
Supplementary Information:

Morphology and band structure of orthorhombic

PbS nanoplatelets: an indirect band gap material

David F. Macias-Pinilla,†,‡ Carlos Echeverŕıa-Arrondo,‡ Andrés. F.
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‡Institute of Advanced Materials (INAM), Universitat Jaume I, Av. Sos Baynat, s/n,

12071 Castelló, Spain
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PbS Rock-Salt Effective Masses via k · p Model

In order to understand the photophysics of the PbS rock-salt NPLs we take advantage of the

Dimmock Hamiltonian, which is the expansion of the k · p Hamiltonian, including valence-

conduction interaction, anisotropies, self polarization potential and SOC.1 A full view of

the model used in PbS rock-salt structures can be found in the supplementary information

of Ref. 2. Rock-salt PbS has direct bandgap at L point (center of the hexagonal face of
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the first Brillouin zone). With z in the cubic lattice direction [111], the valence band (VB)

edge Bloch function has L+
6 symmetry (s-like) and the conduction band (CB) edge Bloch

function has L−

6 symmetry (pz-like). With theses considerations we can write the Dimmock

Hamiltonian as a 4× 4 matrix (conduction and valence - spin up, spin down)1
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where Eg is the band gap, m is the free electron mass, Pt and Pl are the transverse and

longitudinal Kane parameters, m±

t and m±

l are the transverse and longitudinal band-edge

effective masses for electron (−) and hole (+), and ki are momentum operators.

Hamiltonian in eq. (1) can be written in compact form as in Ref. 3
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where σx, σy and σz are the Pauli matrices, kt = (kx, ky), σt = (σx, σy), and 1 is the 2 × 2

unit matrix. We can abbreviate the notation and write

H =
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
, (2)

with hcv = hvc.

Our goal is to obtain effective, single-band Hamiltonians for conduction and valence

bands, and the associated effective masses, from the multi-band Dimmock Hamiltonian, eq.
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(1). The detail procedure is explained below. Similar reasoning have been used in Ref. 3.

The eigenvalue equation from eq. (2) reads
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where Fc and Fv are the envelope function of conduction and valence band, respectively.

Equation (3) is equivalent to equation set

hcFc + hcvFv = EFc, (4)

hvcFc + hvFv = EFv. (5)

From equation (5), we have (E − hv)Fv = hvcFc → Fv = (E − hv)
−1hvcFc, replacing the

last term in equation (4) we obtain an effective Hamiltonian for the conduction band

[hc + hcv(E − hv)
−1hvc]Fc = EFc. (6)

Similarly, for the valence band one obtains

[hv + hvc(E − hc)
−1hcv]Fv = EFv. (7)

If we write ∆ = (Eg
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1. Carriers in

NPLs are confined within it, then if we consider the case of confinement in the z direction,

(E − hv)
−1 = F1, and F = 1

E+∆
.

With these considerations, and simplifying the notation h̄
m
P ≡ P , then we can write
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hcv(E − hv)
−1hvc = [Plkzσz + Ptkxσx + Ptkyσy]F

× [Plkzσz + Ptkxσx + Ptkyσy],
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Due to commutativity of the linear momentum components, most terms disappear from

the above equation, and we have
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where ẑ is a unitary vector on z direction. The second term is of Rashba type4,5 and vanishes

except in asymmetric heterojunctions. Thus equation (6) is given by
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. Then the effective Hamiltonian, in the

single band approximation, looks like a variable mass Hamiltonian with masses having the

energy eigenvalues from the 4-band Dimmock Hamiltonian, which allows us to introduce

the interaction between conduction and valence bands (similar results are obtained for the

valence band from eq. 7). So, considering that the masses are only variable with the position,

we have
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The effective masses of a single band can be obtained, but ultimately depend on the energies

of the multiband calculation. Knowing that the substitution is possible, for efficiency reasons

instead of substituting one by one the terms that relate the single band masses with the terms

of the multiband, we will make calculations of a single band and we will find which effective

masses fit better to those obtained by the multiband Dimmock calculation.

Figure 1: Electron (a) and hole (b) energy as a function of the NPL lateral confinement.
The single-band result is the best fit to the full (four-band) calculation, which allows us
to propose effective masses. The effective masses found by the single Hamiltonian fit are
m∗

x = 0.29 (m∗

x = 0.25) and m∗

yz = 0.27 (m∗

yz = 0.19) for electrons (holes).
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In Fig. 1. we fit the effective masses, from the single band Hamiltonian, that have the

smallest deviation compared to the calculation of 4-bands Hamiltonian in the Lz range. In

this case, the energy was calculated for a NPL with dimensions Lx = 1.8 nm, Ly = 50 nm.

Parameters used in Dimmock Hamiltonian are reported in Ref. 1. The effective masses found

by the single Hamiltonian fit are m∗

x = 0.29 and m∗

yz = 0.27 for electrons and m∗

x = 0.25

and m∗

yz = 0.19 for holes. These masses are similar to those obtained for orthorhombic PbS

using DFT calculations (Table III in the main text).

Energy Bands with PBE functional

Here we show the energy bands (Fig. 2.) and the effective masses obtained by the PBE

functional (TABLE 1), which are similar to those obtained by the PBEsol functional (Fig.

3 main text).
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Figure 2: (a) Energy bands without and (b) with SOC by PBE functional.
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Table 1: Effective Masses obtained from energy bands with PBE+SOC. m0 is the free
electron mass.

BAND
Effective Mass (m0)
m∗

x m∗

y m∗

z

c(1) 0.303 0.149 0.159
c(2) 0.286 0.251 0.282
v(1) 0.405 0.156 0.171
v(2) 0.70 0.248 0.206

Rock-Salt PbS Band Structure

We calculate energy bands for the rock-salt structure with the PBEsol functional and the

SOC inclusion. We relaxed the structure until forces less than 0.001Ry/a0. The first Brillouin

zone was sampled with a Γ-centered Monkhorst-pack grid of 6x6x6 k points. A direct gap

Eg = 0.24 e.V is found at the point of symmetry L, which is clearly underestimated with

respect to the reported experimental value (0.42 e.V).

Figure 3: (a) Energy bands for PbS rock-salt structure from the PBEsol functional and
SOC.

From energy bands we obtained the effective masses m∗

x = 0.31 (m∗

x = 0.25) and m∗

yz =

0.27 (m∗

yz = 0.32) for electrons (holes). These effective masses are similar to those obtained

by fitting to a single band (section I) evidencing the validity of the model and reinforcing

the value of the effective masses obtained for the orthorhombic case.
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Experimental Characterization

Figure 4: Histograms of the average length and width of PbS NPLs synthesized at different
times of reaction: (a,a’) 0.5 h, (b,b’) 1.0 h, (c,c’) 3.0 h and (d,d’) 5.0 h.

Figure 5: UV-Vis absorption and PL spectra of the PbS NPLs synthesized at different times
of reaction: 0.5 h, 1.0 h, 3.0 h and 5.0 h.
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Energy Bands of Quasi-tetragonal cell parameters

We calculate the energy bands of bulk PbS from cell parameters a = 11.9 Å, b = 4.22 Å,

c = 4.2 Å,6 with the PBEsol functional and SOC. In Fig. 6 a direct gap is appreciated and

the energy bands are in close agreement with those reported in Ref. 6 by the hybrid HSE06

exchange-correlation functional.
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Figure 6: PbS bulk energy bands with quasi-tetragonal cell parameters, PBEsol functional
and SOC.
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(2) Masi, S.; Echeverŕıa-Arrondo, C.; Salim, K. M.; Ngo, T. T.; Mendez, P. F.; López-

Fraguas, E.; Macias-Pinilla, D. F.; Planelles, J.; Climente, J. I.; Mora-Sero, I. Chemi-

Structural Stabilization of Formamidinium Lead Iodide Perovskite by Using Embedded

Quantum Dots. ACS Energy Letters 2020, 5, 418–427.

(3) Yang, J.; Wise, F. Electronic states of lead-salt nanosheets. The Journal of Physical

Chemistry C 2015, 119, 26809–26816.

9



(4) Winkler, R. Spin-orbit coupling effects in two-dimensional electron and hole systems.

Springer Tracts in Modern Physics 2003, 191, 1–8.

(5) Peter, Y.; Cardona, M. Fundamentals of semiconductors: physics and materials proper-

ties ; Springer Science & Business Media, 2010.
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