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1 Introduction

Studying quantum field theories with broken Poincaré invariance due to the presence of
defects or boundaries leads to important insights into their dynamics. The gauge/gravity
duality can be applied very effectively in this context to study the physics of such systems.
Indeed, co-dimension one defects and interfaces have appeared prominently in holography,
see for example [1] and [2]. In particular, the duality between type IIB supergravity on
AdS5 × S5 and N = 4 SYM can be modified to account for the presence of defects, [1],
or interfaces, [2]. The distinction between these two setups is important. A co-dimension
one defect in N = 4 SYM supports additional three-dimensional degrees of freedom on its
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N Superalgebra R-symmetry Commutant

4 OSp(4|4,R) SU(2)× SU(2)

2 OSp(2|4,R) U(1) SU(2)

1 OSp(1|4,R) SU(3)

Table 1. Three-dimensional N = 1, 2, 4 superconformal algebras that are subalgebras of
PSU(2, 2|4). These are the possible symmetry algebras of the superconformal interfaces in N = 4

SYM studied in [4]. A subalgebra of the commutant algebra realizes the flavor symmetry of the
interface.

worldvolume while the interface is characterized by position-dependent couplings for the
operators in the four-dimensional CFT and no additional degrees of freedom.

Our goal in this paper is to construct supergravity solutions dual to conformal in-
terfaces, known also as Janus configurations, in N = 4 SYM with different amounts of
supersymmetry. The original supergravity Janus solution in [2] breaks all supersymme-
try and is invariant under the SO(3, 2) × SO(6) subalgebra of the isometry algebra of
AdS5 × S5. The QFT dual to this interface was studied in [3] where it was also proposed
how to construct similar Janus interfaces preserving N = 1 supersymmetry. A more system-
atic approach to studying superconformal Janus interfaces in N = 4 SYM was developed
in [4]. It was shown that there are three distinct classes of such interfaces which preserve
three-dimensional N = 4, N = 2, or N = 1 supersymmetry, see table 1. This analysis
prompted the study of more general co-dimension one deformations of N = 4 SYM to
include also defect degrees of freedom on the interface compatible with N = 4 and N = 2

three-dimensional supersymmetry, see [5–7] and [8, 9], respectively.
Given the existence of these superconformal Janus interfaces it is natural to look for

their holographic description. The AdS4 type IIB supergravity background dual to the
N = 1 interface of N = 4 SYM with SU(3) flavor symmetry was found in [10]. This solu-
tion can also be constructed in five-dimensional SO(6) maximal gauged supergravity [11].
The five- and ten-dimensional solutions are related by an explicit uplift as shown in [12].
Moreover, it was found in [13] that this type of N = 1 Janus interface exists for all four-
dimensional N = 1 SCFTs with an AdS5 holographic dual in type IIB supergravity. In [14]
it was shown how to find the ten-dimensional supergravity dual of the N = 4 Janus interface
through a detailed analysis of the supersymmetry variations of type IIB supergravity.

The supersymmetric solutions of type IIB supergravity in [10] and [14] were found by
exploiting the large global symmetry of the N = 1 and N = 4 Janus interfaces. This in
turn reduces the BPS supergravity equations to nonlinear PDEs in two variables which
can be explicitly analyzed. This strategy is difficult to utilize when studying the N = 1

Janus configurations with a smaller flavor algebra or the N = 2 Janus interfaces, since
the BPS equations become nonlinear PDEs in three or more variables. An alternative ap-
proach to circumvent this impasse is offered by five-dimensional gauged supergravity. For
the holographic description of Janus interfaces in N = 4 SYM one has to study a suitable
consistent truncation of the five-dimensional SO(6) maximal gauged supergravity [15–17]
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by imposing invariance under the global symmetry group preserved by the interface. This
results in a five-dimensional theory with several scalar fields in which one has to construct
a supersymmetric domain wall solution with a metric containing an AdS4 factor. The BPS
equations for this setup then reduce to several coupled nonlinear ODEs which can be solved
analytically or numerically. Once the five-dimensional Janus solution has been constructed,
the explicit uplift formulae in [18] can be used to find the full type IIB background. In-
deed, this approach has been proven useful and supersymmetric Janus solutions in various
dimensions with embedding in string or M-theory were constructed in [11, 19–25].

In this paper we show in detail how to implement this approach to construct the five-
dimensional gauged supergravity solutions dual to the N = 4 and N = 2 Janus interfaces.
For completeness we also present the N = 1 Janus solution of [11]. We also show explicitly
how to uplift all of these solutions to type IIB supergravity. It is worth emphasizing that
the SU(2) and SU(3) flavor symmetry groups of the N = 2 and N = 1 interfaces in table 1
can be broken while preserving supersymmetry. These less symmetric Janus interfaces were
discussed briefly in [4]. Here we will only focus on the more symmetric solutions with SU(2)

and SU(3) flavor symmetry. We find that our N = 4 Janus solution in type IIB supergravity
agrees with the solution found in [14].

The study of 1
2 -BPS Janus interfaces and defects in N = 4 SYM led to the discovery of

a new class of strongly coupled three-dimensional N = 4 SCFTs [5–7]. It was shown in [26],
see also [27–29], how to gauge the global U(N)×U(N) symmetry of these T [U(N)] theories
with a vector multiplet to obtain other strongly coupled three-dimensional SCFTs. While
the understanding of these novel three-dimensional QFTs was prompted by the physics of
the Janus interfaces, it is important to remember that these are distinct theories and there-
fore we refer to them as J-fold CFTs. The reason for this moniker becomes more apparent
when one studies the holographic description of these J-folds. As illustrated in figure 1, the
Janus configurations of N = 4 SYM can be realized in type IIB string theory by placing D3-
branes at the tip of a cone over S5 and arranging for a non-trivial profile for the axio-dilaton,
and the other R-R and NS-NS fields, on the world-volume of the branes. Backreacting this
configuration then leads to the AdS4 Janus solutions in supergravity. Some Janus solutions
in supergravity have a linear dilaton profile along the direction transverse to the interface
and are therefore strongly coupled asymptotically. It was pointed out in [26, 30] that these
backgrounds can be understood as regular S-fold backgrounds of type IIB string theory by
compactifying this direction into a circle and imposing a non-trivial SL(2,Z) monodromy
along the S1. It was later shown in [13] how to generalize these N = 4 J-folds to AdS4

backgrounds with N = 1 supersymmetry. An alternative way to construct J-fold solutions
of this type is to employ four-dimensional maximal [SO(1, 1) × SO(6)] n R12 gauged su-
pergravity. Indeed, the N = 4 and N = 1 J-fold solutions were found as supersymmetric
AdS4 vacua of this theory in [30] and [31], respectively.1 As we showed in [13], yet another
way to find J-fold AdS4 solutions is to use five-dimensional gauged supergravity and then
uplift them to ten-dimensions and implement the S-fold identification. Here we show that

1We note that four-dimensional gauged supergravity is only suitable for constructing J-fold solutions
since regular Janus backgrounds need to be asymptotically AdS5.
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S̃5

τL τR

⇒

S̃5

Figure 1. A schematic illustration of the Janus (left) and J-fold (right) configurations in N = 4

SYM realized by D3-branes at the tip of a cone over a deformation of S5.

this approach can be systematically implemented with various amounts of supersymmetry
and in addition to the N = 1 J-fold in [13, 31] we also find the N = 4 solution of [26, 30]
as well as a novel J-fold background with N = 2 supersymmetry.

This paper is organized as follows. In section 2 we construct the five-dimensional
supergravity dual to the N = 4 Janus interface and its J-fold and uplift these backgrounds
to a solution of type IIB supergravity. We also comment on the relation between our results
and those in [14]. In section 3 the holographic dual to the N = 2 Janus interface and its
J-fold are presented. We also discuss some properties of the 3d N = 2 SCFT dual to
the J-fold. The N = 1 Janus and J-fold solutions and their type IIB uplifts are briefly
presented in section 4. We conclude in section 5 with a discussion on some open questions.
The appendix contains some details on the gauged supergravity truncations employed in
the main text and the derivation of the BPS equations.

Note added. While we were finalizing this paper we became aware of the recent work
in [32] which has partial overlap with our results in section 3.3. The method to obtain the
N = 2 J-fold solution employed in [32] is based on four-dimensional gauged supergravity
and differs from our approach.

2 The gravity dual of the N = 4 interface

2.1 The five-dimensional Janus

We start by discussing the gravity dual of the N = 4 Janus interface. To this end we use the
maximal SO(6) gauged supergravity in five dimensions [15–17]. The bosonic sector of the
theory consists of the five-dimensional metric, 42 scalar fields, 15 vector fields, and 12 two-
forms. This field content is unwieldy to work with and we consider a consistent truncation
based on the symmetries preserved by the interface in the field theory. As shown in table 1,
the bosonic symmetry algebra is

SO(3, 2)× SO(3)× SO(3) ⊂ OSp(4|4,R) , (2.1)
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Field SO(6)×U(1)S rep

ϕ, c 14 ⊕ 1−4

α 20′0

χ, ω 10−2 ⊕ 102

Table 2. The scalar truncation of the maximal supergravity in five dimensions relevant for the
holographic dual to the N = 4 interfaces.

where SO(3, 2) is the conformal algebra preserved by the three-dimensional interface, and
SO(3) × SO(3) is the R-symmetry on the interface. Imposing invariance with respect to
SO(3, 2) implies that the five-dimensional metric can be written in the form of a curved
domain wall

ds2
5 = dr2 + e2A(r)ds2

AdS4 , (2.2)

where ds2
AdS4 is the unit radius metric on AdS4. The vector fields and the 2-forms in the the-

ory have to be set to zero and we are left with a bosonic theory of the metric and scalar fields.
The scalar fields of the SO(6) gauged supergravity transform in the 42 of USp(8) which

under SO(6)×U(1)S branches to

42 −→ 20′0 ⊕ 10−2 ⊕ 102 ⊕ 14 ⊕ 1−4 . (2.3)

These 42 scalar fields have a well-known interpretation in the dual N = 4 SYM. The scalars
in the 20′ are dual to the protected scalar bilinear operators in the gauge theory, i.e. all
scalar bilinears except the Konishi operator. The 10 and 10 are dual to fermion bilinears
and the singlets are dual to the Yang-Mills coupling and theta angle. Note that U(1)S
is the compact subgroup of SL(2,R)S , which is a symmetry of the full scalar potential in
five dimensions and is related to the SL(2,R) symmetry of type IIB supergravity. Its field
theory interpretation is the large N avatar of the SL(2,Z) duality group that acts on the
N = 4 conformal manifold [33].

The R-symmetry group of the interface is the block-diagonal SO(3)× SO(3) subgroup
of SO(6) under which 6 → (3,1) ⊕ (1,3). Using (2.3), we find that the truncation with
respect to that symmetry results in a simple scalar sector with five fields only that are listed
table 2. In particular, (χ, ω) and (ϕ, c) are U(1)S doublets parametrized by the “moduli” χ
and ϕ, and the phases ω and c, respectively. The scalar coset in this truncation is

SL(3,R)

SO(3)
⊂

E6(6)

USp(8)
. (2.4)

As we show in appendix A, one can choose the USp(8) gauge such that the scalar 27-bein,
U ∈ E6(6), takes the form

U(α, χ, ϕ, c, ω) = V (α, χ) · USL(2)(ϕ, c, ω) , (2.5)

where USL(2) ∈ SL(2,R)S .
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The Lagrangian can be written as2

L =
1

16πGN

√
|g5|

(
R5 +

1

24
Tr
[
∂µM · ∂µM−1

]
− P

)
, (2.6)

where M = UTU is the USp(8) invariant scalar matrix and P is the scalar potential. Our
parametrization of the scalar coset in (2.5) gives rise to rather complicated kinetic terms
in (2.6), see (A.8) in appendix A. However, due to the SL(2,R)S invariance, the truncated
potential is very simple and depends only on two of the five scalars. It can be written in
terms of a superpotential, W , as

P =
1

12
|∂χW |2 +

1

12
|∂αW |2 −

4

3
|W |2 , (2.7)

where
W = −3g

2

(
cosh 2α cosh 2χ− i sinh 2α sinh 2χ

)
. (2.8)

We are interested in N = 4 supersymmetric Janus solutions of the SO(6) gauged
supergravity, with the metric given by the Ansatz (2.2) and the scalar fields depending on
the radial coordinate, r, only. For r → ±∞, those Janus solutions asymptote to maximally
supersymmetric AdS5 solutions where α = χ = 0 and the SL(2)-fields ϕ, c and ω are
constant but different on both sides of the interface. Furthermore, from the presence of
nontrivial bosonic and fermionic bilinear operators in the dual field theory [4], we deduce
that the corresponding scalars, α and χ, should both have non-trivial profiles and vanish
in the AdS5 asymptotic regions.

As usual, to obtain the required BPS equations we set the fermion supersymmetry
variations (A.10) to zero. The derivation is quite standard and we have summarized it
in appendix A. In particular, the vanishing of the spin- 1

2 variations leads to the following
equations3

(α′ − sec(c+ 2ω)ϕ′)2 =
1

36
|∂αW |2 ,

(χ′)(α′ − sec(c+ 2ω)ϕ′) =
1

24
sinh 4χRe(W∂αW ) ,

(ϕ′)(α′ − sec(c+ 2ω)ϕ′) =
1

24
cos(c+ 2ω) tanh 4χ Im(W∂αW ) ,

(2.9)

and

ω′ = sinh2 ϕ c′ ,

sinh 2ϕ c′ = −2 tan(c+ 2ω)ϕ′ .
(2.10)

From the spin-3
2 variations, we obtain two equations for the metric function A(r):

(A′)2 =
1

9
|W |2 − e−2A , e−A = − Im(W ∂αW )

18(α′ − sec(c+ 2ω)ϕ′)
. (2.11)

2Throughout the paper we work in mostly plus signature and the action is rescaled with respect to the
one in [17]. In particular, at the N = 8 supersymmetric vacuum, P = −3g2.

3A prime denotes the derivative with respect to r.
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One can verify that these two equations are consistent upon using all the BPS equations
above, and that solutions to the BPS equations (2.9)–(2.11) automatically satisfy the equa-
tions of motion that follow from the Lagrangian (2.6).

The construction of the Janus solutions of interest is facilitated by two integrals of
motion:

I ≡ 8
(cosh 4α cosh 4χ− 1)3

sinh4 4χ
, (2.12)

and
J ≡ sinh 2ϕ sin(c+ 2ω) , (2.13)

which follow from (2.9) and (2.10), respectively. For example, using (2.9), (2.12) and the
second equation in (2.11), we obtain an algebraic relation,

e−6A =
g6

64 I
sinh2 4χ . (2.14)

Together with (2.12), this allows us to solve for α and χ in terms of the metric function, A:4

cosh 4α =
2X2 + I

2
√
X4 + IX

,

sinh 4χ = I1/2X−3/2 ,

(2.15)

where we defined

X ≡ g2

4
e2A . (2.16)

It follows from the first equation in (2.11) and (2.9) that X satisfies a differential equation
describing the motion of a one-dimensional particle with zero energy in an effective potential:

4

g2
(X ′)2 + Veff = 0 , Veff = 4X(1−X)− I . (2.17)

The asymptotic AdS5 vacuum solution of the five-dimensional theory is at

X → +∞ , such that (χ, α)→ 0, A→ +∞, (2.18)

and the Janus solutions we are after interpolate between two such AdS5 regions. From the
form of the potential in (2.17) it is clear that one can find such regular solutions only when
0 < I ≤ 1. The maximum of the effective potential is at X = 1/2,

Veff

(
1

2

)
= 1− I. (2.19)

We thus see that the constant value X = 1/2 is an exact “static” solution whenever I = 1.
This will be discussed in more detail in section 2.5 where we focus on the so called J-fold
solutions. For a Janus solution, the classical particle comes in from r = +∞ and scatters

4Throughout the paper, the BPS equations have a discrete symmetry under an overall change of sign of
some fields. For example, (2.9)–(2.11) are invariant under α→ −α, χ→ −χ, and ϕ→ −ϕ. This symmetry
leads to a freedom in choosing some signs when solving for some of the fields. To simplify the presentation,
we will consistently work with just one set of signs.
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off the potential back to infinity. The turning point, rtp, for this scattering is determined
by the largest zero of Veff = 0 located at

Xtp =
1

2

(
1 +
√

1− I
)
. (2.20)

Integrating (2.17) we obtain

X =
1

2

(
1 +
√

1− I cosh(gr − grtp)
)
. (2.21)

By shifting the radial coordinate we can set rtp = 0.
At this point we still have to solve for the five-dimensional dilaton, ϕ, and the phases

c and ω. By rewriting the third equation in (2.9) in terms of ϕ(X), we find the following
ODE

sinh 2ϕ√
sinh2 2ϕ− J 2

dϕ

dX
= ±

3
√
I
(
I + 2X2

)
8X (I +X3)

1√
−Veff

, (2.22)

which is integrable and solved by

cosh 2ϕ = cosh 2F +
1

2
e−2FJ 2 , (2.23)

where

F = F0 ±
X∫

Xtp

3
√
I(I + 2x2)

8x(I + x3)

dx√
−Veff(x)

, (2.24)

and F0 is an integration constant. The integral in (2.24) can be evaluated analytically, but
the expression is unwieldy and we omit it here. The explicit r dependence is then obtained
using (2.21). However, when the system is studied numerically, it is more convenient to first
use (2.22) to change the integration variable in (2.24) from X to r and then compute F as a
function of r directly. It is important to note that the sign choice in (2.24) is correlated with
the one in (2.22) and corresponds to the branch of the square root in (2.17). In particular,
in order to obtain a regular solution, one must switch to the opposite sign when the particle
in our classical mechanics model passes through the turning point. Indeed, this is one of
the characteristic features of any Janus solution [2, 3, 11]. We display a plot of a sample
solution in figure 2.

Equipped with the solution for ϕ and the second integral of motion, J , we can integrate
the remaining BPS equations (2.10) for c to obtain

cos2(c− c0) =
sinh2 2ϕ− J 2

(1 + J 2) sinh2 2ϕ
, (2.25)

where c0 is another integration constant. Finally, the solution for the scalar ω is obtained
directly from (2.13) using the explicit solutions for c and ϕ above.

We have therefore arrived at a general solution to the system of nonlinear BPS equa-
tions (2.9)–(2.11) which describes a family of supersymmetric Janus interfaces controlled
by five constants

g , F0 , I , J , c0 . (2.26)

– 8 –
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-6 -4 -2 0 2 4 6

0.0

0.5

1.0

g r

-6 -4 -2 0 2 4 6

-0.6

-0.4

-0.2

0.0

0.2

g r

Figure 2. A sample solution with I = 1/3. On the left pane we plot the functions F (r)−F0 (solid
curve) that controls the solution for ϕ and (logX)/4 (dashed curve) which through (2.16) represents
the warp factor A. On the right pane we plot sinh 4α (solid curve) and sinh 4χ (dashed curve).

The first of these determines the length scale, L = 2/g, of AdS5 and hence the rank N of
the gauge group in the dual N = 4 SYM. The constant I determines the difference between
the value of the dilaton in the two asymptotically AdS5 regions in the solution. In the dual
N = 4 SYM this translates into the difference in the magnitude of the gauge coupling on the
two sides of the interface. The constant F0 in turn controls the sum of these two asymptotic
values of the coupling. The constant I also determines the magnitude of the leading order
terms in the asymptotic expansions of the scalars α and χ, which in turn control the sources
for the dual dimension 2 and 3 operators in N = 4 SYM. Finally, the constant c0 determines
the magnitude of the θ-angle in the dual gauge theory, while J controls the asymptotic
value of ω, which is dual to the phase of the complex dimension 3 operator.

2.2 SL(2,R)S transformation of Janus solutions

As we have emphasized already, the five-dimensional SO(6) gauged supergravity is invariant
under the global SL(2,R)S symmetry, which corresponds to the SL(2,R) symmetry of type
IIB supergravity. In particular, its action on the scalar 27-bein (2.5) is given by

U −→ U · Λ , Λ ∈ SL(2,R)S . (2.27)

The Janus solutions constructed in section 2.1 manifestly break that symmetry by the
presence of a non-trivial profile for the dilaton ϕ, the axion c, and ω. We will now argue
that the nontrivial action of SL(2,R)S on those solutions can be used to our advantage to
set the integration constants (J , c0, F0) to zero. In particular, this implies that without a
loss of generality we may set both c and ω to zero.

From the explicit parametrization of the scalar 27-bein (2.5) given by (A.7) in
appendix A.1, we find that

USL(2)(ϕ, c, ω) = e−(c+2ω)r/2 · eϕ t · e(c/2+π/4)r . (2.28)

– 9 –
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Consider an SL(2,R)S transformation, Λ, such that5

USL(2)(ϕ, c, ω) · Λ = USL(2)(ϕ̃, 0, 0) . (2.29)

It is straightforward to check using (2.10) and (2.13) that Λ is indeed constant provided
the new dilaton field, ϕ̃, satisfies

ϕ̃′ =
ϕ′√

1− J 2 csch2(2ϕ)
, (2.30)

which obviously can be solved. A more careful analysis using the results in section 2.1,
in particular (2.13), (2.23), and (2.25), shows that for a given Janus solutions we may
simply take

ϕ̃ = F , (2.31)

where the function F is the same as in (2.23) and Λ can be written explicitly in terms of
the constants J , c0 and F0. The solution is then transformed to one with J = c0 = 0. An
additional SL(2,R)S transformation can be used to eliminate the integration constant F0,
but this does not drastically simplify the Janus configuration any further.

Setting J and c0 to zero is a useful simplification and is important for our subsequent
discussion. As we have shown above, these parameters can always be reinstated by per-
forming an SL(2,R)S transformation and nothing is lost by setting them to zero. This
transformation can also be done at the level of the ten-dimensional solution as we discuss
in section 2.4.

2.3 The ten-dimensional Janus

The five-dimensional Janus solutions above can be uplifted to a solution of ten-dimensional
type IIB supergravity [34, 35] using the consistent truncation results in [18].6 The consistent
truncation ensures that supersymmetry is preserved and that the ten-dimensional equations
of motion are satisfied. To present the ten-dimensional background, we choose coordinates
on S5 adapted to the SO(3)×SO(3) symmetry of the solution by using the following explicit
embedding of S5 in R6:

Y 1 = cos θ cosφ1 , Y 2 = cos θ sinφ1 cosφ2 , Y 3 = cos θ sinφ1 sinφ2 ,

Y 4 = sin θ cos ξ1 , Y 5 = sin θ sin ξ1 cos ξ2 , Y 6 = sin θ sin ξ1 sin ξ2 .
(2.32)

Then the Einstein (round) metric on S5 takes the form

dΩ̂2
5 = dθ2 + cos2 θ dΩ2

2 + sin2 θ dΩ̃2
2 , (2.33)

5Since SL(2,R)S in (2.27) effectively acts only on the SL(2,R) factor in U , we can make the argument
quite explicit by working with the corresponding 2× 2 matrices,

USL(2)(ϕ, c, ω) =

(
cosω cosh(ϕ)− sin(c+ ω) sinhϕ cos(c+ ω) sinh(ϕ)− coshϕ sinω

coshϕ sinω + cos(c+ ω) sinhϕ cosω coshϕ+ sin(c+ ω) sinhϕ

)
,

where we omitted a constant matrix on the right that cancels out from the calculation.
6See [36–39] for more details and examples on how the uplift formulae of [18] are applied to various

solutions of the SO(6) maximal gauged supergravity.
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where dΩ2
2 and dΩ̃2

2 are the metrics on two S2’s,

dΩ2
2 = dφ2

1 + sin2 φ1 dφ2
2 , dΩ̃2

2 = dξ2
1 + sin2 ξ1 dξ2

2 , (2.34)

and the SO(3)×SO(3) isometry is manifest. The ten-dimensional solution becomes simpler
when written using the following functions:

K1 = sin2 θ + e4α cosh 4χ cos2 θ , L1 = coshϕ cosω + sinhϕ cos(c+ ω) ,

K2 = e−4α cosh 4χ sin2 θ + cos2 θ , L2 = coshϕ sinω + sinhϕ sin(c+ ω) .
(2.35)

We find that the ten-dimensional metric is7

ds2
10 = (K1K2)1/4

(
ds2

5 +
4

g2

[
dθ2 +

cos2 θ

K1
dΩ2

2 +
sin2 θ

K2
dΩ̃2

2

])
. (2.36)

The ten-dimensional dilaton and axion are given by

e−Φ =

√
K1K2

K1 L2
1 e−2α +K2 L2

2 e2α
,

C0 =
K1L1 (L2 − 2 coshϕ sinω) e−2α −K2L2 (L1 − 2 coshϕ cosω) e2α

K1 L2
1 e−2α +K2 L2

2 e2α
.

(2.37)

The two-forms are given by

B2 + iC2 =
4 sinh 4χ

g2K1K2

(
e−αK1 [L1 + i (L2 − 2 coshϕ sinω)] sin3 θ dV2

− eαK2 [L2 − i (L1 − 2 coshϕ cosω)] cos3 θ dV1

)
,

(2.38)

where

dV1 = sinφ1 dφ1 ∧ dφ2 , dV2 = sin ξ1 dξ1 ∧ dξ2 , (2.39)

are the volume forms on the two 2-spheres in (2.34). The R-R four-form is given by8

C4 =
2

g4

(
sin3 2θ

K1K2

(
K1 −K2 −

1

2
sinh2 4χ cos 2θ

)
+ sin 4θ − 4θ

)
dV1 ∧ dV2 . (2.40)

We have fully specified the ten-dimensional Janus solution in terms of the analytic solution
for the five-dimensional metric and scalar fields. As a nontrivial consistency check of the
uplift, we have verified that this background solves the equations of motion of type IIB
supergravity.

7Throughout this paper we work in Einstein frame. The type IIB conventions are the same as in [36],
or [40] when expressed in string frame.

8As usual, the C4 form determines only part of the five-form field F5. The full five-form field is then
obtained from dC4 by imposing the self-duality, see [36] for further details.
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2.4 Comparison to the literature

A ten-dimensional Janus solution with the same isometry and supersymmetry was found
in [14]. Upon comparing the metric and background fluxes in section 10.3 of [14] with the
ones in our uplift of the five-dimensional solution given in (2.36)–(2.40), respectively, we
find a complete match between the two solutions. Note that in [14], the SL(2,R) symmetry
of type IIB supergravity was employed to simplify the ansatz, and, in particular, to set the
type IIB axion to zero. This is a ten-dimensional analogue of the five-dimensional argument
in section 2.2.

The two solutions can be matched onto each other by the following map between the
coordinates (x, y) used in [14] and our coordinates (r, θ):

x =
gr

2
+

1

4
log

[
1 +
√
I

1−
√
I

]
, y = θ . (2.41)

In addition, the integration constants (φ+, φ−) in [14], which specify the asymptotic values
of the dilaton on the two sides of the interface, and our (I, F0) are related by:

e2φ+−2φ− =
1 +
√
I

1−
√
I
, e2φ++2φ− = e4F0 . (2.42)

Finally, we have to fix the scale of AdS4 used in [14] as ` = 1.
To further facilitate the comparison between the two solutions, we also note that the

functions K1 and K2 defined in (2.35) are related to the functions D and N in [14] by

K2

K1
=

ex + e−x

ex + e2φ+−2φ−e−x
D

N
, (2.43)

and two of the five-dimensional supergravity scalars are given in terms of the coordinates
in [14] as

e2ϕ−2α = e2φ+ ex + e−x

ex + e2φ+−2φ−e−x
. (2.44)

The relations in (2.41)–(2.44) fully specify the map between the solution presented in sec-
tion 2.3 and the one in [14].

It is important to realize that the map above is valid for solutions with J = c0 = 0 for
which the ten-dimensional axion vanishes. As we explained in section 2.2, the SL(2,R)S
symmetry of the five dimensional theory can be employed to transform any solution for
which J and c0 are not zero, to one for which both vanish. This transformation can also
be done at the level of the ten-dimensional solution, i.e. any solution in section 2.3 with
a non-trivial IIB axion, can be transformed to a solution for which the axion vanishes. In
fact, the same transformation matrix as used in section 2.2 to set J = c0 = 0 can be used
in ten dimensions to set the axion to zero.

To study this in more detail it is useful to establish exactly how SL(2,R)S relates to
the SL(2,R) symmetry of type IIB. Recall that SL(2,R)S acts on the coset element U by
a right-multiplication U 7→ U · Λ. Therefore the matrix M transforms as

M 7→ ΛT ·M · Λ . (2.45)
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Next, we note that the explicit relation between the matrix M and the type IIB axion-
dilaton matrix m is

[m−1]αβ ≡ mαβ = ∆4/3YIYJM
Iα,Jβ . (2.46)

Here YI are the embedding coordinates in (2.32) and the function

∆ = (K1K2)−3/8 , (2.47)

is found by imposing that the determinant of mαβ equals 1 [41]. Also, ∆−2/3 is the warp
factor in the metric (2.36).

The index structure of M requires a short explanation. The matrix M is a 27 × 27

symmetric matrix which is split into 15 × 15, 15 × 12, and 12 × 12 blocks according to
the branching rule 27 → (15,1) ⊕ (12,2) when E6(6) is broken to SL(6,R) × SL(2,R)S
(see [18] for details). It is the 12×12 block that appears in (2.46) where I, J = 1, . . . , 6 and
α, β = 1, 2.

To read off the ten-dimensional axion and dilaton from the matrix in (2.46), we use the
standard formula:

m−1 =

(
eΦ C0eΦ

C0eΦ e−Φ + C2
0eΦ

)
. (2.48)

Comparing (2.46) and (2.45) we can translate how SL(2,R)S acts on the ten-dimensional
fields:

m 7→ Λ−1 ·m · (Λ−1)T . (2.49)

We note that whereas in (2.45), Λ is an SL(2,R)S matrix embedded in E6(6), here it is simply
a 2×2 matrix. We now see explicitly how SL(2,R)S of the five-dimensional theory relates
to the SL(2,R) symmetry type IIB supergravity. Another way to package the action of
SL(2,R) on the type IIB fields, see for example chapter 12 of [40], is to define τ = C0 +ie−Φ

and write (
C2

B2

)
7→

(
a b

c d

)(
C2

B2

)
, τ ′ =

a τ + b

c τ + d
, with Λ =

(
d b

c a

)
. (2.50)

Using these rules we have explicitly verified that the transformation Λ found in section 2.2
can be used at the level of the ten-dimensional solution in section 2.3 to set the axion to zero.

2.5 An N = 4 J-fold

We now return to five dimensions and study the special solution of the BPS equations with
I = 1, where I is the integral of motion in (2.12). The effective potential in (2.17) has a
critical point at X = 1/2. For I = 1, the potential energy vanishes at this point, which
implies that X = 1/2 is a static solution to the classical mechanics problem in (2.17). This
solution is very interesting and we discuss it in some detail below.

First, using (2.16) we find that the metric takes the simple form

ds2
5 =

4

g2

(
dρ2 +

1

2
ds2

AdS4

)
, (2.51)
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where ρ = gr/2. Secondly, (2.15) implies that α and χ are constant,

α = 0 , cosh 4χ = 3 . (2.52)

Finally, in view of the discussion in section 2.2, we set c = ω = 0 upon which the BPS
equations (2.9)–(2.11) collapse to a single equation

ϕ′ =
g

2
, (2.53)

whose solution is a linear function,

ϕ = ρ+ ϕ0 . (2.54)

If the coordinate ρ is non-compact, this simple solution is unphysical since the scalar
field ϕ blows up as ρ→∞. As pointed out in [13, 26, 30], one way to remedy this is to com-
pactify ρ, such that the scalar fields become periodic modulo an SL(2,R)S transformation.
To see how this works in detail in our example, recall that ϕ parametrizes the SL(2,R)S
group elements (2.28),

USL(2)(ρ) ≡ USL(2)(ϕ(ρ)) = eρt e(π/4) r , (2.55)

where we have set ϕ0 = 0. Under the translation of coordinate ρ by a period ρ0, we
obviously have

USL(2)(ρ+ ρ0) = USL(2)(ρ) J , J = e−(π/4) reρ0 te(π/4) r = e−ρ0 s . (2.56)

Recall that t, r and s are the three generators of SL(2,R)S defined in (A.3) and hence J is
a candidate twist matrix we are looking for. The same transformation as in (2.56) holds for
the full scalar 27-bein (2.5) for this solution. For the scalar matrixM = UTU , we then have

M(ρ+ ρ0) = JT M(ρ) J . (2.57)

The action of SL(2,R)S is akin to the SL(2,R) symmetry of type IIB supergravity. In
string theory this symmetry is further broken to SL(2,Z). Therefore, to ensure that the
S-fold identification in (2.57) is well defined we need to quantize the matrix J appropriately.
To this end we translate the action on the matrixM in (2.57) to ten dimensions using (2.46),
where it simply becomes, see (2.49),

m(ρ+ ρ0) = J−1 ·m(ρ) · (J−1)T , J =

(
e−ρ0 0

0 eρ0 .

)
. (2.58)

Then we must make sure that the twist matrix, J, is similar under the global SL(2,R)

symmetry to an element in SL(2,Z). The necessary and sufficient condition for that is that
J in (2.58) satisfies

Tr J = 2 cosh ρ0 ≡ n ∈ Z . (2.59)

By an explicit calculation one can check that J is then similar to the canonical matrix

Jn =

(
n 1

−1 0

)
. (2.60)
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Hence, up to a similarity transformation, the twist matrix J is determined by Jn for some
integer n > 2. Such a Jn is thus a hyperbolic element of SL(2,Z).

The procedure outlined above is an alternative way to construct the J-fold solution
discussed in [26, 30] as a background in five-dimensional maximal gauged supergravity.
To ensure that this solution preserves supersymmetry we have checked explicitly that the
five-dimensional supersymmetry parameters are constant as a function of the coordinate ρ
and are thus not affected by the periodic identification ρ ∼ ρ + ρ0. Moreover, the USp(8)

gauge choice for the scalar 27-bein in (2.5) is invariant under SL(2,R)S and hence the twist
matrix, J, does not act on the fermions. Therefore, our J-fold construction preserves the
same number of supersymmetries as the Janus solution in section 2.1.

The J-fold solution described above is a good AdS4 vacuum of string theory which
should be dual to a 3d N = 4 SCFT. A useful quantity readily computed holographically is
the free energy of this SCFT on the round S3. This is captured by the regularized on-shell
action of the AdS4 solution computed as in [42],

FS3 =
πL2

4

2G
(4)
N

. (2.61)

Here L4 =
√

2/g is the scale of AdS4 and G
(4)
N is the four-dimensional Newton constant,

which can be expressed in terms of the Newton constant in five dimensions, GN ,

1

G
(4)
N

=
2ρ0

gGN
. (2.62)

To express the free energy in (2.61) in terms of microscopic string theory quantities, we
also need the relations [43]

1

GN
=

4

π3g5`8s
, N =

4

πg4`4s
, (2.63)

where `s is the string length and N is the number of D3-branes, or alternatively the rank
of the gauge group in the dual SCFT. Using these relations as well as (2.59) in (2.61)
and (2.62), we obtain the following free energy

FS3 =
N2

2
arccosh(n/2) . (2.64)

This result agrees with the expression in [26] where the SCFT dual to this J-fold solution
was constructed using the T [U(N)] non-Lagrangian SCFT together with an N = 4 U(N)

vector multiplet with Chern-Simons level n.

2.6 The ten-dimensional J-fold

So far we described the J-fold solution using a five-dimensional perspective. However, we
have invoked the ten-dimensional perspective on this solution to constrain the matrix J

in (2.57) and compute the free energy in (2.64). Therefore it is also useful to present the
full ten-dimensional version of the J-fold background as a solution of type IIB supergravity.
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The uplift to ten dimensions proceeds as for the Janus interface solution in section 2.3 so
we will be brief.

The ten-dimensional metric is

ds2
10 =

4(w+w−)1/4

g2

(
dρ2 +

1

2
ds2

AdS4 + dθ2 +
cos2 θ

w+
dΩ2

2 +
sin2 θ

w−
dΩ̃2

2

)
, (2.65)

where w± = 2± cos 2θ. The dilaton and axion are

C0 + ie−Φ =
w+e2ϕ + w−e−2ϕ + 2i

√
w+w− sinh ρ0

w+e2ϕ−ρ0 + w−e−(2ϕ−ρ0)
. (2.66)

The two-forms are

B2 + iC2 =
8

g2
√

sinh ρ0

[
ξ+ cos3 θ

w+
dV1 + iξ−

sin3 θ

w−
dV2

]
, (2.67)

where ξ± = e∓ϕ
(
eρ0/2 ± ie−ρ0/2

)
and the two-forms dV1,2 are defined in (2.39). The R-R

four-form is given by

C4 =
2

g4

(
3 sin 4θ

w+w−
− 4θ

)
dV1 ∧ dV2 . (2.68)

We note that this AdS4 solution is subject to the S-fold procedure described above where
we take the coordinate ρ to be periodic and act with the SL(2,Z) matrix Jn as in (2.60).

3 The gravity dual of the N = 2 interface

3.1 The five-dimensional Janus

We now turn to the supergravity dual of the N = 2 interface with SU(2) flavor symmetry.
The construction of this solution proceeds in a similar manner to the one in section 2.1. We
start with a consistent truncation of the maximal SO(6) gauged supergravity by imposing
invariance with respect to the bosonic global symmetry of the N = 2 Janus interface,

SO(3, 2)×U(1)× SU(2) ⊂ OSp(2|4,R)× SU(2) . (3.1)

Here SO(3, 2) is the conformal group preserved by the three-dimensional interface, the
U(1) is the R-symmetry and the SU(2) is the flavor symmetry. Invariance with respect to
SO(3, 2) implies that the five-dimensional metric can be written as an AdS4 sliced domain
wall, see (2.2). We can again consistently eliminate the vector and 2-form fields from the
five-dimensional supergravity truncation leaving us with a bosonic theory that includes the
metric and scalar fields only. The Lagrangian therefore takes the same form as in (2.6).
The SU(2)×U(1) symmetry of the interface also truncates away most of the 42 scalar fields.
The embedding of SU(2)×U(1) in SO(6) goes through the following breaking pattern

SO(6)→ SU(2)1 × SU(2)2 ×U(1)56 → SU(2)1 ×U(1)R , (3.2)

where U(1)R ⊂ SU(2)2, and SU(2)1 × U(1)R is the bosonic symmetry appearing in (3.1).
This symmetry breaking pattern is fully specified by the branching of the 6 representation
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Field SO(6)×U(1)S rep U(1)56 charge

α 20′0 0

λ, ψ 20′0 4

χ, ω 10−2 ⊕ 102 2

ϕ, c 14 ⊕ 1−4 0

Table 3. The scalar truncation of the maximal supergravity in five dimensions relevant for the
holographic dual to N = 2 interfaces with SU(2) flavor symmetry.

of SO(6) to (2,2)0 ⊕ (1,1)2 ⊕ (1,1)−2, where the subscript denotes the U(1)56 charges,
which then branches further to 21 ⊕ 2−1 ⊕ 10 ⊕ 10, under SU(2)1 × U(1)R. From now on
we drop the subscripts on the symmetry groups.

The scalars in the truncation are listed in table 3 and span the scalar manifold

SO(3, 2)

SO(3)× SO(2)
× R+ , (3.3)

where the scalar α lies in R+.9 The scalar 27-bein, cf. (A.20),

U(α, χ, λ, ϕ, c, ω) = V (α, χ, λ) · USL(2)(ϕ, c, ω) , (3.4)

for this coset has a similar structure as in (2.5) and is discussed further in appendix A.2.
The full scalar kinetic terms for this 7-scalar truncation are given in (A.21). The

potential can be written in terms of a superpotential,

P =
1

4
|∂χW |2 +

1

4
|∂λW |2 +

1

12
|∂αW |2 −

4

3
|W |2 , (3.5)

where the superpotential is given by

W = −g
2

e−4α
(
2e6α cosh 2χ+ cosh 2λ− i sinh 2λ sinh 2χ

)
. (3.6)

Proceeding as in section 2.1, we take the domain wall metric Ansatz in (2.2) and assume
that all scalars depend only on the radial coordinate. From the vanishing of the spin-1/2
supersymmetry variations, we derive a set of BPS equations,10 which naturally split into
three groups: the (α, χ, λ)-equations

(α′)2 =
1

144
|∂αW |2 ,

(χ′)(α′) =
1

48
Re(∂αW∂χW ) ,

(λ′)(α′) =
1

48

[
Im(∂αW∂χW )

cosh 2χ
+ Re(∂αW∂λW )

]
,

0 = Im(∂αW∂λW ) ,

(3.7)

9Note that even though we use many of the same symbols for the scalar fields in this truncation as
in section 2, these scalar fields are not identical inside the maximal gauged supergravity theory and are
therefore dual to different operators in N = 4 SYM.

10See appendix A.2 for more details.
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the dilaton equation,

(ϕ′)(α′) =
cos(c+ 2ω)

48

[
Im(∂αW∂χW )

cosh 2χ
− Re(∂αW∂λW )

]
, (3.8)

and the equations for the phases,

ω′ = sinh2 ϕ c′ ,

sinh 2ϕ c′ = −2 tan(c+ 2ω) ϕ′ ,

ψ′ = 0 .

(3.9)

In addition, vanishing of the spin-3/2 variations yields the following equations:

(A′)2 =
1

9
|W|2 − e−2A , e−A = − 1

36(α)′
Im(W ∂αW) . (3.10)

A new feature of these BPS equations, as compared to the ones in section 2.1, is that
the last equation in (3.7),

e6α cosh 2λ cosh 2χ = 1 , (3.11)

is purely algebraic. It is straightforward to check that (3.11) is consistent with the first
three equations in (3.7), and hence one can use it to eliminate λ from (3.7)–(3.10). The
resulting system of equations can now be solved following similar steps as in section 2.1.

As before, there are two integrals of motion,

I ≡ −32e6α sinh3 6α

sinh4 2χ
, (3.12)

and
J ≡ sinh 2ϕ sin(c+ 2ω) , (3.13)

that follow from (3.7) and (3.9), respectively. The algebraic equation for the metric in (3.10)
is consistent with the other BPS equations as well as the equations of motion and is solved by

e−2A =
g2

2
√
I

√
−2e2α sinh 6α . (3.14)

Note that (3.11) implies that α ≤ 0, so that I > 0 and the metric function is indeed real
and positive.

As in section 2.1, the BPS equations can be reduced to a single equation that describes
the dynamics of a one-dimensional particle:

4

g2
(X ′)2 + Veff = 0 , (3.15)

where the generalized particle coordinate is11

X = −2e6α sinh 6α , (3.16)
11The choice of the coordinate, X, which is different than the one in (2.16), is dictated by a much simpler

form of the resulting effective potential.
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and the effective potential is given by

Veff = −16 (1−X)1/3X2

√
I

(√
I − 2

√
X (1−X)

)
. (3.17)

The AdS5 vacuum is now found at

X → 0 , such that (α, χ, λ)→ 0 , A→∞ . (3.18)

To find regular Janus solutions one must again restrict 0 < I ≤ 1. The solutions then start
at X = 0 and bounce off the first zero of the potential wall at the turning point where the
potential vanishes,

Xtp =
1

2

(
1−
√

1− I
)
, (3.19)

and come back to zero. For I = 1, there is again a static solution at X = 1/2, which is
discussed in detail in section 3.3 below. For 0 < I ≤ 1, the classical mechanics problem is
solved by

r(X) = rtp ±
∫ X

Xtp

2dx

g
√
−Veff(x)

, (3.20)

where the subscript “tp” refers to the turning point. We are free to choose coordinates such
that rtp = 0.

The remaining set of BPS equations reduces to the following equation for ϕ

sinh 2ϕ√
sinh2 2ϕ− J 2

dϕ

dX
= ± (3− 2X)X
√
I (1−X)4/3 + 2 (1−X)5/6 X 3/2

1√
−Veff

. (3.21)

While this equation does not seem to admit an analytic solution in terms of known functions,
it can be integrated in quadratures, which makes it amenable to numerical analysis.

The explicit solutions for the five-dimensional dilaton has the same form as before
in (2.23) and (2.25), namely

cosh 2ϕ = cosh 2F +
1

2
e−2FJ 2 , (3.22)

where the function F can be determined numerically through the integral

F (X) ≡ F0 ±
X∫

Xtp

(3− 2x)x√
I(1− x)4/3 + 2(1− x)5/6x3/2

dx√
−Veff(x)

. (3.23)

The sign choices in (3.21) and (3.23) again reflect the choice of branch when taking the
square root in (3.15). In order to obtain a regular solution we must switch between branches
at the turning point of our classical mechanics problem. We display a sample plot of a
solution in figure 3. The solution of the axion, c, takes the familiar form

cos2(c− c0) =
sinh2 2ϕ− J 2

(1 + J 2) sinh2 2ϕ
. (3.24)
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Figure 3. A sample solution with I = 1/3. On the left pane we plot the functions F (r)−F0 (solid
curve) that controls the solution for ϕ and the warp factor A shifted by a constant value (dashed
curve). On the right pane we plot λ (solid curve), χ (dashed curve), and 8α (dotted curve).

Finally, the scalar fields χ and ω are determined using the solutions for α, ϕ, and c above
along with the integrals of motion in (3.12) and (3.13), and the angle ψ = ψ0 is constant.

The full N = 2 Janus solution is controlled by six constants

g , F0 , I , J , c0 , ψ0 . (3.25)

The interpretation of the constants (g, F0, I,J , c0) is very similar to that for the N = 4

Janus discussed below (2.26) with the additional clarification that I also determines the
asymptotic value of the leading term for the scalar λ and therefore the magnitude of the
source for the complex dimension 2 operator in the dual N = 4 SYM. The phase of this
complex operator away from the interface is determined by the asymptotic value for the
scalar ψ which is controlled by the integration constant ψ0.

We note that just as for the N = 4 Janus, we can employ the SL(2,R)S transformation
to greatly simplify the solution and set J = c0 = 0. In fact, the argument is identical to
the one presented in section 2.2 and so we will not repeat it here. The broken U(1)56 can
be employed to set ψ0 = 0. These simplifications turn out very useful in the next section
where we uplift our solution to ten dimensions.

3.2 The ten-dimensional Janus

Using the uplift formulae in [18] we can convert the five-dimensional Janus solutions above
to ten-dimensional backgrounds in type IIB supergravity. While the uplift is essentially
algorithmic to execute for general values of the integration constants, in order to keep the
expressions for the metric and background fields relatively compact, we will set

J = c0 = 0 , ψ0 = 0 . (3.26)

The SU(2)×U(1) symmetry preserved by the five-dimensional solution suggests a convenient
coordinate system on S5, which can be written in terms of the embedding coordinates in
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R6 as
Y 1 + iY 3 = e−i (ξ1+ξ2)/2 cos θ cos ξ3 ,

Y 2 + iY 4 = i e−i (ξ1−ξ2)/2 cos θ sin ξ3 ,

Y 5 + iY 6 = e−iφ sin θ .

(3.27)

In these coordinates, the background metric on the round S5 becomes

dΩ̂2
5 = dθ2 + sin2 θ dφ2 + cos2 θ

(
σ2

1 + σ2
2 + σ2

3

)
, (3.28)

where σi are the SU(2) left-invariant one-forms obeying the relation dσi = εijkσj ∧ σk and
are given explicitly by

σ1 = − sin ξ1dξ3 +
1

2
sin 2ξ3 cos ξ1dξ2 ,

σ2 = − cos ξ1dξ3 −
1

2
sin 2ξ3 sin ξ1dξ2 , (3.29)

σ3 = −1

2
(dξ1 + cos 2ξ3dξ2) .

The ranges of the coordinates on S5 are

θ ∈ [0, π/2] , ξ3 ∈ [0, π/2] , ξ1, ξ2, φ ∈ [0, 2π] . (3.30)

To write down the ten-dimensional solution in a compact form we introduce the following
functions:

K1 = cos2 θ + Ce−6αb− sin2 θ , K2 = C cos2 θ + e−6αb− sin2 θ ,

K3 = cos2 θ cosh 2ϕ+ Ce−6αd+ sin2 θ ,

b± = cosh 2λ± sin 2φ sinh 2λ ,

d± = cosh (2λ± 2ϕ)− sin 2φ sinh (2λ± 2ϕ) ,

C = cosh 2χ, S = sinh 2χ .

(3.31)

The ten-dimensional metric is then given by

ds2
10 = eα(CK1K2)1/4

(
ds2

5 + dΩ2
5

)
, (3.32)

where ds2
5 is the metric in (2.2) and the deformed metric on S5 reads

dΩ2
5 =

4e2α

g2K2

((
b+ cos2 θ +

e−6α sin2 θ

C

)
dθ2 +

1

2
(b+ − b−)

sin 2θ

tan 2φ
dθ dφ

+ b− sin2 θ dφ2 + e−6α cos2 θ

(
σ2

1

C
+
K2

K1

(
σ2

2 + σ2
3

)))
.

(3.33)

The ten-dimensional dilaton and axion are respectively

eΦ =
1

2
√
CK1K2

(
2CK3 + e−6α sin2 θ

(
d− − C2d+ + S2 cos 2φ

))
,

C0 =
2C cos2 θ sinh 2ϕ− 1

2e−6α sin2 θ ∂λ
(
d− − C2d+

)
2CK3 + e−6α sin2 θ (d− − C2d+ + S2 cos 2φ)

.

(3.34)
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The NS-NS and R-R two-forms can be compactly written as a complex two-form

B2 + iC2 =
2S cos θ

g2K1K2

(
2a1K1

C
dθ ∧ σ1

+ sin 2θ
(
a+K1 dφ ∧ σ1 − ia−e−6αK2 σ2 ∧ σ3

))
,

(3.35)

where
a1 = eiφ

(
cos2 θ sinh (λ+ ϕ)C − sin2 θ sinh (λ− ϕ) e−6α

)
+ ie−iφ

(
cos2 θ cosh (λ+ ϕ)C + sin2 θ cosh (λ− ϕ) e−6α

)
,

a± = e−iφ cosh (λ± ϕ) + ieiφ sinh (λ± ϕ) .

(3.36)

The R-R four-form is given by

C4 =
8 cos4 θ

g4K1K2

(
e−6α(K1+CK2) sinh 2λ tan θ cos 2φ dθ

− (CK1 +K2)dφ
)
∧ σ1 ∧ σ2 ∧ σ3 .

(3.37)

Note that although we have set the scalar ψ to zero for simplicity, one can reintroduce
it by performing the following coordinate shift on all ten-dimensional fields above

φ→ φ− ψ

2
. (3.38)

The reason that in ten dimensions ψ can be reintroduced through such a coordinate trans-
formation is that in the field theory this scalar is related to the phase of a scalar bilinear
operator that could be shifted using an U(1)56 ⊂ SO(6) rotation.

The background presented above has an SU(2) isometry under which the supersym-
metry generators are not charged. We can thus construct an orbifold of this supergravity
solution by a discrete subgroup of SU(2) while still preserving the same amount of super-
symmetry [44]. For a Zk orbifold, this construction will preserve a U(1) subgroup of the
SU(2) flavor symmetry, however, for generic D or E type orbifolds all continuous flavor
symmetry will be broken. The holographically dual description of these orbifold solutions
should correspond to N = 2 superconformal Janus interfaces in the quiver gauge theory
obtained by an ADE orbifold of N = 4 SYM.

3.3 An N = 2 J-fold

Now we go back to five dimensions in order to analyze the solutions with the special value
of the integration constant, I = 1. The analysis is analogous to the one in section 2.5 so we
will be brief. The effective potential in (3.17) has an extremum at X = 1/2 for I = 1 where
it exactly vanishes. This implies that there is a static solution of the classical mechanics
problem for which X = 1/2. When we express this solution in terms of the five-dimensional
supergravity fields, we find that three of the scalars attain constant values

e12α =
1

2
, λ = 0 , cosh 4χ = 3 . (3.39)
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Using the SL(2,R)S symmetry of the theory, we can set J = c0 = 0 as explained in
section 2.2. We are also free to set ψ0 = 0 using the U(1)56 gauge transformation. The
metric is then

ds2
5 =

24/3

g2

(
dρ2 + ds2

AdS4

)
, (3.40)

where we have introduced a new radial variable ρ = g
22/3

r. The dilaton ϕ takes the linear
form ϕ = ρ+ ϕ0. To obtain a regular solution, we are again forced to periodically identify
the radial coordinate ρ ∼ ρ + ρ0 and accompany this with an SL(2,Z) transformation. In
order to make this background a good solution of string theory, we have to ensure a proper
quantization of the matrix in this S-fold procedure. The result is that we again have to use
the same SL(2,Z) matrix as in (2.60).

We have thus arrived at an AdS4 J-fold solution and following the same steps that lead
to (2.64) we can evaluate the free energy on S3 of the dual N = 2 SCFT. The result is

FS3 =
N2

2
arccosh(n/2) , (3.41)

and we discuss it further in section 3.4.
This five-dimensional AdS4 J-fold solution can be uplifted to a background of type IIB

supergravity. The metric takes the form

ds2
10 =

2
3
2w

1
4

2
1
16 g2

[
dρ2 + ds2

AdS4 + dθ2 + sin2 θdφ2 + cos2 θ

(
σ2

1 +
2(σ2

2 + σ2
3)

w

)]
, (3.42)

where w = 1 + sin2 θ. The dilaton and axion are

eφ =
(w + 1) cosh(2ϕ− ρ0) + (w − 1) (cos 2φ− sin 2φ sinh(2ϕ− ρ0))

2
√
w sinh ρ0

,

C0 =
(w + 1) cosh 2ϕ+ (w − 1) (cos 2φ cosh ρ0 − sin 2φ sinh 2ϕ)

(w + 1) cosh(2ϕ− ρ0) + (w − 1) (cos 2φ− sin 2φ sinh(2ϕ− ρ0))
.

(3.43)

The two-form potentials are

B2 + iC2 =
2

7
16 cos θ

g2
√

sinh ρ0

[
1

2
sin 2θ

(
sinφ(ξ+ − iξ−) + cosφ(ξ+ + iξ−)

)
dφ ∧ σ1

+
(
sinφ(ξ+ + iξ−)− cosφ(ξ+ − iξ−)

)(
dθ ∧ σ1 −

sin 2θ

w
σ2 ∧ σ3

)]
,

(3.44)

where we have defined ξ± = e∓ϕ
(
eρ0/2 ± ie−ρ0/2

)
. Finally, the R-R four-form is given by

C4 =
4× 2

7
8 cos4 θ

g4

(
1 + w

w

)
σ1 ∧ σ2 ∧ σ3 ∧ dφ . (3.45)

3.4 N = 2 SCFT intermezzo

The J-fold AdS4 solution in section 3.3 should be dual to a three-dimensional N = 2 SCFT
with SU(2) flavor symmetry. Following the analysis in [26] and the result for the holographic
free energy in (3.41), we will now attempt to identify this SCFT.
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It was proposed in [26] that the three-dimensional SCFT dual to the J-fold AdS4

solution presented in section 2.5 can be obtained by taking the strongly coupled T [U(N)]

theory of Gaiotto and Witten [6] and gauging its global U(N)×U(N) symmetry by an U(N)

N = 4 vector multiplet. One also has to add a Chern-Simons term at level n for the gauge
field, where n is the integer appearing in the SL(2,Z) matrix in (2.60). The addition of
this Chern-Simons term breaks the manifest supersymmetry in this construction to N = 3.
However, it was argued in [26] that supersymmetry is enhanced to N = 4 at the IR fixed
point. Further support for this proposal was provided by an explicit calculation of the S3

free energy of this model using supersymmetric localization. The result of this calculation
agrees with the holographic free energy in (2.64). Given these results it is natural to expect
that the N = 2 SCFT dual to the J-fold solution in section 3.3 can be obtained by a
deformation of the construction in [26]. In order to identify this theory it is important to
note that, despite the significantly different supergravity solutions, the holographic S3 free
energy for the N = 2 J-fold solution (3.41) is the same as its N = 4 counterpart (2.64).

One possible explanation for the fact that the free energies of the N = 4 and N = 2

SCFTs are the same is that the two theories are related by an exactly marginal deforma-
tion. Exactly marginal operators are Q-exact with respect to the supercharge used for the
supersymmetric localization calculation of the S3 free energy, see [45] for a review. This
in turn implies that the localization calculation of the N = 4 theory performed in [26]
should also yield the same result for the N = 2 J-fold free energy. To establish whether
this is the correct procedure to construct the SCFT dual to the N = 2 J-fold background in
section 3.3, one would have to classify the exactly marginal operators in the N = 4 SCFT
of [26]. Since the operator spectrum of this theory is not known, this is currently an open
problem. An alternative strategy can be pursued via holography. If there is an exactly
marginal deformation that connects the N = 4 and N = 2 SCFTs, one could attempt to
construct its supergravity dual. This should be realized by a family of AdS4 supersymmetric
vacua of IIB supergravity which interpolate between the N = 4 and N = 2 J-fold solutions
in sections 2.5 and 3.3. It would be very interesting to either construct these solutions
explicitly or rule out their existence.

A three-dimensional SCFT with N = 2 supersymmetry and the same free energy as
in (3.41) can also be constructed in a different way. One can start with the T [U(N)] N = 4

SCFT and gauge its global U(N)×U(N) symmetry with an N = 2 vector multiplet with a
Chern-Simons term at level n. The free energy of the resulting N = 2 IR fixed point can be
computed by supersymmetric localization as in [26]. Despite the fact that we have modified
the theory in [26], the supersymmetric localization calculation will result in exactly the same
value for the free energy. To understand this one can decompose the N = 4 vector multiplet
into an N = 2 vector multiplet and an N = 2 chiral multiplet in the adjoint representation
of the gauge group. As explained in [46, 47] one can then show that the contribution of the
adjoint chiral multiplet does not affect the supersymmetric localization calculation of the
S3 path integral.

We have therefore arrived at two alternative SCFTs scenarios which explain why the
S3 free energies of the N = 2 and N = 4 Janus solutions in (3.41) and (2.64) are the same.
It would be most interesting to understand which of the two proposals outlined above leads
to the correct field theory dual of the AdS4 vacuum in section 3.3.
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Field SU(4)×U(1)S rep

ϕ, c 14 ⊕ 1−4

χ, ω 10−2 ⊕ 102

Table 4. The scalar truncation of the maximal supergravity in five dimensions relevant for holo-
graphic dual to N = 1 interfaces.

4 The gravity dual of the N = 1 interface

In this section we discuss the N = 1 Janus and J-fold solutions, with an SU(3) flavor
symmetry, embedded in the maximal gauged SO(6) supergravity theory, and uplift these
solutions to type IIB supergravity. These Janus solutions were previously studied in [10–12],
and we will therefore be brief. In [13], we have recently constructed a broader class of such
N = 1 Janus and J-fold solutions embedded in the minimal N = 2 gauged supergravity
theory coupled to one hypermultiplet, dual to an infinite class of N = 1 quiver gauge
theories. The corresponding type IIB backgrounds in [13] are of the form AdS5 ×M5 for
the Janus solutions and AdS4 × S1 ×M5 for the J-fold solutions, where M5 is a generic
Sasaki-Einstein manifold with a squashed metric. By specifying M5 to be S5, one recovers
the solutions that are discussed here. The J-fold solution of this type was also recently
studied in [31] using four-dimensional gauged supergravity, see also [48] for a local form of
this J-fold solution.

4.1 The five-dimensional Janus

Imposing the SU(3) symmetry truncates the scalar sector of the maximal supergravity
theory to only four scalars that parametrize the coset

SU(2, 1)

SU(2)×U(1)
, (4.1)

and are listed in table 4.12 The explicit parametrization of the coset is the same as in [13],
but now embedded in the maximal theory as described in appendix A.3. For the Janus
solutions of interest here we can consistently truncate out the fermions, gauge fields, and
two-forms in the supergravity theory. The resulting Lagrangian is the same as in (2.6),
where the scalar kinetic terms are determined by the matrix M = UTU and are pre-
sented (A.30) in appendix A.3. As before, the scalar 27-bein, U , given in (A.29), has the
same factorized structure as in (2.5) and (3.4). The potential and superpotential are

P =
1

2
(∂χW )2 − 4

3
W 2 , W = −3g

2
cosh2 χ . (4.2)

12Note again that while we use some of the same letters as in sections 2 and 3 to denote these scalar
fields, they correspond to different scalars in the maximal gauged supergravity.
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The derivation of the BPS equations is outlined in appendix A.3, see also [11, 12]. The
spin-1/2 variations lead to three BPS equations:

(χ′)2 =
1

4
(∂χW )2 − cosh2 χ

cos2 (c+ 2ω)
(ϕ′)2 ,

ω′ = sinh2 ϕ c′ ,

sinh 2ϕ c′ = −2 tan(c+ 2ω)ϕ′,

(4.3)

while the spin-3/2 variations yield the additional two:

A′ = −1

3
cothχ (χ′) , ϕ′ = 3e−A cos(c+ 2ω)sechχ tanhχ . (4.4)

Note that the structure of these equations differs somewhat from what we have en-
countered is sections 2 and 3. First, the differential equation for the dilaton, ϕ, does not
come from the spin-1/2 variation. Secondly, there is no algebraic equation for the metric
function, A. However, the analysis of these BPS equations proceeds in a similar fashion as
in previous sections.

The last two equations in (4.3) produce the familiar integral of motion

J = sinh 2ϕ sin(c+ 2ω) . (4.5)

The other integral of motion, I, takes the form

I =
9g2

55/3
e2A sinh2/3 χ . (4.6)

The solution can be reduced to a classical mechanics problem, as in (2.17) and (3.17),

4

g2
(X ′)2 + Veff = 0 , (4.7)

where the convenient choice of X is

X = −1

3
log sinhχ . (4.8)

The effective potential is then give by

Veff = 4 e−2X

(
9

55/3I
− e−4X cosh2 3X

)
. (4.9)

The AdS5 vacuum is found at

X → +∞ , such that χ→ 0, A→ +∞ . (4.10)

Again there is a static solution for I = 1 with 6X = log 5, which is discussed in
section 4.3. The non-static Janus solutions are only regular when 0 < I ≤ 1. In this range
the classical mechanics problem is solved by (3.20). The solutions represent a particle
coming in from infinity, bouncing off the potential at the turning point rtp = r(Xtp), where
Veff(Xtp) = 0, and returning back to infinity. We choose coordinates such that rrp = 0.
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Figure 4. A sample solution with I = 4/5. On the left pane we plot the functions 2(F (r) − F0)

(solid curve) that controls the solution for ϕ and X − 1 (dashed curve) which is just a constant
shift of the warp factor A. On the right pane we plot sinhχ.

For these solutions the remaining system of BPS equations collapses to a single separable
differential equation for ϕ(X),

sinh 2ϕ√
sinh2 2ϕ− J 2

dϕ

dX
= ± 9e−X

55/6
√
I cosh 3X

1√
−Veff

. (4.11)

This equation does not admit an analytic solution in terms of elementary functions, but it
can be integrated in quadratures and analyzed numerically. The five-dimensional dilaton
takes the same form as in (2.23) and (3.22),

cosh 2ϕ = cosh 2F +
1

2
e−2FJ 2 , (4.12)

with the function F given by

F = F0 ±
X∫

Xtp

9e−x

55/6
√
I cosh 3x

dx√
−Veff(x)

. (4.13)

This integral has to be performed numerically.
Once more the axion is given by, see (2.25) and (3.24),

cos2(c− c0) =
sinh2 2ϕ− J 2

(1 + J 2) sinh2 2ϕ
. (4.14)

The final step is to determine the scalar ω which can be done using (4.5). In figure 4 we
display a sample numerical Janus solution.

The interpretation of the five constants which determine this family of N = 1 Janus
solutions is the same as the one discussed below (2.26) for the N = 4 interface. The only
difference is that there is no operator of dimension 2 sourced in the dual N = 4 SYM theory
and thus the integration constant I controls only the change in the asymptotic value of the
gauge coupling as well as the source for the dimension 3 operator dual to the scalar field χ.
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4.2 The ten-dimensional Janus

This five-dimensional Janus solution can be uplifted to type IIB supergravity. The ten-
dimensional metric is

ds2
10 = coshχ ds2

5 +
4

g2

(
ds2

CP2

coshχ
+ coshχ ζ2

)
, (4.15)

where ds5 is the five-dimensional metric discussed in the previous section. The form ζ =

dφ + σ forms a U(1) bundle over the CP2 base, for which the Kähler form is given by
J = dσ. Additionally, since the base is Kähler-Einstein one can construct a holomorphic
(2, 0)-form, Ω, such that

Ω ∧ Ω̄ = 2J ∧ J , and dΩ = 3iσ ∧ Ω . (4.16)

This allows us to write the NS-NS and R-R forms in a compact manner. The two-forms
are give by13

C2 − τB2 = − 4i

g2

e−iω tanhχ

coshϕ− eic sinhϕ
e3iφΩ . (4.17)

The four-form potential is

C4 =
16

g4
dφ ∧ σ ∧ J . (4.18)

Finally, the axio-dilaton can be written as

τ = C0 + ie−Φ =
i− sinh 2ϕ sin c

cosh 2ϕ− sinh 2ϕ cos c
. (4.19)

This ten-dimensional N = 1 Janus solution agrees with the one found in [10]. In particular
we find that it is possible to set the type IIB axion, C0, to vanish by performing a global
SL(2,R) transformation of the solution. This is analogous to the discussion in section 2.4.

4.3 An N = 1 J-fold

Just as in the N = 4 and N = 2 case we find that for I = 1 something special happens.
Namely, the effective potential, see (4.9), has an extremum equal to zero, for which the
scalar takes the value 6X = log 5, such that

sinhχ =
1√
5
. (4.20)

We also set J = c0 = 0 using the SL(2,R)S symmetry of the five-dimensional theory.
The metric is given by

ds2
5 =

5

9g2

(
4dρ2 + 5ds2

AdS4

)
, (4.21)

13We use slightly different conventions when parametrizing the scalar manifold when compared to [13]
which means that the ten-dimensional solution is in a different SL(2,R) frame. The two solutions can be
identified by sending c here to c− π/2.
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where we have applied the coordinate transformation ρ = 3g

2
√

5
r. As for the other J-folds, we

find that the dilaton is linear ϕ = ρ+ϕ0. To make this background regular we periodically
identify the ρ-coordinate. This periodic identification has to be accompanied by an SL(2,Z)

monodromy with the same matrix J as in (2.60). This procedure results in the AdS4 J-fold
background constructed in [13].14

The free energy of the three-dimensional N = 1 SCFT dual to this solution was com-
puted in [13] and reads

FS3 =

√
55

36

N2

4
arccosh(n/2) . (4.22)

For completeness we also present the ten-dimensional uplift of this N = 1 J-fold solu-
tion. The metric is

ds2
10 =

√
5

6

2

3g2

(
4dρ2 + 5ds2

AdS4 + 6ds2
4 +

36

5
ζ2

)
. (4.23)

The axio-dilaton is
τ = C0 + ie−Φ =

cosh(2ϕ+ ρ0) + i sinh ρ0

cosh 2ϕ
. (4.24)

The two-form potentials can be written as

C2 − τB2 = − 2

g2

√
2
3 sinh ρ0

coshϕ+ i sinhϕ
e3iφΩ . (4.25)

The R-R four-form potential is the same as in the Janus solution (4.18).

5 Conclusions

In this paper, we constructed supergravity solutions in five and ten dimensions, which are
holographically dual to three classes of Janus interfaces in N = 4 SYM studied in [4]. These
interfaces preserve three-dimensional N = 4, N = 2, and N = 1 supersymmetry, respec-
tively. We also found that with each of these Janus solutions one can associate an AdS4

J-fold background of type IIB string theory, which is dual to a three-dimensional SCFT.
Our results lead to some open questions and suggest several directions for future work.

We have focused on constructing N = 2 and N = 1 Janus solutions that in the
classification of [4] are dual to the interfaces with the maximal allowed flavor group. Using
similar methods as in this paper it should be possible to construct the Janus solutions
dual to the N = 2 interfaces with U(1) × U(1) global symmetry [4], as well as N = 1

Janus solutions with no flavor symmetry. It is natural to expect that to each of these
Janus solutions one can associate a corresponding J-fold background. It will certainly be
interesting to find all these supergravity solutions explicitly. Note that in the classification
of supersymmetric Janus interfaces in [4], the θ-term in the SYM Lagrangian was omitted.
Given the importance of S-duality in [5–7] as well as the J-fold construction discussed in this

14See also [31] for an alternative construction of this J-fold solution using four-dimensional gauged su-
pergravity.
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paper, it might be interesting to revisit the analysis of [4] and look for novel superconformal
interfaces in the presence of the θ-term.

All our Janus solutions are smooth backgrounds of type IIB supergravity. As first
pointed out in [14, 49], one can find more general N = 4 AdS4 solutions of the same type by
allowing for explicit D-brane sources. These solutions are dual to superconformal interfaces
in N = 4 SYM with extra degrees of freedom localized on the defect which correspond
to the open-string excitations associated with the additional branes. Constructing similar
Janus solutions with explicit brane sources and N = 2 and N = 1 supersymmetry is very
difficult due to the complexity of the type IIB supergravity BPS equations. The explicit
Janus backgrounds we found in section 3 and section 4 may provide a useful starting point
for generating such supergravity solutions by eschewing a full classification attempt and
employing a suitable Ansatz for the supergravity fields.

The N = 2 and N = 1 J-fold AdS4 solutions suggest the existence of a large class of
new three-dimensional SCFTs. In section 3.4 we offered some suggestions as to what the
SCFT dual to the N = 2 J-fold configuration might be. It would be most interesting to
establish this holographic correspondence more rigorously and also to extend it by studying
more general J-fold configurations with explicit 5-brane sources as in [26]. To this end one
may utilize the results of [8, 9] on 1

4 -BPS boundary conditions in N = 4 SYM. The SCFTs
with N = 1 supersymmetry are even more mysterious due to the low amount of supersym-
metry, which prevents the use of many exact methods for computing physical observables.
Generalizations to include 5-brane sources in the string theory setup will require the study
of 1

8 -BPS boundary conditions in N = 4 SYM, which is also a challenging task.
We have clearly shown the utility of lower-dimensional gauged supergravity theories

arising as consistent truncations from string and M-theory to construct holographic duals
to interfaces in supersymmetric QFTs. This approach can be effectively generalized to the
study of defects and interfaces in the ABJM theory. Some explicit examples of supersym-
metric Janus interface solutions in four-dimensional SO(8) gauged supergravity were found
in [19]. Before embarking on constructing further examples of similar Janus solutions it is
desirable to establish a field theory classification, analogous to the one in [4], for all super-
conformal interfaces in ABJM. Finally we would like to point out that gauged supergravity
has proven to be a useful tool in the study of supersymmetric spatially modulated phases
in the ABJM theory. Several examples of these “susy Q” solutions were constructed in
four-dimensional gauged supergravity [50–52] and it will be very interesting to study their
analogues in five-dimensions using the consistent truncations discussed in this paper.
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A Derivation of the BPS equations

In this appendix we describe how the three consistent truncations of the SO(6) gauged
maximal supergravity and the associated BPS equations are obtained. We follow the con-
ventions of [17] except that we work in mostly plus signature.

In order to specify the generators of interest for our truncations within e6(6), we use an
explicit representation of e6(6) in the so-called SL(6,R)×SL(2,R) basis given by the 27×27

real matrices in equation (A.36) in [17]

X(ΛIJ ,Λ
α
β ,ΣIJPβ) =

[
−4Λ

[M
[Iδ

N ]
J ]

√
2ΣIJPβ√

2ΣMNKα ΛKP δ
α
β + Λαβδ

K
P

]
, (A.1)

where capital Latin indices run from 1 to 6 and lower case Greek indices run from 1 to 2.
Here ΛIJ and Λαβ are sl(6,R) and sl(2,R) generators, respectively, and ΣIJPβ is real and
completely antisymmetric in IJK. Indices on the Σ-tensor are raised using the SL(6,R)

and SL(2,R) invariant tensors:

ΣIJKα =
1

6
εαβεIJKLMNΣLMNβ . (A.2)

The compact generators are those for which ΛIJ and Λαβ are antisymmetric and ΣIJKα is
anti-selfdual; ΣIJKα = −ΣIJKα. For the non-compact ones, ΛIJ and Λαβ are symmetric
and traceless and ΣIJKα = ΣIJKα is selfdual.

All three truncations discussed in this paper make use of the three generators of sl(2,R)

spanned by Λαβ . For convenience we denote these generators by

t = X(0, σ1, 0) , r = X(0, iσ2, 0) , s = X(0, σ3, 0) , (A.3)

where we used the notation introduced in (A.1) and σi are the Pauli matrices. The
SL(2,R)/ SO(2) scalar coset spanned by the axion and dilaton appears in all of our trun-
cations and in all cases we parametrize that submanifold in the same way. To simplify our
subsequent discussion we define the matrix

Udilaton = e−c r/2 · eϕ t · e(c/2+π/4)r , (A.4)

which will be utilized when we parametrize the scalar manifolds of the three truncations.
The appearance of π/4 in the last exponent can be removed by a global SL(2,R)S transfor-
mation, however we include it to simplify the form of the ten-dimensional uplifted solutions.
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A.1 The N = 4 Janus

In this appendix we present the derivation of the BPS equations in section 2.1. We write
the generators of E6(6) that commute with SO(3) × SO(3) embedded in SO(6) as in (2.1).
First we have the sl(2,R)-triple (t, r, s) as defined in (A.3). Second we have a 20′ generator
inside sl(6,R):

gα = X(ΛIJ , 0, 0) where ΛIJ =

(
13×3 0

0 −13×3

)
. (A.5)

Finally we have four generators with non-zero ΣIJKα. Two of those are non-compact,
denoted by gχ1 and gχ2 , and two are compact, denoted by rχ1 and rχ2 . Explicitly, these are
constructed from

gχ1 , rχ1 : Σ1231 = −Σ4561 =
√

2 ,

gχ2 , rχ2 : Σ1231 = Σ4561 =
√

2 ,
(A.6)

with the same values of other components of the Σ-tensor related by symmetry and duality,
before inserting them into (A.1). It is easy to verify that these eight generators span
sl(3,R), and the three compact generators; (r, rχ1 , rχ2) generate the compact SO(3) group
that appears in the denominator of (2.4).

We parametrize the scalar coset in terms of these generators as follows

U = eχ gχ1 · e−ω r · eα gα · Udilaton . (A.7)

Once U has been specified it is a simple task to compute the matrix M = UTU and the
kinetic terms using (2.6):

1

24
Tr ∂µM∂µM−1 =

− 3

4
(5 + 3 cosh 8χ)(α′)2 − 8(χ′)2 − 2 sinh2 2χ(ω′)2 + 4 sinh2 ϕ sinh2 2χ (c′)(ω′)

− 1

8

(
11 + 4 cosh 4χ+ cosh 8χ+ 8 cos(2c+ 4ω) sinh4 2χ

) [
(ϕ′)2 +

1

4
sinh2 2ϕ (c′)2

]
− 2 sinh2 ϕ sinh2 2χ (sinh2 ϕ− cosh2 ϕ sinh2 2χ cos(2c+ 4ω))(c′)2

+ 2 sinh 2ϕ sinh2 2χ sin(c+ 2ω)
(

3 cosh2 2χ (α′) + sinh2 2χ cos(c+ 2ω)(ϕ′)
)

(c′)

− 3 cos(c+ 2ω) sinh2 4χ (ϕ′)(α′) . (A.8)

Our scalar parametrization was carefully chosen such that none of the phase angles, c or
ω appear in the W -tensors of [17]. In particular from the Wab tensor we can extract the
superpotential (3.6) that satisfies (2.7) where the potential is just

P = −3g2

4
(3 + cosh 4α cosh 4χ) . (A.9)

We are interested in supersymmetric solutions of the equations of motion. This means
that we look for Killing spinors εa for which the supersymmetry variations [17]

δχabc = −i
√

2

(
γµPµabcdε

d +
3gi

2
Wd[abc]|ε

d

)
,

δψµa = ∇µεa +Q b
µ a εb −

gi

6
Wabγµε

b ,

(A.10)
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vanish. Here Wab = W c
acb, indices are raised an lowered with the symplectic matrix Ωab.

We refer to [17] for further details. The procedure for finding the BPS equations starts
by finding the eigenvectors of Wab that correspond to the superpotential and its complex
conjugate

gWabη
b
(s) = Wηa(s) , gWabη

b
(s̄) = Wηa(s̄) , (A.11)

with s, s̄ = 1, 2, 3, 4. Then we can write εa = ηa(s)ε
s + ηa(s̄)ε

s̄ and the vanishing of the
supersymmetry variations reduce to equations for εs,s̄. The spin-1/2 equation reduces to a
condition on the spinor

i
(
α′ − sec(c+ 2ω)ϕ′

)
γrε

s =
1 +
√

2

6
∂αWεs̄ . (A.12)

This projector can be used to derive BPS equations for the scalars which appear in (2.9).
The spin-3/2 leads to a conformal Killing spinor equation on AdS4

∇iεs =
i(1 +

√
2)

6
Wγiε

s̄ , ∇iεs̄ = − i(−1 +
√

2)

6
Wγiε

s , (A.13)

where i is an index along the AdS4 slice. Finally we have a differential equation for εs,s̄

along the coordinate r which fixes the radial dependence of the spinor. We simplify (A.13)
by writing the covariant derivative in terms of the derivative on “unwarped” AdS4:

∇iεs = ∇̃ı̂εs −
1

2
A′γrγiε

s , (A.14)

where ı̂ is an index on the unit-radius AdS4. A conformal Killing spinor η on AdS4 satisfies

∇̃ı̂η = κ
i

2
γ5γı̂η , (A.15)

where γ5 = γ0̂1̂2̂3̂ = γr is the chirality operator in five dimensions and κ2 = 1 is an arbitrary
sign. Using this in (A.13) we obtain(

A′ − κ i

`
e−A

)
γrε

s =
i(
√

2 + 1)

3
Wεs̄ ,

(
A′ − κ̄ i

`
e−A

)
γrε

s̄ = − i(
√

2− 1)

3
Wεs . (A.16)

Consistency of the full system of equations requires κ = −κ̄ and we are free to choose
κ = −1. With this we obtain the equations in (2.11).

A.2 The N = 2 Janus

Here we outline the derivation of the BPS equations in section 3. We write the generators
of E6(6) that commute with SU(2)×U(1) embedded in SU(4) as in (3.2). First we have the
sl(2,R)-triple (t, r, s) as defined in (A.3). Next we have a second sl(2,R)-triple arising from
the lower right corner of the sl(6,R) matrix:

(t56, r56, s56) = X(ΛIJ , 0, 0) where ΛIJ =

(
04×4 0

0 (σ1, iσ2, σ3)

)
. (A.17)
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One more 20′ generator commutes with SU(2)×U(1) and is given by

gα = X(ΛIJ , 0, 0) where ΛIJ =

(
14×4 0

0 −212×2

)
. (A.18)

Finally we have four generators written in terms of the ΣIJKα. Two generators are non-
compact and are denoted by gχ1,2 and two are compact, denoted by rχ1,2 . These are
specified by

gχ1 , rχ1 : Σ1251 = Σ3451 = 1 ,

gχ2 , rχ2 : Σ1252 = Σ3452 = 1 ,
(A.19)

with, as before, other components of the Σ-tensor determined by symmetry and duality.
Altogether, these eleven generate SO(3, 2)× R+ with a compact subgroup SO(3)× SO(2).

We parametrize the scalar coset in terms of these generators as follows

U = eα gα · eχ gχ1 · e−ω r · eα gα · eλ t56 · e−ψ r56/2 · Udilaton . (A.20)

Then the kinetic terms computed from (2.6) are

1

24
Tr ∂µM∂µM−1 =

− 12(α′)2 − 4(χ′)2 − sinh2 2χ (ω′)2 − 1

2
(3 + cosh 4χ)

[
(λ′)2 + (ϕ′)2)

]
− sinh2 ϕ

(
cosh 2ϕ cosh2 2χ+ 1

)
(c′)2 − 1

4
(cosh 4λ cosh2 2χ− 1)(ψ′)2

− sinh2 2χ

[
− sinh 2ϕ

(
sin(c+ 2ω)λ′ − 1

2
sinh 2λ cos(c+ 2ω)ψ′

)
c′

+ 2 cos(c+ 2ω)λ′ϕ′ + sinh2 ϕ (cosh 2λψ′ + 2ω′)c′ + sinh 2λ sin(c+ 2ω)ϕ′ψ′

+ cosh 2λω′ψ′
]
.

(A.21)

The parametrization of the coset in (A.20) is chosen such that none of the phase angles,
c, ω, or ψ appear in theW -tensors of [17]. In particular, from theWab tensor we can extract
the superpotential (3.6) that satisfies (3.5), where the potential is

P = −g
2

4
e−8α

(
1 + 4e12α + 8e6α cosh 2λ cosh 2χ− cosh 4λ cosh2 2χ

)
. (A.22)

We now follow the same procedure as in appendix A.1 and look for supersymmetric
solutions of the equations of motion. The eigenvectors of Wab that correspond to the
superpotential and its complex conjugate dictate which spinors we should consider

gWabη
b
(s) = Wηa(s) , gWabη

b
(s̄) = Wηa(s̄) , (A.23)

with s, s̄ = 1, 2. Then we can write εa = ηa(s)ε
s + ηa(s̄)ε

s̄ and the vanishing of the super-
symmetry variations reduce to equations for εs,s̄. The spin-1/2 equations reduce to the
following condition on the spinor

i(α′)γrε
s =

1

12
∂αWεs̄ . (A.24)
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This projector can be used to derive BPS equations for the scalars which appear
in (3.7)–(3.9).

The spin-3/2 leads to a conformal Killing spinor equation on AdS4

∇iεs =
i

6
Wγiε

s̄ , ∇iεs̄ = − i

6
Wγiε

s , (A.25)

where i is an index along the AdS4 slice. Finally we have a differential equation for εs,s̄

along r which fixes the radial dependence of the spinor. Using exactly the same steps as in
the case of N = 4 Janus we obtain(

−κ i

`
e−A +A′

)
γrε

s =
i

3
Wεs̄ ,

(
+κ

i

`
e−A +A′

)
γrε

s̄ = − i

3
Wεs . (A.26)

We have introduced the sign κ as before to label the conformal Killing spinor we use on
AdS4. We are once again free to choose κ = −1. With this we obtain the equations in (3.10).

A.3 The N = 1 Janus

Finally, we also outline the derivation of the BPS equations in section 4. We write the
generators of E6(6) that commute with the SU(3) subgroup of SO(6). As before, we have
the sl(2,R)-triple (t, r, s) defined in (A.3). Next we have the U(1) generator that commutes
with SU(3) and, in our parametrization, is given by

gU(1) = X(ΛIJ , 0, 0) where ΛIJ = i

 σ2 0 0

0 σ2 0

0 0 σ2

 . (A.27)

In addition, we have four 10⊕ 10 generators. Two of these are non-compact and denoted
by gχ1,2 and two are compact, denoted by rχ1,2 . These are specified by

gχ1 , rχ1 : Σ1351 = −Σ1461 = −Σ2361 − Σ2451 = 1 ,

gχ2 , rχ2 : Σ1352 = −Σ1462 = −Σ2362 = −Σ2452 = 1 .
(A.28)

In total, these eight generators span SU(2, 1) with a compact subgroup SU(2)×U(1).
We parametrize the scalar coset in terms of these generators as follows

U = eχ gχ1 · e−ω r · Udilaton . (A.29)

The kinetic terms then takes the explicit form

1

24
Tr ∂µM∂µM−1 = −2(∂χ)2 − 1

2
sinh2 2χ(∂ω − sinh2 ϕ ∂c)2

− 1

2
cosh2 χ

[
4(∂ϕ)2 + sinh2 2ϕ(∂c)2

]
.

(A.30)

Just as before one can construct the spinors we are interested in by looking at the eigen-
vectors and eigenvalues of the Wab tensor of [17]. This time around one finds that

gWabη
b
(s) = Wηa(s) , with s = 1, 2, (A.31)
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the eigenvalue is given by the superpotential in (4.2). The spinors can thus be decomposed as

εa = ηa(s)ε
s, (A.32)

such that the equations in (A.10) have to be solved independently for ε1 and ε2. From the
spin-1/2 variation in (A.10) one can find the equations in (4.3) and the projector

γrε
1 = Ωε2 γrε

2 = Ω̄ε1 , (A.33)

where
Ω = − 2i

3g

1

sinhχ

(
χ′

coshχ
− i

ϕ′

cos (c+ 2ω)

)
. (A.34)

The consistency of the projectors is ensured by the identity |Ω|2 = 1. The BPS equations
for ϕ′ and A′ in equation (4.4) are found from solving the spin-3/2 variations in (A.10), and
imposing that the solution is compatible with the projector found in the spin-1/2 variations.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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