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Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an effective treatment for

the motor symptoms of movement disorders including Parkinson’s Disease (PD). Despite

its therapeutic benefits, STN-DBS has been associated with adverse effects on mood

and cognition. Specifically, apathy, which is defined as a loss of motivation, has been

reported to emerge or to worsen following STN-DBS. However, it is often challenging

to disentangle the effects of STN-DBS per se from concurrent reduction of dopamine

replacement therapy, from underlying PD pathology or from disease progression. To

this end, pre-clinical models allow for the dissociation of each of these factors, and to

establish neural substrates underlying the emergence of motivational symptoms following

STN-DBS. Here, we performed a systematic analysis of rodent studies assessing the

effects of STN-DBS on reward seeking, reward motivation and reward consumption

across a variety of behavioral paradigms. We find that STN-DBS decreases reward

seeking in the majority of experiments, and we outline how design of the behavioral task

and DBS parameters can influence experimental outcomes. While an early hypothesis

posited that DBS acts as a “functional lesion,” an analysis of lesions and inhibition of

the STN revealed no consistent pattern on reward-related behavior. Thus, we discuss

alternative mechanisms that could contribute to the amotivational effects of STN-DBS.

We also argue that optogenetic-assisted circuit dissection could yield important insight

into the effects of the STN on motivated behavior in health and disease. Understanding

the mechanisms underlying the effects of STN-DBS on motivated behavior-will be critical

for optimizing the clinical application of STN-DBS.
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INTRODUCTION

Deep brain stimulation (DBS) is a surgical therapy whereby electric current is passed through
electrodes implanted into specific brain nuclei. DBS applied to the subthalamic nucleus (STN-
DBS) has been extensively used to treat motor symptoms of Parkinson Disease (PD) for more than
30 years (Benabid et al., 2009). This neurosurgical treatment is typically applied in patients after
years of first-line dopamine replacement therapy (i.e., L-DOPA), which eventually loses its efficacy
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and starts to induce dyskinesias which further reduce its
therapeutic utility (Poewe, 1994; Ahlskog and Muenter, 2001;
Obeso et al., 2004). STN-DBS significantly improves PD motor
symptoms of tremor, rigidity and akinesia (Limousin et al., 1995;
Krack et al., 2003; Fasano et al., 2010) and thus reduces the
required dose of dopaminergic agonist or replacement therapy
(Moro et al., 1999). Because of its reliable therapeutic efficacy, it
has been proposed to apply STN-DBS earlier in the course of PD,
before dopaminergic therapy loses efficacy or the emergence of
L-Dopa induced dyskinesias (Deuschl et al., 2013; Schuepbach
et al., 2013). Moreover, case reports have suggested that STN-
DBS may reduce compulsive (Mallet et al., 2002; Fontaine et al.,
2004) or addiction-like behaviors (Witjas et al., 2005), which has
led to the suggestion that STN-DBS could be applied in patients
suffering from obsessive compulsive disorder (Mallet et al., 2008)
or to reduce symptoms of substance use disorders (Krack et al.,
2010; Rouaud et al., 2010; Pelloux and Baunez, 2013). As a result
of earlier intervention with STN-DBS for PD, as well as the
increasing indications, the population of patients treated with
STN-DBS will expand to more heterogeneous populations.

Along with its therapeutic benefits, neuropsychiatric side
effects of STN-DBS have been reported since its first applications.
Reported effects range from new onset or worsening of
impulsivity, apathy or anhedonia to improvement of pre-existing
behavioral symptoms (Chaudhuri and Schapira, 2009; Castrioto
et al., 2014). Dissociating the effects of STN-DBS itself from
underlying neuropathology and co-occurring pharmacological
treatment is critical to understand the etiology of these side
effects. One of the most frequently reported side effects of STN-
DBS in the clinic is apathy, defined as a loss of motivation or
reduction in goal-directed behavior accompanied by flattened
affect (Marin, 1996; Levy and Dubois, 2006). Apathy is a core
neuropsychiatric symptom of PD, that can be present before
STN-DBS and alleviated by dopaminergic agonists (Leentjens
et al., 2009). Apathy can be exacerbated following STN-DBS
(Drapier et al., 2006; Le Jeune et al., 2009; Wang et al., 2018),
which then compromises the quality of life benefits of STN-
DBS (Maier et al., 2013, 2016; Martinez-Fernandez et al., 2016).
The prevailing explanation for the emergence or worsening of
apathy following STN-DBS is a withdrawal-like syndrome due
to the reduction of dopaminergic treatment (Thobois et al.,
2010; Chagraoui et al., 2018), although there is also evidence
supporting a role for STN-DBS itself in this pathogenesis (Le
Jeune et al., 2009; Zoon et al., 2019). However, because of the
interaction between STN-DBS, pharmacological co-treatments
and the progression of PD pathology, it is difficult to determine
the underlying causes of motivational symptoms arising after
STN-DBS in the clinic.

In this respect, pre-clinical models have the advantage
of being able to isolate the contribution of STN-DBS alone
to motivation-related behaviors, and to elucidate the neural
mechanisms underlying these behaviors. To date, several studies
have sought to determine the involvement of STN modulation
on motivational processes (for reviews see Temel et al., 2009;
Baunez and Gubellini, 2010; Hamani et al., 2017). However,
several methodological differences exist between these studies,
including the behavioral paradigm used to assess motivation,

the parameters of stimulation or the reward used, which has
precluded any clear consensus regarding the effects of STN-
DBS on motivation and reward processing. To address this
controversy, we performed a systematic review of the pre-clinical
literature, extracting features of studies focused specifically on
reward motivation and consumption behaviors. We identify a
consistent pattern of decreased reward seeking, motivation and
consumption induced by STN-DBS, which was not evident in
studies of STN lesion or inactivation. We also identify several
stimulation and experimental parameters that are associated with
STN-DBS-induced motivational deficits. Our analysis provides
a rationale for using pre-clinical models to dissect the neural
mechanisms underlying specific behavioral effects of STN-DBS.
This mechanistic understanding will be critical for optimizing
STN-DBS as it is applied to expanding patient populations and
for increasing clinical indications.

METHODS

We systematically analyzed all pre-clinical studies investigating
the effect of STN-DBS, STN Lesion, or pharmacological
inhibition of the STN on motivation for reward.

Identification of Pertinent Literature
A systematic analysis of the international literature was carried
out by selecting articles published in peer-review journals, using
PubMed, and BioRxiv databases. The last search was conducted
on September 11, 2020. Restrictions were made, limiting the
study to academic publications in which the full text was
published in English. Search terms were as follows: “subthalamic
nucleus” AND “stimulation” AND (“reward” OR “motivation”
OR “self-administration” OR “addiction” OR “cocaine” OR
“FOOD”); and “subthalamic nucleus” AND (“inactivation”
OR “lesion”).

Screening and Eligibility
From the list of potential articles produced by systematic
research, we selected studies relevant to the topic on the basis
of their title and abstract. In brief, we excluded clinical, in vitro
and ex vivo investigations, along with experimental studies on
rodents not assessing motivation or reward-related behaviors.
We then excluded studies applying neuromodulation techniques
other than electrical stimulation, lesion or pharmacological
inactivation, or studies not providing metrics relevant to the
criteria outlined below (Figure 1).

Studies Included
Following this approach, we included 46 relevant experiments
across 25 published studies between 1997 and 2020. We
summarize the composition of these studies in Figures 2–4.

In rodents, assessment of motivation often relies on reward
seeking tasks, during which the animal has to perform an
operant behavior to receive a reward (Koob and Weiss, 1990).
The majority (33/46) of the experiments in our analysis used a
standard operant reinforcement task consisting of lever pressing
or nose poke to induce reward delivery. Twenty two of the 33
studies used a fixed ratio (FR) paradigm, in which a fixed number
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FIGURE 1 | PRISMA flow diagram of the inclusion criteria of studies eligible for systematic review.
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FIGURE 2 | Experiments investigating STN-DBS effects on reward-related behavior. Graphical representation of experiments assessing the effects of STN-DBS on

reward-related behavior. Experiments are split according the task and the reward provided, and whether the main effect was an increase (green frames), decrease (red

frames) or no change (black frames) in motivational state induced by STN-DBS. FR, Fixed ratio; PR, progressive ratio.

FIGURE 3 | Experiments investigating STN lesion effects on reward related behavior. Graphical representation of experiments assessing the effects of STN lesion on

reward-related behavior. Experiments are split according the task, the reward provided and whether the main effect was an increase (green frames), decrease (red

frames) or no change (black frames) in motivational state following lesion of the STN. FR, Fixed ratio; PR, progressive ratio.
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FIGURE 4 | Experiments investigating STN pharmacological inhibition effects on reward related behavior. Graphical representation of experiments assessing the

effects of pharmacological inactivation of the STN on reward-related behavior. Experiments are split according the task, the reward provided and whether the main

effect was an increase (green frames), decrease (red frames) or no change (black frames) in motivational state following pharmacological inactivation of the STN. FR,

Fixed ratio; PR, progressive ratio.

of operant responses (lever press or nose poke) is necessary to
earn a reward. Most studies (19) used a FR1 paradigm; here, we
extracted the number of operant responses and earned rewards
to evaluate motivational changes. The remaining 11 operant
experiments used the progressive ratio (PR) task, in which the
number of required operant responses increases incrementally
with each reward earned during the task (Arnold and Roberts,
1997; Bradshaw and Killeen, 2012). The PR task is used to
assess motivation by establishing “break-point,” or the number
of operant responses the animal is willing to execute in order
to obtain the reward (Griffiths et al., 1975). We extracted the
break-point, or, if not available, the number of rewards earned.
Few additional experiments (n = 3) provided the reward in a
free access task, which require no explicit amount of work to
obtain a reward. We thus use the consumed reward quantity as
an outcome measure.

Finally, we included ten experiments that use tasks designed
to assess impulsive behavior in the context of reward seeking. The
majority of these studies (n= 8) used variations of the five-choice
serial-reaction time task (5-CSRTT) (Robbins, 2002), while single
studies using a delay discounting task (Evenden and Ryan, 1996)
and rat Iowa Gambling Task (rIGT; van den Bos et al., 2014).
In each of these paradigms, the start of the trial is cued, and the
animal is required make the choice to complete a trial or not, and
to consume the reward if the trial was successful.

The primary outcome of these tasks is to assess impulsivity
by using metrics such as pre-mature responses. However, several
additional parameters such as the number of non-completed

trials (omissions), failures to retrieve the reward, degree
of perseverative responding or the latency to execute the
operant behavior or reward retrieval can be gleaned from
these tasks. Changes in these parameters can reflect altered
cognitive processing, motor impairments, attentional deficits
or motivational changes. Motivational changes can be inferred
with caution by the evolution of the numbers of omissions,
especially when coupled with an increase in response latency
(Robbins, 2002; Higgins and Silenieks, 2017). In few occasions,
perseverative responses have been interpreted as reflecting
changes in motivation (Baunez and Robbins, 1997; Baunez et al.,
2007), although they are more frequently interpreted as evidence
for compulsive behaviors rather than motivation per se (Robbins,
2002; Higgins and Silenieks, 2017). Thus, in order to extract the
motivational components of the task of these different studies in
a comparable and consistent way, we limited our analysis to the
quantification of reward omissions.

The studies in our analysis also varied in terms of type
of reward. In 29 of 45 experiments, the delivered reward was
palatable food, generally sucrose pellets or solution. While in the
remaining 16 experiments, a drug reward (cocaine, heroin or
ethanol) was used.

When precise metrics were not provided in the results
description, means and SEM were extracted from graphical
results section using Engauge Digitizer 12.1 software. For each
experiment we calculated the Cohen’s d standardized mean
difference (mean difference divided by the pooled standard
deviation) as an estimate of the effect size (Lee, 2016). Thus, we
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excluded studies if data were not shown or if the precise number
of animals for each experimental group was not provided. We
represented each effect size ± 95% confidence intervals on forest
plots (Figures 5–7).

RESULTS

Our results reveal a consistent effect of STN-DBS decreasing
rewardmotivation and consumption (Figures 2, 5). These results

FIGURE 5 | STN-DBS decreases reward related behavior. Forest plot of the Cohen’s d standardized mean difference for reward seeking effect of STN-DBS. Mean

effect size is depicted by the dashed red line. Key details of the experimental design, and DBS stimulation parameters are summarized in the associated table. All the

studies provided water ad libitum. 5-CSRTT, Five choice serial reaction time; CRTT, choice reaction time task; PD, Parkinson’s disease; FR, Fixed ratio; PR,

progressive ratio; rIGT, rat Iowa Gambling Task.

FIGURE 6 | STN lesion does not consistently affect reward related behavior. Forest plot of the Cohen’s d standardized mean difference for reward seeking effect of

STN lesion, ranked in order of positive to negative effect. Mean effect size is depicted by the dashed red line. 5-CSRTT, five choice serial reaction time; FR, Fixed ratio;

PR, progressive ratio.
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FIGURE 7 | Pharmacological inactivation of the STN does not consistently affect reward related behavior. Forest plot of the Cohen’s d standardized mean difference

for reward seeking effect of STN pharmacological inactivation, ranked in order of positive to negative effect. Mean effect size is depicted by the dashed red line.

5-CSRTT, five choice serial reaction time test; FR, fixed ratio; PR, progressive ratio.

also highlight specific experimental factors related to task design
or stimulation parameters that may influence the magnitude
of STN-DBS effect on reward-related behavior. Finally, while
early hypotheses posited that STN-DBS induces a “functional
lesion” of the STN through inactivation via depolarization block
(Beurrier et al., 2001; Magarinos-Ascone et al., 2002; Jakobs et al.,
2019), our analysis indicates that this decrease in reward seeking
is not recapitulated by lesioning or pharmacologically inhibiting
the STN (Figures 3, 4, 6, 7).

STN-DBS Decreases Reward Seeking
The systematic analysis of studies using STN-DBS revealed
a consistent pattern of decreased reward-seeking, which is
summarized in Figures 2, 5. In fact, only a single study reported
an increase (30%) in motivation for reward measured by the
number of sucrose pellets earned during a PR task (Rouaud
et al., 2010). The majority of investigations reported a significant
decrease in reward motivation (10/19), while a smaller number
found no effect (8/19) (Darbaky et al., 2003; Rouaud et al.,
2010; Anderson et al., 2020). In FR or PR operant tasks, STN-
DBS consistently decreased intravenous self-administration of
addictive drugs (Rouaud et al., 2010; Wade et al., 2017). And
while the effects of STN-DBS on motivation for natural rewards
is more heterogeneous, the predominant effect of STN-DBS
is also a decrease in rewards earned and consumed (Rummel
et al., 2016) (Vachez et al., 2020b), but see (Rouaud et al.,
2010; Vachez et al., 2020a). A decrease in reward seeking was
also evident in extinction tasks, i.e., where STN-DBS operant
responses were decreased in the absence of a previously available
food pellet (Klavir et al., 2009). Finally, STN-DBS increased the
rate of trial omissions in impulsivity tasks (Baunez et al., 2007;
Adams et al., 2017), which is one index of decreased reward
motivation (Robbins, 2002). In summary, the predominant effect
of STN-DBS across these tasks is a reduction in reward seeking
and motivation, measured by decreased operant responses,
rewards earned, rewards consumed or increased trial omissions.
In the following section, we discuss factors that contribute
to the variance in results found between studies, which are
important to consider when assessing the translational impact of
these findings.

Acute vs. Chronic DBS
When interpreting the clinical relevance of STN-DBS in
experimental models, one has to keep in mind that patients are
stimulated chronically, continuously and that prolonged STN-
DBS can drive long term plasticity within the STN or its target
nuclei (Shen et al., 2003; Lavian et al., 2013; Chassain et al.,
2016). In patients, some therapeutic motor effects of STN-DBS,
such as tremor cessation, appear immediately, while it can take
several weeks for other symptoms, such as postural instability,
to improve (Herrington et al., 2016). The same acute vs. chronic
distinction can be made regarding neuropsychiatric symptoms.
Some symptoms occur immediately upon STN-DBS onset, such
as hypomania, laughing or crying (Krack et al., 2001; Mallet et al.,
2007; Wojtecki et al., 2007; Abulseoud et al., 2016), while other
symptoms, typically apathy, progressively emerge with chronic
stimulation (Drapier et al., 2006; Le Jeune et al., 2009).

In our analysis, only three experiments applied STN-DBS
chronically, and two of these experiments showed a significant
decrease of sucrose or food self-administration over time
(Vachez et al., 2020b). This is in contrast with the absence of
motivational deficits during acute STN-DBS during a similar
FR1 task or even the increased motivation during a PR
task (Rouaud et al., 2010). These differential effects could
suggest potential long-term adaptations in the mesolimbic
system underlying motivational deficit following chronic STN-
DBS. Further investigations specifically using chronic STN-
DBS (Melon et al., 2015; Chassain et al., 2016) are needed to
understand the long-term effect of STN-DBS on reward-related
behavior, and potential plasticity mechanisms underlying these
behavioral adaptations.

Unilateral vs. Bilateral DBS
Another important factor to consider when interpreting the
effects of STN-DBS on reward seeking is whether the stimulation
is applied unilaterally (to a single hemisphere) or bilaterally. One
set of studies performed under matched conditions from the
same group reported that chronic unilateral STN-DBS during
a FR1 task (Vachez et al., 2020a) did not recapitulate the
sustained reward seeking deficit that occurred with chronic,
bilateral stimulation (Vachez et al., 2020b). With the unilateral
STN-DBS, the effect was only transient and lasted no more than
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5 days. Overall, the few studies using unilateral STN-DBS do
not report robust reward seeking deficits, or report deficits that
are only transient (Darbaky et al., 2003; Anderson et al., 2020;
Vachez et al., 2020a). In the clinic, bilateral STN-DBS is generally
associated with superior reduction in motor symptoms relative
to unilateral stimulation (Bastian et al., 2003; Lizarraga et al.,
2016), but may also induce more non-motor side-effects (Lee
et al., 2011; Sjoberg et al., 2012). Notably, a study within the
same clinical center observed apathy following bilateral (Le Jeune
et al., 2009) but not unilateral STN-DBS (Vachez et al., 2020a).
These observations suggest that preserving function of one STN
by applying DBS unilaterally protects against a reward seeking
deficits in patients or in animal models. It is also possible that
DBSmay drive compensatorymetabolic or neural circuit changes
in the un-stimulated hemisphere that may mitigate reward-
seeking deficits induced by STN-DBS. Thus, whether STN-DBS is
applied uni- or bilaterally is an important factor to consider when
interpreting STN-DBS effects in animal models and its relevance
to clinical populations.

Stimulation Polarity
In patients, monopolar electrodes are preferentially used, with
the pulse generator within the chest being the ground pole of
stimulation (Benabid et al., 2009; Amon and Alesch, 2017). In
contrast, most rodent studies use bipolar electrodes. Bipolar
stimulation generates a more focal electric field than monopolar
electrodes and consequently activates a smaller volume of tissue
(Temel et al., 2004; Chaturvedi et al., 2013; Hancu et al.,
2019). While there are very few published direct comparisons of
bipolar and monopolar stimulation within patients, monopolar
stimulation is associated with greater improvement of rigidity,
tremor and bradykinesia, but also with a higher incidence
of side-effects such as confusion or mania (Deli et al., 2011;
Chopra et al., 2012). We found a single study that directly
compared monopolar and bipolar STN-DBS (Badstuebner et al.,
2017). Consistent with clinical observations, monopolar STN-
DBS was also associated with a greater reduction in akinesia,
sensorimotor neglect and amphetamine-induced rotation than
bipolar DBS in 6-OHDA lesioned rats (Badstuebner et al.,
2017). However, monopolar STN-DBS is rarely used in rodent
studies, so it is difficult to draw firm conclusions regarding
the difference between monopolar and bipolar stimulation on
reward-related behavior. Interestingly, the only studies that
reported STN-DBS-induced reward seeking deficits in low
effort tasks (FR1 or free access consumption) used monopolar
electrodes (Rummel et al., 2016; Vachez et al., 2020b). This
potential greater decrease in reward motivation with monopolar
STN-DBS could be explained by differences in current spread.
As we will discuss in subsequent section, although the motor
territory of the STN is targeted with DBS, electric current can
feasibly spread to associative or limbic territories, or even to
adjacent neural structures (Mandat et al., 2006; Tan et al., 2013).
Because the electric field induced by monopolar stimulation is
more diffuse than with bipolar stimulation, this current spread
could be an important driver of decreased reward seeking
and motivation.

Pathophysiological and Metabolic State
Finally, the underlying pathophysiology and metabolic state of
animals must be carefully considered when interpreting effects of
STN-DBS on reward-related behavior. Although STN-DBS has
primarily been studied in the context of PD, few studies have
directly examined the effects of STN-DBS on reward seeking
and motivation in experimental models of PD. In rodents, PD
is typically modeled by the selective ablation of dopaminergic
neurons with intracranial injections of 6-hydrodopamine (6-
OHDA) to mimic the degeneration of dopaminergic neurons
observed in PD (Deumens et al., 2002). Dopamine is critical
for encoding reward value, action selection and vigor as well as
updating behaviors based on past history of prior rewards and
punishments [for review, see Berke (2018)]. Therefore, according
to the specificity and extent of the dopaminergic lesion, decreased
motivation and operant responding for sucrose frequently occurs
in 6-OHDA-lesioned animal models independent of STN-DBS
(Drui et al., 2014; Favier et al., 2014, 2017; Magnard et al., 2016).
Yet, the characteristic striatal dopaminergic denervation in these
PDmodels does not appear to influence the outcome of STN-DBS
reward-related behavior. In intact and in 6-OHDA-lesioned rats,
STN-DBS induces a similar rate of omission in choice reaction
time task (Darbaky et al., 2003; Baunez et al., 2007) and an
equivalent decrease of the number of sucrose rewards earned
during a FR1 task (Vachez et al., 2020b).

A related factor that definitely affects motivation and thus
outcomes of reward seeking tasks is the baseline satiety state
of the animal (Berridge, 2004). Some level of food restriction is
commonly used to invigorate seeking behaviors and learning in
complex tasks such as the 5-CSRTT, and it does so by increasing
the motivational value of the reward (Cabeza de Vaca and
Carr, 1998; Mosberger et al., 2016). Thus, it is likely that basal
food restriction can account for some of the lack of effect of
STN-DBS observed in sucrose self-administration studies under
low demand conditions [i.e., FR1, Rouaud et al. (2010) and
Anderson et al. (2020)], while experiments with this same FR1
task conducted without food restriction have found decreases
in reward seeking (Vachez et al., 2020b). The interpretation
is that under conditions of basal food restriction, homeostatic
drive for calories in sucrose overrides more subtle effects of
STN-DBS; when there is no underlying metabolic demand for
sucrose, the effects of STN-DBS on incentivemotivation aremore
readily apparent.

Food or Drug Reward
A final and related consideration is whether food or drug reward
is used to probe the effects of STN-DNS on reward seeking.
Whereas 5/14 experiments reported decreased motivation for
sucrose or food reward, 4/5 studies using drug reward found
that STN-DBS decreases motivation for the drug. Briefly, bilateral
STN-DBS decreases on-going self-administration and escalation
of drug taking for both cocaine and heroin (Rouaud et al., 2010;
Wade et al., 2017; Pelloux et al., 2018) and decreases relapse
to heroin seeking following protracted abstinence (Wade et al.,
2017). Importantly, STN-DBS has opposite effects in the same
investigation according to the reward; decreasing cocaine self-
administration but increasing sucrose taking (Rouaud et al.,
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2010). Some evidences suggest that the STN encodes reward value
(Lardeux et al., 2009); and that sucrose and cocaine elicit activity
of different subthalamic neuronal populations (Lardeux et al.,
2013). Thus, it is hypothesized that different microcircuits within
the STN separately drive motivation for “natural” reward or for
addictive drugs. It is therefore possible that these microcircuits
could be differentially impacted by STN-DBS, which may explain
themore consistent effects of STN-DBS on decreasingmotivation
for drugs of abuse. Additional work is needed to understand how
motivation for drugs abuse is encoded within the STN during
different phases of the addiction cycle, which will have important
implications for optimizing STN-DBS as a potential therapy for
substance use disorders.

Summary
Overall, when applied chronically, bilaterally and with
monopolar electrodes to model clinically-relevant conditions,
STN-DBS consistently decreases reward seeking behavior. This
STN-DBS-induced decrease in reward seeking is consistent
across operant tasks but is most evident in satiated rats.
Some attempts have been made to harness this feature, by
proposing STN-DBS as a potential therapy for addiction
(Rouaud et al., 2010; Pelloux and Baunez, 2013; Creed M. C.,
2018).

However, this review highlights that STN-DBS has the
capacity to decrease seeking for natural rewards as well as for
drugs of abuse. A related consideration is that chronic application
of STN-DBS leads to the emergence of learned-helplessness
behaviors in shuttle-box or forced swim tasks (Temel et al.,
2007; Tan et al., 2011; Creed et al., 2013). These results suggest
that a general amotivational state may be induced by chronic
STN-DBS in rodents, and emphasize the need for a mechanistic
understanding of how STN-DBS induces its effects on reward-
seeking in order to optimize the therapy for movement or
substance-use disorders.

DETERMINING THE NEURAL
MECHANISMS UNDERLYING THE
EFFECTS OF STN-DBS

STN-DBS Is Not Equivalent to Functional
Inactivation
One early hypothesis regarding the mechanism of action of DBS
is that stimulation silences local cell bodies (Grill et al., 2004;
McIntyre and Anderson, 2016), producing a functional lesion. In
PDmodels and patients, lesioning the STN abolishes pathological
hyperactivity and burst firing within the nucleus (Bergman et al.,
1994; Hassani et al., 1996; Kreiss et al., 1997; Vila et al., 2000)
that is correlated with motor symptoms (Bergman et al., 1990;
Guridi et al., 1994, 1996; Wichmann et al., 1994; Henderson
et al., 1999; Baron et al., 2002; Kühn et al., 2009; Baunez and
Gubellini, 2010). Consistent with this silencingmechanism, STN-
DBS inhibits firing of local STN neurons both ex vivo and in
vivo (Benazzouz et al., 2000b; Tai et al., 2003; Filali et al., 2004;
Welter et al., 2004; Meissner et al., 2005; Shi et al., 2006; Wade
et al., 2017).Multiplemechanisms have been proposed to account
for this inhibition, including voltage-dependent activation of

potassium conductance resulting shunt inhibition (Shin et al.,
2007; Florence et al., 2016), inactivation of sodium channels
(Beurrier et al., 2001; Magarinos-Ascone et al., 2002) neuronal
energy depletion (Lozano et al., 2002) or excitation of pallidal
GABAergic terminals to the STN (Filali et al., 2004). While a
functional lesion effect has been proposed to account for many
of the motor effects of DBS, whether this functional silencing
also accounts for adverse psychiatric effects of STN-DBS is
less clear. To address this question, we analyzed pre-clinical
studies that examined the effect of either electrolytic lesion or
pharmacological inactivation of the STN on reward seeking.
This inactivation was achieved with muscimol (an agonist of the
GABAA receptor which fluxes chloride ions into the cell, thereby
hyperpolarizing the membrane) or lidocaine (an antagonist of
voltage-gated sodium channels, which are required for action
potential firing).

Results of STN lesion studies were more heterogeneous than
with DBS, with increases (n = 6), decreases (n = 9), or no
change in reward seeking (n = 6) being reported (Figures 3,
6). This heterogeneity cannot be completely explained by the
type of reward used; STN-lesions had heterogeneous effects on
responding for sucrose and food (Baunez and Robbins, 1997,
1999a; Baunez et al., 2002, 2005; Winstanley et al., 2005; Bezzina
et al., 2008; Lardeux and Baunez, 2008; Uslaner et al., 2008;
Winter et al., 2008), as well as for addictive drugs (Baunez et al.,
2005; Lardeux and Baunez, 2008; Uslaner et al., 2008; Pelloux and
Baunez, 2017; Montanari et al., 2018; Pelloux et al., 2018).

The heterogeneity could partially be explained by the
behavioral paradigm used. STN lesion did not affect reward
intake in free access (Lardeux and Baunez, 2008) or extinction
paradigms (Winter et al., 2008) where the cost of responding is
low. In impulsivity tasks, STN lesion consistently increased the
rate of trial omissions and response latency (Baunez and Robbins,
1997, 1999a; Winstanley et al., 2005), which can be interpreted
as decreased motivation (Robbins, 2002; Higgins and Silenieks,
2017) (Figures 3, 6). However, when assayed using classical FR
or PR operant tasks, STN lesion either increased (Baunez et al.,
2002, 2005; Uslaner et al., 2008; Montanari et al., 2018) or did
not change (Baunez et al., 2005; Bezzina et al., 2008; Winter
et al., 2008) self-administration of food or sucrose. Decreased
cocaine or ethanol taking is the predominantly reported effect
of STN lesion (Baunez et al., 2005; Pelloux and Baunez, 2017;
Pelloux et al., 2018). However, absence of effect (Bezzina et al.,
2008) and even slightly increased drug seeking (Uslaner et al.,
2008; Montanari et al., 2018) has also been reported following
STN lesion.

Fewer studies have investigated pharmacological inactivation
of the STN (Figures 4, 7). Of the six total studies, one experiment
reported an increase of food pellets earned during an operant
task (Baunez et al., 2005), while three studies reported no
effect on food or sucrose pellets (Klavir et al., 2009; Pratt
et al., 2012) or cocaine administration (Kantak et al., 2013).
Finally, two experiments showed decreased reward seeking
with STN inactivation, measured as increased omissions in a
food-rewarded 5-CSRTT (Baunez and Robbins, 1999b; Bentzley
and Aston-Jones, 2017) or reduced cocaine self-administration
(Bentzley and Aston-Jones, 2017). Overall, the mean effect size
of STN lesion or inhibition is null, owing to the high variability
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in experimental outcomes reflecting the heterogeneity of the
experimental conditions in terms of task, reward, physiological
and metabolic state. These results are in stark contrast to
the consistent effects of STN-DBS across studies, and suggest
that STN-DBS effects cannot be emulated with lesion or
pharmacological inactivation.

STN-DBS Modulates Activity Throughout
the Basal Ganglia
The difference in behavioral outcomes between STN-DBS and
STN-lesion and inactivation is not entirely surprising. While the
predominant effect of DBS on local tissue is depolarization block
(Benazzouz et al., 1995; Beurrier et al., 2001; Tai et al., 2003),
DBS can modulate distal brain regions through antidromic and
orthodromic activation (Fedele and Raiteri, 1999; Li et al., 2007;
Kang and Lowery, 2014). These effects are dissociable from effects
on stimulated cell bodies, due to lower threshold of activation in
fibers relative to cell bodies (Nowak and Bullier, 1998; Dostrovsky
et al., 2000; McIntyre et al., 2004). Consequently, STN-DBS and
STN-inactivation have distinct effects on activity throughout
the basal ganglia (Creed et al., 2012), which is crucial, since
coordinated activity in the basal ganglia network is necessary
for driving reward seeking behavior (Sesack and Grace, 2010).
Another consequence of network modulation by STN-DBS is
that it induces striatal dopamine release (Benazzouz et al., 2000a;
Bruet et al., 2001; Zhao et al., 2009; Shon et al., 2010; He et al.,
2014), which is also not observed with STN lesion (Winter
et al., 2008; Walker et al., 2009). Striatal dopamine release signals
the difference between expected and experienced reward to
drive reward learning, and invigorates action selection including
reward seeking (For reviews, see Howe et al., 2013; Berke, 2018).
By inappropriately elevating dopamine levels, STN-DBS could
increase the noise in the dopamine-mediated reward-prediction
error signal, or could induce long-term plasticity in the striatum
which could also contribute to impairments in reward seeking
behavior (Benazzouz et al., 2000a; Bruet et al., 2001; Gubellini
et al., 2006; Carcenac et al., 2015).

STN-DBS Potentially Induces Ectopic
Stimulation
An alternative hypothesis to explain the effects of STN-DBS on
reward seeking is current spread outside the motor territory
of the STN and potentially outside the STN itself. The STN
can be divided into three functional territories (Figure 8):
motor, associative and limbic, based on its afferent and efferent
connections (Lambert et al., 2012; Hamani et al., 2017; Emmi
et al., 2020). The caudal and dorsolateral part form the motor
STN; it receives inputs from the primary motor cortex and
GPe and projects to the GPi and the striatum (Benarroch,
2008). The associative STN lies in the ventral lateral aspect
of the rostral nucleus, it receives input from the dorsolateral
prefrontal cortex and innervates the SNr (Benarroch, 2008).
Activity in the associative territory supports cognitive aspects
of motor behavior, including impulsivity and attentional control
(Frank, 2006; Alegre et al., 2013; Obeso et al., 2013). Finally,
the rostromedial tip of the STN constitutes the limbic territory.

FIGURE 8 | Afferent and efferent connections of STN functional subdivisions.

The subthalamic nucleus (STN) is subdivided into a dorsolateral motor territory,

a ventromedial associative territory, and a medial limbic territory. Each

functional territory receives input from different cortical regions or the external

segment of the globus pallidus (GPe), and in turn projects to different

downstream structures, including the internal segment of the globus pallidus

(GPi), substantia nigra pars reticulata (SNr), nucleus accumbens (NAc) and

ventral pallidum (VP). These input-output interactions provide for parallel

control of motor, cognitive, and emotional functions. The STN is composed of

interneurons and glutamatergic projection neurons whose dendrites may

arborize over a distance of up to 500µm. This is important, because individual

STN neurons may physically span into adjacent territories and be effected by

DBS applied to these adjacent subdivisions.

This division receives inputs from the medial prefrontal and
anterior cingulate cortices and projects to the ventral pallidum
and the nucleus accumbens (Cavdar et al., 2018; Emmi et al.,
2020). Limbic functions of the STN involve reward encoding
and sensory integration to drive appropriate emotional states
(Drapier et al., 2008; Lardeux et al., 2009; Eitan et al., 2013;
Zenon et al., 2016). Therefore, stimulation of the limbic and/or
associative territories is one possible explanation for the effects
of STN-DBS on reward-related behavior (Mallet et al., 2007;
Zoon et al., 2019). While these subdivisions are established in
human and non-human primate, the well-defined topographic
segregation is less clear in rodents (Alkemade et al., 2015). In rats,
STN neurons with cell bodies localized in a given territory can
extend dendrites across the length of the nucleus (Afsharpour,
1985). Thus, the current spread from STN-DBS electrodes, even
if well-placed within the motor territory of the STN could
also modulate STN neurons in non-motor territories (Figure 8).
Beyond this, the STN is embedded within the zona incerta,
and sits adjacent to the internal capsule and pallidofugal system
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(Hamani et al., 2004; Parent and Parent, 2004). These areas would
be modulated by current spread outside the STN, and could
be relevant for non-motor effects of STN-DBS. As mentioned
above, in rodent studies, monopolar stimulation (which induces
a larger current spread relative to bipolar stimulating electrodes)
is associated with greater deficits in reward seeking (Figure 5).
While the effects of monopolar vs. bipolar stimulation on
induction of apathy or reward seeking behavior have not been
directly compared in the clinic, there is evidence to suggest that
high current amplitude and the use of monopolar electrodes are
associated with worse psychiatric outcomes (Deli et al., 2011;
Chopra et al., 2012). This is consistent with the hypothesis that
reward-seeking deficits could be accounted for by current spread
to limbic or associative territories of the STN, or to STN-adjacent
nuclei and fiber tracts (Tan et al., 2013).

Even if it is current spread to STN subterritories and adjacent
structures, and not modulation of the motor STN per se that
drives reward-seeking deficits, this still does not explain the
precise mechanisms underlying these deficits. For example, the
reward-related effects could also be due to antidromic activation
of afferent structures such as the prefrontal cortex (Irmen et al.,
2020), or to modulation of downstream structures such as ventral
pallidum or nucleus accumbens (Hahn et al., 2008; Cavdar et al.,
2018). Likewise, STN-DBS modulates dopamine tone through
polysynaptic outputs of the STN proper leading to stimulation
of midbrain dopamine neurons, or through direct activation of
dopamine fibers arising from current spread beyond the STN
borders (Benazzouz et al., 2000a; Bruet et al., 2001; Tan et al.,
2011, 2012; Carcenac et al., 2015). To disentangle these different
possibilities, sophisticated approaches to circuit dissection, such
as optogenetics, will be required.

DETERMINING THE NEURAL
MECHANISMS UNDERLYING THE
EFFECTS OF STN-DBS: FUTURE
PROSPECTS WITH OPTOGENETICS

Optogenetics refers to a suite of engineered ion channels
that are activated by light in a specific wavelength, and flux
ions in response to activation. Channelrhodopsin (ChR2) is
non-selective cation channel, that when exposed to blue light
(∼473 nm), allows sodium and calcium to flow into the cell along
their concentration gradients, thereby inducing depolarization
and action potentials (Nagel et al., 2003). Conversely, the
inhibitory halorhodopsin is a chloride pump that is activated
upon stimulation with amber light (∼590 nm), increases the
intracellular chloride concentration, thereby hyperpolarizing the
cell and inhibiting the firing action potentials (Zhang et al.,
2007). The location of the injected virus expressing the opsin and
placement of the optic fiber for light delivery allows for spatial
control of neural activation, while cell-type or projection-specific
control of neural populations can be achieved by expressing
viruses using intersectional genetic strategies. Finally, the pattern
of light stimulation allows for tight temporal control of neural
activity (Liewald et al., 2008). Optogenetics has yielded highly
valuable insight to functional connectivity and activity within

intact or pathological circuits, and could be leveraged to resolve
outstanding questions regarding STN-DBS mechanisms.

Optogenetics was first leveraged to elucidate the role of STN
in motor processes over 10 years ago, when a seminal study
by Gradinaru et al. (2009) targeted the STN with excitatory
and inhibitory optogenetic approaches. This investigation first
tested the hypothesis that the motor effects of STN-DBS were
due to local inhibition. However, optogenetically silencing cell
bodies of the STN by activation of halorhodopsin was unable
to rescue motor deficits in a 6-OHDA model of PD. Instead,
using ChR2 to selectively activate terminal fields of cortical
afferents into the STN rescued unilateral motor deficits in the
PD model, suggesting a critical role of antidromic activation
of “hyperdirect” cortico-STN pathway in the motor effects of
DBS (Li et al., 2007; Fraix et al., 2008). Optogenetic activation
of STN cell bodies also did not rescue motor deficits, arguing
that STN-DBS does not exert its effects through driving action
potentials in efferent STN fibers. However, these experiments
stimulated at 130Hz, while kinetics of the variants of ChR2
available at the time were not able to follow such high stimulation
frequencies (Gunaydin et al., 2010). More recent studies with
mutated opsins [i.e., Chronos, which is capable of following
frequencies over 100Hz (Saran et al., 2018)] have suggested that
activation of cell bodies at frequencies relevant to DBS may
indeed rescue motor deficits in a PD model (Yu et al., 2020).
As with DBS, these investigations demonstrate a frequency-
dependence of optogenetic effects, and have elucidated multiple
neural mechanisms driving the therapeutic motor effects of STN-
DBS in animal models.

The neural mechanisms underlying the potential adverse
psychiatric effects of STN-DBS have received considerably less
attention (Pan et al., 2014; Yoon et al., 2014, 2016; Tian et al.,
2018). In the future, stimulating the STN with fast opsins such
as Chronos or ChETA (Gunaydin et al., 2010) in the context of
motivation and reward-learning paradigms will provide unique
insights about the causality of the STN itself for the effects
of STN-DBS on reward-related behavior. A single report has
suggested that optogenetic stimulation of STN cell bodies at
frequencies >100Hz can reduce the breakpoint for sucrose, and
that this effect is critically dependent on stimulation frequency
and pulse width (Tiran-Cappello et al., 2018). However, this
report did not distinguish between STN subdivisions, and as
discussed above, current spread to the limbic and/or associative
STN territories is one prevailing hypothesis for decreased
reward seeking following STN-DBS. This hypothesis could be
tested by selectively manipulating those functional subterritories.
Because of the small size of the STN in rodents such a
spatial resolution could be achieved by targeting pathway-specific
output structures. For example, a recent study investigated PD-
related pain, by injecting ChR2 within the STN and placing optic
fibers in different STN output structures, such as substantia nigra
reticulata or ventral pallidum to target the motor and limbic
STN subterritories, respectively (Luan et al., 2020). Or, akin
to the work by Gradinaru et al. (2009), antidromic activation
of afferents can be modeled by expressing excitatory opsin in
STN-projecting structures and placing fibers above the STN
(Sanders and Jaeger, 2016; Sanders, 2017). The medial prefrontal
and anterior cingulate cortices constitute major limbic inputs
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to the STN; thus, manipulations of these pathways could yield
important insight into the role of STN-DBS in the context of
reward seeking.

The application of optogenetics has also shown promise for
the development of novel deep brain stimulation protocols. In
the clinic, and in all pre-clinical literature cited here, stimulation
is applied at high frequencies (above 50Hz, Figure 5). However,
with optogenetics, specific cell types can be stimulated at
precise physiological frequencies, and these physiological activity
patterns can be used to drive plasticity within activated circuits.
Proof of concept of this approach have been demonstrated
for the motor symptoms of PD (Mastro et al., 2017) and
for addiction (Pascoli et al., 2011, 2014; Creed et al., 2015;
Creed M., 2018). In both of these applications, targeted
stimulation of genetically-defined neural circuits was able to
reverse behavioral impairments by selectively normalizing circuit
function. While this strategy has not yet been demonstrated
with STN stimulation, it is possible that selective activation
of STN subdivisions at frequencies capable of driving long-
term adaptations may induce persistent motor benefits without
requiring continuous stimulation that carries with it the potential
for adverse motivational effects.

In sum, sophisticated circuit dissection with optogenetics
could be used to understand the role of the STN and its functional
subterritories in coordinating adaptive motor and reward-related
behaviors. With this insight, it may be possible to rationally
stimulate the STN in order to achieve sustained motor benefits
with lower risk of adverse effects on reward-related behavior.
Conversely, it is possible that targeted manipulation of the
associative or limbic territories of the STN could be leveraged to
optimize or develop novel DBS paradigms to treat symptoms of
addiction or obsessive compulsive disorder.

CONCLUSION

STN-DBS has become a mainstay therapy for movement
disorders, and has been proposed to be applied earlier in course
of PD, and potentially expanded to other indications, such as
obsessive and compulsive disorders or addiction. Clinically, side
effects such as depression, impulsivity and apathy have been
reported with STN-DBS, which presents a major therapeutic
limitation. To prevent side-effects, we must understand their
neural underpinnings. In this respect, pre-clinical models have
the advantage of being able to dissociate the effects of STN-
DBS per se from underlying disease pathology or confounding
effects of dopaminergic medications. Here, we focus our review
on the specific dimensions of reward motivation, seeking
and consumption, which can be clearly defined in operant
tasks. When limiting our review to this specific scope, we
find that STN-DBS consistently decreases reward motivation,
seeking and consumption across a variety of behavioral models.
Interestingly, studies that lesioned or inactivated the STN showed
no consistent effect on reward-related behavior. Moreover,
monopolar stimulation and bilateral stimulation, which both
increase the volume of tissue activated, tend to be associated with
more severe reward seeking deficits. Together, these observations
suggest that reward seeking deficits may not be mediated by

local effects within the STN per se, but by modulation of afferent
or efferent structures of the limbic territory of the STN, or by
current spread to adjacent fiber tracts. To definitively address
these questions, optogenetic tools could be used to dissect the
STN circuitry and establish links of causality between DBS effects
on STN microcircuitry and reward seeking deficits, as has been
done for the motor domain of STN-DBS.

A final consideration is that, we focused our review on only
the dimension of rewardmotivation, seeking and consumption in
tasks without conflict. Impulsivity, which is another commonly
reported effect of STN-DBS is beyond the scope of the current
review. However, extensive evidence has implicated the STN
in arresting behavior, particularly under conditions of conflict
to allow more time to accrue for an optimal decision to be
made in rodents (Baunez and Robbins, 1997, 1999b) and patients
(Bastin et al., 2014; Benis et al., 2016). This was recently elegantly
demonstrated using optogenetic modulation of the STN; STN
activation was able to abruptly interrupt reward consumption,
while STN-inhibition prevented the ability of novel, salient
stimuli to abort reward consumption (Fife et al., 2017). In
real-world contexts, reward-related behavior often occurs under
conditions of conflict, or with costs associated to reward seeking
or consumption. This is particularly relevant in the context of
impulse control disorders or addictions, in which reward seeking
becomes maladaptive because of its association with adverse
consequences. Therefore, future directions for understanding the
effect of STN-DBS on reward-related behavior in a translational
context will require the application of decision-making tasks
that capture dimensions of risk-reward balance, as well as
cognitive andmotor impulsivity. Understanding themechanisms
underlying the potential adverse psychiatric effects of STN-
DBS, and disentangling these from the substrates underlying
its beneficial motor effects will be necessary for optimizing its
therapeutic potential.
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