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Abstract

Passive microrheology [12] utilizes measurements of noisy, entropic fluctuations (i.e., diffusive 

properties) of micron-scale spheres in soft matter to infer bulk frequency-dependent loss and 

storage moduli. Here, we are concerned exclusively with diffusion of Brownian particles in 

viscoelastic media, for which the Mason-Weitz theoretical-experimental protocol is ideal, and the 

more challenging inference of bulk viscoelastic moduli is decoupled. The diffusive theory begins 

with a generalized Langevin equation (GLE) with a memory drag law specified by a kernel [7, 16, 

22, 23]. We start with a discrete formulation of the GLE as an autoregressive stochastic process 

governing microbead paths measured by particle tracking. For the inverse problem (recovery of 

the memory kernel from experimental data) we apply time series analysis (maximum likelihood 

estimators via the Kalman filter) directly to bead position data, an alternative to formulas based on 

mean-squared displacement statistics in frequency space. For direct modeling, we present 

statistically exact GLE algorithms for individual particle paths as well as statistical correlations for 

displacement and velocity. Our time-domain methods rest upon a generalization of well-known 

results for a single-mode exponential kernel [1, 7, 22, 23] to an arbitrary M-mode exponential 

series, for which the GLE is transformed to a vector Ornstein-Uhlenbeck process.

1. Introduction

In this paper we focus on the diffusive transport of micron-scale particles in viscoelastic 

media. We are motivated by applications to pathogen or drug transport in pulmonary liquids 

(mucus) or in other biological protective barriers. We are interested in inverse methods 

(inference of diffusive transport properties from the primitive experimental data), and in 

direct simulation tools to generate both experimental time series and statistical properties 

such as mean-squared-displacement and velocity autocorrelations.

To accomplish these goals, we borrow the theoretical and experimental framework from 

passive, single-particle microrheology as proposed by Mason and Weitz [12]. Their goal 

was more ambitious: from diffusive transport statistics (mean-squared-displacement) of 
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dispersed microbeads, they infer bulk viscoelastic properties of the material. The Mason-

Weitz theory thus combines two essential elements: a generalized Langevin equation (GLE) 

with a memory drag law to model the diffusion process, together with a generalized Stokes-

Einstein relation (GSER) that relates the GLE memory kernel to the bulk viscoelastic 

modulus of the medium. We adopt only the first element, since we are exclusively interested 

in particle diffusion, thereby avoiding the harder problem of a direct relationship between 

diffusive properties and dynamic bulk moduli of the host material. The time series methods 

applied here are ideal for single-particle tracking experiments, which our colleagues R. 

Superfine, D. Hill and J. Cribb perform.

There are numerous complexities in soft matter, and especially biological materials, that 

frustrate a direct association of the diffusive memory kernel with the bulk viscoelastic 

modulus. Particle surface chemistry with the host material, particle size relative to material 

network lengthscales (e.g. mesh size), and heterogeneity each present nontrivial challenges. 

However, these issues are all circumvented for our less ambitious goal: to infer diffusive 

transport properties from displacement path data of microbeads. Then, one simply has to 

focus on inference of the memory kernel in the GLE from experimental data. We therefore 

choose to call the GLE memory kernel a “diffusive transport modulus”, to emphasize that 

we are not attempting to link diffusive transport properties and bulk viscoelastic moduli.

Our inverse method applies directly to path data from particle-tracking experiments, namely, 

position time series. This has potential advantages to ensemble averaging in frequency 

space, the standard approach. First, the information from individual paths is utilized, and far 

less data is required for parameter inversion. Second, unlike traditional microrheometry, we 

aim to use the results of inverse characterization to directly simulate single-particle diffusion 

(single paths and statistics) in biological layers. For this purpose, a time-domain 

representation of the memory kernel is required, which our approach yields. The Mason-

Weitz method [11, 12] yields the unilateral Fourier transform of the imaginary part of the 

memory kernel, followed by application of Kramers-Kronig relations to get the real part. We 

refer to a very nice review article by Solomon and Lu [20] for discussions of the numerical 

methods associated with mapping the kernel back to the time domain.

Our second goal of direct simulations of diffusive transport processes requires fore-thought 

with respect to how one will numerically implement the modulus information gained from 

the inversion step. In standard inverse characterization in rheology, it is sufficient to restrict 

data-fitting and modulus characterization in the frequency domain. For direct simulations, 

we need the time domain kernel. Thus we propose a time-domain method of inversion of the 

memory kernel that avoids issues with inverse transforms as discussed in [20]. Indeed, our 

long term goal is to couple the GLE with other dynamic processes in the biological context, 

e.g., pathogen diffusion in advected pulmonary liquids, or general situations where there are 

deterministic forces and particle-particle interactions.

Another motivation for time-domain methods is the possibility of inversion from much 

smaller data sets, e.g., single paths which may not be sufficient for frequency binning 

whereas statistical analysis of individual time series data may prove sufficient. Finally, for 

very small volume materials there will be constraints on the amount of sample path data that 
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can be collected (e.g., low bead volume fractions can easily introduce colloidal effects), and 

a low number of sample paths may not be statistically significant for ensemble averaging. 

Perhaps the most compelling reason for the method proposed here is that inversion is 

performed directly on the physically measured data. In this paper, we present the conceptual 

framework and a proof-of-principle illustration of our time-domain methods, for the 

Langevin and generalized Langevin models. Particle displacement data is first generated 

from direct GLE simulations with a prescribed diffusive transport modulus (memory 

kernel); we then analyze the data with the inverse methods as though the data were path data 

from particle tracking experiments. A comparison of prescribed versus recovered modulus 

parameters is the accuracy benchmark enforced in this “methods” paper. We also compute 

mean-squared-displacement (MSD) statistics directly from our formulation of the GLE, and 

show agreement with ensemble averaging of path data.

The inverse characterization strategy introduced here is based on statistical tools developed 

in the field of time series analysis. These tools yield:

i. estimates of the viscoelastic material parameters directly from single or multiple 

time traces of Brownian particles;

ii. standard errors for those estimated parameters; and

iii. goodness of fit criteria.

Thus, the methods convey whether the parametrized memory kernels accurately fit the data, 

and in practice, how many discrete modes are needed to get a best fit. We also explore 

protocols for experimental sampling times and their impact on parameter inversion.

We consider an exponential (Prony) series approximation to the memory kernel, which turns 

out to be particularly efficient for both inversion and direct simulations. Aside from special 

GLE kernels, such as Rouse and Zimm type which are special cases of the class considered 

here, there is very little known about the anomalous (sub-diffusive scaling on intermediate 

timescales) behavior of Brownian particles. We refer the reader to [17, 21] for details. For 

this paper, we show our direct simulation tools recover classical Rouse and Zimm scaling 

properties of MSD statistics when the kernel is prescribed according to the Rouse or Zimm 

relaxation spectra.

The remainder of the paper is organized as follows. The standard Langevin equation for a 

particle diffusing in a viscous fluid is presented as a tutorial to introduce the statistical 

methods. In particular, we illustrate the relationship between the exact Langevin quadrature 

solution for particle position and autoregressive time series models. We also use the 

Langevin equation to introduce maximum likelihood methods for performing statistical 

inference of the single material parameter in the Langevin model, the fluid viscosity. 

Furthermore, we formulate the parameter inversion methods when only partial observations 

of the system are measurable (position but not velocity of Brownian particles), which is the 

situation in microbead rheology. Next, we show how this methodology naturally extends to 

multivariate autoregressive models for GLEs with memory kernels that can be written as the 

sum of exponentials. The single-mode exponential kernel is presented as another tutorial 

example of the direct and inverse methods, since this example can also be analyzed in 
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explicit, closed form. Next, 4-mode kernels, of classical Rouse and Zimm form, are used as 

a nontrivial illustration of the direct and inverse methods, and finally a 22-mode Rouse 

kernel is presented to show the direct simulations are not limited to a sparse, discrete 

spectrum.

A significant by-product of these investigations arises from two critical observations:

• GLEs with arbitrary finite-mode, exponential kernels are exactly integrable with a 

quadrature solution[7]; and

• the quadrature formula extends from the continuous GLE process to a discretized 

dynamics.

These two observations yield a statistically exact, discrete-time autoregressive process 

model of a Brownian particle in a viscoelastic medium. The first-order Taylor 

approximation of this discrete process corresponds to a first-order Euler numerical 

integration scheme. This class of discrete GLE models thereby provides a highly efficient 

and accurate direct time-domain simulation method. We can generate realizations of 

Brownian particles in a viscoelastic fluid, based on matrix function evaluation rather than a 

low order numerical integration of the stochastic GLE model. Furthermore, average 

properties (mean-square displacement and velocity correlations) also have explicit 

quadrature representations, so that statistical correlations may be simulated directly, 

avoiding the arduous alternative of generating sample paths and then averaging. In 

examples presented below, we benchmark the numerical tools by confirming agreement 

between the two ways of computing MSD statistics. These direct simulation results thus 

afford the ability to simulate time-domain experimental data of individual particles as well 

as statistical scaling properties of Brownian particles for any given exponential series form 

of the memory kernel in the GLE model.

For arbitrary M-mode kernels with M > 1, there is one numerical analysis result required to 

assure accurate computation of matrix exponentials in the discrete and continuous 

quadrature formulas, which we provide in the Appendix. With this result, numerical 

simulations are carried out in the body through various explicit examples. It is worth 

emphasizing that this approach — replacing stochastic numerical integration by matrix 

function evaluation in a discrete GLE process, for individual paths as well as for average 

properties of the process — is guaranteed to be statistically correct, even for sufficiently 

long time series. This strategy removes two dominant sources of numerical error in the 

direct problem of time-domain simulation: the error at each time step from a low-order 

integration method instead of an exponential-order method; and the cumulative error in 

time-stepping, which is completely avoided. Because many generic memory kernels can be 

approximated to arbitrary accuracy with a sum of exponentials, this simulation method 

should find utility in diverse applications outside of pulmonary liquids. The range of 

diffusive dynamic scaling behavior of individual Brownian particle paths, and of ensemble 

averages, is a topic for future study to understand the range of diffusive transport statistics 

possible for GLEs with exponential series kernels. The known theoretical results for Rouse 

and Zimm spectra will be illustrated and confirmed below as rigorous benchmarks on our 
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direct simulation strategy, as well as for inverse characterization benchmarks of the 

maximum likelihood method.

2. The Langevin Equation and Statistical Methods

In this section, we review the basic properties of the classical Langevin equation for a 

microscopic particle diffusing in a viscous fluid, as a transparent context to introduce our 

statistical approach. The solution of the Langevin equation can be exactly represented as a 

Gaussian autoregressive statistical model (cf. [8]). Thus, a maximum likelihood approach 

can be used to estimate model parameters from time series data. To illustrate the 

methodology, the statistical tools are developed first assuming the velocity of the particle is 

directly measured. However, in microscopy experiments the particle position (and not 

velocity) is measured. Thus, using standard techniques, we next generalize the statistical 

framework to a two-dimensional Langevin equation for both position and velocity, in which 

only position observations are required for statistical inference of model parameters. All 

advantages of maximum likelihood estimation are preserved in this formulation, which we 

illustrate numerically.

2.1. The Langevin Equation & Quadrature Solution

The scalar Langevin equation for a diffusing particle with velocity v is

(2.1)

where m is the particle mass, ξ is the friction coefficient is given by the Stokes drag law, and 

kBT is the Boltzmann constant times the absolute temperature. The friction coefficient ξ = 

6πaη, where a is the radius of the particle and η is the viscosity of the fluid. The stochastic 

term f(t) is taken to be Gaussian white noise with zero mean and covariance

(2.2)

Mathematically, Eq. (2.1) represents a 2-parameter linear stochastic differential equation 

(SDE), written equivalently in the standard form of an Ornstein-Uhlenbeck process:

(2.3)

where the 2 parameters in the process are

(2.4)

Ornstein-Uhlenbeck processes have several important properties– Markovian, stationary 

(given an appropriate initial condition), and Gaussian–that are amenable to mathematical 

and statistical analysis.

• If the initial velocity v(0) is normally distributed with mean zero and variance σ2/

(2α),
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(2.5)

then v(t) has the same distribution for all t, and the velocity autocorrelation function 

is given by

(2.6)

• An Ornstein-Uhlenbeck process can be written in terms of a stochastic integral:

(2.7)

which is a quadrature solution to the SDE (2.3).

• This representation is useful, as shown below, for developing efficient statistical 

techniques for estimating the parameters α and σ from time series data sampled on 

finite intervals.

• From the exact solution, the tracer position x(t) is given by:

(2.8)

where x0 = x(t = 0). The variance of the tracer position (mean square displacement, 

MSD) is likewise explicit [3]:

(2.9)

Next we introduce and apply statistical methods that take advantage of the Gaussian 

evolution and integrability of the Langevin equation to recover α and σ from time series 

data. These features will be shown in subsequent sections to carry over to the generalized 

Langevin equation, and thereby to inversion of viscoelastic parameters from tracer time 

series data.

2.2. Autoregressive Processes & Exact Discrete Langevin Equations

Suppose we want to match Brownian tracer experimental data with a discrete model of the 

Langevin equation (2.3), where the discrete time step Δ has to be sufficiently small to 

resolve the underlying stochastic process. The velocity of a particle diffusing in a viscous 

fluid can be modeled by discretizing equation (2.3) using an Euler approximation, which 

yields

(2.10)
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where εn is a sequence of independent, standard normal random variables and vn = v(nΔ). 

Rearranging the above equation yields

(2.11)

With this discretization, vn is a first-order autoregressive (AR) process. An AR process is 

one in which the current observation is a weighted sum of the previous observations plus a 

noise term that is independent of previous noise terms. Alternatively, we can exploit the 

quadrature solution (2.7) and replace the approximate discretization by the exact discrete 

Langevin process,

(2.12)

where εn, n = 1, …,N is a sequence of independent standard Gaussian random variables with 

variance

(2.13)

The Euler approximation is recovered as a first-order Taylor series expansion of the 

coefficients in this exact discretization. The advantages of this exact discretization are that 

one can accurately generate sample paths, and furthermore, the time series are guaranteed to 

be statistically consistent with the process (which might be otherwise polluted by cumulative 

errors in a numerical integration scheme). We will apply this discrete process to simulate an 

experiment, from which experimental time series are extracted by sampling the full data set.

2.3. Maximum Likelihood Methods for Parameter Inversion

We turn now to maximum likelihood methods which give a general framework to obtain 

point estimators and standard errors for the model parameters, α and σ, given a time series 

υ0, υ1, …, υN. The likelihood function is computed from the joint probability density for an 

observed velocity time series. Noting that the time series is Markov, that the conditional 

distribution of υn given υn−1 is normal with mean e−αΔυn−1 and variance (2.13), and 

assuming that the initial velocity υ0 is known, the likelihood function is given by

where g(·| υ0, α, σ) is the joint density of υ1, …, υN and h(·|·, υ0, α, σ) is the transition 

density for the process. Given a sequence of velocity measurements, the likelihood function 

is numerically maximized to obtain estimates, α̂ and σ̂, for α and σ. Hereafter in the paper, 

parameter estimates are denoted by · ̂.

One of the benefits of maximum likelihood estimation is that under fairly general conditions 

to be given in the Appendix, asymptotic probability distributions for these estimators may be 

obtained. Note that while α is not random, α̂ depends on the random time series υ0, …, υN 
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and is a random variable; given a new time series one obtains a new realization of the 

random variable. In the present context, we know a priori that the estimator α̂ is 

asymptotically (for long time series, i.e. large number of observations N) normal with mean 

equal to the true parameter α and variance of α̂ equal to . We obtain 

an estimate for the variance of α̂ by numerically calculating the derivative of the log 

likelihood function at the maximized value.

We emphasize that model parameters may be estimated from a single time series of the 

process; this will be illustrated in the proof-of-principle illustrations below. If that single 

particle path is sufficiently long, then the Mason-Weitz approach and our approach should 

be consistent (a final example addresses this point). If multiple paths are available and they 

are presumed to be independent, the overall likelihood function will be defined as the 

product of likelihood functions for the individual paths, and maximum likelihood estimators 

may be obtained as before including the additional observations. This methodology will be 

valid assuming statistical independence of the paths. The methods introduced here can be 

applied even if the data set is not large; this corresponds either to a large Δ or a low number 

of iterations in the discrete process. We will return to this issue below in a discussion of 

over- and under-resolution of the underlying stochastic process, and in comparisons of 

quality of fits versus number of observations.

2.4. Extension to the Full System of Position & Velocity

In general, microrheology experiments measure the position of the particle, not the velocity. 

It is of course unwise to approximate the velocity by differencing the experimental data; 

information is lost and unnecessary errors are introduced. Alternatively, we formulate a 

vector Langevin model for the position and velocity of the particle, and then develop 

maximum likelihood methods assuming only partial observations of the process variables. 

Specifically, we can observe x0, x1, ‥, xn but cannot observe υ0, υ1, …, υn. The system can 

be written in vector form as

(2.14)

where

(2.15)

and f(t) is a scalar Gaussian white noise process defined above. The quadrature solution to 

Eq. (2.14) is [15]

(2.16)

As noted above, special properties of the exact solution can be exploited when performing 

parameter estimation. The process is Gaussian and therefore uniquely defined by its mean 

and covariance. So, given an initial condition Y0 = Y (0) and a time increment Δ, we can 
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determine the exact distribution of Y1 = Y (Δ) and by iteration define a vector AR process, as 

in (2.12) above.

Conditioning on Yn−1, the distribution of Yn is Gaussian with mean eAΔYn−1 and covariance 

matrix [8, 15]

(2.17)

Furthermore, it is straightforward to generate exact realizations of the stochastic process at 

finite time intervals, with the caveat that one must be able to accurately calculate S. (For A, 

K in (2.15), this is trivial; for the generalized Langevin equation of viscoelastic fluids, we 

address this issue in Section 3.1). For a particle starting in state Y0, we generate a Gaussian 

vector εn with covariance matrix S and add this to eAΔY0 to obtain Y1, and then simply iterate 

this procedure. That is,

(2.18)

where εn is an independent sequence of zero mean Gaussian random vectors with covariance 

S. Thus, we have an autoregressive (AR) representation for the vector process Y0, …, YN 

associated with the scalar process (2.12).

2.5. The Likelihood Function for Position Measurements

Now that we have cast the Langevin model in the form of a vector AR process, we are in 

position to calculate the appropriate likelihood function for estimating parameters, given a 

time series of particle positions x0, x1, …, xN. In this section, we outline key steps in the 

derivation of the likelihood function, leaving a detailed derivation for the Appendix. The 

derivation relies on the Kalman filter, which was developed to estimate the current state of a 

dynamical system from noisy time series data of partial observations of the process. (This 

use of the Kalman filter as a method to calculate the likelihood function has become 

standard and further discussion can be found in [2] and [8].) Recall discrete observations 

generated from the Langevin equation satisfy (2.18), where the noise has a covariance 

structure given by (2.17). Experimentally, only the position of the particle is observed, and 

no other components of the vector Y. That is, at the nth time interval the observable is

(2.19)

Assuming that the model parameters, Θ, are known, a Kalman filter is generally used to 

recursively estimate the current state, Yn, given the observations x1, …, xn. Using this and 

the AR structure of the process, we may also give a predictive density for Yn+1 given x1, …, 

xn. From this we may obtain the density of xn+1 given x1, …, xn which we denote by h(xn+1|

xm,m < n+1,Θ, x0). We may then decompose the joint density for the time series into a 

product of these conditional densities and obtain

(2.20)
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Because the process is Gaussian, the above equation can be rewritten as

(2.21)

where the conditional mean and variance of xn given x1, …, xn−1 are

(2.22)

and

(2.23)

respectively, and the matrix Rn is defined in the Appendix. Therefore, once we have x0, x1, 

…, xN we may numerically maximize this likelihood function with respect to the parameters 

to obtain an estimate for Θ. An important feature of this Kalman derivation of the likelihood 

function is that it may be calculated recursively; this dramatically reduces the time necessary 

to calculate the likelihood function since we do not have to calculate the full covariance 

matrix of the entire time series. Use of the Kalman filter to calculate the likelihood function 

of dependent data is a common procedure in time series analysis and is the most accurate 

and efficient method to calculate the likelihood function for a number of common models 

such as the ARIMA model [6, 18].

This method requires numerical calculation of the matrices S and eAΔ, but this calculation 

only has to be done once for each trial parameter set in the maximization process. This 

numerical calculation is, of course, trivial for 2 × 2 systems, but presents a potential 

limitation for the GLE, which we will soon formulate in this precise vector AR setting, and 

where the matrix size scales with the number of exponential modes. Below, we overcome 

this potential limitation due to the special form of the matrices that arise for GLEs with 

exponential kernels.

As with the univariate case, there are asymptotic results for the distribution of our maximum 

likelihood estimators Θ̂. Under certain reasonable conditions given in the Appendix, Θ̂ is 

asymptotically normal with mean Θ and covariance given by cov(Θ̂) = 1/N(−∇log L(Θ))−1 

which may be approximated by numerical evaluation of the quantity 1/N(−∇2 log L(Θ̂))−1. 

Thus, to build a 1 − α confidence interval for θm, we start with

(2.24)

where zα/2 is the value that satisfies P(Z > zα/2) = α/2 and Z is a standard Gaussian random 

variable. We use the notation Am,n to denote the element in the mth row and nth column of 

the matrix A. Some algebra yields

(2.25)

which is the desired confidence interval for θm.
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2.6. The Autocorrelation Function (ACF)

A common diagnostic tool for determining important time scales in time series data is the 

discrete autocorrelation function. This function represents a scaled and discretized estimate 

of the true auto-covariance function

(2.26)

For a discrete time series U1, …,UN, where Uk = U(kΔ) and the data is normalized to have 

mean zero, the discrete autocorrelation function is defined to be

From now on the acronym ACF denotes the discrete autocorrelation function unless 

explicitly stated otherwise. Note that for zero time lag, the ACF is normalized to one. A 

general guide for verifying that a process is white noise (independent identically distributed 

sequence of random variables) is that for all lags greater than or equal to one the ACF will 

be less than  where N is the number of observations [19]. We illustrate the application 

of the ACF diagnostic in examples below.

2.7. Illustration of the Statistical Toolkit

We present a simple example, Brownian diffusion and simple Langevin dynamics, to show 

how these methods work and test their accuracy. The example illustrates the importance of 

the experimental sampling time relative to the physical timescales in the model. We always 

assume (and enforce in numerical simulations) that the discrete time step Δ in the direct 

simulation of sample paths is small enough to resolve the stochastic fluctuation timescales in 

the model. This yields a faithful resolution of the physical process from which we can then 

sample the resolved data on any coarse timescale, analogous to an experimental sampling 

time. With these protocols, we are able to provide measures and indicators of experimental 

over- and under-sampling.

Throughout the paper, we measure time in milliseconds (ms), mass in milligrams (mg), and 

length in microns (µm). Consider a neutrally buoyant particle of diameter 1 µm and mass 5 × 

10−10mg moving in a fluid with viscosity 1.5 Pa-s (similar to glycerol). This corresponds to 

α = 26 × 106(ms)−1 and σ = 65(ms)−3/2. First, we simulate the exact discrete Langevin 

process (2.17), (2.18) for a highly resolved time step Δ = 10−10ms, which is 3 orders of 

magnitude smaller than the viscous timescale set by the drag coefficient, α−1 = m/ζ ≈ 0.37 × 

10−7ms. We generate one sample path with 105 data points. The examples to follow will 

strobe this data set at the prescribed lag Δ; if Δ is 10−10+δ, then each observation corresponds 

to 10δ numerical time steps.

The ACF is first computed using a coarse sampling time Δ = 5 × 10−7ms, which is 13.4 

times the viscous time scale α−1. The process yields the ACF signature of white noise, Fig. 

2.1A. That is, the ACF nearly approximates a delta distribution versus lag with most of the 

weight at zero lag time, and therefore at this sampling interval the process appears to be 
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white noise. On the other hand, if the sampling interval is shortened (Δ = 10−8ms) so that it 

is consistent with the viscous timescale, then the ACF falls off exponentially as in Fig. 2.1B.

Next, we use maximum likelihood methods to generate the estimators α̂ and σ̂ for five 

decades of lags Δ (Figure 2.2). Note the estimator (open circles) is most accurate and the 

variance (vertical bars) is minimized when the lag time Δ ≈ 10−8 —10−9ms, consistent with 

the ACF diagnostic (Figure 2.1B) showing exponential decay. Note further that the 

estimator α̂ degrades as Δ increases, and the variance grows, consistent with the ACF of 

Figure 2.1A for coarse sampling. For Δ very small, e.g. Δ = 10−10ms, the variance of α again 

grows, but the estimator remains quite accurate.

This simple example illustrates a method for choosing an appropriate time interval for 

sampling. If the observations are too far apart (“under-resolved”), e.g., Δ = 10−7ms, then the 

autocovariance of the velocity is near zero after one time step. Indeed, one can compute the 

AR matrix

(2.27)

Looking at the discrete process (2.18) and (2.17), there is little information carried over 

except the previous position, so the process is nearly a discrete white noise process. 

Nonetheless, the time series approaches can often still give reasonable estimates of the 

parameters, as shown in Figure 2.2. By contrast, a reasonable sampling time, like Δ ~ 

10−8ms, will reflect an exponential ACF, signalling good resolution of the process. In the 

extremely improbable situation where observations are too frequent (“over-resolved”), e.g. Δ 

= 10−10ms, then the AR matrix will be close to the identity,

and the velocity will appear to be non-stationary with a linear decay in the ACF. These 

signatures of the ACF are tools that can be used with experimental data to identify an 

appropriate sampling time, and even to estimate the smallest physical timescale in the 

underlying process.

3. The Generalized Langevin Equation & Statistical Methods

3.1. Mathematical Framework: Quadrature Solution for Exponential Series Kernels

The starting point for modeling the diffusive properties of microscopic Brownian particles in 

viscoelastic materials is the generalized Langevin equation (GLE) [12]:

(3.1)
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For passive microrheology, F̃(t) is an entropic stochastic force, assumed to be a Gaussian 

colored noise, correlated with the memory kernel φ(t) through the fluctuation-dissipation 

relation,

(3.2)

For simplicity, we divide both sides of (3.1) by m and redefine the memory kernel 

appropriately to obtain

(3.3)

with

(3.4)

Throughout the remainder of the paper when we refer to the memory kernel, we will mean 

ξ(·), which is scaled by 1/m.

In this section, we show that for a certain class of memory kernels, specifically a sum of 

exponentials, the generalized Langevin equation can be expressed as a set of coupled linear 

SDEs of the same form as (2.14), in which the velocity and position are the first two 

components. Therefore, all Langevin equation properties and techniques carry over 

immediately to the GLE. In particular, we can: 1) apply maximum likelihood methods for 

parameter estimation; 2) exactly simulate the stochastic process instead of low-order 

numerical integration; and 3) write down explicit formulas for statistical quantities of 

interest, such as autocorrelation functions for position and velocity.

Suppose the memory kernel is a single exponential,

(3.5)

where a and m are the particle radius and mass, and the factor 6πG is used to make contact 

with the viscous limit. (This is the same scaling used for linear viscoelasticity where the 

exponential kernel corresponds to a single-mode Maxwell fluid with shear modulus G, 

relaxation time λ, and zero strain rate viscosity η0 = λG. The viscous limit corresponds to λ 

→ 0.) The noise F(t), (3.3–3.4), for the single exponential kernel can be expressed as an 

Ornstein-Uhlenbeck process,

(3.6)

where f(t) is white noise. Note that the Langevin equation for viscous diffusion is obtained 

in the limit λ → 0, that is, (3.6) becomes (with ξ0 = 6πaη0)
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(3.7)

Analogous to the scalar Ornstein-Uhlenbeck process (2.3), the system (3.3–3.6) may be 

solved explicitly. To see this, define the variable Z(t) by

(3.8)

which yields

(3.9)

Now, the full system can be written in matrix form as

(3.10a)

with

(3.10b)

(3.10c)

and W(t) is a vector of independent white noise processes.

This system (3.10a)–(3.10c) is identical in form to (2.14), and therefore another vector 

Langevin equation, whose quadrature solution is given by (2.16) and (2.17) with these Y, A 

and K. Following the Langevin example above, we can now generate the corresponding 

viscoelastic AR process for a Brownian particle with this specified memory kernel, starting 

from Y0 = Y (0).

More generally, suppose the memory kernel ξM(t) is given by an M-mode exponential series:

(3.11)

where ci = 6πaGi/m. Similarly, the total noise FM(t) can be written as

(3.12)

where each Fi(t) is an independent Ornstein-Uhlenbeck process characterized by the ith 

relaxation time λi. That is,

Fricks et al. Page 14

SIAM J Appl Math. Author manuscript; available in PMC 2015 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3.13)

where fi(t), i = 1, …,M are independent white noise processes.

Therefore, FM(t) is a mean-zero Gaussian process with covariance consistent with the 

fluctuation-dissipation theorem,

(3.14)

This formulation of the GLE yields once again a vector Langevin process of the form (36), 

with the following definitions for Y, A and K

(3.15)

Again, an exact solution of this system is given in the form (2.16) and (2.17) with these 

matrix formulas. Thus, all properties of the Langevin equation have been extended to the 

GLE for the class of M-mode exponential series kernels. Likewise, the machinery from 

Section 2 applies for generating direct realizations of GLE processes and performing 

statistical analysis of time series for partial observations (of position).

These formulas are valuable to the extent we can numerically calculate the matrix 

exponential eA. The special form of A, equation (3.15), lends itself to an explicit and 

straightforward determination of the eigenvalues and eigenvectors, for any mode number M. 

Furthermore, this calculation only has to be done once, both to generate the direct process 

(or statistics of the process), and to perform parameter inversion for each M mode model. 

The procedures of computing the spectrum and then the covariance matrix are given in the 

Appendix.
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3.2. GLE direct and inverse illustration with a single exponential kernel

We first illustrate the GLE direct and inverse strategy, analogous to the Langevin illustration 

in Section 2, for the simplest case: a 1-mode exponential kernel (3.5) for which the GLE is 

given by (3.10a–3.10c). We select physical parameter values as follows: λ1 = 1.546ms, G1 = 

1.035×10−5mg/ms2µm. The model parameter c1 then has the value c1 = 4.440×10−3ms−2. 

Data are generated by a direct simulation with time step Δ ms; we explore various sampling 

intervals relative to λ to identify signatures of over-, under-, and “good” sampling times in 

the ACF and the estimators (λ̂
1,ĉ1). For each Δ, we generate a single sample path consisting 

of 5 × 104 observations, or a total experimental simulation of 5 × 104Δ ms.

We begin with the effect of sampling interval Δ on the ACF for velocity, as shown in Figure 

3.1. The data for bead velocity were created by differencing the position data for a sample 

path of length 50,000. The first plot in Figure 3.1 corresponds to a very long sampling 

interval (6 times the relaxation time λ1), and shows that the velocities at consecutive time 

steps are nearly independent of one another. We can see this by analyzing the matrix eAΔ, 

and we notice

(3.16)

where ε is white noise, which explains why the ACF of velocity approximates white noise. 

The second plot shows a more reasonable ACF at a sampling interval Δ = 0.5ms. The last 

ACF plot in Figure 3 corresponds to a very fast sampling interval Δ = 0.01ms. Note that for 

this sampling rate, the ACF appears to fall off linearly, rather than exponentially as 

expected, indicative of a process that has been oversampled. This behavior is similar to the 

Langevin equation, where very short time steps yields a strong dependence from one 

velocity to the next. Recall that this scenario yields a likelihood function that is relatively 

insensitive to parameter values.

Figure 3.2 shows the maximum likelihood estimate λ̂
1 of a single relaxation time, λ1, from 

numerically generated data and demonstrates the effect of the sampling interval on the 

estimation of λ1, the relaxation time. The horizontal line represents the true value of λ1 

while the error bars represent 95% confidence intervals which are symmetric about the 

estimate represented by open circles. As with the ordinary Langevin case, there is an optimal 

sampling interval. Note that the natural time scale for this parameter is on the order of 

milliseconds; this is approximately the sampling interval at which the minimum variance of 

the estimator is obtained.

It is important to note here that for each sampling rate, the number of discrete observations 

used for inference is being held constant. This implies that the real time interval over which 

the observations are being taken is much shorter for the faster sampling rates and 

considerable longer for the slowest sampling rates. This shorter real time interval could 

partially explain the large variance of the estimator at these faster rates. However, one 

should also note that the observations taken at longer than optimal sampling intervals occur 

over a longer real time interval and yet also perform poorly. This demonstrates that both 

sampling rate and number of observations play a role in the performance of the method, 

which is worthy of further investigation.
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In Figure 3.3, the estimate ĉ1 of the model parameter c1 versus sampling interval Δ is 

illustrated. As seen when estimating λ1, the estimates improve as the sampling interval 

becomes longer. However, beyond the interval of Δ values in this plot the quality of the 

estimator declines quickly. Note that this parameter has a natural time scale of  which 

is approximately ms. Note also that there is little overlap between the very good 

estimates of c1 and the good estimates of λ1. This points to a general problem for a system 

with different relevant time scales. The quality of relative estimates within a parameter set 

will be partially determined by the sampling interval.

In Figure 3.4, we show the effect of the number of experimental observations on parameter 

estimation. Parameter estimates improve with the length of the time series for a given 

sampling time. This is a general feature of maximum likelihood estimators, and its 

theoretical verification is given in the Appendix B as a consequence of the asymptotic 

normality of the estimators.

With a single-mode exponential kernel, the quadrature solution of the GLE can be extended 

to an explicit formula for ensemble averages, in particular, for autocorrelations of velocity 

and displacement (cf. [7]). We drop the subscript 1 on all parameters for these one-mode 

formulas. The velocity autocorrelation is given by

(3.17)

while the mean squared displacement (MSD) is:

(3.18)

where  and c = 6πaG/m from (3.5). For sufficiently short times, the MSD 

(3.18) exhibits ballistic behavior, 〈[x(t)−x(0)]2〉 ≈ kBTt2/m, and for sufficiently long times, 

diffusive scaling emerges, 〈[x(t)−x(0)]2〉 ≈ 2kBTt/mλc. For intermediate times, a power law 

fit of the MSD yields a range of exponents depending on the window in which one chooses 

to fit.

We note the parameter β can be purely imaginary, as pointed out in [7], which is clear from 

the formula (3.18). Oscillations are predicted in the velocity correlation and MSD whenever 

physical parameters obey 4cλ2 > 1. When extended to the more general case of multiple 

exponentials, similar oscillations appear since the relevant matrix A often has a pair of 

complex eigenvalues.

This GLE model phenomenon predicts high frequency (short time) oscillations in 

experimental path data, even after ensemble averaging of path time series, which translates 

to a source of high frequency error of MSD in experimental measurements because of the 

phase mismatch between these inherent oscillations and experimental sampling time. We do 

not know if this property is generic for a wider class of kernels.
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3.3. GLE model illustration with a 4-Mode Rouse kernel

A classical model due to Rouse (cf. [5]) yields a special class of M-mode kernels for which 

GLE diffusive transport properties are explicitly solvable. A 4-mode Rouse kernel is 

implemented now to further illustrate the direct and inverse tools, and to benchmark our 

direct simulations against exact MSD scaling laws. To construct a Rouse kernel, polymer 

chains are divided into spherical mass segments connected by linear springs of equilibrium 

length b (beads in polymer chain); and a kernel function of a series of exponentials with 

same weight and different characteristic time is then followed[4, 17]. A Zimm kernel, in 

which a different exponential spectra is derived, is presented next. More complex molecular 

models may incorporate overlap and entanglements of polymer chains, or even chemical 

interactions between Brownian particles and local environment. Our focus in this paper is to 

model the fluctuations without attempting to dissect the various sources. Our goals in this 

example are once again: for inversion, to find the best GLE kernel to fit measured path data; 

for direct prediction, to simulate particle paths or the statistics of paths for a known 

prescribed GLE kernel.

To prescribe the kernel for a Rouse chain solution, each segment in a polymer chain is 

assigned friction coefficient ξb; and the weight and characteristic times for the exponentials 

of the ith mode are given by (with Nm the number of segments in a polymer chain):

(3.19)

where ν is the number density of polymer chains and βb = 3/(Nmb2). In the example to 

follow, we choose ν = 2%. We now specify all parameter values in the 4-mode Rouse-GLE 

model. The passive tracer bead is 1µm in diameter of mass m = 1.05 × 10−9mg. The single 

weight factor is given by G0 = G = 1.035 × 10−5mg/ms2µm, so that our rescaled parameters 

are c = ci = 6πaG0/m = 4.440 × 10−4(ms)−2. The Rouse relaxation times are, from (3.19): λ1 

= .02415, λ2 = .04294, λ3 = 0.09661, and λ4 = .38643 in units of ms. Figure 3.5 shows a 

typical time series for particle position for this GLE-Rouse kernel, extracted from the full 

vector AR simulation. For comparison, we have included a sample path for a random walk 

with independent steps. The variance of the steps for both time series are the same; 

therefore, the figure gives a clear illustration of the effect of dependency alone in 

suppressing the diffusion of a particle.

We simulate 200 paths with sampling time Δ = 10−3ms for 104 steps. Figure 3.6 shows the 

autocorrelation function (MSD) for the position of the paths, computed by ensemble 

averaging of the 200 paths (green dots). This result is compared with the analytical scaling 

law (yellow dashed curve) for a Rouse chain [4, 17]. (Later in this section, we present a 

more general result from vector Langevin stochastic processes: an explicit quadrature 

formula for the autocorrelation matrix of the vector Langevin process. This formula allows 

one to bypass single paths and ensemble averaging of them to directly simulate MSD and 

velocity autocorrelations.) Note the MSD starts out with ballistic scaling for times far below 

the shortest relaxation time, and eventually becomes diffusive for times longer than the 

largest relaxation time. Subdiffusive scaling occurs between the shortest (t = 0.02415ms) 

and longest (t = 0.38643ms) relaxation times, consistent with Rouse behavior.
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Now we turn to the application of inverse methods for the path data, treating the data as 

though it were generated experimentally. To reveal the effective memory in this system, we 

first “preprocess” one sample time series to get an estimate of the ACF for velocity, which is 

obtained by differencing the position data. We use this proxy for the ACF of velocity to 

obtain initial conditions for the maximum likelihood method of fitting memory kernels. The 

ACF result is shown in Fig. 3.7. Note the oscillatory behavior of the ACF, clearly indicating 

that the process is not consistent with a particle diffusing in a purely viscous fluid. (This 

remark relates to the earlier analysis of oscillations that arise in 1-mode GLE models, which 

persist for this Rouse kernel.)

The ACF in this context is being used as an exploratory tool to gauge the amount of 

dependency present in the data before using the maximum likelihood techniques to fit the 

model. The ACF gives a proxy here for the longest relaxation time seen in the data which 

gives an initial guess for the one mode model. If no significant lags were seen, then it is 

likely that all relaxation times are below the sampling rate and more frequent observations 

are necessary to estimate relaxation times. If the researcher suspects well-separated 

relaxation times over several orders of magnitude, then one could use more coarsely 

sampled data to fit the longest times and after fitting use a finer grid to fit shorter relaxation 

times. The ACF can be used to guide these explorations of widely separated times.

In general, the number of exponential modes that best fit the underlying process that 

generated the data is not known. The strategy begins by positing a single exponential to fit 

the data, from which the ACF produces a rough guess of 0.04 ms for the relaxation time. 

Our experience with numerical and experimental data indicates that fitting the data to a 1-

mode kernel tends to be quite stable, and this initial step consistently gives the same results 

independent of the initial guess for the relaxation time. The estimated parameter values are 

λ̂
1 = 5.519 ± 0.071(10−2ms) and ĉ = 1.77 ± 0.003(10−3ms−2). Not surprisingly the estimated 

value of c is almost exactly four times the true value since the data was generated from a 

four-mode model. (Fitting a one-mode model is essentially the same as fitting a four-mode 

model where all the modes have the same relaxation time, thus yielding a ĉ that is roughly 

four times the true value.)

We would like to be able to assess the quality of the fits being performed. One diagnostic 

tool for investigating how well the model predicts the data is the ACF of the residuals. This 

is shown in Fig. 3.8. If the model has successfully captured all the dependencies in the data, 

then we expect the ACF of the residuals to be consistent with white noise. Note that the first 

few lags show a significant negative correlation, indicating that the 1-mode model can not 

account for all the dependency in the data.

We proceed to a two-mode kernel which requires initial guesses for each relaxation time. If 

λ̂
1 is the estimate for the single mode case, one reasonable approach is to use λ̂

1 ± λ̂
1/2 as 

the initial guesses for the two modes. In this way, each time we add an additional mode to 

the model, we split the longest relaxation time and use the estimates obtained from fitting 

the previous model as an initial guess for the remaining relaxation spectra. That is, for an M-

mode model, our initial guesses for the λ’s will consist of the (λ̂
1, …, λ̂

M−2) obtained by 

fitting an M −1 model, and for the two longest relaxation times we use λM−1 = λ̂
M−1 − (λ̂

M−1 
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− λ̂
M−2)/2 and λM = λ̂

M−1 + (λ̂
M−1 − λM̂−2)/2. Therefore, for the two-mode model, we choose 

initial conditions of 0.0275ms and 0.0825ms for the λ’s and use ĉ from the one mode model 

as the initial condition for c. This produces λ̂
1 = 3.023 ± 0.043(10−2ms) and λ̂

2 = 

19.30±0.73(10−2ms) and ĉ = 0.886±0.001(10−3ms−2). In this case the estimate for c is 

roughly twice the true value.

The ACF for the residuals of the two-mode fit (not shown) indicates that we have captured 

most of the dependencies in the data. Figure 3.9 shows a plot of the sum of the squared 

residuals as a function of the number of modes used to fit the data. Note there is a large 

reduction in the sum of the squared residuals in going from 1 to 2 modes, but there is no 

evidence of convergence yet.

We next fit a three-mode kernel. Using the method described above, the initial guesses for 

the λ’s (in 10−2ms) are 3.023, 11.0, and 27.0. The estimated values for the relaxation times 

are (in 10−2ms) λ̂
1 = 2.525 ± 0.060, λ̂

2 = 7.020 ± 0.461 and λ̂
3 = 25.50 ± 1.99, and the 

estimate of c is ĉ = 0.592 ± 0.001(10−3ms−2).

As expected, the estimated value of c is roughly 4/3 the true value. Note there is still a 

significant drop in the sum of the squared residuals (Fig. 3.9). Figure 3.10 shows results for 

the estimated values of the relaxation times when a four-mode kernel is used. For this case 

the initial guesses for the λ’s are (in 10−2ms) 2.525, 7.02, 16.0, and 43.0. Notice that the true 

λ values all lie within the error bars. For c, we obtain an estimate of 0.443622 ± 

0.00074(10−3ms−2), which is very close to the true value.

Attempting to fit a five-mode kernel with initial guesses of λi = 2.322, 4.670, 10.47, 21.0, 

and 43.0 (in units of (10−2ms), we obtain estimates for the λs of 2.179, 3.748, 7.23, 14.947, 

and 33.897 (in 10−2ms). However, the estimated covariance matrix has negative values on 

the diagonal indicating a problem with the maximization process. There is also not a very 

large reduction in the sum of the squared residuals (Fig. 3.9), which means that the 

additional parameter does not meaningly contribute to explaining the data.

While additional parameters will almost always lead to a decrease in the residual sum of 

squares, it is clear in this case that the fit is unreliable since the approximated covariance 

matrix is not positive definite. Therefore we conclude that four modes provide an accurate 

representation of the data.

Next, we perform simulations to gauge the convergence of the parameter estimates with 

increased data and to test the dependency of the fit to changes in the sampling interval. 

Figure 3.11 shows the estimated values of λ3 and λ4 as a function of the number of data 

points in the time series. (The fits for the other two relaxation times are significantly better 

and omitted for clarity.) The convergence rate appears to be on the order of n−1/2 consistent 

with the earlier derivation of the confidence interval. Figure 3.12 shows the estimated values 

of λ3 and λ4 as functions of the sampling time Δ. The results are similar to those for the 

Langevin equation (Fig. 2.2). That is, the method has difficulties estimating the relaxation 

times if too short or too long a sampling time is used.
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3.4. Direct GLE simulations of MSD and velocity autocorrelations

Ensemble average information for vector Langevin equations can be expressed in quadrature 

form by the appropriate averaging of the exact quadrature formula for individual paths. The 

full matrix of autocorrelations for a vector Ornstein-Uhlenbeck process is:

(3.20)

The (1,1) entry of the resulting matrix gives the MSD and the (2,2) entry gives the velocity 

autocorrelation. The practical ramification of this formula is that one can directly generate 

statistical properties for a known GLE M-mode diffusive transport modulus without the need 

to generate sample paths and then take ensemble averages. For the special case of a 1-mode 

exponential kernel, the integral representation can be solved explicitly, which gives the 

result presented earlier (3.17), (3.18).

In Figure 3.6 for the four-mode Rouse kernel, the MSD is computed two ways: from 

averaging of 200 sample paths generated from the GLE model and depicted by blue circles; 

and then directly from the autocovariance formula (3.20) and depicted by the yellow dashed 

line. Figure 3.6 convincingly reproduces the correct MSD power law behavior of Rouse 

theory, namely an exponent of  when fitted over intermediate times between the relaxation 

spectra. This comparison provides another benchmark on the direct simulation tools, both 

for sample paths and for the autocovariance of GLE processes.

We now illustrate the methods are not “mode limited”, by running direct simulations for 

beads of the same size and mass as in Figure 3.6, but with a GLE diffusive transport 

modulus specified by a 22-mode Zimm kernel. The model posits 1100 monomers along each 

polymer chain, which we divide into 22 sub-units, which gives 22 modes and an explicit 

relaxation spectrum. Figure 3.13 shows the MSD statistics, again generated both by 

ensemble averaging of paths and by the autocorrelation formula (3.20). The simulations 

predict a MSD power law scaling exponent of 0.62 when fitted between the shortest and 

longest relaxation spectra, which reasonably approximates the  model.

3.5. Comparison with the Mason-Weitz inverse method

The inverse characterization framework for the memory kernel proposed in this paper 

focuses on single path information in the time domain, which is a complement to the 

transform space formulation of Mason and Weitz [10, 11, 12]. We now compare the two 

approaches on data generated by the GLE with the 4-mode Rouse kernel above. To make a 

fair comparison, we simulate an experiment which gathers many bead paths.

In Mason and Weitz’s original contribution [12], the memory kernel is transformed to 

frequency space following the standard definitions and notations of linear viscoelasticity [5]:

(3.21)
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If we now assume the 4-mode Rouse kernel, the corresponding real and imaginary parts of 

G* are:

(3.22)

where G0 and λi are defined in (3.19).

The “experimental data” consists of 200 paths of 1µm diameter tracer beads, generated from 

the GLE algorithm described earlier. First we implement the Mason-Weitz (MW) method. 

We calculate the MSD from these 200 paths, shown in Figure 3.6. Next, the MSD versus t is 

transformed to the frequency domain, together with the GSER, to arrive at G* (see [10] for 

details). We note the MW method is only applied over the monotone part of the MSD curve 

in Figure 3.6, which optimizes the accuracy of the MW reconstruction of G*(ω). The results 

are graphed in Figure 3.14. Second, we apply the Maximum Likelihood (ML) method to 

gain the best 4-mode fit to the path data. G* is then given by (3.22) with the ML estimators, 

graphed in Figure 3.14. The MW method overestimates G′ and G″ in this frequency range.

If we further wanted to invert G*(ω) to recover G(t), clearly the ML method requires no 

work. From the MW estimate G*(ω), we refer to [14, 20] for numerical strategies to estimate 

G(t), including an exponential fit.

We comment that this comparison is made on data for which our methods are designed to do 

well. The real test, on experimental data, remains for future comparisons.

4. Conclusions

A time-domain statistical strategy has been developed for passive microbead rheology which 

serves two purposes: as an inversion toolkit for recovery of the diffusive transport modulus 

in a generalized Langevin equation from experimental time series; and, as a direct 

simulation toolkit for pathogen diffusion of single particles and statistical correlations if the 

diffusive transport modulus is known. These direct and inverse algorithms combine to a 

general package for anomalous diffusive transport of pathogens in soft matter, which we 

anticipate to be complementary to the Mason-Weitz experimental and theoretical protocol 

[10, 11, 12]. These tools are presently being applied to characterization of pulmonary liquids 

with our colleagues Superfine, Hill, and Cribb in the Virtual Lung Project at UNC.

We mention another related approach based on fractional Brownian diffusion developed by 

Kou, Xie et al. [9, 13]. The approach taken in that work is to formulate the generalized 

Langevin equation using fractional Brownian white noise as the stochastic driving force. A 

benefit of this formulation is that number of parameters is limited; the modeling feature that 

is distinct from our methods is that the autocovariance function decays as a specific power 

law uniformly in time. If MSD experimental data reflects a uniform power law scaling over 

the experimental time series, then the fractional Brownian diffusion model should be 

strongly considered. The method of fitting relies on estimating the autocovariance function 

for velocity and then fitting the parameterized autocovariance to this estimated function. 

Standard errors may then be obtained via simulation. The drawbacks include stochastic 
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approximation in the simulation methods and the difficulty in estimating the autocovariance 

of the velocity when only position is observed. Our method overcomes these difficulties, but 

is limited to models consistent with autocovariance functions which for long lags have an 

exponential decay. Our formulation also allows for a greatly simplified simulation method 

and a maximum likelihood parameter estimation procedure which may use experimental 

data more efficiently.

An open question relates to the range of power law behavior that is possible for GLE models 

with the class of M-mode exponential kernels considered in this paper. So far, we have 

reproduced the classical Rouse and Zimm MSD scalings on intermediate timescales between 

the shortest and longest relaxation times for kernels with the Rouse and Zimm relaxation 

spectra. However, there are limited theoretical results for general exponential series kernels. 

Our preliminary numerical studies show a wide range of power law behavior is possible as 

the relaxation spectrum and the respective weights for each mode are varied.

These tools are viewed as a foundation for further extensions of the single-bead and two-

bead models and experiments. The ability to separate local bead-fluid interactions from the 

bulk viscoelastic modulus, and to identify heterogeneity from single particle and two-

particle statistical correlations, are key future applications of these tools.
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Appendix A

The Kalman Filter

Similar discussions to the following, based on [19], may be found in numerous texts ([8],

[2]). The framework of the Kalman filter is to take a linear system model and an observation 

model which depends linearly on the state of the system. We call this general setup a linear 

state space model and use the following notation: The system equation is

(A.1)

where εn ~ N(0, S), and the observation equation is

(A.2)

where ξn ~ N(0,D). Also, note that εn and ξn are independent sequences and independent of 

each other. (Here we have included an error term for Un which is the case in the standard 

Kalman filter. In the present paper, we assume no observation error and so the D matrix will 

be zero.)
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The goal of the Kalman filter is to calculate the conditional distribution of Yn given the 

observations U1, …,Un. The mean of this conditional distribution is an estimate (which is 

optimal in certain ways) of Yn. We are estimating the “hidden” elements of the process by 

conditioning on the observed elements of this process. For this procedure to be 

computationally feasible, a recursive algorithm is necessary. In other words, we would like 

to calculate the new conditional distribution of Yn given U1, …,Un using only the 

conditional distribution of Yn−1 given U1, …,Un−1 and a new observation Un.

As a preliminary, the calculations of the Kalman filter rely on a basic theorem from 

multivariate statistical analysis which allows us to calculate the distribution of a portion of a 

Gaussian random vector conditioned on the other portion. For a normal random vector, A,

(A.3)

we have that the distribution of A1 given that A2 = a is

(A.4)

This also works in reverse–if A2 ~ [µ2,Σ22] and the distribution of A1 is given in A.4, then 

the joint distribution is given by A.3. (We are using the notation [µ, Σ] for multivariate 

normal distribution with mean vector µ and covariance matrix Σ.)

As mentioned, we would like to find a set of recursive equations such that if we had the new 

observation Un and the distribution of Yn−1|U1, …,Un−1 (which we write as Yn−1|n−1–we will 

use this notation throughout), then we can find the distribution Yn|n. This distribution is the 

Kalman filter at time n. So, let’s assume that we have the conditional distribution of Yn−1|n−1 

where we call the conditional mean of this random vector Ŷn−1 and the conditional 

covariance Pn−1. Now, using A.1 we can calculate the distribution for Yn|n−1 which will be

(A.5)

For simplicity, we use the notation Rn−1 = BPn−1Bt + S for the covariance matrix. 

Combining (A.2) and (A.5) yields

(A.6)

Right now, we need only to condition Yn|n−1 = Yn|(U1, … ,Un−1) on Un|n−1 = Un|(U1, 

… ,Un−1) to give us Yn|n = Yn|(U1, …,Un) which is what we want. Another application of the 

theorem gives us that the mean of Yn|n is

(A.7)

and the covariance is
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(A.8)

So, we have derived the necessary recursions to take a new observation at time n and the 

filter at time n − 1 (i.e. the distribution of Yn−1 given the observations up to time n − 1) and 

obtain the value of the filter at time n.

For our application, one element is particularly important–the one step prediction for the 

observation process which is the distribution of Un given U1, …,Un−1, i.e. Un|n−1. This is 

given, however, in the first entry of the combined vector on the LHS of A.6. Explicitly,

(A.9)

This calculation is used in the error-prediction decomposition approach to calculating the 

likelihood function.

Appendix B

Asymptotic Normality of Maximum Likelihood estimators

A key benefit of the maximum likelihood method is the ability to calculate standard errors 

on the estimates. In general, one starts with a model that depends on the parameters Θ, and 

then maximizes the likelihood function with respect to the model parameters to obtain the 

best estimate Θ̂ for the parameters. Under certain conditions,  converges to a 

multivariate normal with mean zero and covariance matrix I−1(Θ) where I(Θ) is the 

information matrix [8] given as

(B.1)

The necessary conditions that need to be satisfied are:

1. I−1(Θ) must be positive definite.

2. Θ̂ must be in the interior of the parameter space.

3. log L(Θ) has third order continuous derivatives in the neighborhood of the true 

parameter values Θ.

4. Θ is identifiable. In other words, for each set of data L(Θ) is a one-to-one function 

of Θ.

We approximate I−1(Θ) by finding the Hessian of the logarithm likelihood function 

numerically with respect to the parameters evaluated at the maximum.
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Appendix C

Evaluation of Autocovariance

We discuss how the covariance matrix S for a GLE with M-mode kernel in Eq. (2.17), while 

(2M + 2) × (2M + 2) coefficient matrices A and K defined as in Eq. (3.15), can be 

numerically calculated accurately and efficiently. The only difficulty is in finding all 2M + 2 

eigenvalues of A; the remaining steps are straightforward.

C.1. Calculation of eigenvalues

For simplicity, we introduce parameters

(C.1)

Clearly, M eigenvalues, , are easy to get. The remaining 2M + 2 are determined 

by the roots of the polynomial equation

(C.2)

First we factor out the simple zero eigenvalue associated with the position equation and then 

consider the remaining M + 1 eigenvalues by studying the roots of the polynomial equation

(C.3)

If we rewrite the above polynomial (C.3) by dividing it with , we have a new 

function

(C.4)

which has the same roots as P(x). Recall 0 < λ1 ⋯ < λM. Clearly Q(x) changes sign, and 

therefore has one zero, in each interval (−1/λi,−1/λi+1). These are easily found by iteration. 

This yields M − 1 eigenvalues, denoted , and only 2 remain.

The polynomial P(x) of Eq. (C.3) has the form

(C.5)

where d and b are given explicitly from :
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(C.6)

This completes the calculation of all 2M + 1 eigenvalues, and we note the last two roots 

have negative real part due to b > 0. If the last two roots are complex conjugates, then the 

matrix A is only diagonalizable in the complex space.

Similarly, for the matrix As in Eq. (2.17), where s is a scalar, all the eigenvalues scale 

explicitly with s and the eigenvectors remain the same.

For M = 1, 2, 3, there are analytical formulas for the roots of the polynomial. In the single 

mode case, M = 1, the eigenvalues are

(C.7)

with easily calculated eigenvectors. The covariance matrix S (2.17) can thus be calculated in 

closed form.

For general M, from Eq.(C.5) and Eq. (C.6), fast and efficient numerical schemes could be 

found for the calculation of eigenvalues and eigenvectors.

C.2. Calculation of the covariance matrix S

Given this detailed spectral information for A, we can pre-compute the covariance matrix, as 

shown below.

First we assume the matrix A has full span of eigenvectors R (its inverse is R−1),

(C.8)

where Λ is a diagonal matrix whose diagonal components are the eigenvalues of A.

By definition,

(C.9)

where eΛ = eΛT
 is diagonal and the covariance matrix S can be written as

(C.10)
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where we define C = (R−1K)(R−1K)T.

Next, we take advantage of the above properties of the matrix A, as follows. Denoting by 

eωiu the ith diagonal component of the matrix eΛu, where wi is the ith eigenvalue of the 

matrix A, and Cij the ith row and jth column component of the matrix C, we see (here 

(•ij)M×M denote an M by M matrix with ith row, and jth column component •ij)

(C.11)

So the covariance matrix admits

(C.12)

and after all the eigenvalues ωi of A are determined, the integral form of S can be pre-

calculated according to the above result and the integration of the matrix function can be 

avoided.
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Fig. 2.1. 
Autocorrelation function (ACF) of Langevin equation velocity time series: The ACF of the 

velocity at two different sampling intervals, one showing under-resolution and the other 

indicating accurate resolution.
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Fig. 2.2. 
Parameter estimates versus sampling time Δ of the drag α and noise σ for the Langevin 

model. The bands represent 95% confidence intervals for the estimates. The true parameter 

is represented by a horizontal line.
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Fig. 3.1. 
ACF versus sampling interval Δ for a GLE with single-mode exponential kernel with 

relaxation timescale λ1 ~ 1.5ms. a. Under-resolved with Δ ~6λ1. b. Resolved with Δ ~ .3λ1. 

c. Over-resolved with Δ ~ .01λ1.
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Fig. 3.2. 
Estimators of the relaxation time λ̂

1 versus sampling resolution Δ, with data taken from a 

direct discrete GLE simulation with a 1-mode exponential memory kernel. The exact value 

λ1 = 1.546ms, is denoted by the horizontal line. The hollow circle indicates the value of the 

estimator, and the error bars indicate 95% confidence intervals.
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Fig. 3.3. 
Effect of sampling resolution Δ on estimation of c1 for the 1-mode GLE example in Figures 

3.1, 3.2. The horizontal line represents the true value of c1 = 1.109 × 103ms−2 while the error 

bars represent 95% confidence intervals, which are symmetric about the estimates 

represented by a hollow point.
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Fig. 3.4. 
Parameter estimation as a function of the number of observations for the 1-mode GLE of 

Figures 3.1–3.3. The sampling interval is fixed, Δ = 0.1ms, which is a good sampling rate to 

estimate λ1 = 1.5ms as shown in Figure 3.2. The horizontal line represents the true value of 

λ1, and the error bars represent 95% confidence intervals which are symmetric about the 

estimates represented by a hollow point.
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Fig. 3.5. 
Sample discrete AR simulation for a GLE with a 4-mode Rouse kernel (top path) compared 

to a Brownian motion (Langevin equation path) with the same local variance.
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Fig. 3.6. 
MSD of GLE sample paths for a 4-mode Rouse diffusive transport modulus. 200 paths are 

generated for a 1 µm diameter bead at 293K. The Rouse relaxation times are λ1 = .02415, λ2 

= .04294, λ3 = 0.09661, and λ4 = .38643 in units of ms, with equal weights for each mode, 

G0 = 1.035 × 10−5mg/ms2µm. To benchmark analytical scaling laws, a linear fit between the 

two vertical blue dashed lines (from the shortest to longest relaxation times) confirms the 

MSD power law of 0.5 for the Rouse model. The short-term ballistic and long-term diffusive 

scaling are also confirmed.
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Fig. 3.7. 
ACF for velocity approximated by differencing of position data for the discrete AR process 

corresponding to a GLE with the 4-mode Rouse kernel of Figure 3.6.
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Fig. 3.8. 
ACF of residuals for fitting a 1-mode GLE kernel to data generated from a discrete AR 

process with a 4-mode kernel.

Fricks et al. Page 39

SIAM J Appl Math. Author manuscript; available in PMC 2015 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3.9. 
The sum of squared residuals when fitting kernels with 1–5 modes to 4-mode data.
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Fig. 3.10. 
Proof-of-principle: maximum likelihood recovery of a 4-mode Rouse relaxation spectrum 

from numerical time series data. The error bars are symmetric about the estimate with the 

open circles being the true values.
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Fig. 3.11. 
Parameter estimation versus sampling rate for the longest relaxation times λ3 and λ4 in a 4-

mode kernel. The error bars are symmetric about the estimate with the open circles being the 

true values. The x-axis represents the log of Δ (sampling time).
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Fig. 3.12. 
Parameter estimation versus number of observations (in units of 104) for the two longest 

relaxation times λ3 and λ4 in a 4-mode kernel. The error bars are symmetric about the 

estimate with the open circles being the true values.
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Fig. 3.13. 
MSD of the GLE with a 22-mode Zimm kernel. The smallest relaxation time is 0.2885ms, 

the longest is 29.77ms; the two vertical lines mark the time span between them, over which a 

power law of 0.62 fairly well approximates the theoretical Zimm model value of .
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Fig. 3.14. 
The real (G′(ω)) and imaginary (G″(ω)) parts of the transform of the GLE memory kernel, 

recovered from the same numerical GLE data with a 4-mode Rouse kernel, by the Maximum 

Likelihood (ML) method and the Mason-Weitz method. The ML results correspond to a best 

4-mode exponential kernel fit.
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