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Abstract
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by Samina Asif

Designing a spacecraft electrical power system (SEPS) is a complex and time-

consuming engineering task that involves meeting several design objectives under

constraints. A conceptual design of a spacecraft power system involves an optimal

selection of available technologies for various components, such as solar cells, solar

arrays, batteries, and bus voltages. Each technology has its own advantages and

disadvantages that need to be taken into account in the search for an optimal

design solution. This selection must meet certain criteria, the most important

of which are cost-effectiveness, mass and performance. Traditionally, this task is

a manual iterative process. At present, designs thus selected may not be real-

izable using the state-of-art design options available in the industry. However,

advances in domain knowledge and in extra-numerical and multi-objective search

techniques, such as evolutionary computation, offer a possibility of accelerating

and improving this design cycle through a machine-automated design procedure.

This thesis addresses the key issue of intelligent design automation and optimiza-

tion of spacecraft power systems implemented in realistic design processes. The

SEPS design is multi-objective in nature, a situation where a designer searches for

solutions that are feasible with respect to all conflicting objectives. To facilitate

the intelligent search process, meta-heuristics techniques are exploited in this work

to provide computationally inexpensive design optimization.
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It extends the existing concept of computer-aided design to computer-automated

design. To make the process of trade selection more efficient and reliable, a multi-

objective design system for solving preliminary design problems for spacecraft

electrical power subsystems is developed. It presents a system engineering frame-

work that places design requirements at the core of the design activities. The thesis

presents how simulation and optimization techniques can be used to automate and

improve the design process of spacecraft power subsystems.

The automated design procedure involves the design parameterization and the

tools for system sizing and analysis. For the SEPS analysis, an inexpensive method

for estimating design behavior is presented. Truly multi-objective and globally op-

timal design solutions are then artificially evolved as a result of interfacing evolu-

tionary computation techniques with system sizing and analysis tools under prac-

tical constraints. Compared with conventional optimization techniques, the multi-

objective design approach provides system designers with a clearer understanding

of the effect of their design selections on all design variables simultaneously.

In particular, the thesis extends a SEPS design problem from the basic technol-

ogy selection to a detailed optimization based systematic design, which ensures

the optimality and usability of designs from the beginning of the design process.

Designs are made with implementation of solar cell modeling and parameter opti-

mization using simulated annealing, which forms a very useful tool for simulating

the behavior of solar arrays comprising of different types of solar cells. SEPS sim-

ulation is extended in MATLAB from existing work currently limited to Si solar

cells and NiH2 batteries to a variety of solar cell and battery technologies. The

thesis also develops a complete SEPS design and search framework, as a single tool

and thus avoiding all compatibility issues involved. This feature makes this work

very practical and efficient. It also keeps a way open for further improvements and

modifications, both for optimization techniques and for the SEPS search space.
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Chapter 1

Introduction

The process of a space mission design starts with mission and objectives definitions.

Depending upon these objectives, many possible mission concepts are identified.

At this initial stage of design, there is a need to choose among different concepts

available after going through an initial trade-off process. After the selection of

mission concept, and going through a number of design cycles, this process enters

the preliminary design phase. At this stage, the architecture of subsystem is of

concern.

In addition to the payload, the spacecraft consists of many supporting subsystems

like the power subsystem, propulsion subsystem, thermal subsystem, etc. Each

subsystem is responsible for a particular function. A spacecraft electrical power

subsystem (SEPS), also known as a spacecraft power system (SPS), generates

power, regulates it, stores it for periods of peak demand or eclipse, and distributes

to the entire spacecraft. Designing these subsystems to meet the mission objectives

with the possible minimum cost and weight limits is one of the most important

and challenging aspects of the design process.

Spacecraft power system design involves the selection of a system topology, which

is governed by the requirements of load power, mission life and regulation. At

the lower level, it is mainly concerned with the technology for the components

such as solar array, battery, and regulators. Usually, the initial designs are made

by repeated trade-off studies among different design concepts and technologies.

The trade-off among different design parameters to achieve the desired goals is a

lengthy and iterative process [1]. This stimulates the need of the development of

1
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an intelligent frame-work that can help the design engineer with an automated

optimal design of the spacecraft power system.

Competition in the spacecraft industry has forced system designers to choose the

design for spacecraft systems in a way that results in the most cost-effective prod-

uct. Thus, the aerospace design practice has moved from maximizing performance

under technology constraints to minimizing cost under performance constraints

[2]. However, in some mission scenarios it may not be the case, so there is always

a trade-off between performance, mass, and cost, which varies from mission to

mission. Automating the design of a spacecraft power system is a complex task.

Optimization of the process of designing and sizing a spacecraft power system can

provide the best possible trade-off among the conflicting objectives.

For the design optimization of a spacecraft power system, there is a need to develop

various tools. A sizing tool is required, to calculate physical parameters like size,

mass, volume or cost of the system. On the other hand, analysis of the design is

typically performed using simulation in order to check that the desired behavior is

met. There are already some analysis tools with limited availability. However the

development of an analysis tool using most commonly available platform, efficient

enough to perform analysis over a certain period of time and robust enough to

be expendable to include all possible technologies and topologies, still remains

relatively untouched.

Most of the spacecraft optimization work reported in the literature has been per-

formed using specialized software packages or has been carried out in a classified

manner. A brief review of the available analysis tools, and the problems associ-

ated with them, are discussed in section 2.1. In addition, the problem of spacecraft

power systems has not been explored for generalized application of multi-objective

optimization.

1.1 Problem statement

At present, there exist certain limitations in spacecraft power system optimization

rules and dynamic simulation available in the public domain. Firstly, most of the

optimization problems are designed for solar array and battery technology selection

only. Other design parameters which affect overall system design configuration and

performance such as the bus voltage, battery configuration, etc., have not been
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taken into account. These considerations are real and very important prior to the

early design search being carried out.

In a design problem, it is usually desirable to choose design variables from within

the commercially available sizes and configurations. In existing optimization prob-

lems, no consideration is given to the requirement that only the design configu-

rations that are available in the market should be chosen. The use of continuous

variables in optimization procedure, though very straightforward, can lead to non-

available sizes. Any attempt to substitute these values by the closest commercial

designs or to ask for new products, can make the design non-optimal and, in

certain cases, even infeasible.

Thirdly, the problem under consideration is of a multi-objective nature, where

a designer needs to optimize the competing objectives such as mass, cost and

performance simultaneously. The performance index takes into account the solar

array figure-of-merit, operational constraints of battery and also the reliability of

power system for selected technologies. So far it has not been solved as a pure

multi-objective problem, rather as a single objective or constrained optimization

problem.

In addition, no work has been done for the development of a complete framework

based on a single platform, which incorporates system analysis, for design search

and optimization of spacecraft power systems. Work has already been carried

using different commercial tools. This impose limitations in extending the work

either on the optimization side or in incorporating further design options, while

at the same time, making it unsuitable for academic research.

1.2 Research Objectives and Approach

1.2.1 Objectives

The aim of this research is to develop a framework based on evolutionary computa-

tional techniques for computer-automated design and multi-objective optimization

of spacecraft power subsystems. It aims at the design and development of a sim-

ple frame-work based on a common platform. The application of this framework

for the optimal selection of components and configurations will give great help to
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spacecraft power system (and other subsystem) designers. This will reduce the

time of design of selection and will provide them with a better basis to make more

detailed system architecture and design decisions with confidence. In addition to

the application of evolutionary computations for SEPS design, their application

in the modelling of spacecraft power system components will also be investigated.

Specifically, this work aims to develop a methodology and framework for intelli-

gently solving SEPS design as an optimization problem. This enables an efficient

search for the best families of design solutions within the system trade space. The

developed methodology will incorporate modelling and simulations to predict the

performance of candidate spacecraft power systems for intelligent design itera-

tions. With a multi-objective problem formulation, finding sets of optimal designs

that represent the trade-offs among conflicting objectives, such as mass, cost, and

performance, can be very useful in making system design decision.

This research will also expand on previously established approaches in such a way

that the resulting system provides flexibility and improvements under changing

requirements. The work carried out in this thesis is in a similar area to that

presented in [1] and [3], in that it involves an integrated modelling approach with

evolutionary computation that trades design variables (discrete and integer) in an

optimization environment to yield a best possible design concept.

The work here will include both sizing and performance analysis tools in formulat-

ing the problem. This is not limited to one specific kind of mission and can handle

both low earth orbit (LEO) and geosynchronous earth orbit (GEO) missions. It

will include not only technology selection but also a preliminary design selection.

In the work reported [3], the design analysis has been based on a proprietary SEPS

simulation tool, which is available only within NASA. In this thesis, a SEPS sim-

ulation tool is developed on the widely available Matlab/Simulink platform, and

hence it offers broad applicability in spacecraft power system optimization prob-

lems. To the best of the author’s knowledge, there exists no such complete, robust

framework available in the public domain. Further, it can be extended to include

detailed design capabilities. More importantly, this work will also include inter-

facing with and applications of evolutionary computation to the modelling and

design of SEPS, which has not been implemented elsewhere.

The main objectives of this research are as follows:
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• To develop a methodology for formulating the SEPS design problem as an

optimization problem. This methodology will make use of global and struc-

tural optimization techniques to efficiently and effectively search the system

trade space.

• To develop a low cost and widely applicable analysis tool, to predict the

performance of the spacecraft power subsystem design for any given design

parameters.

• To integrate the sizing, analysis and optimization tools in order to develop a

complete framework for spacecraft power subsystem design and optimization.

• To utilize, further to weighted sum optimization, multi-objective techniques

for design optimization to find better design solutions to those already re-

ported upon in the literature.

1.2.2 Approach

There are several objectives in the spacecraft power system design, namely, mass,

cost and performance. Using classical search and optimization methods, it is im-

possible to take into account all these objectives in an optimization process. Since

this is a multi-objective problem, a set of non-dominated solutions are expected.

Multi-objective solutions should prove useful to the designer in trying to under-

stand trade-offs and should assist in the selection of the final design. However,

this is impossible if classical methods are employed, where a pre-weighted single

objective is used. Therefore, this work seeks to study and to solve the problem

with multi-objective techniques.

To achieve this goal, a detailed study of spacecraft power system design concepts,

approaches and requirements needs to be made first. Through this study, the

spacecraft power system design methodology may be extracted. This is accom-

plished by a thorough survey of various technologies regarding the components

and configurations. Based upon these two studies, the design problem for opti-

mization can be formulated and the tools required for further implementation are

identified.

In the next step, research can be carried out to develop the tools identified. Based

upon these studies, new tools for sizing and simulation analysis of spacecraft can
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then be developed. Following the development of the analysis tool, application of

and interfacing with evolutionary algorithms can be explored for solar cell mod-

elling and SEPS design. In the third step, the tools selected and developed can be

integrated into one framework. Then this frame-work may be used for the anal-

ysis of conceptual design search and optimization of spacecraft power subsystem

for two multi-objective optimization approaches: one, classical (based on single a

weighted sum objective); and the other, truly multi-objective. Results of both will

be compared.

In the last step, this approach is applied to the design and optimization of a com-

mercial communication satellite. The system design achieved by the optimization

and the one obtained otherwise will be compared.

1.3 Contributions

The major contributions made in this work are:

• Extension of the spacecraft power system design optimization problem from

basic technology selection to a detailed systematic design. With existing

research reported in the literature, the design selected may not be realizable

using the state-of-the-art design options available in the industry. The ap-

proach developed in this thesis assures the optimality and usability of designs

from the beginning of the design phase.

• Design and implementation of solar cell modelling and parameter optimiza-

tion using simulated annealing. This results in a very useful tool for simu-

lating the behavior of solar arrays comprising various types of solar cells.

• Extension of spacecraft power system simulation into MATLAB, including

variety of solar cell and battery technologies. Most of the existing work

reported in the literature in this area is limited to Si solar cell and NiH2

battery.

• Development of a complete SEPS design and search framework, as a sin-

gle tool, and thus avoiding all compatibility issues involved. This feature

alone makes the work at hand very practical and efficient. It also keeps a

way open for further improvements and modifications, both for optimization

techniques and for the spacecraft power system design search space.
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The contributions to the scientific literature have produced the following peer-

reviewed publications:

• Samina Asif, Yun Li. Application of meta-heuristics to spacecraft power

subsystem design trades, published in the Proceedings of 7th Asia-Pacific

Conference on Control and Measurement, Nyingchi, Tibet, China, 11-16

Aug 2006.

• Samina Asif, Yun Li. Spacecraft Power Subsystem Technology Selection,

Published in the Proceedings of IEEE Vehicle Power and Propulsion (VPPC)

Conference 2006, 6-8 September, 2006, Windsor, UK.

• Samina Asif, Yun Li. Intelligent search and multi-criteria optimisation of

spacecraft power subsystems, published in the Proceedings of 12th Chinese

Automation and Computing Society Conf, Loughborough, UK,16 Sept 2006.

• Samina Asif, Yun Li. Multi-objective Optimization of Spacecraft Power Sub-

system Design/Sizing, published in the Proceedings of SAE-Power Systems

Conference, November 7-9, 2006, Chateau Sonesta Hotel, New Orleans,

Louisiana, USA. (Published in SAE Technical Papers (Doc no. 2006-01-

3059)).

• Samina Asif, Yun Li. Solar Cell Modelling and Parameter Optimization

Using Simulated Annealing, published in the Proceedings 5th International

Energy Conversion Engineering Conference and Exhibit (IECEC),25 - 27

June 2007, St. Louis, Missouri.

• Samina Asif, Yun Li. Solar Cell Modeling and Parameter Optimization Using

Simulated Annealing, accepted for publication in Journal of Propulsion and

Power.

1.4 Thesis Organization

The organization of the rest of the thesis is as follows:

Chapter 2 presents an overview of those aspects of research that are relevant

to spacecraft power system design. Since the work done in this thesis is multi-

disciplinary in nature, this chapter has three main sections: i) reviewing the pre-

vious attempts on application of optimization techniques in the field of spacecraft
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design, ii) spacecraft power system simulation tools, and iii) multi-objective design

optimization.

Chapter 3 formulates the spacecraft conceptual design as an optimization problem.

In the first section, the fundamentals of any engineering system design and op-

timization, and analogy between engineering and spacecraft power system design

and optimization, are discussed. A detailed description of spacecraft power system

design trades is also given. Then a brief overview of evolutionary computations is

presented. This chapter concludes with problem formulation and identification of

the implementation tool.

In chapter 4, tools encompassing all necessary design attributes defined in chapter

3 are developed. The tools include spacecraft power subsystem sizing, and model-

ing and simulation tools. Along with these tools, two different methodologies used

for multi-objective optimization are also discussed.

Chapter 5 develops solar cell/array modeling and design techniques using sim-

ulated annealing. Following the solar cell modeling techniques, the chapter de-

velops the model and application of simulated annealing for solar cell parameter

extraction. Then the results of the model are compared with test data. Finally,

algorithms for the analysis of solar arrays in varying environment are presented.

The remaining chapters of the thesis are dedicated to the application of the frame-

work developed by integrating the tools discussed in chapter 4. In chapter 6, a

power system for a mission to LEO with medium power requirements is optimized

using classical multi-objective approach. This analysis is undertaken for two cases.

First, the study is carried out using conventional weighted sum optimization ap-

proach, where no analysis tool is incorporated. In the second case, the study is

made using a complete framework developed for this work.

In chapter 7, the optimization problem is solved using multi-objective techniques.

Here the problem is evaluated as two and three objectives and results are analyzed.

Finally, multi-objective optimization frame work is applied to the design of the

power system of a commercial satellite. The results are discussed and compared

with reference to the selected baseline design.

Chapters 8 summarizes the results, the contributions this work has made to the

field of spacecraft system engineering and recommendations for future work.
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Literature Review

The research related to the problem under consideration involves three different

topics including simulation of SEPS, spacecraft power system design optimization,

and multi-objective optimization. Therefore, the literature review is carried out

in three sections. The first section provides a brief overview about the research

efforts in the field of spacecraft power system modelling and simulation. Section

two discusses the search and optimization techniques applied to the aerospace

systems design. In the third section, a brief review of multi-objective optimization

techniques is presented.

2.1 Spacecraft Power System Simulation Tools

This section presents a brief history of the tools developed for spacecraft power

system simulation. In 1982, Capel presented a power system simulation for LEO

spacecraft [4]. Another work on Spacecraft power system modelling and simulation

was presented in [5], where a simple modelling approach for DC spacecraft power

system is presented. In this work, the development of individual component models

was presented first and later they were integrated to simulate COBE spacecraft

system using EASY5.

Colombo in [6], presented a Matlab based satellite power simulation. Here, a

generalized model of SEPS for single specific type of solar cell and battery was

presented. The recent work on SEPS modelling and simulation has been under-

taken by a research group at the University of South Carolina. This group has

9
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developed a software tool called Virtual Test Bed (VTB), having capability of

simulating the SEPS. This software is still in its testing phase. Although many

successful applications have been presented [7], there is still a large amount of

work that needs to be done; as in its present format it cannot be integrated with

an optimizer.

In the field of modelling and simulation of individual components of SEPS, there

has been extensive research in the field of solar cells and batteries modelling,

and a detailed review of them is out of context of this thesis. A brief review of

some related research work will be discussed in section 4.2, where the modelling

approaches used in this work will be discussed.

On the other hand, there exists some commercial software packages, the problem

with such tool is the difficulty in getting access to them as well as the cost. One of

these packages is MMPAT (Multi-Mission Power Analysis Tool), developed by Jet

Propulsion Laboratory, NASA. MMPAT is a multi-platform software simulator

written in C language, used to analyze the performance and resources of space

vehicle electrical power subsystem. It has been applied to MER (Mars Explorer

Rovers) and Deep Impact missions and same has been presented as part of opti-

mization applications in [3, 8]. This software is available only within NASA and

is not accessible in public domain.

There is another tool, PowerCap, developed by SAE Inc, Canada [9]. This is

a dynamic performance simulation tool. Components of the power system are

replaced by their equivalent mathematical modes. In [9], a long term simulation

is realized using PowerCap and transient analysis is performed by an industrial

software like PSpice, Saber or any equivalent software. This software does not

allow changing its parameters through another application such as an optimizer.

2.2 Spacecraft Design Optimization

In spacecraft industry, one key aspect of design decisions is economy. Goals of

high performance under constrained budgets can only be achieved through a well

structured optimized design process.
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Some attempts have been made in spacecraft, or its subsystem design optimization

in its early design phase. In 1995, a design tool was presented by George and Pe-

terson [10], which connects all spacecraft performance analysis tools on a network

under the control of a master design program. The main idea of this research is

to allow design groups to change their components or subsystems and analyze its

effects on the system level. Riddle in [11, 12], explored the use of dynamic pro-

gramming to provide an insight into the effects which individual technologies have

on the performance and cost parameters of a satellite during the conceptual de-

sign phase. Riddle developed a software tool named ESSAM (Early Small Satellite

Analysis Method), which employs a dynamic programming approach, and tested

it on the design of a satellite power subsystem. ESSAM is used to find the opti-

mal solution that minimizes the power subsystem mass. However, the illustrative

case study here contains only two decision variables and four possible solutions.

In realistic space system design, problems often contain many internally coupled

decision variables, making the dynamic programming approach impractical for

systems with higher design variables. This is because dynamic programming can

only handle problems of relatively small dimension. Based on the work of George,

Fukunaga presented the application of an adaptive evolutionary algorithm based

optimization techniques to the spacecraft design [13]. Further improvements in

this work were made by incorporating web based real time collaborative interac-

tivity [14].

Pullen successfully presented the application of heuristic search methods in the

reliability-based optimization of the Gravity Probe-B spacecraft bus design [15],

using Simulated Annealing and Genetic Algorithm (GA) to optimize eighteen de-

sign variables representing the redundancy level of the bus components and sub-

systems. This work shows that such non-gradient optimization approach can lead

to designs that offer higher reliability values than a baseline design.

Mosher surveyed several multidisciplinary optimization (MDO) techniques, includ-

ing classical optimization, decomposition, the Taguchi method, and heuristics, for

conceptual spacecraft design [1, 2]. Mosher eventually chose a heuristic approach,

a genetic algorithm, to create a software tool named SCOUT (Spacecraft Con-

cept Optimization and Utility Tool) for the conceptual design of scientific space-

craft, and benchmarked the tool against NASA’s Near Earth Asteroid Rendezvous

(NEAR) spacecraft. The optimization problem here is based on single objective;
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minimum cost for the system. This work demonstrates the effectiveness of appli-

cation of evolutionary optimization for spacecraft conceptual design.

Hassan presented the application of genetic algorithm to conceptual satellite de-

sign with uncertain reliabilities in [16]. The design combines satellite sizing and

reliability modelling and applied a genetic algorithm using population based sam-

pling. In this case, the problem involves both spacecraft payload and bus design.

It has been shown that a GA is able to find good design solutions with only 0.075

of the computational cost required by the Monte Carlo approach at the same level

of accuracy.

Recently, much research on automation of spacecraft systems design has been

carried out at Jet Propulsion Laboratory (JPL) NASA. Their work includes both

the application of evolutionary computation for spacecraft design automation and

for optimization of spacecraft power system in a parallel processing environment.

They have also shown successful application of GAs and SA to the automation of

rover arm path planning, optimization of low thrust trajectories, automatic tuning

of Micro gyroscope, and automatic design of power subsystems [3, 8, 17].

There have been other efforts that are focused on the advancement of spacecraft

design, but have fairly different focus from research presented in this thesis. For

example, optimization codes are commonly used today in the design of aircraft

wing platform [18] and in structural engineering to design a truss that will safely

meet all the loading requirements with possible minimum mass [19]. Another

field of aerospace which incorporates optimization is orbital dynamics, such as

spacecraft trajectory modelling and optimization [20]. Application of GAs to

optimize the placement of eight actuators on 1507 possible locations to control

the vibration of a large spacecraft is presented in [13]. The spacecraft trajectory

modelling and optimization are presented in [20]. Jilla presented an application

of multi-objective, multidisciplinary optimization methods for the design of dis-

tributed satellite systems, where optimization tool is developed to find the best

architecture for conceptual design of distributed satellite systems [21].
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2.3 Multi-objective Design Optimization

In any engineering system design, including spacecraft systems design, there are

usually several design objectives reflecting the interest of various engineering as-

pects and stakeholders. If there were only one objective, the design concept that

measures the best against this objective should clearly be a matter of choice. How-

ever, when there are several competing design objectives, there are usually several

good designs that measure differently against the individual objectives, but equally

well against one measure that includes all the objectives. From system engineer’s

point of view, it is highly desirable to obtain this set of design concepts, because

they represent the trade-off between various design objectives. One of the major

objectives of this research is to formulate the SEPS conceptual design as a multi-

objective design optimization to obtain the trade-off between SEPS performance,

mass and cost.

In a multi-objective design optimization problem, there is seldom one optimal

solution as in a single objective and usually there are many optimum design points,

which are called a Pareto-optimal set of solutions [22]. For each of these Pareto-

optimal designs, there is no other feasible design that is better on all objectives,

i.e., these designs are non-dominated to one another.

In classical methods, finding a Pareto optimal set has been used to reduce a

multi-objective problem to single objective optimization problem [23]. The most

common approach is the use of weighted sum where each objective is assigned a

weight and added together into a single objective function. Another method is the

e-constraint approach where one objective is selected for optimization and others

are reformulated as constraints.

An attractive approach is to use multiple runs of optimization, each of which

targets one objective only. In classical methods one optimization run finds one

optimal solution on Pareto front, so multiple runs are needed to find all solutions

on the optimal front. Evolutionary algorithms can exploit the population-based

feature and converge in parallel to the Pareto front. While optimizing, various

solutions in the population converge to various areas of the Pareto front, and thus

an approximation of the Pareto front can be obtained in a single optimization run.

Research interest has increased over the past two decades on the development and

application of evolutionary algorithms for Pareto optimization. Some of the com-

mon multi-objective evolutionary algorithms (MOEAs) are multi-objective genetic
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algorithm (MOGA), non-dominated sorting genetic algorithm (NSGA), NSGA-II,

strength pareto evolutionary algorithm (SPEA), SPEA-II, multi-objective messy

genetic algorithm (MOMGA) and MOMGA-II. An exhaustive list of references

can be found on the web page of Coello [24]. The detailed comparison of different

MOEAs can be found in [25]. In addition to multi-objective techniques based

on genetic algorithms, there are also some alternative heuristic methods for multi-

objective optimization, such as particle swarm optimization, ant colony algorithm,

simulated annealing, tabu search and etc. Detail of these can be found in [25].

Multi-objective optimization in general has been an attractive area of the research

recently and there is simply too much literature on this topic to discuss all here.

Examples of previous research efforts that to implement a multi-objective ap-

proach with the GA for aerospace applications can be found in [18], [26], and [27].

There have also been a few research efforts that implemented a multi-objective

optimization approach for the design of satellite constellations and distributed

systems with the focus of orbital design [21].A survey of Evolutionary techniques

for multi-objective optimization of engineering system design is presented in [23].

The focus of this thesis is the application of multi-objective optimization approach

to the design of SEPS.



Chapter 3

Problem Formulation

3.1 Spacecraft Power System Conceptual Design

System engineering design can be divided into four stages:

• Conceptual design

• Preliminary design

• Embodiment design

• Detail design.

Sometimes the conceptual design term is used collectively for conceptual and pre-

liminary design and this is what is assumed in this work.

The first phase of any engineering design process is to identify the system speci-

fications based on costumer needs. The second step is concept generation, which

usually uses functional decomposition methods. In the third step, evaluation of

the generated concepts i.e., decision matrices are usually employed. After selecting

one or more concepts the subsystem design enters the detailed design phase. After

the subsystem design is complete, some system level design activities are carried

out to ensure the feasibility of the system design in terms of compatibility and

interoperability of all subsystems. Optimality at system-level is usually ignored as

it is hard to achieve for reasons of system level integrated modelling. Hence, the

optimization is usually performed on the subsystem levels.

15
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Figure 3.1: Conceptual engineering system design.

Within each phase a set of activities is performed. Ideally, the designer wishes to

perform each phase once, but engineering design is very iterative. A large number

of iterations are often required before the final design is achieved. An iterative

model of a conceptual design is shown in Figure 3.1.

Like any engineering system design, the space system design process passes through

a number of phases. Any aerospace system design process can be divided into

following phases:

• Pre-phase A: Conceptual study

• Phase A: Preliminary analysis

• Phase B: Detailed definition
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• Phase C: Development

• Phase D: Manufacture, integration, and test

• Phase E: Mission operation and data analysis.

During Pre-phase A, the mission ideas or requirements are translated into the

mission concepts. This includes the development of preliminary requirements,

determination of evaluation metrics, creation of alternative system architectures,

preliminary analysis and trade of these architectures as well as initial cost esti-

mation. Phase A work involves more detailed trade analysis and refining of cost

estimation. Phase A results in the identification of best design architecture or

design variables. Phase B is associated with detailed design and definition. It in-

volves the definition of system and subsystem design in sufficient detail for phases

C/D. Phase B completes the technical design including the final requirements doc-

ument, lower level design specifications, interface control and the manufacturing

plan. Phase C concludes the design. Phase C/D encompasses development, man-

ufacture, integration and testing. It involves completion of design and analysis,

preparation of manufacturing drawings, completion of development and qualifica-

tion testing, and development of flight system and acceptance testing. Phase E is

associated with launch, delivery of spacecraft in the orbit and support of in-orbit

operation throughout the nominal mission life.

In the system engineering approach, special focus is given to top level design. If the

decisions taken at conceptual/preliminary phase of design are made in a systematic

way, given due consideration to trade studies and critical design objectives, the

rest of design process should progress smoothly with minimal cost overhead at the

design or manufacturing phases.

In the early design phase, the decisions are to be made in terms of technology

choices and redundancy level. It usually ends up with large number of design vari-

ables that must be traded off. The next step in conceptual design is the analysis

and evaluation of different design alternatives. The design alternatives are evalu-

ated against the selected performance criteria based on the design requirements.

The process of conceptualizing design solutions that satisfy the design require-

ments is the core of the system engineering activities and is usually referred to

as system architecturing. System architects are encouraged to apply a systems
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engineering approach to synthesize alternative solutions based on functional re-

quirements rather than starting with pre-built ideas. The implementation of the

system engineering approach is particularly problematic in the early stages of the

design process for a number of reasons. Firstly, the complex systems normally

involve many interlaced design variables; therefore members of the design team

must employ system sizing and performance evaluation tools. These tools must

allow them to understand the effect of varying each design variable on the whole

system. Early in the design process when most of the decisions are yet to be made

regarding the system architecture in terms of technology choice and redundancy

level, there are usually a large number of design variables that must all be traded

off to yield architectures with optimal performance. For each top-level functional

requirement, a system architect can list a few discrete design options, all of which

can all satisfy this functional requirement. Combining all these options quickly

turns this problem into a combinatorial one, where a large number of alternative

architectures are possible.

In the next stage of conceptual design, the analysis and evaluation of alternative

designs is performed to select a final design concept for a full design development.

The generated design alternatives should be evaluated based on how well each of

them measures against selected performance criteria that are related to the design

requirements. Evaluating such a large number of design alternatives can be quite

an impossible task to carry out for a small design team. To narrow down the

design space, the designers usually add design constraints as well as rely on their

experience.

3.1.1 Spacecraft Power System Design Trades

The most important system aboard any satellite is its electrical power system.

In its simplest form, the spacecraft electrical power system consists of four major

components as shown in Figure 3.2.

The prime power source provides the energy to the conversion unit for the conver-

sion of a given energy into electricity. The electricity that is generated needs to

be managed, regulated, monitored and conditioned to match the electrical needs

of the spacecraft systems.
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Figure 3.2: Basic elements of spacecraft power system (courtesy of [28])

The common choices available as the prime power generation source in space are

limited to nuclear, chemical or solar. The key factor in the selection of a power

generation source is the duration of the mission. For short duration missions or

to supply power for activities that will be completed relatively quickly in longer

missions, chemical systems such as primary batteries, fuel cells and chemical dy-

namic conversion may be the appropriate choice depending upon the total power

requirement. For longer duration missions, the choice is restricted to a solar array

in conjunction with secondary batteries or regenerative fuel cells, or a nuclear sys-

tem. There are certainly other issues which affect the choice of power generation

source such as the radiation profile of a given orbit. Compatibility with mission

related sensors can also be a factor.

For earth orbiting satellites, power systems based on solar arrays as energy source

with photovoltaic (PV) energy conversion and secondary batteries as power stor-

age unit are most common. Such systems are commonly known as PV-battery

power systems and are focus of this research. Spacecraft power systems are fur-

ther characterized by their architecture,i.e., either direct energy transfer (DET) or

peak power tracker (PPT). In direct energy transfer systems, the power is usually

transferred directly from the solar array to the load without any power tracker in

the path. In peak power tracker architectures, the solar array voltage is usually

adjusted through a series of connected power trackers to get the maximum power

from the solar array. DET architectures are further divided as: i) fully regulated,

ii) sun regulated, and iii) hybrid systems. DET systems provide the lowest part

count, high efficiency and lower cost in many cases. However, past experience
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Figure 3.3: SEPS selection process

shows that PPT systems are advantageous for small satellites in low earth or-

bits with power requirements around 500W. For power level exceeding 1kW, DET

architecture is generally considered advantageous.

An electrical power system is designed and configured to perform several key

functions, the primary being a continuous and reliable source of peak and average

electrical power for the life of the mission. Many factors contribute to the final

design and the choice of technologies that must be integrated. The schematic of

this selection process is shown in Figure 3.3.

In this study, we are dealing only with the PV-battery systems based on DET

architecture. This system primarily consists of a solar array, a rechargeable battery

and a power regulator which regulates power flow between various components

to control the bus voltage. In the following sections, we will discuss the trades

available within different modules of the SEPS.

3.1.2 Solar Power Generation

A space photovoltaic system consists of a number of elements, one of which is the

solar array. Key design issues for the solar arrays include the spacecraft configura-

tion, required power levels (peak and average), operating temperatures, shadowing,

radiation environment, illumination or orientation, mission life, mass and area.
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3.1.2.1 Solar Cell Technology Trades

The solar cell technologies which are considered here are Silicon (Si), High effi-

ciency Silicon (High-η Si), Gallium Arsenide single junction (GaAs/Ge SJ), Gal-

lium Arsenide dual junction (GaInP2/GaAs/Ge DJ), Gallium Arsenide triple junc-

tion (GaInP2/GaAs/Ge TJ) and ultra triple junction (UTJ). Si solar cells have a

very long heritage in space applications. Although Si solar cells are still in use be-

cause of their low cost, they are increasingly replaced by multijunction solar cells in

high power applications. High-η Si are advanced solar cells with higher efficiency

and lower mass density than conventional Si solar cells. In recent years, there has

been very active research in improving the efficiency of solar cells. Further, in

recent developments, hybrid solar arrays are also in use; so here two combinations

of High-η Si with GaAs/Ge SJ and Si with GaAs TJ are considered as design

options.

When applied to the system level, it is clear that the desired attributes for low

mass translate into high efficiency. The cell efficiency determines array area, which

can then be used to determine the mass of the array. The mass of array can

also be determined directly from efficiency. Solar cell characteristics, such as

particle irradiation and temperature coefficients, determine their end of life (EOL)

power. The output powers of solar arrays also get affected by radiation levels. The

multijunction cells are more resistant to irradiations, hence they offer higher EOL

power than Si. A comparison of beginning of life (BOL) efficiency, temperature

coefficients, and radiation degradation factors (P/Po) at different radiation fluence

levels for various technologies traded-off in this study, is given in Table 3.1. The

size of all the single crystalline solar cells is kept constant.

3.1.2.2 Solar Array Technology Trades

The main requirements for spacecraft solar array technologies are mass, size, cost

and power growth capability. The solar array configuration can be either planar or

concentrator, and either can be body or panel mounted. The most commonly used

types of solar array technology, the deployable and sun tracking solar array, are

considered here. Deployable solar arrays are typically wing type structures which

are stowed with the spacecraft body during the launch and deployed from the

spacecraft after final orbit acquisition. In this study, two solar array configurations:
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Solar Cell
Technology

BOL
Efficiency
(28◦C)

BOL
Power

(W/m2 )

Cost
(K$/Kg)

Mass
(Kg/m2)

Power
Temperature
Coefficients

(%/◦C)

Radiation Degradation P/Po
(Fluenece e/cm2 1 MeV

Electrons)

1 × 1014 5 × 1014 1 × 1015

Si 13.7 185 20 0.55 -0.045 0.92 0.82 0.77
High-η Si 16 216 50 0.28 -0.0415 0.92 0.83 0.79

GaAs/Ge SJ 19 253 140 0.83 -0.022 0.90 0.85 0.75
GaInP2/

GaAs/Ge DJ
22 297 140 0.85 -0.030 0.96 0.89 0.83

GaInP2/
GaAs/Ge TJ

25 337 150 0.85 -0.06 0.96 0.92 0.83

Ultra Triple Junction
UTJ

28.0 378 170 0.86 -0.06 0.93 0.89 0.86

Table 3.1: Comparison of solar cell characteristics (courtesy of [29][30])

Solar cell
technology

Rigid Planar Array Flexible Planar Array
Solar
panel
mass

(Kg/m2)

Radiation fluence,
1 MeV/cm2

Operating
temperature

Solar
panel
mass

(Kg/m2)

Radiation fluence,
1 MeV/cm2

Operating
temperature

GEO LEO GEO LEO GEO LEO GEO LEO
Si 2.52 9 × 1014 2 × 1014 50 60 1.72 1 × 1015 4 × 1014 55 65

High-η Si 2.34 9.5 × 1014 2 × 1014 60 70 1.54 1.25 × 1015 5 × 1014 65 75
GaAs SJ 3.2 7 × 1014 6.6 × 1014 65 75 2.24 7.7 × 1014 7.5 × 1013 70 80

DJ 3.26 6 × 1014 3 × 1014 65 75 2.28 6.6 × 1014 4 × 1013 70 80
TJ 3.26 6 × 1014 3 × 1014 65 75 2.28 6.6 × 1014 4 × 1013 70 80

Table 3.2: Comparison of array characteristics (courtesy of [29])

rigid planar arrays and flexible planar arrays are considered. A comparison of these

two types is given in Table 3.2. Equivalent radiation fluence is dependent upon the

orbit and mission duration and cover glass thickness. Here the values are assumed

for GEO with mission life of 15 years and LEO with mission life of 5 years. The

selection of cover glass thickness also depends upon radiation environment of the

mission. Here, the thickness of cover glass is assumed to be 100 micrometer for

both LEO and GEO cases.

3.1.3 Power Storage System

The energy storage subsystem in a photo-voltaic system is based on electrochemical

battery cells. It is designed to deliver electrical power during an eclipse. A battery

consists of a number of cells connected in series or parallel arrangement. The
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Battery
Technology

Cell
Nominal
Voltage

(V)

Cell
Average

Discharge
Voltage (V)

Cell-Specific
Energy

(W-hr/Kg)

Cell-Specific
Power

(W/Kg)

Operating
Temperature

◦C

NiCd 1.45 1.25 40 - 50 150 - 200 -20 - 50
NiH2 1.55 1.25 45 - 65 150 - 200 -10 - 50
Li-ion 4.1 3.5 90-150 200-220 10-45

Table 3.3: Typical battery cell characteristics comparison (courtesy of [28])

prime requirement for a battery is to be capable of providing the required power

and energy at a desired voltage and over a required period of time. Among the

overriding requirements are those of minimum size, volume and cost to meet the

spacecraft requirements.

3.1.3.1 Battery/Cell Technology Trades

The most widely used type of batteries that are used in space are rechargeable

Nickel Cadmium (NiCd) and Nickel Hydrogen (NiH2). More recently the Lithium-

ion batteries are also in use and are being flown on various space missions. During

last two years, most of the research in the battery area has been focused on Li-ion

and lately it has been proposed as the most desirable type of battery in European

missions [31].

Batteries have many characteristics which influence the system design. The elec-

trical characteristics include nominal voltage, capacity, operating temperature and

energy density. Table 3.3 provides a comparison of these characteristics.

The comparison in the table gives the range of values for specific energy and specific

power covering all cell capacities. In our calculations, the values of specific energy

and specific power are calculated for individual cells of given capacity as found in

data sheets or provided by manufacturer.

3.1.3.2 Battery Configuration Trade

In addition to battery selection, there is a trade between selecting the configura-

tions of battery. The configuration of the battery includes the number of batteries

in parallel and number of cells in series per battery. There is no defined principle

in selecting number of batteries for a given mission.
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Bus Voltage (V) Number of Cells per Battery
NiCd NiH2 Li-ion

28 20-22 20-22 6-7
50 26-30 26-30 10-12
100 52-60 52-60 20-24

Table 3.4: Number of cells as a factor of bus voltage.

The key factor in determining the number of cells per battery is bus voltage. The

number of cells per battery is selected so that the battery capacity available for

given mission is closest to the one available in the market. This will result in the

battery mass and cost saving.

As far as redundancy in battery design is considered, in most of the cases battery

level redundancy is not considered as it can have significant effect on the battery

mass and cost. However redundancy in the cells per battery is usually considered

to counter the open circuit faults in the cell. In this work, we have assumed one

cell redundancy in each battery.

3.1.3.3 Bus Voltage Level

The power requirements for the satellites, especially for communication satellites,

have increased during last decade. At high power levels, low voltage power sys-

tems become impractical. With the size of a typical fixed satellite service (FSS)

communication satellite bus approaching the size of small room, distribution of

10-15 kilowatts of power at low bus voltages would incur high ohmic losses. Also,

high voltages allow better utilization of energy density from the secondary batter-

ies. Still for low power LEO missions the 28V bus can be the most economical in

context of highly developed heritage. In this study, three options: 28V (traditional

low bus voltage level), 50V and 100V are compared.

The bus voltage also affects the configuration of the battery. For certain given

voltages, there are some ready-made configurations available from vendors. These

configurations may vary from vendor to vendor. The configurations which have

been considered in this work are given in Table 3.4.
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3.2 Optimization in Engineering Design

It has been stated before that the engineering design is very iterative, and a large

number of iterations are often required before the final design is achieved. Usually

the number of design alternatives is very large. An automated search process could

be more efficient than manual techniques in finding optimal designs in such cases.

In other words, formulating the design of a complex system in the conceptual

design phase as an optimization problem can help the designer to discover new

combinations of available components and subsystem options. This can lead to an

optimal solution which might not had been a clear choice if system design was to

be carried out manually.

The engineering system design process which employs modelling, simulation and

optimization is shown in Figure 3.4. After selecting one or two concepts, the de-

tailed design activities start. At this point, modelling and simulation are employed

in order to evaluate the properties of particular system solutions. Each solution is

evaluated for some already defined set of objectives. The solution which is most

feasible is selected as an approved design and is put forward for detailed design.

Evaluation and 

Optimization
Modelling Simulation Comparison

Generation of 

Solution 

Concepts

Problem 

Definition

Concept 3

Concept 2

Concept 1

Task
Preliminary 

Design

New design parameters

Figure 3.4: The System Design Process [32]

The optimization procedure makes use of modelling and simulation as a tool to

evaluate the performance of each of the system solutions and to generate new

system proposals. This process continues until the optimization process has con-

verged and an optimal system is found. In some cases, the objectives are all related

to the performance evaluation, such as the design optimization of a circuit or a

motor design. In our case, performance analysis is just one of the objectives along

with others such as mass and cost. In such cases, a sizing tool is also required

along with modelling and simulation.
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3.2.1 Components of an Optimization Problem

An optimization problem is basically formed from three basic components:

• Design variables: These are the parameters that are changed during the

optimization procedure.

• Objective function: These are one or more function values which we want to

minimize or maximize. For example in the SEPS design problem, we wish

to minimize the cost and maximize the performance.

• Constraints: These are the conditions that allow the design variable to take

certain values but exclude others. As with the SEPS problem, we have only

certain battery capacities available. Other capacities will be excluded by the

constraints.

3.2.2 Single Objective Vs Multi-Objective Optimization

A single objective optimization problem is a problem in which one seeks the best

(lowest or highest) value of a well defined objective [33]. Equation 3.1 presents

a constrained single objective problem for the minimization of a scalar function

f(
→

x) (the objective function).

min f(
→

x)
→

x∈ S

subject to

gi(
→

x) ≤ 0 i = 1, ..., J

hi(
→

x) = 0 i = 1, ..., K

(3.1)

where
→

x= (x1, ..., xn) is a vector of n design variables such that
→

x∈ S ⊆ Rn. Here

the search space S is defined as an n-dimensional rectangle. gi(
→

x) and hi(
→

x) are

constraint functions, J is the index set of inequality constraints and K is the index

set of equality constraints, where both sets J and K are finite.

If the problem is convex for a minimization objective function or concave for a

maximization objective function, there will exist only one optimal solution to the

problem. If the problem is non convex or non concave, there may exist more than

one globally optimal solutions. But each globally optimal solution will have the
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Figure 3.5: Illustration of different types of objective functions

same objective function value. The illustration of these different cases is given in

Figure 3.5.

While single objective optimization provides a powerful tool to explore the trade

space of a given optimization problem, most problems in nature have several (pos-

sibly conflicting) objectives to be satisfied. These problems are classified as multi-

objective or multi-criteria problems. Such problems are common in engineering

design where one has to balance multiple requirements while trying to achieve

multiple goals simultaneously. The multi-objective problem may be presented as:

min F (
→

x) =
[

f1(
→

x), f2(
→

x), ..., fk(
→

x)
]

while
→

x∈ S ⊆ Rn (3.2)

where f1(
→

x), f2(
→

x), ..., fk(
→

x) are the k objectives. The search space S is usually

defined as n-dimensional rectangle as in the case of single objective problem. The

problem now is to search for solutions which minimize all the objectives fi(
→

x).
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Figure 3.6: The concept of Parrto-front and non-dominated solutions for two
conflicting objectives f1 and f2.

In multi-objective problems (MOPs), there may exist no single optimum solution.

Rather, in such cases we are really trying to find good compromises (trade-offs)

among the conflicting objectives. Hence in a certain class of MOPs, there always

exist a number of solutions which can all be termed as optimal. A set of such

optimal solutions is commonly known as Pareto-optimal solutions or a Pareto

front. These solutions are optimal in the sense that there is no other solution

in the search space superior than them when all the objectives are taken into

consideration. In other words the Pareto optimal solutions are non-dominated

solutions. Preference information of the decision maker is needed to perform a

further selection.

Considering a minimization problem, a design with solution vectors a is said to

dominate a design with a vector of objectives b if:

∀i ∈ 1, 2, ...k : fi(
→

a) ≤ fi(
→

b ) and ∃j ∈ 1, 2, .., k : fj(
→

a) < fj(
→

b )

It says that a solution
→

a dominates another solution
→

b if it is better in at least one

objective and not worse in the other objectives. The illustration of Pareto front

and non-dominated solutions is given in Figure 3.6.

Different design problems can have different shapes for the Pareto front. It can

be convex, concave, non-convex or non-continuous. The shape of the Pareto front



Problem Formulation 29

f1 (x)

f2 (x)

Pareto Front

(a) Convex Pareto front

f1 (x)

f2 (x) Pareto Front

(b) Concave Pareto front

f1 (x)

f2 (x)

(c) Non-convex Pareto front

f1 (x)

f2 (x)

(d) Non-continuous Pareto front

Figure 3.7: Illustration of different shapes of Pareto front.

gives information about the behaviour of trade-off among the conflicting objectives.

Figure 3.7 illustrates different shapes of the Pareto front.

3.3 Optimization methods

Optimization algorithms can be classified into three main classes; gradient-based,

enumerative and guided random algorithms [33]. Gradient-based methods use

gradient or higher order derivative information about the function to be optimized

(f(
→

x)). Indirect Gradient-based methods compute the position of the minima by

differentiating the objective function and setting the obtained gradient equations

to zero:

∂f

∂xi

= 0 i ∈ 1, 2...., n (3.3)
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such that

∂2f

∂xi∂xj

= 0 i, j ∈ 1, 2...., n (3.4)

This method thus requires the mathematical equations of the objective functions

which is difficult in real-world optimization problems.

Direct gradient-based methods converge iteratively to the optimum. For a given

starting point (x0), the derivative is computed and used as direction for successive

search points. These methods rely on derivative information of all objectives

and all constraints for determining the search direction of the optimization. The

simplest approach for obtaining derivatives is the finite differencing with forward

differences:

gi =
(f(x0) + ∆ei) − f(x0)

∆
(3.5)

where gi is the partial derivative of f in the space direction i, ∆ is the length

of the finite step and ei is a unit vector in space direction i. This method does

not require the mathematical equations of the objective function, as gradient is

calculated by finite differences.

Enumerative methods evaluate the function to optimize at every point in the search

space. Full enumeration is the most expensive technique in terms of number of

function evaluations. It is only applicable to search spaces with a limited number

of feasible points.

Guided random methods use random processes to find the optimum. The progress

in optimization process is based on some predefined rules. They are also referred to

as semi-stochastic algorithms. In past decade the stochastic methods have become

more and more important in engineering design optimization problems. Well-

known representatives of these stochastic methods are Evolutionary Algorithms

and Simulated Annealing.
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3.4 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a class of global search algorithms inspired

by natural evolution. Several different types of EAs exist. Genetic Algorithms

(GAs), Evolution Strategies (ES), Evolutionary Programming (EP) and Genetic

Programming (GP) are some of the best known. EAs are termed as non-gradient

methods. In this work, most of the optimization work is done using GAs. In next

section a short description of GA and multi-objective GAs is given.

3.4.1 Genetic Algorithm

The GA is derived from Darwin’s theory of Natural Selection. A GA mimics

the reproduction behaviour observed in biological populations and employs the

principal of ”survival of the fittest” in its search process. The idea is that an indi-

vidual (design solution) is more likely to survive if it is adapted to its environment

(design objectives and constraints). Therefore, over a number of generations, de-

sirable traits will evolve and remain in genome composition of the population over

traits with weaker characteristics.

A GA differs from conventional optimization in many ways. It allows coding for a

combination of both discrete and continuous design variables. A GA is population-

based search, which results in multiple solutions in one run, rather than only one

solution. Thirdly a GA needs objective function values and not its derivatives

(as required in gradient based methods) which may not exist in many real world

applications. Keeping in view these advantages, and knowing that in the SEPS

optimization problems come up with mixed type of variables, we can say that a

GA will be advantageous in this case.

3.4.1.1 Mechanics of evolution

A GA employs iterative selection process based on fitness, recombination and

mutation. Selection is a process in which design candidates are selected based on

the fitness value. It may include alteration of generation and selection for mating

partners. The new candidates are then generated by recombination and mutation.

Figure 3.8 illustrates the flow chart of a GA.
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Figure 3.8: The flow chart presentation of a GA.

During initialization, an initial population of design candidates is generated. This

is often accomplished by random sampling of a design space. Evaluation is the step

where the fitness of all the individual candidates is evaluated by objective function

values. When modelling and simulation is employed to calculate the performance

of a SEPS design, this process becomes computationally very expensive. Selection

is a process in which the fittest individuals are selected to reproduce offsprings

for the next generation. There are many approaches to conduct ”survival of the

fittest” operations. Some common approaches are: fitness proportional selection,

ranking selection and tournament selection. The recombination or crossover op-

erator is responsible for exchanging the features of the selected parents for the

generation of new individuals with the intention of improving the fitness of the

individuals in the next generation. The last operator needed to generate a pop-

ulation of the new generation is called mutation. The function of mutation is to

keep the diversity of a population and promote searching in the solution space

that cannot be represented by the strings of the parent population. One of the

most common form of mutation is uniform mutation that adds a uniform random

number to each component of an individual’s vector with a probability of pc.
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3.4.2 Handling of Multi-objective Problems

Several different methods exist which can handle the multi-objective problems [25].

The most widespread and classical way is the weighted sum, where each objective

is assigned a weight and these weighted objectives are added together into a single

objective. This is one of the simplest methods and quite efficient for problems

having convex Pareto front. Weighted sum objective function for ‘M ’ objectives

(f1(
→

x), f2(
→

x), ..., fM(
→

x)) is formulated as:

F (
→

x) =
M

∑

j=1

wjfj(
→

x) (3.6)

where wj ≥ 0 is the weighting coefficient representing the relative importance

of the jth objective function. By choosing different weightings, wj , for different

objectives, the preference of the decision maker is taken into account. wj are

selected such that:
M

∑

j=1

wj = 1

This method has the advantage of generating a single compromised solution. How-

ever, to get a proper set of Pareto optimal solutions, many runs of optimization,

with repeatedly changing the weights, are required. Another disadvantage of this

approach is that it fails to produce solutions on non-convex parts of Pareto front.

Evolutionary algorithm based multi-objective optimization methods deal simulta-

neously with a set of possible solutions (population). They facilitate the finding

of an entire set of Pareto optimal solutions in a single run of the algorithm. This

feature enables the designer to get a clear picture of how different objectives are

trading off against each other, and helps in selecting solution where decision maker

has no pre-defined preferences. Additionally EAs are less susceptible to the shape

or continuity of the Pareto front while finding an optimum solution.

In this work, we will make use of NSGA-II, as it has been applied to many opti-

mization problems with promising results [34], [35]. It uses elitism1 and a crowded

comparison operator that keeps diversity without specifying any additional pa-

rameters and it is computationally more efficient [36].

1 Elitism is the approach in MOEAs that employs an external set to store best solution and
to add them in the next generation. With this method, best individuals of each generation are
always preserved
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3.4.2.1 Non-Dominated Sorting Genetic Algorithm-II

There are numerous versions of the MOEAs as discussed in section 2.3. In these

approaches, a simple evolutionary algorithm is extended to maintain a diverse set

of solutions with the emphasis on moving toward a true Pareto-optimal region.

The non-dominated sorting GA (NSGA) proposed by Srinivas and Deb [37], is

one of the first such algorithms. It is based on several layers of classification of

the individuals. Non-dominated individuals get a certain dummy fitness value

and then are removed from the population. This process is repeated until the

entire population has been ranked. It is a very effective algorithm but it has been

criticized for its computational complexity, lack of elitism and its requirement for

specifying sharing parameters in the algorithm. Based on these issues, a modified

version of the NSGA, named NSGA-II [36] was developed. In [36] a comparison

of NSGA-II with the two other powerful algorithms: Pareto-archived evolution

strategy and strength pareto is presented which shows that NSGA-II out performs

its competitors when used for solving truly diverse problems.

Two distinct entities are calculated in the NSGA-II to validate the quality of a

given solution. The first is a domination-count where the number of solutions that

dominate a given solution are tracked. The second keeps track of how many sets

of solutions a given solution dominates. In the process, all the solutions in the

first non-dominated front will have their domination count set to zero. The next

step is to select each solution in which the non-domination count is set to zero

and visit all other solutions in the solution set and reduce the domination count

by one. In doing so, if the domination count of any other solution becomes zero,

this solution is grouped in a separate list. This list is flagged as the second non-

dominated front. This process is then continued with each member of the second

list until the next non-dominated front is identified. The process is continued

until all fronts are identified. Based on the non-domination count given to a

solution, a non-domination level will be assigned. Those solutions that have higher

non-domination levels are flagged as non-optimal and will never be visited again.

One of the key requirements of a successful solution method is ensuring that a

good representative sample from all possible solutions is chosen. Introduction of a

density estimation process and a crowded-comparison operator has helped NSGA-

II to address the above need. The crowding-distance computation requires sorting

of a given population according to each objective function value in ascending

order of magnitude. Once this is done, the two boundary solutions with the
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largest and smallest objective value are assigned distance values of infinity. All

other solutions lying in between these two solutions are then assigned a distance

value calculated by the absolute normalized distance between each pair of adjacent

solutions. After each population member is assigned a crowding-distance value,

a crowded-comparison operator is used to compare each solution with the others.

This operator considers two attributes associated with every solution which is

the non-domination rank and the crowding-distance. Every solution is rated with

others based on the non-domination rank. Solutions with lower ranks are deemed

better in this attribute. Once solutions that belong to the best front are chosen

based on the non-domination rank, the solution that is located in a lesser-crowded

region is considered better and forms the basis of the NSGA-II algorithm. The

flow chart depicting the NSGA-II algorithm is shown in Figure 3.9.

3.4.3 Constraint Handling

There are several methods described in the literature that are used to handle

design constraints in optimization problems [38], [39]. Penalty functions are the

most common method that is used with meta-heuristics techniques. In this ap-

proach, the constrained optimization problem is converted into an unconstrained

formulation where a penalty is added to the value of the objective function when

constraint is violated, the function under consideration is transformed to:

F (
→

x) =

{

f(
→

x) x ∈ feasible region

f(
→

x) + penatly(
→

x) x /∈ feasible region
(3.7)

In this work, a linear exterior penalty function approach is implemented to handle

the constraint and is described by:

p(
→

x) = f(
→

x) +
J

∑

j=1

cj max[0, gj(
→

x)]β +
K

∑

k=1

ck

∣

∣

∣
hk(

→

x)
∣

∣

∣

γ

(3.8)

where β and γ are commonly 1 or 2. Here,f is the unconstrained function that

needs to be minimized, h is the equality constraint, g is the inequality constraint

and cj and ck are penalty parameters. The formation of equality and inequality

constraints is shown in Equations 3.9 and 3.10 respectively.
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Figure 3.9: Flow Chart Representation of NSGA-II Algorithm.

h(
→

x) : Response

Limit
− 1 = 0 (3.9)

g(
→

x) : Response

Limit
− 1 ≤ 0 (3.10)
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The penalty multipliers cj and ck are selected through prior work on this prob-

lem. This is a disadvantage of the penalty method because they demands prior

knowledge of the penalty multipliers that can achieve fast convergence. A general

guideline is that the multiplier should add penalties for violated constraints of the

same order of magnitude as the objective function [33].

3.5 SEPS Design Optimization

3.5.1 Practical Aspects of Engineering Design Optimiza-

tion

Many aspects have to be taken into account when reformulating the design problem

as an optimization problem. These include:

• Which design variables should be chosen?

• What are the objectives and what are the constraints?

• Often a mix of design variables exist (continuous, discrete).

• Almost always several objectives exist.

In practice, the choice of design variable is often given by the fact that not all

the design parameters can be changed. Even if all the design parameters can be

changed, only those which have significant effect on the design should be chosen

as design variables.

In a practical problem, it is often difficult to decide what the objectives and

constraints are. If several objectives exist, the formulation might be a multi-

objective optimization problem. If some of the objectives may be formulated as

constraints instead, this is preferable since the problem will, in general, become

easier to solve.

An optimization problem with only discrete design variables is a combinatorial

problem with a finite set of solutions. If some design variables are of continuous

type, the search space is a set of infinitely many solutions. Many real-world design

problems involve mixed types of design variables.
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Before formulation of the problem is done, it is always good to get as much infor-

mation as possible about the system. The strategy used by author in this thesis

is summarized as follows:

• Selection of design variables

• Optimization problem formulation

• Development of required tools

• Optimization runs

• Post-optimal analysis

3.5.2 SEPS Conceptual Design-Problem Formulation

The goal of a system engineering design project is to integrate the design activities

to provide quantitative support to high level decision making in all stages of the

project. It is most important in the preliminary design phase where trade-offs and

design decisions that characterize the performance of the whole system are made.

This study focuses on the application of evolutionary computation (EC) to the

spacecraft power system, the emphasis being on multi-objective design.

3.5.2.1 Selection of Design Variables

In the case of SEPS, the system design consists of a number of decisions. The total

number of decisions or design variables is very large for the preliminary design.

For the current research purpose, the design variables are chosen at the top level,

leaving out details regarding power management and the focus is only on major

design variables. For a spacecraft power system design quite a number of factors

influence the design. The total number of decision variables can be very large.

Table 3.5 summarizes the selection of design variables for this work. Maximum

battery discharge rate is also considered as design variable as this is a factor in

determining battery size (capacity). Battery discharge rate is defined in terms of

battery capacity C (Ampere-hour). If we say the battery is to be discharged at

1C rate, it means that the battery can provide C amperes of current for one hour.

For space applications usually a discharge rate of C/2 to C/3 can be used.
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Variable Variable Name Possible Value

1 Solar cell type

Si
High-ηSi
GaAs/Ge SJ
GaInP2/GaAs/Ge DJ
GaInP2/GaAs/Ge TJ
Ultra triple junction UTJ
Hybrid 1 (High-η Si + GaAs/Ge SJ)
Hybrid2 (Si + GaInP2/GaAs/Ge TJ)

2 Solar array type
Rigid planar
Flexible planar

3 Battery cell choice
NiCd
NiH2

Li-ion

4 Bus voltage
28V
50V
100

5 No. of batteries
1, 2, 3, 4,6 (LEO)
1,2,4,(GEO)

6 No. of cells per battery
Values are selected on
the basis of bus voltage
(Table 3.4)

7 Maximum battery discharge rate
0.5C -
0.67C

Table 3.5: Design parameter trade space.

3.5.2.2 Objective Function

Previous studies on SEPS design followed the approach to minimize cost and

mass [2]. In these cases, fewer design variables were considered, no consideration

of technology choices was provided and also performance matrix consisted only of

the performance of the batteries. Also only the cases of two deep space missions

were evaluated. In the current problem, optimization is to be applied which min-

imizes cost and mass for maximum performance for both the solar array and the

battery under the constraints of technologies available in the market and the bat-

tery performance criteria. The problem is designed for earth orbiting spacecraft,

both in LEO and GEO.

In this case, the objective function is defined using MATLAB programming envi-

ronment. The function makes use of a sizing tool for algebraic operations and an

analysis tool for modelling and simulation.
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Figure 3.10: Summary of SEPS design optimization approach and computa-
tional tools.

3.5.3 Implementation Tools

In any space system design, there are usually several design objectives that interest

system architects. Traditionally, the spacecraft power system design matrices

include mass, size, and performance. Other requirements that play an important

role in the system architecture are the acquisition cost and reliability.

The approach of this research, with emphasis of multi-objective design, is to fa-

cilitate the system architect to integrate design optimization with modelling and

simulation. The focus, here, is on power systems for spacecraft in a low earth or

geosynchronous orbit. This can also be used for a medium earth orbit, although

with some levels of uncertainty. This is based on a subset of the above mentioned

performance matrices, namely mass, cost and performance. The design variables

under consideration are technology options. Figure 3.10 summarizes the approach

implemented in this work.

The different blocks shown in the figure represent the different tools which are de-

veloped or implemented as part of the complete SEPS design optimization frame-

work. To evaluate the performance of alternative designs, a SEPS sizing model is

developed based on approaches given in the literature [28, 40], along with some

knowledge of common space industry practices. Sometimes the designs generated
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by simple relations, given in the literature may not come up with what is available

in industry thus rendering the designs as infeasible. To take this factor into ac-

count, such knowledge has been incorporated as constraints. The design relations

in this sizing tool mimic the preliminary design budget which includes system

mass, cost, reliability and solar array figure of merit. This framework also mimics

the analysis tool which, as a response, does performance analysis and mimics a

performance budget.

To implement the design optimization, the third part of the framework consists of

an optimizer. Two variations of the GA are used as optimization techniques. One

approach makes use of the classical weighted sum GA approach. In the second

one, a non-dominated sorting genetic algorithm is implemented to address the

multi-objective nature of the problem. All the computational tools developed or

used in the work are discussed in chapter 4.



Chapter 4

SEPS Design Optimization

Methodology

In this chapter, the methodology adopted and the tools developed for design opti-

mization of spacecraft power system, are discussed. The study in this research is

focused on the development of a single platform based for the application of evolu-

tionary algorithms to spacecraft power system design search and optimization. In

chapter 3, we have seen that, in order to achieve this goal we need three tools to

be designed or developed. These include sizing-, analysis- and optimization-tools.

The methodology adopted here is applicable for spacecrafts both in GEO and

LEO having circular orbits. This can also be applied to the MEO missions but

as enough data about the environment and technology heritage for MEO missions

are not available, we do not expect accurate results.

There are several system approaches that can be used in spacecraft power system

design. The primary functions of such systems are common to all of these designs.

There are few areas that need to be identified before sizing any spacecraft power

system. These include total spacecraft power, system losses, solar array degrada-

tion over mission life, orbit profile, spacecraft bus voltage, and battery charging

profile.

The sizing tool predicts the subsystem level parameters for the spacecraft such as

mass, size and cost. The sizing tool is based on knowledge gained from previous

experience and literature [40],[28], [41]. The sizing tool is coded as MATLAB

scripts. Many of the following design estimating relationships and scaling factors

are used to correlate the predictions with the actual data taken from industry and

42
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existing database of satellites. Some of the data is proprietary and may not be

shared here.

An analysis tool is required to evaluate the design of SPS during optimization run.

There are a few proprietary tools available for such analysis, but no such tool is

available in public domain that can fulfill the purpose of this research. Therefore,

a considerable part of this research deals with the development of such an analysis

tool. The analysis tool will predict the SEPS performance using the sizing param-

eters calculated by the sizing tool. The meta-heuristics based optimizer will then

make use of the results of both the sizing tool and analysis tool to get near-optimal

solutions.

The first part of the chapter describes the SEPS sizing model that predicts system

mass, cost and size based on spacecraft’s mission and power requirements.

The second part of this chapter describes the SPS analysis model. This model is

developed as part of complete design and optimization framework. The model is

then integrated with both sizing and optimization models.

Third part of this chapter describes evolutionary algorithm based optimization

tool. The different optimization techniques used are explained in this section.

4.1 Spacecraft Power System Sizing Model

As spacecraft power system design and sizing model is developed, in order to assess

the relative performance of solar cell, array technology, battery design, and bus

voltage. This model calculates the mass and size of solar array, battery capacity

(Ah), and mass of battery depending upon the technology of the solar array, solar

cell, battery and battery configuration (number of batteries and number of cells

per battery). Mission data including average power, maximum power required

from power subsystem and orbital parameters are provided as input. Orbital

parameters include orbit altitude, worst case sun angle and maximum beta angle

(angle between orbit and sun-earth line). This information is used to determine

the orbit’s sunlight and eclipse time. Based on the information of altitude and sun-

orbit-plane angle (β), eclipse duration is calculated. Approximate eclipse duration

(Te) for a circular orbit is given by [40]:
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Maximum eclipse duration will occur for a minimum β which corresponds to β =

0. Here Tp is orbital time period and is given as:

Tp = 2π

√

(Re + h)3

µ
(4.2)

where Re is radius of earth, h is satellite altitude and µ is the product of the

universal gravitational constant and mass of earth.

Solar array sizing is performed on the basis of spacecraft average load power (Pavg)

requirement. The total power to be generated by solar array (Psa), is sum of the

load-power required by spacecraft and battery charge power. Considering direct

energy transfer system, Psa is given as:

Psa =

Td

Xd

+ Te

Xe

Td

× Pavg (4.3)

where Psa is the solar array power required at the end of mission life. Td is sun-

light time duration, Xd is efficiency of solar array system and is given by 0.85

for a direct energy transfer system and Xe is round trip efficiency of battery and

depends on battery technology and is related to battery characteristics by relation

given as:

Xe =
energy output over full discharge

enery input required to restore full charge
(4.4)

In this work, the value of Xe is taken to be 0.85, 0.80 and 0.9 for NiCd, NiH2 and

Li-ion respectively.
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4.1.1 Solar Array Sizing

The solar array sizing model calculates the size, mass and cost of the solar array,

to be used by optimizer, as well as the layout of solar array, which is to be used

by analysis model. The main inputs for solar array design are:

• sunlight and eclipse duration

• spacecraft power profile

• array type

• solar cell type

• solar cell efficiency

• temperature coefficients of solar cell

• radiation degradation factor

• assembly mismatch factor

• thermal cycling degradation

• packing factor

• bus voltage

The methodology adopted for sizing is shown in Figure. 4.1.

The beginning of life power (PBOL) for the solar array to give required power by

end of life is given as:

PBOL =
Psa

Floss

(4.5)

where Floss represents the power loss factor for the solar array power due to tem-

perature, radiation and sun light offset effects along with life time degradation.

Collectively, it is given as:

Floss = [1 − (T0 − 28) × TCoeff ] × PCoeff × Id × |cosθ| × (1 − Ld)
N (4.6)

where TCoeff is the temperature factor determined by type of solar cell, and array,

PCoeff is radiation degradation factor determined primarily by the type of orbit
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Figure 4.1: Spacecraft solar array sizing methodology

and mission life along with the type of solar cell and array and N is mission life

in years. Id is inherent degradation factor due to design, assembly, cell mismatch

and shadowing because of appendages of spacecraft. Its value varies between 0.49-

0.88. Here this value is taken as 0.77. Ld is performance degradation factor due

to thermal cycling, having a value of 3.75% per year for Si and GaAs and 2.75%

per year for multijunction cells. In addition to these factors, 5% reliability margin

is also added. In the case of flexible array, additional power losses are to be taken

into account due to large thermal gradient across the array. For standard cells,

i.e., Si and GaAs, it is assumed to be 3% and for multijuntion cells, it is taken to

be 5% [28].

Solar cell area is determined by calculating number of cells in series (NS) and

parallel (NP ) required to meet the array voltage (Vsa) and power specifications.

NS =
Vsa

Vscell

(4.7)

NP =
Isa

Iscell

(4.8)

where Vscell and Iscell are the cell load voltage and current at operating tempera-

ture. Here the values of NS and NP are calculated to the nearest integer value.
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Then the total solar cell area (Asctotal) is calculated as:

Asctotal = NS × NP × Ascell (4.9)

where Ascell is area of individual cell. Solar cells are available in different sizes i.e.,

2x2 cm, 2x4 cm, etc. Although there is a provision in sizing and analysis tool to

define size of the solar cell for different technologies, we have considered a value

of 2x4 cm solar cell size.

Total area of solar array (Asa) is calculated as:

Asa =
Asctotal

PF
(4.10)

where PF is solar array packing factor. Here its value is taken as 0.9.

4.1.2 Battery Sizing

The battery sizing model calculates the mass and cost of the battery. The method-

ology of achieving this is described in Figure 4.2. Battery sizing depends on mission

requirements i.e. power required during eclipse (Pe), duration of eclipse (Te) and

the frequency of eclipse. So before starting sizing we should know the energy re-

quired by batteries for spacecraft operation during eclipse. Battery sizing starts

with the selection of electro-chemistry and number of batteries. The characteris-

tics, that are associated with the chemistry of the battery have been summarized

in Table 3.3. The main inputs for the battery sizing model are:

• capacities available for each technology

• cell average discharge voltage (Vavg)

• Maximum allowable discharge rate

• mission life in years.

Total number of charge-discharge cycles is determined from mission life and mis-

sion type. For LEO, an average number of charge discharge cycles is taken to be

5000 cycles per year. For GEO, this value is 90 cycles per year [42]. Maximum
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Figure 4.2: Spacecraft battery sizing methodology.

allowable depth of discharge (DOD) varies with the battery type and the mission

life (number of charge-discharge cycles). It is determined by the interpolation of

the graphs given in Figure 4.3 [43].
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Figure 4.3: DOD vs. cycles life for NiCd, NiH2, and Li-ion batteries (adapted
from [43])

The graph for Li-ion shown in Figure 4.3, does not comply with the figures of

DOD given in the literature [44],[45]. Keeping this in view, a graph between cycle

life and DOD for Li-ion has been reconstructed and is shown in Figure 4.4.
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Figure 4.4: DOD vs. cycles life for Li-ion batteries

Number of cells per battery is selected depending upon the bus voltage. Ampere-

hour capacity of battery (Ahbatt) is calculated using two methods; one is based

on watt-hours required and the other is on maximum steady state power required

during eclipse (Pdis). The relations for both methods are given as:

Ahbatt =
Pe · Te

Nbatt · ηdischarge · {(Ncell − 1) · Vavg − Vd} · DOD
(4.11)

Ahbatt =
Pdis

Ncell · Vavg · Crate · Nbatt

(4.12)

where Ncell is the number of cells in series, Nbatt is the number of batteries in

parallel, Vd is voltage drop across diode, ηdischarge is battery efficiency during dis-

charge and Crate is battery discharge rate in terms of battery capacity. The battery

with Ah-capacity closest to available capacity is selected for further testing against

battery design constraints. Ncell is selected keeping one cell redundancy in mind.

4.1.3 Calculation of System Mass

The mass of SEPS is determined from mass of solar array, battery and power

control unit.

Meps = Msa + Mbatt × Nbatt + MPCU (4.13)
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Bus voltage (V) Normalized mass
Box Cabling

28 1 1
50 0.65 0.55
100 0.55 0.25

Table 4.1: Normalized mass of PMAD components for different bus voltages

where Marray , Mbatt, MPCU are mass of solar array, battery and PCU respectively.

The total solar array mass is sum of solar cell mass, substrate, deploying mecha-

nism and interconnections. The values of mass of solar array (substrate and cover

glass) are given in Table 3.2.

Msa = (Mscell × Asctotal) + (Mareal × Aarray) (4.14)

Mass of the battery is then determined from battery cell energy density (ρcell), as

sum of battery cell and battery structure which is taken to be 10% of the mass of

battery cells. Mass of single battery is calculated as:

Mbatt = 1.1 × (Ahbatt × Ncell × Vavg × ρcell) (4.15)

Mass of power management and distribution unit (PMAD) is an indirect estima-

tion. It is calculated as sum of mass of power management and distribution boxes

(Mbox) and cables (Mcable). Linear relationships assumed for 28V bus are given as:

Mbox = 0.01 × P

Mcable = 0.02 × P

The summary of normalized mass estimates for different bus voltages used here is

given in Table 4.1.

4.1.4 Calculation of System Cost

Cost of the system is the sum of solar array cost (Csa) and battery cost(Cbatt). The

cost of PMAD is not being added here directly as it depends highly on detailed

design. But it will not affect the purpose of selecting bus voltage as the effect
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of voltage is translated here in terms of PMAD mass and effective launch cost.

Overall system launch cost due to SPS (Solar array, battery and PMAD) is also to

be considered in order to increase the effectiveness of design. Launch cost factor

(Rlaunch) for GEO is taken to be $22k/Kg and for LEO it is $11k/Kg [29].

Ceps = Csa + Cbatt × Nbatt + Meps × Rlaunch (4.16)

The cost of solar array (Csa) is sum of cost of solar cell (Cscell) and cost of array

structure (Careal). The cost of array other then cell material is taken to be 41,300

$/m2 [46].

Csa = Cscell × Asctotal + Careal × Asa (4.17)

The cost of battery (CBatt) is calculated as:

Cbatt = CAh × Ahbatt (4.18)

where CAh, the cost of battery per unit Ampere-hour, is taken as $4.02K/Ah for

NiCd, $7.4K/Ah for NiH2 and $10K/Ah for Li-ion. Because of manufacturer’s

policy to keep cost data confidential, it is hard to predict actual cost. Therefore,

the cost information, used here, is only representative in nature, and is calculated

on the basis of data collected from different space-qualified battery suppliers.

4.1.5 Calculation of System Reliability

System reliability will be calculated as part of determining the overall system

performance. The reliability of SEPS (Reps) is calculated as:

Reps = Rscell · Rsa · Rbatt (4.19)

where Rscell, Rsa, and Rbatt represents the reliability factors for solar cell, solar

array and battery respectively. The figure of reliability factor for individual tech-

nology has been assumed on the basis of their heritage and current status.
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4.2 SPS Analysis Model

The spacecraft power system analysis model has been developed in Matlab/Simulink.

The MATLAB/Simulink schematic of this model for the standard solar array is

shown in Figure. 4.5. Modified version of the same model for the solar array with

hybrid composition is shown in Figure 4.6. In the following sections, the models

for orbit, solar array, battery and power control unit are discussed in detail.
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4.2.1 Orbit Generator

The purpose of this block is to simulate the behavior of orbit (illumination) over

a given period of time. The model predicts whether or not the satellite is in

sunlight or eclipse and also the variation in illumination, if any, based on the orbit

parameters. In addition, this model also predicts the temperature of solar array.

4.2.1.1 Mathematical description of Model

The main inputs to the model are:

• semi-major axis, a

• inclination, i

• right ascension of the ascending node, Ω

• argument of perigee, w

• true anomaly, v

• eccentricity, e=0 (as we assume circular orbits)

This model consists of two components: one is to predict whether the satellite is

in eclipse or not and the second is to predict the illumination intensity, if not in

eclipse.

The components that are used for eclipse prediction are based on algorithm pre-

sented in [47]. Figure 4.7 shows the schematic representation of satellite-earth-sun

geometry and shadow regions. As the Sun disk is not a point, it does not cast a

sharp shadow. There are actually two areas of shadow, the cone, where no portion

of the sun’s surface can be seen, is referred to as the umbra (the tail of this cone

reaches over a million kilometers beyond the earth). And the shadow cone where

only part of the sun’s disk is obscured by the earth is referred to as penumbra.

This region is not completely dark but in a transition from full light to full dark-

ness and vice versa. In current program, we are interested only in umbra shadow,

as in near earth orbits the time of penumbra is quite short and can be neglected.

To predict the shadow conditions, we need to know the satellite-earth distance

(
→

dse), satellite to sun distance(
→

dsS), and earth to sun distance (
→

deS). These distance
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Figure 4.7: Schematic of satellite-earth-sun geometry and shadow regions

vectors are determined from knowledge of the position of the satellite and the sun

in the ECI (Earth-Centered Inertial)coordinate system. The necessary conditions

for umbra eclipse in terms of semi-diameters of sun (DS) and earth (De) are:

De > DS

and

D < (De − DS)

where D is angle between centers of sun and earth. The values of these terms can

be calculated as

De = sin−1 (Re/dse) (4.20)

Ds = sin−1 (RS/dsS) (4.21)

D = cos−1

(

→

dse ·
→

dsS /dsedsS

)

(4.22)

The second component is to calculate the effective solar intensity, (S), which

is incident upon the solar cells. This model is essentially based on theory and

formulas described in [48, 49]. A depiction of orbit is shown in Figure 4.8. The

effective solar intensity as a function of array-sun distance d(in unit of AU) and

angle of incidence Γ is given as

S
′

=

(

S

d2

)

cos Γ (4.23)



SEPS Design Optimization Methodology 57

Figure 4.8: Schemtic of orbit plane (courtesy of [48])

where S is solar intensity at 1AU, which is taken to be 1371W/m2. For sun-pointed

flat solar array and assuming that the illumination over whole panel is uniform,

we can say that Γ is equal to sun angle θ, and further that θ is equal to β. Hence

we can say that:

Γ = β

Based upon launch information, the time of previous equinox is calculated. For

solar cell array conceptual design, we are interested in angle of incidence on the

orbit plane. This angle, β, is known as sun-orbit-plane angle. The relationship

between β and other orbit angles are given as:

sinβ = sin γ (sin i · cosΩ · cos e − cos i · sin e) − sin i · sin Ω · cos γ (4.24)

where e is fixed angle between ecliptic plane and equatorial planes having a value

of 23.45o. The sun central angle, γ, is measured in ecliptic plane from the X-axis

to the earth-sun line and has a value of 0 deg at vernal equinox. If γ0 is a known

value of γ at some specific time, t0, then γ at any later time t is given by:

γ = γ0 + (t − t0)
dγ

dt
(4.25)
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The value of the rate of change of sun central angle, dγ/dt, is given approximately

as 0.98565o/day. Using last vernal equinox as a reference, for which the value of

γ is 0, the gamma at any time teq (in days), since last vernal equinox can simply

be calculated as:

γ = teq × 0.98565 (4.26)

The value of Ω at time t is given as:

Ω = Ω0 + t (dΩ/dt) (4.27)

Approximate value of dΩ/dt for a circular orbit is given as:

dΩ/dt = −
JR2µ1/2cos i

(Re + h)7/2
(4.28)

where J is the general coefficient of gravitational harmonics. The values of J and

µ are given as:

J = 1.624 × 10−3

µ = 3.986 × 105/Km3
· sec−2

The orbit model within optimization frame work is part of spacecraft power system

analysis under worst case scenario, and it is desirable to run the simulation over

a limited orbit duration such as for two complete orbits in our work. We need

to determine the worst case conditions before hand. For this purpose a dedicated

MATLAB program is used which calculates the maximum and minimum eclipse

durations for a mission along with date and orbit parameters at that time. This

information is then used by main optimization framework.

4.2.2 Solar Array

The purpose of this block is to simulate the behavior of the solar array over given

simulation time. The inputs to the model are array configuration and illumination

conditions. The central entity of this block is the model of solar cell. In this work,

a novel approach, for modelling of the solar cell using meta-heuristics, has been

developed. This model and details of the algorithm that have been used to predict

the solar array behavior are explained in chapter 5.
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4.2.3 Battery

The next important element of a PV-power system is rechargeable battery. The

battery is necessary to make sure that spacecraft system can work properly during

eclipse as well. As the main purpose of the analysis tool is to perform the trade

analysis, we need models for batteries that are commonly used in space appli-

cations. In current work, we consider three types of batteries; NiCd, NiH2, and

Li-ion. In the next sections, we will briefly discuss different approaches that have

been used for battery modelling and how the batteries are being modeled for this

work.

4.2.3.1 A brief review

There are several approaches that have been used for battery modelling. Simple

empirical modelling approaches based on extensive cell data have been used to

model NiCd and NiH2 battery [50, 51]. In some of the approaches, the models

make use of electrochemical relations for computing cell reactions [52]. Here the

model parameters are calculated on the basis of the best fit of calculated data on

the experimental data. Mathematical modelling approaches have also been used

for modelling of NiH2 and Li-ion [53, 54]. These approaches are based on a set

of mathematical equations representing the behavior of battery. This is a very

effective method but requires a lot of information about cell properties which are

hard to avail in our case. There has been a lot of work on modelling of Li-ion

batteries because of its application in portable electronics [55–57].

4.2.3.2 Description of Model

The battery model implemented in this work is based on empirical approach. The

main reasons for choosing this approach are: firstly, it is simple in it implemen-

tation, secondly, the model can be developed on the basis of set of the battery

characteristic curves, and because it was hard to get any data related to electro-

chemistry of battery as the author could not even get true test data from industry

in-spite of all her effort. The battery module predicts a number of battery param-

eters, which includes battery state of charge (SOC), and battery voltage based

on test data as function of charge/discharge current, temperature, previous state
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Figure 4.9: Schemtic of battery model

of charge and coulombic efficiency. The Models for NiCd , NiH2 and Li-ion are

developed using same approach. The inputs to the model are:

• Charge/discharge current

• Battery capacity

• Temperature

The database to model a battery consists of set of battery test curves which in-

clude: voltage against SOC for different charge/discharge rates and temperature,

and coulombic efficiency against SOC for different charge currents and tempera-

tures. The functional diagram of the model is shown in Figure 4.9.

A battery’s SOC is calculated in terms of the actual capacity from ampere-hour

integration. This is also called coulomb counting [57], counting the current flowing

into or out of battery. Battery’s SOC is calculated using following equation:

SOC(tn) =

{

SOC(tn−1) + ηcharge

(

I dt
C

)

Charging

SOC(tn−1) −
(

I dt
C

)

− dSOCselfdescharge Disharging
(4.29)

where ηcharge is battery cell efficiency during charge process, and

dSOCselfdescharge is the change in battery cell’s SOC due to self discharge. dSOCselfdescharge



SEPS Design Optimization Methodology 61

is calculated from average self discharge rates, which are taken as 20% per month

for both NiCd and NiH2 [28].The battery cell efficiency during discharge is as-

sumed to be 100%. During charge process, ηcharge is function of battery charge

rate, previous state of charge and temperature of the battery. For NiCd and NiH2,

it is calculated from set of efficiency curves. Figure 4.10 shows a set of efficiency

curve for NiCd. Same efficiency curves are used for NiH2. Charge efficiency and

self discharge rate factors are negligible in the case of Li-ion, and are ignored in

this work. After SOC at a given instance has been calculated, the battery voltage
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Figure 4.10: Efficiency Vs. DOD at different charging rates (reproduced from
[50]): (1) C/3, (2) C/10, (3) C/50, (4) C/10

is determined as a function of SOC, temperature and charge or discharge current

using linear interpolation of stored data. As this model is based on data taken

from literature, it has some limitations. The model can predict the performance of

battery fairly good for charge-discharge range of C/10 to 3C for Li-ion and C/10

to 1C for NiCd and NiH2. No thermal modelling for the batteries is taken in to

consideration for this work. Although the model is able to simulate the battery

behavior over a range of temperature, for the sake of efficiency to keep computa-

tional cost low, we assumed that battery is operating in a temperature controlled

environment, and the battery performance is simulated for constant temperature.

For NiCd and Li-ion this is taken as 250C and for NiH2 this value is taken to be

10oC.
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Battery overcharge protection is extremely important for maintaining the battery

temperature, and it has strong influence on battery life. The battery, when fully

charged, reaches the maximum voltage beyond which all input power is converted

into heat. Most common approach is voltage temperature control. Here the end

of charge voltage is determined from set of V-T curves over an age period stored

in data base. When the full charge is approached, battery current is tapered down

to trickle charge. Trickle charge is selected on the basis of electro-chemistry and

mission. For Li-ion it is taken to be zero, as we have already assumed negligible

self discharge.

4.2.3.3 Model Validation

The model is implemented in MATLAB/Simulink. The program calculates all

parameters at each designated time step. The inputs to the model are charge/dis-

charge current and temperature, at each time step t. Based in this information,

and the previous state of charge and time interval between two samples (dt), the

state of charge at time t is determined. Along with the inputs described before,

the model makes use of efficiency vs SOC information during charge phase and

self-discharge rate information during discharge phase. The simulation results of

the model for NiCd are presented in Figures 4.11(a) and 4.11(b). Figure 4.11(a)

shows the profile of voltage vs SOC during charge at a rate of C/10 and C/3, and

Figure 4.11(b) shows discharge behavior under same conditions. The results here

resemble with the ones given in [58].
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4.2.4 Power Control Unit

The main function of power control unit is to deliver appropriate voltage and cur-

rent levels to different loads or components as identified in mission requirements.

The power sources are always over-sized to fulfill the power requirements till the

end of mission life. Hence there is surplus power at the start of mission which needs

to be dissipated. A shunt regulator is used to dissipate this surplus power and also

to compensate the changes that arise from changing load demands. Charge and

discharge controllers are responsible for maintaining life time operation and relia-

bility of the battery unit. Figure 4.12 represents the Simulink schematic of power

control unit. It includes battery charge/discharge regulator and shunt regulator.

The power system considered in this study is based on DET architecture. DET

system can be further divided into: i) the fully regulated and, ii) the sun regu-

lated bus. The main difference among the two types is that there is no battery

discharge regulator in sun regulated bus. Power control unit has different modes

of operations:

• Shunt mode: When the power from solar array exceeds the load and battery

charge requirements, the shunt mode is turned on to dissipate the excess

power. During this phase, the battery charging mode is also on, and the

battery is charged at full, partial or trickle charge rate.

• Charge cut back mode: When battery’s end of charge voltage is detected,

the charge rate is cut back to lower rate called trickle charge. This mode is

also on, during sunlight when solar array power is just enough to fulfill load

power requirements.

• Discharge mode: During the eclipse period, the battery discharge mode is

on. In the fully regulated bus, the bus voltage is maintained through a

battery discharge regulator. As with discharge, the battery voltages fall, the

duty cycle of the discharge converter also increases. Consequently battery

discharge current increases with time. In the sun regulated system bus, the

voltage follows the battery voltage.

Next, a detailed discussion of main components of power control unit of a fully

regulated power unit is given.
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Figure 4.12: Simulink schematic of power control unit

4.2.4.1 Shunt regulator

The function of the shunt regulator is to limit the bus voltage within defined

levels by dissipating excess solar array power. Out of many forms of the shunt

regulators, sequential switching shunt regulator (S3R) is the most popular and is

implemented here. The schematic of S3R is shown in Figure 4.13 [59]. In S3R

scheme, the solar array is divided into N number of strings. For any given load

current, certain numbers of strings are connected to bus, while rest are set in short-

circuit. Fine current adjustments are achieved through pulse width modulated

(PWM) switching of one of the sections. In this work, S3R is implemented using
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only a single PWM section. Figure 4.14 shows the schematic of working principle

for a single PWM section approach.

Bus

voltage

ESR

Ref. voltage 

Error amplifier
Ip

Ip

Ip

Figure 4.13: Sequential switching shunt regulator unit (adapted from [59])
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Figure 4.14: Sequential switching shunt with single PWM section (adapted
from [60])

4.2.4.2 Description of Model

The Simulink schematic of S3R is shown in Figure 4.15. Here output1 of the

main error amplifier (EA3) is the total current of ”ON” shunts and output2 is the
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signal to PWM. The total number of shunts, N, is calculated on the basis of total

bus current and maximum current per shunt (each shunt is assumed to have same

current rating).
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Figure 4.15: Simulink schematic of S3R

The inputs to the model are:

• Reference voltage (Vref)

• Bus voltage (Vbus)

The outputs of the model are bus voltage and bus current, which is the sum of

the currents of ’ON’ shunt and ’PWM’ shunt. For the condition when Vbus is less

than Vmin, all the shunts are open, and when Vbus is greater than Vmax all the

shunts are shorted. For the intermediate conditions, one section is in switching

mode, which we call as ‘PWM’ shunt and the others are either ‘ON’ or ‘OFF’. The

model calculates, the no. of ‘ON’ shunts and the duty cycle of the ‘PWM’ shunt

on the basis of bus voltage and reference voltages. These two are calculated as:

Non = int

{

Vbus − Vmin

Vmax − Vmin

}

N (4.30)

d =
Vbus − (Non (Vmax − Vmin) + Vmin)

Vmax − Vmin

(4.31)
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where Vmax and Vmin are user defined and are usually taken as % of Vref .

The transient response of S3R for a 50 volt bus is shown in Figure 4.16. The upper

and lower voltage limits in this case are 50.25 and 49.75 respectively. Here a load

step is applied at 0.45 sec. At this point, the bus voltage restarts to fluctuate

around the lower voltage value.

4.2.4.3 Battery Charge/Discharge Controller

For battery charge control, the controller makes use of the constant current-

constant voltage method. The inputs to the model are battery voltage, battery

current and temperature. During charging phase, the battery is charged till the

battery voltage is built up to VBattMax, defined as voltage-limit, and is temperature

compensated. After VBattMax has reached, the controller switches to the constant

voltage charging phase. During this phase, current is tapered such that battery

voltage remains constant. Taper current is calculated using double exponential

equation:

i = i0(Ae−t/a + Be−t/b) (4.32)

where i0 is the initial current at the start of constant voltage phase. The values

of constants are determined using curve fitting methods. During discharge phase,

the current is drawn from the battery at defined rate. In case the battery voltage

drops below the preset minimum battery voltage (VbattMin), the controller can

output the signal to disconnect all non-critical loads.

In Figure 4.17, the dynamic simulation of Li-ion battery consisting of 11 cells

in series integrated with satellite simulation model is shown. As battery enters

the charging phase at the beginning of sunlight, the battery voltage rises under

constant charge rates. At the point, where maximum voltage is detected, the

charge rate starts tapering and reduce to trickle charge rate in order to maintain

full voltage. During discharge, we can see that battery discharge current rises as

the battery voltage drops. This is due to the fact that battery voltage drops with

discharge.

Battery charge and discharge regulators (BCR, BDR) are represented by their

steady state continuous conduction mode equations [6]. For BCR, the relations
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Figure 4.16: S3R operation and dynamic response
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for duty ratio (D) and output current are given as:

D = Vout/Vin (4.33)

Iout =

(

1

D

)

Iin (4.34)

For BDR, these relations are as follows:

Vout

Vin

=
1

1 − D
(4.35)

Iout = (1 − D) Iin (4.36)

.

4.3 Optimization Tool

The third component of the SEPS design optimization frame work is the opti-

mization tool. This block is also based on MATLAB. Two different approaches

for multi-objective optimization (MOO) have been applied, one is a conventional

weighted sum genetic algorithm and the other is NSGA-II. The reasons for choos-

ing these two are: i) the weighted sum approach is very simple in its implemen-

tation and, ii) in problems where we can define the relative weights to the objec-

tives, it proves to be very effective. In MOO methods based on Pareto-optimality,

NSGA-II is proven to be very effective as compared to other techniques.

In this research, three design objectives are considered: i) minimization of SEPS

mass, ii) minimization of cost, and iii) maximization of performance. In case

of the weighted sum approach, the three objectives are combined, to make it a

single objective problem, and this single objective problem is then solved using

GA toolbox.

The main MATLAB code for NSGA-II has been taken from the work done by

Aravind Seshadri [61], and has been modified by the author for this application.



Chapter 5

Solar Array Modelling

The simulation of solar array involves modelling of solar cells while taking into

account the influence of illumination and temperatures along with representation

of the network resulted from the panel’s series parallel call assembly. Here we deal

with different types of solar cells that are commonly used in space applications.

The objective is to design a tool which can automatically update the values of

solar cell parameters if there is any change in environment conditions. Under

these conditions, we need a model which is applicable for all major types of space

solar cells.

Solar cell models are commonly used for analysis of solar cell behavior. The most

common approach to solar cell modeling is the use of a single diode solar cell

equivalent circuit [62], shown in Figure 5.1. The current-voltage relation of a solar

cell is described by:

I = Iph − Isat

(

e
V +IRS

Vt − 1
)

+
V − IRs

Rp

(5.1)

where Vt is given by:

Vt =
AkTK

q

Because of the nonlinearity and the implicit nature of these equations, determi-

nation of the parameters demands significant computational effort. In most cases,

the model includes only the variations of photo-current and diode saturation cur-

rent while the values of other parameters are kept constant or adjusted for better

72
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Figure 5.1: Solar cell equivalent circuit.

curve fitting [63]. However, it is known that solar cell parameters are affected

by temperature and irradiance which further affects solar cell performance curves.

Hence, for accurate modeling of a solar cell, it is essential to incorporate all of

these effects. Various analytical methods have been proposed for the determi-

nation of junction parameters [64] but applications of these methods are limited

to the availability of test data and require significant computation. Progress has

been reported in Ref. [65], where a genetic algorithm has been implemented for

solar cell parameter determination. This method requires an extensive set of I-V

characteristic data as input.

In this work, we have implemented a simulated annealing based optimization

method for the determination of A and Rs for any set of conditions using a set

of data at standard test conditions, obtained from the manufacturer’s data sheet.

Hence, it eliminates the requirement of having a set of I-V curves of the cell be-

forehand. Simulated Annealing was introduced by S. Kirkpartick et. al. [66]. It

is a global optimization method that can distinguish between different local op-

tima and has the capability of escaping local optima. Hence, it can be used for

optimization of complex non-linear functions.

As this model is basically developed to simulate the behavior of a solar array over

a number of orbit cycles, the primary motivation is to develop a model that can

be applied to all major types of solar cells (single and multi-junction) in space ap-

plications. Therefore, the requirement is to design a tool which can automatically

update the values of solar cell parameters if there is any change in environmental

conditions.
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The model also makes use of an additional diode factor for multi-junction solar

cells making it suitable for both single and multi-junction solar cells, with almost

the same accuracy. Another attractive feature of this model is that it makes use

of data-based approach i.e., the data set of current and voltage values of solar cell

at any standard environmental condition will be enough for the model to work for

any environmental condition.

Application of the model for the determination of I-V characteristics of solar cell

after degradation under radiation fluence has been described in section 5.2.1. In

addition, an algorithm to use this model in solar array simulation under varying

environmental conditions has also been presented in section 5.3.

5.1 Description of Model

5.1.1 Solar Cell Equivalent Circuit Model Equations

The current model is based on a simplified single-diode model [63] to describe the

electrical characteristics of solar cell. The behavior of the solar cell is determined

from the cell characteristics given in the cell data sheet. An adapted version of

this model is implemented using MATLAB. The inputs to the model are:

• Voltage across cell/array

• Illumination intensity

• Operating temperature.

The simplified single-diode model ignores the effect of leakage currents eliminating

the last term of Equation 5.1. In addition for multi-junction cells, the concept

of considering a multi-junction solar cell as a series connected diodes, is used.

These serially connected diode are replaced by a single equivalent diode, using

an additional factor λ, representing the number of junctions in solar cell [67]. So

Equation 5.1 can now be rewritten as:

I = Iph − Isat(e
V +IRs

Vt − 1) (5.2)

where Vt is given by:
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Vt = λ
AkTK

q

The current model needs the following four parameters; Voc(open circuit voltage),

Isc(short circuit current), Impp(current at maximum power point) and Vmpp (volt-

age at maximum power point) along with their respective temperature coefficients

which are represented by dVoc, dIsc, dImpp, and dVmpp. The effect of variations in

temperature and illumination on different operating conditions is given as follows:

• Short Circuit Condition

Iph = Isco

G

Go

+ dIsc(T − To) (5.3)

• Open Circuit Condition

Isat(G, T ) =
Iph(G, T )

(e
Voc(T )

Vt(T ) − 1)
(5.4)

Voc = Voco + Vt ln

(

G

Go

)

+ dVoc(T − To) (5.5)

which is generally true for illumination intensity less than 100 W/m2. For

illumination intensity greater than 100 W/m2, following relationship is used:

Voc = Voco + Vtln

(

G

100

)

ln

(

G

Go

)

+ dVoc(T − To) (5.6)

• Peak Power Point

Impp(G, T ) = Impps

G

Go

(1 + dImpp(T − To)) (5.7)

Vmpp =

{

Vmppo + Vtln
G

100
ln G

Go
+ dVmpp(T − To) if G ≥ 100W/m2

Vmppo + Vtln
G
Go

+ dVmpp(T − To) if G < 100W/m2

(5.8)
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5.1.2 Simulated Annealing

Simulated annealing is a stochastic heuristic technique to find a global minimum

for continuous-discrete-integer, and non-linear programming problems [68], [69].

The basic idea of the method is to generate a random point and evaluate the

problem functions. If the trial point is infeasible, it is rejected and a new trial

point is generated. If the trial point is feasible and the cost function value is

smaller than the current best record, then the point is accepted, and the record

for the best value is updated. If the point is feasible but the cost function is

higher than the best value, then the point is sometimes accepted and sometimes

rejected. The acceptance is based on value of the probability density function

of the Boltzman-Gibbs distribution. If this function has a value greater than a

random number, then the trial point is accepted as the best solution even if its

cost function value is higher than the recorded best value. In computing the

probability, a parameter called the temperature is used. For the optimization

problem, this temperature can be a target value (estimated) for the cost function

corresponding to a global minimum. Initially, a larger target value is selected. As

the trials progress, the target value is reduced (this is called the cooling schedule),

and the process is terminated after a fairly large number of trials. The acceptance

probability steadily decreases to zero as the temperature is reduced. Thus in the

initial stages, the method is likely to accept worse designs while in the final stages,

the worse designs are almost always rejected. This strategy avoids getting trapped

at a local minimum.

5.1.3 Simulated Annealing Based Parameter Prediction

Equations (5.3-5.8) represent the change in solar cell parameters with respect

to temperature and irradiance. The coefficients of temperature for current and

voltage are usually provided in the manufacturer’s data sheet. So, the change in

the values of Iph and Isat can be determined linearly if an accurate value of A and

Rs is known. The main effect of A and Rs is on the shape of the curve around

maximum power point, and hence on the determination of the maximum power

point under that operating condition. Because of this reason, in most of the cases,

the values of these parameters are usually obtained from I-V curves.
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In Ref. [70], it has been shown that the value of A and Rs are best when the

difference between the value of dI
dV

at maximum power point and Impp

Vmpp
is minimal.

Using this as our objective function, we define a search and optimization problem

for determination of optimal values of A and Rs. Adaptive Simulated Annealing

(ASA) is implemented for the objective minimization optimization problem where

the objective function is defined as:

J = −
dI

dV

∣

∣

∣

∣

V =Vmpp

+
Impp

Vmpp

(5.9)

where

dI

dV

∣

∣

∣

∣

V =Vmpp

=
Isat

Vt
e

(

Vmpp+IRs

Vt

)

1 + IsatRs

Vt
e

(

Vmpp+IRs

Vt

)

The model developed in this work consists of mainly two parts: (i) one simulated

annealing based optimizer and (ii) single diode based cell modeler. Both of these

have access to the set of basic parameters (Voc, Isc, Impp and Vmpp ) at standard test

conditions along with their respective temperature coefficients for different types

of cells. This set of data can be upgraded to accommodate any type of cell. The

model is called for a specific cell type with environmental conditions. Upon the

call, both of the modules (optimizer and modeler) are loaded with the specific cell

data. Then the optimizer calculates the optimal (near optimal) values of A and

Rs using cell data and environmental conditions (temperature and illumination

intensity). These values are then given to the modeler which generates the I-V

curves for the cell or array, whatever the case be.

5.2 Model Validation

A Matlab/Simulink based model is used to demonstrate the performance of the

modeling process and has been tested for various types of cells. Figures. 5.2, 5.3,

and 5.4 show the result of the simulation of I-V curves for Si, dual junction (DJ)

and advanced or ultra triple junction (UTJ) solar cells respectively at standard

conditions, and are compared with the data points taken from I-V curve given in

the manufacturer’s data sheet. Along with this, the model has been checked for its

performance at various environmental conditions. The effect of illumination on the
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I-V curve of advanced triple junction is demonstrated in Figure. 5.5. These cells

are used in NPSAT1 satellite. The results shown in Figure. 5.5 show very close

resemblance with those, taken experimentally in [71]. The effect of temperature

variation on single junction GaAs/Ge cells are presented in Figure 5.6. And the

results have been compared with the points taken from the results in Ref. [72].
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Figure 5.2: Simulated I-V curve for Si solar cell, compared with the discrete
points taken from manufacturer’s data sheet

5.2.1 Solar Cell Performance Evaluation After Degrada-

tion

In the previous section, we have discussed and evaluated the model for varying

temperature and illumination. For spacecraft applications, the users are more

interested in end of life (EOL) characteristics rather than the beginning of life

(BOL). The model presented here can also be equally useful in predicting EOL

characteristics after radiation degradation. In space environment, radiations of

different types are main environmental degradation factor. For theoretical and

experimental purposes, the radiation effects due to electron and proton fluxes are

integrated into equivalent 1MeV electron flux (fluence). The equivalent fluence

for a particular mission depends on the given solar cell and solar array type along
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Figure 5.3: Simulated I-V curve for DJ solar cell compared, with the discrete
points taken from manufacturer’s data sheet
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Figure 5.4: Simulated I-V curve for UTJ solar cell compared, with the discrete
points taken from manufacturer’s data sheet
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with orbit parameters and mission duration. Let the radiation degradation factors

for Voc , Vmpp, Isc and Impp under given equivalent fluence (φ) be Kvoc, Kvmpp, KIsc

and KImpp, respectively. The temperature coefficients of the solar cell in this case

are given as dVocφ , dVmppφ, dIscφ and dImppφ. These factors can be determined

from manufacturer’s data sheet for the given set of fluences or can be calculated by

interpolating the given data. The solar array characteristics are then determined

by modifying Equations 5.3- 5.8 as follows:

Iph = IscoKIsc

G

Go

+ dIscφ(T − To) (5.10)

Voc = VocoKvoc + Vt ln

(

G

Go

)

+ dVocφ(T − To) (5.11)

Voc = VocoKvoc + Vtln

(

G

100

)

ln

(

G

Go

)

+ dVocφ(T − To) (5.12)

Isat(G, T ) =
Iph(G, T )

(e
Voc(T )

Vt(T ) − 1)
(5.13)

Impp(G, T ) = ImppsKImpp

G

Go

(1 + dImppφ(T − To)) (5.14)

Vmpp =

{

VmppoKvmpp + Vtln
G

100
ln G

Go
+ dVmppφ(T − To) if G ≥ 100W/m2

VmppoKvmpp + Vtln
G
Go

+ dVmppφ(T − To) if G < 100W/m2

(5.15)

The effect of radiation fluence over Si solar cell characteristics under standard

temperature and illumination conditions is given in Figure 5.7. To establish the

accuracy of this approach, the simulation results for BOL and EOL of triple junc-

tion solar cells are compared with the experimentally measured results [73] in

Figure 5.8. The simulated characteristics show very close resemblance to exper-

imental values. This verifies that the presented model can predict the solar cell

characteristics at EOL with a high level of accuracy.
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Figure 5.5: Simulated I-V curves for UTJ solar cell for illumination intensity
of 1000W/m2 and various incident angles:(a) 0 deg, (b) 30 deg, (c) 60 deg. The

discrete points shown are taken from [71]
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Figure 5.6: Simulated I-V curves of single junction GaAs/Ge cell at various
temperatures: (a) 25 oC, (b)70oC. The discrete points shown are taken from

[72]
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Figure 5.7: Simulated I-V curves of Si solar cell: (a) BOL, (b) EOL at Flunece
of 1 × 1014e/cm2, (c)EOL at Flunece of 1 × 1015e/cm2
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Figure 5.8: Simulated I-V curves of triple junction solar cell: (a) BOL, (b)
EOL at Flunece of 5 × 1014e/cm2. The discrete points shown are taken from

[73]
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5.3 Solar Array Performance Calculation in Vary-

ing Environment

As solar array consists of number of solar modules composed of series-parallel

combination of cells. Consider an array consisting of M number of modules, and

each module consisting of Np number of parallel strings, and each string having Ns

no. of cell connected in series. Assuming that all cells are identical, current-voltage

relationship will be given as:

I(V ) = M

[

NpIph − NpIsat

[

e

(

V/Ns+IRs/Np

Vt

)

− 1

]]

(5.16)

This model has capability to calculate the current voltage relation in an environ-

ment where illumination and temperature are varying as in the case of spacecraft

solar array. An algorithm to demonstrate its application for solar array analysis

over a simulation period of tp is described in Figure 5.9.

This algorithm is very effective and efficient, if the model is to be run once, as

is the case for general SEPS design analysis. In current work, we have to use

this model as part of optimization problem, where analysis model has to be run

repetitively, while illumination pattern remain same for given mission parameters.

In order to keep the computational time low, a modified version of the above

algorithm has been developed and used in the final analysis model. This new

algorithm is shown in Figure 5.10. Here the values of A and Rs, for the given

illumination and temperature condition, are stored in a table for future reference.

When there is a change in the temperature or illumination, the entries of the table

are checked against these. If a match is found, the values of A and RS are taken

from table and the value of current is calculated. Otherwise the new values of A

and RS are calculated and same are fed to the table. This modification reduces

the optimization run time by a factor of 10.
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Figure 5.9: Original algorithm for single run
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Chapter 6

SEPS Conceptual Design

Optimization

In this chapter, we describe the application of GA as a search and optimization

tool for spacecraft power system design . The aim here is to analyze the behavior of

GA and to compare the results when two techniques are applied to an automated

design of spacecraft power system, with an improvement over the original baseline

design.

The problem is sought by conducting two case studies. The optimization frame-

work in case-1, is composed of the sizing model and optimizer only. Here, the dy-

namic simulation model of the spacecraft power system is not included. In case-2,

the problem is extended to complete framework consisting of sizing, analysis and

optimization.

6.1 Problem Statement

In this work, a LEO mission with medium power requirement is considered as a de-

sign optimization problem to be solved using genetic algorithms. The parameters

of our mission along with the power requirements are given in Table 6.1. These

requirements are coupled with a sizing tool to design our SEPS with minimum

mass and cost, while targeting maximum performance.

86
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Parameter name Value
Orbit altitude 798 km

Inclination angle 68o

Mission life 3Yrs.
Day light power requirements 2kW
Eclipse power requirements 2kW

Table 6.1: List of mission parameters.

6.1.1 Design Variables

Seven different design variables are considered in this problem. These variables

are selected for two reasons; first, to evaluate the impact of these variables on the

system performance and, secondly, to consider the range of the solutions available

with the industry in order to avoid the extra cost incurred as a result of develop-

ment of new solutions. These design variables include both discrete and continuous

parameters. Table 3.5 summarizes these design variables. The first three design

variables describe the technology of solar cell-, the battery- and array-types. The

solar cell choices are shown in Table 3.1. The three battery choices available are

NiCd, NiH2 and Li-ion. The forth variable is the bus voltage, and choices for this

are 28V, 50V and 100V. The fifth and sixth variables are the choices of battery

configuration i.e., number of the batteries and number of the cells per battery.

The battery capacities and configurations required to fulfill the mission require-

ment are traded off against battery mass, cost and battery performance. These

variables are chosen keeping in view the general practice and availability in the

market. The seventh variable is maximum discharge rate. Maximum allowable

discharge rate for the battery is given either by battery manufacturer or selected

by designer depending upon mission and battery type. For GEO and LEO mis-

sions, this value is usually between C/2 and C/1.5, where C is battery capacity in

ampere-hour.

6.1.2 Constraints

The constraints account for the allowable operational ranges of a specific battery

for a given mission. These constraints are defined as:

• The battery should approach maximum allowable DOD as close as possible.
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• The battery discharge current should not exceed maximum allowable rate of

discharge.

• The battery operation should be energy efficient i.e., it should have an effi-

ciency value higher than required ( a value usually defined by the user).

These constraints are handled differently as the battery SOC over a given period

cannot be calculated in the first case, where only the mathematical relations are

taken into consideration. To evaluate SOC, the battery must be subjected to

charge/discharge cycles over a certain period similar to the ones encountered on

real missions.

6.1.2.1 CASE 1: Optimization using the sizing tool only

In this case, only one equality constraint is used to calculate the penalty function.

The constraint is calculated as follows:

h1(x) =
DOD

DODmaxallowable

− 1 = 0 (6.1)

6.1.2.2 CASE 2: Optimization incorporating the analysis tool

Here, one equality and two inequality constraints are applied to the SEPS design

problem. An external penalty function approach is implemented to account for the

design, as described in section 3.4.3. These constraints ensure that the design of

the battery is within allowable operation limits. These constraints can be described

mathematically as:

h1(x) =
DOD

DODmax

− 1 = 0 (6.2)

g1(x) =
SOCavg

SOCavg−desired

− 1 ≤ 0 (6.3)

g2(x) =
Idisrate

Idisratemax

− 1 ≤ 0 (6.4)

where SOCavg is calculated as average of fractional SOC over the simulation period

and the SOCavg−desired is user defined target battery efficiency.
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6.1.3 Objective Function Formulation

The problem we are considering belongs to the class of multi-objective (MO) prob-

lems. This MO problem is first reduced to a weighted sum problem in this chapter

as discussed in section 3.4.2. It is solved initially using the sizing tool only, and the

same problem is then solved using complete framework which includes the anal-

ysis tool as well. In both of these cases, the problem is solved for three different

objectives. The objective functions for both of the cases are same. The differ-

ence lies in the formation of the function because the constraints are considered

differently as discussed above. The objective functions used in the optimization

process are based on the minimization of the system mass (Wm), cost (Wc) and

inverse performance index (Wipi) which means maximization of the performance

of the SEPS. The objective function is given as:

J = wmWm + wcWc + wpWipi (6.5)

where w represents the weight given to each objective, W represents the value

of individual objectives. The subscripts m, c, and ipi represent mass, cost and

inverse performance index respectively. The SEPS performance index is a mea-

surement of system performance. It takes into account the solar array figure of

merit (FoMsa), system reliability (Reps), and system performance constraints. As

the current problem has been formulated as minimization problem, we use inverse

of performance index. Individual objectives are calculated as follows:

Wm = Mb + Msa + MPMAD (6.6)

Wc = Cbatt + Csa + Ceff−launch (6.7)

Wipi =
1

FoMsa

+
1

Reps

+ Pen (6.8)

where penalty value (Pen) takes into account all the penalty factors, Reps is overall

system reliability and is calculated as described in section 4.1.5. The solar array

figure of merit is defined as ratio of the solar array EOL power with solar array
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mass and area, and is calculated for LEO and GEO missions as [29]:

FoMsa =















Parr

A3
sa×M2

sa

LEO

Parr

A2
sa×M2

sa

GEO

(6.9)

6.2 Results and Discussion

6.2.1 Case-1

In the weighted sum approach, the three objectives are reduced to one as described

by Equation 6.5. This single objective problem is then solved using the MATLAB

GA toolbox. In these runs, only the sizing tool is used to calculate the mass, the

cost and the figure of merit of solar array design. To evaluate the constraints, the

SOC condition of the selected battery configuration is checked against maximum

allowable for the given technology.

The problem is solved for population sizes of 50 and 70 generations. Two different

selection methods namely, i) the tournament selection and ii) the remainder selec-

tion, are used in the evolutionary computations. The results generated by both of

these are summarized in Table 6.2 against the baseline values.

A closer look at these results reveals that, although the technology for solar array

and battery is same, the selection of bus voltage and number of battery cells

makes a significant effect on collective as well as individual-objectives. Thus the

results generated by GA are optimized in the sense of mass, cost and performance.

In addition, the design engineer will have confidence that the resultant design is

realizable and stays within the design options available in the industry.

The evolutionary progress of the GA over the course of different generations for

the tournament and the remainder selection processes is given in Figure 6.1 and

Figure 6.2 respectively. It is clear from the results that the remainder selection

gives better results in a lesser no. of generations, so all further optimization runs

in this chapter are conducted using remainder selection process.
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Design Variable/
Parameter

Baseline Optimization Results

Remainder Selection Tournament Selection
Solar cell technology GaAs ATJ2 High-η Si
Battery technology NiH2 Li − ion Li-ion

Array type Rigid Rigid Rigid
Bus voltage (V) 50 100 50
No. of batteries 2 1 2

No. of cells per battery 22 52 10
Maximum Discharge rate (×C) 0.5 0.506 0.5296

Battery capacity (Ah) 52 50 50
Array area (m2) 71 42.290 75.50
SPS mass (kg) 378.88 220.55 255.192

Total cost factor(104$) 1531.0 1023.8 786.668
Inverse performance index 4058.30 189.696 592.9913

WS objective 1987 477.554 545.229

Table 6.2: Comparison of baseline and optimized design
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Figure 6.1: Fitness values of individual and weighted sum objective over op-
timization run using tournament selection method
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Figure 6.2: Fitness values of individual and weighted sum objective over op-
timization run using remainder selection method
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Design variable/
parameter

Baseline Optimization results

Solar cell technology GaAs UTJ
Battery technology NiH2 Li − ion

Array Type Rigid Rigid
Bus voltage (V) 50 100
No. of batteries 2 1

No. of cells per battery 22 56
Maximum discharge rate 0.5 0.6039
Battery capacity (Ah) 52 39

Array area (m2) 71 42.290
SPS mass (kg) 378.88 215.693

Total cost factor(104$) 1530.0 1007.5
Inverse performance index 4058.0 196.660

WS objective 1987.0 472.8037

Table 6.3: Comparison of baseline and optimized design using complete frame-
work

6.2.2 Case-2

For the optimization of the SPS design using the complete framework, the scenario

of using same weights for all objectives has been used. The results given here are

almost same as above. The results along with some parametric analysis in Table 6.3

give a summary of main parameters for both baseline and optimal (near optimal)

designs.

Figure 6.3 shows how the objective function progresses toward its minimum. The

optimal solution here is attained in 18th generation. The dynamic simulation

results for the optimal solution are shown in Figure 6.4. It can be seen that the

battery goes to a minimum of 70.13% while it was allowed for a minimum of

about 51%. Hence, although the constraint of SOC does not exceed the maximum

allowed limit, the battery failed to utilize itself efficiently, and the system design

will be penalized for this.

As one single optimization run gives one optimal solution at the Pareto front, to

find other solutions at the Pareto front we need multiple optimization runs with

different weight combinations. Here we do it for three different cases, low IPI, low

mass and low cost. The results of these different optimizations are summarized in

Table 6.4. From these results, we can see that UTJ solar cells are best choice for

low IPI and mass, hence the same comes as selection for equal weights. Similarly
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Design Variable/
Parameter

Optimization Results

High IPI Weight High Cost Weight High Mass Weight
Solar cell technology UTJ High-η Si UTJ
Battery technology NiCd Li-ion Li-ion

Array type Rigid Rigid Rigid
Bus voltage (V) 100 50 50
No. of batteries 2 3 2

No. of cells per battery 54 11 11
Maximum Discharge rate (×C) 0.603 0.58 0.65

Battery capacity (Ah) 29 28 39
Array area (m2) 42.29 75.50 41.90
SPS mass (kg) 334.703 249.979 221.442

Total cost factor(104$) 1376.6 765.9344 1046.40
Inverse performance index 178.24 594.593 226.5776

Table 6.4: Comparison optimized designs for different weight options

for battery choice Li-ion is the selection for low cost and low mass, so, it comes out

as selection where all objectives are given equal weights. The design variables like

array type, battery configuration and maximum discharge rate play an important

role in the refinement of the optimal design selection. How the objective functions

evaluate over the optimization run is shown in Figure 6.5.
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Figure 6.3: Fitness values of individual and weighted sum objective over op-
timization run
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Figure 6.4: Dynamic simulation of optimized design
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Chapter 7

Multi-Objective Design

Optimization

In spacecraft systems design, there are usually more than one design objectives,

which a design team should take into account. These objectives involve system

performance measures like mass, size, cost, reliability, power efficiency and sys-

tem robustness. In a good design procedure, the tradeoffs between competing

objectives should be incorporated so that the design team can make an informed

decision.

In the previous chapter, we have seen the application of the classical weighted

sum approach in solving the design search and optimization of a spacecraft power

subsystem problem. In the weighted sum approach, the weighting of the different

objectives into a single objective is necessary which require prior weights of objec-

tives. This approach finds one solution in one run, and requires a large number

of function evaluations and several optimization runs to find the set of Pareto

optimal solutions. Whereas, multi-objective optimization treats each objective

independently, and does not require any prior weights. Secondly, multi-objective

optimization generates a set of Pareto optimal solutions in one single run, and the

designer can identify the trade-off between competing objectives.

This chapter presents the application of multi-objective optimization to the space-

craft power subsystem design search and optimization. In the previous chapters,

we have discussed that spacecraft power subsystem design is multi-objective where

we try to minimize the mass and cost and maximize system performance (minimiz-

ing inverse performance index) at the same time. To understand the application

99
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of the multi-objective nature of optimization problem, we have gone from a bi-

objective to a tri-objective application. In bi-objective problems, the trade-offs

between two objectives are sought while third is not taken into account. In this

research, a modified version of the non-dominated sorting genetic algorithm is used

to find a set of Pareto optimal solutions. NSGA-II has performed very well here,

and is able to give converging Pareto fronts. The test results performed on the

problem, discussed in last chapter, show that the computational time of NSGA-II

is comparable to that of weighted sum genetic algorithm (WSGA).

7.1 Problem Statement

In this chapter, two case studies are made: in the first case study, the power

subsystem design is investigated for the LEO mission parameters which are given

in chapter 6, using NSGA-II. In the second case study, the problem for the design

of power subsystem for a communication satellite will be evaluated. This problem

has been encountered during author’s work experience and is being solved after

going through a long traditional trade-off study and consultations.

The three objectives are the same as defined in chapter 6. These objectives are:

• Minimization of SPS mass

J1 = min(Meps) (7.1)

• Minimization of cost.

J2 = min(Ceps + Ceff−lauch) (7.2)

• Minimization of inverse performace index

J3 = min(
1

FoMsa

+
1

Reps

+ Penbatt) (7.3)
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7.2 Results and Discussion

7.2.1 Case-1

NSGA-II is implemented for multi-objective optimization. The problem of SEPS

design for LEO missions is analyzed in two different ways.

7.2.1.1 Bi-Objective Optimization

Before solving the multi-objective problem for three objectives, it is solved as a bi-

objective problem. To this end, individual optimization runs are made for three

bi-objective problems, which are designed as, IPI-mass, IPI-cost and mass-cost

optimization problems. The Pareto fronts for bi-objective optimizations of these

bi-objective problems are determined. The Pareto optimal solutions for IPI/Cost

are shown in Figure 7.1. The results shown in Figure 7.1(a) are obtained with a

population size of 70, while the results shown in Figure 7.1(b) are obtained with a

population size of 110. As we can see the number of solutions obtained in second

case are greater than what we get in case-1, but increasing the population size

further does not have any significant effect on the number of solutions obtained.

Hence, it can be said that the population size of 110 (about 15 times number

of variables involved) is optimal. In Figure 7.1(b), we can see three regions of a

Pareto front. Region I contains the solutions with very low IPI and very high cost,

whereas Region-II contains the solution with clear trade-off between the IPI and

cost. Region III contains the solutions with lowest costs and very high IPI. The

progress of the minimum of each objectives along the generations for IPI/Cost is

shown in Figure 7.2. The Pareto fronts for IPI/Mass and Mass/Cost are shown in

Figures 7.3 and 7.5 respectively. The progress of the minimum of each objectives

vs. the generations is shown in Figures 7.4 and 7.6
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Figure 7.2: Progress of minimum achieved for each objective vs. no. of
generations for IPI/Cost problem

In Figure 7.1, we can see that NSGA-II has produced results representing the

tradeoff between the inverse performance index and cost, which are well distributed

around the imaginary Pareto front (represented by the dashed line). Point-1 repre-

sents the design with minimum IPI but maximum cost while point-2 represents the

design having maximum inverse performance index with minimum cost. A similar

situation can be seen for IPI/Mass and Mass/Cost cases. The points between the

extremes are the results showing a clear trade-off between the two objectives being

optimized. To analyze this trade off phenomenon, we do a comparison of extreme-

and compromised- (encircled) solutions. This comparison is given in Tables 7.1, 7.2

and 7.3. From the results for IPI/cost optimization given in Table 7.1, we can

see that, for the current problem, selecting Li-ion can provide a low cost system.

Also, it is clear that although the UTJ solar cell can give the best performance fit,

high-η Si solar cells can give better results for low cost. From Table 7.2, we can

see that when it comes to performance-mass trade off UTJ is the best choice in

both cases. Whereas when it comes to mass/cost trade-off (Table 7.3) NiCd with

high-η Si results in lowest cost system. To understand what does is meant by low

and high IPI, the performance of battery system for the extreme solutions from
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Parameter Minimum IPI Minimum Cost Compromised solution
IPI 175.189 15110.227 806.929

Cost (k$) 11672.277 7197.506 7473.266
Solar cell technology UTJ High-η Si High-η Si
Battery technology NiCd Li − ion Li − ion

Array Type Rigid Rigid Flexible
Bus voltage (V) 100 50 100
No. of batteries 3 1 1

No. of cells per battery 52 11 22
Maximum discharge rate 0.501 0.624 0.595

Table 7.1: Comparison of value limits of Pareto set (IPI/Cost)

Parameter Minimum IPI Minimum Mass Compromised solution

Mass (kg) 346.715 212.321 223.512
IPI 334.756 14704.242 765.691

Solar cell technology UTJ UTJ UTJ
Battery technology NiCd Li − ion Li − ion

Array Type Flexible Rigid Rigid
Bus voltage (V) 100 50 100
No. of batteries 3 1 1

No. of cells per battery 60 11 24
Maximum discharge rate(×C) 0.563 0.547 0.50

Table 7.2: Comparison of value limits of Pareto set (IPI/Mass)

IPI/cost trade off is given in Figures 7.7 and 7.8. Here we can see that, in the sys-

tem with low IPI, the battery is well approaching the maximum state of discharge

(0.7). While in the system with high IPI, the battery is discharging far beyond

the maximum allowed limit (0.6), and it can also be seen that if same behavior

continues over a number of charge/discharge cycles, the battery may exceed the

end of discharge limits. Hence the systems with high IPI are the worst choice.
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Selection Minimum mass Minimum cost Compromised
Mass (kg) 211.07 279.94 245.71
Cost (k$ ) 10023.94 7392.95 755.24

Solar cell technology UTJ High-η Si High-η Si
Battery technology Li − ion NiCd Li − ion

Array Type Rigid Rigid Flexible
Bus voltage (V) 100 50 50
No. of batteries 1 1 2

No. of cells per battery 20 30 10
Maximum discharge rate (×C) 0.666 0.614 .665

Table 7.3: Comparison of value limits of Pareto set (Mass/Cost)
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Figure 7.7: Battery behavior for selection-1 from IPI/Cost Pareto set
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Figure 7.8: Battery behavior for selection-2 from IPI/Cost Pareto set
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7.2.1.2 Tri-Objective Optimization

In bi-objective case studies presented in the previous section, two objectives were

traded off while neglecting the third. Here we shall move one step ahead, and shall

analyze the problem in its full perspective. The study is made taking all three

objectives under consideration. The optimization is run for 50 generations with a

population size of 110. Figure 7.9 shows the Pareto front. In a 3D representation,

it is hard to visualize how the trade-offs are taking place. So the Tradeoffs are

projected on two-objective planes in Figures 7.10, 7.11 and 7.12 The pattern of

how the objectives change over the generations is shown in Figure 7.13.

Two solutions are selected in this case and the comparison is given in Table 7.4.

The comparison of the results shows that solution-1 has best compromise between

mass and cost but slightly higher IPI, whereas solution-2 has very low IPI but

poor mass and cost compromise.
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Figure 7.9: Approximate Pareto front for tri-objective optimization for the
design of SEPS for LEO satellite
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Figure 7.10: Projected view of Figure 7.9 on IPI-mass plane
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Figure 7.13: The minimum of each objective over the no. of generations

The comparison of the results shows that every trade gets improved at the cost of

some other, and the design can be selected based on the preferences of the designer,

for a given specific mission. By comparing the results obtained by treating the

problem as single objective in chapter 6, then as bi-objective (section. 7.2.1.1) and

finally as tri-objective, it is very clear that during optimization using WS approach

the designer has to give the weighting to the objectives before optimization, hence

limiting the solution to that particular set of weighted objectives. In addition,

the designer may have to run a number of optimization runs with different weight

combinations to get a set of Pareto optimal points. Even then, the results can be

misleading in the case of combination of convex-concave Pareto front.
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Selection Solution 1 Solution 2

Mass (kg) 245.71 354.39
Cost (k$) 7552.43 9844.31

Inverse performance index 932.97 504.58
Solar cell technology High-ηSi Hybrid-1
Battery technology Li − ion NiCd

Array Type Rigid Rigid
Bus voltage (V) 50 100
No. of batteries 2 2

No. of cells per battery 11 54
Maximum discharge rate (×C) 0.581 0.621

Table 7.4: Comparison of two compromised solution for tri-objective problem

In the previous section, where system design optimization was performed as three

sets of bi-objective problem, we can see that Pareto front can predict the trade-

off between two objectives very clearly and objectives have converging behavior.

Observing this we can say that this approach can be very effective. The issue

here is that while making acceptable trade-off between the objectives, the third

objective may be getting worse. This problem can be solved using the third as a

constraint. But such an approach has the disadvantage that, by predefining the

limits on one objective we may sacrificing some solutions where other objectives

can perform a lot better by just exceeding the constrained variable.

Multi-objective optimization with all design objectives taken into account gives the

designer a complete overview. Analysis of projected views of the Pareto fronts,

give a very clear picture of the objectives trade-off, helping the designer to choose

the design best matching his requirements.

The GA is able to generate several good designs across the span of Pareto front

in as low as 50 generations with 5250 function evaluations. On the other hand

to obtain 20 points on the Pareto front using weighted sum approach the GA

would require 20 different objective functions. Assuming a single objective GA

converges in about 20 generations, the estimated computational cost in this case

can be taken as 28000 function evaluations. The comparison of computational

costs demonstrates that the NSGA-II is very effective multi-objective approach

for SEPS design, and its effectiveness will increase as more design variable are

taken into account.
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Parameter name Value
Orbit Geo synchronous orbit (GSO)

Orbit altitude 35,786 km
Mission life 15 Yrs.

Day light power requirements 5800 W
Eclipse power requirements 4700 W

Table 7.5: List of mission parameters for communication satellite.

7.2.2 Case-2

In this case, the problem is solved for power system for a medium powered com-

munication satellite. The mission parameters are given in Table 7.5.

The problem is solved using tri-objective methodology and results of these are

compared with what is the chosen design. The approximate Pareto front for

GSO satellite mission is shown in Figure 7.14. The progress of minimum of each

objective vs. generations is shown in Figure 7.18. The objective values for baseline

design are shown by solid squares in the figure for comparison. Here, three sets of

solutions are selected for analysis among themselves and with the baseline design

for the power system of the mentioned communication satellite. Selection-1 is

highlighted by a circle, selection-2 by a square and selection-3 by a diamond shape.

The parameters for all these are summarized in Table 7.6. From the comparison of

results, it can be seen that selection-1 has best performance index but has highest

mass and cost among all the selected solutions and baseline. Selection-2 has better

mass and performance but higher cost figure. Selection-3 has performance lower

than selection-1 and 2, while the mass and cost figures are much better than all

others.

The trade-off study clearly shows that one objective is attained at the expense of

other. Thus, while selecting design, the basic rule is to define clearly the priori-

ties for design selection. The power system of communication satellite is designed

keeping performance index as the highest priority. We have seen in previous dis-

cussion that selection-1 has much better performance than baseline design but at

the same time, higher mass and cost. In case of selection-2, again performance

is much better than baseline but still higher cost. Selection-3 has much better

trade-off in terms of mass and cost, and the performance of this design is slightly

lower than baseline, even if not much better.
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Parameter Selection 1 Selection 2 Selection 3 Baseline design
Mass (kg) 556.04 401.62 350.35 474.70
Cost (k$ ) 2.64×104 2.358×104 1.992×104 2.221×104

Inverse performance index 102.30 113.73 1152.98 743.8
Solar cell technology GaAs UTJ UTJ —
Battery technology NiH2 Li − ion Li − ion —

Array Type Rigid Flexible Rigid —
Bus voltage (V) 100 50 100 —
No. of batteries 1 1 2 —

No. of cells per battery 60 10 22 —
Maximum discharge rate(× C) 0.605 0.553 0.654 —

Battery capacity (Ah) 104 50 50 —
Solar array area (m2) 92 68.4 62.1 —

Table 7.6: Comparison of baseline and compromised solutions GEO satellite
power system problem

Analyzing the dynamic simulation results shown in Figure 7.19, we can see that

the battery is approaching maximum allowable SOC 45% very well, and it is very

likely that it will not exceed this limit over any number of orbit cycles. So it is clear

that the design selection-3 is the better solution. In the solution, the mass and

cost of the system are lower and even the performance is well within acceptable

limits. Therefore, this design is selected as the optimal.
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Figure 7.14: Approximate Pareto front for tri-objective optimization for the
design of SEPS for GSO communication satellite
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Figure 7.15: Projected view of Figure 7.14 on IPI-mass plane
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Figure 7.17: Projected view of Figure 7.14 on mass-cost plane
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Figure 7.18: The minimum of each objective over the generations
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Figure 7.19: Battery behavior for selection-3 design



Chapter 8

Conclusions and Future Work

8.1 Summary

The research reported in this thesis has been focused on the design and develop-

ment of an optimization framework for computer-automated design of spacecraft

power subsystems, providing a means for evaluating the performance along with

the mass and the cost factors. The performance index takes into account the solar

array figure of merit, operational constraints of battery and also the reliability of

power system for selected technologies. The system design optimization approach

accounts for design configurations available in industry, as well as reliability issues,

and thus helps the system design engineer in making informed decisions that are

based on quantitative and qualitative analysis. Two main objectives are identified

for the research presented here.

The first objective achieved has been the development of a systematic framework

for the spacecraft power system design, search and optimization problem, which

takes the subsystem level trade-offs into account, in a way that all major issues

of concerns to a design engineer are addressed. Existing work done on this topic

as reported in the literature is limited either to technology selection only or to

enumerative search over a range of solar array and battery designs. In some cases,

this results in a design which is not readily available in market. The approach de-

veloped in this thesis can make use of the data sets of design options available with

each technology selection; hence the designs selected do not have any development

issues.
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The second objective has been to develop a complete spacecraft power system

simulation model based on a platform which is practical and widely in use in

engineering which requires minimal test data from the space industry. In achieving

this objective, a model for solar cell/array based on solar cell data available in a

given cell’s data sheet has been successfully developed. Unfortunately, this is

not the case for a battery model. The main hurdle in achieving the same goal

was the unavailability of any kind of data sheets for battery cells used in space

applications. The author tried her best in getting such information which may be

used for designing an efficient battery model, but to no avail. However, this did

not stop us to generate a model, based on experimental and simulation test data

available in the research literature. The results of this approach are well within

the accuracy required for this work.

Evolutionary computational techniques are employed in this work to solar cell

parameter optimization. This thesis has demonstrated a very useful application

of EC in solving engineering modeling and design problems.

The research has also shown that genetic algorithms can be very effective in solv-

ing hybrid design problems consisting of discrete and continuous design variables.

Following design optimization objectives, our main focus has been on solving de-

sign problems as a multi-objective optimization problem. To achieve this, a sizing-

and an analysis-tool have been developed, in order to evaluate the performance of

earth orbiting satellites in terms of mass, cost and performance.

The results in chapter 6, provide an insight into the performance of GAs, using

a weighted sum approach for spacecraft power system conceptual design. The

problem here does not involve a very large search space, but the GA does show

its effectiveness. The results from the weighted sum approach on spacecraft power

system design optimization are presented there with pre-defined weights to the

objectives of high performance, minimal cost and mass. Spacecraft power system

trade-offs with reference to solar cell technology, solar array technology, battery

technology and, bus voltages are also discussed. The mass, cost and performance

benefits of these different power system technology choices are quantified by defin-

ing an objective function which takes into account the individual objectives given

certain weights. Finally, this formulation is applied through the GA to automate

the design process and to obtain optimized trade choices on the basis of defined ob-

jective function in time efficient manner. The results have demonstrated that this

approach is able to generate optimal solutions for pre-defined set of preferences.
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However, to get a complete picture of these tradeoffs, we need a large number of

optimization runs.

In chapter 7, a multi-objective optimization approach, based on the NSGA-II has

been implemented for the spacecraft power system design. In this research, we

consider three design objectives: namely, i) minimization of the mass, ii) mini-

mization of the cost, and iii) maximization of the performance. The problem of

SEPS for LEO mission has been solved as bi- and tri-objectives and the designs

have been compared in the metaphor of Pareto optimality. It is clear in the case

of bi-objective applications that the non-dominated solutions obtained are well

distributed and have a satisfactory diversity. Solutions to the tri-objective prob-

lem and the projected views of the results have been obtained, giving a very clear

understanding of the trade space. The set of Pareto-optimal designs gives a very

clear picture to the designer on how different design solutions affect competing

objectives, and helps to evaluate major design trade-offs. The three dimensional

version of NSGA-II has been able to generate 25 Pareto-optimal designs across

the span of the Pareto front in one run of the algorithm. To the best of the au-

thor’s knowledge, this is the first public attempt to investigate a multi-objective

approach for design optimization of spacecraft power systems. In the last part,

this research has demonstrated the application of multi-objective optimization

to generate Pareto-optimal solutions for power system design of geo-synchronous

communication satellites. For this SEPS design problem, it is shown that the cur-

rent approach is able to give designers a better insight to the design trade-offs and

helps them select the optimal solution. The implementation of multi-objective

GA does not add significant computational burden more than what is required by

single objective optimization. In fact, the computational cost of multi-objective

GA is significantly lower than the most commonly used GA methods.

8.2 Areas of Future Research

The work presented in this thesis applies only to the DET type power systems.

The analysis tool developed here is capable of working for sun regulated systems,

although the design optimization problem is demonstrated only on the regulated

bus topology. One desirable feature would be to incorporate different architec-

tures, such as peak power tracking systems, etc. This can be achieved through
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incorporating comparative analysis of physical parameters of these architectures

in the sizing tool and by the addition of their models in the analysis tool.

The problem solved in this thesis has covered technology and configuration issues,

and the design of a system for the state-of-the-art technology with different config-

urations has been considered. The spacecraft power system design presented can

be extended to discover novel and structurally efficient designs. This formulation

requires a larger trade space, and needs to incorporate the cost of manufacture for

new design architectures. It can provide an extra feature to the designers in the

scenarios where the cost and the time for development can be included in the new

and efficient designs.

The reliability model implemented here assesses the system reliability based on

component and subsystem technology choices. Other measures could be imple-

mented in addition to this, so that reliable designs can be distinguished from un-

reliable ones. One common measure is failure modes, effects and criticality analysis

(FMECA), which is implemented as fault tree analysis to find single point failures

after system architecture design. Redundancy is added if the single point failures

are detected to reduce the risk of mission failure[40].

Although the problem solved in this thesis is for conceptual designs and the design

analysis is performed for steady state operation only, by incorporating features of

transient analysis through detailed circuit design of various components, such as

shunt regulators, battery regulators and dc-dc converters, it can be extended to

detailed SEPS designs.

The proposed optimization methodology for spacecraft power system can be ex-

tended to other spacecraft subsystems with very little effort. Then, these sub-

systems can be integrated to solve a broader spacecraft design optimization prob-

lem.
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