------------------------------------------------------------------------- 
Lmajor      221 ------ ----------------------------------------------------------------------------------------------------------------- 
Ggallus    2038 AMAILKEADGFLSSELGVTNELCEIKESGQHAEYL TGKVISESKTEKSCSEELDLKSIHPEKMKSLPSTHRVKITEYVPHSKRNSQSAPFKNSFE QEETRFFRKGELNLGIKTESESD 
Hsapiens   2076 VKGVLEEFDLIRTEHSLHYSPTSRQNVSKILPRVD KRNPEHCVNSEMEKTCSKEFKLSNNLNVEGGSSENNHSIKVSPYLSQFQQDKQQLVLGTK VSLVENIHVLGKEQASPKNVKME 
AthalianaA  412 ---------- ------------------------------------------------------------------------------------------------------------- 
Umaydis     475 ------------ ----------------------------------------------------------------------------------------------------------- 
 
Tbrucei     693 ----------------------------------------------------------------------------------------------------------------------QG 
Tcruzi      139 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor      221 ------------------------------------------------------------------------------------------------------------------------ 
Ggallus    2156 L----------------CSATSKAEINIFQTPKDYLK TEAVESAKAFMEDDLSDSGVQVKSAQSFGKMSDNFQNKPFGKRHLDEKDSHGEPPIKRQL LLEFEKMKIPPKSVKPLKSTP 
Hsapiens   2194 IGKTETFSDVPVKTNIEVCSTYSKDSENYFETEAVEI AKAFMEDDELTDSKLPSHATHSLFTCPENEEMVLSNSRIGKRRGEPLILVGEPSIKRNLL NEFDRIIENQEKSLKASKSTP 
AthalianaA  412 ------------------------------------------------------------------------------------------------------------------------ 
Umaydis     475 ------------------------------------------------------------------------------------------------------------------------ 
 
 
 

 
 
 

 



Tbrucei     695 NSTDVPTLFVSAAG KTVTVSESSLQVA VGEAVPSASHMPSSEGE EVGRTPRHLS--- SANAASSAKPISGAGASLSKRTPRTHRKSASSSPLSSSKLARKPFVV PFAKNKGAVAKG GS
Tcruzi      139 ---------------CATPCDKECGARG V FQDPPARREMR - - -MS---------------DSSSAASPSFVGPRRGCFVV PFARSP-----------QPRQV PPNR SLS- ---- ---- - 
Lmajor      221 -------------DDTADTAPVLRTGAPRQTPLAEAPSTGLTTSTSERSLRALAPH P PQQ --AQP T PL G R - -RIGGQRRGFV RPT---------- LAKL HAM VKTT LTIL ---- ---- - 
Ggallus    2258 DGIFKDRRKFMYHVPLKPVTCQPLGTTKERQEVRNPTLT LPDQDLKGFKSIPAVF GASGL TRSLC V L Q RQHCALRQSSS FTPHKAVAKDSEE KSGKAVKTF P PFKTKLT STGE DGSK C 
Hsapiens   2312 DGTIKDRRLFMHHVSLEPITCVPFRTTKERQEI I P FV F Q IQNPNFT APGQ--EFLSKSHLYEHLTLEKSSSNLAVSGHPFYQVSATRNEKMRHL TTGR TKV P PFKTKSH HRVE CVRN N 
AthalianaA  412 -------------------RGRQPGRPADQPLV LSVVSCDT TSKKVLS YPEKSPR------- DITNRRDTAYAYNKQDSTQKKRLGKTVSVSPFKRPRIS SFKTPSKKHALQASSG L TR
Umaydis     475 ----------------------GSSSTGSKRTL KGSAVFCMQHDGPRHKLAAVGRP----- 
 

PRFVTPFKGGKRPRTEDLQDLASPLRRLDRAQAQSLSRAS PISPRQSFSMRQASSNIS

Tbrucei     810 ---------------- ------------------------FDIFTFRSLSMTVPPS-------------------- --------------------------------- I-- DEIVRG 
Tcruzi      204 ------ ------------------------FDIFAFFSLPMSSLPS-------------------- -----------------------------------SLEVVQSTFAFKCVGCS 
Lmajor      304 -------- ------------------------FNPDACTCRSITPSPS-------------------- -----------------------------------LSLITSLMFSFKGSD 
Ggallus    2376 HSPIRNSVTEERELNQIPVEQNSAE--AQDHQSCILHAAVT DIENDNLITSNMMANLHCARDLQEMRIKKKYRQNISPQPGSLYVTKTSARNRISLKTAVE EETPSFHSTEKLYTYGV 
Hsapiens   2428 LEENRQKQNIDGHGSDDSKNKINDNEIHQFNKNNSNQAAAV TFTKCEEEPLDLITSLQNARDIQDMRIKKKQRQRVFPQPGSLYLAKTSTLPRISLKAAVG GQVPSACSHKQLYTYGV 
AthalianaA  505 ------------ ------------------------VYIKDFFGMHPTATTR-------------------- ---------------------------------------TMSEESN 
Umaydis     567 -------------- ---------------------------EYYSSMQMIAKG--------------------- -----------------------------------
 

----VPDEV 

Tbrucei     833 NFLFKQFGCSPELLKLLE IPAECEFIPSANFRKAMLTLGASPRGCPDAWCLQMLT LHIDPPL LLHMCFKYNHEYVEGKRPALRLIAEG-DVQAASLVV STLLKLRGLT P--VFS VAHT
Tcruzi      237 PELLLLLG LSAEDDSVPPRSFHTALVRLGACTSSCSENWCQQMLKSTLLKLRGL SH EFVDGVRPALRVLTEG-DVPASSLLVVSVVCLSLEE SLCCSPSLP--VFS V ALLYLCFKYNR
Lmajor      335 CGKVLAALLD VSG-GESVQPVHWHTMLLKLGASPKHCTIEWCRHALVSAMARVHF S-AFS P YNAEMVNGGRPALRKMVEG-DISSASLVVLYMSSVR- MTKAPSGAVP VTVLLCIMQM
Ggallus    2492 SKHCIQVNSTNAESFQFLIEEFFSKEYLLAGNGIHLADGGWLI PTDEGKAGKKEF DPKLITE VWKLAAMEVCFPHKFANRCLT PYRALCDTPGV AWVYNHYRWI ETVLLQLKYRYDLE 
Hsapiens   2546 SKHCIKINSKNAESFQFHTEDYFGKESLWTGKGIQLADGGWLI PSNDGKAGKEEF DPKLISR IWKLAAM AYRALCDTPGV IWVYNHYRWI ECAFPKEF NRCLS PERVLLQLKYRYDTE 
AthalianaA  528 QVMQINMYSVMSLL QTRLELKLFFKCWLSLVLPYNMHPEKKVCDRSFEACMWIVW AKCRGNF KYRYEREVNHGHCSAIKRILSGKLACYDIYYP LT ITNVLEEL DAPASSMMVLCISA 
Umaydis     584 LVVLKDASQAARYAFE GPDSALLMQQQALEELHARGCSN---ADMPWVQNHWTLI EPSSASN RQLLYRYEREVNLAQRSCLKRIQEHDSSAARPMVLMV 
 

LWKLAAMVRL -RWS WNELI

Tbrucei     948 VWVVSVSFEERLTP------ ------HTCTAVVSDGFYHVKV VLLSINYNCTQPVGPSSPLGLYHT-CLPTLL SLDIPLTNLVRNGTLRCGQKIVTCGARMLRR-DCCSPL ECKDE--
Tcruzi      352 RLAP------ ------HTSVGVISDGCYEIKVALDVPLTNLVREGILRCGHKLLV FCSPV D NYNCTRPVDPTAALGFYCGAKMLLK-N CRDD--VVLSI QT-NPPVVSSAAVHPLGGL 
Lmajor      449 EERSSP------ ------HMRIVTLSDGIYHLKVTCDIPLSNLIREGVLKPGQRM -RQCAPT SINYNC V PAVCGAKSLLH  ECEGQ--VVL VRA AQQT LGVYHG-EPLPLPLSLVHPLG 
Ggallus    2610 IDKSKRSAIKKITERDDAAGKTLVLCVSKVLSLNTAVSPSNSN-N NTEGEKAAAI RALLDPP VGQKIIVHGAELIGSPNGCTPL EAPDS--LMLKIA IEVTDGWYGI LKAFLHRRRLT
Hsapiens   2664 IDRSRRSAIKKIMERDDTAAKTLVLCVSDIISLSANISETSSNKT SSADTQKVAI KAQLDPP VGQKIILHGAELVGSPDACTPL EAPES--LMLKIS IELTDGWYAV LLAVLKNGRLT
AthalianaA  646 INPKTDNDSQE----A HCSDSCSNVKVELTDGWYSMNAALDVVLTKQLNAGKLFV LSGWATP TICLLLNINGTYRAHWADRLGFCKE-IGVPLALNCI GQKLRILGAG TSPL EAVISS
Umaydis     698 SKILEEEIEVQSPSGE-- --IVSRICTILELSDGWYRILAQIDSVLTNACQRGRL ATLDAHG MS--NLVLTANSVSLAPWDAKLGFAST--PFCASLR 
 

RIGQKLAIMG EGKEVL SAYR

Tbrucei    1050 PSAMDMLGGLVPCLKGRVERVL PPFFLEKTFKGAR--TGDTRGSTGGALKIVRSL AR SCLL ERQGDVLLQIWDDCGANCPAGDLEEH LAQLSFQECM GAVAPFEGKSD-RQL SRLTSF
Tcruzi      454 VPSIRGVVERIL PPIFVEQVVG-----NGDAVSTG---AKVVRNLLAQLKRLESVLREAAVPSESTNT-RRL VRLTSLVLTCEQKEDVMVQLWEDCAEGCGAESLEEDCGSEFPSEGS 
Lmajor      551 GLVPAIEGVVARTL PSFFMSEEVTETSGTADGARQA KDNAEALVQQWETVDER--ALLADDDGGASLPVE RNRVFKTVRNAHAQLQVTDRLRREAESRADGEAAPSKL LSRVTSLLIV
Ggallus    2725 ANSTRCARWYTKLGFHRDPRPFPLPLSSLYSEGGTVGCIDVVVQRTY PIQWMEKTSA FR KLEALFAKIQAEFEKHEE-RNC RRAPRSRIVTR G----SYV NSRAEEREAAKHAEDQQK
Hsapiens   2780 ANSTRPARWYTKLGFFPDPRPFPLPLSSLFSDGGNVGCVDVIIQRAY PIQWMEKTSS FR RLEALFTKIQEEFEEHEENTTK PYLP-SRALTR G----LYI NEREEEKEAAKYVEAQQK
AthalianaA  759 KCNGGPVPKTLAGIKRIY PILYKERLGEK----KSIVRSERIESRIIQL RGINGV -------QNDTDSEEGAKIFKLLETAAEPEFLMAEM HNQRRSALVEGIMCEYQ HS---- ----
Umaydis     808 SLTPEGGLISLMDVVITKVY PLAYVDVDKSN----AGAPRGEQEEAEQREAWLQRRE EAEAELG -----
 
 

 
 
 
 

-----------RLYDLVEALNDLVGDAFLPS -------- --DAMQQLEL

 



 

Tbrucei    1165 S-CDFPPEGAEIVVFSVTPSRFRP GHPFQRTTVLYSRSPLRYSIVSPPRKGFVRQPLRSAEDVSPKTETGDAIDFAGLFVGTKS VDTVNSHIIVALNDGWKPGCVPASYFMIDVPHAT 
Tcruzi      563 SVLIFALTPSRSRP SHPFQHAKVLYTRARLDYRVISSP-SGF ITMP VRPLRCSISDADLSMPAGAATDFAGLFLASAK NEAVNSFVIVMLKN---EETETPSFCIMDVPCATPVKEIA
Lmajor      667 GSWVTLYAVNPAKSRT AAAPFTRAKLFFSSRKLYYVPSKNPP LSLP QHLRRIWMAATDNNSTTGVGDVADVCGLYVGSHR NEQGTFALLLLCND---------TYALLQIPVPSAGRA
Ggallus    2838 QQIHNLQDGAELYEAIQNAADPSYMEGYLSEDQLKALNAHKQL RMNDKKQ TRIREEFKKAVESAEQEKHGFSKRDVSTVWKLFVVDYRKQEKHRGVILSIWRPLLDVCSL LKEGS YRI 
Hsapiens   2893 QQVRALQDGAELYEAVKNAADPAYLEGYFSEEQLRALNNHRQM RLNDKKQ AQIQLEIRKAMESAEQKEQG-LSRDVTTVWKLRIVSYSKKE-KDSVILSIWRPSSDLYSL LTEGK YRI 
AthalianaA  858 SPEQLRSFTTYKAKFEAAQQ MRKEKSVAETLEDAGLGERNVT LPFMRIRLVGLTSLSYEGEHNPKEGIVTIWDPTERQRTE LTEGKIYMMKGLVP-------------INSDSEI YLH 
Umaydis     896 IPDDPTGRLEAFANQLFDQLR- -------AQPNPASAVKERV L
 

VTAGHTSLVPWLHNLAKSALLQEDGIRGSSLSAELDRLCP PRKVREFRVVKFRD----------------AR PPQ 

Tbrucei    1282 GSKEIVLALPSIPFTPVIVQNASFIR -CAEDLGPDCIHVLAN CEYTK-VYSRPAEPLLRGVVESLGKIRGMAKSS-RPIIARSEELL RMR---------------TLSEEARADI RLS 
Tcruzi      677 VASFTPVIVQNSSFIR FAVDDLGPDCLHVLANEFTK-VL DQRPASSYLRTAISSLELVREKAMGR-KSLMARAEEIL RLR---------------QLSVEARTDVRRYLGELNGR VPL 
Lmajor      776 LPTTERLSLVVLNATFLT GEDPVAGSDCCRLFANEYTA-VLQ RRSTQANLKGALETAAQLRGLVDAAPQKYAARKAEVF RCLDEGEPRGGLGLGSSTALTDRDNPGVPEVPLNVW DAP 
Ggallus    2956 CQLSTSQSKGRSDSTNVQLSATKKTRYLQLSVSQKMLQQIFFP -RKALKFTS LLDPSYQPPCAEVDVVGVVI-SISRTGFSNMVYLSDESYNLVAIKIWADLRHFAIEDIVV RCS --- 
Hsapiens   3009 YHLATSKSKSKSERANIQLAATKKTQYQQLPVSDEILFQIYQP -REPLHFSK FLDPDFQPSCSEVDLIGFVVSVVKKTGLAPFVYLSDECYNLLAIKFWIDLNEDIIKPHML IAA --- 
AthalianaA  963 ARGSSSRWQPLS-PKDSENFQP FFNPRKPISLSNLGEIPLSS L---EFDIAAYVVYVGNAYTDVLQKKQWVFVTDGS------ ---------------------AQHSGEISNSL AIS 
Umaydis     990 PPATCLSTKTQQVGGSGATSKRKN AYARAVQLTVRDAAQL V
 

GDELREGRRFLVTNLVPMSKSAWRKPD----------------- --------------------------DQAE FLS 

Tbrucei    1382 RELVGGDELPNPAATAQP--------SP RYQLRQE----------------ASTPVEQS PITVSETSAARTLSSEEEQVEDLRSSNVKA SPRR---HVFGNIVGFRLLKCQGSDK ECI 
Tcruzi      778 AVASGSTS--------RL PYYMRAE----------------RKGPISKGVV AIPTLHARSEMTEEQKSVFPP-SPAIHH GERS---HIFGNIIEMRLIRVFDSGRRESVLLPIGL ASD 
Lmajor      893 LASPSAAATSPVLAQRDGRL PYYLRHDNGRVRAGNLTGVLLP PSAALPTPAAPTVVQGPYSATTIHPGVREPLVQPANSVA GARS---RHYGNIADLMFLFDPRLNRRAWHPLTD LQA 
Ggallus    3069 ---------FIAASNLQWQSEFRSEIPVLLAGDLSAFSASPKENHLQEKFNE K LL RRMIENVDS-------------FCSDAESKLMNLLQRNCSLTPILP RCGLECSSPSCNS G YAE 
Hsapiens   3123 -------------SNLQWRPESKSGLLTLFAGDFSVFSASPKEGHFQETFNK KDCT TM KNTVENID-------------ILCNEAENKLMHILHANDPKWSTPT SGPYTAQIIP G GN- 
AthalianaA 1050 FSTSFMDDSS-------------- --------------------------- EAAY TWAK VSHISHNLVGSVVGFCNLIKRAKDVTNEIWVAE AAEN---SVYFINA SSHLKTSSAHIQ
Umaydis    1065 TRRDTKWRPVA--------------- -------------------- ---- ---- 
 

----------------------------------------------------- ------------

Tbrucei    1473 EILGGRPSTLVSGSGK----FVVSPSDFSQ SLVYFEADIQFG---- DEIF DWQT ---ATAKQCAQTKVRSPSVLH--------------SLLEQCIPL KRACALTV ADYYLARIKQLE
Tcruzi      868 VLTAG-----PAVPQETLLY DSICFDLVIQVG-------AVAEQQVKATMKSPAVLS--------------GMLEQRLAM RSVCAVAVDEGQVDYFMQRTKILETWQRAP--EESWWW 
Lmajor     1008 TASAAVG------------HGE GFRRAQLCWRLS-------ADSADDMTCRVEESSILG--------------TVLESVCPL QELCSVIADERHIDVSLARSERLVQWRRQDS-LSVW 
Ggallus    3165 DRSSISSKIETKHPSPLSASTPNTKLFPQGSAITPSSAVSS----ENHPRNSKKR KAVDFLSCIPAPPPLTPLCSIISPSLKKAFQPPRRLGSQHSKLSKETNPNAGCVTPSRRL REA 
Hsapiens   3214 KLLMSSPNCEIYYQSPLSLCMAKRKSVSTPVSAQMTSKSCKGEKEID ----  ETP DQKNCKKR RALDFLSRLPLPPPVSPICTFVSPAAQKAFQPPRSCG------- ---------TKY
AthalianaA 1124 LSSSKSVIHELR-------------- --------------------QRVLSIIGACKSPSC------------------------- -------------------------------- 
Umaydis         ----------------------------------------------- ---- ---- 
 

----------------------------------------------------- ------------

Tbrucei    1566 PH--EECWWRLLTQSHVVEITSDVSGTPPEEL VGLQWLSNEWKMLL           NILSGSLKHCLFM FSVEGS-EMVRATFIKEQCSVADLMRE------ --               
Tcruzi      958 FLSLSHVVAGDSHP---PETEG TALLWLESEWRTLIDMLCEGLRDS           LFKFSVDAAGEVT RAVFLKENCSLRELMKE------ --                         
Lmajor     1092 WRFFTDSRTLASPADLDG---ASS EHLWWLPAEWTEAMRTVSAKLQ           AAFFYFSLSGE-V LRHVRLISDCCSVAELPCD------ --                       
Ggallus    3279 VQLPDNDLVADEELAMINTQALINTVPEEKKMDYVNEDGTRATNLSG EPEG SRKCY DTRATNLSRD TR APNLSGDLSSKNSSRSAKEANSSLKSSSEGADALQKDTE SLSIRRVLQRRK
Hsapiens   3312 IKKKELNSPQMTPFKKFNEISLLESNSIADEELALINTQALLSGSTG DTIT ---- EKQFISVSES TR TAPTSSEDYLRLKRRCTTSLIKEQESSQASTEECEKNKQ TKKYI-------
AthalianaA      -----------------------------------------------          -------------------------------------------                      
Umaydis         -----------------------------------------------
 

------------------------------------------       

Figure 3.3 – Global multiple alignment of the putative T. brucei BRCA2 poly lignm T. b
BRCA2 polypeptide with putative homologues from other eukaryotes: T. cruzi, L.  were CLUSTA
(http://www.ebi.ac.uk/clustalw/

peptide with a range of BRCA2 orthologues.  Multiple sequence a ent of the putative 
major, G. gallus, H. sapiens, A. thaliana and U. maydis.  Sequences  aligned using 

rucei 
L W 

) (Chenna et al., 2003) and shaded using the BOX OSHADE server (http://www.ch.embnet.org/software/B X_form.html): es that are id
aded in grey.   

 residu entical in 
least 50 % of the proteins are shaded in black and similarly conserved residues sh

at 
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T. r is   brucei T. cruzi L. majo H. sapiens G. gallus A. thaliana U. mayd
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T. cruzi 
 

 100 
100 
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100 
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of conservation observe
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AlignX (Vector NTI), and the percentage 

ee table 3.2).  A graphical re
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Tbrucei        1 MSHKKGRQGSNSGARQNSDTPQRNRTKCRSDAPKRQRSRSGESVQGKSPLQERETRIQPRRDRTYGTENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTENGQESTAV 
Tcongolense    1 ------------------------------------------------------------------------------------------------------------------------ 
Tvivax         1 ------------------------------------------------------------------------------------------------------------------------ 
Tcruzi         1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor         1 ------------------------------------------------------------------------------------------------------------------------ 
 
 
Tbrucei      121 QGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARAR 
Tcongolense    1 ------------------------------------------------------------------------------------------------------------------------ 
Tvivax         1 ------------------------------------------------------------------------------------------------------------------------ 
Tcruzi         1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor         1 ------------------------------------------------------------------------------------------------------------------------ 
 
 
Tbrucei      241 MNTENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKPIT 
Tcongolense    1 ------------------------------MVFSQKS-------------------KGNICDVCSHVNKVD--QMRCDKCSHIIGRR--------SYSGSTRNSSKLSTPRKSNHG---- 
Tvivax         1 ------------------------------------------------------------------------------------------------------------------------ 
Tcruzi         1 ------------------------------------------------------------------------------------------------------------------------ 
Lmajor         1 -----------------------
 
 

----------------------------------MKPIACPHCTFINPPSKVKCGVCLRLLRKRERTVDDASPATPSRGRKGTPSPSS--------- 

Tbrucei      361 VSESSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVP 
Tcongolense   58 --------------ANQSDEHEAAKG-----------------------------------AENDSSVERTTTGVATLFSTAAGKTVSVSESSLRAARMKLGQELCADGS---------- 
Tvivax         1 -----------------------------------------------------------------------------------MKQRQVGEKSPGAFHGRGSEELQVSYS---------- 
Tcruzi         1 --------------------------------------------------------------------------------------MGLEPDNVCAHCTFINAPGRVRCS---------- 
Lmajor        55 -------------------------------------------------------------TPPEHDAPATGASQVRCDTTKSPMPLAAPESSSTASAQAVQPPDVEAMA----------
 
 

 

Tbrucei      481 TLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARM----NTENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTE 
Tcongolense  119 -----------TLTEPPLQES------------------GPGVATLFSTAAGKTVSVSESSLRAARMKL----GQELCADGS---------------------TLTEPPLQES------- 
Tvivax        28 --------------EHNLNQR--------------------------KRARASVCDLTETSGGSTEATI----AQGDGQARK-------------------------------------- 
Tcruzi        25 ------------MCFRNIRKR---------------------------IREGAAEIGSELHLPHLSVSN----QSEKQQEGC-------------------------------------- 
Lmajor       104 -------------AAPPLVPT------------------------LFSTASGKPVTVRRESLQKVAERLGDLAAPDMEAR---------------------------------------- 
 
 
Tbrucei      597 NGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKTVTVSES 
Tcongolense  178 -----------GPGVATLFSTAAGKTVSVSESSLRAARMKLGQELCADDEATVEN---------------------------------------TAQSESVGVPPPSTPVAGRRAKVSEP 
Tvivax        66 ---------------MTMFSTAAGTKLSVSTDSLEKAKKKLEDIEWREEVQNNEAP----------------------------------LKQTALQSCASSVP------VNSDVKTSRV 
Tcruzi        64 --------------VATLFSTASGQPVVVSEKSLQAARERLDADDAQIPLTHGNGD--------------------------------------------AAVATLFSTASGQPVVVSEK 
Lmajor       147 --------------VPTLFETGRGKTVTVQKRSLVKAKASMDSLGADGAPCTSAPA---------------------------------------LSATPGGAAVRVPTVPMQPPAEHLR 
 
 
 

 



LQVAS GAGASLSKRTPRTHRKSASSSPLSSSKLARKPFVVPFAKNKGAVAKGVGEAVPSASHMPSS LSFDIFTFRSLSMTVPPSIDEIVRGNFLFANAASSAKPIS EGEGSEVGRTPRH  
Tcongolense  248 PLRSVG SGATPAGVTAVAGPNGQSKNVGACLRQLRKPFVVPFAKVAPDTGKAQEAERSSISNTLR KHISF MYRSMPLSSLPSI LN SF EAFPPNDERLLL AKRRFNDGVTST DVC DDI DSF
Tvivax       131 ETHIRANNVPSSMSARSSISDQRNASRLDTSKGSSSPSLTPSTSRPQRVFVVPYAKP-PLPCQGNGTEAKNHAQQQG RPLSF F V SN LH TF TAAGGQRMWPLV DISR YSPP STVY DAI GSF
Tcruzi       126 SL ARGMSDSSSAASPSFVGPRRGCFVVPFARS----PQPRQVVPPNRFQDPP RSLSF F M SS VQQAARERVDADN----CATPCDKECG AR-------REM DIFA FSLP SSLP LEV STFAF 
Lmajor       214 LRSLSD TGAPRQTPLAEAPSTGLTTSTSERSLRALAPHRIGGQRRGFVPPQQRPTAQPLAKLTHA TILRFNPDACTCRSIT SL TS SF 
 
 

KDDTADTAPVLR MP---LVKTTGL PSP SLI LMF

Tbrucei      837 KQFGCS ECEFIPSANFRKAMLTLGASPRGCPDAWCLQMLTSTLLKLRGLTLHIDPPLP-VFSVAHT VEGKRPALRLIAEGDVQAASLVVVWVVSVSF PELLKLLEIPA LLHMCFKYNHEY
Tcongolense  368 KRLGCS AEVVLPGSFRKALLSLGASAHWCTEEWCLQMMKSTLIKLRGLSLHCRPALP-VFSAE QRPALRKVTEGDVPAGSVMVVFFVSLSK LELLQLLEVQPG HTLLYMCFKYNHEFVDG
Tvivax       250 SPFGCS AESVPFTSFRKAMLKLGAVAHSCTEEWCMQMLASTLLKLRRLSLNCGMPLN-VFSVA SRPPLRLVTEDDVSAASLMVISLVSFEELLHLLEIPKN HTLLYMCFKYNREFVDG SL 
Tcruzi       231 KCVGCSPE EDDSVPPRSFHTALVRLGACTSSCSENWCQQMLKSTLLKLRGLSLCCSPSLP-VFSVSHA VRPALRVLTEGDVPASSLLVVLLLLLGLSA LLYLCFKYNREFVDG SVVCLSL 
Lmajor       331 KGSDCGKV G-ESVQPVHWHTMLLKLGASPKHCTIEWCRHALVSAMARVHFMTKAPSGAVPSAFSPVTV VNGG K EGDI SLLAALLDVSG LLCIMQMYNAEM RPALR MV SSA VVLYMSSVR- 
                      -------------------------------------------------------------------------------------   -------------------- --
 

--- -- 

Tbrucei      956 EERLTPHT YHVKVSLDIPLTNLVRNGTLRCGQKIVTCGARMLRRDCCSPLECKDEVLLSINYNCTQPV LPTLLPSAMDMLGGLVPCLKGRVERVLPPFF CTAVVSDGF GPSSPLGLYHTC
Tcongolense  487 DERLSPHT YHVKVSLDVPLTNLLREGKLRRGQKVMMCGAKMLKKDNCTPLECMGEVVLSLSYNCVKPV PPVVVPSAIDELGGMVPSLQGVVERVLPPFF STGVVSDGF EPCTALGLYHVC
Tvivax       369 ADCLKPHT YHVKVAFDVPLTNMIRKGVIQCGQKLLVCGAKKLLRYSCSPLECKDEVVLSIDYNCTKPV PPIVPLESIDTHGGLVPSIQGKVVRVLPPCTGTISDGC DPATPLGFYHIN YF 
Tcruzi       350 EERLAPHT EIKVALDVPLTNLVREGILRCGHKLLVCGAKMLLKNFCSPVDCRDDVVLSINYNCTRPV PPVVSSAAVHPLGGLVPSISVGVISDGCY DPTAALGFYQTN RGVVERILPPIF 
Lmajor       449 EERSSPHM YHLKVTCDIPLSNLIREGVLKPGQRMAVCGAKSLLHRQCAPTECEGQVVLSINYNCVRAV PLPL HPLGGLVPRIVTLSDGI AQQTPLGVYHGE PLSLV AIEGVVARTLPSFF 
                 -------- ----------------------------------------------------------- ----   -----------
 

---------- ------------ ------------- 

Tbrucei     1076 LEKTFKGA TGGALKIVRSLLAQLSFQECMARGAVAPFE-GKSDRQLSRLTSFLLSCERQGDVLLQIW EEHS-CDFPPEGAEIVVFSVTPSRFRPGHPF --RTGDTRGS DDCGANCPAGDL
Tcongolense  607 IEQPFKRT GSGGGKVVRNLLAQLKFHDRTSRGGNEEMC-EAGKRQLMRVTSFSLTCMHKGDVVLQLW EEDT-CAYPAEGSTIVVFALTPSRFRPSHPF --RDTNARDG DDFSNGCATEAL
Tvivax       489 IQSSF GGTKVVRNMLAQLKSMEAS-RYAKSDDE-ASSHQRLSRVSSLVLTCSQKEDLLLQFW EEYE-STFPPEGATITVFALTPSRSRPAHPF T----NDGSTHGHRA EDCGESCTAGSL
Tcruzi       470 VEQVVG-- VSTGAKVVRNLLAQLKRLESVLREAAVPSE-STNTRRLVRLTSLVLTCEQKEDVMVQLW EEDCGSEFPSEGSSVLIF------NGDA EDCAEGCGAESL ALTPSRSRPSHPF 
Lmajor       569 MSEEVTET RNRVFKTVRNAHAQLQVTDRLRREAESRADGEAAPSKLLSRVTSLLIVKDNAEALVQQWE DGGA--SLPVEGSSGTADGARQA TVDERALLADD WVTLYAVNPAKSRTAAAP 
                 ---   -- ----------------------------------------------------------- -------------
 

---------- ------------ ------------------ 

Tbrucei     1192 QRTTVLYS PPRKGFVRQPLRSAEDVSPKTETGDAIDFAGLFVGTKSVDTVNSHIIVALNDGWKPGC--V HATGSKEIVLALPSIPFTPVIVQNASFIRCA RSPLRYSIVS PASYFMIDVP
Tcongolense  723 HHAKVLYS PPDKGGTRLPERAVDSVAAEIVTGGPVDVAGLFVATATVSNFNSHVIAMLLDDWCPGK--S LATASKEITLAMPSAPFTPVIVQNASFIKRT RSPLDYRVLS SASYCVIDAP
Tvivax       602 QQAKALHA SAREGDRREPCRSVKDMDLYTPAGVAMDFAGIFVKSARIDTVGSFVFVLLEDGWATDLNTA HDTPSKEIVLPTP-APFTPVVIQNASFIRIA KARLEYRTIS SQSYCLMDIP
Tcruzi       581 QHAKVLYT SP-SGFVRPLRCSISDADLSMPAGAATDFAGLFLASAKNEAVNSFVIVMLKNEETETP--- CATPVKEIAITMPVASFTPVIVQNSSFIRFA RARLDYRVIS --SFCIMDVP
Lmajor       687 FTRAKLFF KNPPQHLRRIWMAATDNNSTTGVGDVADVCGLYVGSHRNEQGTFALLLLCND--------- VPSAGRALSSRKLYYVPS --TYALLQIP SLPLPTTERLSLVVLNATFLTGE 
                 ------------------------------------------------------------- -----
 

---------------   ---------- ---  --------------------- 

Tbrucei     1310 ED-LGP YSRPAEPLLRGVVESLGKIRGMAKSS-RPIIARSEELLRMR---------------TLSE RELVGGDELPNPAATAQP--------SPRDCIHVLANEYTKV EARADICRLS YQ 
Tcongolense  841 ED-LGNDC VLTRPATPALRSVVDSLEQLRHTAKTC-RVITSRCEELLRLR---------------TLSE CESVGIDVVTTTSSDTST--------SRLPY IHTLANEFTR EAQSDVRRLA
Tvivax       721 HEGFGSDC VLQRPSAPFLRSVIGALEKLREKAKLT-ISISARAEELLRLR---------------GLSG DGLIN-DEVSTTLSTRPS--------RVPYY AHALANEFTQ EAQRDVHQFS
Tcruzi       695 VDDLGP SSYLRTAISSLELVREKAMGR-KSLMARAEEILRLR---------------QLSV GELNGRDVPLAVASGSTS--------RLPYY DCLHVLANEFTKVLQRPA EARTDVRRYL
Lmajor       796 DPVAGSDC F VLQRSTQANLKGALETAAQLRGLVDAAPQKYAARKAEVFRCLDEGEPRGGLGLGSSTALTD LNVWRDAPLASPSAAATSPVLAQRDGRLPYY CRL ANEYTA RDNPGVPEVP
                 -------- - ------------------------------------------------------------- ---
 
 

---------------------------- ------------- ------

 

Tbrucei      717 S



Tbrucei     1405 LRQE PVE TVSETS RTL S F S E I R L FV SDFS F I A QA-ST QSI AA SSEEEQVEDLR SNVKASP-RRHVFGNIVG RLLKCQG DKP CIE LGG PST VSGSGK VSP QSL------VY EAD QFG TAK C 
Tcongolense  936 YLREK-EVPFKQGVTLPKEKVTVSS EDP QSTARESLVNDTPMPLAAAP-LRHLFGNVVGFRLIKCHDSGRTERIDLFAVYVAGSSSESVSSDEPPA QRS------SHFEIDVQFGATTQ R 
Tvivax       816 MREGA-TTSAKQGVVIPCTNGSSPK ADV QEGKGAQKQGVATALLQQHGGRHHLFGNITELRLVRCYNTGKSESINLLKRSNGCSSLKQFGTDITVT QFS------SHFEIEIQFGAGEE K 
Tcruzi       791 MRAER-KGPISKGVVIPTLHAR--S TLL QEMTEEQKSVFPPSPAIHHGERSHIFGNIIEMRLIRVFDSGRRESVLLPIG-LAASDVLTAGPAVPQE YDS------ICFDLVIQVGAVAE Q 
Lmajor       916 LRHDNGRVRAGNLTGVLLPSAALPT TAS DPAAPTVVQGPYSATTIHPGVREPLVQPANSVAGARSRHYGNIADLMFLFDPRLNRRAWHPLTDPLQA AAVGHGEGFRRAQLCWRLSADSA D 
                 ----------------- 
 
Tbrucei     1517 AQTKVRSPSVLHSLLEQCIPLKRAC WKM MALTVDEIFADYYLARIKQLEDWQTP-HEECWWRLLTQSHVVE---ITSDVSGTPPEELVGLQWLSNE LLNILSGSLKHCLFMFSVE-GSE V 
Tcongolense 1048 LTAQINVPRVLHALLEPRITLQRAC WDI LT ALAVDEVIPEYSICRAKQLEKWRGA-REECWWRFLTRSCVVS---ARSHDLEAVLEPGDAVEWLASE LLEILSSEIRNCLFKFSVE-NGE
Tvivax       929 KLVKLKNPCLLDALLERRVTLQVAC WEV LT SMAVDEECLDFVLRRNKLLKESQLP-PREQWWYLLTRSCIVNRDMSRSPTTLSQVATATAVEWLANE LLGILTDAIEDCLFKFSVNMEEE
Tcruzi       901 VKATMKSPAVLSGMLEQRLAMRSVCAVAV WRT VT DEGQVDYFMQRTKILETWQRA-PEESWWWFLSLSHVVAG------DSHPPETEGTALLWLESE LIDMLCEGLRDSLFKFSVDAAGE
Lmajor      1036 MTCRVEESSILGTVLESVCPLQELCSVIA WTE LR DERHIDVSLARSERLVQWRRQDSLSVWWRFFTDSRTLAS------PADLDGASSEHLWWLPAE AMRTVSAKLQAAFFYFSLS-GEV
                       -- 
 
Tbrucei     1632 RATFIKEQCSVADLMRE---- 
Tcongolense 1163 RAVFIREHCNIVNLMRK---- 
Tvivax      1048 QAVFIRENCSILELMQEESSV 
Tcruzi      1014 RAVFLKENCSLRELMKE---- 
Lmajor      1149 HVRLISDCCSVAELPCD---- 
 
 
 
Figure 3.5 – Global multiple alignment of the putativ Multiple nt of the p
polypeptide with homologues of BRCA2 from the other t nces were
(http://www.ebi.ac.uk/clustalw/

e trypanosomatid BRCA2 polypeptides.   sequence alignme
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utative T. brucei BRCA2 
 aligned using CLUSTAL W 
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Figure 3.6 – Graph displaying the % similarity and identity between T. brucei BRCA2 and 
Brca2 from the trypanosomatids.  Pair-wise alignments were performed as described in Table 
3.4 to compare the putative T. brucei BRCA2 polypeptide sequence with Brca2 from T. 
congolense, T. cruzi, T. vivax and L. major.  Percentage identity is shown in blue and percentage 
similarity in maroon. 
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3.7 Identifying the domains of T. brucei BRCA2 
The human BRCA2 protein is a large multi-domain protein, composed of 3418 amino 

acids (Wooster et al., 1995;Tavtigian et al., 1996) and, as with many other DNA repair 

proteins it is localised to the nucleus (Bertwistle et al., 1997).  Sequence comparisons have 

proved to be relatively uninformative, due to the lack of homology with proteins of known 

function.  However, crystallographic and functional studies have revealed a number of 

different domains in the protein.  These are considered in turn below.    

3.7.1 BRC repeats 

In the human BRCA2 gene, the large central exon 11 encodes eight sequence motifs, which 

have been termed the BRC repeats (Bork et al., 1996).  Each of these repeats, BRC1-

BRC8, is composed of approximately 30 amino acids, and 6 out of the 8 motifs have b

shown to interact with RAD51 (Wong et al., 1997;Chen et al., 1998b;Marmorstein et al., 

1998).  A crystal structure of human BRC4 complexed with RAD51 has been solved 

(Pellegrini et al., 2002), and shows that the RAD51 C terminal domain forms a mixed α-β

fold.  This fold contains two loops, L1 (aa 230-236) and L2 (aa 269-292), which hav

suggested to form DNA binding sites (Story et al., 1992;Voloshin et al., 1996).  This 

structure had provided useful information in allowing BRC repeats to be predicted in 

different BRCA2 homologues (see figure 3.8) (

een 

-

e been 

Lo et al., 2003).  From this work, several 

critical residues for the interaction between a BRC repeat and RAD51 have been presented, 

ine 

s (used in the phylogenetic 

 

constituting a BRC sequence fingerprint.  This has further allowed the number of BRC 

repeats, and their functionality to be predicted, in many BRCA2 homologues.  To exam

this, BRCA2 proteins were identified from a range of organism

analysis described in section 3.4) and tabulated for their size and predicted number of BRC

repeats (table 3.3). 
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Taxon Organism Size (amino No. of BRC 
acids) repeats 

Metazoa Homo Sapiens 3418 8 
Metazoa Canis familiaris 3446 8 
Metazoa  catus 3 72  Felis 3 8
Metazoa Mus musculus 3328 8 
Metazoa Gallus gallus 3397 8 
Metazoa Drosophila melanogaster 947 3 
Metazoa Caenorhabditis elegans 394 1 

Viridiplantae Arabid l 150 opsis tha iana-a 1 4 
Viridiplantae Arabidopsis thaliana-b 1155 4 
M t t coideum 1623 yce ozoa Dictyos elium dis 1 

Fungi Ustilago maydis 1075 1 
Apicomplexa Toxoplasma gondii 2741 8 
Apicomplexa Plasmodium falciparum 2668 6 
Euglenozoa Leishmania major 1165 2 
Euglenozoa Tryp  2 anosoma cruzi 1030
Euglenozoa Trypanosoma congolense 1179 3 
Eugle Trypanosoma vivax 1 68 nozoa 0 1 
Euglenozoa Trypanosoma brucei 1648 15 

Diplom  Giardia lam lia 1 onadida b 1105 
Parabasala Trichomonas vaginalis 1664 14 

Entamo Entamoeba histolytica 719 1 ebidae 
T – BRCA2able 3.3  proteins from the eukaryotes used in the phylogenetic analysis.  The 

f 

the 

t one 

gans, 

one 

a  and 

ough 

possess only one or two BRC repeats.  In general 

BRC repeats.  The exceptions to this are T. 

brucei, with 15 predicted repeats, T. vaginalis, with 14 predicted repeats and P. falciparum 

and T. gondii, each apicomplexans, with 6 and 8 predicted repeats, respectively.  

Conversely, 8 multicellular organisms are catalogued, of which 7 have 3 or more BRC 

repeats: each vertebrate has 8, A. thaliana has 4 and the insect D. melanogaster has 3.  

Again, there is an exception, with C. elegans having only a single BRC repeat.  It seems 

possible that developmental complexity has generally selected for increased numbers of 

BRC repeats, perhaps due to more complex demands for homologous recombination 

sizes of the proteins and the number of predicted BRC repeats are indicated.  The number o
predicted BRC repeats were either inferred from the protein annotations in the sequence 
databases, were identified by Lo et al. (2003) or were identified manually in this work, using 
BRC sequence fingerprint (Lo et al., 2003). 

It appears that a factor common to all BRCA2 homologues, is the presence of at leas

BRC repeat motif (Lo et al., 2003).  For instance, BRCA2 from U. maydis and C. ele

both of which are known to function (Kojic et al., 2002;Martin et al., 2005), contain 

BRC repeat, and the predicted proteins from D. discoideum, E. histolytica, G. lambli

T. vivax have the same.  All the other BRCA2 proteins have multiple BRC repeats, th

the predicted number in T. brucei appears to be exceptional since the majority of 

unicellular organisms were predicted to 

terms, it appears that the simpler the organism, the smaller the number of BRC repeats 

(figure 3.9 summarises this).  To illustrate this, 12 unicellular organisms are catalogued in 

table 3.2, and 8 have between 1 and 3 predicted 



Claire Louise Hartley, 2008   Chapter 3, 94 

control in different tissues.  It is also possible that the number of repeats correlates broadly 

with genome size, perhaps again with greater need to control homologous recombination.  

ozoans in having 

er than 

pears 

mologue 

eats 

L. major in 

ivarian 

e 15 

igure 3.7) predicted T. brucei BRC repeats are identical in sequence and all the repeats 

ms 

re 

l., 

To examine in more detail the potential functionality of the trypanosomatids BRC repeats, 

ttp://www.ebi.ac.uk/clustalw/

T. na ov n sting example, as it is unusual amongst prot vagi lis pr ides a intere

a genome estimated as ~100 Mb (Lyons and Carlton, 2004), around 3-4 fold larg

other protists examined, and 14 predicted BRC repeats. 

Nevertheless, the BRC repeat number and arrangement in T. brucei, if correct, ap

truly unusual.  Though P. falciparum and T. gondii both have rather large numbers of BRC 

repeats, this appears to be true generally of apicomplexans, since the BRCA2 ho

in Cryptosporidium hominis (Chro.80593) is also predicted to contain 8 BRC rep

(www.cryptodb.org).  In contrast, the closest relatives of T. brucei; T. cruzi and 

the kinetoplastids and even T. congolense and T. vivax (each belonging to the sal

clade of the genus Trypanosoma), have far fewer repeats.  Furthermore, 14 of th

(f

are present in a tandem array, separated by exactly 20 amino acids.  In all other organis

with multiple repeats (with the exception of the 3 BRC repeats in T. congolense) they a

found unevenly distributed in the polypeptide (figure 3.9) and have degenerated in 

sequence outside of the predicted functional residues (inferred from work by Lo et a

2003).  The most likely explanation for this is that T. brucei BRCA2 has undergone a 

recent BRC expansion, unique to this lineage. 

the sequence of those present in BRCA2 from H. sapiens, T. brucei, T. congolense, T. 

cruzi, T. vivax and L. major were aligned using CLUSTAL W 

(h ) (Chenna et al., 2003) and visualised using the Boxshade 

server (http://www.ch.embnet.org/software/BOX_form.html) (figure 3.8) (Pair-wise 

comparisons are shown in appendix 7).  This alignment displays a high level of 

conservation within the BRC repeat motifs and shows that the critical residues are 

conserved amongst the trypanosomatids compared with those in H. sapiens.  Furthermore, 

it predicts that each repeat is likely to be capable of functioning in binding RAD51, as all 

repeats in each trypanosomatid retain the key residues identified by Lo et al (2003).  

Notably, this appears to include the 15th degenerate repeat in T. brucei BRCA2.  For each 

protein, therefore, there is no bio-informatic evidence that some of the BRC repeats do not 

bind RAD51, as have been shown experimentally for H. sapiens BRC5 and BRC6 (Wong 

et al., 1997;Chen et al., 1998b;Chen et al., 1999a).   
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QRSRSGESVQGKSPLQERETRIQPR 
 
MSHKKGRQGSNSGARQNSDTPQRNRTKCRSDAPKR
 
RDRTYGTENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTENGQESTAV 
                  82                116 
QGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAG 
           126          160                 170 
KPITVSESSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARAR 
                   204             214     
MNTENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNS 
            248                   258                      292 
TDVPTLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKPIT 
  302                 336                   346 
VSESSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTE 
          380                   390    
NGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVP 
   424              434             468    478  
TLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKPITVSES 
                      512               522  
SLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTENGQE 
               556          566         600 
STAVQGNSTDVPTLFVSAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVPTLFV 
     610                   644           654 
SAAGKPITVSESSLQVARARMNTENGQESTAVQGNSTDVPTLFVSAAGKTVTVSESSLQV 
              688      698 
ASANAASSAKPISGAGASLSKRTPRTHRKSASSSPLSSSKLARKPFVVPFAKNKGAVAKG 
       732 
VGEAVPSASHMPSSEGEGSEVGRTPRHLSFDIFTFRSLSMTVPPSIDEIVRGNFLFKQFG 
CSPELLKLLEIPAECEFIPSANFRKAMLTLGASPRGCPDAWCLQMLTSTLLKLRGLTLHI 
DPPLPVFSVAHTLLHMCFKYNHEYVEGKRPALRLIAEGDVQAASLVVVWVVSVSFEERLT 
PHTCTAVVSDGFYHVKVSLDIPLTNLVRNGTLRCGQKIVTCGARMLRRDCCSPLECKDEV 
LLSINYNCTQPVGPSSPLGLYHTCLPTLLPSAMDMLGGLVPCLKGRVERVLPPFFLEKTF 
KGARTGDTRGSTGGALKIVRSLLAQLSFQECMARGAVAPFEGKSDRQLSRLTSFLLSCER 
QGDVLLQIWDDCGANCPAGDLEEHSCDFPPEGAEIVVFSVTPSRFRPGHPFQRTTVLYSR 
SPLRYSIVSPPRKGFVRQPLRSAEDVSPKTETGDAIDFAGLFVGTKSVDTVNSHIIVALN 
DGWKPGCVPASYFMIDVPHATGSKEIVLALPSIPFTPVIVQNASFIRCAEDLGPDCIHVL 
ANEYTKVYSRPAEPLLRGVVESLGKIRGMAKSSRPIIARSEELLRMRTLSEEARADICRL 
SRELVGGDELPNPAATAQPSPRYQLRQEASTPVEQSITVSETSAARTLSSEEEQVEDLRS 
SNVKASPRRHVFGNIVGFRLLKCQGSDKPECIEILGGRPSTLVSGSGKFVVSPSDFSQSL 
VYFEADIQFGATAKQCAQTKVRSPSVLHSLLEQCIPLKRACALTVDEIFADYYLARIKQL 

ted 

EDWQTPHEECWWRLLTQSHVVEITSDVSGTPPEELVGLQWLSNEWKMLLNILSGSLKHCL 
FMFSVEGSEMVRATFIKEQCSVADLMRE 
 

Figure 3.7 – Protein sequence of T. brucei BRCA2 with the BRC repeats highlighted.  The 
fourteen identical BRC repeats are highlighted in red, whilst the fifteenth BRC repeat is highligh
in pink.  Residue numbers are indicated. 
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          FOTASG+OIOIOOOSIOOiOOIIO- 
       SGO    I 
T.brucei1-14       1 -DVPTLFVSAAGKPITVSESSLQVARARMNTENGQE 
T.brucei15         1 -DVPTLFVSAAGKTVTVSESSLQVASANAASSAKPI 
T.congolense1-3    1 -GVATLFSTAAGKTVSVSESSLRAARMKLGQELCAD 
T.vivax            1 -RKMTMFSTAAGTKLSVSTDSLEKAKKKLEDIEWRE 
T.cruzi1           1 -CVATLFSTASGQPVVVSEKSLQAARERLDADDAQI 
T.cruzi2           1 -AVATLFSTASGQPVVVSEKSLQAARERVDADNCAT 
L.major1           1 -LVPTLFSTASGKPVTVRRESLQKVAERLGDLAAPD 
L.major2           1 -RVPTLFETGRGKTVTVQKRSLVKAKASMDSLGADG 
H.sapiens1         1 SFGG-SFRTASNKEIKLSEHNIKKSKMFFKDIEEQY 
H.sapiens2         1 -VGFRGFYSAHGTKLNVSTEALQKAVKLFSDIENIS 
H.sapiens3         1 -TSDTFFQTASGKNISVAKESFNKIVNFFDQKPEEL 
H.sapiens4         1 -PTLLGFHTASGKKVKIAKESLDKVKNLFDEKEQGT 
H.sapiens5         1 -NSALAFYTSCSRKTSVSQTSLLEAKKWLREGIFDG 
H.sapiens6         1 -VGPPAFRIASGKIVCVSHETIKKVKDIFTDSFSKV 
H.sapiens7         1 -NTCGIFSTASGKSVQVSDASLQNARQVFSEIEDST 
H.sapiens8         1 -SAFSGFSTASGKQVSILESSLHKVKGVLEEFDLIR 
 
 
Figure 3.8 – Multiple sequence alignment of the BRC repeat from trypanosomatids and 
humans.  The polypeptide sequences of the BRC repeats were taken from T. brucei, T. 
congolense, T. vivax, T. cruzi and H. sapiens.  The BRC repeat sequences highlighted in red 
indicate the BRC repeats in H. sapiens BRCA2 that do not bind RAD51.  Sequences were aligned 
using CLUSTAL W (http://www.ebi.ac.uk/clustalw/)  (Chenna et al., 2003) and shaded using the 

 
l 

BOXSHADE server (http://www.ch.embnet.org/software/BOX_form.html): residues that are 
identical in greater than 50 % of sequences are shaded in black and similarly conserved residues 
shaded in grey.  The structure based sequence fingerprint (Lo et al., 2003) for the BRC repeat, with
eight critical residues in red is indicated above the alignment.  (O – polar; I – hydrophobic; i – smal
hydrophobic; (+) – positively charged; (-) – negatively charged.) 
 
 

 
Figure 3.9 – Representation of the number of BRC repeats in BRCA2 proteins from 
trypanosomatids and other eukaryotes.  BRC repeat motifs are displayed as red blocks, a
their position within the BRCA2 polypeptides are shown.  Protein sizes in amino acid residues are 
indicated. 
 

nd 
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3.7.2 DNA/DSS1 binding domains 

The COOH-terminal region of BRCA2 corresponds to the greatest conserved region 

protein across orthologues from dog, mouse, rat and chicken (Yang et al., 2002).  This 

region is thought to have an important role for the function of BRCA2 since 27 % of the

tumour derived mis-sense mutations in the breast cancer information core (BIC) database 

exist in this region (Szabo et al., 2000).  This region has been shown to interact with DSS

a protein which is absent or mutated in split-hand split-foot syndrome (Marston

of the 

 

1, 

 et al., 

1999;Crackower et al., 1996).  Co-expression of DSS1 with the C terminal domain of H. 

d 

f 

 

 

-

 

s four 

 

d to have the highest level of structural similarity to DBD-A and 

DBD-B and have therefore been attributed to binding to ssDNA.  This was confirmed by 

playing that ssDNA binds in the 

OB2-OB3 channel in a uniform manner.  This result was supported by evidence from 

sapiens BRCA2, allowed the structure to be crystallised and the X ray structure determine

(Yang et al., 2002).  This structure revealed multiple domains similar to ssDNA and 

dsDNA binding motifs and was subsequently named the BRCA2DBD (DNA/DSS1 

binding domain).  

The BRCA2DBD has been discovered to contain five domains (see figure 3.10), four o

which are arranged linearly, and one that protrudes out.  The first domain is the alpha 

helical domain, with 190 residues consisting mainly of alpha helices.  Following this are 3

structurally homologous domains containing oligonucleotide/oligosaccharide binding (OB)

folds (OB1, OB2 and OB3).  A tower domain is inserted into OB2, which contains a helix

turn-helix (HTH) motif that is similar to DNA binding domains of the bacterial site 

specific recombinases (Yang and Steitz, 1995;Feng et al., 1994) and protrudes away from 

the OB fold.  DSS1 interacts with the alpha helical domain, OB1 and OB2, characterised

by hydrophobic interactions and a large number of acidic DSS1 residues which interact 

with basic residues on BRCA2 (figure 3.26). 

The three OB folds of BRCA2 have been shown to have a high level of similarity to the 

OB folds of the ssDNA-binding protein RPA (Bochkarev et al., 1999).  RPA contain

OB folds (DBD-A, DBD-B, DBD-C and DBD-D), two of which bind to ssDNA with high 

affinity (DBD-A and DBD-B) (Bochkareva et al., 2002).  OB2 and OB3 in H. sapiens

BRCA2 have been foun

the crystal structures of BRCA2DBD-DSS1-ssDNA dis

native gel electrophoretic mobility shift assays (EMSAs), which found OB2 and OB3 had a 

high affinity for ssDNA.   
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e, 

lexes.  

 or in the 

Plasmodium species. 

Figure 3.10 – Structures of the conserved BRCA2 COOH-terminal domain (figure taken from 
Yang et al., 2002).  Sequence alignment of the C terminal domains of BRCA2 from human, mous
rat, chicken, arabidopsis (A. thal) and rice.  Secondary-structure elements below the sequence are 
coloured in magenta for the helical domain (HD), green for OB1, red for OB2, hatched-red for the 
Tower insertion in OB2, and blue for OB3. Black dashed lines indicate gaps in the alignment. 
Insertions in orthologues are dropped below the sequence. Residues identical in five or more 
orthologues are highlighted in yellow, DSS1-interacting residues are indicated by blue dots, and 
ssDNA contacting residues by green arrows. Figure taken from Yang et al., 2002.   

The tower region has been implicated to interact with dsDNA (Yang et al., 2002), since a 

fourth DNA binding domain was predicted to exist due to the formation of fast comp

It was unclear whether this was ssDNA or dsDNA binding, but the authors implicated 

dsDNA to be the likely candidate due to the tower domain containing 3 helix bundles, and 

most HTH motifs containing 3 helix bundle domains recognise dsDNA (Feng et al., 

1994;Yang and Steitz, 1995). 

When Lo et al. (2003) identified a number of BRCA2 homologues, they noted that two 

features were common to the identified proteins; the BRC repeats and putative nuclear 

localisation signals.  However, these authors noted that the different domains of the 

DSS1/DNA binding domains are conserved to different extents in different organisms, and 

it was predicted that in T. brucei, L. major, E. cuniculi and U. maydis, OB3 was 

completely absent, whilst no DBD was detectable in D. melanogaster, C. elegans
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The level of sequence homology was firstly investigated between BRCA2 from T. brucei 

and using AlignX (Vector NTI).  The percentage sequence identity was 

calculated and a graphical representation generated displaying the level of sequence 

sim ino acid residue (figure 3.11).  This shows the lack of any identity 

between N termini of the two proteins.  Instead, it highlights the fact that the homology 

that is pre ologues is limited to the C termini, indeed, at 

the DBD.  This is consistent with the finding that this region was noted as being the best 

conserved across dog, mouse, rat and chicken orthologues (Yang et al., 2002). 

To exam urther, a global multiple sequence alignment of the region predicted to 

encom T. brucei BRCA2 polypeptide with the DBD of BRCA2 

orthologues from T. cruzi, L. major, G. gallus, H. sapiens, A. thaliana and U. maydis was 

produced using CLUSTAL W (http://www.ebi.ac.uk/clustalw/

 H. sapiens 

ilarity for each am

sent between the two BRCA2 hom

ine this f

pass the DBD of the 

) (Chenna et al., 2003).  This 

was then visualised using the Boxshade server 

(http://www.ch.embnet.org/software/BOX_form.html), as shown in figure 3.12.  The 

DBDs were identified in H. sapiens, G. gallus and A. thaliana from the work produced by 

Yang ains allowed the identification of the potential DBDs in T. 

brucei, and U. maydis through the previous alignments.  The alignment 

of the DBD of these homologues predicts the presence of an alpha helical domain, OB1, 

OB2, OB3 and the tower domain in T. brucei, T. cruzi and L. major, and perhaps also in U. 

maydis conservation is found in OB1 and the α helical 

dom is reflects conserved binding of DSS1.  Despite the previous 

predic  BRCA2 does not contain an OB3 domain (Lo et al., 2003), this 

alignm mology in this region is low, there is a 

recognisable conservation of numerous residues.  The U. maydis protein does, however, 

appear to be truncated relative to the other BRCA2 proteins in at least the putative OB3 

dom , this alignment suggests that the α helical region is longer in the 

vertebrate proteins than any of the other eukaryotes. Nevertheless, despite the fact that we 

can predict that all domains appear to be present, biochemical studies will need to be 

undertaken to test this. 

3.7.3 1 binding domain 

RAD51 bin ccur at the BRC repeats in the centre of H. sapiens 

BRCA2, m et al., 1996;Bignell et al., 1997;Wong et al., 1997;Chen 

et al. nteraction domain has also been mapped 

to exon 27, at the C terminus of H. sapiens BRCA2 (Sharan et al., 1997;Mizuta et al., 

et al., 2002.  These dom

 T. cruzi, L. major, 

.  It should be noted that the greatest 

ain.  It is likely that th

tion that T. brucei

ent suggests that although the level of ho

ain.  Upstream

C terminal RAD5

ding has been described to o

apped to exon 11 (Bork 

, 1998b).  An additional, unrelated, RAD51 i
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1997).  It has recently been shown that a site at the C terminus (serine 3291) is 

phosphorylated by cyclin-dependent kinases (CDK's) (Esashi et al., 2005).  

Phosphorylation at this site increases at G2 phase and peaks at M phase, with the 

modification resulting in blocked C terminal interactions between BRCA2 and RAD51.

The C terminal region of BRCA2 has an important role for BRCA2 function, since cells 

expressing C terminal truncations of BRCA2 are hypersensitive to ionising radiation, are 

defective in their ability to perform recombination and have a reduced ability to f

RAD51 foci upon DNA damage (Wang et al., 2004).  Recent work has shown that the C 

terminus of H. sapiens BRCA2 binds RAD51 filaments, but not monomers like the BRC 

repeat region (Esashi et al., 2007;Davies and Pellegrini, 2007).  It therefore appears that 

the C terminus stabilises RAD51 filaments, and the phosphorylation of S3291 at the C 

terminus, which blocks RAD51 binding could disassemble the filament.  

Since evidence has been provided for possible conserved phosphorylation sites in the dog, 

rat and mouse BRCA2 orthologues (Yang et al., 2002), it was decided to investigate 

whether the T. brucei orthologue might also possess a putative C terminal RAD51 binding 

domain and CDK target sites.  A global multiple alignment of the C terminus of

brucei BRCA2 polypeptide with the C terminus of BRCA2 orthologues from 

major, G. gallus, H. sapiens, A. thaliana and U. maydis was produced using CLUSTAL W

(http://www.ebi.ac.uk/clustalw/

 

orm 

 the T. 

T. cruzi, L. 

 

) (Chenna et al., 2003).  This was then visualised using the 

Boxshade server (http://www.ch.embnet.org/software/BOX_form.html), as shown in figure 

3.13.  Perhaps surprisingly, the CDK target site in human BRCA2 identified by Esashi 

al. (2005) aligns with a serine, proline motif in T. brucei, T. cruzi and G. gallus.  

contrast, no such obvious conservation is found in L. major, A. thaliana or U. maydis

Despite the potential conservation of a CDK target site, which will need to be conf

through biochemical analyses, no obvious sequence homology between the RAD51 

binding domain at the C terminus of H. sapiens and G. gallus BRCA2 is apparent with

brucei BRCA2.  It is interesting to note that BRCA2 in U. maydis does bind RAD51 at the 

C terminus despite a lack of conservational homology with the H. sapiens BRCA2 C 

terminal RAD51 binding motif (Zhou et al., 2007).  The C. elegans BRCA2 also binds 

RAD51 by a non BRC repeat motif, which also displays specificity for RAD51 fila

as opposed to monomers (Petalcorin et al., 2007).  It therefore appears, that a bim

RAD51 binding function is conserved throughout BRCA2 homologues, though the 

position of a non BRC RAD51 binding motif is yet unknown.  
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Figure 3.11 – Graph displaying the percentage similarity at the polypeptide level between T. brucei BRCA2 and H. sapiens BRCA2.  The percentage similarity is 
displayed at each amino acid residue between T. brucei BRCA2 and H. sapiens BRCA2.  Diagrams of the proteins are displayed underneath the graph and represent the 
length of the proteins and the positions of similarity between them.  The BRC repeats are depicted by red blocks – differences in shading represents un-identical 
sequences; the α helical domain by the orange oval; the oligosaccharide binding domains by the blue squares; the tower domain by the lilac block extending from OB2; 
NLS sequences by yellow blocks and the C terminal RAD51 binding domain by a red block with a black line through it.
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3.7.4 Locating the nuclear localisation signal sequences 

BRCA2 from H. sapiens (Bertwistle et al., 1997), C. elegans (Martin et al., 2005) and U. 

maydis (Zhou et al., 2007), has been shown to localise to the nucleus.  It could therefore

presumed that the BRCA2 homologues identified in the trypanosomatids would also 

localise to the nucleus.  Although it is poss

 be 

ible that proteins without their own nuclear 

localization signal (NLS) enter the nucleus via co-transport with a protein that has one, the 

ple (Melen and Julkunen, 1997), many nuclear proteins have 

 

e 

 

mologues using 

PSORTII on the PSORT server (http://www.psort.org/

human MxB protein for exam

their own NLS and Lo et al. (2003) predicted that all the BRCA2 homologues they 

identified possessed their own NLS.  NLSs are short regions within nuclear proteins that 

direct import into the nucleus, and these are currently classified into three categories

(Hicks and Raikhel, 1995).  The best studied NLS is that of the SV40 large T antigen 

(Kalderon et al., 1984;Lanford and Butel, 1984), which is composed of a single peptid

region containing basic residues.  Another is the bipartite NLS, first found within the

Xenopus nucleoplasmin (Robbins et al., 1991;Dingwall et al., 1988). The pattern of this 

NLS is two basic residues followed by a ten residue spacer and then another basic region 

consisting of at least three basic residues out of five residues.  The last category of NLS is 

the type of N-terminal signal found in yeast proteins, such as Mat alpha2 (Hall et al., 

1984).  This NLS possesses one or more hydrophobic residues in addition to the basic 

amino acids.   

NLS sequences were predicted for the trypanosomatid BRCA2 ho

). These results are summarised in 

es, 

cruzi BRCA2 homologue was predicted to be located in the 

endoplasmic reticulum (44.4 % confidence), with no NLS sequences being located.  The T. 

LS 

table 3.4.  PSORTII is a computer programme, which analyses the polypeptide sequences 

of proteins, predicts their localisation within the cell and identifies potential NLS 

sequences.  The T. brucei BRCA2 homologue was predicted to be nuclear (82.6 % 

confidence) with three putative NLS sequences.  The first and second NLS sequenc

located at residues 33 and 59 respectively are of the SV40 T antigen type, whilst the third, 

a bipartite NLS is at residue 748.  The T. congolense BRCA2 homologue was predicted to 

be cytoplasmic (47.8 % confidence), though a single NLS sequence was identified at 

residue 610.  The T. 

vivax BRCA2 homologue was predicted to be nuclear (69.6 % confidence), but no N

sequences are found with this programme.  Finally, the L. major BRCA2 homologue was 

predicted to be nuclear (47.8 % confidence) with one NLS being located at residue 42.   
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Species Residue Sequence NLS type 
T. brucei 33 PKRQRSR SV40 large T antigen 
T. brucei 59 PRRDRTY SV40 large T antigen 
T. brucei 748 RKSASSSPLSSSKLARK Bipartite 

T. congolense 610 PFKRTRD SV40 large T antigen 
T. cruzi - - - 
T. vivax - - - 
L. major 42 PSRGRKG SV40 large T antigen 

Table 3.4 – Nuclear localisation signal (NLS) sequences located in the putative BRCA2 
polypeptides in the trypanosomatids.  The NLS sequences, amino acid residue position and 
type are indicated for all the trypanosomatids investigated. 

The fact that all of these proteins are not predicted to be nuclear or to have NLS sequence

by this programme does no

s 

t necessarily mean that these proteins are not located to the 

nucleus or do not possess NLS sequences.  This could be due to failings in the programme; 

for example, PSORTII does not examine sequences for the N-terminal signals found in 

yeast proteins, such as Mat alpha2, or for Nuclear Export Signals (NESs), and it is 

incongruous that the T. congolense BRCA2 homologue was predicted to be cytoplasmic, 

despite the presence of a putative NLS sequence.  Equally, T. vivax BRCA2 homologue 

 

t 

ged 

o contain 15 BRC repeat motifs (Lo et al., 

2003).  To verify the validity of this finding, it was necessary to investigate the number of 

BRC repeats directly and to examine if the number differs or is conserved between strains 

and subspecies of T. brucei.  It was also important to investigate whether the sequence at 

was predicted to be nuclear but the programme did not locate any NLS sequences.  One

possibility is that the T. cruzi and T. vivax BRCA2 homologues have diverged and interac

with another protein, which transports them to the nucleus.  Alternatively, another 

possibility is that the known evolutionary divergence of the kinetoplastida have diver

their NLS sequences so that they are undetectable by common eukaryotic programmes. 

3.8 Examining BRCA2 structure in the trypanosoma 
Given the potentially unusual organisation of the T. brucei BRCA2 protein, this section 

describes experimental analysis that was performed in order to determine that the 

prediction from the genome sequence is accurate, and to examine if this is conserved in 

other T. brucei strains and subspecies.  To do this, the BRCA2 structure and expression 

was examined by mini-satellite variant repeat (MVR) mapping, DNA sequencing of the 

BRC repeat region and by Southern and northern analysis.   

3.8.1 Determining the number of BRC repeats of BRCA2 in the 

trypanosomatids 

Based upon the genome sequencing effort, which used the T. b. brucei strain TREU 927, 

the T. brucei BRCA2 protein was predicted t
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the nucleotide level was identical between repeats, since this would inform us of the 

chanism of expansion, and if all strains possessed a ‘degenerate’ copy that differs from 

3.8.1.1 MVR mapping 

Minisatellites are tandemly repeated DNA sequences normally between 10 and 100 bp, 

which show length variation due to differences in the number of repeat units (Jeffreys et 

al., 1985).  They also vary in the sequence of each repeat within an array.  The first 

minisatellite variant repeat (MVR) mapping was developed in humans at locus D1S8 by 

Wong et al, in 1987 (Wong et al., 1987).  This minisatellite consists of a 29 base pair 

repeat unit showing two classes of MVR which differ by a single base substitution, 

resulting in the presence or absence of a HaeIII restriction site (Jeffreys et al., 1990).  A 

much simpler PCR-based mapping system (MVR-PCR) has since been developed (Jeffreys 

et al., 1991), which reveals length polymorphism by using an MVR primer specific to one 

repeat variant and a primer specific to a region flanking the minisatellite.  The PCR usually 

ers 

during cycling can be prevented by the use of ‘tagged’ primers.   

MVR mapping techniques not only allows repeat length polymorphism to be identified but 

an also reveal information about the genetic relationships amongst different strains and 

subspecies of an organism. The MVR mapping technique has been applied to minisatellites 

in Plasmodium falciparum (Arnot et al., 1993) to uniquely identify strains.  More 

extensively, it has been used in Trypanosoma brucei, (MacLeod et al., 2001a;MacLeod et 

al., 2001b) where it has been utilised to determine population structure and to examine the 

relationships among T. brucei subspecies, providing evidence for multiple origins of 

human infectively.  

MVR mapping was utilised here to determine the number of BRC repeats present in 

BRCA2 genes from different strains and subspecies of T. brucei.  To do this, T. brucei 

brucei strains TREU 927, Lister 427, ILTat 1.2 and EATRO 795 were analysed, as well as 

the related subspecies T. brucei gambiense (strain Eliane) and T. brucei rhodesiense (strain 

222).    

me

all other BRC repeats in the last eleven amino acids (section 3.7.1).  The positioning of 

such a copy in the array is important to understand if it is functionally diverged, or is a 

potential flanking truncation in the array. 

contains the MVR specific primers at a low concentration to ensure that the primers will 

anneal to just one of the repeat units, yielding DNA fragments of sequentially increasing 

size.  The progressive shortening of PCR products by internal priming of the MVR prim

c
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For each strain or subspecies, genomic DNA was used initially to PCR amplify the full 

ev) 

e 

length BRCA2 as a template for MVR mapping.  To do this, the primers Tb BRCA2 for and 

Tb BRCA2 rev were used, generating a DNA fragment of approximately 5 kb.  From the 

full length BRCA2 gene, MVR mapping was then done using a forward primer (Tb BRC 

repfor) specific to the first 20 bp of each BRC repeat and a reverse primer (Tb BRC repr

specific to a region 1 bp downstream of the most 3’ BRC repeat.  This method is depicted 

in figure 3.14.  PCR was performed for 18, 21 or 28 cycles, and the MVR-PCR products 

then separated by electrophoresis on a 1.5 % agarose gel, visualised by ethidium bromid

staining and detected by Southern blotting with the hybridization of a 378 bp probe (see 

figure 3.14) from BRCA2. 

 
Figure 3.14 – Representation of the MVR-PCR method utilised to amplify the T. brucei BRC 
repeats.  The forward primer is depicted in red and anneals to each of the BRC repeat motifs, 

 

 BRCA2 appears to possess one allele containing 8 

repeats and a second containing 6 repeats.   

whilst the reverse primer is depicted in black and anneals to a flanking region downstream of the 
BRC repeats.  The black line represents the 378 bp region of BRCA2 used as a probe. 

The MVR mapping shown in figures 3.15 and 3.16 indicates that the number of BRC 

repeats is not constant between T. brucei strains or subspecies.  Fifteen repeats were 

predicted to be present in T. brucei BRCA2, but this number could not be detected in the T. 

brucei strain TREU 927, which was used for the sequencing project.  Instead, by counting 

the number of PCR products it appears that 11 or 12 BRC repeats are present in this strain. 

In the strain Lister 427, up to 12 BRC repeats were also detected, though the PCR ladder 

contained one noticeably stronger band below the largest suggesting the possible presence 

of two allelic variants, one with 10 BRC repeats and the other with 12.  The strains ILTat 

1.2 and EATRO 795, the former derived from the latter by passage in rodents, appeared to 

each possess 12 BRC repeats.  For T. b. gambiense (strain Eliane) and T. b. rhodesiense 

(strain 222), the BRCA2 genes were seen to possess fewer BRC repeats than was observed 

in T. b. brucei.  A maximum number of 8 BRC repeats are predicted for both subspecies, 

but the phenomenon of a smaller stronger band was again observed.  These results suggest 

that T. b. gambiense BRCA2 possesses one allele containing 8 repeats and a second 

containing 5 repeats.  T. b. rhodesiense
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Figure 3.15 – Ethidium stained agarose gel depicting MVR mapping of BRCA2 BRC repeat 
number. The gels show that the ladder of PCR products
strains or subspecies: 427 - Lister 427; ILTat 1.2; 795 - E
brucei rhodesiense and Eliane - T. brucei gambiense.  The number of cycles undertaken in the 
MVR-PCR is indicated, as are DNA sizes (in kb). 

 from genomic DNA from the following 
ATRO 795; 927 - TREU 927; 222 - T. 

 
Figure 3.16 – Southern blot of the MVR mapping gel shown above. The agarose gel shown in 
figure 3.14 was Southern blotted and subsequently probed with a 378bp region of BRCA2.  The 
strains displayed are 427 - Lister 427; ILTat 1.2; 795 - EATRO 795; 927 - TREU 927; 222 - T. 

 

brucei rhodesiense and Eliane - T. brucei gambiense.  The number of cycles undertaken in the 
MVR-PCR is indicated, as are DNA sizes (in kb). 
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3.8.1.2 Topo cloning and sequencing 

To attempt to confirm the above findings, and to examine the BRC repeat number variation

in more detail, PCR primers were designed from the predicted genomic sequence of 

BRCA2 to amplify the BRC repeat region in a number of 

 

T. brucei strains and subspecies 

 

0 bp to 1.6 kb were generated, gel-extracted and cloned into the Topo TA 2.1 vector, 

y Sequencing Unit (MBSU), University of 

led and analysed using Contig Express 

T. brucei strain Lister 427, and from T. b. 

esence of 2 predominant, large bands 

CR artefacts at ~500 bp) (see figure 3.17).  

f the 

 

and 

 consistent with the MVR mapping.   

Before examining the sequences of the PCR products from the different T. brucei strains 

and subspecies, the sequencing results from the genome sequencing effort were used to 

align each of the BRC repeats using CLUSTAL W (http://www.ebi.ac.uk/clustalw/

and from other Trypanosome species.  As before, PCR was performed on the T. brucei 

brucei strains TREU 927, Lister 427, ILTat 1.2, EATRO 795 and on the related subspecies 

T. brucei gambiense (strain Eliane) and T. brucei rhodesiense (strain 222) (PCR primers 

Tb BRCA2 for and Tb BRC reprev).  In addition, similar reactions were performed with 

genomic DNA from T. congolense and T. vivax ILDAT2.1 (PCR primers Tco BRCA2 for 

and Tco BRCA2 rev for T. congolense and Tviv BRCA2 5’ and Tviv BRCA2 3’ for T. vivax).  

In all cases, a high fidelity DNA polymerase was used (Stratagene).  Products ranging from

70

before being sequenced by the Molecular Biolog

Glasgow.  The produced sequences were assemb

(Vector NTI).   

The PCR-amplified BRC repeat region from the 

gambiense and T. b. rhodesiense, revealed the pr

hen run out on an agarose gel (excluding the Pw

This appears to confirm the prediction from the MVR mapping that two allelic forms o

BRCA2 gene are present in these strains.  In contrast, a single large product was generated

in T. b. brucei strains ILTat 1.2 (excluding the PCR artefact at ~500 bp), EATRO 795 

TREU 927, again

) 

(Chenna et al., 2003).  This was then visualised using the Boxshade server 

(http://www.ch.embnet.org/software/BOX_form.html), as shown in figure 3.18, allowing 

us to examine the predicted variation in repeat sequence.  This alignment shows that each 

BRC repeat displays a high level of homology at the nucleotide level, with the exception of 

the most C terminal-coding BRC repeat, which was previously predicted to be distinct in 

the last eleven amino acids.   

The sequencing results from the TOPO-cloned BRC repeat region clones revealed no 

significant differences in DNA composition between the genome sequence and the 

corresponding BRC repeats from the different T. brucei strains and subspecies (see figure 
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3.19).  The most C-terminal-coding repeat from all samples aligned with the degenerate 

BRC repeat 15 from the predicted T. brucei genome sequence, with very small numbers of 

base pair differences, revealing that all the strains and subspecies retain the altered coding 

capacity of this repeat relative to the other BRC repeats.  The BRC repeat immediately 

upstream of this degenerate copy, in all strains and subspecies, aligns with BRC repeat 14 

from the genome prediction, and with the most N-terminal-coding repeat (BRC repeat 1).  

This suggests the first and last BRC repeats of the array are identical, as in the genome 

sequence.  The differences in size and number of BRC repeats between the strains and 

subspecies, is most likely therefore a result of deletions and expansion of repeats in the 

conserved BRC repeat region, which comprises most of the sequence.   

e and T. vivax ILDAT2.1, PCR-amplification of the BRC repeat region 

generated a single band of 2.4 kb and 2.8 kb, respectively (not shown).  Each of these was 

Topo-cloned and sequenced.  The genome sequence prediction of the T. congolense 

BRCA2 protein suggest a BRC repeat sequence of 

‘GVATLFSTAAGKTVSVSESSLRAARMKLGQELCAD’, with 3 BRC repeats predicted 

to exist.  Sequencing of the PCR product, however, revealed the presence of 2 BRC 

repeats, one less than predicted by the genome sequencing effort (Figure 3.20).  The 2 

BRC repeats in the sequenced clone are not identical, but are highly related at both the 

amino acid and nucleotide level.  This is true also of the 3 repeats predicted from the 

genome sequence.  It is possible, therefore, that the T. congolense strain or isolate 

he amino acid sequence prediction of the T. vivax BRC repeats is 

‘RKMTMFSTAAGTKLSVSTDSLEKAKKKLEDIEWRE’, with just a single BRC repeat 

being predicted to exist.  Sequencing of the T. vivax ILDAT2.1 BRC repeat region 

confirms that prediction, as shown in figure 3.21. 

Taken together, these results suggest that the large number of BRC repeats represent an 

expansion that is a T. brucei-specific phenomenon.  Since T. vivax and T. congolense are 

known to utilise a VSG-based system of antigenic variation (Richards et al., 1981;Barry, 

1986), it is possible that large numbers of BRC repeats is not related to antigenic variation, 

or is due to specific requirements of the immune evasion process in T. brucei. 

For T. congolens

sequenced here has undergone a single BRC repeat deletion relative to the genome strain.  

It is also possible that this represents a truncated version of the BRC repeat array 

expansion and contraction seen in T. brucei.   

T
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Figure 3.17 – PCR products of the BRC repeat region of BRCA2 from different strains and 
subspecies of T. brucei.  The PCR products are displayed from 427 - Lister 427; ILTat 1.2; 795 - 

ATRO 795; 927 - TREU 927; 222 - T. brucei rhodesiense and Eliane - T. brucei gambiense.  The E
pr ere subsequently gel extracted, TOPO cloned and sequenced.  In the case of 427oducts w , 
Eliane and 222, the two main bands were gel extracted, TOPO cloned and sequenced.  DNA sizes 
are indicated in kilo-bases. 

 
repeat1    1 GATGTTCCAACGCTTTTTGTATCTGCTGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGC 
repeat2    1 GATGTTCCAACGCTTTTTGTATCTGCTGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGC 
repeat7    1 GATGTTCCAACGCTTTTTGTATCTGCTGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGC 
repeat11   1 GATGTTCCAACGCTTTTTGTATCTGCTGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGC 
repeat6    1 GATGTTCCAACGCTTTTTGTATCTGCCGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGC 
repeat13   1 GATGTTCCAACGCTTTTTGTATCTGCCGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGC 
repeat14   1 GATGTTCCAACGCTTTTTGTATCTGCCGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGC 
repeat10   1 GATGTTCCAACGCTTTTTGTATCTGCCGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGC 
repeat9    1 GATGTTCCAACGCTTTTTGTATCTGCCGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGC 
repeat5    1 GATGTTCCAACGCTTTTTGTATCTGCCGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGC 
repeat3    1 GATGTTCCAACGCTTTTTGTATCTGCCGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGC 
repeat4    1 GATGTTCCAACGCTTTTTGTATCTGCTGCTGGTAAGCCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGC 
repeat8     1 GATGTTCCAACGCTTTTTGTATCTGCTGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGC
repeat12   1 GATGTTCCAACGCTTTTTGTATCTGCTGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGC 
repeat15   1 GATGTTCCAACGCTTTTTGTATCTGCCGCTGGTAAAACCGTAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGTGC 
 
 
repeat1   78 --ACGAATGAATACTGAAAATGGCCAGGAG 105 
repeat2   78 --ACGAATGAATACTGAAAATGGCCAGGAG 105 
repeat7   78 --ACGAATGAATACTGAAAATGGCCAGGAG 105 
repeat11  78 --ACGAATGAATACTGAAAATGGCCAGGAG 105 
repeat6   78 --ACGAATGAATACTGAAAATGGCCAGGAG 105 
repeat13  78 --ACGAATGAATACTGAAAATGGCCAAGAG 105 
repeat14  78 --ACGAATGAATACTGAAAATGGCCAAGAG 105 
repeat10  78 --ACGAATGAATACTGAAAATGGCCAAGAG 105 
repeat9   78 --ACGAATGAATACTGAAAATGGCCAAGAG 105 
repeat5   78 --ACGAATGAATACTGAAAATGGCCAAGAG 105 
repeat3   78 --ACGAATGAATACTGAAAATGGCCAAGAG 105 
repeat4   78 --ACGAATGAATACTGAAAATGGCCAAGAG 105 
repeat8   78 --ACGAATGAATACTGAAAATGGCCAAGAG 105 
repeat12  78 --ACGAATGAATACTGAAAATGGCCAAGAG 105 
r
 
epeat15  78 GAACGCAGCTTCATCTGCTAAACCCATT-- 105 

 
ject.  Sequences were aligned 

g CLUSTAL W (http://www.ebi.ac.uk/clustalw/

 
Figure 3.18 – Multiple sequence alignment of the BRC repeats from T. brucei.  The BRC
repeat nucleotide sequences were obtained from the genome pro
usin ) (Chenna et al., 2003) and shaded using the 

OXSHADE server (http://www.ch.embnet.org/software/BOX_form.htmlB ): residues that are 
entical in at least 50 % of the proteins are shaded in black and similarly conserved residues 

shaded in grey.   
 

id
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BRC repeat 1 

 
BRC repeat 14 

 
BRC repeat 15 

 
igure 3.19 – Alignments of the BRC repeats from various T. brucei strains.  427 - Lister 427; 
95 - EATRO 795; 927 - TREU 927; 222 - T. brucei rhodesiense; Eliane - T. brucei gambiense.  
RC repeat indicates the predicted sequence obtained from the genome sequence. Sm and lg 
dicate the smaller and larger alleles, respectively. 

 
 

F
7
B
in
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  M  V  F  S  Q  K  S  K  G  N  V  C  D  V  C  S  H  V  N  K 

------------------------------ 
CTTTTACTCTCAAGACATCTTGCATGGCGC 

 

1 ATGGTCTTTTCCCAGAAGTCTAAGGGCAATGTTTGTGACGTGTGCTCCCACGTCAATAAG 
 ------------------------------------------------------------ 
 TACCAGAAAAGGGTCTTCAGATTCCCGTTACAAACACTGCACACGAGGGTGCAGTTATTC 
 
  V  D  Q  M  R  C  D  K  C  S  H  I  I  G  R  R  S  Y  S  G 
61 GTGGACCAAATGAGATGCGATAAGTGTAGCCATATCATTGGGAGGCGATCTTATTCTGGG 
 ------------------------------------------------------------ 
 CACCTGGTTTACTCTACGCTATTCACATCGGTATAGTAACCCTCCGCTAGAATAAGACCC 
 
  S  A  R  N  S  S  K  L  S  T  P  R  K  S  N  H  E  A  N  Q 
121 AGCGCCAGAAATTCGTCGAAACTGTCAACTCCACGGAAAAGTAATCATGAAGCAAATCAG 
 ------------------------------------------------------------ 
 TCGCGGTCTTTAAGCAGCTTTGACAGTTGAGGTGCCTTTTCATTAGTACTTCGTTTAGTC 
 
  S  D  E  H  E  A  A  K  G  A  E  N  E  S  S  V  E  R  T  A 
181 AGCGATGAACATGAGGCTGCCAAAGGTGCAGAAAATGAGAGTTCTGTAGAACGTACCGCG 
 ------------------------------
 TCGCTACTTGTACTCCGACGGTTTCCACGT

  T  G  V  A  T  L  F  S  T  A  A  G  K  T  V  S  V  S  E  S 
241 ACAGGTGTCGCCACGCTTTTTTCAACCGCAGCTGGTAAAACCGTAAGCGTTTCTGAGTCA 
 ------------------------------------------------------------ 
 TGTCCACAGCGGTGCGAAAAAAGTTGGCGTCGACCATTTTGGCATTCGCAAAGACTCAGT 
 
  S  L  R  A  A  R  R  K  L  G  Q  E  L  C  A  D  G  S  T  L 
301 TCTCTGCGGGCTGCCAGGAGGAAATTGGGACAGGAGTTGTGCGCCGATGGAAGCACGTTG 
 ------------------------------------------------------------ 
 AGAGACGCCCGACGGTCCTCCTTTAACCCTGTCCTCAACACGCGGCTACCTTCGTGCAAC 
 
  T  E  P  P  L  Q  E  S  G  P  G  V  A  T  L  F  S  T  A  A 
361 ACGGAACCACCATTACAAGAGAGCGGGCCGGGTGTCGCCACGCTTTTTTCAACCGCAGCT 
 ------------------------------------------------------------ 
 TGCCTTGGTGGTAATGTTCTCTCGCCCGGCCCACAGCGGTGCGAAAAAAGTTGGCGTCGA 
 
  G  K  T  V  S  V  S  E  S  S  L  R  A  A  R  M  K  L  G  Q 
421 GGTAAGACCGTAAGCGTTTCTGAGTCATCTCTGCGGGCCGCTAGAATGAAATTGGGACAG 
 ------------------------------------------------------------ 
 CCATTCTGGCATTCGCAAAGACTCAGTAGAGACGCCCGGCGATCTTACTTTAACCCTGTC 
 
  E  L  C  A  D  D  E  A  T  V  E  N  T  A  Q  S  E  S  V  G 
481 GAGTTGTGCGCCGATGATGAGGCGACGGTGGAAAATACCGCGCAAAGCGAAAGTGTGGGA 
 ------------------------------------------------------------ 
 CTCAACACGCGGCTACTACTCCGCTGCCACCTTTTATGGCGCGTTTCGCTTTCACACCCT 
 
  V  P  P  P  S  T  P  V  A  G  R  R  A  K  G  F  R  A  A  H 
541 GTTCCTCCGCCCTCCACCCCTGTGGCTGGGCGAAGGGCGAAGGGTTTCCGAGCCGCCCAT 
 ------------------------------------------------------------ 
 CAAGGAGGCGGGAGGTGGGGACACCGACCCGCTTCCCGCTTCCCAAAGGCTCGGCGGGTA 
 
  A  E  C  R  G  G  V  S  D  P  M  M 
601 GCGGAGTGTCGGGGAGGCGTTTCCGACCCAATGATGA 
 ------------------------------------- 
 CGCCTCACAGCCCCTCCGCAAAGGCTGGGTTACTACT 
 
 

Figure 3.20 – Sequence of the BRC repeat region of BRCA2 from T. congolense.  The 
predicted BRC repeats for T. congolense are highlighted in red. 
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  M  K  Q  R  Q  V  G  E  K  S  P  G  A  F  H  G  R  G  S  E 

 S 
GAGTTGCAGGTAAGTTACTCTGAGCACAACCTTAACCAGCGTAAGCGAGCGNGTGCCTCC 
------------------------------------------------------------ 

 CTCAACGTCCATTCAATGAGACTCGTGTTGGAATTGGTCGCATTCGCTCGCNCACGGAGG 
 
  V  C  D  L  T  E  T  S  G  G  S  T  E  A  T  I  A  Q  G  D 
121 GTTTGTGATCTCACTGAAACGAGCGGAGGAAGCACTGAAGCAACCATAGCTCAAGGAGAT 
 ------------------------------------------------------------ 
 CAAACACTAGAGTGACTTTGCTCGCCTCCTTCGTGACTTCGTTGGTATCGAGTTCCTCTA 
 

1 ATGAAGCAGCGGCAAGTAGGTGAAAAGAGTCCCGGAGCCTTCCACGGACGAGGAAGTGAA 
 ------------------------------------------------------------ 
 TACTTCGTCGCCGTTCATCCACTTTTCTCAGGGCCTCGGAAGGTGCCTGCTCCTTCACTT 
 
  E  L  Q  V  S  Y  S  E  H  N  L  N  Q  R  K  R  A  X  A 
61 
 

  G  Q  A  R  K  M  T  M  F  S  T  A  A  G  T  K  L  S  V  S 
181 GGGCAAGCAAGAAAAATGACCATGTTCTCAACAGCTGCTGGGACAAAGCTTAGTGTTTCC 
 ------------------------------------------------------------ 
 CCCGTTCGTTCTTTTTACTGGTACAAGAGTTGTCGACGACCCTGTTTCGAATCACAAAGG 
 
  T  D  S  L  E  K  A  K  K  K  L  E  D  I  E  W  R  E  E  V 
241 ACTGACTCGCTTGAGAAGGCTAAGAAAAAGTTGGAGGATATTGAGTGGCGGGAAGAAGTG 
 ------------------------------------------------------------ 
 TGACTGAGCGAACTCTTCCGATTCTTTTTCAACCTCCTATAACTCACCGCCCTTCTTCAC 
 
  Q  N  N  E  A  P  L  K  Q  T  A  L  Q  S  C  A  S  S  V  P 
301 CAAAACAATGAAGCGCCTCTAAAACAAACTGCTCTCCAATCTTGTGCCTCGTCTGTGCCT 
 ------------------------------------------------------------ 
 GTTTTGTTACTTCGCGGAGATTTTGTTTGACGAGAGGTTAGAACACGGAGCAGACACGGA 
 
  V  N  S  D  V  K  T  S  R  V  E  T  H  I  R  A  N  N  V  P 
361 GTGAACTCTGATGTAAAGACATCCAGAGTGGAAACACATATCCGGGCAAACAACGTTCCA 
 ------------------------------------------------------------ 
 CACTTGAGACTACATTTCTGTAGGTCTCACCTTTGTGTATAGGCCCGTTTGTTGCAAGGT 
 
  S  S  M  S  A  R  S  S  I  S  D  Q  R  N  A  S  R  L  D  T 
421 TCCAGCATGAGTGCTCGATCTTCGATAAGTGATCAGCGCAATGCTAGCAGACTGGATACT 
 ------------------------------------------------------------ 
 AGGTCGTACTCACGAGCTAGAAGCTATTCACTAGTCGCGTTACGATCGTCTGACCTATGA 
 
  S  K  G  S  S  S  P  S  L  T  P  S  T  S  R  P  Q  R  V  L 
481 TCAAAGGGCAGTTCCTCACCATCACTAACGCCTTCCACTAGTAGGCCACAGCGGGTGTTG 

  H  I  T  L  P  R  E  W  N  R  G 
541 TGGTACCGTACGCTAAACCACATTACCCTGCCAAGGGAATGGAACAGAGGC 
 --------------------------------------------------- 
 ACCATGGCATGCGATTTGGTGTAATGGGACGGTTCCCTTACCTTGTCTCCG 
 
 

Figure 3.21 – Sequence of the BRC repeat region of BRCA2 from T. vivax ILDAT2.1.  The 
predicted BRC repeat for T. vivax is highlighted in red. 

 
 
 
 

 ------------------------------------------------------------ 
 AGTTTCCCGTCAAGGAGTGGTAGTGATTGCGGAAGGTGATCATCCGGTGTCGCCCACAAC 
 
  W  Y  R  T  L  N
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3.8.2 Analysis of copy number of T. brucei BRCA2 

 

e 

cells was restriction digested using PstI, EcoRI, EcoRV, HindIII, HinfI and ApoI.  The 

by gel electrophoresis on a 0.8 % agarose gel and 

transferred to a nylon membrane by Southern blotting (see section 2.4.1).  PCR primers 

(BRCA2 probe 5’ and BRCA2 probe 3’) were designed from the sequence encoding the 

region C terminal to the BRC repeats and used to amplify a 378 bp product from Lister 427 

genomic DNA.  This PCR product was subsequently used as a probe for the Southern 

analysis.  The sizes of restriction fragments predicted from the genome sequence in this 

Southern analysis are presented in figure 3.22. 

The Southern blot presented in figure 3.23 revealed the BRCA2 gene to be present in single 

copy in the T. brucei genome, with two allelic variants for the strain Lister 427 and one 

allelic variant for ILTat 1.2, correlating with the results from PCR-amplification of the 

BRC repeat region for TOPO cloning (section 2.9.2) and from the MVR mapping (section 

2.7.2).  The sizes of the DNA fragments detected in this hybridisation are in all cases 

smaller than the predicted sizes displayed in figure 3.22.  This result is again consistent 

with the reduced number of BRC repeats in these strains, (from the data presented in 

sections 3.9.1.1 and 3.9.1.2) relative to the genome prediction. 

Southern analysis was similarly performed on genomic DNA from T. brucei gambiense 

(strain STIB 386) (figure 3.24).  Two bands were detected for this strain, most clearly 

visible in the PstI digest.  This result suggested the presence of two allelic forms of BRCA2 

for T. brucei gambiense, strain STIB 386, which correlates with the result of the MVR 

mapping, which suggested two allelic variants for T. brucei gambiense (strain Eliane).  The 

DNA fragment sizes were again smaller than the predicted sizes, which can be assumed to 

be due to a reduction in the number of BRC repeats, as was found for T. brucei gambiense 

(strain Eliane) (sections 3.9.1.1 and 3.9.1.2).   

In order to determine the number of copies of BRCA2 in the T. brucei genome, Southern

analysis was performed.  Genomic DNA from Lister 427 and ILTat1.2 bloodstream stag

restriction digestions were then separated 
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Figure 3.22 – Representation of the predicted restriction map of the T. brucei BRCA2 locus.  
The predicted ORF of T. brucei BRCA2 is displayed as a grey box.  The restriction enzymes used
to analyse the copy number are indicated, and the predicted resulting fragment sizes are shown.  
The black line represents the region of BRCA2 used as a probe for Southern analysis

 

 

. 

 
Figure 3.23 – S
Lister 427 and 

outhern analysis of the copy number of T. brucei BRCA2.  Genomic DNA from 
ILTat 1.2 was digested with a range of restriction enzymes (indicated) and probed 

with a 378 bp region of BRCA2. 
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Figure 3.24 – Southern analysis of the copy number of BRCA2 in T. brucei. gambiense.  
Genomic DNA from STIB 386 was digested with a range of restriction enzymes (indicated) and 

robed with a 378 bp region of BRCA2 (figure 3.21). p
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3.8.3 Analysis of T. brucei BRCA2 expression in different life 

rthern 

 and 10 mls of procyclic culture grown to a density of 1 x 107 

cells.ml .  The RNA was quantified by spectrophotometry (Beckman DU650 

lectrophoresis on a 

denaturing formaldehyde gel.  The RNA was transferred to a nylon membrane by capillary 

 

 the 

 

 levels in different strains and subspecies, with TREU 927 

transcribing the highest level of BRCA2 mRNA in the procyclic form cells.  However, 

 only performed once, the differences are relatively small, and we 

cycle stages and strains or subspecies. 

In order to determine if BRCA2 is transcribed in T. brucei, and to ask if the expression 

levels are the same in both the bloodstream and procyclic stages of the life cycle, no

blots were performed on total RNA isolated from T. brucei.  In procyclic form cells, a 

number of different strains and subspecies were also examined.  To do this, total RNA was 

extracted (RNeasy Mini Kit, Qiagen) from 25 mls of bloodstream stage culture grown to a 

density of 2 x 106 cells.ml-1

-1

spectrophotometer) before 10 µg and 20 µg samples were separated by e

blotting and blots probed with the 378 bp fragment of the T. brucei BRCA2 ORF.  

Following autoradiography, the blots were stripped by submerging them in boiling 0.1 %

SDS, and subsequently re-probed with a 452 bp fragment of the RNA polymerase I ORF.  

The hybridising bands generated in each lane were assumed to be mature mRNA, based on 

their size and were quantified using the software ImageQuant (Adobe).  The results of 

these analyses are shown in figure 3.25 and table 3.5.   

The northern blot displayed in figure 3.25 demonstrates that BRCA2 mRNA is detectable 

in both bloodstream stage and procyclic form cells, and in all strains and subspecies 

examined.  The quantitative analysis shown in table 3.5 suggests that BRCA2 mRNA may 

be present at a slightly higher level in bloodstream Lister 427 (158.7 %) than in procyclic 

Lister 427 (77.0 %), when compared to the levels of PolI mRNA.  This would fit with

hypothesis that BRCA2 is required for VSG switching and is therefore transcribed to a

higher level in the bloodstream stage.  It is also interesting to note that BRCA2 mRNA 

may be transcribed at higher

since the experiment was

do not know about relative protein expression levels, we cannot make any definitive 

conclusions. 
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Figure 3.25 – Northern analysis of T. brucei BRCA2 in different cell lines.  Northern blots of 
total RNA was probed w
probed with RNA polym

ith a region of the open reading frame of BRCA2, then stripped and re-
erase I.  The quantity of total RNA loaded in each lane is indicated and size 

markers are shown (kb).  427, 795 and 927 correspond to the T. brucei brucei cell line Lister 427 
nd TREU 927 respectively; 386 corresponds to the T. brucei gambiense cell line STIB 386.  BS 
dicates bloodstream stage, whilst PC indicates procyclic form. 

 
 % proportion 

a
in

 
 

427 BS 158.7 
427 PC 77.0 
795 PC 83.6 
927 PC 116.2 
386 PC 93.6 

Table 3.5 – Quantitative analysis of BRCA2 mRNA abundance detected by northern 
analysis.  The percentages shown represent the abundance of BRCA2 mRNA compared to the 

bundance of PolI mRNA in the 20 µg samples shown in figure 3.24.  427, 795 and 927 
orrespond to the T. brucei brucei cell line Lister 427 and TREU 927 respectively; 386 corresponds 

to the T. brucei gambiense cell line STIB 386.  BS indicates bloodstream stage, whilst PC indicates 
procyclic form. 

a
c
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3.9 DSS1 
The alpha helical and OB1 domains of H. sapiens BRCA2 have been shown to interact 

with DSS1, a protein which is absent or mutated in split-hand split-foot syndrome 

(Marston et al., 1999;Crackower et al., 1996).  DSS1 has subsequently been shown to be

critical for efficient function of BRCA2 during homologous recombination in both 

mammals and U. maydis (Marston et al., 1999;Kojic et al., 2003;Gudmundsdottir et al., 

2004).  It was decided to investigate if homologues of DSS1 existed within the 

kinetoplastida, as this would enhance our knowledge of how the BRCA2 homologue 

operates within this order. 

3.9.1 Identification of DSS1 in the trypano

Putative trypanosomatid DSS1 genes were identified throu

brucei, T. congolense, T. vivax, T. cruzi and L. major geno

(Sanger) (

 

somatids 

gh BLAST searches of the T. 

me databases using Gene DB 

http://www.genedb.org/).  Initially a BLASTp s

sa

earch was performed using H. 

oding 

tive T. 

 

ongo1342c06.q1k_0), encoding a protein of 138 amino acids.  The T. cruzi database 

vealed a hypothetical gene (Tc00.1047053509999.70), encoding a protein of 144 amino 

ids.  The T. vivax database revealed a hypothetical gene (tviv1332g04.p1k_2), situated 

 chromosome 3, encoding a protein of 125 amino acids and the L. major database 

revealed a hypothetical gene (LmjF29.1290), situated on chromosome 29, encoding a 

protein of 118 amino acids.  Accession numbers for the polypeptides used in this analysis 

are located in the appendix. 

3.9.2 Alignments 

A global multiple alignment of the putative trypanosomatid DSS1 polypeptides with DSS1 

orthologues from H. sapiens, A. thaliana, S. cerevisiae, S. pombe and U. maydis was 

produced using CLUSTAL W (http://www.ebi.ac.uk/clustalw/

piens DSS1 (NP_006295) as the query protein sequence against the T. brucei database.  

This revealed a hypothetical gene (Tb03.28C22.546), situated on chromosome 3, enc

a protein of 137 amino acids.  BLASTp searches were then performed using the puta

brucei DSS1 homologue as the query protein sequence against the T. congolense, T. cruzi, 

T. vivax, and L. major databases.  The T. congolense database revealed a hypothetical gene

(c

re

ac

on

) (Chenna et al., 2003).  This 

was then visualised using the Boxshade server 

(http://www.ch.embnet.org/software/BOX_form.html), as shown in figure 3.26.  The 

alignment shows that a high level of conservation is observed throughout the DSS1 

polypeptides from eukaryotes.  Within this broad conservation, most of the residues that 
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contact BRCA2 are conserved (Yang et al., 2002), most likely indicating functional 

co vati

3.9.3 Pair-wis m o

The level of sequence homology between DSS1 from ry pp  b e h

This result was confirmed by determ  th ls ue en d rit

th ative SS1 po ypeptid  from ese e ot ai  c iso hi

performed using AlignX (Vector NTI) and t rce  se e ies la

(see table 3.6).  A graphical representa ion of p ir-wi gn  be  T. brucei 

DSS1 and orthologues from T. congolense, T. cruzi, T. vivax, L. major, H. sapiens, A. 

thaliana, S. cerevisiae, S. pombe and U  mayd  is shown in figure 3.2 e is

co T. brucei D S1 po peptide hares e hig ev

sequence identity with the trypanosom tid orth logues ranging rom 43.1 % with the 

homologue to 69.6 % with the T. congolense homologue.  The level of sequenc

 

 

nser on. 

e co paris ns 

 euka otes a ears to e quit igh.  

ining e leve of seq nce id tity an simila y of 

e put  D l es th ukary es by p r-wise ompar ns.  T s was 

, he pe ntage quenc identit  calcu ted 

t a se ali ments tween

. is 7.  Th pair-w e 

mparisons show that the putative S ly  s th hest l el of 

a o ,  f L. 

major e 

identity with DSS1 from other eukaryotes is much lower, with only 10.2 % compared to 

the H. sapiens DSS1. 
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S.pombe        1 -------------------MS----------------------RAALPSLENLED-DDEF 
U.maydis       1 -------------------MSATSSNSQSIKPEAQSSKPTEDNKSSLPSLGALDE-DDEF 
H.sapiens      1 -------------------MS---------------------EKKQPVDLGLLEE-DDEF 
S.cervisiae    1 -------------------MS-----TDVAAAQAQSKIDLTKKKNEEINKKSLEE-DDEF 
A.thaliana     1 -------------------MA----------------AEPKAATAEVVKMDLFED-DDEF 
Tbrucei        1 MSNREPMSPLPTQPTSVPSVASLKAVLTPQVVLQTAQASLELPKADEMWSNWYKESEDRF 
Tcruzi         1 MSNQRRTSPSPSSVATTRDTTNP----TGQEILQTARLSLELTRADEVWSAWYKETEDQF 
Lmajor         1 ---------MAATAASTTEVKPS--------ILQTTDALLAVPSSETVWSAWYKESEDKF 
             ∗ ∗ ∗∗∗∗ ∗∗∗
 

∗ 

S.pombe       19  EDFAT-ENWPM---------KDTELD-----------------------TGDDTLWENN 
U.maydis      41  EEFDE-QDWND---------AETDLSHLTAATSNALGAGVGLTMGASSASTGDHLWQDS 
H.sapiens     20  EEFPA-EDWAG---------LDEDED--------------------------AHVWEDN 
S.cervisiae   36  EDFPI-DTWAN---------GETIKSN---------------------AVTQTNIWEEN 
A.thaliana    25  EEFEINEDWLE---------KEEVKEV-------------------------SQQWEDD 
Tbrucei       61  LDFISF-DATEGGGN-----GGVVRSG------SSHRTLSARRISGQFEEEVMKSWEED 
Tcruzi        57  VDFQSFGDNNEGGLNVTATAGSNIMSGS-AQFSSSHRTLSARRVSGQFEEEVMKSWDED 
Lmajor        44  LEFKSFELAPATGGP-----GNMSRAG-------SVRTLSMRQISGQFEEEVAKSWEED 
                ∗∗∗∗∗ 
 
S.pombe       45 W DDEDIGDDDFSVQLQAELKKKGVAAN----- 
U.maydis      90 W DDDTV-EDDFSKALRAELDKQSSAPQAMST- 
H.sapiens     43 W DDDNV-EDDFSNQLRAELEKHGYKMETS--- 
S.cervisiae   64 W DDVEV-DDDFTNELKAELDRYKRENQ----- 
A.thaliana    50 W DDDDV-NDDFSRQLRKELEN-GTDKK----- 
Tbrucei      108 W EDEDV-EDTFD-AVMGRIGRYEASRAASSQK 
Tcruzi       115 W EDEDV-EDTFD-AIMGQIGRYEASRAASVLK 
Lmajor        91 W EDEDV-EDTFE-HIIGQISQLHATKAASK-- 
      ∗ ∗       ∗∗   ∗∗∗∗ ∗∗ 
 
Figure 3.26 – Global multiple alignment of the putative T. brucei DSS1 polypeptide with a 
range of DSS1 orthologues.  Multiple sequence alignment of the putative T. brucei DSS1 
polypeptide with homologues of DSS1 from other eukaryotes:  S. pombe, U. maydis, H. sapiens, S
cerevisiae, A. thaliana, T. cruzi an
(

. 
d L. major.  Sequences were aligned using CLUSTAL W 

http://www.ebi.ac.uk/clustalw/) (Chenna et al., 2003) and shaded using the BOXSHADE server 
(http://www.ch.embnet.org/software/BOX_form.html): residues that are identical in at least 50 % of 

 
 

the proteins are shaded in black and similarly conserved residues shaded in grey.  ∗ indicates the 
BRCA2-contacting residues of DSS1 (Yang et al., 2002).   
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 T.b T.cong T.cruz T.v L.m H.s A.t S.c S.p U.m 

T.b 100 
100 

69.6 
79.0 

57.4 
64.9 

63.8 
73.2 

43.1 
56.2 

10.2 
18.2 

11.7 
20.4 

18.0 
30.2 

10.2 
13.9 

16.8 
29.9 

T.cong  100 
100 

49.7 
58.4 

55.4 
64.7 

39.1 
52.9 

9.4 
16.7 

10.9 
18.8 

11.5 
22.3 

9.4 
13.0 

16.7 
27.5 

T.cruz   100 
100 

53.5 
65.3 

43.8 
54.9 

8.3 
16.7 

12.5 
18.8 

15.2 
24.1 

8.3 
12.5 

14.6 
29.2 

T.v    100 
100 

46.4 
64.8 

10.4 
19.2 

10.4 
18.4 

17.6 
24.0 

9.6 
12.8 

15.4 
26.2 

L.m     100 
100 

12.7 
20.3 

16.9 
23.7 

16.1 
30.5 

11.0 
15.3 

17.2 
35.2 

H.s      100 
100 

42.9 
49.4 

31.9 
46.2 

40.5 
51.4 

27.7 
31.9 

A.t       100 
100 

24.7 
37.1 

31.2 
42.9 

21.8 
31.9 

S.c        100 
100 

31.1 
42.2 

26.1 
35.3 

S.p         100 
100 35

24.2 
.0 

U.m          10
100

0 
 

 
Table 3.6 – Pair-wise comparison of the putative T. brucei DSS1 polypeptide with a range of 
DSS1 homologues.  The full length putative T. brucei DSS1 (T.b) polypeptide was compared with 
DSS1 homologues from T. congolense (T.cong), T. cruzi (T.cruz), T. vivax (T.v), L. major (L.m), H. 
sapiens (H.s), A. thaliana (A.t), S. cerevisiae (S.c), S. pombe (S.p) and U. maydis (U.m).  Pair-wise 
alignments were performed using AlignX (Vector NTI) and the percentage identities and similarities 
calculated.  The percentage identities are displayed in bold. 

 
Figure 3.27 – Graph displaying the % similarity and identity between T. brucei DSS1 and 
DSS1 from other organisms. Pair-wise alignments were performed as described in Table 3.6 to 
compare the putative T. brucei DSS1 polypeptide sequence with DSS1 orthologues.  Percentage 
identity is shown in blue and percentage similarity in maroon. 
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3.10 Summary 
As a result of searching the trypanosomatid genome databases, BRCA2 homologues have 

been identified in T. brucei, T. congolense, T. cruzi, T. vivax and L. major.  BRCA2 has 

also been identified in a range of other protists, such as T. gondii, P. falciparum, E. 

histolytica, G. lamblia and T. vaginalis.  These results therefore display that BRCA2 is 

widely conserved, from protists to higher eukaryotes.   

The initial characterisation of BRCA2 found the gene to be present in single copy in all T. 

brucei strains investigated copy also in other 

trypanosome species. 

Homology with BRCA2 from other eukaryote ited essentially to the DBD and 

BRC repeats region.  It appears that the DBD in T. brucei BRCA2 contains all 5 conserved 

mains, unlike BRCA2 from some other euk 3 as suggested 

 Lo et al., 2003.  The protein DSS1 is also predicted to be present in the T. brucei 

gen e 

as in higher eukaryotes.  Little evidence for C terminal homology was present, apart from a 

putati  

could

The most striking diff  organisms is the 

BRC repeat region.  The T. b. brucei BRCA2 appears highly unusual due to the large 

umber of BRC repeats (see figure 3.28).  T. b. gambiense and T. b. rhodesiense also have 

this BRC repeat expansion, but less pronounced.  Other trypanosome strains, however, 

appear much more like other protists, in that they contain only a few BRC repeats.  

Another notable exception is the similarity of the BRC repeats at the nucleotide level; all 

BRC repeats in T. brucei BRCA2 were discovered to be virtually identical apart from the 

most C terminal repeat, which appears to be a truncated version.  Finally, the BRC repeats 

are present in a tandem array within the protein, which is unlike BRCA2 from other 

organisms, where the BRC repeats appear to be randomly distributed.  The basis for the 

large number of BRC repeats within T. brucei BRCA2 appears to be a recent expansion, 

but quite why is yet unknown. 

It is interesting to note that the large BRC repeat number is not limited to trypanosomes, as 

this phenomenon also appears in the apicomplexans, with P. falciparum and C. hominis 

having 8 BRC repeats each.   

, with it predicted to be present in single 

s was lim

do

by

aryotes, and not lacking OB

ome, therefore indicating that the process of binding/regulation is likely to be the sam

ve CDK binding motive.  This therefore leaves the question open whether RAD51

 bind bimodally in T. brucei, and this will need to be answered biochemically. 

erence in T. brucei BRCA2 from BRCA2 in other

n
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T. brucei BRCA2 is expressed as mature mRNA in both the bloodstream stage and 

erefore wanted to follow this up by examining its function in 

 and 

procyclic form cells.  We th

bloodstream stage cells genetically to discover if has a role similar to other eukaryotes

indeed if it has a role in VSG switching. 

 
Figure 3.28 – Representation of the BRCA2 polypeptides from the trypanosomatids 
investigated.  The figure represents the predicted domains of BRCA2 for the trypanosomatids 
investigated.  Red bars – BRC repeats; orange oval – alpha helical domain; blue squares – OB 
domains; purple bar – tower domain; yellow bars with NLS – nuclear localisation signals; red bar 
with SP?, VP? and NP? – possible CDK phosphorylation domain.  The predicted number of BRC 
repeats are represented. 
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switch their VSG coat, sugges

sing the 

, the core strand exchange enzyme, to target sites of DNA damage, 

thereby curtailing the progression of homologous recombination. 

A BRCA2 homologue has been identified in T. brucei and has been shown to have a highly 

unusual organisation, due to the large number of BRC repeats.  Another notable exception 

is that the BRC repeat organisation forms a tandem array of repeats that are virtually 

identical in sequence, which is unlike BRCA2 from other organisms, where the BRC 

repeats appear to be randomly distributed.  Homology with BRCA2 from other eukaryotes 

suggests that T. brucei BRCA2 contains all 5 conserved DBD domains, unlike BRCA2 

from some other eukaryotes.  A DSS1 homologue was also identified in T. brucei, 

suggesting that the process of binding/regulation is likely to be the same as in higher 

eukaryotes.   

This chapter aims to describe the generation of brca2-/- mutants in bloodstream stage T. 

brucei and to analyse the role of BRCA2 in DNA damage repair, recombination and VSG 

switching. 

 

4.1 Introduction 
To date, two genes have been identified in T. brucei that function in VSG switching: 

RAD51 and RAD51-3.  The results observed for rad51-3-/- mutants (Proudfoot and 

McCulloch, 2005) were highly reminiscent of those obtained for rad51-/- mutants 

(McCulloch and Barry, 1999), with both mutants displaying an impaired growth 

phenotype, sensitivity to a DNA damaging agent, an impaired ability to perform 

homologous recombination and a VSG switching defect.  Although VSG switching was 

reduced, the trypanosomes were still able to perform homologous recombination and to 

ting the presence of one or more pathways that can 

compensate in the absence of these proteins.    

Homologous recombination is a complex process which involves contribution from many 

proteins.  BRCA2 has recently been uncovered as being central to this process, 

(Venkitaraman, 2002;Davies et al., 2001), with its absence in vivo compromi

ability of RAD51
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4.2 

 T. brucei 

4.2.1 

To exam his chapter aimed to make homozygous mutants of 

the age of the cell lines Lister 427, strain MITat 1.2a, 

and 3174.2 (McCulloch et al., 1997;Rudenko et al., 1996).  3174.2 is a bloodstream 

derivative of et al., 2000), which allows for the analysis of VSG 

switching frequency and mechanisms.  The strategy used was to create ‘classical 

knockouts’, where the entire ORF is removed.  In this method 5’ and 3’ flanking regions of 

the ORF were PCR-amplified, cloned into pBluescript SK and used as flanking sequence 

to enable homologous recombination following transformation.  Between the flanks was 

cloned one of two antibiotic resistance markers (blasticidin and puromycin), allowing the 

selection of constructs that have integrated into the genome and the disruption of both 

alleles by replacing the ORF.  A second method was also attempted, which created 

constructs equivalent to those for ‘classical knockouts’, but didn’t require the cloning 

steps.  This strategy is depicted in figure 4.1 and uses PCR to create the knockout 

constructs.  One oligonucleotide primer was designed to represent the 5’ flank of BRCA2 

(BRCA2  sequence that was homologous to the αβ Tub 

region of the plasmids pCP101 or pCP121 (C. Proudfoot, gift) and 100 bases homologous 

to the sequence upstream of the BRCA2 ORF start codon.  An equivalent primer for the 3’ 

flank ( that was complementary to the ACT 

IR regions of the plasmids pCP101 or pCP121 and 100 bases of sequence that was 

com  of the BRCA2 ORF stop codon.  PCR-

amplification using these primers, and pCP101 or pCP121 as template, generated the DNA 

frag  and ∆BRCA2::PURa, respectively, which should delete the 

ORF o  using 100 bp of flanking sequence to integrate the construct by 

hom bination.  The PCR generated DNA fragments of the expected sizes 

(1240 bp and1540 bp respectively), this was PCR purified (section 2.7.1.1) and 

approxim ations. 

For the m rate the knockout constructs, oligonucleotide 

prim or 5’ (primers BRCA2 KO5’ XhoI and BRCA2 KO5’ Bam_Nru) 

and 3’ (primers BRCA2 KO3’ Nru_RV and BRCA2 KO3’ XbaI) flanking regions of the 

BRCA2 plified 5’ flank contained 390 bp and was immediately 

BRCA2 ORF start codon.  The PCR-amplified 3’ flank contained 411 bp 

Generation of gene disruption mutants in the cell 

lines 427 and 3174.2 in

Generation of BRCA2 knockout constructs 

ine the function of BRCA2, t

BRCA2 gene in the bloodstream st

 Lister 427 (Melville 

 KO 5’): this contained 20 bases of

BRCA2 KO 3’) contained 20 bases of sequence 

plementary to the sequence downstream

ments ∆BRCA2::BSDa

f BRCA2

ologous recom

ately 5µg used for transform

ore cloning-based approach to gene

ers were designed f

 ORF.  The PCR-am

 of the upstream
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and was immediately downstream of the BRCA2 ORF stop codon.  The sequences were 

PCR-amplified using a high fidelity polymerase (Herculase, Stratagene) f  Lister 427 

genomic DNA.  The resulting products were subsequently cloned into pBluescript SK 

using the restriction sites contained within the primers (XhoI, NruI and Xb sticidin 

and puromycin resistance cassettes, with flanking processing signals deriv

and actin intergenic sequences to allow RNA trans-splicing and polyadeny

(Vanhamme and Pays, 1995), were PCR-amplified (primers NruItub and N from 

pCP101 and pCP121 (C. Proudfoot, gift) and cloned into the NruI restrict

introduced between the BRCA2 5’ and 3’ flanks.  This generated the const

∆BRCA2::BSD and ∆BRCA2::PUR as shown in figure 4.2.  For transformation the 

constructs were excised from pBluescript SK by restriction digestion with d XbaI, 

and the digested DNA was then phenol: chloroform extracted and ethanol ted.  

Approximately 5 µg of digested DNA was used in each transformation.  The advantage to 

this approach, relative to the BSDa and PURa constructs, is that longer stretches of 

flanking sequence are provided for integrating the construct by homologo

recombination.   

rom

aI).  Bla

ed from tubulin 

lation 

ruIact) 

ion site 

ructs 

 XhoI an

 precipita

us 



 

 
nd 

sing 

Figure 4.1 – Strategy for obtaining gene disr
ACT intergenic (IR) regions of the plasmids pC
homologous regio s upstream and downstream
signal.  BSD: blasticidin resistance gene ORF. 

uption c i wer a
P101 or p m th n a

n  of the B ub: α ulin interge
 PUR: pu  gene ORF.  The P

onstructs by PCR.  PCR pr
CP121, and 100b of sequen
RCA2 ORF.  αβ T β tub
romycin resistance

mers 
ce fro

e designed that contained 20b of sequence that recognises the αβ Tub 
e 5’ and 3’ fla ks of BRCA2.  5’ flank nd 3’ flank correspond to the 
nic region (processing signal).  ACT IR: Actin intergenic region (proces

CR products that are generated are shown at the bottom.  



 

 
Figure 4.2 – BRCA2 gene deletion constructs.  Restriction maps of the constructs used for the deletion of BRCA2 are shown, relative to the BRCA2 ORF (top).  Sizes of 
the individual components are shown in base pairs.  Constructs were cloned into the pBC SK plasmid.  5’ flank and 3’ flank correspond to regions upstream and 
downstream of the BRCA2 ORF.  αβ Tub: αβ tubulin intergenic region (processing signal).  ACT IR: Actin intergenic region (processing signal.  BSD: blasticidin resistance 
gene ORF.  PUR: puromycin resistance gene ORF.  
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4.2.2 Generation of BRCA2 mutants in the Lister 427 cell line 

Two separate transformations were carried out to generate two independent 2 

heterozygous (+/-) cell lines using the ∆BRCA2::BSDa construct.  To do this, Lister 427 

cells were transformed using the protocol described in section 2.1.3 and antibiotic resistant 

transformants were selected by placing cells on 5 µg.ml-1 blasticidin.  The generation of 

heterozygous mutants was confirmed by Southern analyses, performed on S

HindIII digested genomic DNA from seven blasticidin resistant clones and probing with 

the BRCA2 5’ flank.  Two independent BRCA2+/- clones were chosen and subsequently 

transformed with the ∆BRCA2::PURa construct in order to generate two independent 

homozygous (brca2-/-) mutants.  Antibiotic resistant transformants were sel  

placing cells on 5 µg.ml-1 blasticidin and 0.5 µg.ml-1 puromycin.  No antibiotic resistant 

cells were obtained from this transformation, so it was decided to transform

independent heterozygous mutants with the ∆BRCA2::PUR construct.  Anti t 

transformants were selected as above and the generation of homozygous mutants was 

confirmed by Southern analyses, performed on SacII and HindIII digested g NA 

from six blasticidin and puromycin resistant clones and probed with the BRC ank. 

4.2.3 Generation of BRCA2 mutants in the 3174.2 cell li

Transformations were initially carried out on 3174.2 cell lines using the ∆BRCA2::BSDa 

construct following the protocol described in section 2.1.3.  Antibiotic resist

transformants were selected for by placing the cells on 5 µg.ml-1 BSD.  Despite a number 

of blasticidin resistant clones being obtained, none of these were found to be /- 

mutants by Southern analyses (data not shown).  Most likely the plasmids integrated by 

non-BRCA2 sequences, such as the tubulin or actin intergenic regions (IRs), but this was 

not confirmed by further analysis. 

Following the failure of the ∆BRCA2::BSDa construct to generate BRCA2+  

3174.2, transformations were carried out using the ∆BRCA2::BSD construct otic 

resistant transformants were selected for as above and the generation of heterozygous 

mutants was confirmed by Southern analyses, performed on SacII and StuI d

genomic DNA from thirteen blasticidin resistant clones and probed with the

flank.  Two independent BRCA2+/- mutants were chosen and subsequently transformed 

with the ∆BRCA2::PUR construct.  Here, antibiotic resistant transformants were selected 

for placing cells on 5 µg.ml-1 blasticidin and 0.5 µg.ml-1 puromycin.  brca2- ts 

were identified by Southern analyses, performed on SacII and StuI digested  DNA 

from five blasticidin and puromycin resistant clones and probed with the BR lank.
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4.2.4 Confirmation of BRCA2 mutants by Southern analysis 

To confirm the generation of two independent BRCA2+/- and brca2-/- mutants in each T. 

 out on genomic DNA and compared with 

e 

 

 

din 

, it appears that the larger BRCA2 allele was targeted first, though the 

significance of this is unknown.  The blot shows that the brca2-/- cells no longer possess 

-

 each 

cell line was DNase I treated (DNase Amplification Grade, Life Technologies) before 

 

art of the BRCA2 ORF (shown in figures 4.3 and 4.4), to detect the presence 

or ab tact BRC A.  F h cDN pared, tion was carried out 

with a  t o m m e 

lted 

in no PCR product being generated.  Control reactions with RNA Polymerase I-specific 

brucei cell line, Southern analysis was carried

the wild type parent DNA.  Approximately 5 µg of genomic DNA from each cell line was 

restriction digested overnight before being electrophoresed on a 0.8 % agarose gel and 

Southern blotted.  The blots were probed with the 5’ flank of the construct, upstream of th

BRCA2 ORF.  The restriction enzymes used and expected size fragments are displayed in 

figures 4.3 and 4.4. 

The Southern blots in figure 4.5 demonstrate that the intact BRCA2 gene exists as two

allelic variants for the wild type cell lines, distinguishable as different sized DNA 

fragments, as was seen in previous analysis (section 3.8.2).  The BRCA2+/- mutants retain

one allele of the intact gene and have one allele disrupted and replaced by the blastici

construct.  In all cases

intact BRCA2, instead both alleles of the gene are deleted, one replaced by the blasticidin 

construct and the other replaced by the puromycin construct. 

4.2.5 Confirmation of BRCA2 mutants by Reverse Transcriptase

PCR 

To support the results of the Southern analyses, RT-PCR was carried out.  Total RNA was 

prepared from the WT, BRCA2+/- and brca2-/- cells described above and 1 µg from

cDNA was generated using random oligonucleotides and reverse transcriptase (Superscript 

first strand synthesis system, Life Technologies).  RT-PCR was carried out using primers

specific for p

sence of in A2 RN or eac A pre a reac

out any reverse tr nscriptase o control f r any geno ic DNA that ay survive th

DNase I treatment.  A specific product of the expected size was generated in the WT and 

BRCA2+/- cell lines.  Disruption of both alleles of BRCA2 in the brca2-/- mutants resu

primers showed that the cDNA in these samples was intact.  This confirms that intact 

BRCA2 mRNA is not present in the brca2-/- mutants for the cell lines Lister 427 and 

3174.2 (figure 4.6).   
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Figure 4.5 – Confirmation of the generation of BRCA2 mutants by Southern analysis.  (A) 
Lister 427 cell lines were digested with SacII and HindIII and (B) 3174.2 cell lines were digested 
with SacII and StuI.  5 µg of genomic DNA of each cell line was restriction digested for 12 hours 
before being run out on a 0.8% agarose gel.  The DNA was Southern blotted before being probed 
with the 5‘ upstream flank of the BRCA2 gene.  The two independent heterozygous mutants are 

dicated by +/- 1 and 2, and the homozygous mutants derived from these are indicated by -/- 1 
nd 2.  WT refers to genomic DNA from untransformed cell lines. 

in
a

 
Figure 4.6 – Confirmation of the generation of BRCA2 mutants by RT-PCR.  RT-PCR was 
carried out on cDNA generated from total RNA from wild type (WT) cells, heterozygous mutants 
(+/-) and homozygous mutants (-/-).  RNA polymerase I specific primers were used to control for
the generation of intact cDNA.  Primers specific for BRCA2 were used to examine the expressio
that gene. The negative control contains no cDNA substrate.  RT + denotes cDNA generated with 
reverse transcriptase, RT – denotes control reactions that were treated equivalently but no RT was 
added to the reactions. 

 
n 
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4.3 Phenotypic analysis of BRCA2 mutants 

4.3.1 Analysis of in vitro growth 

To begin to analyse the role of BRCA2 in T. brucei the population doubling time of all cell 

lines was analysed to determine if mutation of BRCA2 caused any gross growth defect.  It 

has previously been observed that rad51-/- mutants (McCulloch and Barry, 1999) have a 

significantly increased population doubling time relative to wild type cells, as do mre11-/- 

mutants (Robinson et al., 2002), rad51-3-/- and rad51-5-/- mutants (Proudfoot and 

McCulloch, 2005).  Other genes putatively involved in DNA repair reactions, such as 

KU70 (Conway et al., 2002a), DMC1 (Proudfoot and McCulloch, 2006), MSH2 and 

MLH1(Bell and McCulloch, 2003) do not display growth defects.  In addition, changes in 

population doubling times need to be quantified to allow any such defect to be taken into 

In vitro growth analysis was carried out on the BRCA2 heterozygous and homozygous cell 

nes in Lister 427, and compared with the wild type cells.  5 ml cultures were inoculated at 

a cell density of 5 x 104 cells.ml-1 and cell concentrations counted using a haemocytometer 

ma) at 24, 48, 72 and 96 hours subsequently.  Three itions of 

rowth experiment, for all cell lines, were carried out and the results plotted on a semi-

account when performing further assays, such as recombination efficiency and VSG 

switching (see later). 

li

(Bright-line, Sig  repet each 

g

logarithmic scale (figure 4.7).  The population doubling times for all cells lines were 

calculated for these data and are presented in table 4.1. 

 
Figure 4.7 – Analysis of in vitro growth of BRCA2 mutants.  5 ml cultures were set up at 5 x 104 
cells.ml-1 and cell densities counted 24, 48, 72 and 96 hours subsequently.  Standard errors are 
indicated for the counts using data from three repetitions.  WT: wild type; +/-: heterozygote; -/-: 
homozygote. 
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Cell line 427 +/- 1 +/- 2 -/- 1 -/- 2 
Doubling time 8.19 8.72+/-0.4 +/-0.5 8.63+/-0.4 16.30+/- 0.41 15.50+/-0.34 

Table 4.1 – in vitro population doubling times for BRCA2 mutants. The mean doubling time for 
each of the independent heterozygous (+/-) and homozygous (-/-) mutants is displayed in hours.  
The table also displays the mean doubling times for wild type Lister 427.  Standard errors are 
indicated. 

From the growth curves shown in figure 4.7 and the population doubling times shown in 

table 4.1, it is apparent that the disruption of one allele had no effect on growth.  Howe

disruption of both alleles caused the cells to grow at a much slower rate, with the 

population doubling time increasing by approximately a factor of two compared to wild 

type cells.  This result is confirmed by the statistical tests displayed in table 4.2, which 

revealed that there was no statistical difference between the population doubling times of 

wild type cells and either heterozygous mutant (p>0.05).  A significant difference w

found between wild type or heterozygous cell lines and the homozygous mutants (p<0.05).  

Similar growth defects have previously been observed in rad51-/- mutants, which double

in approximately 11 hours (McCulloch and Barry, 1999), and in rad51-3-/- and rad51-5

mutants, which double in approximately 15 hours and 13 hours respectively (P

ver, 

as 

 

-/- 

roudfoot 

and McCulloch, 2005). 

 +/- 1 +/- 2 -/- 1 -/-2 
WT 0.3803 0.1511 0.0002 0.0002 
+/- 1  0.7845 0.0001 0.0004 
+/- 2   0.0000 0.0001 
-/- 1    0.1159 

Table 4.2 – Statistical analysis of the population doubling times of the BRCA2 mutants.  P 
values are shown for two sample T-tests comparing population doubling times of wild type cells, 
BRCA2 heterozygous mutants (+/-) and brca2 homozygous mutants (-/-).  Areas shaded in yellow 
indicate a significant difference. 

onium chloride, which lyses the red blood cells, allowing 

 

4.3.2 Analysis of in vivo growth 

In vivo growth was analysed to determine whether the growth defect observed in vitro was 

also observed during growth in mice, and to determine if the mutants remain infective.  

This is of particular importance when examining the rate of VSG switching in brca2-/- 

mutants, as the assay relies upon infections.  In vivo growth analysis was carried out on the 

brca2 heterozygous and homozygous cell lines in 3174.2, and compared with the wild type 

cells.  To do this, ICR mice were infected with 1 x 106 T. brucei cells, previously grown in 

culture, via intraperitoneal injection.  The density of trypanosomes was determined every 

24 hours, up to a maximum of 120 hours.  Small amounts of blood were taken from the tail 

of each mouse and placed in a heparin-coated capillary tube (Hawksley).  1 µl of blood was 

diluted in 99 µl of 0.85 % amm
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the trypanosomes to be counted via a (Bright-line, Sigma).  The results 

w  on a s arithmic scale (figure 4.8) and the doubling times calcu

(table 4.3).  It is important to note th r each cell line only a single mouse infection was 

performed, in the interests of reducing animal use. 

haemocytometer 

ere plotted em gi lo lated 

at fo

 
Figure 4.8 – Analysis of the growth o CA2 mutant  vivo.  Mice ted wit 106 
try s, previo rown in cultu via peritoneal injection.  The de ity of trypano
was re rded every 24 rs up to a m um of 120 hours.  One experim t was carried or 
each of the heterozyg /-) and hom ous (-/-) mutants and for the wild type cells (W nd 
the results plotted on rithmic scale graphs. 

f BR s in  were infec h 1 x 
pano omes usly g re, ns somes 

co  hou axim en  out f
ous (+
semi-loga

ozyg T), a

 

Cell line 3174.2 +/- 1 +/- 2 -/- 1 -/- 2 
Doubling time 4.98 4.87 4.87 7.32 7.03 
 
Table 4.3 –  in vivo population doubling times for BRCA2 mutants. The doubling time for each 
of the independent heterozygous (+/-) and homozygous (-/-) mutants is displayed in hours.  The 
table also displays the doubling time for wild type 3174.2 cells. 

From the growth curves shown in figure 4.8 and the population doubling times shown in 

table 4.3, it was again apparent that the disruption of one BRCA2 allele had no effect on 

growth,  but the disruption of both alleles caused the cells to grow at a slower rate.  The 

population doubling times for all cell lines appears to be quicker in vivo than in vitro, with 

wild type and heterozygous cell lines doubling in approximately 5 hours compared to 

approximately 8 hours in vitro.  Although the brca2-/- mutants have an impaired growth 

phenotype in vivo, this appeared to be less severe than in vitro, with the population 

doubling time increased by a factor of 1.4 compared to wild type cells. 
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4.3.3 Analysis of the cell cycle 

Since cells deficient in BRCA2 have an impaired growth rate, we wished to investigate the 

reason behind this.  Increased population doubling times could be due to a cell cycle stall, 

cells taking longer to complete all stages of the cell cycle, including cytokinesis, or due to 

increased cell death in the population.  It is particularly easy to define cell cycle stages in 

Kinetoplastids due to the presence of their mitochondrial DNA (kinetoplast), which is 

structured into an observable entity following staining and replicates and divides at distinct 

times in the cell cycle relative to that of the nuclear DNA (McKean, 2003) (see figure 4.9).  

Cells in the G1 and S phases of the cell cycle contain 1 nucleus and 1 kinetoplast (1N 1K).  

Kinetoplast division precedes nuclear division, which results in cells containing 1 nucleus 

and 2 kinetoplasts (1N 2K) that are placed cells in the G2 phase of the cell cycle.  

Following this, the nucleus divides and generates cells with 2 nuclei and 2 kinetoplasts (2N 

2K).  Such cells are in the M, mitotic, phase of the cell cycle.  Cytokinesis subsequently 

generates two 1N 1K cells in G1 phase.  Staining for DNA in Kinetoplastids therefore 

provides a picture of the cell cycle stage of individual cells in the population. 

 
Figure 4.9 – The cell cycle of bloodstream form T. brucei.  The diagram shows the difference
between replication and division of the nucleus and kinetoplast during the cell cycle.  During the G1 
and S phases of the cell cycle T. brucei contains 1 nucleus and 1 kinetoplast (1N 1K).  Synthesis 
the kinetoplast DNA (SK) commences shortly before the synthesis of the nuclear DNA (SN).  
Kinetoplast division (D) occurs before the nucleus, resulting in cells having 1 nucleus and 2 
kinetoplasts (1N 2K).  Nuclear mitosis (M), which leads to cells having 2 nuclei a
(2N 2K), occurs prior to cytokinesis (C), which generates two progeny containing

s 

of 

nd 2 kinetoplasts 
 1N 1K, which will 

restart the cell cycle.  G1 and G2 represent cell cycle growth phases. The apportioning (A) phase 
of the cell cycle is when the basal bodies (white circles) move apart.  Figure adapted from McKean 

 a 

(2003). 

To examine the DNA content of the BRCA2 mutants, the cells were grown in culture to

density of 1 x 106 cells.ml-1.  1ml of culture was then centrifuged, washed with PBS 

(Phosphate buffered saline) and resuspended in 1 ml of PBS.  10 µl samples were spotted 
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onto microscope slides (C.A.Hendley Ltd) and allowed to air dry.  The trypanosomes w

then fixed by soaking in methanol for 5 minutes, before being allowed to air dry. 

of vectashield with 4’, 6-Diamidino-2-phenyindole (DAPI) (Vector Laboratories In

added to the slides, a cover slip placed over the slides and sealed with clear nail varnish.  

The slides were visualised in ph

ere 

 A drop 

c.) was 

ase contrast, to determine the cell outline, and under UV to 

visualise the DAPI.  The number of cells in each cell cycle stage was counted (see table 

 in 

4.4) and the percentages graphed (see figure 4.10).  Cell counts were conducted blind by 

two independent researchers.  To compare any phenotypes that might be seen in the 

BRCA2 mutants with other T. brucei repair factors, rad51-/- cells were also examined

this way. 

 Cell cycle stage  
Cell line 1N 1K 1N 2K 2N 2K Other Total 

Wild type 143 28 21 0 192 
 109 20 12 4 145 
 152 36 14 3 205 
 127 26 7 6 166 
 109 23 6 3 141 

Total 640 133 60 16 849 
+/-1 153 27 19 0 199 

 97 31 17 5 150 
 153 32 9 4 198 
 134 21 13 5 173 

Total 537 111 58 14 720 
+/-2 158 32 17 0 207 

 117 15 13 2 147 
 144 31 11 1 187 
 121 26 8 4 159 

Total 540 104 49 7 700 
-/-1 100 42 17 17 176 

 74 23 9 18 124 
 130 33 22 19 204 
 54 12 5 15 86 
 129 30 12 13 184 

Total 487 140 65 82 774 
-/-2 120 45 24 17 206 

 83 18 6 18 125 
 119 35 24 28 206 
 6  5 16 9 18 108 
 1  37 30 16 19 202 

Total 524 1  44 79 100 847 
rad51 1  19 -/- 90 13 3 225 

 1  1  45 7 8 5 175 
 102 22 9 5 138 
 1  21 7 15 5 148 

Total 552 79 37 18 686 

Table 4.4 – DAPI analysis of the cell cycle of BRCA2 mutants.  The DNA content of the BRCA2
heterozygous (+/-) and homozygous (-/-) mutant cell lines were visualised by DAPI and com
with wild type Lister 427 cells and rad51-/- cells.  The numbers of cells with 1 nucleus and 1 
kinetoplast (1N 1K); 1 nucleus and 2 kinetoplasts (1N 2K); 2 nuclei and 2 kinetoplasts (2N 2K); and
cells that do not fit into the expected classifications (o

 
pared 

 
thers) were counted in 4 separate 

experiments and tabulated in separate rows.   
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Figure 4.10 – DAPI analysis of the BRCA2 mutants.  The DNA content of the BRCA2 
heterozygous (+/-) and homozygous (-/-) mutant cell lines were visualised by DAPI and compared 
with wild type Lister 427 cells and rad51-/- cells.  The numbers of cells with 1 nucleus and 1 
kinetoplast (1N 1K); 1 nucleus and 2 kinetoplasts (1N 2K); 2 nuclei and 2 kinetoplasts (2N 2K); and 
cells that do not fit into the expected classifications (others) were counted and represented by their 
mean count as a percentage of the total cells counted (N). 

From this cell cycle analysis, it was clear that mutation of one BRCA2 allele did not affect 

the relative distribution of cells into different stages.  This result was expected since there 

A content: 

h 

se 

 

e to 

rs’ (cells in 

which, the number of nuclei and kinetoplasts could not be determined).  The DNA content 

of the ‘others’ found in the brca2-/- cells are presented in figure 4.12.     

Chi squared analysis was performed on these data co aring the re e distributi  

cells into cell cycle stages.  The results are shown in le 4.5 and d ay that the c

cy ution of  independe rca2-/- mutants are significantly different from the 

dist n of cells CA2+/- cells, with chi-squared values of 40.95 to 

120.97 (at P = 0.0001) for the brca2 ells relative their BRCA2+/ cedents.   

was no growth phenotype observed in the heterozygous cell lines.  However, mutation of 

both BRCA2 alleles caused a reduction in the number of cells with 1N 1K DN

from 75 % in wild type cells to 61-62 % in homozygous cells. Most of this reduction 

appeared to be accounted for by an increase in cells we have described as ‘others’, whic

rose from 2 % in wild type cells to 10-12 % in homozygous cells; the ‘others’ are tho

that do not fall into any of the expected phases, and include cells with a greater than 

expected number of nuclei or kinetoplasts, or an absence of one or both.  These cells arise

due to incorrect segregation of the nuclei and kinetoplasts during cell division, or du

problems during DNA replication.  Examples of some of these cells are shown in figure 

4.11, and include zoids (cells with 1 kinetoplast and no nucleus) and ‘monste

mp lativ on of

 tab ispl ell 

cle distrib  both nt b

ributio in wild type and BR

-/- c - pre
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The se in aber ell types, w h were only occasionally se n wild type

B ells cou lt f  the inappropriate timing of cytokinesis, 

difficulties associated with DNA replication prior to cytokinesis, or a severe DNA 

repair/recombination defect that fails to complete the repair of endogenous levels of DNA 

dam ior to cell ion.   

It is interesting to note that in rad51 utants, the number of cells in each cell cycle stage 

did not differ from those found in wild type cells.  The distribution of cells in both of the 

independent brca2-/- tants were found to be significantly different from rad51-/

mutants, with chi squared values of 6 at P = 0.0  and 16.18 a = 0.0010.  T

would therefore appe o indicate e  that the cel cle abnorma s in brca2-

aris  a BRCA2 specific function, distinct from its role in RAD51 recombination, or a 

gs 

 

The data also display that the impaired growth rate in brca2-/- mutants was not due to a 

 

 increa rant c hic en i  or 

RCA2+/- c ld either resu rom

a rge p  d isiv

-/- m

 mu - 

14.3 025 t P his 

ar t ither l cy litie /- cells 

e from

significantly more severe DNA repair defect than found in rad51-/- cells.  These findin

are further supported by research indicating that in rad51-3-/- and rad51-5-/- mutants, the

number of cells in each cell cycle stage do also not differ from those found in wild type 

cells (Proudfoot and McCulloch, 2005), suggesting that any such abnormalities are not 

generally true of factors that mediate RAD51 action. 

cell cycle stall, since the number of 1N 2K and 2N 2K cells was essentially equivalent to 

that of wild type cells.  A cell cycle stall in any stage should reduce the number of these 

cells and cause an accumulation of the cells in the preceding stage (McKean, 2003).  The 

most likely explanation for the increased growth rate, in common with rad51-/- mutants is

increased cell death.  

 +/- 1 +/- 2 -/- 1 -/-2 rad51-/- 
WT 0.1530 

0.9848 
0.4960 
0.9199 

43.1260 
0.0001 

55.7100 
0.0001 

2.133
0.5452

0 
 

+/- 1  
 

0.7030 
0.8725 

40.9540 
0.0001 

52.7460 
0.0001 

2.5740
0.4620 

 

+/- 2  
 

 95.7590 
0.0001 

120.967 
0.0001 

3.8890 
0.2737 

-/- 1  
 

  0.3230 
0.9556 

14.3610 
0.0025 

-/-2  
 

   16.1800 
0.0010 

Table 4.5 – Statistical analysis of the cell cycle data for BRCA2 mutants.  Chi squared 
analysis the of cell cycle data for wild type cells, BRCA2 heterozygous mutants (+/-), brca2 
homozygous mutants (-/-) and rad51-/- mutants.  The numbers indicated in bold represen
squared value, whilst the numbers below represent the P value at which it was calculated
shaded in yellow indicate a significant difference. 

 

t the Chi 
.  Areas 
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Figure 4.11 – Examples of ‘other’ cells in brca2-/- mutants.  Each cell is shown in phase 
contrast (pha g with I.  The ‘monste s shown abov hly 
enlarged, an in an ted a t of nu  and k   An e le o th
nucl , cont singl p lso   

se) and after 
d conta

stainin
 eleva

DAP rs’ cell e are hig
f a wimoun

last is 
clea
how

r DNA. x pam  cell  no 
eus aining a e kineto a  s n.

 
Figure 4.12 – DNA content of ‘others’ in brca2-/- mutants.  Total numbers of cells that do
into the expected classifications (others) are represented for the brca2-/- mutants.  The DNA
content is displayed as the number of nuclei (N) and the number of kinetoplasts (K). 

To investigate further whether the phenotype of brca2-/- cells is the consequence of a 

severe DNA repair deficiency, the DNA content of all the cell lines was analysed aft

DNA damage.  To do this, cells were grown to a density of 1 x 10

 not fit 
 

er 
6 cells.ml-1, before 



Claire Louise Hartley, 2008   Chapter 4, 145 

adding 1.0 µg.ml-1 of phleomycin and growing for a further 18 hours.  The brca2-/- cells 

were also similarly treated with 0.25 µg.ml-1 of phleomycin, as they were predicted to be 

more sensitive to DNA damaging agents.  After 18 hours of damage the cells were 

prepared for DAPI staining as before.  The number of cells in each cell cycle stage was 

again counted (see table 4.6) and the percentages graphed (see figure 4.13). 

 Cell cycle stage  
Cell line 1N 1K 1N 2K 2N 2K Other Total 

Wild type 123 23 9 12 167 
1.0µg.ml-1 92 14 6 3 115 

 146 27 7 11 191 
Total 361 64 22 26 473 
+/-1 122 26 13 7 168 

1.0µg.ml-1 163 22 7 9 201 
Total 285 48 20 16 369 
+/-2 133 24 9 7 173 

1.0µg.ml-1 157 28 7 17 209 
Total 290 52 16 24 382 
-/-1 84 42 10 35 171 

0.25µg.ml-1 105 48 14 31 198 
Total 189 90 24 66 369 
-/-1 53 45 6 33 137 

1.0µg.ml-1 113 67 13 28 221 
Total 166 112 19 61 358 
-/-2 64 51 19 42 176 

0.25µg.ml-1 102 54 12 35 203 
Total 166 105 31 77 379 
-/-2 82 63 11 41 197 

1.0µg.ml-1 99 58 11 37 205 
Total 181 121 22 78 402 

rad51-/- 46 26 9 24 105 
0.25µg.ml-1 98 48 15 36 197 

Total 144 74 24 60 302 
rad51-/- 65 37 3 35 140 

1.0µg.ml-1 68 28 5 24 125 
Total 133 65 8 59 265 

Table 4.6 – DAPI analysis of the BRCA2 mutants after DNA damage. The DNA content of
BRCA2 heterozygous (+/-) and homozygous (-/-) mutant cell lines were visualised by DAPI and 
compared with wild type Lister 427 cells and rad51-/- mutants, after cells had been damaged by
phleomycin.  The numbers of cells with 1 nucleus and 1 kinetoplast (1N 1K); 1 nucleus and 2 

 

 

kinetoplasts (1N 2K); 2 nuclei and 2 kinetoplasts (2N 2K); and cells that do not fit into the expected 
 classifications (others) were counted in separate experiments, for each cell line and are tabulated. 

Wild type and heterozygous cells were grown in media with 1.0 µg.ml-1 of phleomycin, whilst 
homozygous cells were grown in both 0.25 µg.ml-1 and 1.0 µg.ml-1 of phleomycin.  Data are 
tabulated for 2 separate experiments in all cases. 
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Figure 4.13 – DAPI analysis of the BRCA2 mutants after DNA damage.  The DNA content of 
BRCA2 heterozygous (+/-) and homozygous (-/-) mutant cell lines were visualised by DAPI and 
compared with wild type Lister 427 cells and rad51-/- mutants, after cells had been damaged by 
phleomycin.  The numbers of cells with 1
kinetoplasts (1N 2K); 2 nuclei and 2 kinetoplast

 nucleus and 1 kinetoplast (1N 1K); 1 nucleus and 2 
s (2N 2K); and cells that do not fit into the expected 

classifications cells (others) were counted and represented by their mean count as a percentage of 
the total cells counted.  Wild type and heterozygous cells were grown in media with 1.0 µg.ml-1 of 
phleomycin, whilst homozygous cells were grown in media with 0.25 µg.ml-1 and 1.0 µg.ml-1 of 

urprisingly, that induction of DNA 

 

e stall, 

 was 

 in wild type cells to 43-51 %.  An increase in the number of 

1N 2K cells was also seen, rising from 13 % in wild type cells to 24-31 %.  Finally, there 

as also an increase in ‘others’, rising from 5 % in wild type cells to 17-20 % in 

homozygous cells.  This was approximately double the number of these cells found in 

brca2-/- cells prior to damage.  Only the number of 2N 2K cells appeared unaltered.  Chi 

squared analysis was performed on these data comparing the relative distribution of cells 

into cell cycle stages.  The results are shown in table 4.7 and display that the cell cycle 

distribution of both independent brca2-/- mutants are significantly different from the 

phleomycin.  N = number of cells counted. 

From this cell cycle analysis, it was found, perhaps s

damage by phleomycin in either wild type or BRCA2+/- cells did not alter the relative

abundance of cells in different cell cycle stages.  This indicates, contrary to findings in 

other organisms (Nakada et al., 2003), that phleomycin does not induce any cell cycl

despite the fact that damage is generated, as evidenced by the generation of RAD51 repair 

foci (see section 4.3.6).  In the brca2-/- mutants the presence of DNA damage caused 

dramatic cell cycle effects.  A reduction in the number of cells with 1N 1K content

apparent, reducing from 76 %

w
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distribution of cells in wild type and BRCA2+/- mutants, with chi squared values ranging 

from 39.31 to 91.3 at P = 0.0001.   

A very similar phenotype was also observed in rad51-/- cells, with 47-50 % 1N 1K cells, 

24-25 % 1N 2K cells and 19-22 % of ‘others’.  Chi-squared analysis showed the rad51-/- 

mutants were not significantly different from brca2-/- mutants in their distribution of cell 

types, but were significantly different from the wild type and BRCA2 heterozygous cell 

line, with chi squared values of 52 to 94.72 at P = 0.0001.  This suggests that the changes 

in relative numbers of cells at different stages of the cell cycle in the presence of DNA 

damage are a consequence of an absence of recombination and DNA repair that is common 

to BRCA2 and RAD51.   

 +/- 1 +/- 2 -/- 1 
0.25 

-/- 1 
1.0 

-/-2 
0.25 

-/-2 
1.0 

rad51-/- 
0.25 

rad51-/- 
1.0 

WT 0.403 
0.9396 

0.159 
0.9840 

45.619 
0.0001 

59.346 
0.0001 

71.300 
0.0001 

68.395 
0.0001 

59.529 
0.0001 

689.533 
0.0001 

+/- 1  
 0.7539 

1.196 61.234 
0.0001 

75.154 
0.0001 

91.302 
0.0001 

88.134 
0.0001 

78.207 
0.0001 

94.723 
0.0001 

+/- 2  
 

 39.312 
0.0001 

53.178 
0.0001 

63.364 
0.0001 

60.349 
0.0001 

52.001 
0.0001 

58.471 
0.0001 

-/- 1 
0.25 

 
 

  2.664 
0.4464 

2.288 
0.5147 

2.376 
0.4982 

0.788 
0.8524 

2.952 
0.3991 

-/- 1 
1.0 

 
 

   2.735 0.415 3.289 4.358 
 0.4344 0.9371 0.3492 0.2253

-/-2 
0.25 

     1.182 
0.7573 

0.730 
0.8662 

4.735
0.1922

 
 

-/-2 
1.0 

      2.334 
0.5061 

3.141 
0.3704 

rad51-/- 
0.25 

       3.477 
0.3238 

Table 4.7– Statistical analysis of the cell cycle data for BRCA2 mutants after DNA damage.  
Chi squared analysis of the cell cycle data after phleomycin induced DNA damage for wild ty
cells, BRCA2 heterozygous mutants (+/-), homozygous mutants (-/-) and rad51-/- mutants.  
and 1.0 indicate 0.25µg.ml

pe 
0.25 

ated in 
the Chi squared value, whilst the numbers below represent the P value at which it 

ded in yellow indicate a significant difference. 

 to 

f 

sts 

n of 

g that 

an 

-1 and 1.0 µg.ml-1 of phelomycin respectively.  Wild type and 
heterozygous cell lines were only treated with 1.0 µg.ml-1 of phelomycin.  The numbers indic
bold represent 
was calculated.  Areas sha

 

The increase in 1N 2K cells suggest that when T. brucei recombination proteins are 

mutated, and the cells are subjected to DNA damage, they become impaired in their ability 

to complete nuclear division, presumably because they struggle to repair the damage

their DNA and to replicate past lesions.  The increase in ‘other’ cells, which was o

equivalent magnitude in both brca2-/- and rad51-/- mutants following damage, sugge

that these arise as a result of cytokinesis before the completion of repair and replicatio

nuclear DNA.  This is consistent with lack of alteration of 2N 2K numbers, suggestin

the cells enter and leave M phase as normal in these conditions.  However, because 
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increase in ‘others’, albeit of a lesser magnitude was found only in brca2-/- mutants prior 

to damage, it was decided to quantify these observations in more detail by characterising 

the relative amount of nuclear and kDNA.  These results are displayed in figure 4.14. 

 
Figure 4.14 – Analysis of ‘others’ in brca2-/- and rad51-/- mutants before and after damage.  

rent checkpoints.  It seems 

The numbers of non-standard cell types in brca2 -/- and rad51-/- mutants are shown prior to 
damage and following 0.25 µg.ml-1 and 1.0 µg.ml-1 of phleomycin (BLE).  The numbers of ‘other’ 
cells are split into 2 categories: cells containing more kinetoplast, or more nuclei, than normal.  
Cells with standard ratios of nuclei and kinetoplast are not shown.  N = number of cells counted.  

These data demonstrate that when brca2-/- cells were subjected to damage, those with an 

increased quantity of kinetoplast DNA dominated the ‘other’ cells.  This phenotype 

became more exaggerated as phleomycin increased from 0.25 µg.ml-1 to 1.0 µg.ml-1.  The 

same phenotype was also observed in rad51-/- cells, confirming that this is likely to be due 

to an impairment in the repair of damage because of mutation to the recombination 

machinery.  This suggests that when such mutant cells are subjected to DNA damage, the 

nuclear DNA is affected more strongly than the kinetoplast DNA.  This is consistent with a 

role for each protein in nuclear repair, and suggests that damage to the kinetoplast DNA is 

repaired by a different route, or possibly monitored by diffe

unlikely that the kDNA would be unaffected by phleomycin treatment.  Irrespective of this, 

cytokinesis appears to occur before nuclear DNA replication is completed, resulting in 

daughters with increased kDNA content.  Importantly, the pattern of DNA content in 
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‘other’ cells in both brca2-/- and rad51-/- mutants before damage is quite different, with

no strong bias towards increased nuclear or kinetoplast DNA.  This infers that the 

generation of such mutants in the absence of induced damage is not primarily a result of 

loss of recombination factors.  Since the number of these ‘others’ is increased in brca2-/- 

mutants, this infers that this phenotype is not DNA damage related, but is most likely du

to a replication or cytokinesis dis-function that affect both the nuclear and kinetopla

DNA, and are exacerbated in BRCA2 mutants. 

Another observation offers further support for these conclusions.  During cell coun

was noticed that brca2-/- mutants, though they do not alter the number of 2N 2K ce

seemed to have a larger number of cells with 2N 2K content in which the n

 

e 

st 

ting, it 

lls, 

uclear DNA had 

not completed segregation.  Examples of this are shown in figure 4.15.  To quantify this in 

g, and 

nd 

more detail, brca2-/-, BRCA2+/- and wild type cells were prepared for DAPI stainin

the number of 2N 2K cells with incompletely or completely separated nuclei counted bli

by two researchers (see figure 4.16). 

 
Figure 4.15 – Examples of 2N 2K ce  incomplete nuclear divis
have incomplete nu ion are es as ‘o t 2N 2K cells and de  
a ce  through ivision okinesi

In wild type and BRCA2+/- cells, the majority of ells had ted nuc

division, with only 12 % having visibly connected nuclei.  In contrast, mutation o

brca2-/- mutants taking longer to 

lls with ion. The cells shown to 
clear divis
 nuclear d

 not class ther’ cells, bu monstrate
ll going before cyt s. 

2N K c2  comple lear 

f both 

BRCA2 alleles caused the percentage of 2N 2K cells that had not completed nuclear 

division to rise to 34 %.  This infers that brca2-/- mutants take a greater amount of time to 

undergo nuclear division, which could be due to the 

complete DNA repair, therefore delaying mitosis, or could be a result of impaired 

replication or segregation.   
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Figure 4.16 – Analysis of the number of 2N 2K cells that have completed nuclear division.  
2N 2K cells in BRCA2 heterozygous (+/-) and homozygous (-/-) mutant cell lines were visualised by 
DAPI and compared with wild type Lister 427 cells.  The cells were analysed for the number that 
had completed nuclear division (complete), and those that were still dividing the nucleus 
(incomplete).  

Examining all of the cell cycle results reveals that brca2-/- mutants have a putative delay 

in nuclear division and accumulate cells with aberrant DNA content, phenotypes that are 

not seen in other T. brucei recombination mutants, most notably rad51-/- cells.  This 

appears consistent with the possibility that BRCA2 has a role beyond simply regulation o

RAD51-catalysed recombination, in either the regulation or execution of cell division. 

hypothesise that mutation of BRCA2 in T. brucei causes impaired replication of the 

nucleus, but without a cell cycle stall, leading to the accumulation of chromosomal 

aberrations.   

f 

We 

4.3. nalysis A da sens

In figure 4.13 (section 4.3.3), it was shown that br lls res hleom

dam fferently fro  WT or BRCA2+/- cells, inferring that BRCA2 acts in DNA repair.  

To analyse this role in more detail, DNA damage assays were carried out that allow 

 

4 A  of DN mage itivity 

ca2-/- ce pond to p ycin 

age di m

quantification of the effect on the cells of damage by two agents: methyl methane 

sulphonate (MMS) and phleomycin.  MMS is a methylation agent that is capable of 

modifying DNA at both guanine (generating 7-methylguanine residues) and adenine 

(generating 3-methlyladenine residues), resulting in lethal and/or mutagenic lesions 

(Sedgwick, 2004);(Beranek, 1990).  Phleomycin is a glycopeptide antibiotic of the 
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bleomycin family, which binds to and intercalates into DNA, destroying the integrity of the 

double helix (Giloni et al., 1981), directly causing double strand breaks. 

A clonal survival assay was initially used to examine the sensitivity of the brca2-/- mutants 

to MMS, as this assay had previously demonstrated that rad51-/- (McCulloch and Barry, 

1999), rad51-3-/- and rad51-5-/- mutants (Proudfoot and McCulloch, 2005) displayed a 

greater level of sensitivity to MMS compared to wild type cells.  The clonal survival assay 

was performed by growing cultures to a density of 1 x 106 cells.ml-1  and plating out one 

cell per well over five 96 well plates, containing MMS concentrations of 0, 0.0001, 0.0002, 

0.0003 or 0.0004 %.  Four repetitions for each strain were carried out and the number of 

wells containing a viable parasite population after up to 20 days of growth was counted.  

The number of wells growing on the plate without MMS was taken as being 100% and the 

h s, number of wells growing through on the MMS containing plates calculated relative to t

thereby removing any errors due to plating efficiency and growth rate differences between 

the brca2-/- cells and the others.  The results of this assay are displayed in figure 4.17. 

i

 
Figure 4.17 – Analysis of DNA damage sensitivity in the BRCA2 mutants.  Each strain was 
plated at one cell per well in five 96 well plates, each containing a different concentration of MMS: 
0, 0.0001, 0.0002, 0.0003 and 0.0004 %. Four repetitions were carried out for each cell line.  The 
mean number of cells to grow through for each cell line at each concentration was calculated a
represented as a percentage of the number that had grown through on the 0 % plate for that c
line.  Standard errors are indicated and the data is 
mutants (+/- 1, 2), the two independent homozygou

nd 
ell 

presented for the two independent heterozygous 
s mutants (-/- 1, 2) and the wild type Lister 427 

cell line. 

These data demonstrate that mutation of one BRCA2 allele does not affect sensitivity to 

MMS.  However, mutation of both BRCA2 alleles causes an increased sensitivity to MMS, 

with very little or no growth occurring at 0.0003 % MMS and above.  In contrast, the wild 
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type and heterozygous cells showed survival rates between 39 – 54 % at 0.0003 % MMS, 

and 12 – 24 % at 0.0004 % MMS.  At 0.0001 % and 0.0002 % MMS the wild type and 

heterozygous cell lines displayed between 60 – 100 % survival, whilst the homozygous 

mutants displayed between 69 – 71 % and 9 – 13 % survival, respectively.  Similar levels 

of sensitivity to MMS have been shown in rad51-/- mutants (McCulloch and Barry, 1999), 

and rad51-3-/- and rad51-5-/- mutants (Proudfoot and McCulloch, 2005), consistent with 

hleomycin, a 

 via 

he results 

ue 

 

 

is 

nd 590 nm emission.  Three repetitions were performed and the IC50s 

calculated and their means plotted graphically (see figures 4.18 and 4.19). 

 MMS.  Wild type and heterozygous cell 

lines displayed mean IC50s to MMS of 0.0015 to 0.0019 %, whilst the homozygous 

mutants displayed mean IC50s of 0.00058 to 0.00064 %.  rad51-/- mutants had very 

similar levels of sensitivity to the brca2-/- mutants, with a mean IC50 of 0.0007 % MMS.  

The statistical analyses of these data confirm these results (see table 4.8); no statistical 

difference was observed between wild type cells and BRCA2+/- mutants (p>0.05), but a 

statistically significant difference was found between wild type or heterozygous cells and 

brca2-/- mutants and rad51 homozygous mutants (p<0.05).  No significant difference in 

IC50 was found between the 2 brca2-/- cell lines and rad51-/- cells. 

 

BRCA2 acting together with RAD51 and the RAD51 related proteins in DNA damage 

repair, though this does not address this directly. 

In order to quantify the extent of brca2-/- mutants sensitivity to MMS and p

distinct assay was used in which the metabolic capacity of the cells was measured

reduction of the compound Alamar Blue (Resazurin, Sigma).  This assay allows t

of the clonal survival assay to be evaluated independently, and also allows IC50s to be 

calculated (Raz, B. et al., 1997;Onyango, J. D. et al., 2000).  Reduction of Alamar Bl

was examined by growing cultures to a density of 2 x 105 cells.ml-1 and placing 100 µl into

11 wells, each with doubly diluting concentrations of drug (either MMS or phleomycin).  

The final, 12th well acted as a control without drug.  After 48 hours of growth, 20 µl of 

Alamar Blue was added.  The plates were left for a further 24 hours for the cells to 

metabolise the resazurin, which is blue and non-fluorescent.  In actively metabolising cells,

resazurin is reduced to resorufin, which is pink and fluorescent (O'Brien et al., 2000).  Th

fluorescence was then measured on a Perkin Elmer LS55 Luminometer at 539 nm 

excitation a

The graph shown in figure 4.18 confirms the result from the clonal survival assay; 

mutation of one BRCA2 allele does not affect sensitivity to MMS, but mutation of both 

BRCA2 alleles causes an increased sensitivity to
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 +/- 1 +/- 2 -/- 1 -/-2 rad51-/- 
WT 0.0881 0.0763 0.0008 0.0025 0.0023 
+/- 1  0.4248 0.0016 0.0016 0.0005 
+/- 2   0.0056 0.0067 0.0019 
-/- 1    0.0959 0.4244 
-/-2     0.6910 

Table 4.8 – Statistical analysis of the Alamar Blue results for MMS.  P values are shown for 
two sample T-tests comparing the IC50s for MMS sensitivity of wild type cells, BRCA2 
heterozygous mutants (+/-), brca2 homozygous mutants (-/-) and rad51-/- mutants.  Areas shaded 
in yellow indicate a significant difference. 

When phleomycin was used to damage the cells, a similar phenotype to MMS sensitivity 

was observed (see figure 4.19); mutation of both BRCA2 alleles caused an increased 

sensitivity to phleomycin.  For this drug, wild type cells displayed a mean IC50 of 0.095 

µM, whilst homozygous mutants displayed mean IC50s of 0.013 to 0.018 µM.  The 

statistical analysis shown in table 4.9 confirms this; a statistically significant difference 

was seen between wild type cells and brca2-/- mutants (p<0.05).  rad51-/- mutants again 

generated a similar IC50 to the brca2-/- mutants, with an IC50 of 0.019 µM, which was not 

with mean IC50s of 0.06 to 0.067 µM, which were confirmed as being significantly 

brca2-/- cells in paired T-tests.  This phenotype is 

t 

ed 

e 

ron, 

ir 

SBs.  Equally, single strand breaks made 

by BER could be converted to DSBs during DNA replication.  Unfortunately, previous 

search on RAD51, RAD51-3 and RAD51-5, has only investigated sensitivity to MMS, 

and in the experiments shown in this section, only the rad51 homozygous mutant was 

vestigated, so it is impossible to know at this stage if mutation of a single allele in these 

significantly different from the brca2-/- mutants but was significantly different compared 

to wild type cells.  In contrast to MMS, an unusual phenotype was observed when one 

BRCA2 allele was mutated: a slight increase in sensitivity to phleomycin was observed, 

different from both wild type and 

somewhat reminiscent of mre11-/- mutants, which displayed sensitivity to phleomycin bu

not to MMS (Robinson et al., 2002).  However, the BRCA2 haploinsufficiency observ

here was not observed for MRE11.  Nevertheless, mutation of a single allele of BRCA2 

presumably displays sensitivity to phleomycin and not to MMS due to the different modes 

of action of the DNA damaging agents, which is also reflected in MRE11 function.  

Phleomycin is known to directly cause DNA double strand breaks and is likely to b

repaired via the homologous recombination pathway, whist MMS causes lesions in the 

DNA that only lead to DNA double strand breaks by further processing (Choy and K

2002;Ui et al., 2005).  MMS-induced lesions can also be repaired via base excision repa

(BER) (Lindahl and Wood, 1999), explaining why recombination mutants might be less 

sensitive to this form of damaging agent.  It is thought that DNA incisions of MMS lesion 

by BER, when they are close enough, can cause D

re

in
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repair gene would displ milar phenotype to brca2 utants wit sitivity to 

phleomy  not to M

 +/- 1 +/- 2 -/- 1 -/-2 rad51-/- 

s ay a si +/- m h sen

cin and M . S

 
WT 0.0139 0.0023 0.0076 0.0065 0.0001 
+/- 1  0.2476 0.0073 0.0041 0.0003 
+/- 2   0.0151 0.0109 0.0008 
-/- 1    0.0989 0.7867 
-/-2     0.1623 

Table 4.9 – Statistical analysis of the Alamar Blue results for phleomycin.  P values are 
shown for two sample T-tests comparing the IC50s for phleomycin sensitivity of wild type cells, 
BRCA2 heterozygous mutants (+/-), brca2 homozygous mutants (-/-) and rad51-/- mutants.  Areas 
shaded in yellow indicate a significant difference. 

The rad51-/- mutants displayed statistically indistinguishable IC50s to the brca2-/- mutants 

for both MMS and phleomycin, which appears consistent with the hypothesis that BRCA2 

has a similar role in DNA damage repair to RAD51, and that they may act together. 

 
Figure 4.18 – IC50s of T. brucei BRCA2 mutants exposed to MMS.  Wild type, BRCA2+/-, 
brca2-/- and rad51-/- cell lines were placed in serially decreasing amounts of MMS and allowed to 
grow for 48 hours, before the addition of Alamar Blue.  After a further 24 h
Alamar Blue was measured by the amount of fluorescent resorufin genera

ours, the reduction of 
ted.  Values are the 

mean IC50s from 3 experiments; bars indicate standard error. 
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Figure 4.19 – IC50s of T. brucei BRCA2 mutants exposed to phleomycin.  Wild type, 
BRCA2+/-, brca2-/- and rad51-/- cell lines were placed in serially decreasing amounts of 
phleomycin and allowed to grow for 48 hours, before the addition of Alamar Blue.  After a further 24 
hours, the reduction of Alamar Blue was measured by the amount of fluorescent resorufin 
generated.  Values are the mean IC50s from 3 experiments; bars indicate standard error. 

 

4.3.5 Analysis of homologous recombination 

To examine the function of BRCA2 in T. brucei recombination, a transformation ass

used.  This involves the electroporation of a DNA construct containing an antibiotic 

resistance marker (in this case hygromycin) flanked by tubulin intergenic sequence

the cell lines.  The construct is integrated into the tubulin arr

ay was 

s into 

ay by homologous 

recombination, so that the number of transformants obtained should relate to the efficiency 

of recombination.  In wild type cell ch constructs appears to always 

integrate using homolo  recom ation er than her pat ys, su s N

(Conway et a 002a ay e 2002

s, transformation of su

g sou bin rath  ot hwa ch a HEJ 

l., 2 ;Conw t al., c). 

 
Figure 4.20 – Integration of the construct used in the recombination efficiency assay.  The 
construct (Tub-HYG-Tub) contains tubulin (tub) intergenic sequences flanking an antibiotic 
resistance marker, and integrates into the tubulin array by homologous recombination, replacing an
α tubulin sequence with the antibiotic marker.  The size of β and α tubulin ORFs, the hygromy

 
cin 

phosphotransferase (HYG) ORF and intergenic sequences are shown (in bp).      
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The transformation constructs were excised from the plasmid Tub-HYG-Tub (R. 

McCulloch, gift) by XhoI and XbaI restriction digestion.  These digestions were 

subsequently phenol: chloroform extracted and ethanol precipitated, before resuspending in 

sterile dH2O.  In each transformation, 5 x 107 cells were electroporated with 5 µg of 

construct DNA.  The transformed cells were recovered for three generations before being

plated out in selective media containing 5 µg.ml

 

d 

ts were 

xperiment was repeated on 3 independent 

occasions. 

-1of hygromycin.  5 x 106 cells were plate

out over 24 wells for the wild type and heterozygous mutant cells, whilst 2 x 107 cells were 

plated out over 48 wells for the homozygous mutant cells, where fewer transforman

expected.  The number of wells containing antibiotic resistant transformants were counted 

after 14 days and were expressed as the number of transformants per 106 cells plated out 

(see figure 4.21).  For each cell line, the e

 
Figure 4.21 – Recombination efficiency in BRCA2 mutants.  Values are mean numbers of 
transformants obtained per 106 cells transformed; error bars are shown from 3 repetitions.  The 
data are presented for two independent heterozygous mutants (+/-), two independent homozygous 
mutants (-/-) and wild type Lister 427 cells (427).  



Claire Louise Hartley, 2008   Chapter 4, 157 

 
Figure 4.22 – Analysis of construct integration in BRCA2 mutants.  Two Southern blots are 
shown of Tub-HYG-Tub transformants digested with HindIII and probed with the HYG ORF.  
Transformants are shown for wild type (WT) cells, 2 independent BRCA2 heterozygous mutants 
(+/-) and 2 independent brca2 homozygous mutants (-/-).  The expected fragment sizes of Tub-
HYG-Tub integrated into the tubulin array (Tubulin) and the disrupted BRCA2 gene (Gene) are 
indicated.  

 

The results shown in figure 4.21 demonstrate that mutation of one BRCA2 allele did not 

affect transformation efficiency.  However, mutation of both BRCA2 alleles caused a 

severe reduction in the ability of cells to generate transformants, with the transformation 

efficiencies reducing from an average of 4.5 x 10-6 in wild type cells to 0.2 x 10-6 in brca2-

/- cells.  This result is confirmed by the statistical analysis shown in table 4.10.  No 

significant difference was seen between wild type cells and heterozygous mutants 

gous cells 

tion 

in T. brucei, since it is highly unlikely that any of these proteins affect the capacity of the 

cells to take DNA into the cytoplasm or nucleus. 

 

 

(P>0.05), whilst a significant difference was seen between wild type or heterozy

and homozygous mutants (P<0.05).  A similar phenotype was observed for rad51-/- 

(Conway et al., 2002c), rad51-3-/- and rad51-5-/- mutants (Proudfoot and McCulloch, 

2005) and suggests that BRCA2 is important in the process of homologous recombina
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 +/- 1 +/- 2 -/- 1 -/-2 
WT 0.4444 1.0000 0.0037 0.0025 
+/- 1  0.4226 0.0206 0.0184 
+/- 2   0.0032 0.0028 
-/- 1    0.3206 

Table 4.10 – Statistical analysis of the recombination efficiency of BRCA2 mutants.  P values 
are shown for two sample T-tests comparing recombination efficiencies of wild type (WT) cells, 
brca2 heterozygous mutants (+/-) and homozygous mutants (-/-).  Areas shaded in yellow indicate 
a significant difference. 

A number of transformants from each of the cell lines were examined by Southern analysis 

to determine the locus of the integrated construct.  The construct should integrate into the 

tubulin array by homologous recombination (see figure 4.20).  However, the mutated copy 

 

ould 

 with 

 

 

could still perform homologous recombination, and no evidence for non-homologous 

m chanisms was revealed.  This result is slightly different to that observed for rad51-/- 

 

(Proudfoot and McCulloch, 2005), though it cannot be excluded that such aberrant events 

McCulloch, 2005).  Since BRCA2 has been shown to sequester RAD51 (Pellegrini and 

of the BRCA2 gene contains the β-α intergenic sequence from the tubulin array acting as a

processing signal (figure 4.1, section 4.2), identical to one flank of the Tub-HYG-Tub 

construct.  It is therefore possible that this might mediate one-ended homologous 

recombination in the BRCA2+/- and brca2-/- cells.  Wild type cells, in contrast, sh

only allow integration of the construct into the tubulin array by homologous 

recombination.  5 µg of genomic DNA from each cell line was restriction digested

HindIII, separated by electrophoresis on a 0.8 % agarose gel and transferred to a nylon 

membrane by Southern blotting.  The blots were then probed with the hygromycin open 

reading frame (figure 4.22), demonstrating that all of the transformants analysed had 

integrated the constructs using two-ended homologous recombination, since all of the 

transformants had integrated the construct into the tubulin array.  It is interesting to note

that despite the greatly reduced transformation efficiency of the brca2-/- mutants, they

e

mutants, where low levels of aberrant integrations were observed (Conway et al., 2002c), 

and were mediated by sequence microhomology.  It is more reminiscent of the exclusive

use of homologous recombination events observed for rad51-3-/- and rad51-5-/- mutants 

would be revealed by screening greater numbers of transformants. 

4.3.6 Analysis of RAD51 focus formation 

In order to begin to examine the function of T. brucei BRCA2 in the regulation of RAD51 

action, we wanted to examine the ability of brca2-/- mutants to form RAD51 foci after 

DNA damage.  RAD51 foci have been shown to form in the nucleus of eukaryotes 

following DNA damage and at S phase (Tarsounas et al., 2003;Tarsounas et al., 2004).  

This has also been demonstrated to occur in T. brucei following damage (Proudfoot and 
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Venkitaraman, 2004;Kojic et al., 2005;Martin et al., 2005;Tarsounas et al., 2003) unti

needed for repair, it is hypothesised that in the absence of BRCA2 in vivo, cells wi

unable to form RAD51 foci. 

5 ml bloodstream stage cultures were diluted to a cell density of 1 x 10

l it is 

ll be 

 of 

is 

 

) 

 shown in figure 4.24.   

Number of foci (%) 
 

6 cells.ml-1 before 

treatment with phleomycin.  All cell lines were treated with 0 µg.ml-1and 1.0 µg.ml-1

phleomycin and grown for a further 18 hours.  The brca2-/- mutants were also treated with 

an additional lower concentration of phleomycin (0.25 µg.ml-1) due their sensitivity to th

DNA damaging agent (see section 4.3.4).  Following growth with phleomycin, 3 ml of the 

cultures were centrifuged, and treated following the immunofluorescence protocol 

described in section 2.11.2.  The primary antibody used for these experiments was anti-

RAD51 antiserum (rabbit polyclonal antiserum (Diagnostics Scotland) generated in 

response to His tag purified, E. coli expressed recombinant T. brucei RAD51 (supplied by 

K. Norrby)), which was diluted 1:500 in 3 % FBS/PBS.  The secondary antibody used was 

Alexa 488 conjugated goat-derived anti-rabbit IgG (Molecular Probes, Invitrogen), and

was diluted 1:1000 in 3 % FBS/PBS.  

Fluorescence microscopic analysis was performed using an Axioskop 2 microscope (Zeiss

using DIC, UV and FITC filters.  To quantify any effects displayed by the brca2-/- 

mutants, approximately 200 cells were scored in each cell line, for the number of sub-

nuclear RAD51 foci that were visible (table 4.11).  Images of representative cells 

following phleomycin treatment are

BLE 0 1 2 3 4 5 6 or more
WT 0.0 96.4 3.6 0.0 0.0 0.0 0.0 0.0 

 1.0 24.8 22.6 18.8 16.5 13.5 2.3 1.5 
+/- 1 .0 0 94.2 5.8 0.0 0.0 0.0 0.0 0.0 

 1.0 25.2 25.9 20.9 16.5 7.9 2.2 1.4 
+/- 2 0.0 96.0 4.0 0.0 0.0 0.0 0.0 0.0 

 1.0 19.9 24.8 19.9 19.1 10.6 3.5 2.1 
-/- 1 0.0 97.9 2.1 0.0 0.0 0.0 0.0 0.0 

 0.25 98.4 1.6 0.0 0.0 0.0 0.0 0.0 
 1.0 99.4 0.6 0.0 0.0 0.0 0.0 0.0 

-/- 2 0.0 98.2 1.3 0.4 0.0 0.0 0.0 0.0 
 0.25 96.9 2.0 0.5 0.5 0.0 0.0 0.0 
 1.0 98.6 0.7 0.7 0.0 0.0 0.0 0.0 

Table 4.11 – RAD51 foci formation in wild type cells and BRCA2 mutants.  The percentages of 
cells showing foci at given concentrations of phleomycin (BLE) are shown.  Phleomycin 
concentrations are shown in µg.ml-1.  Boxes without shading contain no foci, boxes shaded in light 
yellow contain foci and boxes shaded in bright yellow contain the highest percentage of foci. 
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From these results it can be seen that in wild type cells, without the presence of damage, 

RAD51 foci are rarely seen.  However, once damage is induced, the number of cells with 

fo t is  tho  25 % had no foci).  Loss of a single allele 

o ad  the c form RAD51 foci; as for wild type, foci 

were rarely seen without damage and appeared in most cells after damage (19-25 % had 

none).  Deletion of both BRCA2 alleles, however, resulted in a y red ability to 

form 51 foci,  the majority of cells containing no foci, at any drug concentration.  

In fac it is not clea hat any inductio all 

percentage of cells in which foci were detected appears no different from untreated cells.  

These results dem ate that mutation of BRCA2  the e co ration of 

RAD51 in foci following DNA dam

To ensure that these results do not simply result from eased 51 l in the 

brca utants, western analysis was carried out on total protein extracted from all 

BRCA2 cell lines, before and after phleomycin-induced damage.  Equivalent amounts of 

protein from cell extracts were separated on 10 % SDS-PAGE gels and probed with 

ci presen  greater than se without (only ~

f BRCA2 h  no e ct onffe ells’ ty to  abili

gr atle uced 

 ADR  with

t, r t n of RAD51 foci occurred, as the very sm

onstr impairs  visibl ncent

age. 

 d cre  RAD ev ls e

2-/- m

polyclonal anti-RAD51 antiserum and detected with HRP-coupled anti-rabbit IgG.  Figure 

4.23 demonstrates that RAD51 is still clearly expressed in brca2-/- cells, and there is no 

evidence for an increase in RAD51 levels after DNA damage. 

 
Figure 4.23 – Western blots of RAD51 in BRCA2 cell lines.  The western blots display total 
protein extracts from wild type (WT), BRCA2 heterozygous (+/-) and brca2 homozygous (-/-) cells 
probed with anti-RAD51 antiserum (RAD51).  The blot on the left displays protein extracts prepared 
without damage (0µg.ml-1 BLE), whilst the blot on the right displays protein extracts prepared with 
damage (1.0µg.ml-1 BLE).  Size markers are indicated.  The endogenous copy of RAD51 is visible 
at 47kDa. 
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Figure 4.24 – RAD51 immunolocalisation in wild type cells and BRCA2 mutants.  
Representative images of T. brucei cells following growth in 1.0µg.ml-1 phleomycin for 18 hours are 
shown.  Each cell is shown in differential interface contrast (DIC), after staining with DAPI and after
hybridisation with anti-RAD51 antiserum and secondary hybridisation with Alexa Fluor 488 
conjugate (Alexa 488).  Merged images of DAPI and Alexa 488 cells are also shown.  Wild type 
Lister 427 (WT) cells, heterozygous BRCA2 mutants (+/-) and homozygous mutants (-/-) are 
shown. 

 



 
Figure 4.25 – The expression site of the trypanosome cell line 3174.2.  This figure shows the 
telomeric region of the actively transcribed expression site in 3174.2 bloodstream form cells.  The 
expression site has been modified to contain the resistance markers for hygromycin (HYG), 
between ESAG 1 and the 70 bp repeats, and G418 (NEO), between the 70 bp repeats and the 
VSG 221 gene.   The dashed arrow represents transcription of the site, whilst the black triangles 
represent oligonucleotide primer sites. 

To generate switched variants, all the cell lines were grown on hygromycin and G418, 

before removing them from antibiotic selection and allowing them to grow for nine 

generations.  For the wild type and heterozygous cell lines 4 x107 cells were injected into 

immune mice, whereas for the homozygous mutants, where a switching defect was 

expected, 8 x 107 cells were injected into immune mice in an attempt to increase the 
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h contains a 

modified active VSG expression site containing antibiotic resistance markers for 

, 

4.3.7 Analysis of VSG switching frequency 

A VSG switching assay was carried out in order to determine if the absence of BRCA2 has 

any effect on antigenic variation.  Since brca2-/- mutants have been shown to have an 

impaired ability to perform homologous recombination (section 4.3.5), and a large amount 

of VSG switching is thought to occur by homologous recombination, it was hypothesised 

that cells lacking BRCA2 would be impaired in their ability to switch their VSG coat.  

However, the measurement of recombination efficiency employed an in vitro assay, which

may not reflect conditions in vivo, which we used to assay VSG switching. 

Analysis of VSG switching uses an assay that has been described before (McCulloch and 

Barry, 1999;Robinson et al., 2002;Bell and McCulloch, 2003;Proudfoot and McCulloch, 

2005;Proudfoot and McCulloch, 2006) and employs the cell line 3174.2, whic

hygromycin and G418 (see figure 4.25).  These antibiotic resistance markers not only 

allow VSG switching frequency to be determined, but also allow VSG switching 

mechanisms to be determined.  The experimental procedures for this assay are described in 

section 2.1.8.  In essence, growth in vitro on hygromycin and G418 ensured that all cells 

expressed the modified expression site and therefore the VSG 221 protein.  T. brucei cells

grown on the antibiotics were used to infect mice, which were then cured of T. brucei

generating mice that are immune to VSG 221.  The immunised mice were then used to 

cure unswitched T. brucei cells from wild type and BRCA2 mutant cell populations.  
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number of switching events per mouse, thereby ensuring higher accuracy.  In each case, 

multiple, independently grown switched populations were injected into the mice, and in all 

cases 24 hours after injection the surviving trypanosomes were recovered from the mice 

and plated out over 96 well plates.  The number of wells that showed growth after a 

maximum of 4 weeks were counted and used to calculate the VSG switch frequency, 

taking the reduced growth rate of the brca2-/- cells into account.  VSG switching 

frequency was calculated for each cell line, in each mouse, by multiplying the number of 

wells showing growth by 2.5 in order to calculate the number of switched variants in the 

total blood volume, since 2 x 0.4 ml of blood was used to isolate switched variants and the 

total blood volume of a mouse is assumed to be 2 ml.  This was then divided by the 

number of generation times that had occurred during the 24 hour period following injection 

into the mouse.  Finally, the number of cells that were injected were taken into account, 

thereby producing the number of switched variants per 107 cell injected.  The results of this 

analysis are shown in table 4.13 and figure 4.26.  This analysis shows that brca2-/- mutants 

were greatly impaired, relative to the BRCA2 heterozygous and WT cells, in their ability to 

switch their VSG coat.  WT cells underwent VSG switching at approximately 8 events per 

10-7 cells, and the BRCA2+/- cells switched at approximately 11-12 events per 10-7 cells.  

In contrast, VSG switched variants arose at only approximately 1-2 events per 10-7 cells in 

the brca2-/- mutants.  Statistical analysis was performed on these results (table 4.12), 

demonstrating that significant differences were found between the heterozygous mutants 

and homozygous mutants (p<0.05).  In contrast, no significant difference was noted 

between wild type cells and the brca2 homozygous mutants; this is most likely due to the 

high variability in the wild type experiment.  The extent of this phenotype, and the fact that 

residual VSG switching still occurs, is highly reminiscent of observations in rad51-/- cells 

(McCulloch and Barry, 1999) and highlights the importance of homologous recombination 

in the VSG switching mechanism. 

 +/- 1 +/- 2 -/- 1 -/-2 
WT 0.4143 0.2025 0.1828 0.1220 
+/- 1  0.8405 0.0064 0.0002 
+/- 2   0.0192 0.0092 
-/- 1    0.3955 

Table 4.12 – Statistical analysis of the VSG switching frequencies in the brca2 mutants.  P 
values are shown for two sample T-tests comparing VSG switching frequencies of wild type cells, 
brca2 heterozygous mutants (+/-) and homozygous mutants (-/-).  Areas shaded in yellow indicate 
a significant difference (P<0.05). 
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Cell line No. o ellsf w Sw equenitch fr cy Average St Dev SE
  (out 92) r 107 cells        of 1 (pe ) 

Wil 5.94       d pe  ty 76 
  52 4.06       
  184 14.38 8.13 5.49 3.18 
            

+/- 1 142 11.09       
  149 11.64 11.37 0.39 0.27 
  D         
            

+/- 2 142 11.09       
  125 9.77       
  181 14.14 11.67 2.24 1.30 
            

-/- 1  3.42       31
  1 0.11       
  15 1.66 1.73 1.66 0.96 
            

-/- 2 0.11       1 
  4 0.44       
  10 1.10 0.55 0.51 0.29 

          0 
  0         

Table 4.13 – Determining the VSG switching frequencies of BRCA2 mutants.  The numbers of 
wells (from 2 96 well dishes) containing growing T. brucei populations are shown for each of the 
switching assays carried out on the wild type 3174.2 cells, heterozygous (+/-) and homozygous (-/-) 
mutants.  The switch frequencies, calculated from these values, and standard deviation (St Dev) 
and standard error (SE) are shown.  D indicates death of a mouse, and 0 indicates no growth.  The 
experiments with no growth were not included in calculating the mean switch frequency. 

 
Figure 4.26 – VSG switching frequencies in BRCA2 mutants.  Values shown are the average 
switching frequencies for 3174.2 wild type cells (WT) and the 2 independent (1 and 2) BRCA2 
heterozygous (+/-) and homozygous (-/-) mutants.  Data are from at least 2 experiments and 
standard error is indicated by bars. 
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4.3.8 Analysis of VSG switching mechanism 

 

1+), 

SG sequence from 

another expression site from the mini-chromosomes or from silent array VSGs, resulting in 

n be 

 

uent 

m 

r 

itched variant was scored using 5.0 µg.ml-1 hygromycin or 

2.5 µg.ml-1 neomycin.  PCR-amplification of the antibiotic resistance markers and the 

SG221 gene were used to determine the presence or absence of each of the genes in the 

expression site.  Intact genomic DNA was confirmed in all cases using primers recognising 

NA polymerase I as a positive control PCR.  Taking the results from the drug sensitivities 

and PCR production together, the switching mechanisms could be determined, and are 

shown in table 4.14 and figure 4.28. 

es 

The 3174.2 cell line allows three different types of switching mechanism to be determined

in each clonal switch variant recovered from the 96 well plates.  These are in situ 

transcriptional switching, VSG gene conversion switching and expression site gene 

conversion switching (see figure 4.27).  Cells that have performed an in situ switch 

transcriptionally inactivate the marked VSG221 ES and activate another expression site, 

which results in the cells being sensitive to hygromycin and G418 (HygS G418S), as the 

antibiotic resistance genes are no longer expressed.  PCR products for each of the 

antibiotic resistance genes and VSG221 can, however, still be obtained (Hyg+, Neo+, 22

since no loss of sequence occurred.  Cells that have performed a VSG gene conversion 

replace sequence from the 70-bp repeats to the 3’ end of VSG221 with V

cells which are resistant to hygromycin, but sensitive to G418 (HygR G418S).  In these 

switches, PCR products can only be obtained for the hygromycin marker (Hyg+, Neo-, 221-

).  Cells that have performed an expression site gene conversion replace all the unique 

markers in the expression site, since they convert VSG sequence by long range gene 

conversion from another ES upstream of the 70 bp repeats, resulting in cells which are 

sensitive to hygromycin and G418 (HygS G418S), and from which no PCR products ca

obtained (Hyg-, Neo-, 221-).  In fact, such switches may simply have deleted much of the

ES sequence, and have then activated transcription from another ES, as such events have 

been described (Cross et al., 1998; Rudenko et al., 1998), though appear to be less freq

than gene conversions (McCulloch et al., 1997).   

For the wild type cells and each of the 2 BRCA2+/- cell lines, ten switched variants fro

each cell line and from each mouse were analysed to determine the switch mechanism.  Fo

the brca2-/- cell lines, all switched variants that were generated were analysed.  The 

antibiotic resistance of each sw

V

R

This analysis demonstrated that mutation of one BRCA2 allele had little effect on the 

relative ratio of switching mechanism utilised.  Indeed, the absence of both BRCA2 allel
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also appeared to have no significant effect.  It might have been predicted that an absence of 

BRCA2 would cause the in situ transcriptional switching mechanism to be primarily 

ult 

 small 

, 

ere 

, 

G 

ion 

utilised, since an absence of BRCA2 leads to an impaired ability to perform homologous 

recombination and there is no evidence that recombination is involved in in situ switching.  

For one of the brca2-/- mutants (-/-1), such a situation may be seen.  However, this res

was not replicated for the other homozygous mutant, and since a similar pattern was seen 

in BRCA2+/-1, it seems likely that this simply reflects variation in sampling of the

numbers of variants examined.  One conclusion that can be drawn from these data

however, is that homologous recombination events (ES and VSG gene conversion) w

still seen to occur for both brca2-/- mutants.  This correlates with the results of the 

recombination efficiency assay (section 4.3.5), whereby homologous recombination-

mediated integration of tubHYGtub was observed in the absence of BRCA2. 

From these results we can therefore conclude that VSG switching primarily occurs by 

homologous recombination, since defects in this pathway (through mutation of BRCA2

RAD51 or RAD51-3) substantially decreases the ability of T. brucei to switch its VS

coat.  An important observation is to note that, although reduced, homologous 

recombination can still occur when proteins involved in this pathway are removed.  This 

leads us to hypothesise that there is a RAD51, BRCA2 and RAD51-3 - independent 

recombination present at low levels in the cell, and that this may, in fact, be a single back-

up mechanism.  It seems likely, therefore, that this pathway or pathways that allows the 

cell to perform recombination in the absence of much of the homologous recombinat

machinery, also acts in VSG switching.
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  ES GC VSG GC In situ Other Total 
WT 7 2 1 0 10 

  7 1 2 0 10 
  0 0 8 2 10 

Total 14 3 11 2 30 
            

+/- 1 3 0 5 2 10 
  2 1 7 0 10 

Total 5 1 12 2 20 
            

+/- 2 6 0 4 0 10 
  7 0 3 0 10 
  6 1 3 0 10 

Total 19 1 10 0 30 
            

-/- 1 4 1 22 0 27 
  0 0 1 0 1 
  2 2 5 0 9 

Total 6 3 28 0 37 
            

-/- 2 1 5 4 0 10 
  0 0 1 0 1 
  4 0 0 0 4 

Total 5 5 5 0 15 

Table 4.14 – VSG switching mechanisms in BRCA2 mutants.  The type of switching 
mechanism used in a number of putatively clonal switched variants from wild type cells and BRCA2 
heterozygous (+/-) or homozygous (-/-) mutant cell lines are indicated.  In situ: in situ transcriptional 
switch; ES GC: expression site gene conversion; VSG GC: VSG gene conversion; Other: unknown 
mechanism. 

 
Figure 4.28 – Analysis of switching mechanism in the brca2 mutants.  Values indicate the 
mean type of switching mechanism used in a number of putatively clonal switched variants, for 
3174.2 wild type cells (WT) and the 2 independent (1 and 2) BRCA2 heterozygous (+/-) and brca2 
homozygous (-/-) mutants are shown.  Standard errors are indicated.  In situ: in situ transcriptional 
switch; ES GC: expression site gene conversion; VSG GC: VSG gene conversion; Other: unknown 
mechanism. 
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4.3.9 Analysis of genomic stability 

BRCA2 has been shown to have a critical role in the maintenance of genome integrity in 

both mammals and U. maydis (Moynahan et al., 2001;Kraakman-van der Zwet et al., 

2002;Tutt et al., 2001;Kojic et al., 2002;Patel et al., 1998;Kojic et al., 2002).  To examine 

if this is also true in T. brucei BRCA2, the molecular karyotypes of the brca2-/- mutants 

were examined after prolonged growth and compared with WT and BRCA2+/- cells.  All 

cell lines were cloned, by plating out one cell per well over 96 well plates, grown in vitro 

for approximately 290 generations, re-cloned and genomic DNA prepared from a number 

of clones for Southern analysis and pulsed field gel electrophoresis (PFGE).  Genomic 

DNA was prepared from four clones for WT cells (1-4), 3 for BRCA2+/-1 (5-7), 6 for 

e genes, one of which is telomeric and the others are 

likely to be present in subtelomeric arrays (Robinson et al., 2002). Genomic DNA from 

igure 4.29.  As 

expected, wild type and BRCA2+/- clones produced five distinct hybridising fragments, 

four of which were of constant size, as they are present in unaltered loci, and one telomeric 

copy, which lies in an inactive BES (Liu et al., 1985) and varies in size depending on 

differences in telomere tract length.  In all but one of the brca2-/- clones, at least one non-

telomeric VSG121 gene copy had been lost, with clone 18 appearing to have lost two 

copies.  This indicates the presence of chromosomal rearrangements in brca2-/- cells, 

which result in the loss of non-essential genetic material.  It is interesting to note that the 

telomeric VSG121 copy was never lost, suggesting that such chromosomal rearrangements 

infrequently affect telomeres. 

 

 

brca2-/-1 (8-13), 3 for BRCA2+/-1 (14-16) and 6 for brca2-/-1 (17-22) 

Genomic instability was initially investigated by examining the VSG121 gene family, 

which in wild type cells consists of fiv

clones of all cell lines was digested with XmnI, separated by electrophoresis on a 0.8 % 

agarose gel and transferred to a nylon membrane by Southern blotting.  The blots were 

then probed with the VSG121 ORF, the results of which are shown in f
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Figure 4.29 – VSG121 gene deletions resulting from BRCA2 inactivation.  Genomic DNA from 
wild type (WT), BRCA2+/- and brca2-/- clones was digested with XmnI, separated in 0.8 % agarose 
and Southern blotted.  The membrane was probed with DNA specific to the VSG121 ORF.  One

are 

separate intact chromosomes of T. brucei.  Genomic plugs were prepared from the same set 

es (as described in section 2.2.4).  The DNA was then 

separated on the CHEF-DR III system (Bio-Rad), using one genomic plug per lane in a 1.2 
 

Southern blotted and probed, sequentially for the genes VSG121, VSG221 and glucose-6-

phosphate isomerase (GPI) to gain a picture of rearrangements associated with specific 

genes and chromosomes.  From the ethidium-bromide staining (figure 4.30), it is apparent 

that the mutation of one BRCA2 allele has little, pronounced effect on genomic stability.  

The karyotypes from clones derived from one of the independent heterozygous mutants 

(BRCA2+/-1) appeared to be very similar to wild type cells.  However, 3 of the clones 

derived from BRCA2+/-2 (clones 14-16) appeared to display the apparent loss of a 

chromosome approximately 2.5 Mb in size.  In fact, there appears to be progressive 

shortening of the megabase chromosomes in both heterozygous mutants.  In this gel, the 

clearest resolution of the megabase chromosomes are the 4 – 5 bands ranging in size from 

~ 1.7 to 2.4 Mb.  Some shortening of at least the 3 larger bands can be seen in most of the 

BRCA2+/- clones relative to WT clones.  This BRCA2+/- phenotype appears consistent 

with haploinsufficiency seen in measuring sensitivity to phleomycin (section 4.3.4) 

(comparing clones 5-7 and 14-16 with 1-4).  The ethidium staining of the PFGs shows that 

mutation of both BRCA2 alleles generates gross chromosomal rearrangements (GCRs).  

Clones derived from one of the independent homozygous mutants (brca2-/-1; clones 8-13) 

display a continuation of the progressive shortening of chromosome length seen in the 

BRCA2+/-.  In addition, loss of some chromosome bands is apparent; for instance, in clone 

 
telomeric (TEL) and four which are likely to be present in subtelomeric arrays (Ii, Iii, Iiii and Iiv) 
shown.  Clones 1-2: wild type; clones 5-6: BRCA2+/-1; clones 14-15: BRCA2+/-2; clones 8-13: 
brca2-/-1; clones 17-22: brca2-/-2.  * indicates clones in which an internal gene copy has been lost. 
The clones are the same clones used in figure 4.30. 

To investigate these rearrangements in brca2-/- mutants further, PFGE was performed to 

of clonally derived trypanosom

% agarose gel, in 0.089 M Tris borate, 0.1 mM EDTA (TB(0.1)E) at 85 V, 1400 

seconds to 700 seconds pulse time, for 144 hours at 15 °C.  Firstly, the DNA was 

visualised by staining with ethidium bromide to examine the karyotype.  It was then 
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9, a chromosome of approximately 2.2 Mb is no longer visible.  Clones derived from the 

second independent homozygous mutant (brca2-/-2; clones 17-22) indicate a more 

dramatic display of GCRs, a highly dispersed karyotype relative to the WT and BRCA2+/- 

 19.   

e 

 size 

 

e 

.  

eduction 

l 

reduction 

idising fragment at approximately 1.2 Mb. 

, 

 become 

active 

 

G switching events that target the active ES. 

he mini and intermediate sized chromosomes of T. brucei are not resolved well in the 

PFG separation, and it is not therefore possible to see if these also undergo GCRs.  

clones.  Again, this is apparent as loss of some chromosome bands, though again the trend 

is suggestive of chromosome shortening, this being most apparent in clones 17 and

Probing for VSG121, VSG221 and GPI is displayed in figure 4.31, and revealed that th

GCRs in brca2-/- mutant clones resulted primarily from a reduction in chromosome

and, occasionally, loss of hybridising signal.  In all but 2 cases (clones 17 and 19, probed

with VSG221) the chromosomes had diminished in size.  VSG121 hybridises to 2 

chromosomes of approximately 2.1 and 2.3 Mb in WT cells, and both appear to have 

become smaller in all of the brca2-/- clones (as much as 100 kb in some cases), with clones 

17 and 19 also displaying an extra hybridising fragment at approximately 800 kb.  Th

same chromosomes also appear to have become smaller in 2-3 of the BRCA2+/- clones, 

although to a lesser extent.  The blot probed with VSG221, displays a severe size change 

for 4 of the brca2-/- clones (clones 10-12 and 18), with a reduction of as much as 500 kb

The GPI probed blot continued to confirm these findings that GCRs arose from a r

in chromosome size, with the smaller homologue of chromosome 1 reducing in size in al

brca2-/- clones and 3-4 of the BRCA2+/- clones.  Clone 9 displayed the greatest 

in size, with an approximate 400 kb reduction, whilst clones 17 and 19, again appeared 

unusual by displaying an extra hybr

The chromosome rearrangements visible when the brca2-/- clones were probed for 

VSG221 could be due to the loss of DNA sequence associated with a VSG switching event

rather than general GCRs (in particular, clones 10-12, where the chromosomes had

~ 500 kb smaller, and clones 17 and 19, where no obvious hybridisation was seen).  In 

order to determine what the cause of the rearrangements was, all the clones were analysed 

for which VSG they were expressing.  Whole cell extracts were prepared, and 

electrophoresed on a SDS-PAGE gel and probed for VSG221, which resides at the 

VSG expression site.  The resulting western blots of this analysis are displayed in figure 

4.32 and indicate that all of the clones were still expressing VSG221.  This confirms that 

none of the clones represent cells within the population that had inactivated VSG221 

expression.  This therefore means that the size alterations observed in figure 4.31 must be

due to GCRs that are separate from VS

T
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Chromosomes of the same clones were therefore separated on the CHEF-DR III system 

(Bio-Rad), using distinct conditions (a 1 % agarose gel, in 0.0445 M Tris borate, 0.5 mM  

EDTA (0.5 x TBE) at 197.2 V, 20 seconds pulse time, for 16 hours at 14 °C) that allow 

separation of smaller DNA molecules.  In this case the PFGs were only visualised by 

staining with ethidium bromide, as displayed in figure 4.33.  Remarkably, no obvious 

chromosome rearrangements were observed in the intermediate or mini-chromosomes for 

any of the clones, even those for the brca2-/- cells.   
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Figure 4.30 – Gross chromosomal rearrangements in BRCA2 mutants.  Ethidium bromi
stained PFG electrophoresis separation of intact genomic DNA from wild type (WT), BRCA2 
heterozygous (+/-) and brca2 homozygous (-/-) clones. Clones 1-4: wild type; clones 5-7 BRCA2+/-
1; clones 14-16, BRCA2+/-2; clones 8-13, brca2-/-1; clones 17-22 brca2-/-2.  Lanes containing 
marker DNA molecules (M) are shown; M

de 

1 – H. wingei, M2 – S. cerevisiae (Bio-Rad).  The clones 
are the same clones used in figure 4.28. 

 
Figure 4.31 – Gross chromosomal rearrangements in BRCA2 mutants.  Southe
PFG electrophoresis separation of intact genomic DNA from wild type (WT), BRCA2

rn blots of the 
 heterozygous 

(+/-) and brca2 homozygous (-/-) clones shown in figure 4.29. The Southern blots have been 
sequentially probed with VSG121, VSG221 and GPI (Glucose-6-isomerase).
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Figure 4.32 – Western blots of VSG221 expression in clonal cell lines.  The western blots 
isplay total protein extracts from wild type (WT), BRCA2 heterozygous (+/-) and brca2 
omozygous (-/-) clones probed with anti-VSG221 antiserum. VSG221 is visible at 47kDa, and the 

lanes represent the clones derived following extensive in vitro passaging, as depicted in figure 
4.30.  Clones 1-4: wild type; clones 5-7 BRCA2+/-1; clones 14-16, BRCA2+/-2; clones 8-13, brca2-

d
h

/-1; clones 17-22 brca2-/-2.   

 

 
Figure 4.33 – PFGs showing the intermediate and mini-chromosomes.  Ethidium bromide 

s and mini-chromosomes for wild type (WT), 
s (-/-) clones.  Clones 1-4: wild type; clones 5-7 

BRCA2+/-1; clones 14-16, BRCA2+/-2; clones 8-13, brca2-/-1; clones 17-22 brca2-/-2.  The clones 

stained PFGs show the intermediate chromosome
BRCA2 heterozygous (+/-) and brca2 homozygou

are the same clones used in figure 4.30.  
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4.4 Generation of re-expresser and over-expresser cell 

lines 
In order to determine whether or not the phenotypic defects that had been observed in the 

brca2-/- mutants were due to the loss of BRCA2, and not the result of a secondary 

mutation, it was necessary to generate re-expression cell lines.  This was performed in the 

second of the two independent brca2-/- homozygous mutants, (brca2-/-2), in both the 

Lister 427 and 3174.2 cell lines.  Re-expression constructs were generated by PCR-

amplifying the ORF of BRCA2 from Lister 427 genomic DNA (primers Tb BRCA2 for2 

(which included an HA tag) and Tb BRCA2 rev2) using Herculase DNA polymerase 

(Stratagene).  This PCR product was restriction digested with NruI and ligated into the 

plasmids pRM481 and pRM482 (R.McCulloch, gift), which had been EcoRV-digested and 

CIP treated.  This resulted in the generation of the constructs pRM481::BRCA2 and 

pRM482::BRCA2 (see figure 4.33), which contained the antibiotic resistance cassettes for 

phleomycin and G418, respectively.  These constructs allowed BRCA2 to be inserted into 

the tubulin array, where it was transcribed from the endogenous transcription.  Splicing 

and polyadenylation was provided by 5’ actin and 3’ tubulin intergenic sequences 

AD51-5 

I 

BRCA2 in the 

sen for each cell line and named 427 

BRCA2-/-/+ and 3174.2 BRCA2-/-/+. 

respectively, as opposed to the natural processing of the gene, meaning that the level of 

mRNA, or its stability, could have been altered relative to endogenous BRCA2.  

Nevertheless, re-expression by this strategy was successful for RAD51-3 and R

(Proudfoot and McCulloch, 2005). 

The constructs were excised from the plasmid backbone by restriction digestion with Xho

and XbaI, before phenol: chloroform extraction and ethanol precipitation.  Approximately 

5 µg of digested DNA was introduced into brca2-/- cells.   pRM481::BRCA2 was 

transformed into 3174.2 brca2-/- cells and pRM482::BRCA2 was transformed into Lister 

427 brca2-/- cells.  Antibiotic resistant transformants were selected by plating out 4 x 107 

cells from each transformation at 1.25 µg.ml-1 phleomycin or 2.5 µg.ml-1 G418, 

respectively, over 48 wells with 1.5 mls per well.  A number of antibiotic resistant 

transformants were recovered for each construct, and the re-introduction of 

clones was confirmed by PCR-amplification of the entire ORF using Taq DNA polymerase 

and the primers ‘Tb BRCA2 for2’ and ‘Tb BRCA2 rev’ (data not shown) and Southern 

analysis (section 4.4.1).  One transformant was cho
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Figure 4.34 – pRM481::BRCA2 and pRM482::BRCA2 constructs generated to re-express 
BRCA2.  BRCA2 was cloned into an EcoRV site between the actin intergenic (Act IR) and βα 
tubulin (βαTUB) intergenic sequences of the plasmids pRM481 and pRM482, which contain the 
antibiotic resistan
is flanked with tub

ce cassettes for phleomycin (BLE) and G418 (NEO) respectively.  The construct 
ulin intergenic regions (IR; αβ Tub and βα Tub), which allow homologous 

integration into the tubulin array, replacing an α tubulin ORF.  The size of IR and ORFs are 
indicated (in bp). 

sformation was to generate a cell line which 

contained an extra copy of BRCA2, as a means of potentially over-expressing the protein, 

e 

n at 2.5 µg.ml-1 G418, over 24 wells with 1.5 mls per well.  A number of 

antibiotic resistant transformants were recovered and the introduction of an extra BRCA2 in 

e clones was confirmed by Southern analysis (section 4.4.1).  One transformant was 

chosen and named OE BRCA2. 

4.4.1 Confirmation of BRCA2 re-expression by Southern analysis 

In order to confirm that pRM481::BRCA2 and pRM482::BRCA2 had integrated into the 

tubulin array of the cell lines 3174.2 BRCA2-/-/+, 427 BRCA2-/-/+ and OE BRCA2 as 

expected, Southern analysis was carried out.  Genomic DNA from wild type, brca2-/-, re-

expression and over-expression cell lines were all subjected to Southern analysis, in order 

to allow direct comparison.  Genomic DNA was digested with HindIII before being run out 

The re-expression construct pRM482::BRCA2 was also transformed into the wild type 

Lister 427 cell line.  The purpose of this tran

revealing information about transcription levels from the tubulin array as opposed to th

endogenous locus of BRCA2.  The construct was prepared as described above, before 

approximately 5 µg of digested DNA was transformed into wild type Lister 427 cells.  

Antibiotic resistant transformants were selected for by plating out 2 x 107 cells from the 

transformatio

th
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on a 0.8 % agarose gel and transferred to a nylon membrane by Southern blotting.  The 

blots were probed with a 378 bp region of the BRCA2 ORF and the results are shown in 

figures 4.35 and 4.36.  Two allelic variants for wild type cell lines, and the absence of 

BRCA2 in the homozygous mutants, was seen as before (section 3.8.2).  Integration of 

BRCA2 in brca2-/- mutants in both Lister 427 and 3174.2 cell lines was confirmed by a 

hybridising fragment of approximately 7.5 kb, the size expected, when taking into account 

the number of BRC repeats (section 3.8.1).  The blots were subsequently stripped and re-

probed with a region of RNA polymerase I, as a positive loading control for DNA in the 

brca2-/- sample. 

 
Figure 4.35 – Confirmation of the generation o ssers b sis.  

 
e 

ped 

f re-expre y Southern analy
Genomic DNA from (A) Lister 427 cell lines and (B) 3174.2 cell lines were digested with HindIII and 
5µg run out on a 0.8 % agarose gel.  The DNA was Southern blotted before being probed with a
378 bp region of the BRCA2 ORF. WT refers to genomic DNA from untransformed cell lines. Th
homozygous mutants are indicated by -/- and re-expressers by -/-/+.  Southern blots were strip
and re-probed with a bp fragment of the RNA polymerase I 452 bp (PolI) ORF.  

 
Figure 4.36 – Confirmation of the generation of a BRCA2 over-expresser by Southern 
analysis. Genomic DNA from Lister 427 cell lines were digested with HindIII and 5 µg run out on
0.8 % agarose gel.  The DNA was Southern blotted before being probed a 378 bp region of t
BRCA2 ORF. WT refers to genomic DNA from untransformed cell lines. Over-expressers are 
denoted by OE BRCA2.   

 a 
he 
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The addition of a third copy of BRCA2 in wild type Lister427 cells was revealed by the 

g to the re-expresser band in 

figure 4.35, in addition to the 2 endogenous BRCA2 alleles (figure 4.36).   

uivalent 

 

-

A is 

 

presence of a third BRCA2-hybridising band, correspondin

4.4.2 Confirmation of BRCA2 re-expression by RT-PCR 

To support the results of the Southern analyses, RT-PCR was carried out on the re-

expresser cell lines (as described in section 4.2.4).  A BRCA2-specific product, eq

in size to that generated in wild type and BRCA2+/- cell lines, but absent in brca2-/- cells

(figure 4.6), was seen (figure 4.37).  This confirms that BRCA2 mRNA is present in the re

expresser mutants for the cell lines 3174.2 BRCA2-/-/+ and 427 BRCA2-/-/+.  As this is 

non-quantitative PCR, it is not possible to determine if the amount of BRCA2 cDN

equivalent in the -/-/+ cells to either the WT or BRCA2+/- cells.  For the same reasons, the

RT-PCR analysis was not performed on the OE BRCA2 cell line.  

 
Figure 4.37 – Confirmation of the generation of re-expresser mutants by RT-PCR.  RT-PCR 
was carried out on cDNA generated from total RNA from Lister 427 re-expressers (427 -/-/+) and 
3174.2 re-expressers (3174.2 -/-/+).  RNA polymerase I specific primers were used to control for 
the generation of intact cDNA.  Primers specific for BRCA2 were used to show the expression of 
that gene. The negative control contains no cDNA substrate.  RT + denotes cDNA generated with 
reverse transcriptase, RT – denotes control reactions that were treated equivalently but no RT was 
added to the reactions. 

 

It is worth noting that the re-expression constructs (pRM481::BRCA2 and 

pRM482::BRCA2), both contained an N terminal HA tag.  However, expression of the 

protein was undetectable for 3174.2 BRCA2-/-/+, 427 BRCA2-/-/+ and OEBRCA2 by 

western blot analysis with two anti-HA antibodies (Sigma and Roche).  Expression of 

mRNA was shown to be present for 427 BRCA2-/-/+ by northern blot (see section 5.2.3.3). 
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4.5 Phenotypic analysis of BRCA2 re-expresser and over-

expresser cell lines 
The re-expresser and over-expresser cell lines from Lister 427 (427 BRCA2-/-/+ and OE 

t 

pe 

 

growth 

rates that were essentially equivalent to that of wild type cells, with doubling times of 8.26 

and 7.58 hours respectively, compared to 8.19 of wild type cells.  This confirms that it is 

the absence of BRCA2 which causes T. brucei brca2-/- mutants to have an increased 

 

BRCA2),  were analysed for their in vitro population doubling times, cell cycle 

progression, DNA damage sensitivity, recombination efficiency and the ability to form 

RAD51 foci.  The 3174.2 re-expresser cell line (3174.2 brca2-/-/+) was used only to 

analyse VSG switching rates. 

4.5.1 Analysis of in vitro growth 

Analysis of in vitro growth of the 427 brca2-/-/+ and OE BRCA2 cell lines was carried ou

to determine if transcription of the gene from the tubulin array alleviated the growth defect 

that was observed in the homozygous mutants, and if an extra copy of BRCA2 in wild ty

cells altered the growth rate.  The assay was carried out following the same protocol as 

described in section 4.3.1.  Three repetitions of the growth assay were carried out for each

cell line and are displayed in figure 4.38, compared with the values determined previously.  

Both the BRCA2 re-expresser and over-expresser cell lines were found to have 

population doubling time.  Providing an extra copy of BRCA2 in wild type cells, appears to

provide the cell with no growth advantage or impediment. 

 
Figure 4.38 – Analysis of in vitro growth of BRCA2 re-expressers and over-expressers.  5 ml 
cultures were set up at 5 x 104 cells.ml-1 and cell densities counted 24, 48, 72 and 96 hours 
subsequently.  Standard errors are indicated for the counts using data from three repetitions.  WT: 
wild type; +/-: heterozygote; -/-: homozygote; -/-/+: re-expresser; OE: over-expresser. 
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4.5.2 Analysis of the cell cycle 

Analysis of cell cycle progression in the 427BRCA2-/-/+ and OE BRCA2 cell lines was 

next examined.  The results of this are displayed in figure 4.39.  When BRCA2 was re-

ant 

ed, to 

le 

ult 

he 

This result appears to confirm that it is the absence of BRCA2 which causes T. brucei 

expressed, cell cycle progression occurred relatively normally, with the number of aberr

cells reducing from 11.8 % in the homozygous mutant in which the gene was integrat

4.8 % in the re-expresser cell line.  This number of aberrant cells is relatively comparab

to the 2 % found in wild type cells and 1-2 % found in the BRCA2+/- cells.  The slight 

increase in these cell types is not a significant result (see section 5.3.2), but could res

from GCRs that accumulated in the brca2-/- mutants.   

The addition of an extra copy of BRCA2 had no effect on cell cycle progression, with t

distribution of cell cycle stages being indistinct from those in wild type cells and the 

number of aberrant cells being unaltered (2.8 %). 

brca2-/- mutants to accumulate aberrant cells.   

 
Figure 4.39 – DAPI analysis of the BRCA2 mutants.  The DNA content of wild type Lister 427, 
BRCA2 heterozygous (+/-), homozygous (-/-), re-expresser (-/-/+) and over-expresser (OE) cell 
lines were visualised by DAPI.  The numbers of cells with 1 nucleus and 1 kinetoplast (1N 1K); 1 
nucleus and 2 kinetoplasts (1N 2K); 2 nuclei and 2 kinetoplasts (2N 2K); and unidentifiable cells 
(others) were counted and represented by their mean count as a percentage of the total cells 
counted. N = number of cells counted. 

ll cycle stages altered when In order to examine if the abundance of cells in different ce

BRCA2 was either re-expressed or over-expressed in the presence of damage, the DNA 

content of 427 BRCA2-/-/+ and OE BRCA2 cell lines was analysed after phleomycin 
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treatment, as described in section 4.3.3.  The results are displayed in figure 4.40 and 

demonstrate that when BRCA2 was re-expressed the cell cycle progression appe

occur normally, with the number of aberrant cells reducing from 19.4 % in brca2-/-2 (at 

1.0 µg.ml

ars to 

 

 

The addition of an extra copy of BRCA2 had no effect on abundance of cells in different 

cell cycle stages in the presence of damage, with the phenotype observed being indistinct 

rca2-/- mutants to accumulate 1N 2K and aberrant cells in the presence of DNA damage.  

Re-expression of BRCA2 therefore appears to alleviate the brca2-/- mutants’ impairment 

lowing DNA damage to 

-1 of phleomycin) to 6.5 % in the re-expresser cell line, which is comparable to

the 5.5 % found in wild type cells.  Similarly, the number of 1N 2K cells decreased from 

30.1 % in brca2-/-2 to 15.1 % in the re-expresser cell line, indicating progression through 

G2 phase.  Finally, the number of 1N 1K cells was seen to increase, from 45 % in brca2-/-

2 to 72.3  % in the re-expresser cell line, which is again comparable to the 76.3 % found in

wild type cells. 

from that of wild type or BRCA2+/- cells. 

This result appears to confirm that it is the absence of BRCA2 which causes T. brucei 

b

in progression through nuclear DNA replication, most likely by al

be repaired. 
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Figure 4.40 – DAPI analysis of BRCA2 mutants after DNA damage. The DNA content of 
BRCA2 heterozygous (+/-), homozygous (-/-), re-expresser (-/-/+) and over-expresser (OE) mutant 
cell lines were visualised by DAPI and compared with wild type Lister 427 cells, after cells had 

een damaged by phleomycin.  The numbers of cells with 1 nucleus and 1 kinetoplast (1N 1K); 1 
eus and 2 kinetoplasts (1N 2K); 2 nuclei and 2 kinetoplasts (2N 2K); and cells that do not fit 

into the expected classifications cells (others) were counted and represented by their mean count 
pe, heterozygous cells, re-expresser and over-
µg.ml-1 of phleomycin, whilst homozygous cells 

-1 -1 ed. 

n 

 

 

 cells.  This phenotype is not entirely reverted 

to that of WT cells, but again, this could be due to GCRs that accumulated in the brca2-/- 

mutants. 

b
nucl

as a percentage of the total cells counted.  Wild ty
expresser cell lines were grown in media with 1.0 
were grown in media with 0.25 µg.ml  and 1.0 µg.ml  of phleomycin.  N = number of cells count

In order to examine if re-expression of BRCA2 alleviated the brca2-/- mutants’ difficulty i

segregating the nuclei during mitosis, the number of 2N 2K cells with incompletely or 

completely separated nuclei in 427 BRCA2-/-/+ mutants was analysed as described in 

section 4.3.3 (OEBRCA2 was not assayed).  The results are displayed in figure 4.41, 

relative to those generated previously, and demonstrate that when BRCA2 is re-expressed,

mitosis is able to progress at a similar rate to that of wild type cells, as the number of 

incompletely segregated nuclei reduced from the 37.6 % seen in the brca2-/-2 mutant to 

16.3 % in the re-expresser cell line, which is relatively comparable to the 12.1 %, 9.6 %

and 11.5 % seen in wild type and BRCA2+/-
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Figure 4.41 – Analysis of the number of 2N 2K cells that have completed nuclear division.  
2N 2K cells in BRCA2 heterozygous (+/-), homozygous (-/-) and re-expresser (-/-/+) mutant c
lines were visualised by DAPI and compared with wild type Lister 427 cells.  The cells were 
analysed for the number that had completed nuclear division (complete), and those that were still 
dividing the nucleus (incomplete). N = number of cells co

ell 

unted. 

 

pairment in growth 

at 0.0003 % MMS, where WT and BRCA2+/- cells had 39 – 54 % survival.  More 

y 

 

4.5.3 Analysis of DNA damage sensitivity 

Analysis of DNA damage sensitivity in the 427 BRCA2-/-/+ and OE BRCA2 cell lines was 

the next phenotype examined.  To do this, the clonal survival and Alamar Blue assays were 

carried out following the same protocols as described in section 4.3.4.  The clonal survival 

assay, using MMS as a DNA damaging agent, was performed only for 427 BRCA2-/-/+ 

cells, and the results are displayed in figure 4.42 alongside the wild type, BRCA2 

heterozygous and brca2 homozygous cell lines for comparison.  The results demonstrate 

that re-expression of BRCA2 in the brca2-/-2 mutant resulted in an elevated resistance to 

MMS relative to WT or BRCA2+/- cells.  There was little significant im

tellingly, at 0.0004 % MMS, where the WT and BRCA2+/- cells showed only 12 – 24 % 

survival, more than 60 % of BRCA2-/-/+ cells survived MMS treatment.  This was initiall

taken as evidence for higher levels of BRCA2 expression from the tubulin array compared 

with the endogenous locus, and perhaps that elevated levels of BRCA2 would enable DNA

damage to be repaired faster than in wild type cells, through enhanced ability to transport 

RAD51 to the sites of DNA damage, or enhancement of RAD51 strand exchange. 
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Figure 4.42 – Analysis of DNA damage sensitivity in the BRCA2 mutants.  Each strain was 
plated at one cell per well in five 96 well plates, each containing a different concentration of MMS: 
0, 0.0001, 0.0002, 0.0003 and 0.0004 %. Four repetitions were carried out for each cell line.  The 
mean number of cells to grow through for each cell line at each concentration was calculated and 
represented as a percentage of the number that had grown through on the 0 % plate for that cell 
line.  Standard errors are indicated and the data is presented for the two independent heterozygous 
mutants (+/- 1, 2), the two independent homozygous mutants (-/- 1, 2), the re-expressers (-/-/+) and 
the wild type Lister 427 cell line. 

 

In order to investigate this phenotype further, both the 427 BRCA2-/-/+ and OEBRCA2 

cells were examined using the Alamar Blue assay (see section 2.1.6.2) using both MMS 

and phleomycin as DNA damaging agents.  These results are displayed in figures 4.43 and 

4.44, and confirm that the BRCA2-/-/+ cell line is indeed more resistant to MMS than wild 

type cells, with a mean IC50 of 0.0031 % MMS compared to 0.0015 % in WT cells.  Not 

only this, but the re-expresser cell line is also more resistant to phleomycin than wild type 

cells, with a mean IC50 of 0.144 µM compared to 0.095 µM in WT cells.  Interestingly, 

when an extra copy of BRCA2 is expressed from the tubulin array locus, the cells do not 

display an advantage over wild type cells in terms of DNA damage sensitivity: the IC50s 

determined for both MMS and phleomycin in the OEBRCA2 cells are indistinguishable 

from WT or BRCA2+/- cells.  This therefore leads us to reject the initial hypothesis that 

BRCA2 is transcribed at a higher level in the tubulin array than in the endogenous locus, 

and the reason for the 427 BRCA2-/-/+ mutant’s advantage over wild type cells in terms of 

DNA damage sensitivity must therefore be explained by another phenomenon. 
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Figure 4.43 – IC50 of T. brucei BRCA2 mutants exposed to MMS.  Wild type, BRCA2+/-, brca2-
/-, BRCA2-/-/+ and OE BRCA2 cell lines were placed in serially decreasing amounts of MMS and 

owed to grow for 48 hours, before the addition 24 hours, the 
duction of Alamar Blue was measured by the amount of fluorescent resorufin generated.  Values 
e the m

 

all
re
ar

of Alamar Blue.  After a further 

ean IC50s from 3 experiments; bars indicate standard error. 

 
Figure 4.44 – IC50 of T. brucei BRCA2 mutants exposed to phleomycin.  Wild type, BRCA2+/-, 
brca2-/-, BRCA2-/-/+ and OE BRCA2 cell lines were placed in serially decreasing amounts of 
phleomycin and allowed to grow for 48 hours, before the addition of Alamar Blue.  After a further 24 
hours, the reduction of Alamar Blue was measured by the amount of fluorescent resorufin 
generated.  Values are the mean IC50s from 3 experiments; bars indicate standard error. 

One explanation could be that a mutation could have arisen during the passaging of the 

brca2-/- cells that resulted in increased resistance to MMS and phelomycin.  Indeed, 

mutants with increased resistance to MMS have previously been reported in mismatch 

repair (Glaab et al., 1998), amino acid biosynthesis (Kafer, 1987) and p53 function (Kuo et 

al., 1997).  Whether the same mutations lead to phleomycin resistance has not been 
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documented.  Another possibility is that the uptake systems for the drugs could have been 

eased transfer across the parasites membrane.  However, given 

 that 

 

ecombination at a low level, presumably through another 

possibly unknown pathway.  It could therefore be this pathway which allows this increased 

a2-/- 

gents, 

f 

ation efficiency assay were carried out for each cell line and are shown in 

figure 4.45, alongside the transformation efficiency rates for wild type, BRCA2 

d 

ncy 

 mutants to 

be impaired in their ability to transform constructs into their genome.  Providing an extra 

mutated, resulting in a decr

that MMS and phleomycin damage DNA by distinct modes of action, it seems highly 

unlikely that the cells could have accumulated mutations which resulted in resistance to 

both of these agents.  Similarly, the structure of the drugs is highly distinct, suggesting

uptake is likely to be via different pathways.  

Given the above, another possibility is that during the prolonged growth of the brca2-/- 

mutants, another DNA repair pathway has become more active than usual.  Following the 

re-integration of BRCA2 and re-instalment of active homologous recombination, cells 

could display an increased resistance to DNA damage if both of these pathways were 

active at the same time.  We already know that in the absence of BRCA2, cells are still

able to perform homologous r

resistance to DNA damaging agents to exist.  Having said this, this explanation is also not 

truly satisfactory, since it would be expected that the brca2-/- cells would themselves 

display enhanced tolerance to DNA damage, and this was not seen. 

Since the re-expresser cell line was generated in only one brca2-/- mutant cell line, it 

would be interesting to generate a re-expresser cell line in the other independent brc

mutant cell line in order to see if this phenomenon was again produced.  Nevertheless, 

despite the complexities of these results, we can still be confident that it is the absence of 

BRCA2 which causes T. brucei brca2-/- mutants to be sensitive to DNA damaging a

since re-expression reverts the phenotype. 

4.5.4 Analysis of recombination efficiency 

Analysis of recombination efficiency was next examined in the 427 BRCA2-/-/+ and OE 

BRCA2 cell following the same protocol described in section 4.3.5.  Three repetitions o

the transform

heterozygous and brca2 homozygous cell lines for comparison.  Both the re-expresser an

over-expresser cell lines were found to generate transformants at essentially equivalent 

frequencies to that of wild type and BRCA2+/- cells, with mean transformation efficie

rates of 4.27 and 3.80 generated, respectively, compared to 4.53 in wild type cells.  These 

results confirm that it is the absence of BRCA2 which causes T. brucei brca2-/-
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copy of BRCA2 in wild type cells provided the cells with no detectable advantage over 

wild type cells. 

 
Figure 4.45 – Recombination efficiency in BRCA2 mutants.  Values are mean numbers of 
transformants obtained per 106 cells transformed; error bars are shown from 3 repetitions.  T
data are presented for two independent heterozygous mutants (+/-), two independent homozygous 
mutants (-/-), re-expressers (-/-/+), over-expressers (OE) and wild type Lister 427 cells (427).  

 

he 

ction 

e 

4.5.5 Analysis of the ability to form RAD51 foci 

To confirm that BRCA2 is central to the ability of T. brucei to form RAD51 sub-nuclear 

foci following DNA damage, the 427 BRCA2-/-/+ cell line was treated with phleomycin 

and RAD51 localisation examined by indirect immunofluorescence, as described in se

4.3.6.  256 cells were counted and scored for the number of foci they contained.  Thes

results are displayed in table 4.15 and examples of these foci are shown in figure 4.46.  The 

BRCA2 re-expresser cell line was found to form RAD51 foci at least as efficiently as wild 

type cells.  When the cells were treated with phleomycin to introduce DNA double strand 

breaks, the majority of cells (85 %) were found to contain RAD51 foci.  This is slightly 

higher than was found for WT and BRCA2+/- cells (75-80 %).  This finding could simply 

be due to counting differences because these experiments were performed on separate 

occasions.  Another hypothesis could be that this effect is due to a hyper response to DNA 

induced damage, which could fit with the increased level of sensitivity (see section 4.3.4).     
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Number of foci (%) 
 BLE 0 1 2 3 4 5 6 or more

-/-/+ 0.0 87.5 3.5 2.3 2.3 1.9 1.6 0.8 
 1.0 14.8 10.5 15.6 14.8 13.7 13.3 17.2 

 
Table 4.15 – RAD51 foci formation in BRCA2-/-/+ mutants.  The percentages of cells showin
foci at given concentrations of phleomycin (BLE) are shown.  Phleomycin concentrations are 
shown in µg.ml

g 

 -1.  Boxes shaded in light yellow contain foci, whilst boxes shaded in bright yellow
contain the highest percentage of foci. 

 

 
Figure 4.46 – RAD51 immunolocalisation in BRCA2-/-/+ mutants.  Representative images of T. 
brucei cells following growth in 1.0µg.ml-1 phleomycin for 18 hours are shown.  Each cell is shown 
in differential interface contrast (DIC), after staining with DAPI and after hybridisation with anti-
RAD51 antiserum and secondary hybridisation with Alexa Fluor 488 conjugate (Alexa 488).  
Merged images of DAPI and Alexa 488 cells are also shown.  BRCA2 re-expresser cells (-/-/+) are 
shown. 

 

4.5.6 Analysis of VSG switching 

Finally, analysis of VSG switching was performed in the 3174.2 BRCA2-/-/+ cell line.  

The assay was carried out following the same protocol as described in section 4.3.8, with 

ng 

ally equivalent to that of BRCA2 heterozygous mutants, with a 

 x 10-7 

5 x 10-

 

three repetitions of the assay.  The results of this are shown in figure 4.47, alongside the 

VSG switching frequencies for wild type, BRCA2 heterozygous and brca2 homozygous 

cell lines, to allow for comparison.  The re-expresser cell line displayed a VSG switchi

frequency that was essenti

mean VSG switching frequency of 11.31 x 10-7, compared to 11.37 x 10-7 and 11.67

in BRCA2+/- 1 and 2, respectively.  This was a significant increase compared to 0.5
7 in the brca2-/-2 from which the re-expresser was generated.  The profile of the VSG

switching mechanisms were not examined. 
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Figure 4.47 – VSG switching frequencies in BRCA2 mutants.  Values shown are the average 
switching frequencies for 3174.2 wild type cells (WT), the 2 independent (1 and 2) BRCA2 
heterozygous (+/-) and homozygous (-/-) mutants and the re-expresser (-/-/+) mutants.  Data are 
from at least 2 experiments and standard error is indicated by bars. 

 

4.6 Summary 
The aim of this chapter was to determine if BRCA2 plays a role in DNA damage repair, 

recombination or VSG switching in T. brucei.  To do this, a reverse genetics approach 

taken and homozygous mutants generated.  brca2-/- T. brucei bloodstream stage cells w

shown to be viable, indicating that BRCA2 is not essential in this life cycle stage, as has

previously been found for RAD51 and the RAD51-related genes RAD51-3, RAD51-5 and 

DMC1.   

Mutation of BRCA2 caused a growth d

was 

ere 

 

efect, observed by increased population doubling 

times in vitro and in vivo.  DNA content analysis of brca2-/- mutants revealed an 

notypes 

 

accumulation of cells with aberrant DNA content and an increase in the proportion of cells 

that were in the process of nuclear DNA segregation during mitosis.  These phe

were not observed in other T. brucei recombination mutants, most notably RAD51, 

suggesting that BRCA2 has a role in the regulation of cell division.  An interpretation of 

this is that BRCA2 mutation causes impaired replication or segregation of T. brucei 

nuclear DNA, but without a cell cycle stall, leading to aberrantly early cytokinesis and the

accumulation of cells with incorrect DNA content. 
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brca2-/- mutants were also shown to have a number of DNA repair and recombination 

impairments.  The mutants displayed genomic instability, detectable by gross chromosomal 

rearrangements in the megabase chromosomes, at least some of which arises due to 

deletions within the VSG arrays.  Interestingly, the smaller chromosome classes of T. 

brucei appeared not to be susceptible to such instability.  brca2-/- mutants were impaired 

in their ability to repair DNA damage, induced by both MMS and phleomycin, and in the 

ation, 

, since re-localisation of this protein to 

ub-nuclear foci following phleomycin damage was compromised. 

 

served.  This 

G switching.  

The re-expression of BRCA2 confirmed the direct role of the protein in all the above 

results, whilst over-expression of BRCA2 had no detectable effect in any of the phenotypes 

assayed. 

 

ability to integrate transformed DNA constructs into their genome.  Both phenotypes are 

consistent with a role for BRCA2 in T. brucei DNA repair and homologous recombin

due to an impairment in the interaction with RAD51

s

Finally, brca2-/- mutants displayed a reduced ability to switch their VSG coat.  The extent

of this phenotype was highly reminiscent of rad51-/- and rad51-3-/- mutants, both in the 

level of impairment and in the finding that all modes of switching appeared to be affected, 

with reduced levels of gene conversion and in situ switching mechanisms ob

result highlights the importance of homologous recombination events in VS
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CHAPTER 5 
 
 

 
Complementation of brca2-/- 

mutants with variants of BRCA2 
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5.1 Introduction 
In the previous chapter, brca2-/- mutants were generated in bloodstream stage T. brucei 

ell cycle 

 

.  

 

 McCulloch, 

2005;Robinson et al., 2002). 

domain, 

l. 

o BRCA2 homologues 

in other eukaryotes such as U. maydis Brh2 (Lo et al., 2003;Kojic et al., 2002).  In 

of a 

 

2004;Kojic et al., 2005;Zhou et al., 2007).  In contrast to this broad conservation, little 

tive CDK 

o 

e 

tempts 

and shown to display impaired growth, both in vitro and in vivo; replication or c

defects; genomic instability; sensitivity to MMS and phleomycin induced damage; an

impaired ability to introduce constructs into their genome; and a reduction in VSG 

switching frequency.  In previous research, rad51-/- and rad51-3-/- mutants were 

generated (McCulloch and Barry, 1999;Proudfoot and McCulloch, 2005) and displayed 

broadly comparable phenotypes, consistent with impaired DNA repair and recombination

The striking exception to this is the cell cycle defects that were observed in brca2-/- cells,

as this phenotype has not previously been displayed in any of the recombination mutants 

generated in T. brucei, including rad51-5-/- and mre11-/- (Proudfoot and

The structure of T. brucei BRCA2 was examined (see Chapter 3) and shown to contain an 

unusually high number of BRC repeats.  Furthermore, the DNA binding domain (DBD) in 

T. brucei BRCA2 was predicted to contain all 5 conserved motifs; an α helical 

three OB domains and a tower domain.  This is contrary to the prediction made by Lo et a

2003, whereby the OB3 domain was thought to be absent, similar t

addition, the DBD domain was also predicted to function in a similar manner to higher 

eukaryotes, due not only to conservation of the DBD motifs, but also to the presence 

DSS1 homologue.  Indeed, the DBD domain in U. maydis Brh2 has been shown to 

function in a similar manner to that of BRCA2 in higher eukaryotes, where a functional 

homologue of DSS1 has also been shown to exist (Kojic et al., 2003;Kojic and Holloman,

evidence was available for a C terminal RAD51 binding motif, apart from a puta

binding motive, leaving the question of whether T. brucei BRCA2 could bind RAD51 

bimodally.   

In this chapter, we wanted to investigate if the whole protein was needed for BRCA2 t

function, or if certain motifs could function alone.  In particular, we wished to localise th

region of the protein which was responsible for the unusual phenotype of a cell cycle 

defect, and to ask if this was separable from the DNA repair function.  To do this, at

were made to generate mutants expressing various truncations of the protein.   
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Initially, it was hypothesised that the unusually high number of BRC repeats in T. brucei 

BRCA2 was a consequence of the high levels of recombination needed by T. brucei during

antigenic variation.  This hypothesis was tested by attempting to generate mutants wit

reduced number of BRC repeats. 

This chapter therefore describes the generation of cell lines with various truncations of 

BRCA2 expressed, in bloodstream stage T. brucei.  The importance and contribution o

specific motifs within BRCA2 for DNA d

 

h a 

f 

amage repair, cell cycle progression, 

recombination and VSG switching were then tested using a number of assays. 

5.2 Generation of mutants with reduced numbers of BRC 

repeats 
Given the high number of BRC repeats in T. brucei BRCA2, and its function in VSG 

her 

es were attempted, including utilising the naturally occurring low 

ll 

 

ction 3.8.1).  Indeed, this phenomenon appears to be potentially unique to T. 

brucei amongst the Trypanosoma.  T. congolense TREU 1457 and T. vivax ILDAR 1 

BRCA2 homologues have been shown to possess 2 and 1 BRC repeats respectively. 

 

erated by 

PCR-amplifying the ORF of T. vivax BRCA2 from T. vivax ILDAR 1 genomic DNA, using 

erculase DNA polymerase (Stratagene) and the primers TvivBRCA2for2 (which included 

a HA tag) and TvivBRCA2rev2.  This PCR product was restriction digested with NruI and 

id pRM482 (R. McCulloch, gift), which had been EcoRV-digested 

e generation of the construct pRM482::T. vivax BRCA2 

(figure 5.1), which contained the antibiotic resistance cassette for G418, allowing selection 

for insertion into the tubulin array, where it was transcribed from the endogenous 

switching, we wanted to examine why the protein contains so many BRC repeats, since 

BRCA2 homologues in U. maydis and C. elegans are able to function similarly to hig

eukaryotes with only 1 BRC repeat (Kojic et al., 2002;Martin et al., 2005).  A number of 

different approach

number of BRC repeats in BRCA2 orthologues from other Trypanosoma species, as we

as more complicated cloning methods.  

5.2.1 Generation of a re-expresser line with T. vivax BRCA2 

It has been demonstrated that not all kinetoplastid BRCA2s have a high number of BRC

repeats (see se

The first strategy to generate BRCA2 with reduced numbers of BRC repeats was to express

T. vivax BRCA2 in the second of the two independent brca2-/- homozygous mutants 

(brca2-/-2) generated in the Lister 427 cell line.  An expression construct was gen

H

ligated into the plasm

and CIP treated.  This resulted in th
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transcription (as was performed for BRCA2-/-/+, section 4.4).  Splicing and 

polyadenylation of the BRCA2 mRNA was provided by 5’ actin and 3’ tubulin interge

sequences, respectively, as opposed to the natural processing signals of the gene. 

The pair-wise comparisons shown in section 3.6 demonstrated that the T. brucei BRCA

polypeptide shared 26.2 % sequence identity and 35.2 % sequence similarity with the T.

vivax BRCA2 polypeptide.  The single T. vivax BRC repeat, however, contains 31.4 % 

sequence identity and 51.4 % sequence similarity with the 14 BRC repeats in T. bruce

BRCA2 and contains all the critical residues as highlighted by Lo et al., 2003

nic 

2 

 

i 

 (section 

3.7.1), demonstrating that the BRC repeat of T. vivax should be able to interact with 

RAD51.  However, the possibility remains that the T. vivax BRC repeats may not be able 

to interact with the T. brucei RAD51.  Further investigations however, demonstrate that the 

T. brucei and T. vivax RAD51 polypeptides share 71.7 % sequence identity and 78.8 % 

sequence similarity, indicating a high probability of interaction (see section 5.3.5, figure 

5.19 and table 5.9 for further discussion). 

 
Figure 5.1 – pRM482::T. vivax BRCA2 construct generated to express T. vivax BRCA2 in 
brca2-/- mutants.  T. vivax BRCA2 was cloned into an EcoRV site between the actin intergen
(Act IR) and βα tubulin (βαTUB) intergenic sequences of the plasmid pRM482, which contains the 
ORF encoding neomycin phosphotransferase, providing resistance to the antibiotic G418 (NE
The construct is flanked with tubulin intergenic regions (IR; αβ Tub and βα Tub), which allow 
homologous integration into the tu

ic 

O).  

bulin array, replacing an α tubulin ORF.  The size of IR and 
ORFs are indicated (in bp). 

The construct was excised from the plasmid backbone by restriction digestion with 

spOMI and XbaI, before phenol:chloroform extraction and ethanol precipitation.  

Approximately 5 µg of digested DNA was transformed into the Lister 427 brca2-/-2 

mutant cell line.   Antibiotic resistant transformants were selected by plating out 4 x 107 

P

cells from the transformation at 2.5 µg.ml-1 G418, over 48 wells with 1.5 mls per well.  

One G418 resistant transformant was recovered, and the introduction of T. vivax BRCA2 

was confirmed by PCR-amplification of the entire ORF using Taq DNA polymerase and 
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the primers ‘TvivBRCA2for2’ and ‘TvivBRCA2rev2’ (data not shown) and Southern 

analysis (section 5.2.3.1).  This transformant was named T. vivax BRCA2-/-/+. 

C 

h 

 of BRCA2, up to and including the first few BRC repeats.  The prediction was 

that when this construct was transformed into BRCA2+/- mutants it should be capable of 

 construct 

eat 

 of 

 

  A 

gned 

n site and 21 bases of 

sequence that was complementary to amino acids 18-26 of each BRC repeat.  A third 

ligonucleotide primer (3'VARTAG) was also designed.  This contained the same non-

BRCA2 sequence and restriction site present in 3'VARPLUSTAG, so it could only PCR 

amplify from products generated by the primer pairs 5’BRC VAR and 3'VARPLUSTAG.  

The purpose of using 3 oligonucleotide primers in this reaction was to utilise tagged MVR 

(mini-satellite variant repeat) mapping, as described in section 3.8.1.1, which allows larger 

numbers of repeats to be amplified.   

In the PCR reactions, the oligonucleotide primers 5’BRC VAR and 3'VARTAG were used at 

5 µM, whilst the oligonucleotide primer 3'VARPLUSTAG was used at a lower 

concentration of 0.5 µM, in order to quickly become exhausted.  Once amplification had 

occurred with the primer pairs 5’BRC VAR and 3'VARPLUSTAG, amplification could then 

occur using the primers 5’BRC VAR and 3'VARTAG.  This tagged MVR mapping method 

5.2.2 Attempts at creating mutants with reduced numbers of BR

repeats 

The second strategy to reduce the number of BRC repeats in BRCA2, was to use a 

modified version of the ∆ BRCA2::PUR construct, in which the 3’ flank was replaced wit

the 5’ end

generating transformants with varying numbers of BRC repeats, due to the

integrating into the endogenous copy of BRCA2 at various positions in the BRC rep

array by homologous recombination. 

To generate this construct, oligonucleotide primers were designed to amplify the 5’ end

the BRCA2 ORF from Lister 427 genomic DNA, which resulted in a number of different

products being generated that contained varying numbers of BRC repeats (figure 5.2).

forward oligonucleotide primer (5’BRC VAR) was designed, which contained an HpaI 

restriction site, a methionine, an HA tag and 21 bases of sequence that was homologous to 

the start of BRCA2.  A reverse oligonucleotide primer (3'VARPLUSTAG) was desi

that contained 14 bases of non-BRCA2 sequence, an XbaI restrictio

o

was preferable for generating this product, as using 2 oligonucleotide primers at a higher 

concentration would be expected to preferentially amplify smaller numbers of repeats.  In 

addition to the primers, 25 µl MVR PCR reactions contained 2.5 U of Taq DNA 
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polymerase, 2.5 U of Herculase DNA polymerase, 2.5 µl of 10 x Herculase reaction buff

and 0.5 mM Mg

er 

Cl2 (ABgene).  PCR was performed for 28 cycles of 95 °C for 1 minute, 55 

C for 1 minute and 72 °C for 2.5 minutes, and the products separated by electrophoresis 

on a 1.5 % agarose gel. 

°

 
Figure 5.2 – Strategy for obtaining the 5’ end of the BRCA2 ORF containing varying 
numbers of BRC repeats.  PCR amplification of the 5’ end of BRCA2 was generated by tagged 
MVR (mini-satellite variant repeat) mapping, using the oligonucleotide primers 5’BRC VAR, 
3’VARPLUSTAG and 3’VARTAG.  The tagged MVR mapping should generate variou
products containing different numbers of BRC repeats.   

 
The MVR-PCR generated a ladder of PCR products containing the 5’ end of BRCA2 

including various numbers of BRC repeats (data not shown).  Products with 1 and 4 BRC 

repeats were gel extracted and restriction digested with HpaI and XbaI.  These product

were then cloned into the ∆ BRCA2::PUR construct that had been restriction digested w

the same enzymes.  This generated the constructs ∆ BRCA2::PURb1 and ∆ 

BRCA2::PURb2 containing 1 and 4 BRC repeats respective

s sized 

s 

ith 

ly (figure 5.3). 
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Figure 5.3 – Generation of constructs for transforming into BRCA2+/- mutants.  Restriction 

RC repeats by recombination.  Sizes of the 
onstructs were generated by modifying the ∆ 

d 
1 

 and 
 

I 

proximately 5 

µg of digested DNA was transformed into Lister 427 BRCA2+/-2 cells.   Antibiotic 

resistant transformants were selected by plating out 4 x 107 cells from each transformation 

at 2.5 µg.ml-1 G418, over 48 wells with 1.5 mls per well.   

Genomic DNA was prepared from 24 of the resulting transformants (12 from ∆ 

BRCA2::PURb1 and 12 from ∆ BRCA2::PURb2) and MVR mapping was performed, as 

described in section 3.8.1.1 to determine the number of BRC repeats.  These constructs 

should have integrated into the endogenous copy of BRCA2 by homologous recombination, 

creating mutants with varying numbers of BRC repeats by recombining at different repeats 

(see figure 5.4). However, all of the transformants analysed had retained all twelve BRC 

repeats, suggesting that all recombination events had failed to reduce the number of BRC 

repeats in BRCA2, instead recombining preferentially with the most N-terminal BRC 

repeat. 

maps of the constructs used for the reduction of B
individual components are shown in base pairs.  C
BRCA2::PUR construct (top), replacing the 3’ flank with the 5’ end of the BRCA2 ORF.  5’ flank an
3’ flank correspond to the regions upstream and downstream of the BRCA2 ORF.  In constructs b
and b2, the 3’ flank is replaced by 5’ ends corresponding to the start of the BRCA2 ORF up to
including 1 or 4 BRC repeats (represented by red bars).  αβ Tub: αβ tubulin intergenic region
(processing signal).  ACT IR: Actin intergenic region (processing signal.  PUR: puromycin 
resistance gene ORF.   

The constructs were excised from the plasmid backbone by restriction digestion with Xho

and XbaI, before phenol:chloroform extraction and ethanol precipitation.  Ap
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Figure 5.4 – Recombination strategy used to obtain cells with reduced numbers of BRC 
repeats.  5’ flank corresponds to the region upstream of the BRCA2 ORF, whilst the 5’ end 
corresponds to the start of the BRCA2 ORF up to and including 1 or 4 BRC repeats (represented 
by red bars).  αβ Tub: αβ tubulin intergenic region (processing signal).  ACT IR: Actin intergenic 
region (processing signal.  PUR: puromycin resistance gene ORF.  The construct should integrate 
into the endogenous copy of BRCA2 when introduced into BRCA2+/- mutants, recombining 
between the 5’ flank and various BRC repeats.  This should result in the generation of 
transformants with various numbers of BRC repeats.   

The reasons that this approach failed are unclear.  However, it could be speculated that th

mbination preferentially at the N-terminal BRC 

peats. 

iven the failure of the above approach, a third strategy to reduce the number of BRC 

repeats in BRCA2 was attempted in which the re-expresser construct (pRM482::BRCA2) 

was i E. coli e 

 

).  

e 

transformants which had retained all of the BRC repeats had a growth advantage over 

those with reduced BRC repeats, which were out competed during recovery.  Alternatively, 

the plasmid flank sequence causes reco

re

G

introduced into w ld type  cells (DS801, recA+) in the expectation that th

recombination machinery of the bacteria would reduce the number of BRC repeats.  

Approximately 1 ng of uncut pRM482::BRCA2 was transformed into DS801 E. coli cells 

by electroporation (section 2.10).  Only 14 transformants were obtained, and all were 

analysed for the number of BRC repeats in BRCA2 by MVR-PCR (section 3.8.1.1).  In 2 of 

the transformants, all 12 BRC repeats were retained, whilst the remaining 12 transformants

were found to have lost the entire plasmid (as evidenced by the lack of any plasmid DNA

These results suggested that this strategy was also not going to prove to be a successful 

method on reducing the number of BRC repeats in BRCA2. 

5.2.3 Generation of a re-expresser line with 1 BRC repeat 

The final strategy employed to reduce the number of BRC repeats in BRCA2 was to 

generate altered versions of BRCA2 by cloning methods.  To do this the 5’ end of the 

BRCA2 ORF was PCR-amplified from Lister 427 genomic DNA, using Herculase DNA 
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polymerase (Stratagene) and the oligonucleotide primers BRCVAR5’5 and BRCVAR5’3 

(figure 5.5).  BRCVAR5’5 consisted of an NruI restriction site, a methionine, an HA tag 

and 21 bases of sequence homologous to the start of the ORF.  BRCVAR5’3 consisted of 

21 bases of sequence that was compleme  to the re mediately upstream of the 

first BRC repeat; this oligonucleotide w phoryla e 5’ end

The 3’ end of  was similarly PCR-amplified using the primers BRCVAR3’5 and 

nce 

ike 

osphorylated at the 5’ end.  The 

f 

 

fragment of 2882 base pairs, corresponding to amplification of the 3’ end, including only 

own).  Amplification of products from the 3’ 

cloned in order to recover successfully ligated products.  The ligated product was excised 

from the TOPO vector by restriction digesting with NruI and was subsequently ligated into 

 XbaI, before phenol:chloroform extraction and ethanol 

ell.  

1 

 

y 

ntary gion im

as phos ted at th . 

BRCA2

BRCVAR3’3.  The oligonucleotide primer BRCVAR3’5 consisted of 24 bases of seque

that was homologous to the 8 amino acids immediately upstream of each BRC repeat; l

BRCVAR5’3, this oligonucleotide was also ph

oligonucleotide primer BRCVAR3’3 consisted of an NruI restriction site and 24 bases o

sequence that was complementary to the end of the BRCA2 ORF. 

PCR-amplification of the 5’ end yielded a single DNA fragment of the expected 215 base

pairs (data not shown).  PCR-amplification of the 3’ end yielded only a single DNA 

the most C terminal BRC repeat (data not sh

end with more than 1 BRC repeat were unable to be generated, despite numerous efforts. 

Both the above PCR products were gel-extracted and ligated together using the 

phosphorylated ends of the PCR products.  This ligation reaction was subsequently TOPO 

the plasmid pRM482 (R. McCulloch, gift), which had been EcoRV-digested and CIP 

treated.  This resulted in the generation of the construct pRM482::1BRC BRCA2, which 

contained the antibiotic resistance cassette for G418 and allowed integration into the 

tubulin array.  The construct was excised from the plasmid backbone by restriction 

digestion with XhoI and

precipitation.  Approximately 5 µg of digested DNA was transformed into Lister 427 

brca2-/-2 cells.  Antibiotic resistant transformants were selected by plating out 4 x 107 

cells from each transformation at 2.5 µg.ml-1 G418, over 48 wells with 1.5 mls per w

Two G418 resistant transformants were recovered, and the introduction of BRCA2 with 

BRC repeat was confirmed by PCR-amplification of the entire ORF using Taq DNA 

polymerase and the primers ‘TbBRCA2for2’ and ‘TbBRCA2rev2’ (data not shown).  This

revealed the presence of a DNA fragment of the expected size, which was significantly 

smaller than the product generated from WT genomic DNA.  This result was subsequentl
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confirmed by Southern analysis (section 5.2.3.1), and one of these transformants was 

selected and named 1 BRC BRCA2-/-/+. 

 
Figure 5.5 – Cloning strategy used to generate the construct pRM482::1BRC BRCA2.  The 5’
and 3’ ends of BRCA2 were PCR-amplified and ligated together using phosphorylated primers.  
Oligonucleotide primers are depicted by black triangles, (P) indicates that the primer was 5’ 
phosphorylated, red bars represent BRC repeats.  Once the 5’ and 3’ ends were ligated together, 
the product was cloned into the construct pRM482 to allow the product to be re-expressed in 
brca2-/- mutants.  

The distinct variants of BRCA2 with reduced numbers of BRC repeats are depicted in 

figure 5.6.  Ideally, more constructs would have been generated that express further 

versions with varying numbers of BRC repeats, but these could not be generated within the 

 

time scale, so only the effects of BRCA2 containing 1 BRC repeat, either by using T. vivax 

BRCA2 or using T. brucei CA2 containing the most 

investigat

 BR C terminal BRC repeat could be 

ed. 

 
Figure 5.6 – Predicted functional domains of the BRCA2 variants examined in this study.  
The T. vivax BRCA2 homologue and the T. brucei BRCA2 containing the most C terminal BRC 
repeat were re-expressed by cloning into the construct pRM482.  The full length T. brucei BRC
that was used to generate BRCA2 -/-/+ mutants is shown for comparison.  The figure represe
the predicted domains of BRCA2 for the trypanosomatids investigated: red bars – BRC repeats; 
orange oval – alpha helical domain; blue squares – OB domains; purple bar – tower domain; yellow 
bars with NLS – nuclear localisation signals; red bar with SP? and NP? – possible CDK 
phosphorylation motif.   

 

 

 

A2 
nts 
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5.2.3.1 Confirmation of BRCA2 variant expressers by Southern analysis 

In order to confirm that pRM482::T. vivax BRCA2 and pRM482::1 BRC BRCA2 had 

integrated into the tubulin array of the cell lines T. vivax BRCA2-/-/+ and 1 BRC BRCA2-/-

/+ as expected, Southern analysis was carried out.  Genomic DNA from wild type, brca2-/- 

 

n of the 

2, and expression cell lines was digested with HindIII before being run out on a 0.8 % 

agarose gel and transferred to a nylon membrane by Southern blotting.  The blots were

probed with either a 378 bp region of the T. brucei BRCA2 ORF or a 527 bp regio

T. vivax BRCA2 ORF (figure 5.7) and the results are shown in figure 5.8.  Predicted 

fragment sizes of correctly integrated constructs are displayed in figure 5.7. 

 
Figure 5.7 – Expressing BRCA2 with reduced BRC repeats from the tubulin array. The 
constructs generated for re-expressing BRCA2 with reduced numbers of BRC repeats were cloned 
into an EcoRV site between the actin intergenic (Act IR) and βα tubulin (βαTUB) intergenic 
sequences of the plasmid pRM482, which contains the antibiotic resistance cassettes for G418 
(NEO).  The constructs are flanked with tubulin intergenic regions (αβ Tub and βα Tub), which 
allow homologous integration into the tubulin array, replacing an α tubulin ORF.  The sizes of IR 
and ORFs are indicated (in bp), with full length BRCA2 being represented as having 12 BRC 
repeats (as found in section 3.8.1.1).  The predicted maps of each construct following integration is 
displayed, with the HindIII restriction sites and predicted size fragments used to confirm the 
mutants by Southern analyses shown.  Primers used to generate DNA fragments for hybridisation 
are depicted by black triangles.   
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Fig 8 – C tio en f B ari  r m
BRC repeats er is.  D ll  w I 
an un out o  a 0.8 e N t d n
eit  378 bp region CA r (B p the BR .  
WT c DNA fro  untra c m ic , 
full length re-expresser by -/-/+, re-exp th ea C -e
with ax BRC 2 by T. vivax.   

Two allelic BRCA2 variants for wild type cell d t ce 2

ho us mu fo e (section .4.1). ion A2

BRC repeat and T. vivax BRCA2 in brca2-/- mutants was confirmed dis

fr  of the xpected s es.  Direc comparison of 1BRC BRCA2 -/-/+ with -/-

eat 

onfirmation of BRCA2 variant expressers by RT-PCR 

o support the results of the Southern analyses, RT-PCR was carried out on the re-

expresser cell lines with a reduced number of BRC repeats (as described in section 4.2.4).  

 that generated in wild type and 

or the 

, relative amounts of cDNA could not be determined. 

ure 5. onfirma
 by South

n of the g
n analys

eration o
 Genomic

RCA2 v
NA from a

ants with
cell lines 

e uduced n
s digested

bers of 
ith HindII 

gel.  The D
wa

hern blotted  r
her (A) a

5 µg n % agaros A was Sou  before bei g probed 
of the BR 2 ORF o ) a 527 b region of  T. vivax CA2 ORF

refers to genomi m nsformed ell lines, ho ozygous mutant is ind ated by -/-
resser wi 1BRC rep t by 1 BR and the re xpresser 

 T. viv A

line , ans he absen  of BRCA  in the 

mozygo tants, was seen as be r  4   Integrat  of BRC  with 1 

by hybri ing 

agments  e iz t  BRCA2 

/+ confirms the size difference of the BRCA2 genes through variation in the BRC rep

number. 

5.2.3.2 C

T

A T. brucei BRCA2-specific product, equivalent in size to

BRCA2+/- cell lines, but absent in brca2-/- cells (section 4.2.5), was seen in the 1BRC 

BRCA2 -/-/+ mutant (figure 5.9).  For the T. vivax BRCA2 -/-/+ cells, an equivalent RT-

PCR approach was adopted, but using the primers vivax probe 5’ and vivax probe 3’, 

which revealed the presence of a T. vivax BRCA2-specific product (figure 5.9).  These data 

confirm that the appropriate BRCA2 mRNA was present in the re-expresser mutants f

cell lines 1 BRC BRCA2-/-/+ and T. vivax BRCA2-/-/+.  As this analysis was non-

quantitative
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Figure 5.9 – Confirmation of the generation of BRCA2 variants with reduced numbers of 
BRC repeats by RT-PCR.  RT-PCR was carried out on cDNA generated from total RNA from T. 
vivax BRCA2 -/-/+ (T. vivax) and 1 BRC BRCA2 -/-/+ (1 BRC).  RNA polymerase I specific primers 
were used to control for the generation of intact cDNA.  Primers specific for T. brucei BRCA2 were 
sed to show the expression of that gene in 1 BRC re-expressers, whilst primers specific for T. 
ivax BRCA2 were used to show the expression of that gene in T. vivax BRCA2 re-expressers.  

The negative control contains no cDNA substrate.  RT + denotes cDNA generated with reverse 
transcriptase, RT – denotes co ctions that were treated eq valently but no RT was added 
to the reactions. 

 

on of protein 

xpression through anti-HA antisera and to localise proteins using immunofluorescence.  

Western analysis was carried out on total protein extracted from T. vivax BRCA2 -/-/+ and 

 

 isolated from wild type, BRCA2-/-/+, T. vivax BRCA2 

-/-/+ and 1BRC BRCA2 -/-/+ cell lines.  To do this, total RNA was extracted (RNeasy Mini 

Kit, Qiagen) from 25 mls of bloodstream stage culture grown to a density of 2 x 106 

cells.ml-1.  The RNA was quantified by spectrophotometry (Beckman DU650 

spectrophotometer) before 20 µg samples were separated by electrophoresis on a 

denaturing formaldehyde gel.  The RNA was transferred to a nylon membrane by capillary 

blotting and blots probed with a 378 bp fragment of the T. brucei BRCA2 ORF (figure 5.7) 

u
v

ntrol rea ui

5.2.3.3 Confirmation of BRCA2 variant expressers by Northern analysis 

Both the constructs pRM482::T. vivax BRCA2 and pRM482::1 BRC BRCA2, included an 

in-frame N terminal HA epitope, in order to allow for the confirmati

e

1BRC BRCA2 -/-/+ cell lines.  Protein extracts from 1 x 107 cells were separated on 10 % 

SDS-PAGE gels and probed with 2 different monoclonal anti-HA, peroxidise-conjugated 

antisera (Sigma, H6533 and Roche, 11667475001).  Protein expression was undetectable 

with both antibodies, as was found previously for 3174.2 BRCA2-/-/+, 427 BRCA2-/-/+

and OEBRCA2 cell lines in section 4.4 (where HA epitopes were similarly used). 

In order to determine if BRCA2 was transcribed in the T. brucei re-expressers, northern 

blots were performed on total RNA
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for wild type, BRCA2-/-/+ and 1BRC BRCA2 -/-/+ cell lines.  RNA from the T. vivax 

BRCA2-/-/+ cell line was probed with a 527 bp fragment of the T. vivax BRCA2 ORF 

(figure 5.7).  The hybridising bands generated in each lane were assumed to be mature 

mRNA, based on their size, and are shown in figure 5.10.  

 
Figure 5.1 orthern a f BRCA ts with  numbe C repeats.  
Northern b re shown of 20 µg of total RNA from wild ty BRCA2
BRCA2-/- ed with a 378 bp region of  ORF ), and T + probed 
with a 52 ion of the T. ivax BRCA2 ORF (right blot).  Size markers a  and ethidium 
stained g isplayed below the Northern blots to demonstrate amount of RNA loaded.  

etectable for T. vivax BRCA2-/-/+.  Within the limits of the experiment, no substantial 

differences in mRNA abundance are detectable.  Given this mRNA expression, it must be 

0 – N nalysis o 2 varian  reduced rs of BR
lots a pe (WT), -/-/+ and 1BRC 

/+ prob  the BRCA2  (left blot . vivax -/-/
7 bp reg
els are d

 v re shown

The northern blot demonstrates that T. brucei BRCA2 mRNA was detectable for WT, 

BRCA2-/-/+ and 1BRC BRCA2-/-/+ cell lines, whilst T. vivax BRCA2 mRNA was 

d

assumed that each protein was undetectable by anti-HA western blot analysis due to low 

levels of BRCA2 protein abundance, perhaps due to translation efficiency or protein 

turnover.  It does not seem likely that it was due to lower levels of expression from the 

tubulin array as opposed to the endogenous locus for two reasons.  Firstly, the abundance 

of BRCA2 mRNA in the WT cells is highly comparable with that of the BRCA2-/-/+ and 

1BRC BRCA2-/-/+ expressers.  Secondly, the transformants generated in section 5.2.2, 

which also possessed an HA epitope tag, were transcribed from the endogenous BRCA2 

locus and yet protein remained undetectable by western blot analysis (data not shown). 
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5.3 Phenotypic analysis 
The BRCA2 variants with a reduced number of BRC repeats (T. vivax BRCA2-/-/+ and 

1BRC BRCA2-/-/+),  were analysed for their in vitro population doubling times, cell cycle 

ol 

ns of the growth assay were carried out for 

each cell line and the results are displayed in figure 5.11, in comparison with the values 

progression, DNA damage sensitivity, recombination efficiency, the ability to form 

RAD51 foci and VSG switching frequency. 

5.3.1 Analysis of in vitro growth 

Analysis of in vitro growth of the T. vivax BRCA2-/-/+ and 1BRC BRCA2-/-/+ cell lines 

was carried out to determine if a reduction in the number of BRC repeats in BRCA2 

affected population doubling times.  The assay was carried out following the same protoc

as described in section 4.3.1.  Four repetitio

determined previously for wild type, brca2-/-2 and BRCA2-/-/+ cell lines.   

 
Figure 5.11 – Analysis of in vitro growth of BRCA2 variants with reduced number of BRC 
repeats.  5 ml cultures were set up at 5 x 104 cells.ml-1 and cell densities counted 24, 48, 72 and
96 hours subsequently.  Standard errors are indicated for the counts using data from four 
repetitions.  427: wild type; -/-: homozygote (brca2-/-2); -/-/+: full length re-expresser; 1 BRC: 1BR
BRCA2-/-/+; Vivax: T. vivax BRCA2-/-/+. 

 

 

C 
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Cell line 427 -/- 2 -/-/+ Vivax 1 BRC 
Doubling time 8.19+/-0.4 15.50+/-0.34 8.26+/-0.4 9.44+/-0.13 8.41+/-0.14

Table 5.1 – in vitro population doubling times of BRCA2 variants with reduced numbers of 
BRC repeats. The mean doubling time for each of the re-expresser mutants with reduced num
of BRC repeats are displayed in hours and compared to the population doubling times for WT, 
brca2-/-2 and BRCA2-/-/+ cell lines.  427: wild type; -/-: homozygote (brca2-/-2); -/-/+: full length re

bers 

-
expresser; 1 BRC: 1BRC BRCA2-/-/+; Vivax: T. vivax BRCA2-/-/+.  Standard errors are indicated. 

From the growth curves shown in figure 5.11 and the population doubling times shown in 

 

A2-

ith population doubling times of 8.26 and 8.41 

spectively.  This result was confirmed by the statistical tests displayed in table 5.2, which 

revealed that there was no statistical difference between the population doubling times of 

either WT or BRCA2 -/-/+ d 1BRC BRCA2-/-/+ (p>0.05).  However, expressing the T. 

vivax BRC id cause  to gro

doubling increasing b a factor of 1.1  compared 2-/-/+ cells.  This was 

manifest as a significant difference in paired t-tests between T. vivax - WT, BRCA2 

Vivax 1 BRC 

table 5.1, it was apparent that reducing the number of BRC repeats in T. brucei BRCA2

had no effect on growth.  This is seen by the essentially equivalent growth rates of BRC

/-/+ and 1BRC BRCA2-/-/+ cell lines, w

re

 an

A2 d  the cells w at a slightly slower rate, with the population 

 time y 5  to BRCA

/-/+ and 

-/-/+ or 1BRC BRCA2 -/-/+ (p<0.05).   

 -/- -/-/+ 
WT 0.0002 0.3820 0.0308 0.5804 
-/-  0.0001 0.0001 0.0002 

-/-/+   0.0288 0.8882 
Vivax    0.0003 

Table 5.2 – Statistical analysis of the population doubling times of BRCA2 variants with 
reduced numbers of BRC repeats.  P values are shown for two sample T-tests comparing 

 (-/-), BRCA2 re-expresser 
sser (1 BRC).  Areas 

 phenotype observed in 

brca2-/- mutants to a substantial degree. 

ild type, brca2-/-2 and BRCA2-/-/+ cell lines.   

population doubling times of wild type cells, brca2 homozygous mutant 2
(-/-/+), T. vivax BRCA2 re-expresser (Vivax) and 1BRC BRCA2 re-expre
shaded in yellow indicate a significant difference. 

It should also be noted, however that the population doubling times from the BRCA2 

variant cell lines with reduced numbers of BRC repeats were significantly faster than the 

brca2-/-2 mutant.  This demonstrates that the re-expression of either T. vivax BRCA2 or T. 

brucei BRCA2 with 1 BRC repeat recovered the impaired growth

5.3.2 Analysis of the cell cycle 

Analysis of cell cycle progression in the T. vivax BRCA2-/-/+ and 1BRC BRCA2-/-/+ cell 

lines was next examined.  The assay was carried out following the same protocol as 

described in section 4.3.3.  The results of this are displayed in figure 5.12, in comparison 

with the values determined previously for w
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Figure 5.12 – DAPI analysis of BRCA2 variants with reduced number of BRC repeats.  The 
DNA content of 1BRC BRCA2-/-/+ (1BRC) and T. vivax BRCA2-/-/+ (T.vivax) cell lines were 
visualised by DAPI and compared with the DNA content of wild type Lister 427, homozygous brca2 
mutants (-/-) and full length T. brucei BRCA2 re-expressers (-/-/+).  The numbers of cells with 1 
nucleus and 1 kinetoplast (1N 1K); 1 nucleus and 2 kinetoplasts (1N 2K); 2 nuclei and 2 
kinetoplasts (2N 2K); and cells that do not fit into the expected classifications cells (others) were 
counted and represented by their mean count as a percentage of the total cells counted. N = 
number of cells counted. 

This analysis demonstrated that expressing T. brucei BRCA2 with a reduced number of 

BRC repeats allowed the cell cycle to progress normally, complementing the accumulation 

of aberrant cells seen in the brca2-/- mutants.  The distribution of cells in the 1BRC 

BRCA2-/-/+ cell line appeared to be essentially equivalent to WT and BRCA2-/-/+ cell 

lines, with 75.5 % of cells containing 1N1K compared to 75.4 % and 75.9 %, respectively.  

Indeed, the number of aberrant cell types was also comparable, with 3.2 % in the 1BRC 

BRCA2-/-/+ cell line, compared with 1.9 % and 4.7 % in WT and BRCA2-/-/+ cell lines, 

respectively.  This result was confirmed by the Chi squared analysis shown in table 5.3, 

which displays that there was no significant difference between the 1BRC BRCA2-/-/+ 

mutant and the WT and BRCA2-/-/+ cell lines, with Chi squared values of 1.4 to 2.7 (at P = 

0.7003 and 0.4484) respectively.  However, a significant difference was observed between 

the 1BRC BRCA2-/-/+ mutant and the brca2-/-2 mutant, with a Chi squared value of 10.74 

at P = 0.0132. 

From the distribution of cells in the T. vivax BRCA2-/-/+ cell line it was less clear that cell 

cycle progression occurred normally.  Though the number of aberrant cells (4.3 %) was 

significantly less than in the brca2-/-2 mutant (11.8 %) and was comparable with WT or 

BRCA2-/-/+ cells (1.9 % and 4.7 %, respectively), suggesting that the cell division defect 
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was complemented, chi-squared analysis suggested that the distribution of cell types 

overall in the T. vivax BRCA2-/-/+ cell line was not significantly different from either 

brca2-/-2 or WT cells.  The basis for this is unclear, but may relate to the fact that the 

numbers of 1N1K cells (69 %) is intermediate between WT and brca2-/-2 cells (75.4 % 

and 61.9 %, respectively).  This, in turn could be due to increases in 1N2K and 2N2K cells, 

which may indicate an impediment in progression through G2 and M phases. 

 -/- -/-/+ Vivax 1 BRC 
WT 55.710 

0.0001 
5.438 

0.1424 
4.830 

0.1847 
2.652 

0.4484 
-/-  

 
9.342 

0.0251 
5.662 

0.2192 
10.744 
0.0132 

-/-/+  
 

 3.693 
0.2966 

1.422 
0.7003 

Vivax  
 

  2.289 
0.5145 

Table 5.3 – Statistical analysis of the cell cycle data for BRCA2 variants with reduced 
number of BRC repeats.  Chi squared analysis of the cell cycle data for wild type cells, brca2 
homozygous mutant 2 (-/-), 1BRC BRCA2-/-/+ (1BRC) and T. vivax BRCA2-/-/+ (Vivax).  The 
numbers indicated in bold represent the Chi squared value, whilst the numbers below represent the 
P value at which it was calculated.  Areas shaded in yellow indicate a significant difference. 

In order to examine if reducing the number of BRC repeats in BRCA2 affected the 

response of the parasites to DNA damage, the abundance of cells in different cell cycle 

stages for T. vivax BRCA2-/-/+ and 1BRC BRCA2-/-/+ cell lines was measured following 

growth for 18 hours after phleomycin treatment, as described in section 4.3.3.  These 

results are displayed in figure 5.13 and demonstrate that when BRCA2 was re-expressed 

with a reduced number of BRC repeats, the cell cycle progressed somewhat more normally 

than was observed for brca2-/- mutants.  The number of 1N 1K cells increased from 45 % 

in brca2-/-2 (at 1.0 µg.ml-1 of phleomycin) to 66 % and 59.8 % in the T. vivax BRCA2-/-/+ 

and 1BRC BRCA2-/-/+ cell lines (at 1.0 µg.ml-1 of phleomycin).  Conversely, the number 

of 1N 2K cells decreased from 30.1 % in brca2-/-2 to 15.9 % and 15.8 % in the T. vivax 

BRCA2-/-/+ and 1BRC BRCA2-/-/+ cell lines, indicating enhanced progression through G2 

phase.  The number of aberrant cells reduced from 19.4 % in brca2-/-2 to 11.7 % in the T. 

vivax BRCA2-/-/+ cell line, but remained essentially equivalent in the 1BRC BRCA2-/-/+ 

cell line with 21.3 % aberrant cell types. 

The statistical analysis shown in table 5.4 demonstrates a significant difference between 

brca2-/- mutants and T. vivax BRCA2-/-/+ and 1BRC BRCA2-/-/+ cell lines, with Chi 

squared values of 11.8 to 34.9 (at P = 0.0083 and 0.0001).  This confirms that re-

expressing BRCA2 with a reduced number of BRC repeats, allowed the cells to progress 

through the cell cycle more normally than in brca2-/- mutants in the presence of 
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phleomycin-induced DNA damage.  However, a significant difference was also displayed 

between WT cells and T. vivax BRCA2-/-/+ and 1BRC BRCA2-/-/+ cell lines (at 1.0 µg.ml-

1 of phleomycin), with Chi squared values of 9.4 to 50 (at P = 0.0242 and 0.0001), 

demonstrating that the distribution of cells in these mutants was not equivalent to wild type 

cells. 

These results therefore indicate that the expression of BRCA2 with a reduced number of 

BRC repeats appears, to a certain degree, to alleviate the impairment in nuclear DNA 

replication observed in the DNA damaged brca2-/- mutants.  This phenotype most likely 

occurs by allowing DNA damage to be repaired more effectively than in brca2-/- mutants, 

but less effectively than either WT or BRCA2-/-/+ cell lines, consistent with an increased 

sensitivity to DNA damaging agents, which is examined below (see section 5.3.3). 

 
Figure 5.13 – DAPI analysis of BRCA2 variants with reduced number of BRC repeats after 
DNA damage.  The DNA content of 1BRC BRCA2-/-/+ (1BRC) and T. vivax BRCA2-/-/+ (T.vivax) 
cell lines were visualised by DAPI and compared with the DNA content of wild type Lister 427, 
homozygous (-/-) and full length T. brucei BRCA2 re-expresser (-/-/+).  The numbers of cells with 1 
nucleus and 1 kinetoplast (1N 1K); 1 nucleus and 2 kinetoplasts (1N 2K); 2 nuclei and 2 
kinetoplasts (2N 2K); and cells that do not fit into the expected classifications cells (others) were 
counted and represented by their mean count as a percentage of the total cells counted. Wild type 
and BRCA2 -/-/+ cell lines were grown in media with 1.0 µg.ml-1 of phleomycin, whilst brca2-/-, 
1BRC BRCA2-/-/+ and T. vivax BRCA2-/-/+ were grown in media with 0.25 µg.ml-1 and 1.0 µg.ml-1 
of phleomycin.  N = number of cells counted. 
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 -/- 
(0.25) 

-/- 
(1.0) 

-/-/+ Vivax 
(0.25) 

Vivax 
(1.0) 

1 BRC 
(0.25) 

1 BRC 
(1.0) 

WT 
 

71.310 
0.0001 

68.395 
0.0001 

1.0240 
0.7954 

5.0110 
0.1710 

9.4200 
0.0242 

31.6970 
0.0001 

50.0060 
0.0001 

-/- 
(0.25) 

 1.1820 
0.7573 

34.1830 
0.0001 

34.9400 
0.0001 

20.3170 
0.0001 

12.7660 
0.0052 

14.1540 
0.0027 

-/- 
(1.0) 

  32.6060 
0.0001 

33.5450 
0.0001 

19.6940 
0.0002 

11.7600 
0.0083 

12.8400 
0.0050 

-/-/+ 
 

   3.2270 
0.3579 

4.6610 
0.1983 

21.9900 
0.0001 

37.1820 
0.0001 

Vivax 
(0.25) 

    3.0190 
0.3887 

10.6040 
0.0141 

17.5300 
0.0006 

Vivax 
(1.0) 

     4.1930 
0.2414 

10.3100 
0.0161 

1 BRC 
(0.25) 

      1.2920 
0.7311 

Table 5.4 – Statistical analysis of the cell cycle data for BRCA2 variants with reduced 
number of BRC repeats after DNA damage.  Chi squared analysis of the cell cycle data for wild 
type cells, brca2 homozygous mutant 2 (-/-), 1BRC BRCA2-/-/+ (1BRC) and T. vivax BRCA2-/-/+ 
(Vivax).  The numbers indicated in bold represent the Chi squared value, whilst the numbers below 
represent the P value at which it was calculated.  Areas shaded in yellow indicate a significant 
difference. 

 

5.3.3 Analysis of DNA damage sensitivity 

To follow up the above analysis, the DNA damage sensitivity of the T. vivax BRCA2-/-/+ 

and 1BRC BRCA2-/-/+ cell lines was the next phenotype examined.  To do this, Alamar 

Blue assays were carried out following the same protocols as described in section 4.3.4, 

using both MMS and phleomycin as DNA damaging agents.  These results are displayed in 

figures 5.14 and 5.15, and demonstrate that both the T. vivax BRCA2-/-/+ and 1BRC 

BRCA2-/-/+ cell lines are more sensitive to DNA damage than the full length BRCA2 re-

expresser.  

When MMS was used as the DNA damaging agent, the 1BRC BRCA2-/-/+ mutant has a 

mean IC50 virtually identical to that observed in WT cells (0.0015 % MMS), but more 

sensitive than the 0.0031 % displayed in BRCA2-/-/+ cells.  This result was confirmed by 

the statistical analysis shown in table 5.5, which displays that the 1BRC BRCA2-/-/+ 

mutant was not significantly different from WT cells (p>0.05), but was significantly 

different than BRCA2-/-/+ and brca2-/- mutants (p<0.05).  The T. vivax BRCA2-/-/+ cells, 

however, were more sensitive to MMS than WT and BRCA2-/-/+ cells, with a mean IC50 

of 0.0009 %.  This result was confirmed by statistical analysis. 
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Figure 5.14 – IC50s of T. brucei BRCA2 variants with reduced number of BRC repeats 
exposed to MMS.  1BRC BRCA2-/-/+ (1BRC) and T. vivax BRCA2 -/-/+ (Vivax) cell lines were 
placed in serially decreasing amounts of MMS and allowed to grow for 48 hours, before the 
addition of Alamar Blue.  After a further 24 hours, the reduction of Alamar Blue was measured by 
the amount of fluorescent resorufin generated.  Values are the mean IC50s from 3 experiments 
and are compared to the previous results from wild type (427), brca2-/-2 (-/-) and BRCA2-/-/+ (-/-/+) 
cell lines; bars indicate standard error. 

 

 -/- -/-/+ Vivax 1 BRC 
WT 0.0025 0.0192 0.0101 0.8585 
-/-  0.0024 0.0035 0.0146 

-/-/+   0.0033 0.0047 
Vivax    0.0383 

Table 5.5 – Statistical analysis of the Alamar Blue results for MMS.  P values are shown for 
two sample T-tests comparing the IC50s for MMS sensitivity of wild type cells (WT), brca2 
homozygous mutant 2 (-/-), BRCA2-/-/+ (-/-/+), 1BRC BRCA2-/-/+ (1BRC) and T. vivax BRCA2 -/-/+ 
(Vivax) mutants.  Areas shaded in yellow indicate a significant difference. 

 

When phleomycin was used as the DNA damaging agent, both the 1BRC BRCA2-/-/+ and 

T. vivax BRCA2-/-/+ mutants displayed a greater level of sensitivity than was observed for 

BRCA2-/-/+ or WT cells.  Indeed, the mean IC50s appeared more reminiscent of the results 

obtained for the brca2-/- mutants, with 0.029 µM and 0.02 µM compared to 0.013 µM 

respectively.  The statistical analysis shown in table 5.6 confirmed that there was no 

statistical difference between brca2-/- and T. vivax BRCA2-/-/+ mutants (p>0.05), whilst 

both T. vivax BRCA2-/-/+ and 1BRC BRCA2-/-/+ were significantly different from WT 

and BRCA2-/-/+ cells (p<0.05).   
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Figure 5.15 – IC50s of T. brucei BRCA2 variants with reduced number of BRC repeats 
exposed to phleomycin.  1BRC BRCA2-/-/+ (1BRC) and T. vivax BRCA2 -/-/+ (Vivax) cell lines 
were placed in serially decreasing amounts of phleomycin and allowed to grow for 48 hours, before 
the addition of Alamar Blue.  After a further 24 hours, the reduction of Alamar Blue was measured 
by the amount of fluorescent resorufin generated.  Values are the mean IC50s from 3 experiments 
and are compared to the previous results from wild type (427), brca2-/-2 (-/-) and BRCA2-/-/+ (-/-/+) 
cell lines; bars indicate standard error. 

 

 -/- -/-/+ Vivax 1 BRC 
WT 0.0065 0.0840 0.0206 0.0101 
-/-  0.0002 0.2846 0.0029 

-/-/+   0.0001 0.0005 
Vivax    0.2378 

Table 5.6 – Statistical analysis of the Alamar Blue results for phleomycin.  P values are 
shown for two sample T-tests comparing the IC50s for phleomycin sensitivity of wild type cells 
(WT), brca2 homozygous mutant 2 (-/-), BRCA2-/-/+ (-/-/+), 1BRC BRCA2-/-/+ (1BRC) and T. vivax 
BRCA2 -/-/+ (Vivax) mutants.  Areas shaded in yellow indicate a significant difference. 

 

Surprisingly from these data, the T. vivax BRCA2-/-/+ cells were more sensitive to both 

MMS and phleomycin than the 1 BRC BRCA2-/-/+ mutant.  The 1 BRC BRCA2-/-/+ cells 

may have been expected to be more sensitive to phleomycin than the T. vivax BRCA2-/-/+ 

cells, given the results of the cell cycle analysis after phleomycin treatment (section 5.3.2), 

where the 1 BRC BRCA2-/-/+ cells displayed a more severe phenotype than T. vivax 

BRCA2-/-/+, which was similar to the brca2-/- mutants, indicative of a greater level of 

sensitivity to this DNA damaging agent.  It is possible that this is due to the residual cell 

cycle abnormalities that were seen in the absence of damage in the T. vivax BRCA2-/-/+ 
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cells (section 5.3.2), and the Alamar blue data give a clearer measure of repair efficiency.  

However, the basis for the cell cycle deficiencies in T. vivax BRCA2-/-/+ are not clear, as 

noted. 

The 1 BRC BRCA2-/-/+ cell lines DNA damage sensitivity phenotype is reminiscent of the 

BRCA2+/- mutants, and mre11-/- mutants (Robinson et al., 2002), in that they were clearly 

sensitive to phleomycin but not to MMS.  This phenomenon is most likely due to the 

different modes of action of the DNA damaging agents, whereby MMS-induced lesions 

can be repaired via base excision repair (BER) (Lindahl and Wood, 1999), but phleomycin 

creates DNA breaks directly that must be acted upon by recombination pathways.  This 

does not, however, explain why the T. vivax BRCA2-/-/+ mutant displays high levels of 

sensitivity to both DNA damaging agents. 

Taken together, these results indicate that reducing the number of BRC repeats in BRCA2 

to a single repeat causes T. brucei cells to be more sensitive to DNA damaging agents, 

which leads us to suggest that the BRC repeat expansion in BRCA2 is necessary for 

efficient DNA repair. 

5.3.4 Analysis of recombination efficiency 

To examine if the relationship between BRC repeat organisation and DNA repair is 

mirrored in the role of T. brucei recombination, the T. vivax BRCA2-/-/+ and 1BRC 

BRCA2-/-/+ cell lines were next examined for their transformation efficiency following the 

same protocol described in section 4.3.5.  Three repetitions of the transformation efficiency 

assay were carried out for each cell line and are shown in figure 5.16, alongside the 

transformation efficiency rates determined previously for the wild type, brca2-/-2  and 

BRCA2-/-/+ cell lines, to allow for comparison.  

Both the T. vivax BRCA2-/-/+ and 1BRC BRCA2-/-/+ cell lines were found to have 

significantly worse transformation efficiency rates than wild type or BRCA2-/-/+ cell lines, 

with mean transformation efficiency rates of 0.93 and 1.0 compared to 4.53 and 4.27, 

respectively.  These differences were confirmed as being statistically significant by two 

sample T-tests, displayed in table 5.7.  Notably, however, both T. vivax BRCA2-/-/+ and 

1BRC BRCA2-/-/+ cells also displayed significantly higher transformation efficiency rates 

than brca2-/- mutants, in which a transformation efficiency rate of only 0.15 was observed. 

These results indicate that a reduction in BRC repeats in BRCA2 impairs the T. brucei 

cells’ ability to transform DNA constructs into their genome.  The presence of 1 BRC 
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repeat does, however, allow transformations to occur at a higher level than was observed 

for brca2 null mutants.  These results appear to support the hypothesis that the BRC repeat 

expansion in BRCA2 allows homologous recombination to occur at a high level, and 

appear to be consistent with the comparable efficiency of DNA repair described in 5.3.3 

 
Figure 5.16 – Recombination efficiency in BRCA2 variants with reduced number of BRC 
repeats.  Values are mean numbers of transformants obtained per 106 cells transformed; error 
bars are shown from 3 repetitions.  The data are presented for wild type Lister 427 cells (427), 
brca2 homozygous mutant 2 (-/-), BRCA2 re-expresser (-/-/+), T. vivax BRCA2 re-expresser (Vivax) 
and 1 BRC BRCA2 re-expresser (1 BRC).  

 

 -/- -/-/+ Vivax 1 BRC 
WT 0.0025 0.6254 0.0041 0.0067 
-/-  0.0040 0.0124 0.0136 

-/-/+   0.0052 0.0029 
Vivax    0.4226 

Table 5.7 – Statistical analysis of the recombination efficiency of BRCA2 variants with 
reduced number of BRC repeats.  P values are shown for two sample T-tests comparing 
recombination efficiencies of wild type (WT) cells, brca2 homozygous mutant 2 (-/-), BRCA2 re-
expresser (-/-/+), T. vivax BRCA2 re-expresser (Vivax) and 1 BRC BRCA2 re-expresser (1 BRC). 
Areas shaded in yellow indicate a significant difference. 
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5.3.5 Analysis of the ability to form RAD51 foci 

In order to attempt to understand why the T. vivax BRCA2-/-/+ and 1BRC BRCA2-/-/+ 

cells display recombination and repair impairments, the ability of the cells to form RAD51 

sub-nuclear foci following DNA damage was assessed.  To do this, the cells were treated 

with phleomycin and allowed to grow for 18 hours, before RAD51 localisation examined 

by indirect immunofluorescence, as described in section 4.3.6.   

Approximately 300 cells were counted and scored for the number of foci they contained 

after treatment with 2 concentrations of phleomycin (0.25 µg.ml-1 and 1.0 µg.ml-1).  As for 

the brca2-/- mutants, the cells were treated with an additional lower concentration of 

phleomycin due to their increased levels of sensitivity to this DNA damaging agent 

(section 5.3.3).  The results of this analysis are displayed in table 5.8 and examples of cells 

displaying foci are shown in figure 5.17.   

Number of foci (%) 
 BLE 0 1 2 3 4 5 6 or more 

WT 0.0 96.4 3.6 0.0 0.0 0.0 0.0 0.0 
 1.0 24.8 22.6 18.8 16.5 13.5 2.3 1.5 

-/- 0.0 98.2 1.3 0.4 0.0 0.0 0.0 0.0 
 0.25 96.9 2.0 0.5 0.5 0.0 0.0 0.0 
 1.0 98.6 0.7 0.7 0.0 0.0 0.0 0.0 

-/-/+ 0.0 87.5 3.5 2.3 2.3 1.9 1.6 0.8 
 1.0 14.8 10.5 15.6 14.8 13.7 13.3 17.2 

1BRC 0.0 99.7 0.3 0.0 0.0 0.0 0.0 0.0 
 0.25 100.0 0.0 0.0 0.0 0.0 0.0 0.0 
 1.0 99.7 0.3 0.0 0.0 0.0 0.0 0.0 

Vivax 0.0 98.2 1.2 0.6 0.0 0.0 0.0 0.0 
 0.25 98.4 1.0 0.6 0.0 0.0 0.0 0.0 
 1.0 97.9 1.8 0.3 0.0 0.0 0.0 0.0 

Table 5.8 – RAD51 foci formation in BRCA2 variants with reduced number of BRC repeats.  
The percentages of cells showing foci at given concentrations of phleomycin (BLE) are shown.  
Phleomycin concentrations are shown in µg.ml-1.  Boxes shaded in light yellow contain foci, whilst 
boxes shaded in bright yellow contain the highest percentage of foci. 

Both the T. vivax BRCA2-/-/+ and 1BRC BRCA2-/-/+ cell lines were found to have a 

greatly reduced ability to form RAD51 foci, with the majority of cells containing no foci, 

at either phleomycin concentration.  This result is comparable with that observed for 

brca2-/- mutants, where there was also no clear induction of RAD51 foci formation at all, 

due to the very small percentage of cells with foci appearing to be no different in treated or 

untreated cells (around 1-3 %). 

To ensure that these results do not simply result from decreased RAD51 levels in the T. 

vivax BRCA2-/-/+ and 1BRC BRCA2-/-/+ cells, western analysis was carried out on total 



Claire Louise Hartley, 2008   Chapter 5, 216 

protein extracted from all BRCA2 cell lines, before and after phleomycin-induced damage.  

Cell extracts from 1 x 107 cells were separated on 10 % SDS-PAGE gels, blotted and 

probed with polyclonal anti-RAD51 antiserum and detected with HRP-coupled anti-rabbit 

IgG.  Equivalent quantities of cell extracts were also separated on 10 % SDS-PAGE gels 

and stained with coomasie to ensure the equivalent loading of samples.  Figure 5.18 

demonstrates that RAD51 was still clearly expressed in the T. vivax BRCA2-/-/+ and 1BRC 

BRCA2-/-/+ cell lines, and there was no evidence for an increase or decrease in RAD51 

levels after DNA damage. 

 
Figure 5.17 – RAD51 immunolocalisation in BRCA2 variants with reduced number of BRC 
repeats.  Representative images of T. brucei cells following growth in 0.25 µg.ml-1 and 1.0µg.ml-1 
phleomycin for 18 hours are shown.  Each cell is shown in differential interface contrast (DIC), after 
staining with DAPI and after hybridisation with anti-RAD51 antiserum and secondary hybridisation 
with Alexa Fluor 488 conjugate (Alexa 488).  Merged images of DAPI and Alexa 488 cells are also 
shown.  Wild type (WT), T. vivax BRCA2-/-/+ (Vivax) and T. brucei 1BRC BRCA2-/-/+ (1 BRC) cells 
are shown. 
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Figure 5.18 – Western blots of RAD51 in BRCA2 variants with reduced number of BRC 
repeats.  The western blots display total protein extracts from T. vivax BRCA2-/-/+ (Vivax) and 1 
BRC BRCA2-/-/+ (1 BRC) cells probed with anti-RAD51 antiserum (RAD51).  Protein extracts were 
prepared without damage (0µg.ml-1 BLE) and with damage (1.0µg.ml-1 BLE).  Size markers are 
indicated.  The endogenous copy of RAD51 is visible at 47kDa. 

 

It has already been demonstrated that the T. vivax BRC repeat contains all of the critical 

residues highlighted by Lo et al., (2003), which should allow it to interact with T. vivax 

RAD51.  However, we cannot be sure that a BRC repeat from T. vivax will interact with T. 

brucei RAD51.  In order to address this, a global multiple alignment of the T. brucei 

RAD51 polypeptide (AAD51713) with RAD51 orthologues from T. vivax 

(tviv626b11.p1k_13), T. cruzi (AAZ94621) and L. major (LmjF28.0550) was produced 

using CLUSTAL W (http://www.ebi.ac.uk/clustalw/) (Chenna et al., 2003).  This was then 

visualised using the Boxshade server 

(http://www.ch.embnet.org/software/BOX_form.html), as shown in figure 5.19.  The 

alignment shows that a high level of conservation is observed throughout the RAD51 

polypeptides from the trypanosomatids, with the 8 critical residues for BRC binding, 

highlighted by Lo et al., (2003) appearing to be very well conserved, indicating functional 

conservation. 

Pair-wise comparisons were performed using AlignX (Vector NTI), and the percentage 

sequence identities calculated (see table 3.6).  The pair-wise comparisons show that the T. 

brucei RAD51 polypeptide shares the highest level of sequence identity with the T. vivax 

orthologue, with 71.7 % sequence identity. 
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Tcruzi     1 -------------------------------------MNTRSKRGKRKG---VEEVEVHE 
Lmajor     1 -------------------------------------MQTRSKAKGRRGRPSARPSEEVE 
Tvivax     1 MPLVELYESGASASWQGCLLDSSSCIDKRGCLSAEKKMSTRTRGRKRTKP--AVEEEVHE 
Tbrucei    1 -------------------------------------MNTRTKNKKRTKE--VIEDEVHD 
 
Tcruzi    21  IANTSPDPVAAPEQQQQQQEDQQ---NVDGANNGGFRVIQVLESYGIASADIKKLMESG 
Lmajor    24  VVESQPQEVLQNEEQEPQQQQQQQSTDMAEPNASGFRVIQILENYGVASSDIKKLMECG 
Tvivax    59  IVESLNGDASMRGSQENIQDQLQQG--VDNASGGNFRVIQTLENYGIASADIKKLMESG 
Tbrucei   22  IDDTAFDDAAVDAVNDNTQEMQQQVG--DAAGGPSFRVLQIMENYGVASADIKKLMECG 
 
Tcruzi    77 F YTVESVAYAPKKNILAVKGISETKADKIMAECAKLVPMGFTSAVVYHEARKEIIMVTT 
Lmajor    83 F YTVESAAYAPKKAILAVKGISENKAEKIMAECAKLVPMGFTSAVAYHEARKEIIMVTT 
Tvivax   116 F YTVEAVAYAPKKNLLAVKGISEAKVEKIMAECAKLVPMGFASAIVYHEARKEIIMVTT 
Tbrucei   79 F LTVESVAYAPKKSILAVKGISEAKAEKIMAECCKLTPMGFTRATVFQEQRKETIMVTT 
 
Tcruzi   136 GS REVDKLLGGGIETGGITELLGEFRTGKTQLCHTLCVTCQLPISQGGAEGMALYIDTE 
Lmajor   142 GS REVDKLLGGGIETGSITELFGEFRTGKTQLCHTLCVTCQLPISQGGAEGMALYIDTE 
Tvivax   175 GS REVDKLLGGGIETGSITELFGEFRTGKTQLCHTLCVTCQLPISNGGAEGMALYIDTE 
Tbrucei  138 GS REVDKLLGGGIEVGSITELFGEFRTGKTQLCHTLCVTCQLPLSQGGGEGMALYIDTE 
 
                              A A          L Y  SAM 
Tcruzi   195 GTF RPERLVAVAERYKLDPQDVLSNVACARAFNTDHQQQLLLQASAMMAENRFAIIIVD 
Lmajor   201 GTF RPERLVAVAERYKLDPEDVLANVACARAFNTDHQQQLLLQASAMMAENRFALIIVD 
Tvivax   234 GTF RPERLVAVAERYKLDAQDVLANVACARAYNSDHQQNLLVQASAMMAENRFAIIIVD 
Tbrucei  197 GTF RPERLVAVAERYSLDPEAVLENVACARAYNTDHQQQLLLQASATMAEHRVAIIVVD 
 
                                M 
Tcruzi   254 SATA LYRTDYSGRNELAARQMHLGKFLRSLHNLAEEYGVAVVVTNQVVANVDGSAQMFQ 
Lmajor   260 SATA LYRTDYSGRNELAARQMHLGKFLRSLHNLAEEYGVAVVVTNQVVANVDGSAQMFQ 
Tvivax   293 SATA LYRTDYNGRSELAARQMHLGKFLRSLQNLAEEYGVAVVVTNQVVANVDGSAQMFQ 
Tbrucei  256 SATA LYRTDYNGRGELAARQMHLGKFLRSLRNLANEYNVAVVVTNQVVANVDGAAPTFQ 
 
Tcruzi   313 ADAKK PIGGHIMAHASTTRLSLRKGRGEQRIMKVYDSPCLAEAEAIFGIYEDGVGDARD 
Lmajor   319 ADSKK PIGGHIMAHASTTRLSLRKGRGEQRIIKVYDSPCLAEAEAIFGIYDDGVGDARD 
Tvivax   352 ADPRK PIGGHIMAHASTTRLSLRKGRGEQRIIKVYDSPCLPEAEAIFGIYEDGVGDVRD 
Tbrucei  315 ADSKK PIGGHIMAHASTTRLSLRKGRGEQRIIKVYDSPCLAESEAIFGIYENGVGDVRD 
 
Figure 5.19 – Global multiple alignment of the T. brucei RAD51 polypeptide with a range of 
RAD51 orthologues.  Multiple sequence alignment of the putative T. brucei RAD51 polypeptide 
with homologues of RAD51 from T. vivax, T. cruzi and L. major.  Sequences were aligned using 
CLUSTAL W (http://www.ebi.ac.uk/clustalw/) (Chenna et al., 2003) and shaded using the 
BOXSHADE server (http://www.ch.embnet.org/software/BOX_form.html): residues that are identical in 
at least 50 % of the proteins are shaded in black and similarly conserved residues shaded in grey.  
Letters in red above the alignment represent the 8 key residues in H. sapiens RAD51 for 
interactions with the BRC repeats of BRCA2 (Yang et al., 2002).   
 
 

 T. brucei T. vivax T. cruzi L. major 
T. brucei 100 

100 
71.7 
78.8 

79.6 
85.0 

77.5 
83.6 

T. vivax  100 
100 

76.1 
80.5 

74.3 
79.1 

T. cruzi   100 
100 

85.4 
88.9 

L. major    100 
100 

Table 5.9 – Pairwise comparison of the putative T. brucei RAD51 polypeptide with a range of 
RAD51 homologues.  The full length putative T. brucei RAD51 polypeptide was compared with 
homologues from T.vivax, T. cruzi and L. major.  Pairwise alignments were performed using AlignX 
(Vector NTI) and the percentage identities and similarities calculated.  The percentage identities 
are displayed in bold. 

 



Claire Louise Hartley, 2008   Chapter 5, 219 

Despite the level of sequence identity being extremely high between the RAD51 

polypeptides from T. brucei and T. vivax, we cannot conclude that the T. vivax BRC repeat 

is able to interact with the T. brucei RAD51.  This could provide an explanation for why 

very few RAD51 foci were detected in the T. vivax BRCA2-/-/+ cell line.  However, this 

does not explain why very few RAD51 foci were detected in the 1BRC BRCA2-/-/+ cell 

line, where it might be argued that the BRC repeats have been selected for RAD51 

interaction.  Nevertheless, the single C terminal BRC repeat retained in this polypeptide is 

a degenerate copy, in that it is identical to all other BRC repeats, apart from the last 11 

amino acids.   

5.3.6 Analysis of VSG switching 

Finally, analysis of VSG switching was performed in the T. vivax BRCA2-/-/+ and 1BRC 

BRCA2-/-/+ cell lines to examine whether or not the DNA repair, recombination and 

RAD51 foci impairments are reflected in similar changes to antigenic variation.  This assay 

was not performed using the same protocol described in section 4.3.8, as this would have 

required generating these mutants in the 3174.2 cell line.  Instead, a modified version of 

the assay was used, in which only VSG switching frequency was analysed, using the Lister 

427 cell lines.   

Before analysing VSG switching rates, western analysis was performed in order to 

determine whether VSG221 continued to be expressed in each cell line, since the parasites 

may have undergone switching events whilst being cultured in vitro.  Whole cell extracts 

were prepared, electrophoresed on a 10 % SDS-PAGE gel, blotted and probed for 

VSG221, which resides at the active VSG expression site.  The resulting western blots of 

this analysis are displayed in figure 5.20 and indicate that all cell lines were expressing 

VSG221.   
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Figure 5.20 – Western blots of VSG221 in BRCA2 variants with reduced number of BRC 
repeats.  The western blots display total protein extracts from wild type (WT), brca2-/-2 (-/-), 
BRCA2-/-/+ (-/-/+), T. vivax BRCA2-/-/+ (Vivax) and 1 BRC BRCA2-/-/+ (1 BRC) cells probed with 
anti-VSG 221antiserum. Size markers are indicated.   

Immunised mice were generated by infection with 2 x105 cells of wild type, brca2-/-2, 

BRCA2-/-/+, T. vivax BRCA2-/-/+ or 1BRC BRCA2-/-/+ cell lines.  After parasitaemias 

reached ~ 5 x 107 cells.ml-1, the infections were cured by cymelarsan treatment, generating 

mice immune to all VSGs expressed in that cell line.  Switched variants were then selected 

for by inoculating the immunised mice with 4-8 x 107 cells of each cell line (all mice were 

inoculated with the same cell line that they had previously been infected with).  24 hours 

after inoculation, the surviving T. brucei cells were recovered by exsanguination, and the 

number of switched variant clones in the blood was calculated as described in section 

4.3.8. 

The results of this assay are displayed in figure 5.21, and demonstrate that although there 

was greater variation in this assay, the switching frequency estimated for WT Lister 427 

cells was comparable with that observed previously for WT 3174.2 cells: 9.5 switches per 

10-7 cells compared to 8.13 x 10-7, respectively.  The Lister 427 brca2-/-2 mutant also 

displayed an impaired ability to switch its VSG coat, though this was less pronounced in 

this assay, with a mean VSG switching frequency of 3.68 x 10-7 compared with 0.55 x 10-7 

observed previously in 3174.2 brca2-/- cells.  Surprisingly, both the T. vivax BRCA2-/-/+ 

and 1BRC BRCA2-/-/+ mutants were unaltered in their ability to switch their VSG coat 

relative to either the WT or BRCA2-/-/+ cells, with mean VSG switching frequencies of 

11.11 x 10-7 and 11.46 x 10-7 compared to 9.5 x 10-7 and 10 x 10-7, respectively. 

Statistical analysis suggested that only the 1BRC BRCA2-/-/+ cell line had a significantly 

higher VSG switching frequency than the brca2-/-2 mutant (table 5.10).  Most likely, the 

greater levels of variability in this assay are responsible for the lack of statistical 

significance being observed.  Nevertheless, these results appear to indicate that the BRC 
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repeat expansion or organisation in T. brucei BRCA2 is not a critical determinant of VSG 

switching efficiency during an acute infection, despite the importance of this arrangement 

in DNA repair, recombination and in influencing RAD51 function. 

 
Figure 5.21 – VSG switching frequencies in BRCA2 variants with reduced number of BRC 
repeats.  Values shown are the average switching frequencies for 427 wild type cells (WT), the 
brca2 homozygous mutant 2 (-/-), the BRCA2 re-expresser (-/-/+), the T. vivax BRCA2 re-expresser 
(Vivax) and the 1BRC BRCA2 re-expresser (1BRC) mutants.  Data are from at least 3 experiments 
and standard error is indicated by bars. 

 

 -/- -/-/+ Vivax 1 BRC 
WT 0.2182 0.2743 0.2909 0.0059 
-/-  0.0675 0.3591 0.0178 

-/-/+   0.8609 0.8825 
Vivax    0.9254 

 
Table 5.10 – Statistical analysis of the VSG switching frequencies in BRCA2 variants with 
reduced number of BRC repeats.  P values are shown for two sample T-tests comparing VSG 
switching frequencies of 427 wild type cells (WT), the brca2 homozygous mutant 2 (-/-), the BRCA2 
re-expresser (-/-/+), the T. vivax BRCA2 re-expresser (Vivax) and the 1BRC BRCA2 re-expresser 
(1BRC) mutants.  Areas shaded in yellow indicate a significant difference (P<0.05). 
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5.4 Generation of mutants with different truncations of 

BRCA2 
Investigating the protein sequence of T. brucei BRCA2, and analysing shared regions of 

homology with BRCA2 orthologues has allowed a number of different putative functional 

motifs to be predicted (section 3.7).  In addition to the BRC repeats, T. brucei BRCA2 has 

been predicted to possess all 5 conserved motifs in the DSS1-DNA binding domain 

(DBD): an alpha-helical domain, 3 oligosaccharide binding (OB) domains and a tower 

domain protruding from OB2.  A C terminal RAD51 binding domain may also be present, 

but here homology is limited to a serine residue, which may be similar to a kinase 

regulatory sequence in the C terminal RAD51 binding domain in H. sapiens BRCA2 

(Esashi et al., 2005).  Despite this, little is known about potential function, if any, of the 

other parts of the protein.  Moreover, it is not known if the above domains provide further 

function. 

In order to determine if the predicted domains of the protein are functional, perform the 

roles that have been predicted in H. sapiens and other eukaryotes, and to ask about other 

potential roles, it was decided to express further truncations and variants of the BRCA2 

protein in brca2-/- mutants.  Not only will this allow us to confirm the regions of the 

protein that allow for recombination and repair, but also to examine the replication-related 

phenotype observed previously (see above). 

As for the 1BRC repeat BRCA2 variants, in all cases, constructs were generated by cloning 

DNA fragments into the plasmid pRM482 (R. McCulloch, gift), which had been EcoRV-

digested and CIP treated, and were subsequently introduced into the second of the two 

independent brca2-/- homozygous mutants (brca2-/-2) in the Lister 427 cell line 

(expressers).  In some cases, the constructs were also introduced into wild type Lister 427 

cells, in order to generate cell lines with an additional copy of BRCA2 (over-expressers).    

Again, these constructs allowed variations of BRCA2 to be inserted into the tubulin array, 

as was performed for BRCA2-/-/+, T. vivax BRCA2 and 1 BRC BRCA2 (see sections 4.4 

and 5.2).   

5.4.1 Generation of expresser and over-expresser lines of the 

BRCA2 BRC repeat region  

Previous research has demonstrated that six out of the eight BRC repeats from H. sapiens 

BRCA2 can directly interact with recombinant RAD51 when expressed in vitro (BRC1-4, 
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7-8) (Wong et al., 1997;Chen et al., 1998b;Marmorstein et al., 1998).  At high 

concentrations, peptides corresponding to BRC repeats 3 and 4 have been shown to bind 

RAD51 monomers and block RAD51-DNA filament formation. (Davies et al., 2001).  

Indeed, when BRC3 was present in excess, it was found it could actually dissociate 

preformed RAD51 complexes.  This inhibitory activity is proposed to occur by the BRC 

repeats binding to RAD51 and mimicking the recombinase’s self association mode 

(Pellegrini et al., 2002) and therefore preventing multimerisation.  At lower concentrations, 

however, BRC3 and BRC4 can actually bind and form stable complexes with RAD51-

DNA nucleoprotein filaments (Galkin et al., 2005).  A recent study purified the entire BRC 

repeat region of H. sapiens BRCA2 and, under conditions proposed to be typical of the 

nucleus, discovered that the BRC repeat region was capable of stimulating RAD51 strand 

exchange, suggesting that the BRC repeat region may be able to mediate homologous 

recombination in the absence of the C terminal region (Shivji et al., 2006).  It has not been 

made clear how this can be reconciled with in vivo studies, however, that have shown that 

cellular expression of single BRC repeats generated phenotypes that were highly 

reminiscent of brca2-/- mutants, indicating that the BRC repeats on their own interfere 

with RAD51 function (Chen et al., 1998b;Stark et al., 2004;Yuan et al., 1999). 

To address this in T. brucei, it was decided to attempt to express and over-express the 

isolated BRC repeat region of T. brucei BRCA2 (figure 5.22), in order to determine if the 

BRC repeats alone would be able to function in the absence of a DNA binding domain or if 

they would interfere with RAD51.  A DNA fragment containing just the BRC repeat 

region of BRCA2 was generated by PCR-amplification from Lister 427 genomic DNA 

using Herculase DNA polymerase (Stratagene) and the primers BRCA_TRUNC 5’ and 

BRCA_TRUNC 3’.  The oligonucleotide BRCA_TRUNC 5’ contained an NruI restriction 

site, a methionine, an HA tag and 24 bases of sequence homologous to a region 17 amino 

acids upstream of the first BRC repeat.  BRCA_TRUNC 3’ consisted of an NruI restriction 

site, a stop codon and 23 bases of sequence complementary to the bipartite NLS sequence, 

downstream of the most C terminal BRC repeat.  The resulting PCR product was 1707 

base pairs in length, the expected size containing all 12 BRC repeats and the bipartite NLS 

sequence.  This PCR product was restriction digested with NruI before ligating into the 

plasmid pRM482, resulting in the generation of the construct pRM482::Trunc BRCA2, 

which contained the antibiotic resistance cassette for G418.   
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Figure 5.22 – Cloning strategy used to generate the construct pRM482::Trunc BRCA2.  The 
BRC repeat region of BRCA2 was PCR-amplified using a 5’ primer containing 24 bases of 
sequence homologous to a region 1 ino acids upstream of the most N terminal BRC repeat 
and a 3’ primer containing 23 bases that was complementary to the bipartite NLS sequence 
downstream of the BRC repeats.  Oligonucleotide primers are depicted by black triangles, red bars 
represent BRC repeats and the yellow bar represents the bipartite NLS sequence.  The product 
was cloned into the construct pRM482 to allow the product to be re-expressed in brca2-/- mutants 
and over-expressed in wild type cells. 

 

The construct was excised from the plasmid backbone by restriction digestion with XhoI 

and XbaI, before phenol:chloroform extraction and ethanol precipitation.  Approximately 5 

µg of digested DNA was transformed into the Lister 427 brca2-/-2 mutant and the wild 

type Lister 427 cell line.   Antibiotic resistant transformants were selected by plating out 4 

x 107 cells from the transformation at 2.5 µg.ml-1 G418, over 48 wells with 1.5 mls per 

well.  A number of antibiotic resistant transformants were recovered for each 

transformation and the introduction of the BRC repeat region of BRCA2 confirmed by 

Southern analysis (section 5.4.3.1).  One transformant was chosen from each 

transformation and named Trunc BRCA2-/-/+ and OE Trunc for the expresser and over-

expresser cell lines, respectively. 

5.4.2 Generation of expresser and over-expresser lines of the 

BRCA2 C terminal domain 

The COOH-terminal region of H. sapiens BRCA2 has been shown not only to contain a 

DSS1-DNA binding domain (DBD) (Yang et al., 2002), but also to possess a RAD51 

binding domain, (Sharan et al., 1997;Mizuta et al., 1997;Esashi et al., 2005), which 

functions differently from the BRC repeats in that it binds RAD51 filaments, but not 

monomers like the BRC repeat region (Esashi et al., 2007;Davies and Pellegrini, 2007).   

It is unknown whether or not the C terminus of T. brucei BRCA2 contains a RAD51 

binding domain, despite the existence of a potential CDK target site (section 3.7.3).  It was 

decided to attempt to express and over-express the isolated C terminal domain of T. brucei 

BRCA2, in order to determine if this region can function in the absence of the BRC repeat 

region, and, indeed, to ask whether a RAD51 binding domain exists at the C terminus of T. 

brucei BRCA2. 

7 am
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The C terminal region of T. brucei BRCA2 was PCR-amplified from Lister 427 genomic 

DNA using Herculase DNA polymerase (Stratagene) and the primers BRCA_noBRC 5’ 

and TbBRCA2 rev2 (figire 5.23).  The oligonucleotide BRCA_noBRC 5’ contained an NruI 

restriction site, a methionine, an HA tag and 24 bases of sequence homologous to the 

region immediately downstream of the most C terminal BRC repeat.  BRCA_TRUNC 3’ 

consisted an NruI restriction site and 24 bases complementary to the end of the BRCA2 

ORF.  The resulting PCR product was a DNA fragment of 1746 base pairs, which included 

the bipartite NLS sequence.  This PCR product was restriction digested with NruI before 

ligating into the plasmid pRM482, resulting in the generation of the construct 

pRM482::CtermBRCA2, which contained the antibiotic resistance cassette for G418.   

 
Figure 5.23 – Cloning strategy used to generate the construct pRM482::Cterm BRCA2.  The 
C terminal region of BRCA2 was PCR-amplified using a 5’ primer containing 24 bases of sequence 
homologous to bipartite NLS sequence downstream of the BRC repeats and a 3’ primer containing 
24 bases that was complementary to the end of the ORF.  Oligonucleotide primers are depicted by 
black triangles, red bars represent BRC repeats and the yellow bar represents the bipartite NLS 
sequence.  The product was cloned into the construct pRM482 to allow the product to be re-
expressed in brca2-/- mutants and over-expressed in wild type cells. 

The construct was excised from the plasmid backbone by restriction digestion with XhoI 

and XbaI, before phenol:chloroform extraction and ethanol precipitation.  Approximately 5 

µg of digested DNA was transformed into the Lister 427 brca2-/-2 mutant and the wild 

type Lister 427 cell line.   Antibiotic resistant transformants were selected by plating out 4 

x 107 cells from the transformation at 2.5 µg.ml-1 G418, over 48 wells with 1.5 mls per 

well.  A number of antibiotic resistant transformants were recovered for the transformation 

in wild type cells, whilst only a single transformant was recovered from the transformation 

into the brca2-/-2 mutant.  The introduction of the C terminal region of BRCA2 was 

confirmed by Southern analysis (section 5.4.3.1).  One transformant was chosen from each 

transformation and named C term BRCA2-/-/+ and OE C term for the expresser and over-

expresser cell lines respectively. 

5.4.3 Generation of expresser and over-expresser lines with the 

BRC repeat region of BRCA2 fused to the RPA70 subunit 

Replication protein A (RPA) contains four OB folds (DBD-A, DBD-B, DBD-C and DBD-

D), two of which bind to ssDNA with high affinity (DBD-A and DBD-B) (Bochkareva et 

al., 2002).  The DBD region of H. sapiens BRCA2 contains 3 

oligonucleotide/oligosaccharide binding (OB) folds, of which OB2 and OB3 possess close 
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structural homology to DBD-A and DBD-B in replication protein A (RPA) 70, the largest 

subunit of RPA (Bochkarev et al., 1999).   

A recent study showed that the cellular expression of single or multiple H. sapiens BRC 

repeats, fused to the large RPA subunit could function in homology-directed repair, 

RAD51 binding and suppression of chromosomal abnormalities (Saeki et al., 2006), 

implying that the DNA binding function of the C terminal region of BRCA2 could be 

provided by the ssDNA-binding protein RPA.  A similar study carried out in U. maydis 

found comparable results, whereby the cells recovered from DNA damage sensitivity, but 

formed RAD51 foci and performed mitotic recombination more efficiently than WT cells 

(Kojic et al., 2005).   

It was decided to attempt a similar strategy in T. brucei, by translationally fusing the T. 

brucei BRC repeat region plus the downstream bipartite NLS sequence to the T. brucei 

Replication Protein A (RPA) 50 kDa subunit (Tb11.01.0870), which is homologous to the 

70 kDa RPA protein in other eukaryotes.  The Leishmania RPA 70 homologue has been 

shown to bind single-stranded DNA via its conserved OB fold domain (Neto et al., 2007), 

providing confidence that the T. brucei homologue would do the same.  This strategy 

should determine whether the C terminus of T. brucei BRCA2 simply functions as a DNA 

binding domain, or whether it has another, possibly undiscovered role. 

An expression construct containing the BRC repeat region of T. brucei BRCA2 

translationally fused to the large RPA subunit was generated by a few cloning steps (figure 

5.24).  The BRC repeat region of BRCA2 was PCR-amplified from Lister 427 genomic 

DNA using Herculase DNA polymerase (Stratagene) and the primers BRCA_RPA 5’ and 

BRCA_RPA 3’.  BRCA_RPA 5’ consisted of an EcoRV restriction site, a methionine, an 

HA tag and 24 bases of sequence homologous to a region 17 amino acids upstream of the 

first BRC repeat.  BRC_RPA3’ consisted of an EcoRV restriction site and 23 bases of 

sequence that was complementary to a region immediately downstream of the most C 

terminal BRC repeat; this oligonucleotide was phosphorylated at the 5’ end. 

The gene encoding the large (50kDa) subunit of RPA was PCR-amplified from Lister 427 

genomic DNA using the primers RPA5’ and RPA3’.  The oligonucleotide primer RPA5’ 

consisted of 21 bases of sequence that was homologous to the start of the ORF, but 

excluding the start codon.  This oligonucleotide was also phosphorylated at the 5’ end.  

The oligonucleotide primer BRCVAR3’3 consisted of an EcoRV restriction site and 20 

bases of sequence that was complementary to the end of the ORF. 
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PCR-amplification of the BRC repeat region yielded a single DNA fragment of the 

expected 1707 base pairs that included the bipartite NLS sequence immediately down 

stream of the most C terminal repeat.  PCR-amplification of the RPA50 subunit yielded a 

single DNA fragment of the expected 1392 base pairs.  PCR products were gel-extracted 

and ligated together using the phosphorylated ends of the PCR products, and the ligation 

reaction was subsequently TOPO cloned.   

The DNA fragment of the successfully ligated PCR products was next excised from the 

TOPO vector by restriction digesting with EcoRV and was subsequently ligated into the 

plasmid pRM482 (R. McCulloch, gift), which had been EcoRV-digested and CIP treated.  

This resulted in the generation of the construct pRM482::BRC+RPA, which contained the 

antibiotic resistance cassette for G418.   

 
 
Figure 5.24 – Cloning strategy used to generate the construct pRM482:: BRC+RPA.  The 
BRC repeat region of BRCA2 was PCR-amplified using a 5’ primer containing 24 bases of 
sequence homologous to a region upstream of the first BRC repeat and a 3’ primer containing 23 
bases that was complementary to the bipartite NLS sequence downstream of the BRC repeats.  
The RPA50 ORF was PCR-amplified using a 5’ primer containing 24 bases of sequence 
homologous to the start of the ORF and a 3’ primer containing bases of sequence that was 
complementary to the end of the ORF.  The 2 PCR products were ligated together using 
phosphorylated primers.  Oligonucleotide primers are depicted by black triangles, (P) indicates that 
the primer is 5’ phosphorylated, red bars represent BRC repeats and the yellow bar represents the 
bipartite NLS sequence.  Once the PCR products were ligated together, the product was cloned 
into the construct pRM482 to allow the product to be re-expressed in brca2-/- mutants and over-
expressed in wild type cells. 

 
The construct was excised from the plasmid backbone by restriction digestion with XhoI 

and XbaI, before phenol:chloroform extraction and ethanol precipitation.  Approximately 5 

µg of digested DNA was transformed into the Lister 427 brca2-/-2 mutant and the wild 

type Lister 427 cell line.   Antibiotic resistant transformants were selected by plating out 4 

x 107 cells from the transformation at 2.5 µg.ml-1 G418, over 48 wells with 1.5 mls per 

well.  A number of antibiotic resistant transformants were recovered for each 

transformation and the introduction of the BRC repeat region of BRCA2 translationally 

fused to the RPA50 subunit was confirmed by Southern analysis (section 5.4.3.1).  One 

transformant was chosen from each transformation and named BRC+RPA -/-/+ and OE 

BRC+RPA for the re-expresser and over-expresser cell lines respectively. 
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For reference, the expected polypeptides generated by each of the expressing and over-

expressing transformants of various truncations of BRCA2 are depicted in figure 5.25.   

 
Figure 5.25 – Representation of the various truncated BRCA2 variants analysed.  The BRC 
repeat region, the C terminal region and the BRC repeat regions translationally fused to RPA50 
were expressed by cloning into the construct pRM482.  The full length T. brucei BRCA2 that was 
used to generate BRCA2 -/-/+ mutants is shown for comparison.  The figure represents the 
predicted, conserved domains of BRCA2: red bars – BRC repeats; orange oval – alpha helical 
domain; blue squares – OB domains; purple bar – tower domain; yellow bars – nuclear localisation 
signals; red bar with vertical line – putative CDK signal.  The dark blue box in BRC+RPA 
represents the T. brucei RPA 50 kDa subunit. 

 
 

5.4.3.1 Confirmation of BRCA2 variant expressers by Southern analysis 

In order to confirm that pRM482::Trunc, pRM482::C term and pRM482::BRC+RPA had 

integrated into the tubulin array of the cell lines Trunc BRCA2-/-/+, C term BRCA2-/-/+ 

and BRC+RPA-/-/+ as expected, Southern analysis was carried out.  Genomic DNA from 

wild type, brca2-/- 2, and the expresser cell lines were all digested with HindIII before 

being run out on a 0.8 % agarose gel and transferred to a nylon membrane by Southern 

blotting.  The blots were probed with either a 378 bp region of the T. brucei BRCA2 ORF, 

a 130 bp region of the BRC repeats, a 196 bp region of the C terminal region of BRCA2 or 

a 456 bp region of the RPA50 ORF (figure 5.26) and the results are shown in figure 5.27.  

Predicted fragment sizes of correctly integrated constructs are displayed in figure 5.26. 
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Figure 5.26 – Expressing BRCA2 with different truncations in the tubulin array. The 
constructs generated for expressing BRCA2 with different truncations were cloned into an EcoRV 
site between the actin intergenic (Act IR) and βα tubulin (βαTUB) intergenic sequences of the 
plasmid pRM482, which contains the antibiotic resistance cassettes for G418 (NEO).  The 
constructs are flanked with tubulin intergenic regions (αβ Tub and βα Tub), which allow 
homologous integration into the tubulin array, replacing an α tubulin ORF.  The sizes of IR and 
ORFs are indicated (in bp).  This integration is displayed above with the restriction sites and 
predicted size fragments used to confirm the mutants by Southern analyses being shown.  Primers 
used to generate DNA fragments for hybridisation are depicted by black triangles.   
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Figure 5.27 – Confirmation of the generation of BRCA2 variant expressers by Southern 
analysis.  Cell lines were digested with HindIII by taking 5 µg of genomic DNA from each cell line 
and restriction digesting for 12 hours before running out on a 0.8 % agarose gel.  The DNA was 
Southern blotted before being probed either (A) a 378 bp region of the BRCA2 ORF, or (B) a 130 
bp region of the BRC repeats, or (C) a 196 bp region of the C terminus of BRCA2, or (D) a 456 bp 
region of the large RPA subunit ORF .  WT refers to genomic DNA from untransformed cell lines, 
homozygous mutant is indicated by -/-, expresser with just the BRC repeat region of BRCA2 by 
Trunc, expresser with just the C terminal region of BRCA2 by C term and the expresser with the 
BRC repeats translationally fused to RPA50 by BRC+RPA.  The wild type copy of RPA50 is 
indicated by RPA. 

Two allelic variants of BRCA2 were observed for the wild type cell line, as observed 

previously (section 4.2.4).  The absence of BRCA2 was again confirmed in the brca2-/-2 

mutant and the integration of the BRC repeat region and the C terminal region of BRCA2 

in the brca2-/-2 mutant was confirmed by hybridising fragments of the expected sizes.  

The integration of the BRC repeats translationally fused to RPA50 in the brca2-/-2 mutant 

was confirmed by a hybridising fragment of the expected size, which was present in 

addition to the endogenous copy of RPA50.   
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5.4.3.2 Confirmation of BRCA2 variant expressers by RT-PCR 

To support the results of the Southern analyses, RT-PCR was carried out on the expresser 

cell lines as described in section 4.2.4, using the primers C term probe 5’ and BRCA2 

probe 3’ for the C term-/-/+ cell line and the primers BRC probe 5’ and BRC probe 3’ for 

the BRC+RPA -/-/+ and Trunc BRCA2 -/-/+ cell lines.  A ladder of products was seen in 

the BRC+RPA -/-/+ and Trunc BRCA2 -/-/+ cell lines, which correspond to the T. brucei 

BRCA2 BRC repeats, whilst a T. brucei BRCA2 C terminal-specific product was seen in 

the C term-/-/+ cell line (figure 5.28). 

This confirms that regions of T. brucei BRCA2 mRNA are present in the expressers for the 

cell lines BRC+RPA -/-/+, C term BRCA2-/-/+ and Trunc BRCA2 -/-/+.  Relative amounts 

of cDNA could not be determined, as this analysis was non-quantitative. 

 
Figure 5.28 – Confirmation of the generation of expressers by RT-PCR.  RT-PCR was carried 
out on cDNA generated from total RNA.  RNA polymerase I-specific primers were used to show the 
generation of intact cDNA.  Primers specific for the BRC repeat of BRCA2 were used to show the 
expression of genes in BRC+RPA and Trunc expressers, whilst primers specific for the C terminal 
region of BRCA2 were used to show the expression of genes in C term expressers.  The negative 
control contains no cDNA.  RT + and – indicates the presence or absence of reverse transcriptase. 

 

5.4.3.3 Confirmation of BRCA2 variant expressers by Northern analysis 

All of the constructs generated to re-express truncated versions of BRCA2 contained an N 

terminal HA tag.  However, as with the T. vivax BRCA2 -/-/+ and 1BRC BRCA2 -/-/+ cell 

lines, protein expression was undetectable with 2 different monoclonal anti-HA peroxidise 

conjugated antisera (Sigma, H6533 and Roche, 11667475001) for the cell lines BRC+RPA 

-/-/+, C term BRCA2-/-/+ and Trunc BRCA2 -/-/+.  Therefore, in order to determine if 

these truncations of BRCA2 were being transcribed from the tubulin array as expected, 

northern blots were performed.  Total RNA was extracted from BRCA2-/-/+, Trunc 
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BRCA2 -/-/+, C term BRCA2-/-/+ and BRC+RPA -/-/+ cell lines (as in section 5.2.3.3) 

before 20 µg samples were separated by electrophoresis on a denaturing formaldehyde gel.  

The RNA was transferred to a nylon membrane by capillary blotting and blots probed with 

a 196 bp fragment of the C terminal region of the BRCA2 ORF for BRCA2-/-/+ and C term 

BRCA2 -/-/+ cell lines.  The BRC+RPA-/-/+ and Trunc BRCA2-/-/+ cell lines were probed 

with a 130 bp fragment from the BRC repeat of the BRCA2 ORF.  The hybridising bands 

generated in each lane were assumed to be mature mRNA, based on their size, and are 

shown in figure 5.29.  

 
Figure 5.29 – Northern analysis of expresser mutants.  Northern blots of 20 µg of total RNA 
from BRCA2-/-/+ and C term BRCA2-/-/+ probed with a 196 bp fragment of the C terminal region of 
the BRCA2 ORF (left blot) and BRC+RPA -/-/+ and Trunc BRCA2-/-/+ probed with a 130 bp 
fragment of the BRC repeat region of the BRCA2 ORF (right blot).  Size markers are shown and 
ethidium stained gels are displayed below the Northern blots to demonstrate amount of RNA 
loaded.  

The northern blot demonstrates that regions of T. brucei BRCA2 mRNA were detectable 

for BRCA2-/-/+, C term BRCA2-/-/+, BRC+RPA-/-/+ and Trunc BRCA2-/-/+ cell lines.   

This analysis, taken together with the results from the Southern analyses and RT-PCR, 

demonstrate that the C term BRCA2-/-/+, BRC+RPA-/-/+ and Trunc BRCA2-/-/+ cell lines 

had integrated the constructs as predicted, and the expected mRNA was generated. 
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5.4.3.4 Confirmation of over-expresser BRCA2 variants by Southern 
analysis 

In order to confirm that pRM482::Trunc, pRM482::C term and pRM482::BRC+RPA had 

integrated into the tubulin array of the cell lines OE Trunc, OE C term and OE BRC+RPA 

as expected, Southern analysis was carried out in the same manner as was described in 

section 5.4.3.1.   

 
Figure 5.30 – Confirmation of the generation of over-expressers by Southern analysis.  Cell 
lines were digested with HindIII by taking 5 µg of genomic DNA from each cell line and restriction 
digesting for 12 hours before running out on a 0.8 % agarose gel.  The DNA was Southern blotted 
before being probed either (A) a 378 bp region of the BRCA2 ORF, (B) a 130 bp region of the BRC 
repeats, (C) a 196 bp region of the C terminus of BRCA2, or (D) a 456 bp region of the large RPA 
subunit ORF .  OE BRCA2 refers to the full length BRCA2 over-expressed in Lister 427 cell lines, 
OE Trunc to the over-expression of the BRC repeat region, OE C term to the over-expression of 
the C terminal region and OE BRC+RPA to the over-expression of the BRC repeats translationally 
fused to RPA.   

Three hybridising fragments were seen for the OE BRCA2 cell line.  Two of these 

fragments represent the two allelic variants of BRCA2, as was observed previously (section 

4.4.1), whilst the third, 7.5 kb band represents the integration of an extra copy of BRCA2 in 

the tubulin array.  The OE Trunc and OE C term cell lines were also seen to possess 3 

hybridising fragments.  In each case, the smallest bands represent the sizes expected 
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following integration of the BRC repeat region and the C terminal region of BRCA2, 

respectively, into the tubulin array.  The OE BRC+RPA cell line was seen to possess two 

hybridising fragments, one of these represents the wild type copy of RPA50, whilst the 

second represents the integration of the BRC repeats translationally fused to RPA50. 

5.5 Phenotypic analysis 
The brca2-/- mutants expressing truncated versions of BRCA2 were analysed for their in 

vitro population doubling times, cell cycle progression, DNA damage sensitivity, 

recombination efficiency, the ability to form RAD51 foci and VSG switching frequency.  

The cell lines in which these truncations of BRCA2 had been over-expressed were only 

analysed for their in vitro population doubling times, cell cycle progression, DNA damage 

sensitivity and recombination efficiency. 

5.5.1 Analysis of in vitro growth 

In vitro growth rates of the cell lines were compared in order to determine if the absence of 

specific regions of the protein or presence of an additional copy of protein variants affected 

population doubling times.  The assay was carried out following the same protocol as 

described in section 4.3.1.  Four repetitions of the growth assay were carried out for each 

cell line and the results are displayed in figure 5.31, in comparison with the values 

determined previously for wild type, brca2-/-2, BRCA2-/-/+ and OE BRCA2 cell lines.   
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Figure 5.31 – Analysis of in vitro growth of BRCA2 variant expressers and over-expressers.  
5 ml cultures were set up at 5 x 104 cells.ml-1 and cell densities counted 24, 48, 72 and 96 hours 
subsequently.  Standard errors are indicated for the counts using data from four repetitions.  427: 
wild type; -/-: homozygote (brca2-/-2); -/-/+: full length BRCA2 expresser; -/-/+ BRC+RPA: 
BRC+RPA expresser; -/-/+ C term: C term expresser; -/-/+ Trunc: Trunc expresser; OE BRCA2: 
BRCA2 over-expresser; OE BRC+RPA: BRC+RPA over-expresser; OE C term: C term over-
expresser; OE Trunc: Trunc over-expresser. 

 

Cell line 427 -/- -/-/+ BRC+RPA C term Trunc 
Doubling time 8.19 +/-

0.4 
15.50 +/-

0.34 
8.26 +/-

0.4 
7.85   +/-

0.1 
9.16 +/-

0.13 
9.31 +/-

0.07 
Table 5.11 – in vitro population doubling times of BRCA2 variant expressers.  The mean 
doubling time for each of the re-expresser mutants with reduced numbers of BRC repeats are 
displayed in hours and compared to the population doubling times for WT, brca2-/-2 and BRCA2-/-
/+ cell lines.  427: wild type; -/-: homozygote (brca2-/-2); -/-/+: full length BRCA2 expresser; 
BRC+RPA: BRC+RPA expresser; C term: C term expresser; Trunc: Trunc expresser.  Standard 
errors are indicated. 

 

From the growth curves shown in figure 5.31 and the population doubling times shown in 

table 5.11, it was apparent that expressing the BRC+RPA fusion protein rescued the 

impaired growth phenotype observed in the brca2-/-2 mutant, as the population doubling 

time increased from 15.5 to 7.85 hours, which was comparative to the population doubling 

times of the full length BRCA2 re-expresser and also wild type cells.  This result was 

confirmed by the statistical analysis shown in table 5.12, which displayed that there was no 

statistical difference between the BRC+RPA-/-/+ mutant and the BRCA2-/-/+ or wild type 

cells, with P values of 0.1717 and 0.4980 respectively (p>0.05). 
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Expressing either the BRC repeat region (Trunc BRCA2-/-/+) or the C terminal region (C 

term BRCA2-/-/+) of BRCA2, appeared to rescue the impaired growth phenotype observed 

in the brca2-/-2 mutant to a certain degree, with population doubling times increasing from 

15.5 to 9.31 and 9.16 hours, respectively.  However, these population doubling times were 

not comparable with either the BRC+RPA-/-/+ or the BRCA2-/-/+ cell lines, with 

statistically significant differences being displayed (p<0.05).  This therefore indicated that 

expressing just these isolated regions of BRCA2 was not sufficient to provide cell 

functions of the full length protein. 

 -/- -/-/+ BRC+RPA C term Trunc 
WT 0.0002 0.3820 0.4980 0.1075 0.0792 
-/-  0.0001 0.0003 0.0001 0.0003 

-/-/+   0.1717 0.0589 0.0491 
BRC+RPA    0.0083 0.0017 

C term     0.1254 
Table 5.12 – Statistical analysis of the population doubling times of BRCA2 variant 
expressers.  The P values are shown for two sample T-tests comparing population doubling times 
of wild type cells, brca2 homozygous mutant 2 (-/-), BRCA2 expresser (-/-/+), BRC+RPA expresser 
(BRC+RPA), C term BRCA2 expresser and Trunc BRCA2 expresser (Trunc).  Areas shaded in 
yellow indicate a significant difference. 

 
The over-expression of any of these truncated versions of BRCA2 appeared to have no 

effect on the T. brucei growth rates.  Indeed, the population doubling times were 

essentially equivalent to those seen when full length BRCA2 was over-expressed, with 

population doubling times of 7.45 for OE BRC+RPA, 7.54 for OE C term and 7.71 for OE 

Trunc compared to 7.58 for OE BRCA2.  This appears to indicate that the putative presence 

of excess, truncated BRCA2 protein does not impede growth. 

 

5.5.2 Analysis of the cell cycle 

Cell cycle progression was next examined in order to determine if the absence of specific 

regions of the protein or presence of an additional copy of protein variants affected the 

distribution of cell types.  The assay was carried out following the same protocol as 

described in section 4.3.3 and the results are displayed in figure 5.32, in comparison with 

the values determined previously for wild type, brca2-/-2, BRCA2-/-/+ and OE BRCA2 cell 

lines.   
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Figure 5.32 – DAPI analysis of BRCA2 variant expressers and over-expressers.  The DNA 
content of BRC+RPA-/-/+ (BRC+RPA), C term BRCA2-/-/+ (C term), Trunc BRCA2-/-/+ (Trunc), OE 
BRC+RPA, OE C term and OE Trunc were visualised by DAPI and compared with the DNA 
content of wild type Lister 427, brca2 homozygous mutant 2 (-/-),BRCA2-/-/+ (-/-/+) cell lines and 
BRCA2 over-expresser (OE BRCA2) cell lines.  The numbers of cells with 1 nucleus and 1 
kinetoplast (1N 1K); 1 nucleus and 2 kinetoplasts (1N 2K); 2 nuclei and 2 kinetoplasts (2N 2K); and 
cells that do not fit into the expected classifications cells (others) were counted and represented by 
their mean count as a percentage of the total cells counted. N = number of cells counted. 

Comparison of the overall distribution of cell types by Chi-squared analysis demonstrated 

that the expression of each of the truncations of BRCA2 did not allow cell cycle 

progression to occur normally (table 5.13).  Only when the full length BRCA2 was re-

expressed, was the distribution of cells comparative to that of wild type cells.  

Nevertheless, the relative ratios of different cell cycle stages appear to vary for the 

different expressers. 

The accumulation of aberrant cells observed in the brca2-/-2 mutant was rescued to a 

certain degree when the C terminus of BRCA2 was expressed, since the number of 1N1K 

cells rose from 61.9 % to 68.3 % and the number of aberrant cell types reduced from 11.8 

% to 6.8 %.  However, the number of aberrant cells was still less than in the WT or 

BRCA2-/-/+ cell lines, suggesting that the C-terminus cannot fully perform this function. 

When the isolated BRC repeat region of BRCA2 was expressed, the distribution of cells 

appeared comparatively similar to those previously observed for the brca2-/-2 mutant, with 

64.1 % of 1N1K cells, 14.2 % of 1N2K cells, 10.7 % of 2N2K cells and 11.1 % of aberrant 

cell types, compared to 61.9 %, 17 %, 9.3 % and 11.8 %, respectively.  This is reflected in 
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the Chi squared analysis which shows that the distribution of cell types observed in the 

Trunc BRCA2-/-/+ cell line were not significantly different from the brca2-/-2 mutant, but 

were significantly different from the BRCA2-/-/+ and wild type cell lines.  This result 

suggests that the BRC repeat region of BRCA2 does not function to complement the cell 

cycle progression of brca2-/- mutants. 

The distribution of cells observed for the BRC+RPA-/-/+ mutant was found to be 

significantly different from WT, BRCA2-/-/+ and also brca2-/- cell types, with Chi squared 

values ranging from 7.9 to 52.7 (at P = 0.0477 and 0.0001).  Indeed, the distribution of 

cells appeared somewhat different to any of the other cell lines, with an apparent increase 

in the number of cells with 2N 2K content (15.7 %, compared with 5.8-10.7 % in the other 

cell lines).  This may indicate a cell cycle stall during mitosis, the reasons for which are as 

yet unknown.  It is also notable that the number of aberrant cells in BRC+RPA-/-/+ are 

indistinguishable from the brca2-/- mutants, indicating that these cells, despite having a 

WT population doubling time, retain the cell division abnormality seen in the absence of 

BRCA2. 

The over-expression of any of these truncated versions of BRCA2 appeared to have no 

apparent effect on the distribution of T. brucei cells.  Indeed, the cell cycle phenotypes 

appeared essentially equivalent to when the full length BRCA2 was over-expressed.   

 -/- -/-/+ BRC+RPA C term Trunc 
WT 55.710 

0.0001 
5.438 

0.1424 
52.694 
0.0001 

15.649 
0.0013 

48.643 
0.0001 

-/-  9.342 
0.0251 

7.918 
0.0477 

3.322 
0.3447 

0.803 
0.8487 

-/-/+   
 

19.773 
0.0002 

3.923 
0.2699 

12.297 
0.0064 

BRC+RPA   
 

 5.522 
0.1373 

3.888 
0.2739 

C term   
 

  2.861 
0.4135 

Table 5.13 – Statistical analysis of the cell cycle data for BRCA2 variant expressers.  Chi 
squared analysis of the cell cycle data for wild type cells, brca2 homozygous mutant 2 (-/-), 
BRC+RPA-/-/+ (BRC+RPA), C term BRCA2-/-/+ (C term) and Trunc BRCA2-/-/+ (Trunc).  The 
numbers indicated in bold represent the Chi squared value, whilst the numbers below represent the 
P value at which it was calculated.  Areas shaded in yellow indicate a significant difference. 

In order to examine if the distribution of cells was affected by the presence of DNA 

damage, the DNA content of the above expresser and over-expresser cell lines were 

analysed after phleomycin treatment, as described in section 4.3.3.   
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The results of this analysis are displayed in figure 5.33.  These data demonstrate that when 

the BRC-RPA fusion was expressed in the brca2-/- cells, the cell cycle distribution was 

broadly comparable with that seen in full length BRCA2-/-/+ cells and significantly 

different from that observed for brca2-/- mutants in the presence of DNA damage.  The 

number of 1N 1K cells increased from 43.8 % in brca2-/-2 (at 0.25 µg.ml-1 of phleomycin) 

to 72.8 % in the BRC+RPA-/-/+ cell line (at 0.25 µg.ml-1 of phleomycin), whilst the 

number of 1N 2K cells were seen to reduce from 27.7 % to 12.2 %, indicating enhanced 

progression through G2 phase.  The number of aberrant cell types were also seen to 

decrease, from 20.3 % in brca2-/-2 to 10.2 % in the BRC+RPA-/-/+ cell line, though the 

BRC+RPA-/-/+ cell line appeared to yield greater numbers of such cells than the BRCA2-/-

/+ cells after damage.  The statistical analysis shown in table 5.14 confirms these results, 

showing a significant difference between the brca2-/-2 mutant and the BRC+RPA-/-/+ cell 

line, with Chi squared values of 32.3 to 37.2 (at P = 0.0001).  Moreover, no such 

significant difference was observed between the BRC+RPA-/-/+ cell line and WT and 

BRCA2-/-/+ cell lines, at 0.25 µg.ml-1 of phleomycin, though at 1.0 µg.ml-1 a difference 

was observed.  Most likely, the BRC-RPA fusion is capable of allowing DNA damage to 

be repaired more effectively than in brca2-/- mutants, most probably due to an increased 

resistance to DNA damaging agents (see section 5.5.3). 

Expression of just the BRC repeat or C terminal regions of BRCA2 allowed the cell cycle 

to progress somewhat more normally than the brca2-/- mutants in the presence of DNA 

damage, since significant differences were observed between the C term BRCA2-/-/+ and 

Trunc BRCA2-/-/+ cell lines and the brca2-/-2 mutant, with Chi squared values ranging 

from 17.36 to 23.6 (at P = 0.0006 and 0.0001).  However, this appeared not to be as 

pronounced as for the BRC+RPA-/-/+ cell line.  At either phleomycin concentration, the 

numbers of 1N1K cells was lower than WT, BRCA2-/-/+ and BRC+RPA-/-/+, indicating 

deficiencies in other cell cycle stages.  This appeared primarily to be due to greater 

numbers of aberrant cells accumulating, indicating damage, but was not manifest as 

increased 1N2K cells that would represent a block in G2 progression (as seen in brca2-/- 

cells).  Together, these data most likely indicate that DNA damage is repaired more 

effectively than in brca2-/- mutants, but less effectively than either WT, BRCA2-/-/+ or 

BRC+RPA-/-/+ cell lines, probably due to an increased sensitivity to DNA damaging 

agents (see section 5.5.3). 

Unusually, when the phleomycin treatment of the C term BRCA2-/-/+ and Trunc BRCA2-/-

/+ cell lines was increased from 0.25 to 1.0 µg.ml-1 of phleomycin, the cell cycle 
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phenotypes appeared more similar to wild type and BRCA2-/-/+ cell lines.  The reason for 

this phenomenon is unknown, but could possibly be due to the increase in DNA damage 

causing a higher proportion of cell death, causing fewer aberrant cell types to be counted.  

In support of this, the same phenomenon appeared to be observed in the brca2-/- cells.  In 

contrast, in the BRC+RPA-/-/+ cells the numbers of aberrant cells increased with greater 

damage.  If this latter cell line is more resistant to DNA damage than both the C term 

BRCA2-/-/+ and Trunc BRCA2-/-/+ mutants (see section 5.5.3), the proportion of dead 

cells would be expected to be lower at equivalent concentrations. 

 
Figure 5.33 – DAPI analysis BRCA2 variant expressers after DNA damage.  The DNA content 
of BRC+RPA-/-/+ (BRC+RPA), C term BRCA2-/-/+ (C term), Trunc BRCA2-/-/+ (Trunc), OE 
BRC+RPA, OE C term and OE Trunc were visualised by DAPI and compared with the DNA 
content of wild type Lister 427, brca2 homozygous mutant 2 (-/-),BRCA2-/-/+ (-/-/+) cell lines and 
BRCA2 over-expresser (OE BRCA2) cell lines.  The numbers of cells with 1 nucleus and 1 
kinetoplast (1N 1K); 1 nucleus and 2 kinetoplasts (1N 2K); 2 nuclei and 2 kinetoplasts (2N 2K); and 
cells that do not fit into the expected classifications cells (others) were counted and represented by 
their mean count as a percentage of the total cells counted. Wild type and BRCA2 -/-/+ cell lines 
were grown in media with 1.0 µg.ml-1 of phleomycin, whilst brca2-/-, 1BRC BRCA2-/-/+ and T. vivax 
BRCA2-/-/+ were grown in media with 0.25 µg.ml-1 and 1.0 µg.ml-1 of phleomycin.  N = number of 
cells counted. 

 

The generation of DNA damage through addition of phleomycin had no apparent effect on 

the ability of the over-expresser cell lines to progress through the cell cycle (data not 

shown).  This result would fit with the previous results that when truncated versions of 

BRCA2 were over-expressed, the T. brucei cells were unaffected in their ability to 
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progress through the cell cycle and in their population doubling times.  Indeed, this is most 

likely due to a lack of increased or decreased sensitivity to DNA damaging agents 

compared to wild type cells (see section 5.5.3). 

 -/- 
(0.25) 

-/- 
(1.0) 

-/-/+ BRC+
RPA 

(0.25) 

BRC+
RPA 
(1.0) 

C term 
(0.25) 

C term 
(1.0) 

Trunc 
(0.25) 

Trunc 
(1.0) 

WT 
 

71.310 
0.0001 

68.395 
0.0001 

1.024 
0.7954 

4.287 
0.2321 

10.053 
0.0181 

17.801 
0.0005 

9.308 
0.0255 

17.239 
0.0006 

7.001 
0.0719 

-/- 
(0.25) 

 1.182 
0.7573 

34.183 
0.0001 

34.393 
0.0001 

37.197 
0.0001 

18.578 
0.0003 

23.554 
0.0001 

17.378 
0.0006 

21.944 
0.0001 

-/- 
(1.0) 

  32.606 
0.0001 

32.263 
0.0001 

34.814 
0.0001 

19.140 
0.0003 

22.483 
0.0001 

17.355 
0.0006 

21.743 
0.0001 

-/-/+ 
 

   2.892 
0.4085 

8.030 
0.0454 

10.728 
0.0133 

5.159 
0.1605 

10.379 
0.0156 

2.722 
0.4364 

BRC+RPA 
(0.25) 

    1.126 
0.7707 

4.271 
0.2337 

1.318 
0.2748 

4.106 
0.2503 

2.947 
0.3998 

BRC+RPA 
(1.0) 

     5.938 
0.1147 

3.407 
0.3331 

6.025 
0.1104 

7.685 
0.053 

C term 
(0.25) 

      0.848 
0.8379 

0.140 
0.9866 

1.713 
0.6341 

C term 
(1.0) 

       0.755 
0.8602 

0.863 
0.8343 

Trunc 
(0.25) 

        1.543 
0.6932 

Table 5.14 – Statistical analysis of the cell cycle data for BRCA2 variant expressers after 
DNA damage.  Chi squared analysis of the cell cycle data for wild type cells, brca2 homozygous 
mutant 2 (-/-2), BRC+RPA-/-/+ (BRC+RPA), C term BRCA2-/-/+ (C term) and Trunc BRCA2-/-/+ 
(Trunc).  The numbers indicated in bold represent the Chi squared value, whilst the numbers below 
represent the P value at which it was calculated.  Areas shaded in yellow indicate a significant 
difference. 

 

5.5.3 Analysis of DNA damage sensitivity 

Sensitivity of the BRCA2 variant cell lines to DNA damaging agents was next examined 

by Alamar Blue assays that were carried out following the same protocols as described in 

section 4.3.4, using both MMS and phleomycin as DNA damaging agents.  These results 

are displayed in figures 5.34 and 5.35, in comparison with the values determined 

previously for wild type, brca2-/-2, BRCA2-/-/+ and the OE BRCA2 cell lines.   

When MMS was used as the DNA damaging agent, the BRC+RPA-/-/+ cell line was 

essentially equivalent to the BRCA2-/-/+ cells in terms of sensitivity, with a mean IC50 of 

0.0030 % compared to 0.0031 %.  This result was confirmed by the statistical analysis 

shown in table 5.14, which displayed that the BRC+RPA -/-/+ mutant was not significantly 

different from the BRCA2-/-/+  mutant (p>0.05), but was significantly different from the 

WT and brca2-/-2 cell lines (p<0.05).  This therefore demonstrates that the BRC repeat 

region of BRCA2 is capable of repairing damage induced by MMS when it is fused with a 
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distinct DNA binding domain, consistent with findings in mammalian cells and U. maydis 

(Saeki et al., 2006;Kojic et al., 2005;Kojic et al., 2006).   

 
Figure 5.34 – IC50s of T. brucei BRCA2 variant expressers exposed to MMS.  BRC+RPA-/-/+ 
(BRC+RPA), C term BRCA2-/-/+ (C term), Trunc BRCA2-/-/+ (Trunc), OE BRC+RPA, OE C term 
and OE Trunc cell lines were placed in serially decreasing amounts of MMS and allowed to grow 
for 48 hours, before the addition of Alamar Blue.  After a further 24 hours, the reduction of Alamar 
Blue was measured by the amount of fluorescent resorufin generated.  Values are the mean IC50s 
from 3 experiments and are compared to the previous results from wild type (427), brca2-/-2 (-/-), 
BRCA2-/-/+ (-/-/+) and OE BRCA2 cell lines; bars indicate standard error. 

Both the C term BRCA2-/-/+ and Trunc BRCA2-/-/+ cell lines were more sensitive to 

MMS than either the BRCA2-/-/+ or WT cell lines, but more resistant than the brca2-/-2 

mutants, findings confirmed by statistical analysis.  This result is indicative that the 

isolated BRC repeat region or the C terminal region of BRCA2 cannot function alone to 

efficiently repair DNA damage induced by MMS in vivo, though may perhaps allow DNA 

damage repair to occur, albeit at a low level. 

When the various truncations of BRCA2 were over-expressed, no significant increase or 

decrease in sensitivity to MMS was observed, when compared to the OE BRCA2 cell line, 

or indeed WT cells.   
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 -/- -/-/+ BRC+RPA C term Trunc 
WT 0.0025 0.0192 0.0021 0.0183 0.0759 
-/-  0.0024 0.0007 0.0211 0.0070 

-/-/+   0.7664 0.0048 0.0043 
BRC+RPA    0.0002 0.0006 

C term     0.0172 
Table 5.15 – Statistical analysis of the Alamar Blue results for MMS.  P values are shown for 
two sample T-tests comparing the IC50s for MMS sensitivity of wild type cells (WT), brca2 
homozygous mutant 2 (-/-), BRCA2-/-/+ (-/-/+), BRC+RPA-/-/+ (BRC+RPA), C term BRCA2-/-/+ (C 
term), and Trunc BRCA2-/-/+ (Trunc) cell lines.  Areas shaded in yellow indicate a significant 
difference. 

When phleomycin was used as the DNA damaging agent, all of the BRCA2 variant 

expressers were seen to be more sensitive to this treatment than the full length BRCA2 re-

expresser.  This result was confirmed by the statistical analysis shown in table 5.17. 

 
Figure 5.35 – IC50s of T. brucei BRCA2 variant expressers exposed to phleomycin.  
BRC+RPA-/-/+ (BRC+RPA), C term BRCA2-/-/+ (C term), Trunc BRCA2-/-/+ (Trunc), OE 
BRC+RPA, OE C term and OE Trunc cell lines were placed in serially decreasing amounts of 
phleomycin and allowed to grow for 48 hours, before the addition of Alamar Blue.  After a further 24 
hours, the reduction of Alamar Blue was measured by the amount of fluorescent resorufin 
generated.  Values are the mean IC50s from 3 experiments and are compared to the previous 
results from wild type (427), brca2-/-2 (-/-), BRCA2-/-/+ (-/-/+) and OE BRCA2 cell lines; bars 
indicate standard error. 

The BRC+RPA-/-/+ cell line remained more resistant to phleomycin damage than either 

the C term BRCA2-/-/+, Trunc BRCA2-/-/+ or brca2-/-2 cell lines, with a mean IC50 of 

0.063 µM, compared to 0.032 µM , 0.029 µM and 0.013 µM, respectively.  Although this 

sensitivity was greater than that observed for WT cells (0.099 µM), it was highly 

reminiscent of the putative haploinsufficiency that was observed for the BRCA2+/- 

mutants (section 4.3.4), where mean IC50s of 0.060 µM and 0.067 µM were seen.  This 

therefore appears to indicate that the BRC-RPA fusion is functional in repairing DNA 
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damage induced by phleomycin when compared with brca2-/- mutants, but does not act as 

efficiently as the full length BRCA2 protein on this form of damage, unlike MMS.   

Both the C term BRCA2-/-/+ and Trunc BRCA2-/-/+ cell lines displayed levels of 

phleomycin sensitivity that were closer to the brca2-/- mutants than the WT or BRCA2-/-/+ 

cells.  This appears consistent with the MMS data, and indicates that the isolated BRC 

repeat region or the C terminal region of BRCA2, are largely unable to repair DNA 

damage. 

 -/- -/-/+ BRC+RPA C term Trunc 
WT 0.0065 0.0840 0.2007 0.0380 0.0388 
-/-  0.0002 0.0194 0.0677 0.1354 

-/-/+   0.0050 0.0001 0.0002 
BRC+RPA    0.0312 0.0102 

C term     0.5920 
Table 5.16 – Statistical analysis of the Alamar Blue results for phleomycin.  P values are 
shown for two sample T-tests comparing the IC50s for phleomycin sensitivity of wild type cells 
(WT), brca2 homozygous mutant 2 (-/-), BRCA2-/-/+ (-/-/+), BRC+RPA-/-/+ (BRC+RPA), C term 
BRCA2-/-/+ (C term), and Trunc BRCA2-/-/+ (Trunc) mutants.  Areas shaded in yellow indicate a 
significant difference. 

As for MMS, the over-expresser cell lines again displayed no significant difference in 

sensitivity to phleomycin, when compared to the OE BRCA2 cell line, or indeed WT cells.   

5.5.4 Analysis of recombination efficiency 

The BRCA2 variant cell lines were next subjected to analysis of their recombination 

efficiency following, the transformation protocol described in section 4.3.5.  Three 

repetitions of the transformation efficiency assay were carried out for each cell line and the 

results are shown in figure 5.36, alongside the transformation efficiency rates for wild type, 

brca2-/-2, BRCA2-/-/+ and OE BRCA2 cell lines for comparison.  

Each of the BRC+RPA-/-/+, C term BRCA2-/-/+ and Trunc BRCA2-/-/+ cell lines were 

found to have significantly lower transformation efficiency rates than wild type or BRCA2-

/-/+ cell lines, with mean transformation efficiency rates of 0.73 x 10-6, 0.6 x 10-6 and 0.87 

x 10-6 compared to 4.53 x 10-6 and 4.27 x 10-6, respectively.  These differences were 

confirmed as being statistically significant by two sample T-tests displayed in table 5.18, 

with P values ranging from 0.003 to 0.010.   
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Figure 5.36 – Recombination efficiency in BRCA2 variant expressers.  Values are mean 
numbers of transformants obtained per 106 cells transformed; error bars are shown from 3 
repetitions.  The data are presented for wild type Lister 427 cells (427), brca2 homozygous mutant 
2 (-/-), BRCA2 re-expresser (-/-/+), BRC+RPA-/-/+ (BRC+RPA), C term BRCA2-/-/+ (C term), Trunc 
BRCA2-/-/+ (Trunc), OE BRCA2, OE BRC+RPA, OE C term and OE Trunc cell lines. 

These results indicate that homologous recombination occurs at a low level when only the 

BRC repeat region or the C terminal region of BRCA2 are expressed, which may have 

been expected since these cell lines were found to be impaired at repairing DNA damage 

(section 5.5.3).  Surprisingly, the BRC+RPA expresser transformation rates were also 

comparatively low, despite evidence that this cell line is able to repair DNA damage more 

effectively than the C term BRCA2-/-/+ or Trunc BRCA2-/-/+ mutants.  This therefore 

infers that the DNA binding domain provided by T. brucei RPA cannot substitute for the C 

terminal region of BRCA2 to allow homologous recombination to progress effectively.  

This contrasts with the findings described by Saeki et al., (2000), who showed that H. 

sapiens BRC repeats fused to RPA can perform recombination, albeit using a distinct 

assay.  Nevertheless, these results appear to indicate that in T. brucei the full length 

BRCA2 protein is required for homologous recombination to occur effectively. 
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 -/- -/-/+ BRC+RPA C term Trunc 
WT 0.002 0.625 0.003 0.004 0.010 
-/-  0.004 0.088 0.216 0.111 

-/-/+   0.009 0.010 0.005 
BRC+RPA    0.184 0.529 

C term     0.270 
Table 5.17 – Statistical analysis of the recombination efficiency of BRCA2 variant 
expressers.  P values are shown for two sample T-tests comparing recombination efficiencies of 
wild type (WT) cells, brca2 homozygous mutant 2 (-/-), BRCA2 re-expresser (-/-/+), BRC+RPA-/-/+ 
(BRC+RPA), C term BRCA2-/-/+ (C term) and Trunc BRCA2-/-/+ (Trunc).  Areas shaded in yellow 
indicate a significant difference. 

The over-expresser cell lines again resulted in no significant differences in transformation 

efficiency rates when compared to the OE BRCA2 cell line, or indeed WT cells.   

5.5.5 Analysis of the ability of BRCA2 variants to support RAD51 

foci formation 

The cell lines with the various truncations of BRCA2 were next analysed for their ability to 

form RAD51 sub-nuclear foci following DNA damage (as described in section 4.3.6).  The 

cells were treated with phleomycin for 18 hours and RAD51 localisation was examined by 

indirect immunofluorescence,  

For all cells, approximately 300 cells were counted and scored for the number of foci they 

contained after treatment with 2 concentrations of phleomycin (0.25 µg.ml-1 and 1.0 µg.ml-

1) (see section 5.5.3).  The results are displayed in table 5.19, and examples of cells and 

RAD51 foci are shown in figure 5.37.   

Both the C term BRCA2-/-/+ and Trunc BRCA2-/-/+ cell lines were found to have a greatly 

reduced ability to form RAD51 foci, with the majority of cells containing no foci, at any 

drug concentration.  Indeed, the extent of this impairment is comparable to that observed 

for brca2-/- mutants, where it was not clear whether any induction of RAD51 foci occurred 

at all. 

The results for the BRC+RPA-/-/+ mutant demonstrated that this cell line was capable of 

forming RAD51 foci, albeit with some impairment.  Unlike the C term BRCA2-/-/+, Trunc 

BRCA2-/-/+ and brca2-/- cell lines, in the presence of phleomycin, almost half of the cells 

counted (44.8 %) contained 1 foci or more.  This percentage of cells was, however, 

significantly lower than the 75 – 85 % of cells which contained foci in the WT and 

BRCA2-/-/+ cell lines.  These data demonstrate that the BRC-RPA fusion can support the 

movement of RAD51 to repair foci, but is somewhat compromised compared with WT and 

BRCA2-/-/+ cell lines. 
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These results appear to be consistent with the DNA repair data (see above), and indicate 

that the full length BRCA2 is required for fully effective RAD51 localisation to DNA 

damage, at least caused by phleomycin.  Though RPA can substitute for the C terminal 

region of BRCA2, suggesting that it is the BRC repeats that are primarily involved, this 

appears to impair the function of the protein.  The reasons for this remain unclear, but it 

could be speculated that the RPA subunit has difficulty in removing the endogenous RPA 

which has coated the single stranded DNA at the sites of DNA damage.  Another 

possibility could be that RPA fused to the BRC repeat region of BRCA2 is unable to 

precisely function as the C terminus, either because DNA binding is not equivalent due to 

sequence differences or because the C terminus of BRCA2 provides other repair functions. 

Number of foci (%) 
 BLE 0 1 2 3 4 5 6 or more

WT 0.0 96.4 3.6 0.0 0.0 0.0 0.0 0.0 
 1.0 24.8 22.6 18.8 16.5 13.5 2.3 1.5 

-/- 0.0 98.2 1.3 0.4 0.0 0.0 0.0 0.0 
 0.25 96.9 2.0 0.5 0.5 0.0 0.0 0.0 
 1.0 98.6 0.7 0.7 0.0 0.0 0.0 0.0 

-/-/+ 0.0 87.5 3.5 2.3 2.3 1.9 1.6 0.8 
 1.0 14.8 10.5 15.6 14.8 13.7 13.3 17.2 

BRC+RPA 0.0 97.6 1.5 0.9 0.0 0.0 0.0 0.0 
 1.0 55.2 11.7 17.7 4.7 6.0 2.0 2.7 

Trunc 0.0 99.4 0.6 0.0 0.0 0.0 0.0 0.0 
 0.25 99.4 0.6 0.0 0.0 0.0 0.0 0.0 
 1.0 97.7 1.3 1.0 0.0 0.0 0.0 0.0 

C term 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 
 0.25 99.4 0.6 0.0 0.0 0.0 0.0 0.0 
 1.0 98.1 0.9 0.6 0.4 0.0 0.0 0.0 

Table 5.18 – RAD51 foci formation in BRCA2 variant.  The percentages of cells showing foci at 
given concentrations of phleomycin (BLE) are shown.  Phleomycin concentrations are shown in 
µg.ml-1.  Boxes shaded in light yellow contain foci, whilst boxes shaded in bright yellow contain the 
highest percentage of foci. 

As for the BRCA2 protein with reduced BRC repeats, to ensure that these lowered levels 

of RAD51 foci did not result from decreased RAD51 levels in these expresser cell lines, 

western analysis was carried out as described in section 5.3.5.  Total protein was extracted 

from the BRC+RPA-/-/+, C term BRCA2-/-/+ and Trunc BRCA2-/-/+ cell lines, before and 

after phleomycin-induced damage.  Figure 5.38 demonstrates that RAD51 is still clearly 

expressed in the BRC+RPA-/-/+, C term BRCA2-/-/+ and Trunc BRCA2-/-/+ cell lines, 

and there is no evidence for an increase or decrease in RAD51 levels after DNA damage. 
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Figure 5.37 – RAD51 immunolocalisation in BRCA2 variant expressers.  Representative 
images of T. brucei cells following growth in 0.25 µg.ml-1 and 1.0µg.ml-1 phleomycin for 18 hours 
are shown.  Each cell is shown in differential interface contrast (DIC), after staining with DAPI and 
after hybridisation with anti-RAD51 antiserum and secondary hybridisation with Alexa Fluor 488 
conjugate (Alexa 488).  Merged images of DAPI and Alexa 488 cells are also shown.  WT – wild 
type cells; C term – C term BRCA2-/-/+ cells; Trunc – Trunc BRCA2-/-/+ cells; BRC+RPA – 
BRC+RPA-/-/+ cells. 

 
Figure 5.38 – Western blots of RAD51 in BRCA2 variant expressers.  The western blots display 
total protein extracts from BRC+RPA-/-/+ (BRC+RPA), C term BRCA2-/-/+ (C term) and Trunc 
BRCA2-/-/+ (Trunc) cell lines probed with anti-RAD51 antiserum (RAD51).  Protein extracts were 
prepared without damage (0µg.ml-1 BLE) and with damage (1.0µg.ml-1 BLE).  Size markers are 
indicated.  The endogenous copy of RAD51 is visible at 47kDa. 
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5.5.6 Analysis of VSG switching 

Finally, analysis of VSG switching was performed in the BRC+RPA-/-/+, C term BRCA2-/-

/+ and Trunc BRCA2-/-/+ cell lines using the same protocol described in section 5.3.6.  

As before, western analysis was performed in order to determine whether VSG221 

continued to be expressed in each cell line.  Whole cell extracts were prepared, and 

electrophoresed on a 10 % SDS-PAGE gel and probed for VSG221, which resides at the 

active VSG expression site.  The resulting western blots of this analysis are displayed in 

figure 5.39 and indicate that all cell lines were expressing VSG221.   

 
Figure 5.39 – Western blots of VSG221 in BRCA2 variant expressers.  The western blots 
display total protein extracts from wild type (WT), brca2-/-2 (-/-), BRCA2-/-/+ (-/-/+), BRC+RPA-/-/+ 
(BRC+RPA), C term BRCA2-/-/+ (C term) and Trunc BRCA2-/-/+ (Trunc) cells probed with anti-
VSG 221antiserum. Size markers are indicated.   

The VSG switching frequencies obtained are presented in figure 5.40, and demonstrate that 

the BRC+RPA-/-/+ cell line was unaltered in its ability to switch its VSG coat relative to 

either the WT or BRCA2-/-/+ cells, with a mean VSG switching frequency of 11.9 x 10-7 

compared to 9.5 x 10-7 and 10 x 10-7, respectively.  Surprisingly, the C term BRCA2-/-/+ 

cell line also appeared to be relatively unaltered in VSG switching frequency, with a mean 

VSG switching frequency of 8.2 x 10-7.  Only the Trunc BRCA2-/-/+ cell line appeared to 

have a reduced ability to switch its VSG coat, with a mean VSG switching frequency of 

4.9 x 10-7, which was comparable to that found in the brca2-/-2 mutant (3.7 x 10-7). 

None of these results were found to be statistically significant (table 5.20), largely due to 

the greater levels of variability in this assay. 
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Figure 5.40 – VSG switching frequencies in BRCA2 variant expressers.  Values shown are the 
average switching frequencies for 427 wild type cells (WT), the brca2 homozygous mutant 2 (-/-), 
the BRCA2 re-expresser (-/-/+), the BRC+RPA-/-/+ (BRC+RPA), the C term BRCA2-/-/+ (C term) 
and Trunc BRCA2-/-/+ (Trunc).  Data are from at least 3 experiments and standard error is 
indicated by bars. 

These results appear to indicate that, in contrast to the sequence requirements for general 

homologous recombination, full length BRCA2 is not required for effective VSG switching 

efficiency during an acute infection.  Indeed, BRCA2 can be substituted by the BRC-RPA 

fusion, or even the C terminal region to some extent, during this reaction.   

 
 -/- -/-/+ BRC+RPA C term Trunc 

WT 0.2182 0.2743 0.0223 0.5016 0.7214 
-/-  0.0675 0.1324 0.3023 0.4848 

-/-/+   0.8725 0.3964 0.1202 
BRC+RPA    0.4329 0.0947 

C term     0.4894 

Table 5.19 – Statistical analysis of the VSG switching frequencies in BRCA2 variant 
expressers.  P values are shown for two sample T-tests comparing VSG switching frequencies of 
427 wild type cells (WT), the brca2 homozygous mutant 2 (-/-), the BRCA2 re-expresser (-/-/+), the 
BRC+RPA expresser (BRC+RPA), the C term BRCA2 expresser (C term) and the Trunc BRCA2 
expresser (Trunc) cell lines.  Data are from at least 3 experiments and standard error is indicated 
by bars.  Areas shaded in yellow indicate a significant difference (P<0.05). 
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5.6 Summary 
The aims of this chapter were to examine the function of the BRC repeat expansion in T. 

brucei BRCA2, and to establish the functions of various motifs of BRCA2, in particular to 

ask if the BRC repeats and downstream C terminal part of the protein provide elements 

that can act in isolation or need to be present together.  To do this, expresser cell lines were 

generated by transforming brca2-/- cells with constructs containing BRCA2 genes which 

contained reduced numbers of BRC repeats, the BRC repeat region alone, the C terminal 

region alone and the BRC repeat region translationally fused to the large RPA subunit. 

T. brucei brca2-/- cells, like mutants of other DNA recombination genes (McCulloch and 

Barry, 1999;Proudfoot and McCulloch, 2005;Robinson et al., 2002), display a reduced 

growth rate in vitro and in vivo.  In vitro growth rates were only seen to fully return to the 

levels of WT and BRCA2-/-/+ cells in the BRC+RPA-/-/+ expresser cell line, indicating 

that the RPA 50 subunit can substitute for the C terminal region in terms of population 

doubling times, and in the 1BRC-/-/+ cells, indicating that a single divergent BRC repeat 

can also function. 

The generation of aberrant cell types in the brca2-/- cells was reverted to levels 

comparable with WT and BRCA2-/-/+ cells in the expressers with reduced numbers of 

BRC repeats.  Since these truncated BRCA2 variants were DNA repair impaired, this 

indicates that the BRC repeat expansion is not a component of BRCA2-related cell cycle 

progression.  It appears likely that the C terminal region of BRCA2 might function in this 

role, based on 2 observations.  First, the C term BRCA2-/-/+ cell lines cell cycle 

distribution was distinct from brca2-/- cells, and was more comparable to WT and BRCA2-

/-/+ cells.  Second, BRC-RPA fusion, in which the C terminus of BRCA2 was replaced 

with the RPA 50 subunit continued to generate aberrant cells, arguing that BRCA2, C 

terminal-specific functions underlie this phenotype. 

Only the BRC+RPA-/-/+ cell line was able to restore resistance against DNA damaging 

agents to brca2-/- mutants, to levels comparable with full length BRCA2, indicating that 

the RPA 50 subunit can substitute for the C terminal region of BRCA2 in terms of 

repairing DNA damage induced by MMS and to a certain degree, phleomycin.  The lack of 

such complementation by the BRCA2 variant with 1 BRC repeat argues that the BRC 

repeat expansion in BRCA2 is therefore critical in terms of DNA damage repair.  

However, because the 1BRC and T. vivax BRCA2 variants provide some enhancement of 

DNA repair efficiency in brca2-/- cells, this argues that the divergent C-terminal BRC 
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repeat, and the T. vivax BRC repeat, function in T. brucei, most likely through RAD51 

interaction. 

Surprisingly, none of the cell lines expressing the BRCA2 variants were able to support 

efficient recombination.  This indicates that the BRC repeat expansion is critical for 

efficient homologous recombination, and that the RPA 50 subunit cannot substitute for the 

C terminal BRCA2 region in order to allow homologous recombination to progress.  This 

could be due to the RPA subunit fused to the BRC repeat region interfering with the 

endogenous RPA, though we have not tested this, but contrasts with findings in 

mammalian cells and in U. maydis (Kojic et al., 2005;Kojic et al., 2006;Saeki et al., 2006). 

Only the BRC+RPA-/-/+ cell line was capable of forming phleomycin-induced sub-nuclear 

RAD51 foci, again implying that the BRC repeat expansion is critical for efficient 

interaction with RAD51 during the DNA damage response in T. brucei.  Despite this, the 

BRC-RPA fusion appeared not to function as efficiently as full length BRCA2, again 

arguing that the RPA 50 subunit could not fully substitute for the C terminal region of 

BRCA2, which appears consistent with the impaired function of this protein during 

transformation assays. 

Despite all the above findings, the most surprising result from this chapter came from the 

VSG switching data.  The 1BRC and T. vivax BRCA2 variants supported this reaction, 

which demonstrated that the BRC repeat expansion in BRCA2 appears to be of little 

importance for VSG switching efficiency during an acute infection.  Perhaps more 

surprisingly, the BRC-RPA and C-term variants of BRCA2 supported VSG switching to a 

greater and lesser extent respectively.  This argues that VSG switching could still occur 

when only fragments of the BRCA2 protein were expressed.  The large amount of 

variation in the data produced from this assay could account for these unexpected results.  

However, it is also legitimate to ask what this tells us about the role of BRCA2 in VSG 

switching. 

In addition to the BRCA2 variants that were expressed in brca2-/- mutants, variants were 

also over-expressed in WT cells.  However, no apparent effects were detected in any of the 

assays, perhaps indicating that little or no over-expression occurred.  
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6.1 Introduction 
RAD51, the eukaryotic homologue of bacterial RecA, is highly conserved in all 

eukaryotes.  It is a relatively small protein (38kDa) that is functional as a long helical 

polymer, made up of hundreds of monomers that wrap around DNA to form a 

nucleoprotein filament (Benson et al., 1994), which functions in the repair of double strand 

breaks (DSBs) by the homologous recombination pathway (see sections 1.4.2.3 and 1.6). 

Studies on human RAD51 showed its strand exchange activity to be much lower than that 

of RecA in vitro (Baumann et al., 1996), suggesting the requirement of additional factors 

such as the single strand-binding protein RPA (replication binding protein A), RAD52 and 

RAD54.  In both yeast and mammals, RAD52 facilitates the removal of RPA from ssDNA 

(Sung, 1997a;Benson et al., 1998), whilst RAD54 is thought to stimulate joint-molecule 

formation (Petukhova et al., 1998) (see section 1.4.2.3). 

Following DNA damage to bacteria, RecA induction increases more than 15 fold in a ‘SOS 

response’(Little and Mount, 1982;Walker, 1984).  Whilst this up-regulation is observed in 

virtually all eukaryotes, including S. cerevisiae, T. cruzi and L. major, no such response is 

observed in mammalian cells (Tarsounas et al., 2004).  At best there is a two fold 

transcriptional regulation of proteins such as RAD51.  Instead, RAD51 and other repair 

proteins that are normally diffused throughout the nucleus are rapidly relocated and 

concentrated into sub-nuclear complexes that are microscopically detected as foci.  This 

creates an overall effect that increases the local concentration of repair enzymes as the cell 

prepares for and undergoes repair (Tarsounas et al., 2004).  Recombination proteins that 

are known to co-localise with RAD51 include RAD52 (Liu and Maizels, 2000;Lisby et al., 

2001;Essers et al., 2002b), RAD54 (Tan et al., 1999;Essers et al., 2002a), RPA 

(Raderschall et al., 1999) and the tumour suppressors BRCA1 (Scully et al., 1997) and 

BRCA2 (Chen et al., 1998b).  These foci are hypothesised to exist as repair centres, though 

their exact composition is unknown. 

Cells defective in any of the five mammalian RAD51 paralogues (RAD51B, RAD51C, 

RAD51D, XRCC2 and XRCC3), which are required for normal levels of HR and 

resistance to ionising radiation (Thacker, 1999), either fail to form or are reduced in their 

ability to generate or maintain RAD51 foci in response to ionising radiation (Bishop et al., 

1998;Takata et al., 2000;Takata et al., 2001;O'Regan et al., 2001;Tarsounas et al., 2004).  

Both BRCA2 and DSS1 have also been shown to be essential in the formation of RAD51 

foci in mammals (Yuan et al., 1999;Tarsounas et al., 2003;Gudmundsdottir et al., 
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2004;Godthelp et al., 2002).  RAD51 is known to directly bind BRCA2 in vitro, via the 

BRC repeats and at a separate locus in mammalian cells, U. maydis and C. elegans.  

(Wong et al., 1997;Chen et al., 1998b;Chen et al., 1999a;Esashi et al., 2005;Zhou et al., 

2007;Petalcorin et al., 2007).  RAD51 is also known to interact with several other proteins 

(see section 1.6) including p53 (Sturzbecher et al., 1996;Buchhop et al., 1997;Linke et al., 

2003) indicating a role in genome maintenance in higher eukaryotes (Sonoda et al., 1998). 

RAD51 foci are also found in undamaged S-phase mammalian cells, where they are 

proposed to repair broken replication forks (Tashiro et al., 1996;Raderschall et al., 1999).  

The S-phase and damaged induced foci appear to be distinct from each other, as BRCA2 is 

not required for the formation of RAD51 foci in non-irradiated S-phase cells (Tarsounas et 

al., 2003).   

Interestingly, the presence of RAD51 foci formations following DNA damage does not 

appear to be restricted to mammalian cells.  Indeed, these damage induced foci have been 

observed to form in many other eukaryotes, including S. cerevisiae, C. elegans and U. 

maydis (Kojic et al., 2005;Martin et al., 2005;Bishop, 1994;Gasior et al., 1998). 

In T. brucei, RAD51 is considered to be one of the most significant genes to be implicated 

in regulating VSG switching.  It was initially hypothesised that rad51-/- mutants would be 

unable to undergo VSG switching.  However, although impaired, the T. brucei rad51-/- 

mutants were still capable of switching their VSG coat (McCulloch and Barry, 1999), 

indicating that RAD51 is not the only protein involved in the complex process of antigenic 

variation in T. brucei.  Recent work has shown that T. brucei RAD51 forms sub-nuclear 

foci in response to DNA damage (Proudfoot and McCulloch, 2005).  Although such foci 

have been previously described in other organisms, their role and molecular composition in 

T. brucei remains unclear.  The work described in section 4.3.6 appears to support the 

hypothesis that T. brucei RAD51 interacts with BRCA2.  Indeed, the absence of BRCA2 

causes the apparent failure of RAD51 foci formation, as does mutation of 2 RAD51 

paralogues, RAD51-3 and RAD51-5 (Proudfoot and McCulloch, 2005).  However, no 

work has examined if any of these factors interact with RAD51 in foci. 

In this chapter, the hypothesis will be tested that the T. brucei RAD51 foci are repair 

centres containing multiple homologous recombination factors and specific sites of DNA 

lesions.  Potentially, such an approach could identify T. brucei HR factors that have not 

been annotated through sequence homology with other organisms.  Tandem affinity 
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purification will be used to identify RAD51 interacting factors, before and after induced 

DNA damage in both the bloodstream and procyclic stages of the T. brucei life cycle. 

6.2 Tandem affinity purification 
Affinity purification has been the method of choice for a number of years for purifying 

proteins (Shevchenko et al., 1996;Blackstock and Weir, 1999).  However, protein 

complexes do not always tolerate the over-expression of specific factors, as this can result 

in non-physiological interactions and may disrupt protein complexes (Swaffield et al., 

1995).  Therefore, in order for protein complexes to be purified, the target protein needs to 

be close to its natural expression levels.   

In 1999, Rigaut et al. (1999) developed a generic protein purification method for protein 

complex characterisation (Rigaut et al., 1999).  The tandem affinity purification (TAP) 

method was found to generate high yields of protein complexes from cell fractions and 

prior knowledge of the complex composition or function was not required.  This method 

has similar applications to the yeast two-hybrid screen, but has the advantage that multiple 

interacting partners, rather than simply 2 proteins, can be identified in a single experiment 

(Fromont-Racine et al., 1997). 

The TAP tag is a fusion cassette, consisting of an IgG binding domain of Staphylococcus 

aureus protein A (Prot A) and a calmodulin binding peptide (CBP), separated by a TEV 

protease cleavage site.  The Prot A and CBP tags were chosen, as these tags allowed 

efficient recovery of a fusion protein (SmX4p) that was present at a low concentration in 

extract from S. cerevisiae (Rigaut et al., 1999).  The conditions required for the selection 

and subsequent release from the IgG and calmodulin beads are contrasting, so the authors 

decided to insert a specific TEV protease recognition sequence between the 2 tags, 

allowing the release of the Prot A tag prior to CBP-bound purification (Rigaut et al., 1999). 

The TAP tag proved to be flexible, as the relative order of the domains can be inversed to 

produce N and C terminal tags.  Following fusion of the TAP tag to the target protein, the 

construct is introduced into the host cell or organism, ideally maintaining the natural 

expression level of the protein.  The purification method is depicted in figure 6.1 and 

involves the recovery of the fusion protein and possible interacting partners from the cell 

extract initially by affinity selection on an IgG matrix.  Following washing, TEV protease 

releases the bound complexes.  These complexes are then next bound onto calmodulin-

coated beads in the presence of calcium.  This second affinity step not only serves to 
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remove the TEV protease but also to remove furthers traces of contaminants that have been 

left from the single purification step.  After washing, the bound material is released by 

EGTA and proteins analysed by mass spectrometry (MS).  Rigaut et al. (1999) found that 

both purification steps were required, as purification with only the IgG beads or the 

calmodulin coated beads resulted in a significantly higher level of contaminants, compared 

to when the 2 step procedure was used.  These authors also documented that TAP tagged 

proteins can remain functional, demonstrated by TAP tagging the small subunit of yeast 

cap binding complex (CBC).  The resulting TAP-purified CBC was capable of forming 

specific complexes with radioloabelled capped RNA, indicating activity. 

This methodology has proved successful for many different proteins and in many different 

organisms, including the Cf-9 protein in Nicotiana benthamiana (Rivas et al., 2002), the 

Ltp-28 protein in Leishmania tarentolae (Aphasizhev et al., 2003) and the SRP-19 and 

RPA 12 proteins in T. brucei (Lustig et al., 2005;Walgraffe et al., 2005).  Most notably, 

this method has proved to be extremely successful in S. cerevisiae, having been used 

recently to identify interacting factors in 2357 proteins (Krogan et al., 2006). 

In order to determine if this method would prove useful for identifying RAD51 interacting 

partners, the RAD51 sequence needed to be examined for the presence of a TEV protease 

cleavage site.  No such sequence was identified in RAD51, but it remains a possibility that 

such a sequence may exist within interacting partners.  However, this possibility remains 

low due to the high specificity of the TEV protease (Dougherty et al., 1989). 
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Figure 6.1 – Overview of TAP protocol.  This method involves the fusion of the TAP tag to the 
target protein and the introduction of the construct into the organism, ideally maintaining the 
expression of the fusion protein at its natural level. The fusion protein and associated components 
are recovered from cell extracts by affinity selection on an IgG matrix.  After washing, the TEV 
protease is added to release the bound material.  The eluate is incubated with calmodulin-coated 
beads in the presence of calcium.  This second affinity step is required to remove the TEV protease 
as well as traces of contaminants remaining after the first affinity selection.  After washing, the 
bound material is released with EGTA.  Figure adapted from Rigaut et al., 1999. 
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6.3 Generation of TAP tagged RAD51, both N and C 

terminally 
It was decided to tag both the N and C termini of RAD51 in order to maximise the 

potential of identifying co-factors.  However, through examining the three dimensional 

structure of a RAD51 nucleoprotein filament (Conway et al., 2004), it was noted that the N 

terminus appeared to be exposed, whilst the C terminus appeared to be buried within the 

filament.  This led to the assumption that tagging the N terminus of RAD51 would be less 

likely to impair the function of the protein compared with a C terminal TAP tag.  However, 

the addition of a tag at either end of the protein could have caused detrimental effects on 

the functionality of the protein, so the addition of a tag at both termini was performed. 

 
Figure 6.2 – RAD51 and RecA filaments.  Filaments of (a) Rad51 and (b) RecA are shown with 
helical pitches of 130 Å and 83 Å respectively.  Circled areas of Rad51 and RecA represent the N 
and C termini, respectively.  Figure taken from Conway et al., 2004. 

The N terminal RAD51 TAP tag construct was generated by a PCR method.  This method 

is depicted in figure 6.3 and uses PCR to amplify a region that corresponds with the 5’ 

UTR upstream of the ORF, and a region at the very start of the ORF, rather than more 

conventional cloning methods.  One oligonucleotide primer (NTAP5’) was designed that 

contained 99 bases of sequence that was homologous to the sequence upstream of the 

RAD51 ORF start codon and 21 bases of sequence that was homologous to the neomycin 

antibiotic resistance cassette (NEO) in the plasmid pGL960 (a gift from M. Carrington).  

An equivalent primer (NTAP3’) was designed which contained 99 bases of sequence that 

was complementary to the start of the RAD51 ORF, but not including the start codon, and 

21 bases of sequence that was complementary to the calmodulin binding protein (CBP) 

region of pGL960.  
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Figure 6.3 – Strategy for obtaining N terminal TAP tag constructs by PCR.  PCR primers were 
designed, of which a forward primer contained 99 bases of sequence homologous to the 5’ flank of 
RAD51 and 21bases of sequence homologous to the NEO region of the plasmid pGL960.  A 
reverse primer contained 99 bases of sequence complementary to the 5’ end of the RAD51 ORF 
and 21 bases of sequence complementary to the CBP region of pGL960.  5’ flank corresponds to 
the region upstream of the RAD51 ORF, whilst the 5’ end corresponds to the start of the RAD51 
ORF.  βα Tub: βα tubulin intergenic region (processing signal). NEO: neomycin resistance gene 
ORF.  ProtA: protein A domain.  TEV: TEV target site.  CBP: calmodulin binding domain. 

PCR-amplification using these primers, and pGL960 as template, generated the DNA 

fragments ∆RAD51::NTAP, which should add a TAP tag to the 5’ end of RAD51 using the 

5’ flanking and 5’ start sequences to integrate the construct by homologous recombination 

(figure 6.4).  The PCR generated a DNA fragment of the expected size (1840 bp), which 

was subsequently PCR purified (section 2.7.1.1) and approximately 5 µg used for 

transformations. 

 
Figure 6.4 – Generation of N terminally TAP tagged RAD51. Homologous recombination allows 
the ∆ RAD51::NTAP construct to integrate at the 5’ end of RAD51.  Sizes of the individual 
components are shown in base pairs. 5’ flank and 5’ end correspond to the homologous regions 
upstream, and the start, of the RAD51 ORF, respectively.  5’ flank corresponds to the region 
upstream of the RAD51 ORF, whilst the 5’ end corresponds to the start of the RAD51 ORF.  βα 
Tub: βα tubulin intergenic region (processing signal). NEO: neomycin resistance gene ORF.  ProtA: 
protein A domain.  TEV: TEV target site.  CBP: calmodulin binding domain.   
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The C terminal RAD51 TAP tag construct was similarly generated using a PCR method 

(figure 6.5).  One oligonucleotide primer (CTAP5’) was designed which contained 99 

bases of sequence that was homologous to the end of the RAD51 ORF, but not including 

the stop codon, and 21 bases of sequence that was homologous to the calmodulin binding 

protein (CBP) region of pGL900 (a gift from M. Carrington).  An equivalent primer 

(CTAP3’) was designed which contained 99 bases of sequence that was complementary to 

the region downstream of the RAD51 ORF and 21 bases of sequence that was 

complementary to βα Tub region of the plasmid pGL960.  

 
Figure 6.5 – Strategy for obtaining C terminal TAP tag constructs by PCR.  PCR primers were 
designed, of which a forward primer contained 99 bases of sequence homologous to the 3’ end of 
RAD51 ORF and 21bases of sequence homologous to the CBP region of pGL900.  A reverse 
primer contained 99 bases of sequence complementary to the 3’ flank of the RAD51 ORF and 21 
bases of sequence complementary to the βαTub region of pGL900.  3’ flank corresponds to the 
region downstream of the RAD51 ORF, whilst the 3’ end corresponds to the end of the RAD51 
ORF.   βα Tub: βα tubulin intergenic region (processing signal). NEO: neomycin resistance gene 
ORF.  ProtA: protein A domain.  TEV: TEV target site.  CBP: calmodulin binding domain. 

PCR-amplification using these primers, and pGL900 as template, generated the DNA 

fragment ∆RAD51::CTAP, which should add a TAP tag to the 3’ end of RAD51 using the 

3’ end and 3’ flanking sequences to integrate the construct by homologous recombination 

(figure 6.5).  This PCR generated a DNA fragment of the expected size (1240 bp), which 

was subsequently PCR purified (section 2.7.1.1) and approximately 5 µg used for 

transformations. 
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Figure 6.6 – Generation of C terminally TAP tagged RAD51.  Homologous recombination allows 
the construct to integrate at the 3’ end of RAD51.  Sizes of the individual components are shown in 
base pairs. 3’ flank and 3’ end correspond to the homologous regions downstream and the end of 
the RAD51 ORF.  3’ flank corresponds to the region downstream of the RAD51 ORF, whilst the 3’ 
end corresponds to the end of the RAD51 ORF.  αβ Tub: αβ tubulin intergenic region (processing 
signal). NEO: neomycin resistance gene ORF.  ProtA: protein A domain.  TEV: TEV target site.  
CBP: calmodulin binding domain.  The construct allows homologous integration to C terminally tag 
RAD51.  

 
In terms of identifying RAD51 interacting factors in T. brucei, we were most interested in 

examining the bloodstream stage of the life cycle, as it is in this stage whereby T. brucei 

undergo VSG switching, which has been the main focus of my thesis, and it is conceivable 

that novel, RAD51-interacting factors guide this process.  However, a difficulty with the 

TAP procedure in the bloodstream stage of T. brucei, is growing sufficiently large numbers 

of cells.  From previous work, typically 1 x 1010 T. brucei cells have been used (Walgraffe 

et al., 2005;Lustig et al., 2005;Laufer et al., 1999).  For this reason, it was decided to TAP 

tag both the bloodstream and procyclic stages of T. brucei.  Initial attempts to identify 

RAD51 interacting factors would therefore be performed in procyclic form cells, where it 

is much easier to generate larger numbers of cells, due to their ability to grow to much 

denser populations in vitro.  TAP tagging in the bloodstream stage would check the 

viability of modifying RAD51 here, and allow further comparable purifications. 

For each TAP construct, ∆RAD51::NTAP and ∆RAD51::CTAP, two separate 

transformations were carried out in both Lister 427 (Melville et al., 2000) bloodstream 

stage cells and in EATRO 795 procyclic form cells, in order to generate two independent 

N- and C-terminal TAP tagged cell lines in both life cycle stages.  To do this, Lister 427 

bloodstream stage cells were transformed using the protocol described in section 2.1.3.1 

and antibiotic resistant transformants were selected by placing cells on 2.5 µg.ml-1 G418 or 

5 µg.ml-1 blasticidin for ∆RAD51::NTAP and ∆RAD51::CTAP, respectively.  The 

generation of TAP tagged transformants was subsequently confirmed by PCR, western and 
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Southern analysis (see below).  EATRO 795 procyclic form cells were transformed using 

the protocol described in section 2.1.3.2 and antibiotic resistant transformants were 

selected by placing cells on 5 µg.ml-1 G418 or 10 µg.ml-1 blasticidin for ∆RAD51::NTAP 

and ∆RAD51::CTAP, respectively.  Polyclonal cell lines were confirmed by PCR and 

western blot analysis (sections 6.3.1 and 6.3.2), before generating clonal cell lines as 

described in section 2.1.3.2.  Clonal cell lines were subsequently confirmed as having 

correctly TAP tagged RAD51 by PCR, western and Southern analysis (see below). 

6.3.1 Confirmation of TAP tagged RAD51 by PCR  

To initially confirm the generation of N and C terminal RAD51 TAP tagged cells in 

bloodstream and procyclic stages of T. brucei, PCR analysis was carried out.  Two 

oligonucleotide primers were designed for the N terminal TAP tagged transformants, one 

of which (NanalTAP5') contained 22 bases of sequence that was homologous to the start of 

the Protein A region of the tag and another (NanalTAP3') which contained 22 bases of 

sequence that was complementary to a region in RAD51.  Similarly, two oligonucleotide 

primers were designed for the C terminal TAP tagged transformants.  One of these 

(CanalTAP5') contained 22 bases of sequence that was homologous to a region in 

RAD51and another (CanalTAP3') which contained 22 bases of sequence that was 

complementary to the end of the Protein A region of the tag.  The basis of this approach is 

depicted in figure 6.7, which demonstrates that PCR amplification should only occur if the 

∆RAD51::NTAP and ∆RAD51::CTAP constructs have correctly integrated at the 5’ and 3’ 

ends of RAD51, respectively. 
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Figure 6.7 – Strategy for analysing TAP tagged transformants by PCR.  Oligonucleotide 
primers were designed to only amplify a DNA fragment if the construct had integrated into the 
expected position.  The upper diagram displays the correct integration of the ∆RAD51::NTAP 
construct.  A forward primer was designed which contained 22 bases of sequence that was 
homologous to the start of the Protein A region of the tag and another which contained 22 bases of 
sequence that was complementary to a region in RAD51.  The lower diagram displays the correct 
integration of the ∆RAD51::CTAP construct. A forward primer was designed which contained 22 
bases of sequence that was homologous to a region in RAD51and another which contained 22 
bases of sequence that was complementary to the end of the Protein A region of the tag.  Forward 
and reverse primers are shown as red arrows.  Predicted DNA fragment sizes are indicated in base 
pairs, as are the sizes of the RAD51 ORF. αβ Tub: αβ tubulin intergenic region (processing signal). 
NEO: neomycin resistance gene ORF.  BSD: blasticidin resistance gene ORF.  ProtA: protein A 
domain.  TEV: TEV target site.  CBP: calmodulin binding domain.   

 

Genomic DNA was prepared from independent polyclonal procyclic form transformants 

arising from transformations using both the ∆RAD51::NTAP and ∆RAD51::CTAP 

constructs.  PCR analysis was carried out using Taq DNA polymerase and the primers 

NanalTAP5’ and NanalTAP3’ on 2 G418 resistant populations, and CanalTAP5’ and 

CanalTAP3’ on 4 blasticidin resistant populations.  The resulting PCR products were 

separated on a 1 % agarose gel, before being visualised under UV illumination.  The 

results are displayed in figure 6.8 and demonstrate that both of the N terminal TAP tagged 

populations appeared to have correctly integrated the ∆RAD51::NTAP construct.  

However, only two of the putative C-terminal TAP tagged populations appeared to have 

correctly integrated the ∆RAD51::CTAP construct.  Presumably the polyclonal populations 

that were resistant to blasticidin but failed to amplify a PCR product (C term 1 and 2) had 

integrated the construct into an ORF somewhere in the genome, though the actual 

integration locus was not investigated further. 
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Figure 6.8 – PCR analysis of TAP tagged RAD51 transformants in polyclonal procyclic 
populations.  The ethidium stained gel shown on the left displays PCR amplification using the 
primer pairs NanalTAP5’ and NanalTAP3’ to analyse N terminal TAP tagged RAD51.  The ethidium 
stained gel shown on the right displays PCR amplification using the primer pairs CanalTAP5’ and 
CanalTAP3’ to analyse C terminal TAP tagged RAD51.  The PCR products are displayed from 2 
polyclonal G418 resistant populations (N term 1 and 2); 4 polyclonal blasticidin resistant 
populations (C term 1, 2, 3 and 4); wild type cells (wt) and a no DNA control (-ve).  Reactions were 
carried out using the primer pairs depicted in figure 6.7.  DNA size markers are indicated in kbp. 

 

Genomic DNA was similarly prepared from the clonally derived bloodstream T. brucei 

transformants.  Clones were examined from 2 independent transformations using both the 

∆RAD51::NTAP and ∆RAD51::CTAP constructs.  Two clones were examined for each 

independent transformation and PCR analysis was carried out as described for the 

procyclic form cells.  The resulting PCR products are displayed in figure 6.9, and 

demonstrate that all of the clones examined appeared to have correctly integrated the 

constructs. 

 
Figure 6.9 – PCR analysis of TAP tagged RAD51 transformants in bloodstream stage clones. 
The ethidium stained gel shown on the left displays PCR amplification using the primer pairs 
NanalTAP5’ and NanalTAP3’ to analyse N terminal TAP tagged RAD51.  The ethidium stained gel 
shown on the right displays PCR amplification using the primer pairs CanalTAP5’ and CanalTAP3’ 
to analyse C terminal TAP tagged RAD51.  The PCR products are displayed from 4 clonal G418 
resistant populations (N1-13, 37 and N2-21, 44); 4 clonal blasticidin resistant populations (C1-2, 5 
and C2-1, 4); wild type cells (wt) and a no DNA control (-ve).  Reactions were carried out using the 
primer pairs depicted in figure 6.7.  DNA size markers are indicated in kbp. 
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6.3.2 Confirmation of TAP tagged RAD51 by Western blot 

Following the initial confirmation of TAP tagged transformants by PCR, western blot 

analysis was carried out in order to confirm if the modified versions of RAD51 were 

expressed.  Western blot analysis was first carried out on total protein extracted from the 

polyclonal RAD51-TAP tagged cell lines generated in procyclic form cells.  Cell extracts 

were separated on 10 % SDS-PAGE gels and probed with polyclonal anti-RAD51 

antiserum and detected with HRP-coupled anti-rabbit IgG (figure 6.10A).  These blots 

were subsequently stripped and re-probed with peroxidase-anti peroxidase (PAP – Sigma, 

P1291), which detects the protein A component of the TAP tag (figure 6.10B).   

 
Figure 6.10 – Western blots of putative RAD51 TAP tagged polyclonal procyclic form cells.  
The western blots display total protein extracts probed with (A) anti-RAD51 antiserum and (B) 
peroxidase anti-peroxidase (PAP). The endogenous copy of RAD51 is visible at 47kDa, whilst the 
TAP tagged copy of RAD51 is visible at 62kDa.  Size markers are indicated (kDa).  N term and C 
term correspond to the N- or C-terminal TAP tagged versions of RAD51. 

The western blot analysis displayed in figure 6.10 confirmed that the ∆RAD51::NTAP 

construct had correctly integrated into the 5’ end of RAD51.  This is established by the 

procyclic cell lines N term 1 and 2 possessing not only the endogenous copy of RAD51 

(seen at ~ 47 kDa), but also an additional copy of RAD51 at around 60 kDa.  This copy of 

RAD51 was assumed to be RAD51 plus a TAP tag, since the TAP tag adds approximately 

15 kDa extra to the protein.  This assumption was confirmed when the western blot was re-

probed with PAP, as this blot displayed bands that were the same size of the higher 

molecular weight bands in the RAD51 blot. 

Transformants obtained from the ∆RAD51::CTAP construct, however, displayed only 

endogenous copies of RAD51 when examined by western blot analysis.  This result 

confirms that the C term 1 and 2 transformants had not correctly integrated the construct.  

In addition, it contradicts the results from the PCR analysis for C term 3 and 4 

transformants.  No additional copy of RAD51 could be observed, and when this blot was 
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re-probed with PAP, no bands were detected.  However, on overnight exposure faint bands 

could be detected with PAP at approximately the expected size (62 kDa) (data not shown).  

This result could be explained by the fact that these analyses were performed on polyclonal 

populations.  PCR fragments of the expected sizes would be obtained even if only a small 

percentage of cells in the polyclonal population had correctly integrated the construct.  

Detection of the protein, however, would be more difficult, explaining the absence of the 

expected bands.  As it has already been noted that the C terminus of RAD51 appears to be 

buried within the nucleoprotein filament, it is possible that addition of the TAP epitope to 

this end of the protein could cause a growth disadvantage over other integrations. 

To examine this further, the polyclonal procyclic form transformants N1, N2, C3 and C4 

were cloned, following the protocol described in section 2.1.3.2.  A number of clones were 

obtained from the ∆RAD51::NTAP transformants and were confirmed as having correctly 

integrated the construct by PCR analysis (data not shown).  Despite numerous attempts to 

generate clones from the ∆RAD51::CTAP transformants, only a single clone was 

generated, and this was also confirmed as having correctly integrated the construct by PCR 

analysis (data not shown).  Whole cell extracts were then prepared from each of these 

clones before examining protein expression as described above.  The results are displayed 

in figure 6.11, and confirm the generation of 4 RAD51 N-terminal TAP tagged clones and 

1 RAD51 C-terminal TAP tagged clone.  One of the N-terminal tagged clones, N2-1, may 

appear unusual, in that the intensity of the binding of RAD51 antiserum was not equivalent 

between the endogenous and tagged alleles.  Whether this is a blotting artefact, or reflects 

difference in expression or translation is unclear. 

 
Figure 6.11 – Western blots of RAD51 TAP tagged procyclic clonal cell lines.  The western 
blots display total protein extracts probed with (A) anti-RAD51 antiserum and (B) peroxidase anti-
peroxidase (PAP). The endogenous copy of RAD51 is visible at 47kDa, whilst the TAP tagged copy 
of RAD51 is visible at 62kDa.  Size markers are indicated (kDa).  N term and C term correspond to 
the N- or C-terminal TAP tagged variants of RAD51. 
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Western blot analysis was similarly performed on total protein extracted from the cloned 

RAD51-TAP tagged cell lines generated in bloodstream stage cells.  The resulting western 

blot is displayed in figure 6.12 and confirms the results from the PCR analysis.  Four 

clones were obtained in which the TAP tag had been fused with the N-terminus of RAD51, 

but no C-terminally TAP tagged clones were recovered.  As in procyclic form cells, the C-

terminal tagging of RAD51 appeared to be selected against.  The integration point of the 

∆RAD51::CTAP constructs was not investigated further.  Given the overall difficulty in 

adding a C-terminal TAP tag, the functionality of the single RAD51 C-terminal TAP 

tagged clone generated in procyclic form cells must be considered suspect.  It was 

therefore decided to continue examination with only the N-terminal TAP tagged 

transformants. 

 
Figure 6.12 – Western blots of RAD51 TAP tagged bloodstream stage cell lines.  The western 
blots display total protein extracts probed with (A) anti-RAD51 antiserum and (B) peroxidase anti-
peroxidase (PAP). The endogenous copy of RAD51 is visible at 47kDa, whilst the TAP tagged copy 
of RAD51 is visible at 62kDa.  Size markers are indicated (kDa).  N and C correspond to the N or C 
terminal TAP tag of RAD51. 

 

6.3.3 Confirmation of TAP tagged RAD51 by Southern analysis 

To confirm the generation of N-terminal RAD51 TAP tagged transformants in both 

bloodstream stage and procyclic form cells, Southern analysis was carried out on genomic 

DNA and compared with wild type parental DNA.  Approximately 5 µg of genomic DNA 

from each cell line was restriction digested with EcoRI and PstI overnight before being 

electrophoresed on a 0.8 % agarose gel and Southern blotted.  The blots were probed with 

a region of the RAD51 ORF depicted in figure 6.13, where the expected size fragments of 

the transformants are also shown. 
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Figure 6.13 – Strategy for confirming TAP tagged cell lines by Southern analyses. The upper 
diagram depicts the wild type RAD51 ORF and predicted fragment size (in bp) when digested with 
EcoRI and PstI.  The lower diagram depicts the ORF of RAD51 when the construct ∆RAD51::NTAP 
had correctly integrated. The fragment size (in bp) when digested with EcoRI and PstI is displayed.  
The black triangles represent primers used to generate the RAD51 probe. 

The Southern blots in figure 6.14 confirm that the construct ∆RAD51::NTAP had correctly 

integrated into the bloodstream stage clones N1-13, N1-37, N2-21 and N2-44, and in the 

procyclic form clones N1-2, N1-5, N2-1 and N2-4.  In all cases, the blots show that when 

genomic DNA from wild type and transformant cells was digested with EcoRI and PstI, a 

hybridising band corresponding to the wild type copy of RAD51 was observed.  For the 

transformants, an extra hybridising band was observed which corresponded to the TAP 

tagged copy of RAD51, as predicted in figure 6.13. 

 
Figure 6.14 – Confirmation of RAD51 N terminally TAP-tagged transformants by Southern 
analysis.  (A) Bloodstream cell lines and (B) procyclic cell lines were digested with EcoRI and PstI.  
5 µg of genomic DNA of each cell line was restriction digested for 12 hours before being run out on 
a 0.8 % agarose gel.  The DNA was Southern blotted before being probed with the RAD51 open 
reading frame.  N1 and N2 refer to the two independent N terminal transformants; WT refers to 
genomic DNA from untransformed cell lines.  Clone numbers are indicated, as are size markers 
(kbp). 
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6.4 Generation of RAD51 heterozygous mutants in the 

TAP tagged cell lines 
In order to determine whether or not TAP-tagged RAD51 was capable of functioning 

normally during DNA repair, we wanted to disrupt the unaltered copy of RAD51 in the 

clonal transformants and examine the ability of these mutants to form sub-nuclear RAD51 

foci after DNA damage, and their sensitivity to DNA damaging agents.  These parameters 

provide a good indication of the function of the tagged RAD51 protein since we know that 

rad51-/- mutants are unable to form foci (McCulloch, unpublished) and are sensitive to 

DNA damaging agents (McCulloch and Barry, 1999). 

 
Figure 6.15 – RAD51 gene disruption strategy. Restriction map of the construct used for 
disruption of RAD51 is shown, relative to the RAD51 ORF.  The ∆ RAD51::BSD construct was 
cloned into the pBC SK plasmid.  5’ flank and 3’ flank correspond to the homologous regions of the 
start and end of the RAD51 ORF.  αβ Tub: αβ tubulin intergenic region (processing signal).  ACT 
IR: Actin intergenic region (processing signal.  BSD: blasticidin resistance gene ORF. Sizes of the 
individual components are shown in base pairs.  The construct allows homologous recombination 
to disrupt the RAD51 ORF. 

 

Figure 6.15 displays the method utilised to mutate a copy of RAD51.  In this strategy, the 

entire ORF was not deleted but was instead disrupted, and this method has previously 

proved to be successful in generating rad51-/-, rad51-3-/- and rad51-5-/- mutants 

(McCulloch and Barry, 1999;Proudfoot and McCulloch, 2005).  The construct ∆ 

RAD51::BSD (R. Barnes, gift) was generated by cloning 5’ and 3’ ends of the RAD51 ORF 

into pBluescript SK, and subsequently cloning an antibiotic resistance cassette for 

blasticidin between these sequences.  The 5’ and 3’ ends of the ORF allow homologous 

recombination following transformation, replacing the core domain of RAD51, including 
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the highly conserved walker A and B boxes that are needed for ATP binding and 

hydrolysis, with an antibiotic cassette and tubulin and actin intergenic sequences. 

Two of the N-terminal TAP tagged bloodstream stage (N1-13 and N2-21) and procyclic 

form (N1-5 and N2-4) clones were transformed with the ∆ RAD51::BSD construct.  

Antibiotic resistant transformants were selected by placing cells on either 5 µg.ml-1 

(bloodstream) or 10 µg.ml-1 (procyclic) blasticidin, and the generation of heterozygous 

mutants was confirmed by PCR and western blot analysis (section 6.4.1, below). 

6.4.1 Confirmation of heterozygous RAD51+/- mutants that retain 

only the TAP tagged copy of RAD51 

Since the ∆ RAD51::BSD construct could integrate into either the endogenous or the TAP 

tagged allele of RAD51, it was necessary to determine that the putative RAD51 

heterozygous mutants had retained the TAP tagged copy of RAD51, disrupting the 

endogenous allele.  For this, PCR analysis was carried out using the method depicted in 

figure 6.16, which allows integration of the construct into each allele of RAD51 to be 

differentiated by PCR product size.  Oligonucleotide primers were designed, one of which 

(Outside RAD51) contained 19 bases of sequence that was homologous to a region 

upstream of the RAD51 ORF and a second (BSD 3’), which contained 21 bases of sequence 

that was complementary to a region of the blasticidin ORF.  If the construct integrated into 

the endogenous copy of RAD51, then a DNA fragment of approximately 1.1 kb would be 

amplified; integration into the N terminal TAP-tagged copy of RAD51 would lead to PCR-

amplification of a DNA fragment of approximately 2.8 kb. 

 
Figure 6.16 – Analysis of RAD51 gene disruption by PCR. The RAD51::BSD gene disruption 
construct can integrate into either the endogenous or the TAP tagged allele of RAD51.  To 
determine which allele the construct had integrated into, PCRs were performed.  The 5’ primer 
(Outside RAD51) designed was homologous to a region upstream of the RAD51 ORF and the 3’ 
primer (BSD 3’) deigned was complementary to a region in the BSD resistance cassette.  Different 
size products (shown in kbp) are generated depending on which copy the construct had integrated 
into.   
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Genomic DNA was prepared from 9 blasticidin resistant bloodstream stage clones and 20 

blasticidin resistant procyclic form clones.  PCR analysis was performed using the primer 

pairs described in figure 6.16 and Taq DNA polymerase.  Three bloodstream stage (TAP 3 

from N1-13 and TAP 5 and 6 from N2-21) and three procyclic form clones (1-1 and 1-5 

from N1-5 and 3-3 from N2-4) were shown to have disrupted the endogenous, untagged 

copy of RAD51 (figure 6.17), whilst 6 bloodstream stage clones and 2 procyclic form 

clones were found to have integrated the construct into the TAP tagged copy of RAD51 

(data not shown).  The majority of the procyclic form clones, although resistant to 

blasticidin, did not yield PCR products of the expected size, suggesting integration of the 

∆RAD51::BSD construct elsewhere in the genome (data not shown).  The location of this 

aberrant integration, and the potential significance of such a high incidence in comparison 

with bloodstream stage cells, was not investigated further. 

 
Figure 6.17 – Confirming RAD51 gene disruption by PCR.  The ethidium stained gel shows 
PCR analysis from RAD51-TAP tagged transformants (N1-13 and N1-5) and putative RAD51+/- 
clones.  The clones obtained in both bloodstream (BS) and procyclic (PC) life cycle stages had 
disrupted the endogenous, untagged allele of RAD51, leaving the TAP-tagged allele remaining.  
Sizes are indicated in kbp. 

 

The results from the PCR analysis were further confirmed by western blot analysis.  Whole 

cell extracts were prepared from each of the clones, and separated on 10 % SDS PAGE 

gels and probed with anti-RAD51 antiserum and detected with HRP-coupled anti-rabbit 

IgG as before.  The results are displayed in figure 6.18, and confirm the results found from 

the PCR analysis.  All of the clones were found to be expressing only the TAP tagged copy 

of RAD51. 
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Figure 6.18 – Confirming RAD51 gene disruption by western blot analysis.  The western blots 
display total protein extracts from wild type cells (wt), N-terminal TAP tagged RAD51 clones (N1-13 
and N1-5) and RAD51+/- clones, ontained in both bloodstream and procyclic life cycle stages, 
probed with anti-RAD51 antiserum.  The endogenous copy of RAD51 is visible at 47kDa, whilst the 
TAP tagged copy of RAD51 is visible at 62kDa.  Sizes are indicated in kDa. 

 

6.5 Phenotypic analysis  
In order to examine if the TAP tag had an adverse effect on the functionality of RAD51, 

specific phenotypes of the RAD51+/- mutants that retained only the TAP-tagged copy of 

RAD51 were examined.  Previous work had demonstrated that rad51-/- mutants were 

impaired in their growth, were sensitive to MMS and were incapable of forming RAD51 

foci after induced DNA damage, and so each of these were investigated and compared with 

wild type cells. 

6.5.1 Analysis of in vitro growth 

In vitro growth analysis was carried out on the TAP-tagged RAD51+/- cell lines in 

bloodstream and procyclic stages and compared with the wild type cells.  Bloodstream 

stage cultures were inoculated at a cell density of 5 x 104 cells.ml-1, whilst procyclic form 

cultures were inoculated at a cell density of 5 x 105 cells.ml-1.  Cell concentrations were 

counted using a haemocytometer (Bright-line, Sigma) at 24, 48, 72 and 96 hours 
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subsequently.  Three repetitions of each growth experiment, for all cell lines, were carried 

out and the results plotted on a semi-logarithmic scale (figures 6.19 and 6.20).   

 
Figure 6.19 – Analysis of in vitro growth of the bloodstream stage TAP-tagged RAD51+/- 
mutants.  5 ml cultures were set up at 5 x 104 cells.ml-1 and cell densities counted 24, 48, 72 and 
96 hours subsequently.  Standard errors are indicated for the counts using data from three 
repetitions.  427: wild type T. brucei cells; TAP 3, TAP 5 and TAP 6: RAD51 heterozygote clones 
with only the TAP tagged allele of RAD51 remaining. 

The results shown in figure 6.19 demonstrate that the TAP-tagged variant of RAD51 in the 

bloodstream stage of T. brucei was capable of supporting in vitro growth, as the population 

doubling times of the TAP-tagged RAD51+/- mutants (8.34, 8.54 and 8.72 for TAP 3, TAP 

5 and TAP 6, respectively), were essentially equivalent to that of the wild type bloodstream 

stage cells (8.19 hours).  Figure 6.20 demonstrates this was also true in the procyclic stage 

of the life cycle.  Again, population doubling times of the TAP-tagged RAD51+/- cells 

(25.25, 25.05 and 25.25) appeared to be comparable with the 24.03 hours measured for the 

wild type cells. 
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Figure 6.20 – Analysis of in vitro growth of procyclic form TAP-tagged RAD51+/- mutants.  5 
ml cultures were set up at 5 x 105 cells.ml-1 and cell densities counted 24, 48, 72 and 96 hours 
subsequently.  Standard errors are indicated for the counts using data from three repetitions.  795: 
wild type T. brucei cells; 1.1, 1.5 and 3.3: RAD51 heterozygote clones with only the TAP tagged 
allele of RAD51 remaining. 

 

6.5.2 Analysis of DNA damage sensitivity 

To analyse DNA damage sensitivities, the Alamar Blue assay, using MMS as the DNA 

damaging agent, was carried out for both the bloodstream stage and procyclic form cells 

following the same protocol as described in section 4.3.4.  The only notable difference 

between the two life cycle stages was that the procyclic form cells were placed in 

conditioned media (as described in 2.1.3.2).  Three repetitions were performed for all TAP-

tagged RAD51+/- and wild type cells, the IC50s calculated and their means plotted 

graphically (Figures 6.21 and 6.22). 

These data demonstrate that the addition of a TAP tag to the N terminus of RAD51 had no 

effect, in either life cycle stage, on the function of the protein in response to DNA damage 

repair.  The mean IC50s of the TAP-tagged RAD51+/- cells in the bloodstream stage 

(0.0011 %, 0.0012 % and 0.0012 % for TAP 3, 5 and 6 respectively) were essentially 

equivalent compared with 0.0012 % in wild type cells.  Indeed, these IC50s are 

significantly higher than previous results found for rad51-/- mutants, which displayed a 

mean IC50 of 0.0007 % MMS (section 4.3.4). 
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Figure 6.21 – IC50s of T. brucei TAP-tagged RAD51+/- bloodstream stage mutants exposed 
to MMS.  Wild type and RAD51+/- cell lines were placed in serially decreasing amounts of MMS 
and allowed to grow for 48 hours, before the addition of Alamar Blue.  After a further 24 hours, the 
reduction of Alamar Blue was measured by the amount of fluorescent resorufin generated.  Values 
are the mean IC50s from 3 experiments; bars indicate standard error. 

 

 
Figure 6.22 – IC50 of T. brucei TAP-tagged RAD51 +/- procyclic form mutants exposed to 
MMS.  Wild type and RAD51+/- cell lines were placed in serially decreasing amounts of MMS and 
allowed to grow for 48 hours, before the addition of Alamar Blue.  After a further 24 hours, the 
reduction of Alamar Blue was measured by the amount of fluorescent resorufin generated.  Values 
are the mean IC50s from 3 experiments; bars indicate standard error. 
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In the procyclic stage of the life cycle, the cells appear to be intrinsically more resistant to 

MMS, as the wild types had IC50s of ~0.009 %, around 8-9 fold higher than WT 

bloodstream stage cells.  Why this should be the case is unclear.  Nevertheless, the mean 

IC50s of the TAP-tagged RAD51+/- cells were 0.009 %, 0.008 % and 0.009 % for 1-1, 1-5 

and 3-3, respectively, which were equivalent to the wild type cells.   

6.5.3 Analysis of the ability to form RAD51 foci 

As a final route to determine if the addition of a TAP tag to the N terminus of RAD51 

interferes with the function of the protein, the ability of the TAP-tagged RAD51+/- T. 

brucei to form RAD51 sub-nuclear foci following DNA damage was examined.  Cell lines 

were treated with phleomycin for 18 hours and RAD51 localisation examined by indirect 

immunofluorescence, as described in section 4.3.6.  Approximately 200 cells were then 

counted and scored for the number of foci they contained.  The results for the bloodstream 

stage cells are displayed in table 6.1, and examples of these foci are shown in figure 6.23.  

For procyclic form cells, the results are tabulated in table 6.2 and examples of foci are 

shown in figure 6.24. 

Number of foci (%) 
 BLE 0 1 2 3 4 5 6 or more 

WT 0.0 96.4 3.6 0.0 0.0 0.0 0.0 0.0 
 1.0 24.8 22.6 18.8 16.5 13.5 2.3 1.5 

TAP3 0.0 94.8 3.5 1.7 0.0 0.0 0.0 0.0 
 1.0 36.1 28.2 23.3 6.2 4.0 1.3 0.9 

TAP5 0.0 96.7 1.9 1.4 0.0 0.0 0.0 0.0 
 1.0 33.2 33.2 23.0 5.5 2.3 1.8 0.9 

TAP6 0.0 96.2 2.8 0.9 0.0 0.0 0.0 0.0 
 1.0 36.0 32.6 25.3 5.1 0.0 1.1 0.0 

 
Table 6.1 – RAD51 foci formation in wild type cells and TAP-tagged RAD51+/- bloodstream 
stage mutants.  The percentages of cells showing foci at given concentrations of phleomycin 
(BLE) are shown.  Phleomycin concentrations are shown in µg.ml-1.  Boxes without shading contain 
no foci, boxes shaded in light yellow contain foci and boxes shaded in bright yellow contain the 
highest percentage of foci. 

As described previously (section 4.5.5), without the presence of damage RAD51 foci were 

rarely seen in all cell lines.  However, once damage was induced, the majority of cells were 

found to contain one or more foci, and the TAP-tagged RAD51+/- mutants were found to 

form RAD51 foci at an approximately comparative level to wild type cells, with the 

percentage of cells containing foci ranging from 64-67 % compared to 75 % for wild type 

cells. 
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Figure 6.23 – RAD51 foci formation in TAP-tagged T. brucei RAD51 +/- bloodstream stage 
mutants.  Each cell is shown in phase contrast (phase), after staining with DAPI and after 
hybridisation with anti-RAD51 antiserum and secondary hybridisation with Alexa Fluor 488 
conjugate (Alexa 488).  Merged images of DAPI and Alexa 488 cells are also shown.  Wild type 
Lister 427 (WT) cells and RAD51+/- mutants with just the TAP tagged allele of RAD51 are shown 
(TAP 3, 5 and 6). 

 
Number of foci (%) 

 BLE 0 1 2 3 4 5 6 or more 
WT 0.0 93.6 1.8 1.8 1.3 0.0 0.0 1.8 

 1.0 27.0 8.7 7.9 7.9 10.3 12.7 25.4 
1-1 0.0 92.0 6.4 1.6 0.0 0.0 0.0 0.0 

 1.0 32.7 25.1 21.6 9.0 7.5 2.5 1.5 
1-5 0.0 90.4 7.6 2.0 0.0 0.0 0.0 0.0 

 1.0 31.5 23.4 20.3 8.1 8.1 6.1 2.5 
3-3 0.0 89.3 7.7 2.0 0.5 0.0 0.5 0.0 

 1.0 32.3 22.4 23.4 7.5 9.0 4.5 1.0 

Table 6.2 – RAD51 foci formation in wild type cells and RAD51+/- procyclic form mutants.  
The percentages of cells showing foci at given concentrations of phleomycin (BLE) are shown.  
Phleomycin concentrations are shown in µg.ml-1.  Boxes without shading contain no foci, boxes 
shaded in light yellow contain foci and boxes shaded in bright yellow contain the highest 
percentage of foci. 

RAD51 foci formation in procyclic form cells has not been examined previously, but 

appears to be highly comparable with bloodstream stage cells as the procyclic form TAP-

tagged RAD51+/- cells also showed no evidence for RAD51 foci impairment.  Again, 

without damage, the majority of cells were found to contain no foci (89-94 %).  Equally, 

the number of WT cells that induce foci following equivalent phleomycin treatment was 
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comparable with the bloodstream stage (73 %).  Once damage was induced, the majority of 

procyclic form TAP-tagged RAD51+/- cells also contained one or more foci, with the 

percentage of cells containing foci ranging from 67-69 %. 

 
Figure 6.24 – RAD51 foci formation in TAP-tagged T. brucei RAD51 +/- procyclic form 
mutants.  Each cell is shown in phase contrast (phase), after staining with DAPI and after 
hybridisation with anti-RAD51 antiserum and secondary hybridisation with Alexa Fluor 488 
conjugate (Alexa 488).  Merged images of DAPI and Alexa 488 cells are also shown.  Wild type 
EATRO 795 (WT) cells and RAD51+/- mutants with just the TAP tagged allele of RAD51 are 
shown. 

These results indicate that the addition of an N-terminal TAP tag does not interfere with 

RAD51’s ability to reorganise its sub-cellular location into discrete sub-nuclear foci upon 

DNA damage in either the bloodstream or procyclic stages of the T. brucei life cycle.  

Taken in conjunction with the results from MMS sensitivity and in vitro growth rate 

assays, it appears that the TAP tagged variant of RAD51 functions in DNA repair to an 

extent comparable with the endogenous protein.  From this, it leads to the assumption, not 

tested, that the TAP-tagged variant of RAD51 should be able to interact with putative 

RAD51-interacting partners, and that the TAP method should provide a legitimate 

approach to addressing this question.  Of course, it is also possible that the TAP-tagged 

variant of RAD51, although able to function normally in these experiments, may not 

interact with all of the RAD51 partners, but only those sufficient for the above phenotypes 

that have been examined. 
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6.6 Attempts at RAD51 tandem affinity purification 
Initial attempts at optimisation of the TAP purification protocol was carried out in the 

procyclic form transformants for the reasons already discussed (difficulties in growing 

sufficiently large numbers of bloodstream stage T. brucei cells).  Two independent 

procyclic transformants (N1-5 and N2-4) were grown to a density of approximately 1 x 107 

cells.ml-1, before cell extracts were prepared following the protocol described by Puig et 

al., 2001.  To do this, 3 x 109 cells were harvested by centrifugation at 1600 g and washed 

twice in PBS before resuspending in 10 mls of IPP150 buffer (10 mM Tris-Cl (pH 8.0), 

150 mM NaCl, 0.1 % NP40).  1 % Triton X-100 was then added and the cells incubated on 

ice for 15 minutes.  Following this, the preparation was centrifuged at 10 000 g for 15 min 

at 4 °C (Beckman JA21 rotor) and the supernatant, representing the cell extract, subjected 

to affinity purification using IgG sepharose beads.  This affinity purification step was 

achieved by placing 200 µl IgG sepharose beads (Amersham) into a 10 ml disposable 

polypropylene column (Pierce) and washing with 5 mls IPP150.  The supernatant was 

subsequently placed into this column and rotated for 2 hours at 4 °C.   

Following the IgG incubation period, unbound material was removed by washing the beads 

with 30 mls IPP150 and 10 mls TEV cleavage buffer (10 mM Tris-Cl (pH 8.0), 150 mM 

NaCl, 0.1 % NP40, 0.5 mM EDTA, 1 mM DTT).  The IgG beads, and putative bound 

complexes, were then resuspended in 1 ml TEV cleavage buffer before being treated with 

300 units of TEV protease (Invitrogen) for 3 hours, with rotation, at room temperature.  

Material that was eluted from the IgG column by TEV cleavage was recovered by gravity 

flow and then subjected to affinity purification using calmodulin beads.  This step was 

performed by adding 3 volumes of calmodulin binding buffer (10 mM β–mercaptoethanol, 

10 mM Tris-Cl (pH 8.0), 150 mM NaCl, 1 mM Mg-acetate, 1 mM imidazole, 2 mM CaCl2, 

0.1 % NP40) and 3 mM CaCl2 to the material eluted from the IgG beads, and rotating in 

the calmodulin column for 1 hour at 4 °C.  The calmodulin column was prepared in the 

same manner as the IgG column, but using 200 µl calmodulin beads (Amersham) washed 

with 5 mls calmodulin binding buffer.  Unbound material was removed by gravity flow 

and washing with 30 mls calmodulin binding buffer.  Finally, five fractions of 200 µl were 

eluted by gravity flow using calmodulin elution buffer (10 mM β–mercaptoethanol, 10 mM 

Tris-Cl (pH 8.0), 150 mM NaCl, 1 mM Mg-acetate, 1 mM imidazole, 2 mM EGTA, 0.1 % 

NP40). 

To follow the purification, material from each stage of the TAP protocol was loaded onto 

10 % SDS-PAGE gels and stained with Coomassie (figure 6.25).  The two independent 
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samples looked very comparable up to the stage representing the flow through from the 

calmodulin column (lane E).  In each case the eluate from the IgG column produced a 

distinct band at ~80 kDa and 2 smaller bands of ~30 and 32 kDa, which, given their size 

and appearance, were presumed to be the TEV protease.  The identity of 80 kDa band is 

unknown, but it is notable that no discrete band of the size expected for RAD51 (~ 52 kDa) 

was visible.  The absence of RAD51 was also confirmed by western blot (data not shown).   

The results from the two independent samples did not produce the equivalent results from 

the calmodulin elution, for reasons that are unclear.  In the N1-4 sample, a ~70kDa protein 

was visible in both the wash and elution from the calmodulin column, but was not detected 

for sample N2-5.  Irrespective of this difference, the eluted proteins are not likely to be 

meaningful in the absence of RAD51.  Why this should be is not clear, but could be for a 

number of reasons, including the failure of RAD51 to be released by TEV cleavage or 

failure to recover RAD51 in the cell lysis procedure. 

 
Figure 6.25 – Coomassie stained SDS-PAGE gel displaying products obtained throughout 
RAD51 TAP.  Two independent procyclic form RAD51-TAP tagged transformants were subjected 
to the TAP purification procedure and samples from each step loaded onto 10 % SDS-PAGE gels.  
A – cell extract supernatant, B – wash with IPP150, C – wash with TEV cleavage buffer, D – eluate 
from IgG column, E – flow through from calmodulin column, F – wash with calmodulin binding 
buffer, G – eluate from calmodulin column, M – protein marker (NEB-broad range).  Sizes are 
displayed in kDa. 

 
Since RAD51 was not detected in any of the TAP fractions, and was notably also not 

detected in the supernatant from the cell extract that was subjected to affinity purification, 

it was decided to examine the level of RAD51 present under different cell extract 

preparation methods.  Specifically, the lysis conditions were altered by raising the salt 

concentration, since it was possible that most RAD51 was bound to the DNA and was 
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therefore pelleted during centrifugation, excluding it from the supernatant in the previous 

lysis procedure. 

Cell extracts were prepared on 1 x 109 cells using the protocol described above using 3 

buffers at different salt concentrations: IPP150 (10 mM Tris-Cl (pH 8.0), 150 mM NaCl, 

0.1 % NP40), IPP300 (10 mM Tris-Cl (pH 8.0), 300 mM NaCl, 0.1 % NP40) and IPP450 

(10 mM Tris-Cl (pH 8.0), 450 mM NaCl, 0.1 % NP40).  For each, the pellet and 

supernatant fractions were loaded onto 10 % SDS-PAGE gels and subjected to western 

blot analysis, using anti-RAD51 antiserum.  Equivalent samples were also stained with 

Coomassie to ensure equal loading (data not shown).  The results from the pellet fractions 

are displayed in figure 6.26. 

 
Figure 6.26 – Western blot of the pellet fractions from different lysis conditions.  The western 
blot displays the pellet fractions of extracts prepared from two independent procyclic transformants 
using increasing concentrations of salt in the buffer.  The samples were probed with anti-RAD51 
antiserum and compared to a positive control (total protein extract from N2-5).  The endogenous 
copy of RAD51 is visible at 47kDa, whilst the TAP tagged copy of RAD51 is visible at 62kDa.  
Sizes are indicated in kDa. 

 

These data appear to suggest that in the lysis conditions used in the first TAP purification 

assay (IPP150), a significant quantity of RAD51 was pelleted following centrifugation of 

cell lysates, which may be consistent with the suggestion that RAD51 may not have been 

present in the supernatant that was subjected to affinity purification.  Raising the salt 

concentration to 300 mM and to 450 mM appeared to reduce the amount of RAD51 

present in the pellet fraction, leading to the assumption that RAD51 may be enriched in the 

supernatant fractions.  Unfortunately, this assumption could not be confirmed, since 

RAD51 was undetectable in western blot analysis of any of the supernatant fractions (data 

not shown). 
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To determine if raising the salt concentration during cell extraction improved RAD51 

yield, it was decided to repeat the TAP method, as above, but using the 450 mM NaCl lysis 

conditions to prepare the cell extracts.  The same two independent procyclic transformants 

were grown to a density of approximately 1 x 107 cells.ml-1, before cell extracts were 

prepared under IPP450 conditions.  The extracts were then subjected to affinity 

purification using IgG sepharose beads.  Putative complexes purified with IgG beads were 

treated with TEV protease, and then subjected to affinity purification using calmodulin 

beads.  As before, material from each stage of the purification was loaded onto 10 % SDS-

PAGE gels, before staining with Coomassie (figure 6.27). 

 
Figure 6.27 – Coomassie stained SDS-PAGE gel displaying products obtained throughout 
RAD51-TAP. Two independent procyclic form RAD51-TAP tagged transformants were subjected to 
the TAP purification procedure and samples from each step loaded onto 10 % SDS-PAGE gels.  A 
– cell extract supernatant, B – wash with IPP150 from IgG column, C – wash with TEV cleavage 
buffer, D – eluate from IgG column, E – flow through from calmodulin column, F – wash with 
calmodulin binding buffer, G – eluate from calmodulin column, M – protein marker (NEB-broad 
range).  Sizes are displayed in kDa. 

The results from this purification method appeared to be virtually identical to those 

observed with the 150 mM NaCl extract.  Again, bands corresponding to RAD51 could not 

be detected in the purification, nor indeed in the extract (as confirmed by western blot; data 

not shown).  The reasons for this are unclear, but to attempt to improve the enrichment of 

RAD51, it was decided to attempt the TAP procedure using a nuclear extract instead of a 

whole cell extract.  The rational behind this was that the different extraction procedure may 

more effectively remove RAD51 putatively bound to DNA, and may increase the 

concentration of the RAD51 protein.  
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Procyclic transformants were grown to a density of approximately 1 x 107 cells.ml-1, before 

nuclear extracts were prepared, essentially according to methods described by Bell and 

Barry, 1995.  3 x 109 T. brucei cells were pelleted by centrifugation (1600 g) and washed 

twice in PBS.  Following the final wash, the trypanosomes were resuspended in 4 mls of 

Buffer A (20 mM Tris-Cl (pH 8.0) 10 mM NaCl, 0.5 mM DTT).  Cells were then lysed by 

25 strokes of a Dounce homogeniser.  Nuclei were pelleted for 5 minutes at 3700 g in a 

Beckman JS-7.5 rotor, and resuspended in 2 mls Buffer C (50 mM Tris-Cl (pH 8.0), 25 % 

glycerol, 400 mM NaCl, 0.2 mM EDTA, 0.5 mM DTT) using a Dounce homogenizer, and 

mixed gently at 4 °C for 30 minutes.  The resulting nuclear lysate was centrifuged at 25 

000 g for 30 minutes at 4 °C, and the supernatant dialysed against 50 volumes of Buffer D 

(50 mM Tris-Cl (pH 8.0), 20 % glycerol, 100 mM NaCl, 0.2 mM EDTA, 0.5 mM DTT) 

overnight at 4 °C.  The dialysate was centrifuged at 25 000 g for 25 minutes at 4 °C 

(Beckman JA21 rotor) and the supernatant subjected to affinity purification using IgG 

sepharose beads, treatment with TEV protease and affinity purification with calmodulin 

beads, as before, except that unbound material from the IgG column were washed with 30 

mls of Buffer D instead of IPP150.  To attempt to concentrate any proteins released from 

the final elution step, this was performed using 2 mls of calmodulin elution buffer and 

subsequently concentrated using a Centricon centrifugal filter unit (Millipore).  Samples 

from each stage of the purification was loaded onto 10 % SDS-PAGE gels, as were 

samples of the beads, before staining with Coomassie (figure 6.28). 

 
Figure 6.28 – Coomassie stained SDS-PAGE gel displaying products obtained throughout 
the RAD51 TAP from procyclic nuclear extracts. Two independent procyclic form RAD51-TAP 
tagged transformants were subjected to the TAP purification procedure and samples from each 
step loaded onto 10 % SDS-PAGE gels.  NE – nuclear extract, A – unbound extract, B – wash with 
buffer D, C – wash with TEV cleavage buffer, Beads 1 – IgG beads before TEV cleavage, Beads 2 
– IgG beads after TEV cleavage, D – eluate from IgG column, E – flow from calmodulin column, F 
– wash with calmodulin binding buffer, G – eluate from calmodulin column, Beads 3 – calmodulin 
beads, Concentrate – eluate after centricon concentration (Millipore).  The right hand gel displays 
lane D from N2-5 which was stained with Sypro Ruby (Bio-RAD).  Sizes are displayed in kDa. 
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In contrast to previous attempts, Coomassie staining of this purification did not reveal any 

proteins in the steps following elution from the IgG column (D).  To see if proteins were 

present, but in smaller quantities, the samples from transformant N2-5 following elution 

from IgG, were loaded onto a 10 % SDS-PAGE gel and stained with Sypro Ruby (Bio-

RAD), as this stain is more sensitive than Coomassie (Berggren et al., 1999).  Sypro Ruby 

staining revealed a faint band visible at ~50 kDa in addition to a more prominent ~30 kDa 

band.  This appeared not to be RAD51, however, as it was not detected on western blot 

analysis (data not shown). 

At this stage it was decided to repeat the tandem affinity purification, again using nuclear 

extract, taking the procedure only as far as IgG elution and omitting the calmodulin 

column.  A number of conditions were then attempted to optimise binding and elution for 

the IgG column.  This was carried out on just one transformant (N1-4). 

In this experiment, supernatant from an early centrifugation step (see below) in the nuclear 

extract preparation was applied to the IgG column prior to the nuclear extract, in case 

RAD51 was primarily cytoplasmic, and was therefore being discarded during the 

preparation of the nuclear extract.  In addition, the nuclear extract was examined, but 

dialysis was omitted from the preparation to reduce the potential loss of material.  As 

before, 3 x 109 trypanosomes were pelleted by centrifugation (1600 g) and washed twice in 

PBS.  Following the final wash, the cells were resuspended in 4 mls of Buffer A, before 

lysis with 25 strokes of a Dounce homogeniser.  Nuclei were then pelleted for 5 minutes at 

3700 g in a Beckman JS-7.5 rotor, and supernatant (NE1) subjected to affinity selection 

using IgG sepharose beads.  NE1 was incubated with the IgG beads by rotation at 4 °C for 

30 minutes, before unbound material was removed by washing with 30 mls of Buffer A 

and 10 mls of Buffer C.  To prepare a nuclear extract, the pellet from the centrifugation 

step above was resuspended in 2 mls Buffer C, as in previous work, using a Dounce 

homogeniser and mixed gently at 4 °C for 30 min. The resulting nuclear lysate was 

centrifuged for 30 min at 4 °C, 25 000 g and this supernatant (NE2) subjected to affinity 

selection using the same IgG sepharose beads.  Here NE2 was rotated with the IgG beads 

for 2 hours at 4 °C, before unbound material was removed by washing with 30 mls of 

Buffer C and 10 mls of TEV cleavage buffer.  For the purification, the IgG beads and 

bound complexes were resuspended in 2 mls of TEV cleavage buffer before treating with 

500 units of TEV protease (Invitrogen) and rotating overnight at 4 °C.  The eluate was 

recovered by gravity flow and washed through with 2 mls of TEV cleavage buffer.  

Samples from each stage of the purification were loaded onto 10 % SDS-PAGE gels, 
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before staining with Sypro Ruby (Bio-Rad) (figure 6.29).  The same samples were 

subsequently analysed by western blot analysis, probing with anti-RAD51 antiserum and 

peroxidase anti peroxidase (PAP) (figure 6.30). 

 
Figure 6.29 – Sypro-Ruby stained SDS-PAGE gel displaying products obtained from the IgG 
column in the RAD51 TAP.  A procyclic RAD51-TAP tagged transformant was subjected to the 
first column in the TAP purification procedure and samples from each step loaded onto 10 % SDS-
PAGE gels.  NE1 – ‘nuclear’ extract 1, A – unbound extract, B – wash with buffer A, C – wash with 
buffer C, NE2 – nuclear extract 2, D – unbound extract, E – wash with buffer C, F – wash with TEV 
cleavage buffer, Beads 1 – IgG beads before TEV cleavage, G – eluate, H – wash with TEV 
cleavage buffer, Beads 2 – IgG beads after TEV cleavage.  The right hand gel displays lane G 
which was exposed for a longer period of time.  Sizes are displayed in kDa. 

From the gel shown in figure 6.29, each extract appeared to contain a large selection of 

proteins, at least some of which were distinct, which would be expected.  The resulting 

eluate from the IgG column (G), at least when exposed for a prolonged period, also 

contained a number of proteins.  Western blotting revealed the presence of RAD51 in both 

the supernatant and nuclear extract preparations (figure 6.30).  However, the resulting 

eluate from the IgG column was found not to contain RAD51, suggesting that RAD51 had 

failed to be released by TEV cleavage. 
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Figure 6.30 – Western blot of extracts applied to and eluted from the IgG column.  The 
western blot displays NE1 – the cytoplasmic extract, NE2 – nuclear extract and G – eluate from the 
IgG column.  The samples were probed with peroxidase anti peroxidase (PAP) and anti-RAD51 
antiserum.  The endogenous copy of RAD51 is visible at 47kDa, whilst the TAP tagged copy of 
RAD51 is visible at 62kDa.  Sizes are indicated in kDa. 

The failure of RAD51 elution from the IgG column by TEV cleavage could have been 

caused by a number of problems.  One possibility is that the TEV protease sample used is 

unstable, perhaps through unfolding or degradation and would therefore be unable or less 

capable of cleaving TAP-tagged RAD51.   To investigate this possibility, the activity of the 

TEV protease was examined (see below).  Another possibility for the lack of detectable 

RAD51 in the eluted fraction from the IgG beads, could simply be that RAD51 is present 

in low abundance, below the threshold for detection by the RAD51 antiserum.  Indeed, the 

PAP antiserum would not detect any cleaved products in this fraction, as it recognises the 

Protein A part of the TAP tag.  This was investigated by probing with a CBP antibody, 

which recognises the calmodulin region of the TAP tag (see below).  Another possibility 

could be that the salt concentrations in the buffers might interfere with the activity of the 

TEV protease.  To address this, it was necessary to dialyse the nuclear extract to the 

recommended IPP150 salt concentrations (see below).  Finally, it is conceivable that a 

sequence error could have been generated in the TEV cleavage site when the constructs 

were being produced.  This option seems unlikely due to the use of a high fidelity DNA 

polymerase (Stratagene).  Nevertheless, this option was examined through DNA 

sequencing (see below). 

The activity of the TEV protease was investigated by incubating it with a TEV target 

protein (gift from B. Hunter, University of Dundee), which includes the TEV recognition 

site (ENLYFQS).  The results of the TEV protease that was commercially purchased 

(AcTEV™ – Invitrogen) were also compared with the activity of TEV protease purified 

from E. coli in the McCulloch laboratory (gift from Dr. C. Stockdale).  Invitrogen claim 
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that 1 unit of AcTEV™ enzyme will cleave > 99 % of a 3 µg control substrate in 1 hour at 

30 °C.  To test this, reactions were set up containing 1 X TEV buffer (50 mM Tris-Cl, pH 

8.0, 0.5 mM EDTA), 1 mM DTT, 4 µg TEV target protein and different amounts of TEV 

protease (either AcTEV™ or TEV by Dr. C. Stockdale).  The reactions were incubated at 

room temperature for 1 hour before being loading onto a 15 % SDS-PAGE gel and 

visualised by Coomassie staining (figure 6.31). 

The results in figure 6.31 suggest that the AcTEV™ protease is not as active as Invitrogen 

claims: even with 4 units of enzyme, although some cleaved proteins were observed, 

substantial amounts of uncleaved substrate were visible.  The activity of the ‘home-made’ 

TEV protease (Dr. C. Stockdale) was unknown, so three different concentrations were 

used, each of which were clearly higher than any of the AcTEV™ concentrations.  At each 

of these concentrations, the enzyme appeared capable of cleaving all of the TEV target 

protein.  In the attempts at TAP, 300 units of AcTEV™ protease was used at 4 °C for 

around 18 hours.  Though it is possible that the protein is active in these conditions, it is 

also possible that insufficient AcTEV™ protease was used, meaning the yield of RAD51 

from the IgG column was low.  To address this, the ‘home-made’ TEV protease was used 

in RAD51 TAP (see below). 

 
Figure 6.31 – Coomassie stained SDS-PAGE gel displaying the activity of different TEV 
proteases.  The TEV target protein, TEV protease (TEV) and cleaved products are displayed.  The 
AcTEV™ (Invitrogen) protease was used in 3 different reactions with 4 units (4 U), 2 units and 1 
unit per 4 µg of TEV target protein.  The activity of the TEV protease (Dr. C. Stockdale – gift) was 
unknown, and was used at 3 different dilutions from stock: 1/10, 1/20 and 1/30. 

In order to detect the calmodulin epitope of the TAP tag by western analysis, a CBP TAG 

antibody (Santa Cruz Biotechnology – sc-33000) was used.  Western blot analysis was 

carried out on total protein extracted from the N1-4 and N2-5 RAD51 TAP-tagged 

transformants generated in procyclic form cells.  Cell extracts were separated on 10 % 
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SDS-PAGE gels and probed with CBP TAG antiserum and detected with HRP-coupled 

anti-goat IgG (Santa Cruz Biotechnology – sc02020).  The results of this western blot, and 

many subsequent attempts proved, largely unsuccessful, as the CBP antibody cross reacted 

with whole cell extract from T. brucei, making specific detection of the RAD51 TAP-

tagged protein impossible (data not shown). 

The sequence of the TEV cleavage sites in the transformants was examined by DNA 

sequencing.  Genomic DNA was prepared from all the transformants and PCR 

amplification conducted using a high fidelity DNA polymerase (Stratagene) and the primer 

pairs NanalTAP5’ and NanalTAP3’.  The resulting DNA fragments were purified and 

sequenced (Dundee Sequencing Service), using the same primers.  In all cases no sequence 

errors were found in the TEV cleavage site.   

To address the question surrounding TEV cleavage, another TAP procedure was 

conducted.  This was performed on both RAD51-TAP tagged procyclic transformants (N1-

5 and N2-4) and on untagged, wild type cells as a control.  The main difference in this 

procedure compared with previous attempts, was that the nuclear extract was diluted until 

the NaCl concentration was 200 mM, in order to avoid potential interference with the TEV 

protease activity, and the TEV protease made by Dr. C. Stockdale was used instead of the 

Invitrogen AcTEV™ protease. 

Nuclear extracts were prepared as before from 3 x 109 trypanosomes until the stage of lysis 

in 2 mls of Buffer C at 4 °C for 30 minutes.  The resulting nuclear lysate was centrifuged 

for 30 min at 4 °C, 25 000 g and the supernatant diluted to 200 mM NaCl by the addition 

of an equal volume of Buffer C lacking salt (50 mM Tris-Cl (pH 8.0), 25 % glycerol, 0.2 

mM EDTA, 0.5 mM DTT).  The extract was then subjected to affinity selection using IgG 

sepharose beads.  For this, 500 µl IgG sepharose beads (Amersham) were placed in a 10 ml 

disposable polypropylene column (Pierce) and washed with 5 mls Buffer C – 200mM (50 

mM Tris-Cl (pH 8.0), 25 % glycerol, 200 mM NaCl, 0.2 mM EDTA, 0.5 mM DTT).  

Protein was allowed to bind by rotating the column for 4 hours at 4 °C.  Following this, 

unbound material was removed by washing with 20 mls of Buffer C – 200mM and 20 mls 

of TEV cleavage buffer.  The IgG beads and bound proteins were then resuspended in 2 

mls of TEV cleavage buffer before treating with 25 µl of TEV protease (Dr. C. Stockdale) 

and rotating overnight at 4 °C.  The eluate was recovered by gravity flow and subsequently 

washed through with 2 mls of TEV cleavage buffer, before being subjected to affinity 

purification using calmodulin beads.  This step was performed by adding 3 volumes of 

calmodulin binding buffer (10 mM β–mercaptoethanol, 10 mM Tris-Cl (pH 8.0), 150 mM 
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NaCl, 1 mM Mg-acetate, 1 mM imidazole, 2 mM CaCl2, 0.1 % NP40) and 3 mM CaCl2 to 

the eluate and rotating in a calmodulin column for 4 hours at 4 °C.  The calmodulin 

column was prepared in the same manner as the IgG column, but using 500 µl calmodulin 

beads (Amersham) washed with 5 mls calmodulin binding buffer.  The eluate was removed 

by gravity flow and further unbound material was removed by washing with 30 mls 

calmodulin binding buffer.  1 ml of calmodulin elution buffer (10 mM β–mercaptoethanol, 

10 mM Tris-Cl (pH 8.0), 150 mM NaCl, 1 mM Mg-acetate, 1 mM imidazole, 2 mM 

EGTA, 0.1 % NP40) was incubated with the beads for 1 hour at 4 °C before eluting the 

fraction.  This fraction was subsequently concentrated by TCA precipitation.  

Samples from each stage of the purification were loaded onto 10 % SDS-PAGE gels, 

before staining with Sypro Ruby (Bio-Rad) (figure 6.32).  The same samples were 

subsequently analysed by western blot analysis, probing with anti-RAD51 antiserum and 

peroxidase anti peroxidase (PAP) (figures 6.33 and 6.34). 
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Figure 6.32 – Sypro-Ruby stained SDS-PAGE gel displaying products obtained throughout 
RAD51-TAP.  Extracts from two independent TAP tagged procyclic transformants (N1-1 and N2-5) 
were subjected to the TAP purification procedure and compared with wild type extracts (from 
EATRO 795 cells; 795).  Samples from each step were loaded onto 10 % SDS-PAGE gels.  NE – 
nuclear extract 1, A – unbound extract from IgG beads, B – wash with buffer C (200 mM), C – wash 
with TEV cleavage buffer before TEV cleavage, Beads 1 – IgG beads before TEV cleavage, D – 
eluate, E – wash with TEV cleavage buffer after TEV cleavage, Beads 2 – IgG beads after TEV 
cleavage, F – unbound extract from calmodulin beads, G – wash with calmodulin binding buffer, 
Beads 3 – calmodulin beads, H – final eluted fraction concentrated by TCA precipitation.  Size 
markers are displayed in kDa. 

The results displayed in figure 6.32 suggest that the limited amount of protein purified 

from the TAP tagged transformants appear no different than the wild type samples, which 

suggests that no TAP tagged RAD51-specific purification has occurred.  Indeed, no 

proteins were visible in the final sample eluted from both columns, from any extract. 

The western blots displayed in figure 6.33 show the samples from the RAD51-TAP tagged 

transformants in figure 6.32 probed with PAP, to detect the protein A epitope of the TAP 

tag.  These confirm that TAP tagged RAD51 was only present in the TAP tagged 

transformants, as it was not detected in the samples from the wild type cells.  In addition, 
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signal was only detectable in the nuclear extract fraction and in the unbound, flow through 

fraction.  Although bands were also detectable in the lanes where samples of the beads 

were loaded, this does not indicate the presence of a TAP tag, but instead results from 

cross reaction of the anti-serum with the heavy chain of the IgG beads (~47 kDa) (the 

heavy and light chains are clearly visible on the Coomassie stain; figure 6.32). 

These data indicate that TAP-tagged RAD51 was present in the extracts of the 

transformants, but that a large portion of this RAD51 either did not bind to the IgG beads 

or bound weakly and was rapidly washed off.  One possibility to explain this is that 

insufficient IgG beads were provided in the IgG column to allow all of the tagged RAD51 

to bind.  Alternatively, the conformation of RAD51 prevents effective binding via the TAP 

tag. 

 
Figure 6.33 – Western blot of products obtained throughout RAD51-TAP.  The western blot 
displays the samples from figure 6.32 probed with peroxidase anti peroxidase (PAP).  The 
identities are as in figure 6.32.  The TAP tagged copy of RAD51 is visible at 62kDa.  Size markers 
are indicated in kDa. 

The western blot displayed in figure 6.34 again shows the same samples from figure 6.32, 

but on this occasion probed with anti RAD51 antiserum.  This confirms that endogenous, 

untagged RAD51 was present in the nuclear extract from all cell lines and only in the TAP 

tagged transformants were tagged copies of RAD51 observed.  In addition, it supports the 

conclusion that a large proportion of tagged RAD51 was not retrieved by the IgG beads.  

Cross reacting bands were again visible in the lanes loaded with samples if the IgG beads.  

When these blots were allowed to expose overnight, faint bands of the size expected for 

RAD51 could be detected in the final eluted fraction (lane H) and on the calmodulin beads 

(Beads 3).  These bands were only detected on the blots from the TAP tagged 

transformants, not from wild type cells (data not shown).  This result appears to suggest 

that vary small quantities of RAD51 have been purified during the TAP procedure.  

However, as it has been conducted to date, this is too low a quantity to be detected by 
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Sypro-Ruby staining, which in turn means that any putative interacting proteins would also 

be present in low abundance. 

 
Figure 6.34 – Western blot of products obtained throughout RAD51-TAP.  The western blot 
displays the samples from figure 6.32 probed with anti-RAD51 antiserum.  The identities are as in 
figure 6.32.  The TAP tagged copy of RAD51 is visible at 62kDa.  The lower blots show the signal 
from samples ‘Beads 3’ and ‘H’ after overnight exposure.  Size markers are indicated in kDa. 

These results appear to demonstrate that the TAP tagging of RAD51 could provide useful 

information regarding potential interacting factors.  However, the procedure would require 

further optimising.  It is likely that the amount of nuclear extract subjected to affinity 

purification and the quantity of IgG beads used to produce the IgG column would need to 

be increased.  However, due to time constraints, these experiments were unable to be 

performed. 
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6.7 Identifying RAD51 interacting factors using purified 

GST tagged RAD51 immobilised onto GST beads 
Given the difficulties described in using RAD51 TAP, it was decided to attempt another 

method for identifying interacting partners.  GST tagged RAD51 had recently been 

purified in the McCulloch laboratory (Dr. C. Stockdale) (figure 6.35).  This was used to 

provide an alternative route towards the identification of RAD51 interacting factors by 

mixing nuclear extract from wild type EATRO 795 procyclic form cells with either GST 

protein alone or with GST tagged RAD51.  The proteins that interact with either GST or 

GST-RAD51 were then compared following purification using a glutathione column. 

 
Figure 6.35 – GST and GST tagged RAD51 purified proteins.  Purified proteins were run out on 
a 10 % SDS-PAGE gel and stained with coomassie.  M indicates the size marker lane and sizes 
are shown in kDa. 

Nuclear extracts were prepared as before from 3 x 109 trypanosomes, and the resulting 

nuclear lysate centrifuged for 30 min at 4 °C, 25 000 g, before the supernatant was diluted 

to 20 mM Tris-Cl, 10 % glycerol, 200 mM NaCl. 

Reactions were set up containing 5 µg of either GST or GST-RAD51, 5 µg of nuclear 

extract, 20 mM Tris-Cl (pH 8.0), 1 mM DTT, 10 % glycerol, 200 mM NaCl and 0.1 % NP-

40.  The reactions were incubated on ice for 30 minutes to allow any interacting factors to 

bind.  Following this incubation, 40 µl of glutathione beads (Amersham) were added and 

the reactions rotated for 1 hour at 4 °C.  The beads were then harvested by centrifugation 

(500 g) and the supernatant removed.  Any unbound material was removed from the beads 
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by washing 4 times with 750 µl binding buffer (20 mM Tris-Cl (pH 8.0), 1 mM DTT, 10 % 

glycerol, 200 mM NaCl and 0.1 % NP-40).  The proteins attached to the beads were finally 

recovered by resuspension in 10 µl 3 x SDS PAGE buffer (150 mM Tris0Cl (pH 6.8), 30 

% glycerol, 6 % SDS and 0.3 % bromophenol blue).  Samples from each stage of these 

purifications were separated on 10 % SDS-PAGE gels, before staining with Sypro Ruby 

(Bio-Rad) (figure 6.36).   

 
Figure 6.36 – Sypro-Ruby stained SDS-PAGE gel displaying products obtained throughout 
the GST purification method.  Beads – sample of the GST beads; NE – nuclear extract; GST – 
GST purified protein; GST-RAD51 – GST tagged RAD51 purified protein; A – unbound material; B 
– wash 1; C – wash 4; D – proteins which remained bound to the GST beads. 

The results from the GST purification show that some proteins in the T. brucei nuclear 

extract had the ability to bind to the GST protein alone (GST - lane D), as seen by 2 

distinct bands approximately 48 kDa and 50 kDa in size.  These proteins were also visible 

in the sample which contained the proteins that remained bound to the GST-RAD51 

purified protein (GST-RAD51 – lane D) and can therefore be excluded as being 

meaningful interacting partners.  The other proteins that were visible in the sample of 

GST-RAD51 purified material appeared mainly to be contaminating proteins that were 

already present in the GST-RAD51 purified protein sample (GST-RAD51).  Given this, 

whether or not any true RAD51 interacting factors were present was difficult to judge.  

This method, which was only attempted on one occasion, could yet prove useful in 

identifying interacting factors, but has a considerable disadvantage relative to TAP, as it 

relies on only one affinity purification step. 
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6.8 Summary  
This chapter aimed to identify RAD51 interacting factors in T. brucei, both in the 

bloodstream stage and in the procyclic form, before and after induced DNA damage.  

Unfortunately, putative RAD51 interacting factors were unable to be identified, largely due 

to lack of time to continue this project and difficulties in establishing the tandem affinity 

purification procedure with RAD51. 

The work in this chapter has informed us that it is possible to add an epitope to the N 

terminus of RAD51 in T. brucei cells, in both the bloodstream stage and procyclic form.  

The addition of a TAP-tag at the N terminus of RAD51 was found not to have a 

detrimental effect on the parasite in terms of growth, sensitivity to MMS and its ability to 

form RAD51 foci, all of which are affected in rad51-/- mutants (McCulloch and Barry, 

1999).  This result supports research performed in other systems, whereby RAD51and 

RecA have been successfully GFP tagged at their N  and C termini, respectively without 

causing disruption to its function (Essers et al., 2002b;Yu et al., 2003;Renzette et al., 

2005;Kojic et al., 2005).  In contrast to the N terminus, generating C terminally tagged 

RAD51 in T. brucei cells was found to be problematic.  Despite a number of 

transformations in both bloodstream and procyclic cells, only one C-terminally tagged 

RAD51 variant was recovered.  Though the basis for these problems was not explored, it 

was speculated that this may be due to the positioning of the C terminus in the interior of 

the RAD51 nucleoprotein filament (Conway et al., 2004). 

Attempts at the TAP procedure discovered that for purification of proteins that interact 

with RAD51 in this organism, a great deal of optimisation is still required.  At a minimum, 

it is likely that the amount of nuclear extract subjected to affinity purification needs to be 

substantially increased, as potentially does the amount of IgG beads in order to allow TAP 

tagged RAD51 to bind.   

These problems with TAP may, in fact, not be specific to RAD51.  Recently, the TAP 

procedure has been identified as being inefficient for other proteins in T. brucei 

(Schimanski et al., 2005).  These authors suggested that, specifically, the calmodulin 

purification step of TAP was inefficient, and proposed that the reason behind this was that 

endogenous calmodulin in trypanosome extracts interacts with the calmodulin binding 

peptide (CBP) and therefore prevents large amounts of the TAP tagged protein from 

binding to the calmodulin column.  To circumvent these problems, Schimanski et al., 

developed a modified version of the TAP tag (PTP), whereby the CBP region was replaced 
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with a protein C epitope.  They performed a direct comparison between the TAP tag and 

the PTP tag on the transcription factor SNAPc, and discovered that purification in the PTP 

was more efficient, at least for this protein.  A modified version of the TAP tag has also 

been developed in mammalian cells (Drakas et al., 2005), due to the original TAP method 

not yielding enough purification for protein identification in mammalian cell lines grown 

in monolayers.  In this case, these authors added a biotinylated tag to the TAP tag in order 

to increase protein yield from cell extracts.  It is worth noting, however, that these 

technical issues are not necessarily relevant to the TAP analysis of RAD51, as the work in 

this chapter showed that binding of the protein to the first, IgG column was inefficient, for 

reasons that are yet to be resolved.  

The aim of this chapter was to identify RAD51 interacting factors in T. brucei, in particular 

following DNA damage, where the protein forms discrete sub-nuclear foci (Proudfoot and 

McCulloch, 2005).  To date, only TAP was performed on undamaged procyclic form cells.  

It may be of interest to compare the procedure with bloodstream stage cells, and following 

damage.  Though we know that RAD51 levels do not increase in response to damage in T. 

brucei (C. Proudfoot, Thesis), we do not know if the proteins’ sub-cellular location is 

changed or if it becomes activated in some way to respond to damage.  Potentially, such 

changes could alter RAD51’s behaviour during the TAP procedure.  In addition, we do not 

know if the protein behaves equivalently in the bloodstream and procyclic stages, though it 

seems likely.  Of note, however, this chapter demonstrates that RAD51 sub-nuclear foci do 

form in procyclic form cells, which had not previously been tested. 
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7.1 Introduction 
The main aim of this thesis was to further examine the factors that regulate antigenic 

variation in Trypanosoma brucei.  This was to be achieved through two main areas of 

investigation.  The first of these was the examination and characterisation of BRCA2 in T. 

brucei, in terms of both its structure and function.  This area of investigation was to prove 

to be the main body of research, and stemmed initially from the suggestion that the 

BRCA2 homologue in T. brucei possessed a highly unusual organisation, containing 15 

BRC repeats, a much higher number than observed in any other organism (Lo et al., 2003).  

We hypothesised that this was a structural adaptation to account for the demands that 

antigenic variation places on the T. brucei homologous recombination reaction.  This 

question was first examined by determining the actual number of BRC repeats in various 

T. brucei strains and subspecies.  Subsequent analyses examined the function of the protein 

through the generation of BRCA2 knockout mutants in Lister 427 bloodstream stage T. 

brucei and its derivative 3174.2.  A series of phenotypic analyses were carried out on these 

cell lines in order to determine the role of BRCA2 in the repair of induced damage, 

homologous recombination and antigenic variation.  Following on from this, a number of 

T. brucei BRCA2 structural variants were generated and functionally characterised.  The 

results of these lines of research, which had the potential to reveal why T. brucei BRCA2 

contains so many BRC repeats, and also provide information as to the function of certain 

motifs within the protein, are discussed below. 

The second area of investigation was to examine the role and molecular composition of T. 

brucei RAD51 sub-nuclear foci, based on the assumption that the foci are repair centres 

containing multiple homologous recombination factors and specific sites of DNA lesions.  

The main aim of this investigation was to identifying RAD51 interacting factors, before 

and after induced damage, through tandem affinity purification (TAP) methods (Rigaut et 

al., 1999).  However, due to complications in optimising this method for RAD51 in T. 

brucei, and to time limitations, no RAD51 interacting partners were identified (see chapter 

6), so this area of investigation will not be discussed here.  

7.2 T. brucei BRCA2 has undergone a recent expansion 

in BRC repeats 
The BRC repeats of BRCA2 have been shown to be critical for the interaction with 

RAD51, the key enzyme of eukaryotic homologous recombination (Pellegrini and 

Venkitaraman, 2004;Shivji and Venkitaraman, 2004;Sung and Klein, 2006).  This finding, 
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along with the observation that all known orthologues of BRCA2 possess at least one BRC 

repeat, with one or more interacting with RAD51 when multiple  repeats are present (Dray 

et al., 2006), indicates their necessity for BRCA2 function.  Further evidence for this is 

provided by the identification of critical residues for RAD51 interaction located within the 

BRC repeat sequence, which are found to be conserved between several different species 

(Bignell et al., 1997).  In addition, mutations located within the BRC repeats have been 

shown to associate with familial ovarian cancer (Gayther et al., 1997). 

The number of BRC repeats differs quite significantly between BRCA2 homologues, but a 

general theme appears to exist, in which, the simpler the organism, the smaller the number 

of BRC repeats.  Indeed, out of 12 BRCA2 homologues investigated in a range of 

unicellular organisms, 8 contain between 1 and 3 BRC repeats (Lo et al., 2003) (Table 

3.3).  Examples of this come from the uni-cellular organisms U. maydis, T. cruzi, and G. 

Lamblia which have been shown to possess 1, 2 and 1 BRC repeats respectively (Lo et al., 

2003).  In contrast, of 8 multi-cellular organisms, 7 have 3 or more BRC repeats (Lo et al., 

2003).  Indeed, most vertebrate BRCA2 proteins have been shown to contain 8 BRC 

repeats, whilst the plant A. thaliana and the insect D. melanogaster contain 4 and 3 BRC 

repeats, respectively.  The reason why some BRCA2 homologues contain multiple BRC 

repeats whilst others function with just a single repeat has not yet been investigated.  

However, it could be speculated that the larger genome sizes or more complex biological 

systems found in multi-cellular eukaryotes might exert an evolutionary pressure for an 

increased BRC repeat number in BRCA2, due to a greater need for homologous 

recombination.  For example, larger numbers of BRC repeats could sequester the 

putatively greater amount of RAD51 needed in these organisms until it is needed for DNA 

repair, thereby preventing uncontrolled recombination.  This hypothesis gains some 

support from findings that RAD51 exists in the mammalian nucleus in relatively immobile 

pools, one of which is bound to BRCA2 (Essers et al., 2002b;Yu et al., 2003).  

Furthermore, the BRC repeats of human BRCA2 have been shown to disrupt pre-formed 

RAD51 filaments and impair homologous recombination, implying that the BRC repeats 

interact with a monomeric form of RAD51 (Chen et al., 1999a;Davies et al., 

2001;Pellegrini et al., 2002;Shin et al., 2003).  An alternative hypothesis to explain 

increased BRC repeat number in some cells, is that high numbers of BRC repeats ensure a 

greater abundance of RAD51 at the sites of DSBs (Pellegrini et al., 2002).  This hypothesis 

might appear more plausible in the light of recent evidence, which show that BRCA2 

functions in a more complex manner than to simply sequester RAD51: studies have 

demonstrated that RAD51 binding not only occurs at the BRC repeats, but also through 

non-BRC sequences in both mammals (Davies and Pellegrini, 2007;Esashi et al., 2007) 
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and C. elegans (Petalcorin et al., 2007).  Moreover, the binding at these non-BRC repeat 

sequences has been shown to be specific for RAD51 filaments, not monomers, which 

occurs at the BRC repeats (Davies and Pellegrini, 2007;Esashi et al., 2007;Petalcorin et al., 

2007).  In fact, some in vitro studies suggest that isolated BRC repeats can actually bind 

RAD51 filaments without causing disruption (Galkin et al., 2005), but it could be argued 

that the conditions under which these results were found are quite dissi to those in 

vivo.  Further evidence pointing towards repeats playing an active role in RAD51 

recombination comes from studies demon hat a polypeptide fro . sapiens 

BRCA2 spanning all 8 BRC repeats can promote RAD51 strand exchange (Shivji et al., 

2006), and a fusion of the BRC repeats with RPA, from either H. sapiens (Saeki et al., 

2006) or U. maydis (Kojic 05) can function in DNA repair and mbination.  In 

general, the above data suggest that BRCA2 may be an active participant in homologous 

recombination, co-ordinating the binding of the recombinase to damaged DNA (see figure 

1.14).  However, the details re still to be classified.  A final pos for 

increased BRC repeat number could lie in adaptation of some BRC repeats to distinct 

functions, either altering t  of their interaction with RAD51 or ing binding to 

other factors.  This could be consistent with the variability in BRC repeat sequence in most 

organisms (Lo et al., 2003), and the lack of observed RAD51 binding to 2 of the 

mammalian BRC repeats (W l., 1997;Chen et al., 1998b).  Inde appears that 

one or more of the BRC repeats in Arabidopsis thaliana bind DMC1, the meiosis-specific 

homologue of RAD51 (Siaud et al., 2004;Dray et al., 2006).  Little work, however, has 

explored this possibility. 

Exceptions to the genera f fewer BRC repeats for simple organ and a larger 

number for more complex organisms do exist, as observed most notably in the multi-

cellular eukaryote C. elegans, which has been shown to contain just a single BRC repeat 

(Lo et al., 2003).  This therefore demonstrates the important fact that m ellular 

organisms can and do function perfectly well with homologues of BRC ntaining just 

a single BRC repeat, arguing against the hypothesis that large numbers of BRC repeats are 

needed for efficient homologous recombination in these organisms.  Other examples that 

do not adhere to this theme come from the single celled organisms Trichomonas vaginalis, 

Plasmodium falciparum and Toxoplasma gondii, which possess 14, 6, and 8 BRC repeats 

respectively.  The reasons for these exceptions remain unclear and no experimental work 

has examined these proteins, but in the case of T. vaginalis, it could be speculated that the 

large expansion of BRC repeats are due to its large genome size (Carlton et al., 2007). 
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The BRC repeat number was investigated in a number of T. brucei strains and subspecies, 

as well as other Trypanosome species, through MVR-PCR and Southern analyses (sections 

3.8.1.1 and 3.8.2).  The T. b. brucei strain Lister 427, was found to possess 2 allelic 

variants of BRCA2, one of which contained 12 BRC repeats and the other with 10 BRC 

repeats.  Surprisingly, both alleles of BRCA2 in the T. b. brucei genome sequence strain, 

TREU927, were found to only contain 12 BRC repeats (3 less than the expected number), 

as did a further T. b. brucei strain, EATRO795.  In the T. brucei subspecies T. b. 

rhodesiense and T. b. ga  the BRCA2 homologues contained a lower number of 

BRC repeats; a larger allelic variant in both subspecies containing 8 BRC repeats and a 

smaller one possessing 5 and 6 BRC repeats, respectively.  Sequencing the BRC repeat 

region in BRCA2 from 2 Trypanosoma species that undergo antigenic variation and belong 

to the same salivarian clade as T. brucei (Cortez et al., 2006) was also performed.  This 

revealed the presence of just a single BRC repeat in T. vivax, and 2 very similar BRC 

repeats in the T. congolense strain TREU1457, rather than the predicted 3 from the genome 

sequencing strain, IL3000.  Similar analysis performed in the T. brucei strains and 

subspecies demonstrated that all but the most C terminal BRC repeat were virtually 

identical at the nucleotide level (< 1 bp change per repeat).  Significantly, this is not 

observed in most other BRCA2 homologues, demonstrated most notably in mammals, 

which possess 8 non-identical BRC repeats (Lo et al., 2003), at least 6 of which bind 

RAD51 in the human pro g et al., 1997;Chen et al., 1998b;Ma rstein et al., 

1998).  Furthermore, the most C terminal BRC repeat in all the T. brucei strains 

investigated appears to be a degenerate copy, identical in all but the last 11 amino acids, 

but, in common with each o tream repeats, is predicted to encod C peptide 

that can bind RAD51, based on extensive sequence comparisons by Lo et al (Lo et al., 

2003).  Sequencing of the T. brucei BRC repeats revealed another structural deviation in 

BRCA2: all the repeats are n a tandem array, with each repeat ed by inter-

repeat spaces of identical size and sequence.  Again, this appears to be unique.  In all other 

organisms with multiple BRC repeats, they are unevenly dispersed in the BRCA2 

sequence, and do not represent such a tandem array. 

Taken together, the above results display that the BRC repeat number is highly variable 

between the different strains and subspecies of T. brucei, but is notably higher than 

BRCA2 orthologues in closely related kinetoplastid parasites.  One possible explanation 

for this BRC repeat expansion in T. brucei BRCA2 is due to an intrinsic ability of the 

organism to expand copies of genes and mini-satellite repeats.  For example, the T. brucei 

genome is known to contain a number of multigene families, such as polymerase κ (El 
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Sayed et al., 2005a).  However, this explanation cannot be valid since multigene families 

are also observed in T. cruzi and L. major, both of which contain low numbers of BRC 

repeats in their BRCA2 homologues (El Sayed et al., 2005a;Lo et al., 2003).  Given this 

result, plus the finding that the BRC repeat organisation in T. brucei exists in a tandem 

array of repeats that are virtually identical in sequence, it seems likely that the BRC repeat 

expansion in T. brucei is a result of a recent evolutionary adaptation.  The variation in BRC 

repeat number documented here most likely occurs as a result of array expansion and 

contraction due to the high sequence homology of the BRC repeats.  Importantly, the BRC 

repeat number in some of the T. brucei strains examined here is greater than has been 

described anywhere else in nature, with the possible exception of T. vaginalis (though this 

requires experimental verification).  

7.3 BRCA2 regulates DNA repair and recombination in T. 

brucei 
In order to determine if T. brucei BRCA2 functions in DNA repair, the sensitivity of the 

mutants to induced DNA damage was examined.  Initially, a cloning assay was used to 

examine the growth of the cells in the presence of the SN2 alkylating agent methyl 

methanesulphonate (MMS).  Consistent with a role of such damage, brca2-/- mutants were 

found to be significantly more sensitive to MMS than either WT or BRCA2+/- cells, 

similar to findings for T. brucei mutants of RAD51 (McCulloch and Barry, 1999), 2 

RAD51 paralogues (Proudfoot and McCulloch, 2005) and sirtuin factors (Garcia-Salcedo 

et al., 2003;Alsford et al., 2007), but unlike T. brucei mutants of MRE11, which displayed 

no such level of sensitivity to MMS (Robinson et al., 2002).  In order to be able to quantify 

these effects, the IC50s were determined by measuring the metabolic capacity of the cells 

over a range of MMS concentrations using Alamar blue as an indicator (Raz et al., 1997).  

The results displayed that the brca2-/- cells were around 3-fold more sensitive to MMS 

than either the WT or BRCA2+/- cell lines.  Importantly, when BRCA2 was re-expressed 

in a brca2-/- mutant cell line, the sensitivity to MMS was reverted, but astonishingly, this 

cell line demonstrated an approximate 2-fold resistance to MMS compared with either the 

WT cells or heterozygous mutants.  The reason for this level of resistance to MMS has 

been unable to be established, primarily due to a failure to assess expression levels.  

Indeed, it could not be determined if this difference was due to an increase in BRCA2 

abundance due to expression from the tubulin array, rather than the endogenous locus, or if 

this difference was due to a secondary mutation which could have occurred spontaneously 

during continuous culture of the brca2-/- mutant cell line. 
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In order to determine if BRCA2 acts to repair a range of DNA damage, the brca2-/- 

mutants’ sensitivity to phleomycin, a compound that causes DNA double strand breaks 

(Giloni et al., 1981), was also assessed.  Again, the brca2-/- mutants were discovered to be 

significantly more sensitive to phleomycin than WT cells, displaying approximately 5-fold 

greater sensitivity, similar to findings from MRE11 mutants in T. brucei (Robinson et al., 

2002).  Consistent with the MMS results, the re-expression of BRCA2 also caused an 

increased level of resistance to be observed.  However, an unexpected finding was 

obtained from the BRCA2+/- cell lines, which displayed a small but significant increase in 

sensitivity compared with WT cells, indicating a level of haploinsufficiency for BRCA2, 

which has not previously been observed for any other T. brucei factor that promotes 

homologous recombination (McCulloch and Barry, 1999;Proudfoot and McCulloch, 

2005;Robinson et al., 2002).  This result may indicate that BRCA2 abundance is important 

in T. brucei repair efficiency on this form of damage, which may be relevant for 

observations that BRCA2+/- and brca2-/- mutants display progressively increased genome 

rearrangements compared with WT cells following prolonged growth in culture (see 

below).  This finding also demonstrates that distinct sensitivities are observed for mutants 

of BRCA2 following MMS and phleomycin-induced damage.  Further evidence for this 

phenomenon was established with results from the BRC-RPA fusion protein, which was 

found to complement the brca2-/- deficiencies to a greater extent following MMS damage 

than following phleomycin damage (section 5.5.3).  In addition to this, further support for 

distinct sensitivities to these two genotoxic agents comes from investigations in mre11-/- 

mutants, which reported no sensitivity to MMS and hypersensitivity to phleomycin 

(Robinson et al., 2002).  These findings may be due to the different mechanisms by which 

each agent yields lesions in DNA, and may indicate subtly different modes of repair.  For 

example, it is known that phleomycin directly causes DNA breaks, including DSBs (Giloni 

et al., 1981), so the importance of BRCA2 in regulating RAD51 availability or directing 

RAD51 strand exchange may be greater than compared with MMS, which probably 

indirectly leads to such lesions through the action of BER (Lindahl and Wood, 1999).  The 

possibility also exists that MMS damage primarily affects replication fork progression, and 

evidence has suggested that BRCA2 functions in stabilising stalled replication forks 

(Lomonosov et al., 2003), in part at least by controlling the mobilisation of RAD51 (Yu et 

al., 2003). 

Following the above findings, the role of the BRC repeat array was tested by examining 

the efficiency of DNA repair in brca2-/- cells expressing BRCA2 variants with a single 

BRC repeat (section 5.3.3).  Each variant was found to cause an increased level of 

sensitivity to both genotoxic agents tested.  Furthermore, this level of sensitivity was found 
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to be similar to that of the brca2-/- mutants.  Though it has not been demonstrated directly, 

this is consistent with the suggestion that the role of BRCA2 in DNA damage repair is 

through its influence on RAD51.  Moreover, this finding suggests that the BRC repeat 

expansion is an important determinant of DNA repair efficiency, whatever its evolutionary 

basis.  In support of this, it is important to note that for both genotoxic agents, the level of 

increased sensitivity of the brca2-/- mutants was comparable with rad51-/- mutants.   

In order to examine the contribution of BRCA2 to T. brucei homologous recombination, a 

transformation efficiency assay was utilised.  In this assay, cell lines were electroporated 

with a linearised tub-HYG-tub plasmid, which targets a hygromycin resistance gene to the 

tubulin array, replacing an α-tubulin ORF by homologous recombination.  The results 

demonstrated that brca2-/- mutants were 12.5 to 22.5 fold less efficient at incorporating 

this plasmid into its genome than either WT or heterozygous cell lines (section 4.3.5).  As 

for the DNA repair assays, these results were highly reminiscent of those previously 

obtained for rad51-/-, rad51-3-/-, rad51-5-/- and mre11-/- mutants, all of which have 

demonstrated a role for their respective proteins in T. brucei homologous recombination 

(McCulloch and Barry, 1999;Conway et al., 2002c;Robinson et al., 2002;Proudfoot and 

McCulloch, 2005).  When BRCA2 was re-expressed in a brca2-/- mutant cell line, 

transformation efficiency results were obtained that were comparable with WT and 

heterozygous cell lines, completely reverting the integration defect observed in the absence 

of BRCA2.  In contrast, despite slightly higher transformation efficiency rates than the 

brca2-/- mutants, none of the variant BRCA2 proteins were able to function as efficiently 

as WT, BRCA2+/- or BRCA2-/-/+ cell lines in this assay (sections 5.3.4 and 5.5.4), 

indicating the requirement of the full length BRCA2 for efficient homologous 

recombination in T. brucei, at least as measured by this assay.  The impairment of 

recombination in BRCA2 proteins with a single BRC repeat, considered along with the 

data displaying that a reduction in BRC repeat number leads to a reduced ability to repair 

DNA damage, reinforces that the BRC repeat expansion in T. brucei BRCA2 is critical for 

both general DNA repair and homologous recombination.  Again, it seems likely that this 

is due to an impaired interaction with RAD51, and though this was not demonstrated 

directly it is supported by the absence of detectable RAD51 nuclear foci following 

phleomycin induced damage (see below).  A surprising result is that the BRC+RPA 

BRCA2-/-/+ cell line could also not support efficient homologous recombination, given 

that similar proteins in mammalian cells (Saeki et al., 2006) and in U. maydis (Kojic et al., 

2005) allowed for efficient DNA repair and recombination, and that the T. brucei 

BRC+RPA fusion functioned in DNA repair (section 5.5.3).  These differences could be 

accounted for by a number of different factors (see below).  This work also shows that the 
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BRC repeat domain in isolation is incapable of supporting DNA recombination or repair, 

presumably because it is unable to bind to DNA, at least in vivo. 

Further analysis into the mechanisms of homologous recombination by Southern blotting 

demonstrated that in the clones where brca2-/- mutants had succeeded in incorporating the 

plasmid, they had done so via homologous recombination.  The lack of aberrant 

integrations was unexpected, since these had been observed in rad51-/- mutants (Conway 

et al., 2002c).  Nevertheless, these results demonstrate that BRCA2 acts in homologous 

plasmid integration in T. brucei.  Given the broad conservation of homologous 

recombination functions in T. brucei and other kinetoplastids (El Sayed et al., 2005a), it 

seems likely that BRCA2 most likely contributes to T. brucei DNA repair through its role 

in recombination.  It is interesting to note that BRCA2-independent pathways also exist.  

The nature of such pathways, and whether they occur via RAD51 in the absence of 

BRCA2, has not been examined.   

This work has provided a clearer view of the factors involved in T. brucei DNA repair and 

recombination.  Indeed, it is emerging that the machinery of T. brucei appears to be 

remarkably similar to that of higher eukaryotes, involving a number of regulating factors 

including RAD51, RAD51-3, RAD51-5, MRE11 and BRCA2.  Conversely, it is also 

becoming apparent that the T. brucei machinery looks less like S. cerevisiae, which has no 

BRCA2, and only RAD57 and RAD55, and indeed U. maydis, which only has one RAD51 

paralogue (Kojic et al., 2006).  The role of BRCA2 could be speculated to be of more 

importance than other regulating factors such as the RAD51-paralogues due to the fact that 

in the absence of BRCA2, RAD51 foci fail to form, possibly indicating an inability to 

deliver RAD51 to these sites or a lack of stability (see below).  One important step in the 

homologous recombination pathway is in the removal of RPA from ssDNA, thereby 

allowing the RAD51 nucleoprotein filament to form.  In mammals, BRCA2 can provide 

the role of RPA displacement from ssDNA, as can RAD52 (Martin et al., 2005;Yang et al., 

2002;Sung, 1997a;Benson et al., 1998).  However, RAD52 appears to be absent from the 

T. brucei genome (El Sayed et al., 2005b), implying that BRCA2 would be the only 

protein to perform this role, and therefore highlighting its importance.  However, since a 

number of RAD51 paralogues have been shown to exist in T. brucei, and their functions 

have not yet been elucidated, the possibility exists that in the absence of BRCA2 one or 

more of these proteins could perform this role. 



Claire Louise Hartley, 2008    Chapter 7, 307 

7.4 T. brucei BRCA2 acts in antigenic variation 
The analysis of antigenic variation in T. brucei BRCA2 mutants revealed that BRCA2 acts 

in VSG switching.  Indeed, VSG switching frequencies were found to be 8 to 11 fold lower 

in the brca2-/- mutants compared with WT, BRCA2+/- or BRCA2-/-/+ cells, a level of 

impairment that was highly comparable to results previously obtained for RAD51 and 

RAD51-3 mutants (McCulloch and Barry, 1999;Proudfoot and McCulloch, 2005).  This 

confirms the importance of homologous recombination in the process of VSG switching.  

Further analysis of VSG switched variants revealed that gene conversion and 

transcriptional switching events still occurred in the absence of BR  

again reminiscent of the findings from RAD51 and RAD51-3 mutants (McCulloch and 

Barry, 1999;Proudfoot and McCulloch, 2005), indicating that the reduced VSG switching 

frequencies arose due to impairment of both pathways, raising the question as to whether 

these reacti h, 

2005).  Though we still do not know the details of the VSG switching mechanism, this 

accumulated data suggest that the strand exchange step is critical, as it is likely that each 

protein contributes to it. 

Surprisingl  single BRC repeat (T. vivax BRC /+ 

and 1BRC B itching their VSG coat compared  WT 

and BRCA2-/-/+ cell lines.  These results appear to indicate that the BRC repeat expansion 

in T. brucei BRCA2 is of little importance for VSG switching efficiency during an acute 

infection. eat 

expansion i ies 

upon homologous recombination.  Nevertheless, a number of arguments can be made in 

support of the original hypothesis.  Firstly, the VSG switching analysis was performed in a 

monomorphic cell line, which undergoes VSG switching at rates of only ~1 x 10-6 switches 

per cell per  the pleomorhic cell lines 

where high per cell per generation) 

(Turner and Barry, 1989;Turner, 1997), and may not therefore be representative of VSG 

switching frequencies in pleomorphic cell lines containing reduced numbers of BRC 

repeats.  However, despite this possibility, it is worth noting that the numbers of BRC 

repeats in BRCA2 pr as 

not found to significa ed to 

VSG switching frequency.  Indeed, Lister 427 was found to contain among the highest 

number from those characterised, indicating that the selective pressures for a high number 

of BRC repeats still remained in low switching cell lines.  Another argument in support of 

CA2.  This result is

ons are enzymatically and mechanistically distinct (Proudfoot and McCulloc

y, the variants of BRCA2 with just a A2-/-

RCA2-/-/+) remained capable of sw  with

 This unexpected result goes against the original hypothesis that the BRC rep

n T. brucei BRCA2 is due to the high levels of antigenic variation, which rel

 generation (Lamont et al., 1986), much lower than

 levels of switching are observed (1 x 10-2 switches 

oteins characterised in monomorphic and pleomorphic cell lines w

ntly differ, as might be expected if BRC repeat number contribut
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the original hypothesis arises due to the assay used for measuring VSG switching 

frequency, which only examines switches that occur during a single relapse peak.  This is 

likely, ther fection, 

when telom

1989;Morrison et al., 2005;Marcello and Barry, 2007b).  Later on in infections, VSG 

pseudogenes become the preferred substrates for VSG switching, utilising mosaic gene 

formation (Marcello and Barry, 2007b;Thon et al., 1990).  The possibility therefore exists 

that the BRC expansion in BRCA2 is required specifically for these later reactions, and has 

no bearing on activation of intact ge

Despite the above arguments, other observations argue against the hypothesis that the BRC 

repeat expansion is due to a requirement for VSG switching.  These arise from the closely 

numbers of BRC repeats, are still capable of surviving  

switching.  Quite how their homologues of BRCA2 support VSG switching is currently 

unknown, due largely to a lack of research regarding the switching mechanisms utilised by 

these trypanosomatids.  However, gene duplication mechanisms have been documented to 

occur in T. congolense (Majiwa et al., 1985).  More A2 

can support VSG switching in T. brucei, with just a e 

variants are demonstrated to be impaired in DNA repair and homologous recombination.  

One possibility is that there are differing requirements between antigenic variation and the 

al rep ot 

 

that the general recombination mechanisms appear to do.  Quite what these mechanisms 

would be, or how they might function, are as yet unknown.  However, this perhaps gains 

support from research into MRE11 and RAD51-5, which despite functioning in repair and 

recombina

2002;Proudfoot and McCulloch, 2005), consistent with VSG switching utilising a sub-

pathway of hom ination.  A second possibility for the functioning of 

BRCA2 with just a single BRC repeat in T. brucei VSG switching is that functional 

differences

provide the interactions with RAD51 which direct general DNA repair and recombination 

mechanisms.  The downstream BRC repeat on the other hand, could have diverged for a 

specific role involved in antigenic variation.  However, this theory does not simply account 

for how T. vivax BRCA2, containing a single BRC repeat, would support VSG switching 

in T. brucei, and it is not clear what aspect of general DNA repair/recombination might 

efore, to represent only the switch mechanisms used early on in an in

ere proximal and intact array genes are primarily activated (Pays, 

nes.   

related trypanosomatids T. congolense and T. vivax, which despite only containing low 

 in mammals by undergoing VSG

 perplexing, however, is how BRC

 single BRC repeat, given that thos

gener air and recombination mechanisms.  For example, antigenic variation might n

require the extensive interactions between BRCA2 and RAD51 through the BRC repeats

tion in T. brucei, appear not to regulate VSG switching (Robinson et al., 

ologous recomb

 are provided by the large number of identical BRC repeats and the 

downstream, divergent repeat.  For example, the upstream, identical BRC repeats may 
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underlie the selection for BRC repeat expansion.  Conceivably, it is possible that 

distinctions between DNA recombination and antigenic variation are absent in this 

trypanosomatid, and indeed also in T. congolense, since we do not know if the mechanistic 

pathways o n all trypanosomatids.  

Finally, it should be noted that a BRC repeat expansion in protists is not limited to T. 

brucei.  This also appears to be a common feature to Apicomplexans, with BRCA2 

molo ii 

possessing 8 BRC repeats (Lo et al., 2003).  Whether or not these expansions in BRC 

repeat number share a functional basis with T. brucei is unknown.  However, it could be 

speculated that this is indeed the case, since Plasmodium falciparum is also known to 

extensively utilise antigenic variation, though it is based exclusively on transcriptional 

switching b nlikely to be the case in 

Toxoplasma gondii how  expansion in BRCA2, and 

antigenically distinct strains being documented, antigenic variation has not previously been 

documented in this parasite (Delibas et al., 2006;Ajioka et al., 1998;Hettmann and Soldati, 

1999). 

7.5 RAD51 focus formation requires BRCA2 in T. brucei 
Previous research has demonstrated that in T. brucei, RAD51 re-localises to sub-nuclear 

foci follow  breaks 

(Proudfoot s been 

shown to occur in most eukaryotes and is controlled by a number of factors (Tarsounas et 

al., 2004;Lisby and Rothstein, 2004), amongst which BRCA2 is critical (Tarsounas et al., 

2003;Yu et al., 2003;Kojic et al., 2005;Martin et al., 2005).  In order to determine if this 

was also the case in T. brucei, RAD51 localisation was examined by immunofluorescence, 

before and after treatment with phleo

RAD51 foci were detectable before l-1 

phleomycin allowed RAD51 foci to be detected in more than 75 % of WT and BRCA2+/- 

cells.  brca  to 

ainta ay 

support the hypothesis that RAD51 is unable to be transported to the sites of DNA damage 

without the presence of BRCA2 in vivo.  This, in turn, would support the hypothesis that 

BRCA2 is the enzyme that sequesters RAD51 until it is required for DNA repair, and 

transports it to the sites of DNA damage (Tarsounas et al., 2004).  However, the mobility 

of RAD51 in T. brucei has not been examined, meaning that it is possible that RAD51 is 

f antigenic variation are equivalent i

ho gues in all Plasmodium species containing 6 BRC repeats and Toxoplasma gond

etween var genes (Kyes et al., 2007).  This seems u

ever,: despite containing a BRC repeat

ing phleomycin treatment and the induction of DNA double strand

and McCulloch, 2005;Glover et al., 2008).  Indeed, this process ha

mycin.  Consistent with previous work, very few 

induced DNA damage, but treatment with 1.0 µg.m

2-/- mutants, however, were either unable to induce RAD51 re-localisation or

m in foci once established, indicating a critical role in this response.  These results m
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able to be transported to the sites of damage in brca2-/- cells, but is unable to be retained, 

which is quite different from the sequestration/transportation hypothesis.  Though BRCA2 

has not been suggested to have a role in RAD51 filament stabilisation, it cannot be 

discarded. 

Of the variant proteins that were expressed in brca2-/- cells, RAD51 foci were only 

detectable with the BRC+RPA fusion.  This result was somewhat surprising given the 

pairm

RAD51 foci detected in this cell line was not equivalent to WT cells e 

cells were less efficient at performing this process.  This result correlates with the partially 

increased sensitivity to phleomycin, indicating that although this fusion allows for RAD51 

foci formation, it does not do so as efficiently as the full length protein.  However, this 

finding con ch in mammalian cells (Saeki et a

maydis (Ko eby a fusion of the BRC repeats t wed 

for efficient DNA repair and RAD51 relocalisation, but also for efficient homologous 

recombination.  Quite why these differences have been observed is unclear, but could 

possibly be

in 

such a way to allow it to perform these functions as effectively.  A more far reaching 

explanation could be that DNA repair is somewhat diverged in T. brucei relative to 

characterised eukaryotes. 

The variants C repeats displayed similar defic es in 

RAD51 foc  This result was quite surprising, s in 

the 1BRC BRCA2-/-/+ cell line, the retained BRC repeat is predicted to retain all of the 

critical resi

possibility could be that the T. brucei BRCA2 protein possesses a BRC repeat expansion in 

order to allow it to efficiently transport RAD51 to sites of DNA damage.  Indeed, this 

could occur by allowing the RAD51 filament to form before transported to the sites of 

damage or  reduction in BRC repeats 

could there  and inefficient delivery of 

RAD51 to sites of DNA damage.  Each of these explanations could be tested by future 

experiments that examine the amount of BRCA2, bound and unbound to RAD51, and the 

mobility of RAD51 in the cell. 

im ent of homologous recombination in this cell line.  However, the percentage of 

, indicating that thes

tradicts similar resear l., 2006) and in U. 

jic et al., 2005), wher o RPA, not only allo

 due to differences in the assays used, the distinct activities between the 

BRCA2 proteins, or could reflect that in T. brucei, the fusion protein may not be folded 

 containing a reduced number of BR ienci

i formation to the brca2-/- mutants. ince 

dues required for RAD51 interaction (Lo et al., 2003).  However, it is 

conceivable that the other changes compromise the strength of the interaction.  Another 

to simply transport greater quantities of RAD51.  A

fore lead to significant amounts of unbound RAD51
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7.6 Loss of BRCA2 causes gross chromosomal 

rearrangements 
Mutation o mulation of 

gross chromosomal rearrangements, which include breakage, translocations and 

chromosome loss (Patel et al., 1998;Yu et al., 2000).  Similar findings have been 

demonstrated in U. maydis (Kojic et al., 2002).  In order to determine if BRCA2 is also a 

regulator of genomic stability in T. brucei, the wild type and BRCA2 mutants were cultured 

in vitro for ~ 290 generations before

subsequently analysed by Pulsed Fie ng 

(section 4.3.9).   

s 

 

Indeed, a reduction in chromosome size was observed in the majority of cases, indicating 

the occurrence of GCRs.  Another important observation came from the BRCA2+/- clones, 

which, although not as severe as the brca2-/- clones, displayed small reductions in 

chromosome size, possibly indicating haploinsuffic

compatible he increased sensitivity of BRCA2  

DNA damage (section 4.3.4).  Probing the PFGs with VSG121 (a five-gene family), 

VSG221 (a single copy VSG in the active VSG ES) and GPI (a single-copy gene encoding 

glucose 6-p  

Probing with this gene also revealed an increase in chromosome size for two brca2-/- 

clones.  As a result of these findings, an important area to address was that the size 

differences observed did not result from a VSG switching event.  In order to address this 

possibility, the VSG being expressed was investigated by western blot analysis, and 

revealed that a estigated were still expressing VSG221 (section 4.3.9), 

despite being cultured for a considerable length of time. 

VSG121 was found to hybridize to two chromosomes of approximately 2.1 and 2.3 Mb, 

both of which appeared to be smaller in all of the brca2-/- clones when compared to the 

WT cells (up to 100 kb).  In support of haploinsufficiency for BRCA2, the same 

chromosomes also appeared to have reduced in size in two to three of the BRCA2+/- 

clones, though to a lesser extent.  Further investigations into this five gene family through 

a Southern blot of XmnI-digested genomic DNA from all of the clones, probed with 

VSG121, revealed that the chromosomal changes observed in the PFGs was due to loss of 

f BRCA2 in mammalian cell lines has been shown to cause an accu

 being re-cloned.  A number of these clones were 

ld Gel electrophoresis (PFGE) and Southern blotti

Even simply by ethidium bromide staining of the gels, a number of karyotype difference

could be identified in the brca2-/- clones compared with the WT and BRCA2+/- clones. 

iency.  In fact, this result appears 

 with t +/- mutants to phleomycin induced

hosphate isomerase) appeared to confirm these observations, with severe size

changes (~ 500 kb) being found in three brca2-/- clones when probed with VSG221.  

ll of the clones inv
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genetic material.  Indeed, 11 of the 12 brca2-/- clones had lost at least one copy of 

VSG121.  Interestingly, the telomeric copy of VSG121 was never lost, indicating a level of 

stability for telomeric sequences.  Further evidence for this comes not only from the fact 

that all the clones continued to express VSG221, but also from mre11-/- mutants, which 

were also seen to undergo GCRs following prolonged in vitro culture, but were also never 

found to lose their telomeric copies of VSG121 (Robinson et al., 2002). 

Undoubtedly, this finding that loss of BRCA2 in T. brucei causes GCRs to occur in the 

megabase chromosomes of the genome, should not have come as a surprise due to similar 

results being found in vertebrates (Patel et al., 1998;Yu et al., 2000) and U. maydis (Kojic 

et al., 2002).  However, what did appear unusual was the observation that these GCRs only 

appeared to affect megabase chromosomes and not the intermediate- or the mini- 

chromosomes, which contain mainly VSG and VSG ES sequences (Wickstead et al., 

2004;Rudenko et al., 1998;Melville et al., 2000).  Indeed, the karyotype appeared to be 

relatively stable among WT, BRCA2+/- and brca2-/- cell lines, with no notable differences 

being detected.  However, it could be argued that rearrangements may have been occurring 

in the smaller chromosomes but were unable to be detected due to the lack of separation in 

the PFGs.  However, an alternative explanation comes from the fact that the megabase 

chromosomes and the smaller chromosomes replicate and divide at different points of the 

cell cycle.  Indeed, the mini chromosomes have been shown to replicate and segregate 

earlier in the cell cycle than the megabase chromosomes (Gull et al., 1998).  It is not 

known if this is also true of intermediate chromosomes, though they share DNA sequences 

with the minichromosomes (Wickstead et al., 2003a).  The megabase chromosomal 

aberrations could therefore be explained by deficiencies in separating the chromosomes 

during mitosis, which may be related to the observations that brca2-/- mutants appear to 

have difficulty in completing nuclear division (see below).  If the minichromosomes are 

replicated and segregated earlier than the megabase chromosomes, they could avoid the 

mis-segregation that is observed in the larger chromosomes.  How this would be manifest 

as chromosome size reduction, rather than wholescale chromosome loss, is unclear, 

however.  Equally, if it were true, we might have expected to see cell cycle abnormalities 

in the BRCA2+/- cells, which we do not.   

A simpler explanation for the megabase chromosome-specific GCRs, is that they arise due 

to a predominance of changes in sequences found in the megabase chromosomes and not in 

the smaller chromosomes.  Taking the PFGE results together with the loss of VSG121 gene 

copies, it appears that GCRs arising in T. brucei brca2-/- cells may result primarily from 

deletions within the sub-telomeric VSG arrays.  Indeed, each of these phenotypes are 



Claire Louise Hartley, 2008    Chapter 7, 313 

highly reminiscent of the GCRs displayed in mre11-/- mutants, where the chromosome 

size changes were primarily due to sequence loss and were only seen in the megabase 

chromosomes (Robinson et al., 2002).  It is possible that this indicates a shared function of 

the proteins in the maintenance or use of subtelomeric VSG arrays.  Equally, however, it is 

possible that this simply represents their roles in genome stability.  It might be argued that 

the phenotype observed in the mre11-/- mutants was more severe than is displayed here for 

the brca2-/- mutants, but it is important to note that these phenotypes should not be 

compared directly.  The main reason for this is due to the number of generations the clones 

were cultured for before GCRs were investigated.  The mre11-/- clones were investigated 

at 550 generations, whilst the brca2-/- clones were investigated at 290 generations.  

Therefore, in order to directly compare these phenotypes, the brca2-/- mutants should be 

cultured until 550 generations and GCRs subsequently investigated.  Similar work has not 

been done in a broad spectrum of DNA repair genes, including RAD51.  It would be 

informative to ask if such GCRs represent a specific function of BRCA2 and MRE11, or 

represent general activities of HR enzymes.  Clearly, this would be important in 

understanding the mechanisms for VSG repertoire evolution, which may be very rapid 

(Callejas et al., 2006). 

7.7 The role of BRCA2 in cell cycle progression 
Potentially, one of the most interesting findings regarding T. brucei BRCA2 comes from 

the analysis into the cell cycle, which was investigated in order to examine the reason for 

the level of growth impairment observed in the T. brucei brca2-/- mutants.  This was 

investigated through examination of the DNA content of individual cells by DAPI staining.  

Despite no evidence being uncovered for a cell cycle stall, a perhaps surprising result was 

obtained, which suggested that the brca2-/- mutant population contained cell cycle 

abnormalities compared with WT and BRCA2+/- cell lines.  Specifically, the brca2-/- 

mutant population was found to contain a lower percentage (~ 10 %) of cells in G1 or S 

phase (1N1K) of the cell cycle (McKean, 2003), which was accounted for by an 

accumulation of cells that did not conform to any of the ‘normal’ cell cycle stages, and so 

were described as being aberrant cell types, or ‘others’.  A more detailed examination of 

these cell types revealed approximately equal numbers of cells with raised nuclear DNA 

and kinetoplast DNA content, with the cell types most commonly observed containing 

0N1K, 0N2K, 1N3K (raised kinetoplast DNA), 1N0K, 2N1K or 2N0K (raised nuclear 

DNA).  Remarkably, despite the extent of GCRs that had accumulated in the brca2-/- 

mutants before the re-introduction of BRCA2, the BRCA2-/-/+ cell line was able to 

progress through the cell cycle without accumulating a significant number of aberrant cell 
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types.  This perhaps suggests that the generation of GCRs and aberrant cell types are 

distinct phenotypes of the BRCA2 mutant (discussed further below). 

The main reason why this phenotype observed in the brca2-/- mutants was regarded as 

being a surprising one, was due to the fact that similar findings had not previously been 

observed in T. brucei mutants of other DNA repair/recombination factors that resulted in a 

growth impairment of very similar magnitude.  In all, mutation of MRE11 (Robinson et al., 

2002) the RAD51 paralogues, RAD51-3 and RAD51-5 (Proudfoot and McCulloch, 2005), 

and (most notably) RAD51 (this work) were all examined for cell cycle phenotypes, and 

none displayed them in the absence of induced DNA damage.  This observation therefore 

indicates that this phenotype does not simply result from the DNA repair deficiency of the 

brca2-/- cells, and is consistent with the possibility that T. brucei BRCA2 has a role 

beyond the simple regulation of RAD51-catalysed recombination, in either the regulation 

or execution of cell division. 

Further evidence comes from the investigation into DNA damage sensitivities of T. brucei 

DNA repair mutants.  Were the cell cycle phenotypes of brca2-/- mutants to reflect a 

greater function in DNA repair, then it could be imagined that a more significant 

sensitivity to DNA damage would be observed for the brca2-/- mutants.  In fact, highly 

comparable levels of sensitivity to both MMS and phleomycin were obtained between 

brca2-/- and rad51-/- mutants, whilst only the former displayed any cell cycle differences.  

Furthermore, if this was indeed a valid argument, then the induction of further DNA 

damage should result in amplification of this phenotype.  However, a distinct phenotype 

was observed following phleomycin treatment of brca2-/- mutants.  This phenotype 

consisted not only of an increase in the percentage of cells containing 1N2K, but the 

distribution of aberrant cells contained a pronounced number of cells with raised 

kinetoplast DNA content.  In addition, similar results following phleomycin treatment were 

observed in the rad51-/-, rad51-3-/- and rad51-5-/- mutants.  Taken together, it appears 

that the induction of DNA damage through phleomycin treatment causes a delay in nuclear 

DNA replication, but does not block cell division, meaning that daughter cells are 

generated that lack nuclear DNA. 

In order to analyse the reasons for the accumulation of aberrant cell types in brca2-/- 

mutants, the cells in M phase, which were about to undergo cytokinesis (containing a DNA 

content of 2N2K) were analysed.  In WT, BRCA2+/- and BRCA2-/-/+ cell lines, the 

majority of cells were found to contain 2 clearly separated nuclei, with only a small 

percentage (10-15 %) still segregating.  The brca2-/- mutants, however, contained a larger 
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percentage (30-40 %) of cells with visibly connected nuclei, which were still undergoing 

segregation.  This phenotype is again a BRCA2-specific phenomenon since the rad51-/- 

mutants did not exhibit this phenotype.  Furthermore, this discovery seems to provide an 

explanation for the increase in the number of aberrant cell types, since in the absence of 

BRCA2, cells do not undergo a cell cycle stall, but proceed into cytokinesis, often whilst 

nuclear segregation is still occurring, thereby resulting in daughter cells that inherit either 

both nuclei, or none, thus accounting for the pattern of DAPI staining in the aberrant cells. 

A final, compelling, piece of evidence indicating that DNA repair deficiency is not 

involved in this increase in number of aberrant cell types come from the BRCA2 variant 

expressers.  The BRC+RPA expresser, despite being quite proficient in DNA repair still 

displayed an accumulation of aberrant cell types equivalent to the brca2-/- mutants.  

Conversely, the cell lines expressing BRCA2 with just 1BRC repeat, which were deficient 

in DNA repair, no longer displayed this accumulation of aberrant cells, indicating that 

BRC repeat number does not affect this phenotype.  Finally, a remarkable result was 

observed in the C term BRCA2-/-/+ cell line, whereby the number of aberrant cell types, 

whilst not being as low as observed in WT or BRCA2-/-/+ cells, was significantly lower 

than either the BRC+RPA cell line or the cells expressing just the BRC repeat polypeptide.  

This result indicates that the C terminus of BRCA2, isolated from the BRC repeat, can 

partially complement the replication or cell division deficiency observed in the brca2-/- 

mutants.  This implies that the replication or cell division deficiency phenotype is a 

consequence of a function that can be separated from the BRC repeats, and appears to 

reside within the C terminal region of BRCA2.  

The basis for GCR in brca2-/- mutants, and in mre11-/- mutants, appears to reside in loss 

of subtelomeric sequences.  However, the rearrangements can be drastic in some clones, so 

could these results suggest that the GCRs found in the brca2-/- mutants may not simply 

exist due to DNA repair defects?  For instance, could the accumulation of aberrant cell 

types, resulting from an early onset into cytokinesis, before completion of DNA repair or 

replication, add to the chromosomal rearrangements?  The lack of observable cell cycle 

defects in mre11-/- mutants appears to argue against this.  However, a detailed comparison 

of the types of GCR has not been conducted.  It is striking that the kinetoplast DNA in the 

brca2-/- mutants appears to be unaffected in the cell cycle, since normal numbers of cells 

with 1N2K and 2N2K DNA content are observed.  This therefore appears to suggest that 

loss of BRCA2 does not affect kinetoplast DNA replication and segregation, but is limited 

to a nuclear function.  Indeed, this result is in keeping with the nuclear location of BRCA2 

in other organisms (Bertwistle et al., 1997;Martin et al., 2005;Zhou et al., 2007) and the 
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identification of putative nuclear localisation signals in the T. brucei polypeptide sequence.  

Further work will be needed to understand the basis of GCRs in these mutants. 

Despite these results providing evidence for replication or cell division abnormalities, they 

do not explain the reason for the increased population doubling times of the brca2-/- 

mutants.  It has been established that there is no evidence for a cell cycle stall, since no 

increase or decrease in 1N2K or 2N2K cells is seen.  In addition, the nuclear 

replication/segregation defect cannot provide an adequate explanation for reduced growth 

or cell cycle delay, since in rad51-/-, rad51-3-/-, rad51-5-/- and mre11-/- mutants, similar 

levels of growth impairment were observed, but no cell cycle abnormalities were found 

(McCulloch and Barry, 1999;Proudfoot and McCulloch, 2005;Robinson et al., 2002).  

Finally, it was observed that expression of the BRC+RPA fusion protein reverted the 

population doubling time of the cells to WT rates, whilst the accumulation of aberrant cell 

types persisted.  Taken together, it therefore seems most likely that either the T. brucei 

brca2-/- mutants take longer to complete the cell cycle, or that the DNA repair deficiency 

of the brca2-/- mutants leads to an increased rate in cell death, as is seen in other DNA 

repair mutants. 

All the above results allow a hypothesis to be postulated, which suggest that DNA 

repair/recombination and DNA replication/segregation are separate functions of T. brucei 

BRCA2.  Furthermore, sequence elements located in the C-terminal domain of BRCA2 are 

likely to function to ensure the correct transmission of nuclear DNA during T. brucei cell 

division.  Undoubtedly, further investigations will be required in order to fully understand 

how BRCA2 contributes to the mechanisms of T. brucei DNA replication/segregation.  

However, the pattern of aberrant cells in the brca2-/- mutants is consistent with cytokinesis 

occurring before the completion of nuclear DNA segregation, yielding initially daughter 

cells with 2 nuclei and 1 kinetoplast (2N1K) and lacking a nucleus (0N1K).  The presence 

of cells with further aberrant DNA contents (e.g. 1N0K, 2N0K, 2N3K and 2N4K), 

suggests that further rounds of replication and cell division can and do occur, despite the 

fact that these cells are likely to be dying.   

What might be the mechanistic basis for these phenotypes?  It is possible that T. brucei 

BRCA2 may function in the timing of cytokinesis, and in its absence, cells undergo 

cytokinesis before the completion of DNA replication and segregation.  Another possibility 

is that T. brucei BRCA2 may function in efficient DNA replication and nuclear 

segregation, and in its absence, the completion of mitosis is delayed.  The generation of 

mis-segregated DNA would then only occur if cytokinesis occurred under normal timing.  
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Either suggestion relies upon the assumption that a cell cycle checkpoint, ensuring that 

cytokinesis occurs only after completion of mitotic chromosome segregation, is absent 

from T. brucei, at least when BRCA2 is mutated.  However, this may not be the case, since 

RNAi depletion of CRK3-CYC6 in bloodstream stage cells suggested that the mitosis 

form T. brucei suggested a different scenario, whereby cytokinesis can occur in the 

absence of mitotic exit, or even mitosis.  These results therefore point to the presence of 

fferent c cle checkpoints in the different life cycle stages.  Nevertheless, the above 

possibilities for T. brucei BRCA2 could still remain valid due to the observations that in 

n  of DNA damage, either by treatment with phleomycin (R. McCulloch, 

 by inducing a telomeric DNA DSB (Glover et al., 2007), cell cycle 

progression is not blocked in bloodstream stage T. brucei, implying that there may be an 

absence of DNA damage cell cycle checkpoints which monitor DNA integrity in T. brucei.  

Having said this, a recent study that induced a DSB at a chromosome internal locus did 

appear to induce a G2/M arrest, suggesting that this may not be so straightforward (Glover 

00 . 

Research on BRCA2 in mammalian cells has suggested a role for BRCA2 in cell division.  

Firstly, BRCA2 has been shown to interact with BRAF35 and BUBR1, two proteins which 

appear to modulate the initiation of mitosis through roles in chromatin condensation 

(Marmorstein et al., 2001) and spindle attachment (Lee et al., 1999;Futamura et al., 2000).  

Secondly, BRCA2 has been suggested to localise to centrosomes (Nakanishi et al., 2007).  

Finally, research in HeLa cells and murine embryo fibroblasts (MEFs) have found that 

BRCA2 localises to the cytokinetic midbody, and its disruption by RNAi or targeted gene 

tion mpairs or delays cytokinesis (Daniels et al., 2004).  It is worth noting that this 

study appears to suggest a distinct phenotype from that what is described in T. brucei 

brca2-/- cells.  Here, the data is most readily explained by cytokinesis appearing to occur 

early before nuclear division has been completed, leading to the accumulation of aberrant 

cell types.  This may suggest that BRCA2 functions quite differently in T. brucei and 

mammals, or may reflect cell cycle checkpoint differences between the parasite and host.  

Nevertheless, since no work to date has reported the phenotypes that are found in T. brucei 

in other organisms, including C. elegans, D. melanogaster and U. maydis (Martin et al., 

rou h et al., 2008;Kojic et al., 2002), these findings could therefore be indicative of 

an evolutionary divergent role for BRCA2 within T. brucei.  Some evidence does, in fact, 

point to T. brucei BRCA2 being linked to DNA replication rather than cell division: an 

interaction between T. brucei BRCA2 and an orthologue of CDC45 has been described (S. 

Oyola, PhD thesis, University of Cambridge).  CDC45 functions in both the initiation and 

initiation checkpoint is intact (Hammarton et al., 2003).  The same experiment in procyclic 
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elongation of nuclear DNA replication (Bauerschmidt et al., 2007), and it is therefore 

conceivable that the role of BRCA2 is to link the DNA replication and repair machineries, 

ensuring that replication stalls are overcome.  This scenario would fit in with the results 

ibed in this thesis, whereby in the absence of BRCA2, the completion of nuclear 

DNA replication is impaired.  Whether or not this interaction is an evolutionary 

conservation remains yet to be seen, but it is worth noting that since the size and sequence 

CA2 omologues from different organisms display considerable diversity (Lo et al., 

2003), it could be postulated that BRCA2 can adopt different roles within different 

organisms.  Indeed, BRCA2 has already been found to interact with a number of different 

proteins in different organisms (Marmorstein et al., 2001;Xia et al., 2006b;Lu et al., 

2005;Dong et al., 2003). 

7.8 Future experiments 
Despite the work detailed in this thesis providing a wealth of information in the role of 

BRCA2 in terms of DNA damage repair, homologous recombination and T. brucei 

antigenic variation, a number of questions remain unanswered.  In order to resolve these 

questions, a number of experiments could be explored. 

Undoubtedly, the purification of the T. brucei BRCA2 homologue and a number of 

otifs would allow a wealth of potentially informative biochemical analyses to be 

performed.  Not the least of these would be the confirmation of the interaction between 

BRCA2 and RAD51 in T. brucei, which has been shown to occur indirectly in this thesis, 

e los of RAD51 foci formation in brca2-/- mutants (section 4.3.6).  This area of 

investigation would also allow the interaction between BRCA2 and RAD51 in T. brucei to 

be localised to a region of BRCA2, through the utilisation of various purified motifs of the 

ein.  T is would therefore confirm whether the BRC repeats, the C terminus or another 

region are capable of binding RAD51.  Furthermore, the questions of whether monomeric 

or multimeric forms of RAD51 bind to BRCA2 could also be answered.  Indeed, this could 

rm if he T. brucei homologue of BRCA2 functions similarly to that of the H. sapiens 

monomeric forms of RAD51 bind to the BRC repeat region of BRCA2, 

whilst multimeric forms bind to the C terminus (Esashi et al., 2007;Davies and Pellegrini, 

2007;Lord and Ashworth, 2007;Petalcorin et al., 2007).   

These biochemical analyses could also prove useful in identifying other BRCA2 

interacting factors.  For example, it is known that BRCA2 also binds the meiotic specific 

recombinase, DMC1, in Arabidopsis thaliana and H. sapiens (Siaud et al., 2004;Thorslund 
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et al., 2007).  Yeast 2 hybrid analysis or co-immunoprecipitation could also prove useful 

ols in h  to answer these questions, and potentially identify novel interacting 

factors. 

One of the m s of the cell lines expressing various truncations of BRCA2, is 

that the expression of these proteins were unable to be confirmed.  Both western blot 

analysis and IFA proved to be unsuccessful.  In order to determine if these proteins were 

indeed being expressed and correctly localised to the nucleus other approaches might be 

considered.  It should be possible to tag these with other epitopes (both HA and GFP 

tagging has proved unsuccessful).  Alternatively, purified proteins could be introduced into 

the cells and their localisation followed with antibodies specifically raised against them.  

Finally, over-expressing the proteins in order to obtain enough protein to detect by western 

blot or IFA could be considered.  Indeed, other researchers have found that BRCA2 is 

difficult to detect in T. brucei using peptide anti-sera, unless a substantial level of over-

expression is achieved (S. Oyola pers comms).  However, the over-expression of proteins 

does not come without problems, including the mis-localisation of the protein, non-

physiological interactions and disruption of protein complexes (Swaffield et al., 1995). 

Additional mutants could also be generated containing varying numbers of BRC repeats, 

instead of either the complete set or just the most C terminal.  Indeed, these experiments 

were due to be performed by myself, but due to time constraints and cloning difficulties, 

these were unable to be generated. 

In order to confirm that the modes of VSG switching can occur via RAD51-unrelated 

pathways, rad51-/-, brca2-/- double knockouts could be generated and the subsequent 

VSG switching analysis performed.  One of the major obstacles in the generation of such 

mutants is in the restricted number of antibiotic resistance cassettes that can be utilised in 

T. brucei.  One possible method to overcome this problem would be generating these 

mutants via loss of heterozygosity. 

The investigation of BRCA2 is a fast paced area of research and, undoubtedly, new 

interacting partners are likely to be identified, along with biochemical assays providing 

fresh insights into the complex and perhaps multiple functions of the protein. 

to elping
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Appendices 
 

Appendix 1: A list of the oligonucleotides used in this thesis. 
 
Primer name Sequence Restriction sites and 

tags 
    
3'BRCVAR CCTCTAGATGCTACTTGCAGTGACGACTC XbaI  
3'VARPLUSTAG AGGCCTGGTACCTGTCTAGATGCTACTTGCAGT 

GACGACTC 
XbaI  

3'VARTAG AGGCCTGGTACCTGTCTAGA XbaI  
5'BRC VAR CCGTTAACATGTACCCCTACGACGTCCCGGACT 

ATGCCAGCCACAAAAAAGGAAGACAA 
HpaI HA 

BRC probe 3’ TCCTGGCCATTTTCAGTATTC   
BRC probe 5’ AGCACTGCGGTACAAGGAAATTCC   
BRC VAR 3’3 CCCTCGCGACTATTCTCGCATAAGATCAGCGAC NruI  
BRC VAR 3’5 AGCACTGCGGTACAAGGAAATTCC   
BRC VAR 5’3 CTCTTGGCCATTTTCAGTCCC   
BRC VAR 5’5 CCCTCGCGAATGTACCCCTACGACGTCCCGGA 

CTATGCCAGCCACAAAAAAGGAAGACAA 
NruI HA 

BRC_RPA 3’ CGGCTTTCTTGCTAGCTTGGATG   
BRC_RPA 5’    
 

CCCCGATATCATGTACCCCTACGACGTCCC 
GGACTATGCCTACGGGACTGAAAATGGCC 
AAGAG 

EcoRV HA 

BRCA_noBRC 5’ CCCTCGCGAATGTACCCCTACGACGTCCCGG 
ACTATGCCTCGGGAGCAGGTGCCTCCTTGTCG 

NruI HA 

BRCA_TRUNC 3’ CCCCTCGCGACTACGGCTTTCTTGCTAGCT 
TGGATG        
 

NruI  

BRCA_TRUNC 5’    
 

CCCCTCGCGAATGTACCCCTACGACGTCCC 
GGACTATGCCTACGGGACTGAAAATGGCC 
AAGAG 

NruI HA 

BRCA2 KO3' GACAATGAGAGTTATGACAATGCGAGAGG 
GATCAAGTTTTGAATGAAACGATGAAGGTA 
TACCCGGCGAAAGGATCATCACTAAGAACA 
TATACTAACACTATTTTATGGCAGCAACGAG 

  

BRCA2 KO3’ 
Nru_RV 

CCTCGCGAGATATCTAGCCAGGGAAGG 
TGTGTG 

NruI EcoRV 

BRCA2 KO3’ XbaI CCTCTAGATATGTCCTTAAGTACTGCC XbaI  
BRCA2 KO5' CCGGTCCCCTTTTTCTTCTTTTTCGGCTCC 

TCCTCCTCCTCCTCCTTTTCTTCCATCCTG 
AAATTCCCCGTGTGTTGTTTAATTAATCTG 
CTCGGAAGTCTGGGTCCCATTGTTTGCCTC 

  

BRCA2 KO5’ 
Bam_Nru 

CCTCGCGAGGATCCATAATCAGAATTTG 
ACTTCCG 

NruI BamHI 

BRCA2 KO5’ XhoI CCCTCGAGGACATGACATTTCTTGACCC XhoI  
BRCA2 probe 3’ GTATGAACTCACACTCCGCTGG   
BRCA2 probe 5’ TCGGGAGCAGGTGCCTCC   
BSD 3’ TTAGCCCTCCCACACATAACC   
BSD 5’ ATGGCCAAGCCTTTGTCTC   
CanalTAP3' CCTCAGGTTGACTTCCCCGCGG   
CanalTAP5' CCCATGCCTCCACTACACGGTT   
CTAP3' CACGACAAAACCGAAGCCTTCGAACTGCA 

GCATGCACTTCTCCGCTTTCGGAGTGAATG 
TTTTTCTACAAATGACGAGGAAAAAAAAG 
ATGGGGCACTACCCTCTACTATTTTCTTTGAT 

  

CTAP5' GGAGAACAGCGTATTATTAAGGTGTATGAC 
TCACCTTGTCTCGCTGAAAGTGAGGCCATC 
TTCGGCATCTATGAGAACGGTGTGGGAGAC 
GTTAGGGACAAGAGAAGATGGAAAAAGAAT 

  

Cterm probe 5’ TTCAGAGGGTGAGGGGTCGG   
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EcoRV101for CCGATATCTGGGTCCCATTGTTTGCCTC EcoRV  
EcoRV101rev CCGATATCGTTAACTATTTTATGGCAG 

CAACGAG 
EcoRV HpaI 

GPI for TGGGGAGCAAAGATGAAAAC   
GPI rev CCGTTGCCATAACGGGTCCC   
Hygro 3’  CTATTCCTTTGCCCTCGGAC   
Hygro 5’ ATGAAAAAGCCTGAACTCACC   
Mid Actin TGTACTCAGCCCTATGCC   
NanalTAP3' CCACCAACTTGCTGCTGCATCT   
NanalTAP5' CCGCAGGCCTTGCGCAACACGA   
Neo 3’ TCAAGAAGGCGATAGAAGGC   
Neo 5’ CGCATGATTGAACAAGATGG   
NruIact CCTCGCGAGTTAACTATTTTATGGCAG 

CAACGAG 
NruI HpaI 

NruItub CCTCGCGATGGGTCCCATTGTTTGCCTC NruI  
NTAP3' CGCATCCACTGCGGCATCATCGAACGCGGT 

ATCATCGATGTCGTGAACTTCATCTTCTATC 
ACCTCTTTAGTGCGTTTCTTATTTTTGGTGC 
GAGTGTTAAGTGCCCCGGAGGATGAGAT 

  

NTAP5' CTTTGAGAGGTGGTGCGCGCTTTAAAGAGA 
AACCAGCAACAACACCGAAAGGGCTTCTCC 
AGATTCCCCGTGAAGGTTTCTTAACGCGTA 
TACCAGGGGATGATTGAACAAGATGGATTG 

  

Outside RAD51 CGTGAAGGTTTCTTAACGC   
Pol I 3’ CATGCGCCTGTGGTTCAGCATAGC   
Pol I 5’ CAGGAGGATCGTTCGGCACCTTGGC   
RPA 3’ CCCCGATATCTTACAAGTAGGCATTAATGC EcoRV  
RPA 5’ CAGCAGCCATCACAACAACAG   
RPA probe 3’ TACGGTGCCAGGTTGATGTGG   
RPA probe 5’ TACGCTCATTGACGAGTCTGC   
Tb BRC rep for GCGGTACAAGGAAATTCCAC   
Tb BRC rep rev AGGAGGCACCTGCTCCCGAA   
Tb BRCA2 for ATGAGCCACAAAAAAGGAAGACAAGGC   
Tb BRCA2 for2 CCCTCGCGAATGTACCCCTACGACGTCCCGGAC 

TATGCCAGCCACAAAAAAGGAAGACAA 
NruI HA 

Tb BRCA2 rev TTCTCGCATAAGATCAGCG   
Tb BRCA2 rev2 CCCTCGCGACTATTCTCGCATAAGATCAGCGAC NruI  
Tco BRCA2 for ATGGTCTTTTCCCAGAAGTCTAAGGG   
Tco BRCA2 for2 CCCCGATATCATGTACCCCTACGACGTCCCGGA 

CTATGCCGTCTTTTCGCAGAAGTCTAAG 
EcoRV HA 

Tco BRCA2 rev CGAAGCAGTTGCTAAAGGTG   
Tco BRCA2 rev2 CCCCGATATCCTTCCGCATAAGATTGACGAT EcoRV  
Tviv BRCA2 3’ CTACGCCATCGAGCAGGC   
Tviv BRCA2 5’ ATGAAGCAGCGGCAAGTAGG   
Tviv BRCA2 for2 CCCCGATATCATGTACCCCTACGACGTCCCGGA 

CTATGCCAAGCAGCGGCAAGTAGGTGAA 
EcoRV HA 

Tviv BRCA2 rev2 CCCCGATATCCTACACTGAACTCTCCTCCTGCAT EcoRV  
Vivax probe 3’ TACCAGCCGAAGAGGCGGTCG   
Vivax probe 5’ ACTAGTAGGCCACAGCGGGTG   
VSG 121 3’ CGCTGGCTGTGGTGCTCAGAATCATGCAGA   
VSG 121 5’ TAACCTTTACAACAGAGCGCACAAACTTAA   
VSG 221 3’ TGTATCGGCGACAACTGCAG   
VSG 221 5’ ATGCCTTCCAATCAGGAGGC   
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Appendix 2: Accession numbers of BRCA2 proteins. 

The accession numbers for the BRCA2 proteins used during homology and phylogenetic 

analysis.   

Species Protein name Accession number Size 
(amino 
acids) 

No. of 
BRC 

repeats 
Arabidopsis 

thaliana 
BRCA2B NP_195783 1155 4 

 
Arabidopsis 

thaliana 
BRCA2A NP_191913 1150 4 

Caenorhabditis 
elegans 

 

potential 
BRCA2-like 

protein 

AAR98640 
 

394 1 

Canis familiaris BRCA2 BAB91245 3446 8 
Dictyostelium 
discoideum 

Hypothetical 
protein 

EAL60741 1623 1 

Drosophila 
melanogaster 

Hypothetical 
protein 

NP_611925 947 3 

Entamoeba 
histolytica 

Hypothetical 
protein 

147.m00103 719 1 

Felis catus BRCA2 NP_001009858 3372 8 
Gallus gallus BRCA2 BAB83985 3397 8 

Giardia lamblia Hypothetical 
protein 

ORF: 12059 
contig_15:113922..127236 

1105 1 

Homo Sapiens BRCA2 AAB07223 3418 8 
Leishmania major Hypothetical 

protein 
LmjF20.0060 1165 2 

Mus musculus BRCA2 AAC23702 3328 8 
Plasmodium 
falciparum 

Hypothetical 
protein 

PF13_0155 2668 6 

Toxoplasma gondii Brca2 repeat 
containing 

protein 

49.m03334 2741 8 

Trichomonas 
vaginalis 

BRCA2 
repeat family 

protein 

XP_001316845 
 

1664 1 

Trypanosoma 
brucei 

Hypothetical 
protein 

Tb927.1.640 1648 15 

Trypanosoma 
congolense 

Hypothetical 
protein 

congo695a05.p1k_18 1179 3 

Trypanosoma 
cruzi 

BRCA2 Tc00.1047053505999.40 1030 2 

Trypanosoma 
vivax 

Hypothetical 
protein 

tviv192h02.q1k_9 1068 1 

Ustilago maydis 
 

Rad51-
associated 

protein Brh2 

AAM92489 1075 1 
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Appendix 3: Accession numbers of DSS1 proteins. 

The accession numbers for the DSS1 proteins used during homology and phylogenetic 

analysis.   

Species Protein name Accession number Size (amino 
acids) 

Arabidopsis thaliana DSS1 NP_974090 74 
Homo Sapiens DSS1 NP_006295 70 

Leishmania major Hypothetical 
protein 

LmjF29.1290 118 

Saccharomyces 
cerevisiae 

SEM1 NP_010651 89 

Schizosaccharomyces 
pombe 

Hypothetical 
protein 

NP_594968 71 

Trypanosoma brucei Hypothetical 
protein 

Tb03.28C22.546 137 

Trypanosoma 
congolense 

Hypothetical 
protein 

congo1342c06.q1k_0 138 

Trypanosoma cruzi Hypothetical 
protein 

Tc00.1047053509999.70 144 

Trypanosoma vivax Hypothetical 
protein 

tviv1332g04.p1k_2 125 

Ustilago maydis DSS1 AAQ67367 119 
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Appendix 4: Accession numbers of RAD51 proteins. 

The accession numbers for the RAD51 proteins used during homology and phylogenetic 

analysis.   

Species Protein name Accession number Size (amino acids)
Leishmania major RAD51 protein, 

putative 
LmjF28.0550   377 

Trypanosoma 
brucei 

RAD51 AAD51713 373 

Trypanosoma cruzi RAD51 AAZ94621 371 
Trypanosoma vivax RAD51 protein, 

putative 
tviv626b11.p1k_13 410 
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Appendix 5: The gene sequence of BRCA2. 
 
 
The ORF of BRCA2 is highlighted in purple, whilst the BRC repeats are indicated in red.  

The BRCA2 specific primers and the restriction sites of the enzymes used during single 

copy analysis are shown. 

         EcoRV   BRCA2 5’ XhoI 
         ===      ____________________\ 
         ATCATGAAGGACATGACATTTCTTGACCCATCGGAATACATACCCCTCCGATAACAAGAA 
    ------------------------------------------------------------ 
    TAGTACTTCCTGTACTGTAAAGAACTGGGTAGCCTTATGTATGGGGAGGCTATTGTTCTT 
  
         AGGTGGGCATCTGTTAGGGCCCTTTTCCCCCTTTCTGCGGTACTGTTTGCTGTCGCGGAA 
         ------------------------------------------------------------ 
    TCCACCCGTAGACAATCCCGGGAAAAGGGGGAAAGACGCCATGACAAACGACAGCGCCTT 
 
         GCGAATATTCACATCTGCGCTTGTTGATACTGAGTATACATAAGTGTATACCGTTGTTGT 
         ------------------------------------------------------------ 
    CGCTTATAAGTGTAGACGCGAACAACTATGACTCATATGTATTCACATATGGCAACAACA 
 
         CCCGGTGCGTGCCCTTTGCACCGACGTTTCTGCTCGCTCATTCTCACCACCTCCACCTCC 
         ------------------------------------------------------------ 
    GGGCCACGCACGGGAAACGTGGCTGCAAAGACGAGCGAGTAAGAGTGGTGGAGGTGGAGG 
           _____________ 
         ACACGCGTGCAATTGAATGCCTTTTAGTACTTTGTTTGCACTACATTCCGGTCCCCTTTT 
         ------------------------------------------------------------ 
    TGTGCGCACGTTAACTTACGGAAAATCATGAAACAAACGTGATGTAAGGCCAGGGGAAAA 
 
            ApoI 
           ====== 
    ____________________________________________________________ 
         TCTTCTTTTTCGGCTCCTCCTCCTCCTCCTCCTTTTCTTCCATCCTGAAATTCCCCGTGT 
         ------------------------------------------------------------ 
    AGAAGAAAAAGCCGAGGAGGAGGAGGAGGAGGAAAAGAAGGTAGGACTTTAAGGGGCACA 
                                                   
       ApoI 
          ======  
         BRCA2 KO5’        BRC VAR 5’5 
         ___________________________\                ________________ 
                M  S  H  K  K  G  R 
       1 GTTGTTTAATTAATCTGCTCGGAAGTCAAATTCTGATTATTATGAGCCACAAAAAAGGAA 
         ------------------------------------------------------------ 
    CAACAAATTAATTAGACGAGCCTTCAGTTTAAGACTAATAATACTCGGTGTTTTTTCCTT  
        _____________________ 
        \ BRCA2 KO5’ Bam_Nru   
        ApoI 
       ======      
    _____\  
      Q  G  S  N  S  G  A  R  Q  N  S  D  T  P  Q  R  N  R  T  K 
      20 GACAAGGCAGCAACTCTGGAGCGCGCCAAAATTCCGATACGCCGCAACGGAACCGTACGA 
         ------------------------------------------------------------ 
    CTGTTCCGTCGTTGAGACCTCGCGCGGTTTTAAGGCTATGCGGCGTTGCCTTGGCATGCT 
 
      C  R  S  D  A  P  K  R  Q  R  S  R  S  G  E  S  V  Q  G  K 
      80 AGTGCCGCTCCGATGCCCCCAAGAGACAACGCAGTCGGTCTGGAGAAAGTGTACAAGGAA 
         ------------------------------------------------------------ 
    TCACGGCGAGGCTACGGGGGTTCTCTGTTGCGTCAGCCAGACCTCTTTCACATGTTCCTT 
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       ApoI 
       ===== 
                  PstI              EcoRI 
                 ======             ======           _______ 
      S  P  L  Q  E  R  E  T  R  I  Q  P  R  R  D  R  T  Y  G  T 
     140 AAAGTCCACTGCAGGAGAGGGAAACGAGAATTCAGCCGAGGAGGGACCGCACGTACGGGA 
         ------------------------------------------------------------ 
    TTTCAGGTGACGTCCTCTCCCTTTGCTCTTAAGTCGGCTCCTCCCTGGCGTGCATGCCCT 
               ____ 
               \ 
         ApoI 
        ====== 
    BRCA Trunc5’        BRC VAR 3’5 
    ___________\     _______________________\   
      E  N  G  Q  E  S  T  A  V  Q  G  N  S  T  D  V  P  T  L  F 
     200 CTGAAAATGGCCAAGAGAGCACTGCGGTACAAGGAAATTCCACAGATGTTCCAACGCTTT 
         ------------------------------------------------------------ 
    GACTTTTACCGGTTCTCTCGTGACGCCATGTTCCTTTAAGGTGTCTACAAGGTTGCGAAA 
    _______________  
  BRC VAR 5’3      HinfI 
         ====== 
      V  S  A  A  G  K  P  I  T  V  S  E  S  S  L  Q  V  A  R  A 
     260 TTGTATCTGCTGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGG 
         ------------------------------------------------------------ 
    AACATAGACGACGACCATTTGGGTATTGACATAGTCTCAGCAGTGACGTTCATCGTTCCC 
         _____________________ 
         \    3’ BRCVAR 
           ApoI 
           ====== 
       BRC VAR 3’5 
        _______________________\ 
      R  M  N  T  E  N  G  Q  E  S  T  A  V  Q  G  N  S  T  D  V 
     320 CACGAATGAATACTGAAAATGGCCAGGAGAGCACTGCGGTACAAGGAAATTCCACAGATG 
         ------------------------------------------------------------ 
    GTGCTTACTTATGACTTTTACCGGTCCTCTCGTGACGCCATGTTCCTTTAAGGTGTCTAC 
 
             HinfI 
           ====== 
      P  T  L  F  V  S  A  A  G  K  P  I  T  V  S  E  S  S  L  Q 
     380 TTCCAACGCTTTTTGTATCTGCTGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGC 
         ------------------------------------------------------------ 
    AAGGTTGCGAAAAACATAGACGACGACCATTTGGGTATTGACATAGTCTCAGCAGTGACG 
            _____________ 
           \ 3’ BRCVAR 
            == 
         BRC VAR 3’5 
          ___________________  
      V  A  R  A  R  M  N  T  E  N  G  Q  E  S  T  A  V  Q  G  N 
     440 AAGTAGCAAGGGCACGAATGAATACTGAAAATGGCCAGGAGAGCACTGCGGTACAAGGAA 
         ------------------------------------------------------------ 
    TTCATCGTTCCCGTGCTTACTTATGACTTTTACCGGTCCTCTCGTGACGCCATGTTCCTT 
    _________ 
 
    ApoI          
    ====  
    _____\           = 
      S  T  D  V  P  T  L  F  V  S  A  A  G  K  P  I  T  V  S  E 
     500 ATTCCACAGATGTTCCAACGCTTTTTGTATCTGCCGCTGGTAAACCCATAACTGTATCAG 
         ------------------------------------------------------------ 
    TAAGGTGTCTACAAGGTTGCGAAAAACATAGACGGCGACCATTTGGGTATTGACATAGTC 
             _ 
             \ 
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    HinfI 
    ===== 
            _______ 
      S  S  L  Q  V  A  R  A  R  M  N  T  E  N  G  Q  E  S  T  A 
     560 AGTCGTCACTGCAAGTAGCAAGGGCACGAATGAATACTGAAAATGGCCAAGAGAGCACTG 
         ------------------------------------------------------------ 
    TCAGCAGTGACGTTCATCGTTCCCGTGCTTACTTATGACTTTTACCGGTTCTCTCGTGAC 
         ____________________ 
    \ 3’ BRCVAR 
     ApoI 
    ====== 
  BRC VAR 3’5 
    ________________\ 
      V  Q  G  N  S  T  D  V  P  T  L  F  V  S  A  A  G  K  P  I 
     620 CGGTACAAGGAAATTCCACAGATGTTCCAACGCTTTTTGTATCTGCTGCTGGTAAGCCCA 
         ------------------------------------------------------------ 
    GCCATGTTCCTTTAAGGTGTCTACAAGGTTGCGAAAAACATAGACGACGACCATTCGGGT 
 
     HinfI 
     ====== 
      T  V  S  E  S  S  L  Q  V  A  R  A  R  M  N  T  E  N  G  Q 
     680 TAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGCACGAATGAATACTGAAAATGGCC 
         ------------------------------------------------------------ 
    ATTGACATAGTCTCAGCAGTGACGTTCATCGTTCCCGTGCTTACTTATGACTTTTACCGG 
     ______________________ 
     \ 3’ BRCVAR 
       ApoI 
      ====== 
   BRC VAR 3’5 
    _______________________\ 
      E  S  T  A  V  Q  G  N  S  T  D  V  P  T  L  F  V  S  A  A 
     740 AAGAGAGCACTGCGGTACAAGGAAATTCCACAGATGTTCCAACGCTTTTTGTATCTGCCG 
         ------------------------------------------------------------ 
    TTCTCTCGTGACGCCATGTTCCTTTAAGGTGTCTACAAGGTTGCGAAAAACATAGACGGC 
 
       HinfI 
       ====== 
      G  K  P  I  T  V  S  E  S  S  L  Q  V  A  R  A R  M  N  T 
     800 CTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGCACGAATGAATA 
         ------------------------------------------------------------ 
    GACCATTTGGGTATTGACATAGTCTCAGCAGTGACGTTCATCGTTCCCGTGCTTACTTAT 
       _____________________ 
       \  3’ BRCVAR 
         ApoI 
        ======  
     BRC VAR 3’5 
      _______________________\ 
      E  N  G  Q  E  S  T  A  V  Q  G  N  S  T  D  V  P  T  L  F 
     860 CTGAAAATGGCCAAGAGAGCACTGCGGTACAAGGAAATTCCACAGATGTTCCAACGCTTT 
         ------------------------------------------------------------ 
    GACTTTTACCGGTTCTCTCGTGACGCCATGTTCCTTTAAGGTGTCTACAAGGTTGCGAAA 
 
         HinfI 
         ======  
      V  S  A  A  G  K  P  I  T  V  S  E  S  S  L  Q  V  A  R  A 
     920 TTGTATCTGCCGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGG 
         ------------------------------------------------------------ 
    AACATAGACGGCGACCATTTGGGTATTGACATAGTCTCAGCAGTGACGTTCATCGTTCCC 
         _____________________ 
         \  3’ BRCVAR 
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           ApoI 
          ====== 
       BRC VAR 3’5 
        _______________________\  
      R  M  N  T  E  N  G  Q  E  S  T  A  V  Q  G  N  S  T  D  V 
     980 CACGAATGAATACTGAAAATGGCCAGGAGAGCACTGCGGTACAAGGAAATTCCACAGATG 
         ------------------------------------------------------------ 
    GTGCTTACTTATGACTTTTACCGGTCCTCTCGTGACGCCATGTTCCTTTAAGGTGTCTAC 
 
           HinfI 
                ======   
      P  T  L  F  V  S  A  A  G  K  P  I  T  V  S  E  S  S  L  Q 
    1040 TTCCAACGCTTTTTGTATCTGCTGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGC 
    ------------------------------------------------------------ 
    AAGGTTGCGAAAAACATAGACGACGACCATTTGGGTATTGACATAGTCTCAGCAGTGACG 
           _____________ 
           \ 3’ BRCVAR 
 
         BRC VAR 3’5  == 
          ___________________ 
      V  A  R  A  R  M  N  T  E  N  G  Q  E  S  T  A  V  Q  G  N 
    1100 AAGTAGCAAGGGCACGAATGAATACTGAAAATGGCCAGGAGAGCACTGCGGTACAAGGAA 
    ------------------------------------------------------------ 
    TTCATCGTTCCCGTGCTTACTTATGACTTTTACCGGTCCTCTCGTGACGCCATGTTCCTT 
    ________ 
    ApoI 
    ==== 
    ____\           =  
      S  T  D  V  P  T  L  F  V  S  A  A  G  K  P  I  T  V  S  E 
    1160 ATTCCACAGATGTTCCAACGCTTTTTGTATCTGCTGCTGGTAAACCCATAACTGTATCAG 
    ------------------------------------------------------------ 
    TAAGGTGTCTACAAGGTTGCGAAAAACATAGACGACGACCATTTGGGTATTGACATAGTC 
             _ 
         HinfI           \ 
    ===== 
            _______ 
      S  S  L  Q  V  A  R  A  R  M  N  T  E  N  G  Q  E  S  T  A 
    1220 AGTCGTCACTGCAAGTAGCAAGGGCACGAATGAATACTGAAAATGGCCAAGAGAGCACTG 
    ------------------------------------------------------------ 
    TCAGCAGTGACGTTCATCGTTCCCGTGCTTACTTATGACTTTTACCGGTTCTCTCGTGAC 
         _____________ 
      3’ BRCVAR 
     ApoI 
    ====== 
  BRC VAR 3’5 
    ________________\        
      V  Q  G  N  S  T  D  V  P  T  L  F  V  S  A  A  G  K  P  I 
    1280 CGGTACAAGGAAATTCCACAGATGTTCCAACGCTTTTTGTATCTGCCGCTGGTAAACCCA 
    ------------------------------------------------------------ 
    GCCATGTTCCTTTAAGGTGTCTACAAGGTTGCGAAAAACATAGACGGCGACCATTTGGGT 
 
     HinfI 
     ======  
      T  V  S  E  S  S  L  Q  V  A  R  A  R  M  N  T  E  N  G  Q 
    1340 TAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGCACGAATGAATACTGAAAATGGCC 
    ------------------------------------------------------------ 
    ATTGACATAGTCTCAGCAGTGACGTTCATCGTTCCCGTGCTTACTTATGACTTTTACCGG 
     _____________________ 
     \  3’ BRCVAR 
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       ApoI 
      ====== 
   BRC VAR 3’5 
       _______________________\ 
      E  S  T  A  V  Q  G  N  S  T  D  V  P  T  L  F  V  S  A  A 
    1400 AAGAGAGCACTGCGGTACAAGGAAATTCCACAGATGTTCCAACGCTTTTTGTATCTGCCG 
    ------------------------------------------------------------ 
    TTCTCTCGTGACGCCATGTTCCTTTAAGGTGTCTACAAGGTTGCGAAAAACATAGACGGC 
 
       HinfI 
       ======  
      G  K  P  I  T  V  S  E  S  S  L  Q  V  A  R  A  R  M  N  T 
    1460 CTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGCACGAATGAATA 
    ------------------------------------------------------------ 
    GACCATTTGGGTATTGACATAGTCTCAGCAGTGACGTTCATCGTTCCCGTGCTTACTTAT 
          _____________________ 
       \  3’ BRCVAR 
         ApoI 
        ====== 
     BRC VAR 3’5 
      _______________________\ 
      E  N  G  Q  E  S  T  A  V  Q  G  N  S  T  D  V  P  T  L  F 
    1520 CTGAAAATGGCCAAGAGAGCACTGCGGTACAAGGAAATTCCACAGATGTTCCAACGCTTT 
    ------------------------------------------------------------ 
    GACTTTTACCGGTTCTCTCGTGACGCCATGTTCCTTTAAGGTGTCTACAAGGTTGCGAAA 
 
         HinfI 
         ====== 
      V  S  A  A  G  K  P  I  T  V  S  E  S  S  L  Q  V  A  R  A 
    1580 TTGTATCTGCTGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGG 
    ------------------------------------------------------------ 
    AACATAGACGACGACCATTTGGGTATTGACATAGTCTCAGCAGTGACGTTCATCGTTCCC 
         _____________________ 
         \  3’ BRCVAR 
           ApoI 
          ====== 
       BRC VAR 3’5 
        _______________________\ 
      R  M  N  T  E  N  G  Q  E  S  T  A  V  Q  G  N  S  T  D  V 
    1640 CACGAATGAATACTGAAAATGGCCAGGAGAGCACTGCGGTACAAGGAAATTCCACAGATG 
    ------------------------------------------------------------ 
    GTGCTTACTTATGACTTTTACCGGTCCTCTCGTGACGCCATGTTCCTTTAAGGTGTCTAC 
 
           HinfI 
           ======  
      P  T  L  F  V  S  A  A  G  K  P  I  T  V  S  E  S  S  L  Q 
    1700 TTCCAACGCTTTTTGTATCTGCTGCTGGTAAACCCATAACTGTATCAGAGTCGTCACTGC 
    ------------------------------------------------------------ 
    AAGGTTGCGAAAAACATAGACGACGACCATTTGGGTATTGACATAGTCTCAGCAGTGACG 
           _____________ 
           \ 3’ BRCVAR 
            == 
         BRC VAR 3’5 
            _________________ 
      V  A  R  A  R  M  N  T  E  N  G  Q  E  S  T  A  V  Q  G  N 
    1760 AAGTAGCAAGGGCACGAATGAATACTGAAAATGGCCAAGAGAGCACTGCGGTACAAGGAA 
    ------------------------------------------------------------ 
    TTCATCGTTCCCGTGCTTACTTATGACTTTTACCGGTTCTCTCGTGACGCCATGTTCCTT 
    ________ 
    ApoI 
    ==== 
    ____\          == 
      S  T  D  V  P  T  L  F  V  S  A  A  G  K  P  I  T  V  S  E 
    1820 ATTCCACAGATGTTCCAACGCTTTTTGTATCTGCCGCTGGTAAACCCATAACTGTATCAG 
    ------------------------------------------------------------ 
    TAAGGTGTCTACAAGGTTGCGAAAAACATAGACGGCGACCATTTGGGTATTGACATAGTC 
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    HinfI 
    ====          _______ 
      S  S  L  Q  V  A  R  A  R  M  N  T  E  N  G  Q  E  S  T  A 
    1880 AGTCGTCACTGCAAGTAGCAAGGGCACGAATGAATACTGAAAATGGCCAAGAGAGCACTG 
    ------------------------------------------------------------ 
    TCAGCAGTGACGTTCATCGTTCCCGTGCTTACTTATGACTTTTACCGGTTCTCTCGTGAC 
    ____________________ 
    \  3’ BRCVAR 
     ApoI 
    ====== 
  BRC VAR 3’5 
    ________________\ 
      V  Q  G  N  S  T  D  V  P  T  L  F  V  S  A  A  G  K  P  I 
    1940 CGGTACAAGGAAATTCCACAGATGTTCCAACGCTTTTTGTATCTGCCGCTGGTAAACCCA 
    ------------------------------------------------------------ 
    GCCATGTTCCTTTAAGGTGTCTACAAGGTTGCGAAAAACATAGACGGCGACCATTTGGGT 
 
     HinfI 
     ====== 
      T  V  S  E  S  S  L  Q  V  A  R  A  R  M  N  T  E  N  G  Q 
    2000 TAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGGGCACGAATGAATACTGAAAATGGCC 
    ------------------------------------------------------------ 
    ATTGACATAGTCTCAGCAGTGACGTTCATCGTTCCCGTGCTTACTTATGACTTTTACCGG 
     _____________________ 
     \   3’ BRCVAR 
       ApoI 
      ====== 
   BRC VAR 3’5 
    _______________________\  
      E  S  T  A  V  Q  G  N  S  T  D  V  P  T  L  F  V  S  A  A 
    2060 AAGAGAGCACTGCGGTACAAGGAAATTCCACAGATGTTCCAACGCTTTTTGTATCTGCCG 
    ------------------------------------------------------------ 
    TTCTCTCGTGACGCCATGTTCCTTTAAGGTGTCTACAAGGTTGCGAAAAACATAGACGGC 
 
       HinfI 
        ======  
      G  K  T  V  T  V  S  E  S  S  L  Q  V  A  S  A  N  A  A  S 
    2120 CTGGTAAAACCGTAACTGTATCAGAGTCGTCACTGCAAGTAGCAAGTGCGAACGCAGCTT 
    ------------------------------------------------------------ 
    GACCATTTTGGCATTGACATAGTCTCAGCAGTGACGTTCATCGTTCACGCTTGCGTCGAA 
       _____________________ 
       \  3’ BRCVAR 
        BRCA2 probe 5’ 
      _________________\  
      S  A  K  P  I  S  G  A  G  A  S  L  S  K  R  T  P  R  T  H 
    2180 CATCTGCTAAACCCATTTCGGGAGCAGGTGCCTCCTTGTCGAAGAGGACGCCACGTACAC 
    ------------------------------------------------------------ 
    GTAGACGATTTGGGTAAAGCCCTCGTCCACGGAGGAACAGCTTCTCCTGCGGTGCATGTG 
  
      R  K  S  A  S  S  S  P  L  S  S  S  K  L  A  R  K  P  F  V 
    2240 ACCGTAAATCAGCATCATCATCGCCATTGTCATCATCCAAGCTAGCAAGAAAGCCGTTTG 
    ------------------------------------------------------------ 
    TGGCATTTAGTCGTAGTAGTAGCGGTAACAGTAGTAGGTTCGATCGTTCTTTCGGCAAAC 
        _________________ 
        \  BRCA2_Trunc3’ 
      V  P  F  A  K  N  K  G  A  V  A  K  G  V  G  E  A  V  P  S 
    2300 TGGTTCCTTTTGCTAAGAATAAAGGAGCGGTTGCGAAAGGAGTAGGGGAAGCGGTGCCAT 
    ------------------------------------------------------------ 
    ACCAAGGAAAACGATTCTTATTTCCTCGCCAACGCTTTCCTCATCCCCTTCGCCACGGTA 
     C term probe 
        ___________________\ 
      A  S  H  M  P  S  S  E  G  E  G  K  E  V  G  R  T  P  R  H 
    2360 CGGCGTCCCACATGCCGAGTTCAGAGGGTGAGGGGTCGGAAGTAGGTCGAACCCCCCGAC 
    ------------------------------------------------------------ 
    GCCGCAGGGTGTACGGCTCAAGTCTCCCACTCCCCAGCCTTCATCCAGCTTGGGGGGCTG 
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      L  S  F  D  I  F  T  F  R  S  L  S  M  T  V  P  P  S  I  D 
    2420 ATCTTTCGTTTGACATTTTCACGTTTCGCTCATTATCGATGACGGTACCTCCCTCAATTG 
      ------------------------------------------------------------ 
    TAGAAAGCAAACTGTAAAAGTGCAAAGCGAGTAATAGCTACTGCCATGGAGGGAGTTAAC 
  
      E  I  V  R  G  N  F  L  F  K  Q  F  G  C  S  P  E  L  L  K 
    2480 ACGAGATTGTGCGAGGAAACTTTTTGTTTAAGCAATTTGGGTGTTCACCTGAACTTCTGA 
    ------------------------------------------------------------ 
    TGCTCTAACACGCTCCTTTGAAAAACAAATTCGTTAAACCCACAAGTGGACTTGAAGACT 
  
             ApoI 
            ====== 
      L  L  E  I  P  A  E  C  E  F  I  P  S  A  N  F  R  K  A  M 
    2540 AGTTACTGGAAATACCAGCGGAGTGTGAGTTCATACCATCGGCAAATTTTCGTAAGGCCA 
    ------------------------------------------------------------ 
    TCAATGACCTTTATGGTCGCCTCACACTCAAGTATGGTAGCCGTTTAAAAGCATTCCGGT 
         _____________________ 
    \  BRCA2 probe 3’ 
 
      L  T  L  G  A  S  P  R  G  C  P  D  A  W  C  L  Q  M  L  T 
    2600 TGCTTACCTTGGGGGCTTCTCCACGGGGCTGCCCAGATGCGTGGTGTCTTCAAATGTTGA 
    ------------------------------------------------------------ 
    ACGAATGGAACCCCCGAAGAGGTGCCCCGACGGGTCTACGCACCACAGAAGTTTACAACT 
 
        HinfI 
        ====== 
      S  T  L  L  K  L  R  G  L  T  L  H  I  D  P  P  L  P  V  F 
    2660 CGTCCACGCTTCTGAAGTTGCGGGGACTCACATTACACATTGATCCACCCCTTCCCGTGT 
    ------------------------------------------------------------ 
    GCAGGTGCGAAGACTTCAACGCCCCTGAGTGTAATGTGTAACTAGGTGGGGAAGGGCACA 
 
      S  V  A  H  T  L  L  H  M  C  F  K  Y  N  H  E  Y  V  E  G 
    2720 TTTCTGTCGCACATACTTTGCTTCACATGTGTTTTAAATATAATCACGAGTATGTTGAGG 
    ------------------------------------------------------------ 
    AAAGACAGCGTGTATGAAACGAAGTGTACACAAAATTTATATTAGTGCTCATACAACTCC 
 
      K  R  P  A  L  R  L  I  A  E  G  D  V  Q  A  A  S  L  V  V 
    2780 GCAAACGGCCTGCTTTGCGTTTGATTGCGGAAGGGGACGTTCAAGCAGCCTCACTGGTGG 
    ------------------------------------------------------------ 
    CGTTTGCCGGACGAAACGCAAACTAACGCCTTCCCCTGCAAGTTCGTCGGAGTGACCACC 
 
      V  W  V  V  S  V  S  F  E  E  R  L  T  P  H  T  C  T  A  V 
    2840 TAGTCTGGGTAGTGTCGGTATCTTTTGAGGAGCGCCTTACTCCTCACACCTGCACGGCAG 
    ------------------------------------------------------------ 
    ATCAGACCCATCACAGCCATAGAAAACTCCTCGCGGAATGAGGAGTGTGGACGTGCCGTC 
 
      V  S  D  G  F  Y  H  V  K  V  S  L  D  I  P  L  T  N  L  V 
    2900 TGGTTTCCGATGGGTTTTACCACGTTAAAGTGTCTCTTGATATTCCATTAACGAACTTAG 
    ------------------------------------------------------------ 
    ACCAAAGGCTACCCAAAATGGTGCAATTTCACAGAGAACTATAAGGTAATTGCTTGAATC 
 
      R  N  G  T  L  R  C  G  Q  K  I  V  T  C  G  A  R  M  L  R 
    2960 TTCGTAATGGAACCCTGCGGTGTGGTCAGAAGATTGTTACTTGCGGTGCGAGGATGCTGA 
    ------------------------------------------------------------ 
    AAGCATTACCTTGGGACGCCACACCAGTCTTCTAACAATGAACGCCACGCTCCTACGACT 
 
      R  D  C  C  S  P  L  E  C  K  D  E  V  L  L  S  I  N  Y  N 
    3020 GGAGAGACTGTTGTTCTCCACTAGAATGCAAAGATGAAGTGCTCCTCTCCATTAACTACA 
    ------------------------------------------------------------ 
    CCTCTCTGACAACAAGAGGTGATCTTACGTTTCTACTTCACGAGGAGAGGTAATTGATGT 
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      C  T  Q  P  V  G  P  S  S  P  L  G  L  Y  H  T  C  L  P  T 
    3080 ACTGCACACAACCTGTGGGACCTTCCTCACCTCTAGGTCTCTATCATACTTGTTTGCCGA 
    ------------------------------------------------------------ 
    TGACGTGTGTTGGACACCCTGGAAGGAGTGGAGATCCAGAGATAGTATGAACAAACGGCT 
  
      L  L  P  S  A  M  D  M  L  G  G  L  V  P  C  L  K  G  R  V 
    3140 CACTGCTGCCTTCCGCTATGGATATGCTTGGTGGTTTGGTACCTTGTTTGAAAGGGCGAG 
    ------------------------------------------------------------ 
    GTGACGACGGAAGGCGATACCTATACGAACCACCAAACCATGGAACAAACTTTCCCGCTC 
 
  
      E  R  V  L  P  P  F  F  L  E  K  T  F  K  G  A  R  T  G  D 
    3200 TGGAGCGCGTGCTTCCGCCCTTTTTCCTTGAGAAAACATTTAAGGGTGCGCGAACTGGCG 
    ------------------------------------------------------------ 
    ACCTCGCGCACGAAGGCGGGAAAAAGGAACTCTTTTGTAAATTCCCACGCGCTTGACCGC 
 
      T  R  G  S  T  G  G  A  L  K  I  V  R  S  L  L  A  Q  L  S 
    3260 ACACAAGAGGCAGCACAGGTGGTGCGTTGAAAATTGTGAGGAGTTTATTGGCGCAGCTAA 
    ------------------------------------------------------------ 
    TGTGTTCTCCGTCGTGTCCACCACGCAACTTTTAACACTCCTCAAATAACCGCGTCGATT 
 
      F  Q  E  C  M  A  R  G  A  V  A  P  F  E  G  K  S  D  R  Q 
    3320 GTTTCCAGGAATGTATGGCACGCGGAGCTGTTGCTCCGTTTGAAGGAAAAAGTGACCGAC 
    ------------------------------------------------------------ 
    CAAAGGTCCTTACATACCGTGCGCCTCGACAACGAGGCAAACTTCCTTTTTCACTGGCTG 
 
      L  S  R  L  T  S  F  L  L  S  C  E  R  Q  G  D  V  L  L  Q 
    3380 AACTTTCACGTCTGACATCGTTTTTGTTGTCTTGTGAGCGACAGGGGGACGTCCTCTTGC 
    ------------------------------------------------------------ 
    TTGAAAGTGCAGACTGTAGCAAAAACAACAGAACACTCGCTGTCCCCCTGCAGGAGAACG 
  
      I  W  D  D  C  G  A  N  C  P  A  G  D  L  E  E  H  S  C  D 
    3440 AAATATGGGATGATTGCGGTGCCAACTGTCCGGCGGGGGATTTGGAGGAACATTCGTGTG 
    ------------------------------------------------------------ 
    TTTATACCCTACTAACGCCACGGTTGACAGGCCGCCCCCTAAACCTCCTTGTAAGCACAC 
  
      F  P  P  E  G  A  E  I  V  V  F  S  V  T  P  S  R  F  R  P 
    3500 ATTTTCCACCGGAGGGAGCTGAGATTGTCGTTTTCTCCGTAACCCCTTCACGCTTCCGAC 
    ------------------------------------------------------------ 
    TAAAAGGTGGCCTCCCTCGACTCTAACAGCAAAAGAGGCATTGGGGAAGTGCGAAGGCTG 
  
      G  H  P  F  Q  R  T  T  V  L  Y  S  R  S  P  L  R  Y  S  I 
    3560 CTGGTCACCCCTTCCAGCGGACGACAGTTTTGTACTCTCGGAGCCCTCTTCGGTATAGCA 
    ------------------------------------------------------------ 
    GACCAGTGGGGAAGGTCGCCTGCTGTCAAAACATGAGAGCCTCGGGAGAAGCCATATCGT 
 
      V  S  P  P  R  K  G  F  V  R  Q  P  L  R  S  A  E  D  V  S 
    3620 TAGTCTCACCGCCGCGTAAGGGGTTTGTGAGGCAACCTTTGCGCTCAGCTGAAGATGTGT 
    ------------------------------------------------------------ 
    ATCAGAGTGGCGGCGCATTCCCCAAACACTCCGTTGGAAACGCGAGTCGACTTCTACACA 
  
      P  K  T  E  T  G  D  A  I  D  F  A  G  L  F  V  G  T  K  S 
    3680 CCCCAAAAACAGAGACAGGTGATGCCATCGATTTTGCTGGCTTGTTCGTCGGCACCAAGA 
    ------------------------------------------------------------ 
    GGGGTTTTTGTCTCTGTCCACTACGGTAGCTAAAACGACCGAACAAGCAGCCGTGGTTCT 
 
      V  D  T  V  N  S  H  I  I  V  A  L  N  D  G  W  K  P  G  C 
    3740 GTGTGGACACGGTCAACTCACATATTATCGTGGCCTTAAATGACGGATGGAAACCTGGAT 
    ------------------------------------------------------------ 
    CACACCTGTGCCAGTTGAGTGTATAATAGCACCGGAATTTACTGCCTACCTTTGGACCTA 
  
      V  P  A  S  Y  F  M  I  D  V  P  H  A  T  G  K  K  E  I  V 
    3800 GTGTTCCGGCTTCCTACTTTATGATTGATGTCCCACATGCCACGGGCTCAAAAGAGATTG 
    ------------------------------------------------------------ 
    CACAAGGCCGAAGGATGAAATACTAACTACAGGGTGTACGGTGCCCGAGTTTTCTCTAAC 
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      L  A  L  P  S  I  P  F  T  P  V  I  V  Q  N  A  S  F  I  R 
    3860 TGCTTGCTTTGCCATCAATACCATTCACACCTGTTATTGTGCAGAATGCTTCTTTTATAC 
    ------------------------------------------------------------ 
    ACGAACGAAACGGTAGTTATGGTAAGTGTGGACAATAACACGTCTTACGAAGAAAATATG 
 
      C  A  E  D  L  G  P  D  C  I  H  V  L  A  N  E  Y  T  K  V 
    3920 GTTGCGCGGAGGACTTGGGACCCGATTGCATACACGTACTGGCGAATGAGTACACGAAGG 
    ------------------------------------------------------------ 
    CAACGCGCCTCCTGAACCCTGGGCTAACGTATGTGCATGACCGCTTACTCATGTGCTTCC 
 
          HinfI     ApoI 
          ======    ======  
      Y  S  R  P  A  E  P  L  L  R  G  V  V  E  S  L  G  K  I  R 
    3980 TTTACAGCCGTCCTGCTGAGCCGCTCCTTCGCGGTGTTGTTGAGTCACTTGGGAAAATTC 
    ------------------------------------------------------------ 
    AAATGTCGGCAGGACGACTCGGCGAGGAAGCGCCACAACAACTCAGTGAACCCTTTTAAG 
 
      G  M  A  K  S  S  R  P  I  I  A  R  S  E  E  L  L  R  M  R 
    4040 GTGGGATGGCGAAGTCAAGTAGGCCTATTATTGCCCGTTCTGAGGAGCTGCTACGAATGC 
    ------------------------------------------------------------ 
    CACCCTACCGCTTCAGTTCATCCGGATAATAACGGGCAAGACTCCTCGACGATGCTTACG 
  
      T  L  S  E  E  A  R  A  D  I  C  R  L  S  R  E  L  V  G  G 
    4100 GGACGTTGAGTGAGGAAGCTCGGGCCGATATATGTCGACTGTCGAGAGAACTGGTTGGAG 
    ------------------------------------------------------------ 
    CCTGCAACTCACTCCTTCGAGCCCGGCTATATACAGCTGACAGCTCTCTTGACCAACCTC 
 
                            PstI 
                           ====== 
      D  E  L  P  N  P  A  A  T  A  Q  P  S  P  R  Y  Q  L  R  Q 
    4160 GGGATGAGTTACCTAATCCTGCAGCCACAGCGCAGCCGTCTCCACGGTATCAATTACGCC 
    ------------------------------------------------------------ 
    CCCTACTCAATGGATTAGGACGTCGGTGTCGCGTCGGCAGAGGTGCCATAGTTAATGCGG 
  
      E  A  S  T  P  V  E  Q  S  I  T  V  S  E  T  S  A  A  R  T 
    4220 AGGAAGCATCTACCCCTGTTGAGCAGAGTATTACGGTTTCAGAAACAAGTGCAGCACGTA 
    ------------------------------------------------------------ 
    TCCTTCGTAGATGGGGACAACTCGTCTCATAATGCCAAAGTCTTTGTTCACGTCGTGCAT 
 
      L  S  S  E  E  E  Q  V  E  D  L  R  S  S  N  V  K  A  S  P 
    4280 CCTTAAGCAGTGAAGAAGAACAGGTAGAGGATTTAAGGTCCTCGAATGTCAAGGCTAGCC 
    ------------------------------------------------------------ 
    GGAATTCGTCACTTCTTCTTGTCCATCTCCTAAATTCCAGGAGCTTACAGTTCCGATCGG 
  
      R  R  H  V  F  G  N  I  V  G  F  R  L  L  K  C  Q  G  K  D 
    4340 CACGGCGTCATGTATTTGGCAACATTGTGGGATTTCGGCTTCTCAAGTGCCAGGGCTCTG 
    ------------------------------------------------------------ 
    GTGCCGCAGTACATAAACCGTTGTAACACCCTAAAGCCGAAGAGTTCACGGTCCCGAGAC 
  
      K  P  E  C  I  E  I  L  G  G  R  P  S  T  L  V  S  G  K  G 
    4400 ACAAACCCGAATGCATTGAGATTTTGGGTGGCCGTCCCAGCACTCTCGTCTCTGGAAGTG 
    ------------------------------------------------------------ 
    TGTTTGGGCTTACGTAACTCTAAAACCCACCGGCAGGGTCGTGAGAGCAGAGACCTTCAC 
  
      K  F  V  V  S  P  S  D  F  S  Q  S  L  V  Y  F  E  A  D  I 
    4460 GAAAGTTTGTAGTGTCCCCCTCGGACTTTTCTCAGAGCCTTGTGTACTTTGAGGCTGATA 
    ------------------------------------------------------------ 
    CTTTCAAACATCACAGGGGGAGCCTGAAAAGAGTCTCGGAACACATGAAACTCCGACTAT 
  
      Q  F  G  A  T  A  K  Q  C  A  Q  T  K  V  R  S  P  S  V  L 
    4520 TTCAATTTGGTGCCACCGCAAAACAATGCGCTCAAACCAAGGTAAGATCTCCTTCCGTGC 
    ------------------------------------------------------------ 
    AAGTTAAACCACGGTGGCGTTTTGTTACGCGAGTTTGGTTCCATTCTAGAGGAAGGCACG 
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      H  S  L  L  E  Q  C  I  P  L  K  R  A  C  A  L  T  V  D  E 
    4580 TTCATTCATTATTGGAGCAGTGTATTCCATTGAAACGAGCATGCGCCTTAACAGTGGACG 
    ------------------------------------------------------------ 
    AAGTAAGTAATAACCTCGTCACATAAGGTAACTTTGCTCGTACGCGGAATTGTCACCTGC 
 
      I  F  A  D  Y  Y  L  A  R  I  K  Q  L  E  D  W  Q  T  P  H 
    4640 AGATTTTTGCGGATTATTACTTGGCTCGCATTAAACAATTAGAAGATTGGCAGACACCTC 
    ------------------------------------------------------------ 
    TCTAAAAACGCCTAATAATGAACCGAGCGTAATTTGTTAATCTTCTAACCGTCTGTGGAG 
 
      E  E  C  W  W  R  L  L  T  Q  S  H  V  V  E  I  T  S  D  V 
    4700 ACGAAGAGTGCTGGTGGCGGCTTCTCACTCAATCGCACGTGGTGGAAATTACCTCCGATG 
    ------------------------------------------------------------ 
    TGCTTCTCACGACCACCGCCGAAGAGTGAGTTAGCGTGCACCACCTTTAATGGAGGCTAC 
                                  
      S  G  T  P  P  E  E  L  V  G  L  Q  W  L  S  N  E  W  K  M 
    4760 TCTCAGGGACCCCACCGGAGGAGTTGGTCGGTTTGCAATGGCTCTCTAATGAATGGAAGA 
    ------------------------------------------------------------ 
    AGAGTCCCTGGGGTGGCCTCCTCAACCAGCCAAACGTTACCGAGAGATTACTTACCTTCT 
  
      L  L  N  I  L  S  G  K  L  K  H  C  L  F  M  F  S  V  E  G 
    4820 TGTTGCTCAATATTCTTTCTGGCTCCTTGAAGCATTGCCTGTTCATGTTCAGTGTAGAGG 
    ------------------------------------------------------------ 
    ACAACGAGTTATAAGAAAGACCGAGGAACTTCGTAACGGACAAGTACAAGTCACATCTCC 
 
      S  E  M  V  R  A  T  F  I  K  E  Q  C  S  V  A  D  L  M  R 
    4880 GAAGTGAAATGGTTCGTGCTACTTTCATCAAGGAACAGTGTAGCGTCGCTGATCTTATGC 
    ------------------------------------------------------------ 
    CTTCACTTTACCAAGCACGATGAAAGTAGTTCCTTGTCACATCGCAGCGACTAGAATACG 
      BRCA2 KO3’Nru_RV         _______________ 
    ___________________\    \ BRC VAR 3’3 
      E 
    4940 GAGAATAGCCAGGGAAGGTGTGTGTTAGTATATGTTCTTAGTGATGATCCTTTCGCCGGG 
    ------------------------------------------------------------ 
    CTCTTATCGGTCCCTTCCACACACAATCATATACAAGAATCACTACTAGGAAAGCGGCCC 
    ________             _______________________________________ 
     \ 
         TATACCTTCATCGTTTCATTCAAAACTTGATCCCTCTCGCATTGTCATAACTCTCATTGT 
    ------------------------------------------------------------ 
    ATATGGAAGTAGCAAAGTAAGTTTTGAACTAGGGAGAGCGTAACAGTATTGAGAGTAACA 
    ____________________________________________________________ 
  BRCA2 KO3’ 
         HinfI 
         ======  
         CAATATTTTGGTTTCGTACTCTGCGTTCGGACAAGGTTCTCTCAAGAGTCTGGTTCTTTT 
    ------------------------------------------------------------ 
    GTTATAAAACCAAAGCATGAGACGCAAGCCTGTTCCAAGAGAGTTCTCAGACCAAGAAAA 
    _ 
 
         TTTTTCCGCTCCTCTGGTTAAGTAGTTGTGGGTCTGCGCAGCATAGAACGAAGGCCAAGA 
    ------------------------------------------------------------ 
    AAAAAGGCGAGGAGACCAATTCATCAACACCCAGACGCGTCGTATCTTGCTTCCGGTTCT 
 
            HindIII      ApoI 
            ======          ====== 
         CAGAAGCTTAACCTGAAGTTTGTGTTTTTATTTATTTGTTTTGAGAATTTAAACCTTGCC 
    ------------------------------------------------------------ 
    GTCTTCGAATTGGACTTCAAACACAAAAATAAATAAACAAAACTCTTAAATTTGGAACGG 
 
         ACTTCCCTTTTTTTTTTTTTTGCACTTTCAATTTCAGCCAAGAAAAACGAAAGAACTGAG 
    ------------------------------------------------------------ 
    TGAAGGGAAAAAAAAAAAAAACGTGAAAGTTAAAGTCGGTTCTTTTTGCTTTCTTGACTC 
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         GGAAGGACGTGGTAGTAGTGTTGCACATTCGTCAGTACGGCAGTACTTAAGGACATACTC 
      ------------------------------------------------------------ 
    CCTTCCTGCACCATCATCACAACGTGTAAGCAGTCATGCCGTCATGAATTCCTGTATGAG 
            ___________________ 
            \  BRCA2 KO3’ Xba 
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Appendix 6: The gene sequence of RAD51.  

The ORF of RAD51 is highlighted in purple and the RAD51 specific primers are shown.       

  TGAGCTGCTCTGCTGCTGTCTCATTGTTTCCTTTGTACCTTCACGTTCAGCATTAGAAGT 
     ------------------------------------------------------------ 
  ACTCGACGAGACGACGACAGAGTAACAAAGGAAACATGGAAGTGCAAGTCGTAATCTTCA 
       ________________________________________         

  TCGGTGAGTCGTGGGGAATTCTTTGAGAGGTGGTGCGCGCTTTAAAGAGAAACCAGCAAC 
------------------------------------------------------------ 

     AGCCACTCAGCACCCCTTAAGAAACTCTCCACCACGCGCGAAATTTCTCTTTGGTCGTTG 
    N TAP 5’ 
  ____________________________________________________________ 
                                                                M 
       1 AACACCGAAAGGGCTTCTCCAGATTCCCCGTGAAGGTTTCTTAACGCGTATACCAGGGGA 
  ------------------------------------------------------------ 
     TTGTGGCTTTCCCGAAGAGGTCTAAGGGGCACTTCCAAAGAATTGCGCATATGGTCCCCT 
  __\ 
       N  T  R  T  K  N  K  K  R  T  K  E  V  I  E  D  E  V  H  D  

  2 TGAACACTCGCACCAAAAATAAGAAACGCACTAAAGAGGTGATAGAAGATGAAGTTCACG 
------------------------------------------------------------ 

     ACTTGTGAGCGTGGTTTTTATTCTTTGCGTGATTTCTCCACTATCTTCTACTTCAAGTGC 
    __________________________________________________________ 
    \    N TAP 3’ 
       I  D  D  T  A  F  D  D  A  A  V  D  A  V  N  D  N  T  Q  E  
      62 ACATCGATGATACCGCGTTCGATGATGCCGCAGTGGATGCGGTCAACGACAACACGCAAG 
  ------------------------------------------------------------ 
     TGTAGCTACTATGGCGCAAGCTACTACGGCGTCACCTACGCCAGTTGCTGTTGTGCGTTC 
  _________________________________________ 
 
       M  Q  Q  Q  V  G  D  A  A  G  G  P  S  F  R  V  L  Q  I  M 

122 AGATGCAGCAGCAAGTTGGTGACGCTGCCGGTGGGCCTTCCTTTCGTGTCCTTCAGATAA 
------------------------------------------------------------ 

     TCTACGTCGTCGTTCAACCACTGCGACGGCCACCCGGAAGGAAAGCACAGGAAGTCTATT 
 
       E  N  Y  G  V  A  S  A  D  I  K  K  L  M  E  C  G  F  L  T 

182    TGGAAAACTATGGAGTTGCTTCTGCTGATATCAAAAAGTTGATGGAGTGTGGCTTTCTCA 
------------------------------------------------------------ 

     ACCTTTTGATACCTCAACGAAGACGACTATAGTTTTTCAACTACCTCACACCGAAAGAGT 
 
       V  E  S  V  A  Y  A  P  K  K  S  I  L  A  V  K  G  I  S  E 
     242 CCGTTGAGTCTGTCGCGTATGCACCGAAGAAATCAATTTTAGCAGTGAAGGGCATAAGTG 
  ------------------------------------------------------------ 
     GGCAACTCAGACAGCGCATACGTGGCTTCTTTAGTTAAAATCGTCACTTCCCGTATTCAC 
 
       A  K  A  E  K  I  M  A  E  C  C  R  L  T  P  M  G  F  T  R 
     302 AGGCAAAGGCTGAGAAGATAATGGCGGAGTGTTGTAGACTCACTCCGATGGGCTTCACGC 
  ------------------------------------------------------------ 
     TCCGTTTCCGACTCTTCTATTACCGCCTCACAACATCTGAGTGAGGCTACCCGAAGTGCG 
 
       A  T  V  F  Q  E  Q  R  K  E  T  I  M  V  T  T  G  S  R  E 
     362 GCGCTACGGTTTTCCAAGAGCAACGGAAAGAAACTATTATGGTCACGACAGGCAGCCGTG 
  ------------------------------------------------------------ 
     CGCGATGCCAAAAGGTTCTCGTTGCCTTTCTTTGATAATACCAGTGCTGTCCGTCGGCAC 
 
       V  D  K  L  L  G  G  G  I  E  V  G  S  I  T  E  L  F  G  E 
     422 AGGTGGACAAACTCCTTGGAGGTGGCATTGAAGTTGGTAGCATCACGGAACTTTTCGGTG 
  ------------------------------------------------------------ 
     TCCACCTGTTTGAGGAACCTCCACCGTAACTTCAACCATCGTAGTGCCTTGAAAAGCCAC 
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       F  R  T  G  K  T  Q  L  C  H  T  L  C  V  T  C  Q  L  P  L 
     482 AGTTTCGCACAGGGAAGACGCAGCTCTGCCATACCCTTTGTGTTACATGCCAACTTCCAC 
  ------------------------------------------------------------ 
     TCAAAGCGTGTCCCTTCTGCGTCGAGACGGTATGGGAAACACAATGTACGGTTGAAGGTG 
 
       S  Q  G  G  G  E  G  M  A  L  Y  I  D  T  E  G  T  F  R  P 
     542 TTTCGCAAGGTGGTGGTGAGGGAATGGCGCTTTATATTGACACTGAGGGAACATTCCGTC 
  ------------------------------------------------------------ 
     AAAGCGTTCCACCACCACTCCCTTACCGCGAAATATAACTGTGACTCCCTTGTAAGGCAG 
 
       E  R  L  V  A  V  A  E  R  Y  S  L  D  P  E  A  V  L  E  N 
     602 CTGAGCGCTTGGTAGCTGTGGCGGAACGGTACAGCCTGGACCCAGAGGCCGTTCTTGAAA 
  ------------------------------------------------------------ 
     GACTCGCGAACCATCGACACCGCCTTGCCATGTCGGACCTGGGTCTCCGGCAAGAACTTT 
 
       V  A  C  A  R  A  Y  N  T  D  H  Q  Q  Q  L  L  L  Q  A  S 
     662 ATGTGGCTTGCGCTCGTGCTTACAACACGGACCATCAGCAGCAGTTGTTATTGCAAGCGT 
  ------------------------------------------------------------ 
     TACACCGAACGCGAGCACGAATGTTGTGCCTGGTAGTCGTCGTCAACAATAACGTTCGCA 
 
       A  T  M  A  E  H  R  V  A  I  I  V  V  D  S  A  T  A  L  Y 
     722 CCGCCACTATGGCTGAGCACCGTGTCGCAATAATCGTTGTTGATTCCGCCACAGCTCTTT 
  ------------------------------------------------------------ 
     GGCGGTGATACCGACTCGTGGCACAGCGTTATTAGCAACAACTAAGGCGGTGTCGAGAAA 
 
       R  T  D  Y  N  G  R  G  E  L  A  A  R  Q  M  H  L  G  K  F 
     782 ACCGTACTGATTACAATGGACGGGGTGAGTTGGCAGCACGGCAGATGCATCTTGGAAAGT 
  ------------------------------------------------------------ 
     TGGCATGACTAATGTTACCTGCCCCACTCAACCGTCGTGCCGTCTACGTAGAACCTTTCA 
 
       L  R  S  L  R  N  L  A  N  E  Y  N  V  A  V  V  V  T  N  Q 
     842  TCCTCCGCTCTTTGCGCAATCTTGCTAATGAGTACAACGTGGCCGTCGTTGTTACCAATC 
  ------------------------------------------------------------ 
     AGGAGGCGAGAAACGCGTTAGAACGATTACTCATGTTGCACCGGCAGCAACAATGGTTAG 
 
       V  V  A  N  V  D  G  A  A  P  T  F  Q  A  D  S  K  K  P  I 
     902 AGGTTGTTGCCAATGTGGATGGTGCTGCCCCCACATTCCAAGCGGATTCTAAGAAACCCA 
  ------------------------------------------------------------ 
     TCCAACAACGGTTACACCTACCACGACGGGGGTGTAAGGTTCGCCTAAGATTCTTTGGGT 
                _ 
       G  G  H  I  M  A  H  A  S  T  T  R  L  S  L  R  K  G  R  G 
     962 TTGGGGGCCACATCATGGCACATGCCTCCACTACACGGTTGAGCTTACGGAAGGGAAGGG 
  ------------------------------------------------------------ 
     AACCCCCGGTGTAGTACCGTGTACGGAGGTGATGTGCCAACTCGAATGCCTTCCCTTCCC 
  ____________________________________________________________ 
       E  Q  R  I  I  K  V  Y  D  S  P  C  L  A  E  S  E  A  I  F 
    1022 GAGAACAGCGTATTATTAAGGTGTATGACTCACCTTGTCTCGCTGAAAGTGAGGCCATCT 
  ------------------------------------------------------------ 
     CTCTTGTCGCATAATAATTCCACATACTGAGTGGAACAGAGCGACTTTCACTCCGGTAGA 
   C TAP 5’ 
  _____________________________________\ 
       G  I  Y  E  N  G  V  G  D  V  R  D 
    1082 TCGGCATCTATGAGAACGGTGTGGGAGACGTTAGGGACTAGTGCCCCATCTTTTTTTTCC 
  ------------------------------------------------------------ 
     AGCCGTAGATACTCTTGCCACACCCTCTGCAATCCCTGATCACGGGGTAGAAAAAAAAGG 
          ______________________ 
          \ 

  TCGTCATTTGTAGAAAAACATTCACTCCGAAAGCGGAGAAGTGCATGCTGCAGTTCGAAG 
------------------------------------------------------------ 

     AGCAGTAAACATCTTTTTGTAAGTGAGGCTTTCGCCTCTTCACGTACGACGTCAAGCTTC 
  ____________________________________________________________ 
    C TAP 3’ 
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  GCTTCGGTTTTGTCGTGTTTATGGTACACGTTATTCTGTCCTCCTTCCGGGCAGCAGGTC 
------------------------------------------------------------ 

     CGAAGCCAAAACAGCACAAATACCATGTGCAATAAGACAGGAGGAAGGCCCGTCGTCCAG 
  _________________ 
 

  ACTTTTCGATTTGCCTACGACTTCACTCTTTTTTTTTTCTCTTTCCTCCTGTTTAGTGCA 
------------------------------------------------------------ 

     TGAAAAGCTAAACGGATGCTGAAGTGAGAAAAAAAAAAGAGAAAGGAGGACAAATCACGT 
 



 

 
Appendix 7: Pair-wise comparison of the BRC repeats. 

The BRC repeat sequences from the T. brucei BRCA2 polypeptide (Tb1 and Tb15) were compared against the BRC repeat sequences from putative Brca2 

homologues from T. congolense (Tcon), T. cruzi (Tc1 and Tc2), T. vivax (Tv) and H. sapiens (H1-8).  Pair-wise alignments were performed using AlignX 

(Vector NTI) and the percentage identities and similarities calculated.  The percentage identities are displayed in bold. 

 Tb Tb15 Tcon Tv Tcr1 Tcr2 Lm1 Lm2 H1 H2 H3 H4 H5 H6 H7 H8 
Tb  

 
65.7 
71.4 

48.6 
65.7 

31.4 
51.4 

48.6 
65.7 

48.6 
62.9 

42.9 
60.0 

40.0 
57.1 

20.0 
37.1 

25.7 
31.4 

22.9 
37.1 

17.1 
34.3 

17.1 
37.1 

20.0 
34.3 

31.4 
48.6 

22.9 
48.6 

Tb15  
 

 48.6 
57.1 

28.6 
40.0 

42.9 
51.4 

40.0 
48.6 

45.7 
57.1 

45.7 
54.3 

14.3 
31.4 

25.7 
34.3 

20.0 
40.0 

20.0 
31.4 

17.1 
31.4 

25.7 
37.1 

31.4 
51.4 

25.7 
42.9 

Tcon  
 

  42.9 
54.3 

54.3 
62.9 

57.1 
71.4 

45.7 
54.3 

37.1 
48.6 

20.0 
42.9 

16.7 
38.9 

28.6 
37.1 

22.9 
37.1 

28.6 
42.9 

20.0 
34.3 

37.1 
54.3 

37.1 
48.6 

Tv  
 

   34.3 
54.3 

31.4 
51.4 

34.3 
57.1 

31.4 
51.4 

25.7 
40.0 

45.7 
54.3 

25.7 
40.0 

28.6 
54.3 

34.3 
42.9 

22.9 
40.0 

34.3 
48.6 

34.3 
51.4 

Tcr1  
 

    82.9 
85.7 

54.3 
54.3 

37.1 
51.4 

20.0 
40.0 

22.9 
34.3 

25.7 
37.1 

25.7 
37.1 

25.7 
31.4 

20.0 
37.1 

40.0 
48.6 

34.3 
51.4 

Tcr2  
 

     48.6 
51.4 

34.3 
48.6 

17.1 
37.1 

22.9 
34.3 

25.7 
34.3 

28.6 
40.0 

22.9 
31.4 

20.0 
31.4 

42.9 
51.4 

28.6 
45.7 

Lm1  
 

      45.7 
57.1 

20.0 
31.4 

25.7 
40.0 

31.4 
45.7 

34.3 
42.9 

17.1 
28.6 

34.3 
48.6 

34.3 
42.9 

37.1 
48.6 

Lm2  
 

       14.3 
31.4 

17.1 
31.4 

28.6 
40.0 

31.4 
37.1 

25.7 
37.1 

22.9 
34.3 

25.7 
40.0 

25.7 
45.7 

H1  
 

        22.9 
37.1 

28.6 
37.1 

28.6 
42.9 

11.4 
40.0 

34.3 
42.9 

28.6 
51.4 

25.7 
40.0 

H2  
 

         22.9 
37.1 

31.4 
57.1 

22.9 
37.1 

31.4 
45.7 

34.3 
54.3 

22.9 
45.7 

H3  
 

          42.9 
54.3 

17.1 
31.4 

25.7 
40.0 

25.7 
42.9 

25.7 
48.6 

H4  
 

           22.9 
42.9 

31.4 
51.4 

40.0 
54.3 

42.9 
51.4 

H5  
 

            14.3 
28.6 

25.7 
37.1 

22.9 
40.0 

H6  
 

             25.7 
42.9 

25.7 
45.7 

H7  
 

              34.3 
48.6 
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