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Abstract

Variational methods have long been used to study strongly-correlated quantum systems.
Despite the successes of classical protocols, these are limited in the study of quantum
systems, either due to numerical errors like the sign problem or the massive memory
requirement to represent large quantum systems. Variational quantum eigensolvers (VQEs)
overcome these problems and as a result have been an exciting area of research for the past
decade. VQEs use a hybrid classical-quantum set-up, where a cost function (usually the
expectation value of an operator) is produced by the quantum processor and then optimized
on a classical computer. VQEs have been applied to fields such as quantum chemistry,
condensed matter physics, high-energy physics, and classical optimization problems. In
this thesis, we investigate VQEs to study gauge theories, which describe fundamental
physical interactions and are hard to simulate classically. We use two different approaches
in implementing a VQE to study two classes of problems.

In the first half of the thesis, we design a VQE to study the U(1) Higgs gauge theory
in one spatial dimension. This model is particularly interesting due to the presence of a
topological term, which is a candidate to explain the observed CP violation in the universe.
In order to perform a quantum simulation of the U(1) Higgs model, the theory is cast on
a lattice. In the limit where the lattice size is large and the lattice spacing is small, the
continuum limit can be reached and the results correctly resemble the original theory.
However, when the lattice is too small or the spacing too big, results are spoiled by finite-
size effects. In this thesis, we investigate the effects of a finite lattice and determine the
parameters to correctly reproduce a first-order phase transition of the continuous theory.
Importantly, to resemble a realistic experiment, we include the statistical and intrinsic
quantum noise in our VQE. We design the protocol to be applied on a microwave-photonic
platform, which is well-suited due to the bosonic nature of the theory’s electrical modes.

In the second half of the thesis, we design a new class of VQEs, based on a measurement-
based quantum computer (MBQC) instead of the typical circuit-based set-up. Rather than
performing gates on an initial state, a MBQC transforms an initial state by entangling
it with a number of auxiliary qubits which are subsequently measured, resulting in a
modification of the initial state. In this part of the thesis, we compare the standard,
circuit-based VQE with our newly-designed measurement-based VQE (MB-VQE) through
two meaningful examples. First, we introduce a novel way to construct variational state
families, using measurement-based techniques, that is more costly to access with circuit-
based VQEs. We apply this technique to find the ground state of a two-dimensional,
periodic Z2 matter-free lattice gauge theory. In the second approach, we directly translate
the circuit-based VQE to a MB-VQE and apply this to the U(1) Schwinger lattice gauge
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theory, which is used as a benchmarking problem for VQEs. These examples demonstrate
that there are specific problems which are better suited for a MB-VQE.
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graciously offered their vast knowledge of high energy physics and lattice gauge theories
to the Higgs model simulation project; my research would not be possible without them
and I am incredibly grateful to have worked with them. Wolfgang Dür used his incredible
expertise in the field of measurement-based quantum computing to make the measurement-
based simulation project possible; it was a pleasure and an honour working with him. I
would also like to thank Chris Wilson for assisting me with the experimental aspect of the
Higgs model simulation project; he offered great insight and helped expand my knowledge.

Finally, I am incredibly thankful for my amazing friends and family, particularly my
parents Liz and Rob Ferguson. Allowing me to go away to university was tough on them
but they supported me through it all the way. They have made me who I am today and I
will always love them. I would also like to thank Anna Gasparini, Jim Gasparini, Christian
Gasparini, Joy Ferguson, Wayne Cordes, Elizabeth Worley, Colin Brown, Robyn Cordes,
and Sean Cordes for all the love and support, and Leah Varga, Arawn Varga, Caelum
Massie, Michael Chisholm, Danella Olsen, Aryeh Fortinsky, Nioka Payne, Nikki Douglas,
Jade Colthirst, Lucy Black, Amber Cloves, Aimee Cloves, Sarah Slim, and Alex Vanriel
for all their encouragement and the fun times we had together.

vii



Dedication

This is dedicated to Liz Ferguson, Bob Ferguson, Amelia Ferguson, Judy Cordes, Indy,
Kirby, Neo, and Luey.

viii



Table of Contents

List of Tables xii

List of Figures xiii

1 Introduction 1

2 A Microwave-Based VQE for Simulating Topological Terms 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The U(1) Higgs Model with a Topological Term . . . . . . . . . . . . . . . 7

2.2.1 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Elimination of the Gauge Fields . . . . . . . . . . . . . . . . . . . . 9

2.3 Phase Structure and Ground State Properties . . . . . . . . . . . . . . . . 10

2.3.1 Phase Structure in the Absence of a Topological Term . . . . . . . 11

2.3.2 Phase Structure in the Presence of a Topological Term . . . . . . . 12

2.4 Spin Truncation and Matrix Product States . . . . . . . . . . . . . . . . . 15

2.4.1 Spin Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 MPS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 VQE with Parametric Cavities . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Microwave-Photon Cavity . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 The HOBM Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.3 Resource Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



2.5.4 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.5 Measurement Budget and Experimental Errors . . . . . . . . . . . 26

2.6 Microwave VQE for U(1) Higgs Hamiltonian . . . . . . . . . . . . . . . . . 27

2.6.1 VQE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.2 VQE Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Measurement-Based Variational Quantum Eigensolvers 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Fundamentals of MBQC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Examples of Measurement Patterns . . . . . . . . . . . . . . . . . 36

3.2.2 The Simulation Program . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 State Variation by Edge Modification . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Edge Modification Procedure . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Toric Code Hamiltonian VQE . . . . . . . . . . . . . . . . . . . . . 43

3.4 Translating VQEs into MB-VQEs . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Conclusions 49

References 51

APPENDICES 63

A Introduction to VQEs 64

B Higgs Mechanism and Phase Structure without a Topological Term 66

C Periodicity and Symmetries of the Higgs Hamiltonian 69

D Location of the First Phase Transition 71

x
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Chapter 1

Introduction

The field of quantum computing has been one of the most exciting areas of physics in the
past few decades. Physicists theorize many areas where quantum computers can be ad-
vantageous compared to their classical counterparts, and the fast development of quantum
hardware in recent years is bringing practical implementations closer and closer. One of
the most interesting advantages of quantum computers is their ability to simulate complex
quantum systems. Though classical computers have been extremely successful in study-
ing the physics of strongly correlated quantum systems [1, 2, 3, 4], several barriers pose
fundamental obstacles for investigating larger, more complex systems. For example, the
infamous sign problem in Markov Chain Monte Carlo simulations generates large numeri-
cal errors [5, 6] and the memory needed to store the information on the quantum system
grows exponentially with the system’s size. These, and other limitations, severely bound
the classes of quantum systems that classical computers can simulate.

Though there are many protocols for performing quantum simulations, one of the most
promising is the variational quantum eigensolver (VQE) [7, 8, 9]. A VQE consists of a
closed feedback loop between a quantum processor and a classical computer. The classical
computer provides optimized variational parameters that serve as input for the quantum
processor to create a quantum state. A cost function - typically the expectation value of
some operator - is efficiently computed on the quantum hardware and then fed back to the
classical computer, which uses an optimization algorithm to update the variational param-
eters. The VQE provides an approximation to the low-lying eigenvalues of the operator,
along with the corresponding eigenstates. See Appendix A for an in-depth description of
how VQEs work. VQEs have been successfully used in fields such as quantum chemistry
[10, 11, 12], high-energy physics [13, 14, 15, 16, 17, 18], and classical optimization. [19, 20].
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In this thesis, we apply VQE algorithms to gauge theories. Gauge theories describe the
fundamental physical interactions of the universe and, for the reasons mentioned previously,
pose a severe challenge to classical simulator. We propose two kinds of VQEs, which we
apply to different scenarios. In the first, we consider the U(1) Higgs gauge theory in one
spatial dimension with a topological term [21]. Topological terms represent a viable option
to explain the CP violation in the universe [22] and can give the theory a rich and interesting
phase diagram [5, 23]. To obtain the Hamiltonian formulation of the theory, we first cast
the model on a lattice. We then simulate a VQE including statistical noise to determine
the ground states of the theory for different parameter regimes and to explore the phase
structure of the model. In the second scenario, we outline the protocol of a new kind of
VQE where the quantum resource is a measurement-based quantum computer (MBQC)
[24, 25, 26, 27, 28, 29] instead of a circuit. In this case, rather than applying gates on an
initial state, a highly entangled state is first prepared, and the output qubits are modified
by local measurements on auxiliary qubits. These qubits are measured in bases controlled
by the variational parameters, which are optimized by the classical algorithm. We consider
two different approaches to implement measurement-based VQEs (MB-VQEs), and apply
them to relevant problems: a two-dimensional periodic Z2 matter-free lattice gauge theory
[30] and the U(1) Schwinger lattice gauge theory in one spatial dimension [31]. Both of
these examples showcase situations where MB-VQEs are better suited than circuit-based
VQEs.

The thesis is structured as follows. In Chapter 2, we investigate the U(1) Higgs lattice
gauge theory and simulate a VQE to find its ground state in different parameter regimes.
First, we derive the Hamiltonian of the model and discuss the dynamical contributions
from the inclusion of a topological term. In particular, we study the phase diagram of
the model along with the first-order phase transition induced by the topological term. We
use truncated operators along with matrix product states (MPS) [32, 33, 34] to investigate
these effects. Then, we discuss the advantages of performing the VQE on a microwave
photon platform. Finally, we simulate the VQE with statistical noise and observe the
phase transition.

In Chapter 3 we introduce MB-VQEs and compare them to circuit-based VQEs. First,
we summarize the relevant features of MBQCs, including their ability to perform all the
Clifford operations in a single step at the beginning of the procedure [27]. Then, we
introduce a novel way to construct variational state families using measurement-based
techniques, that is more costly to access with circuit-based VQEs. This is applied to find
the ground state of a two-dimensional, periodic Z2 matter-free lattice gauge theory, which
is equivalent to the toric code Hamiltonian with a perturbation [30]. Finally, we directly
translate a circuit-based VQE into a MB-VQE, in the process effectively removing all the
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Clifford operations from the MB-VQE. This is used to simulate the ground state of the
U(1) Schwinger lattice gauge theory in one spatial dimension.
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Chapter 2

A Microwave-Based VQE for
Simulating Topological Terms

2.1 Introduction

Although classical simulations of lattice gauge theories have resulted in important break-
throughs [35, 36], major issues like the sign problem greatly reduce their effectiveness in
studying quantum problems [37, 38]. The sign problem arises when topological terms are
present [5, 6], which play an important and fascinating role in quantum field theory. They
induce CP violation, and in QCD this leads to the possibility to explain the strong CP
problem [39] and shed light on physics beyond the standard model [40]. In a gauge Higgs
theory, CP violation is one of the basic ingredients for generating the matter-antimatter
asymmetry of the universe [22] (see Fig. 2.1). In 1+1 dimensions, the strength of the
topological term is given by the parameter θ, the presence of which can lead to new phases
and therefore to an enriched phase structure of the model (see [5, 23] for a discussion of
the effect of such θ-terms in various dimensions).

One classical method that can overcome some of these difficulties are tensor networks,
which have been very successful in simulating one dimensional gauge theories [41, 42]. Al-
though it is challenging to extend them to two dimensions, some methods have been already
proposed [43]. Another promising alternative to Markov Chain Monte Carlo (MCMC) cal-
culations are quantum simulations, which are not affected by the sign problem and thus
offer exciting opportunities to study topological terms in one or more spatial dimensions.
Currently, quantum simulations have been used in proof-of-principle simulations of lattice
gauge theories without topological terms in one spatial dimension [16, 44], but in the fu-
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ture, simulations in three spatial dimensions will allow us to explore the open questions in
high energy physics (see Refs. [14, 15] for progress in this direction).

In this chapter, we use a quantum simulation to determine the ground state properties
of a lattice gauge theory in one spatial dimension with a topological term. In particular, we
study the U(1) Abelian Higgs lattice gauge theory with a semiclassical approximation with
a topological term and open boundary conditions [21, 45, 46]. The rich physics content
found in this model cannot be explored with conventional MCMC lattice methods because
the topological term induces a sign problem in Euclidean time. However, it has been
realized that in the special case of 1+1 dimensions the model can be written in a dual
formulation which is sign problem free [47]. Going, as targeted here, to 1+1 dimensions, a
gauge-Higgs model with a topological term is also closely related to models in condensed
matter physics [6, 48, 49].

In the following we focus on the phase diagram of the model in one spatial dimension.
As shown in Fig. 2.1, the physics of the model is periodic in θ and, as will be discussed more
in detail below, in the confining region (for large masses of the Higgs field) the ground state
undergoes a first-order phase transition for varying θ that manifests as a sharp discontinuity
of the electric field density of the state. On the other hand, in the Higgs region (for small
masses of the Higgs field) there will be no dependence of the electric field density on θ.
Therefore, there are two distinct phases that we can identify by studying the ground state
properties for a variety of parameters of the model. We first explore the physics of the
model in the Hamiltonian formalism using matrix product states (MPS) [32, 33, 34]. This
allows us to diagonalize the Hamiltonian on lattices of various sizes and various truncations
of the Higgs field’s Hilbert space. We find that, despite the finite lattice size and truncated
operators, we are able to capture the physics of the main features of the phase diagram
from analytic results and we can simulate it using currently available quantum platforms.

A particularly suitable quantum simulation method for this purpose is a variational
quantum eigensolver (VQE) [7, 8, 9]. This algorithm takes advantage of a quantum pro-
cessor to efficiently generate a parameterized ansatz state. An appropriate cost function is
measured on the state and fed into a classical processor. The classical processor uses this
information to minimize the cost function by optimizing the parameters that control the
ansatz state. VQEs exploit the quantum processor to efficiently evaluate the cost function
that is hard to calculate classically, while the variational nature of the optimization algo-
rithm ensures resilience to certain types of errors and lowers requirements for the quantum
hardware. The VQE algorithm is explained in more detail in Appendix A.

We propose an experimental VQE realization using superconducting microwave cavi-
ties (see Fig. 2.1). As we discuss below, this experimental platform is well-suited for our
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Figure 2.1: Conceptual overview of Chapter 2. Left: Topological terms are play an
important role in quantum field theory: among other effects, they have been considered
as a possible explanation of the matter-antimatter imbalance observed in the universe.
However their physics is difficult to study with classical numerical methods since it is
affected by the sign problem. Center: When a topological term θ is introduced to the U(1)
Higgs lattice gauge theory in 1D, its phase diagram becomes periodic in θ and develops a
first-order symmetry-breaking phase transition (dashed line) which only occurs for small
R2 (large masses of the Higgs field). This is discussed more in depth in Section 2.3. Right:
To perform a VQE of the Higgs model with a topological term and simulate its phase
diagram, a microwave-photon cavity is our platform of choice. See Sections 2.5 and 2.6 for
more details. Image of the experimental platform is adapted with permission from Ref.
[50].

problem and has promising features that motivated us in pioneering its application for
quantum simulations. The bosonic nature of microwave photons makes them apt to model
the bosonic Higgs fields’ degrees of freedom: this allows to better exploit the available
experimental modes. Furthermore, in superconducting microwave cavities Josephson junc-
tions are an important source of strong nonlinear dynamics: through parametric processes
it is possible to easily select and enhance particular interactions between the cavity modes.
This flexibility in the available interactions is an important resource in a VQE, since they
determine the form of the ansatz state and are fundamental in the success of the algorithm.

The rest of the chapter is organized as follows. In Section 2.2 we briefly introduce
the model with a particular focus on the Hamiltonian lattice formulation. We summarize
the main features of the phase structure in Section 2.3. Subsequently we numerically
demonstrate, using MPS, that we can capture the relevant physics of the model, even for
system sizes available on current quantum hardware, and we systematically explore finite
size effects in Section 2.4. In Section 2.5 we describe the experimental resources relevant for
our simulation algorithm and in Section 2.6 we discuss in detail the VQE protocol and the
key results. We summarize our findings and offer some possible perspectives in Section 2.7.
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2.2 The U(1) Higgs Model with a Topological Term

Contrary to conventional lattice methods, for the purpose of quantum simulations it is
advantageous to work with a Hamiltonian lattice formulation. Hence, we describe here
the U(1) Higgs lattice Hamiltonian with a topological term in one spatial dimension with
open boundary conditions. In Section 2.2.1 we introduce the Hamiltonian of the model,
which involves both scalar Higgs and gauge fields, and we give the Gauss Law, which is
the conservation law that enforces local gauge invariance. In Section 2.2.2 we derive an
effective Hamiltonian in which gauge degrees of freedom are integrated out, such that the
Hamiltonian depends only on the Higgs field operators.

2.2.1 The Hamiltonian

Here we introduce the U(1) Higgs lattice model in one spatial dimension. The Higgs fields
are defined on the lattice sites and the gauge fields are defined on the links between the
lattice sites. In particular, the Higgs field on lattice site n is φ̂n and it has a canonically
conjugate operator Q̂n, called the charge operator. By fixing the length of the Higgs field
(see Appendix B for details), these operators satisfy the commutation relation [21, 45, 46]

[Q̂n, φ̂
†
n′ ] = δn,n′φ̂†n, (2.1)

and as a result the Higgs field φ̂n acts as a descending operator for the eigenstates of Q̂n:

Q̂n|Q〉n = Q|Q〉n, Q ∈ Z, (2.2a)

φ̂n|Q〉n = |Q− 1〉n. (2.2b)

The operator Ûn is associated with the gauge field on link n, which joins lattice sites n and
n + 1, and it has a canonically conjugate operator Ên, called the electric field operator.
These operators satisfy the commutation relation [21, 45, 46]

[Ên, Û
†
n′ ] = δn,n′Û †n, (2.3)

and Ûn is a descending operator for the eigenstates of the electric field Ên:

Ên|E〉n = E|E〉n E ∈ Z, (2.4a)

Ûn|E〉n = |E − 1〉n. (2.4b)
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The U(1) Higgs Hamiltonian for one spatial dimension is given by [21]

Ĥ =
1

2R2

N∑
n=1

Q̂2
n −

R2

2

N−1∑
n=1

(
φ̂†nÛ

†
nφ̂n+1 + H.C.

)
+

1

2β

N−1∑
n=1

(
ε0 + Ên

)2

− β(N − 1),

(2.5)

where N is the number of lattice sites, β = 1/g2 where g is the coupling strength, and R2

is inversely proportional to the mass of the Higgs field. Additionally, ε0 is the background
electric field. In one spatial dimension, the topological term is proportional to the back-
ground electric field θ = 2πε0 [51]. In Eq. (2.5) we have fixed the lattice spacing to be a = 1
and use natural units ~ = c = 1. The first and third term in the Hamiltonian describe the
Higgs field energy and electric field energy respectively. The second term is referred to as
the kinetic term; it allows charge to be transferred between adjacent lattice sites, at the
expense of changing the electric field between the sites. The presence of the gauge field
operator in this term ensures the local gauge symmetries of the model are conserved.

In the Hamiltonian formulation of the model, physical states (i.e. gauge-invariant
states) have to obey the Gauss Law

Ĝn|Ψphysical〉 = Gn|Ψphysical〉, (2.6)

where we have defined for each lattice site

Ĝn = Ên − Ên−1 − Q̂n. (2.7)

Note that the Ĝn operators commute with the Hamiltonian and are the generators of the
local gauge transformations associated with the theory. The eigenvalues Gn take integer
values and can be interpreted as static charges that can be introduced at every lattice site.
For the rest of this chapter we focus on the sector of vanishing external charges, Gn = 0
∀n.

The Hamiltonian in Eq. (2.5) conserves the total charge

Q̂total =
N∑
n=1

Q̂n. (2.8)

As a result, the Hilbert space can be divided into subsectors defined by the total charge
of the states within. For the remainder of the chapter we will focus on the ground state
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properties of the theory in the Qtotal = 0 subsector. In order to ensure that the ground
state is in the correct subsector during numerical calculations, we add a penalty term to
the Hamiltonian

Ĥpenalty = `

(
N∑
n=1

Q̂n

)2

. (2.9)

When the weight ` of this term is large enough, it ensures that the states outside of the
Qtotal = 0 sector are penalized and removed from the low-lying spectrum.

2.2.2 Elimination of the Gauge Fields

In the following, we express the Hamiltonian in Eq. (2.5) in terms of Higgs degrees of
freedom only. Eliminating the gauge degrees of freedom [52, 53, 54, 55] ensures that the
eigenstates of the effective Hamiltonian are gauge invariant, and therefore allows for a
contained quantum simulation, that takes place only in the gauge invariant (physical)
subspace.

By considering the subspace of the theory with zero static charge, Ĝn|Ψphysical〉 = 0,
Eq. (2.7) can be rewritten as

Ên = Ên−1 + Q̂n (2.10)

for the physical states. Using open boundary conditions, Eq. (2.10) can be solved to obtain
the electric field at every site to be

Ên =
n∑
k=1

Q̂k. (2.11)

Eq. (2.11) allows us to write the electric field operators entirely in terms of the charge
operators. In particular, the electric term of the Hamiltonian can be rewritten as

N−1∑
n=1

(
ε0 + Ên

)2

=
N−1∑
n=1

(
ε0 +

n∑
k=1

Q̂k

)2

=
N−1∑
n=1

(N − n)Q̂2
n + 2

N−1∑
n=2

n−1∑
j=1

(N − n)Q̂jQ̂n

+ 2ε0

N−1∑
n=1

(N − n)Q̂n + (N − 1)ε2
0

(2.12)
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To eliminate the gauge fields operators Ûn and Ên from Eq. (2.5), we can redefine the
Higgs fields φ̂n as follows [55]

φ̂n →
(
n−1∏
k=1

Û †k

)
φ̂n,

φ̂†n → φ̂†n

(
n−1∏
k=1

Ûn−k

)
.

This induces the transformation

φ̂†nÛ
†
nφ̂n+1 → φ̂†nφ̂n+1.

This transformation, as well as Eq. (2.12), allow us to obtain an effective Hamiltonian
where the gauge degrees of freedom have been eliminated

Ĥ =
1

2R2

N∑
n=1

Q̂2
n −

R2

2

N−1∑
n=1

(
φ̂†nφ̂n+1 + H.C.

)
+

1

2β

N−1∑
n=1

(N − n)Q̂2
n

+
1

β

N−1∑
n=2

n−1∑
j=1

(N − n)Q̂jQ̂n +
ε0

β

N−1∑
n=1

(N − n)Q̂n − β(N − 1) +
ε2

0

2β
(N − 1).

(2.14)

As Eq. (2.14) shows, expressing the effective Hamiltonian purely in terms of Higgs field
operators φ̂n and Q̂n introduces long-range interactions. It also allows one to simulate
the model using fewer modes, as the redundant degrees of freedom have been removed.
A method for obtaining the effective Hamiltonian in more than one spatial dimension is
described in Refs. [14, 15].

2.3 Phase Structure and Ground State Properties

Despite its simplicity, the U(1) Higgs model shows a rich phase diagram, in particular
when a topological term is added to the theory, which makes it especially interesting for
quantum simulation. In this section we briefly review the phase structure of the model,
before systematically exploring how limitations of current small-scale quantum hardware
affect this picture in Section 2.4. We first focus on the case without a topological θ-term
in Section 2.3.1 before moving on to the phase structure in the presence of a θ-term in
Section 2.3.2. We discuss the signature of detecting a quantum phase transition when ε0
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Figure 2.2: Phase diagram of the Abelian Higgs model with fixed length of the
field in the R2 – β plane. The Higgs region is indicated in blue whereas the confinement
region is indicated in orange. The dashed line corresponds to a crossover between the
Higgs and the confining region. The insets show a sketch of the form of the potential in
the different regions. Note that R2 is inversely proportional to the mass of the Higgs field.
This figure was made by Stefan Kühn.

in Eq. (2.5) is varied and which can be observed in a quantum simulation even for small
system sizes. This quantum phase is of particular interest to us, as it is not accessible
with conventional MCMC methods due to the sign problem. Hence, we aim to design a
microwave based quantum simulation experiment, as we discuss in detail in Section 2.5.

2.3.1 Phase Structure in the Absence of a Topological Term

In the absence of a topological θ-term, the Higgs model with fixed length of the field can
be studied numerically with conventional MCMC lattice methods [45, 46, 56]. An intuition
for the phase structure can also be obtained by examining the Lagrangian using a simple
semiclassical approach (see Appendix B for details). In this picture, the scalar field ϕ is
assumed to fluctuate only slightly around the minimum of the potential term V (|ϕ|) in
the Lagrangian for the ground state of the model. Depending on the value of the mass
and the coupling, the shape of V (|ϕ|), and consequently the nature of the ground state,
changes as shown in Fig. 2.2. For large values of the mass and small inverse coupling, or
equivalently small values of R2 and β, the potential has a unique minimum. In this region,
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the Abelian Higgs model essentially corresponds to a pure U(1) gauge theory, describing
nothing but a massless photon. Since pure gauge theories in their compact version show
charge confinement, we refer to this part of phase diagram as the confining region.

Going into the opposite corner of the phase diagram in Fig. 2.2, characterized by small
values of the mass and large inverse coupling, the potential V (|ϕ|) shows a “Mexican hat”
structure with an infinite number of minima along the well of the Mexican hat. In this
region, the photon acquires a mass as a result of the Brout-Englers-Higgs mechanism (see
Appendix B for details) and we refer to this part as the Higgs region. The ground state in
the Higgs region corresponds to one of the minima of the Mexican hat potential and, thus,
spontaneously breaks the U(1) symmetry of the model.

On a lattice with finite spacing, these two regions of the phase diagram are separated
by a crossover that is disappearing for small values of the inverse coupling β. Taking
the continuum limit, the crossover line ends in a Berezinskii-Kosterlitz-Thouless transition
from a confining phase 1 for large masses to the Higgs phase at small values of the mass [56].

2.3.2 Phase Structure in the Presence of a Topological Term

The phase structure of the model in the presence of a topological term has been investigated
both theoretically [49] and numerically [57, 58]. Note that the topological term gets its
name from QCD, where the theta term depends on the topology of the considered space
[59]. Fig. 2.3 shows a sketch of the phase diagram as a function of ε0 (the background
electric field) and R2 for a fixed value of β.

Most notably, the physics is periodic in ε0 with period 1. The origin of this periodicity
can be understood intuitively by looking at the electric energy in Eq. (2.5). It is always
possible to shift the electric field by an integer k, such that ε′0 := ε0 − k ∈ [0, 1) while the
electric energy stays unchanged

N−1∑
n=1

(
ε0 + Ên

)2

=
N−1∑
n=1

(
ε0 − k + Ên + k

)2

=
N−1∑
n=1

(
ε′0 + Ê ′n

)2

.

The shifted electric field Ê ′n := Ên +k has the same spectral properties as Ên in Eq. (2.4a)
and the resulting configuration fulfills Gauss Law, provided the original one was gauge
invariant. Hence, such a shift does not change physics and we can restrict ourselves for

1Strictly speaking, one should refer to “regions” in the phase diagram, since there is an analytical
connection between the different regions in the phase diagram
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the following discussion to ε0 ∈ [0, 1). Moreover, the two points ε0 = 0, 1/2 are special,
because for these cases the Hamiltonian is symmetric under charge conjugation, meaning
the exchange of particles and antiparticles (rigorous proofs for the periodicity and the
charge conjugation symmetry are provided in Appendix C).

To get further insight into the phase diagram in Fig. 2.3, we can examine the Hamil-
tonian in Eq. (2.5) [or its unitarily equivalent version in Eq. (2.14)] in the limiting cases
of large and vanishing mass of the Higgs field. Focusing first on the limit of small mass
corresponding to R2 � 1, Eq. (2.14) reduces to

−R
2

2

N−1∑
n=1

(φ̂nφ̂
†
n+1 + H.C.),

which is a pure hopping Hamiltonian. In particular, we see that the expression above is
independent of ε0 and thus the physics does not depend on the topological term. Since we
focus on the sector of vanishing total charge, the ground state in this limit is given by a
superposition of all zero-total-charge states.

Looking at the opposite limit of large mass, or equivalently R2 � 1, the Hamiltonian
in Eq. (2.5) reduces to

1

2R2

N∑
n=1

Q̂2
n +

1

2β

N−1∑
n=1

(
ε0 + Ên

)2

. (2.15)

The first term energetically favors a vanishing charge at every site, Qn = 0 ∀n. Plugging
this into Gauss Law in Eq. (2.10) and taking into account that we focus on the sector of
vanishing external charges, we see that for gauge invariant states the electric field has to
take a constant value for all sites. For ε0 < 1/2 the field configuration minimizing the elec-
tric energy in Eq. (2.15) is given by En = 0 ∀n. In contrast, for ε0 > 1/2 an electric field of
En = −1 ∀n minimizes the energy. Exactly at the point ε0 = 1/2 both configurations yield
the same electric energy contribution, and the ground state is doubly degenerate. These
considerations show that in the limit of large masses the model undergoes a first-order
quantum phase transition as we increase ε0 from 0 to 1. This transition is accompanied
by a discontinuity in the electric field density (EFD)

F =
1

N − 1

N−1∑
n=1

〈Ên + ε0〉

=
1

N − 1

N−1∑
n=1

(N − n)〈Q̂n〉+ ε0

(2.16)
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Figure 2.3: Sketch of the phase diagram in the R2 – ε0 plane. The dashed line
indicates the critical line corresponding to first-order phase transition which ends in a
second-order quantum phase transition (indicated by the red dot). The confining region is
indicated in orange, the Higgs region in blue. The inset shows the behavior of the electric
field density which, when crossing the phase transition, showing a jump as a result of the
first-order transition (see discussion in the main text). This behavior of the electric field
density will serve as the signature of the phase transition for the here performed quantum
simulation of the model. This figure was made my Stefan Kühn.

which we expect for R2 � 1 to behave as

F ≈
{
ε0 for ε0 ≤ 1/2

ε0 − 1 for ε0 > 1/2,

as shown in the inset of Fig. 2.3. Moreover, the abrupt jump in the electric field configura-
tion for ε0 = 1/2 by one unit leads to a cusp in the electric energy term. Hence, we expect
the ground state energy to show a non-smooth behavior at the transition point too. These
expectations, which will be verified in Section 2.4, will serve as the signature of the phase
transition for the microwave-based quantum simulation of the model we perform.

Our discussion of the two limiting cases shows that the behavior of the model has to
change going from large masses (corresponding to small R2) to small masses (corresponding
to large R2). While for small masses a first-order quantum phase transition occurs for
ε0 = 1/2, this transition vanishes in the limit of large mass. Ref. [49] argued that the critical
line at ε0 = 1/2 ends in a second-order quantum phase transition belonging to the Ising
universality class at a critical value R2

c . This transition is accompanied by a spontaneous
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breaking of the charge conjugation symmetry and has been observed in numerical MCMC
simulations using a dual lattice formulation of the model [57]. In other words, the charge
conjugation symmetry is present in the model for ε0 = 1/2 and R2 < R2

c , but not for
ε0 = 1/2 and R2 ≥ R2

c . Moreover, despite the new features arising from the θ-term, the
picture from the previous section remains true for large enough values of inverse coupling.
For large mass, or equivalently small R2, there is a confining region whereas for large values
of R2 again the Higgs region occurs (see Fig. 2.3).

In the following we aim to design a microwave-based quantum simulation experiment
allowing us to determine the phase structure of the model in the presence of a topological
term. Since current quantum hardware is of small-scale, we will to restrict ourselves to a
small number of degrees of freedom and we have to work with lattices consisting only of
a few sites. It can be shown that even for such a small system the considerations above
hold true, but the location of the first phase transition shifts from ε0 = 1/2 to some larger
value of ε0. Assuming the mass is large enough that the kinetic term can be neglected, we
show in Appendix D that the first phase transition occurs at

ε0 =
1

2
+

β

R2(N − 1)
. (2.17)

Note that the dominant basis state in the ground state before the phase transition is the one
with charge configuration |0〉⊗N , whereas after the transition the basis state with charge
configuration |−1〉|0〉⊗N−2|+1〉 dominates. Equation (2.17) predicts the phase transition
cannot occur before ε0 = 1/2 for a finite lattice and only in the N → ∞ limit, the phase
transition occurs exactly at ε0 = 1/2.

2.4 Spin Truncation and Matrix Product States

Our goal in this chapter is to explore the physics of the model using existing small-scale
quantum hardware. To assess the feasibility of such an approach we first explore the effects
of truncating the model to a small number of degrees of freedom numerically using matrix
product states (MPS). For a system with N sites and open boundary conditions, the MPS
ansatz reads

|ψ〉 =
d∑

i1,i2,...,iN

M i1
1 M

i2
2 · · ·M iN

N |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iN〉.

In the expression above, M ik
k are complex square matrices of size χ for 1 < k < N , and M i1

1

(M iN
N ) is a χ-dimensional row (column) vector. The states {|ik〉}dik=1 are a basis for the d-

dimensional local Hilbert space on site k. The parameter χ is called the bond dimension of
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the MPS and determines the number of variational parameters in the ansatz and limits the
amount of entanglement that can be present in the state (see Refs. [32, 33, 34] for detailed
reviews). The optimal set of tensors can be found variationally by iteratively minimizing
the energy for each tensor while keeping the others fixed [60].

For numerical calculations with MPS, the dimension of the local Hilbert spaces has
to be finite, which is in contrast to the infinite-dimensional degrees of freedom for each
site in the Higgs Hamiltonian. Hence, they have to be truncated to a finite dimension. In
Section 2.4.1 we discuss a way of truncating the Hilbert spaces before numerically exploring
finite-size effects on the phase structure in the presence of a θ-term in Section 2.4.2.

2.4.1 Spin Truncation

One possibility of truncating the theory is to replace the bosonic fields with integer spins

Q̂n → Ŝzn, φ̂†n →
1

|S| Ŝ
+
n , (2.18)

where Ŝz and Ŝ+ are the z-component and raising operators for a particle with spin s,
respectively, and |S| =

√
s(s+ 1). The resulting local Hilbert space is finite and has

dimension d = 2s + 1. Using this mapping, the commutation relations of the original
model stay intact (see Section 2.2.1 for more details on the commutation relations) except
for

[φ̂n, φ̂
†
n′ ]→

[
1

|S| Ŝ
−
n ,

1

|S| Ŝ
+
n′

]
=

2

|S|2 δn,n′Ŝzn.

Notice that the expression above approaches the correct commutation relation for bosonic
field operators, [φ̂n, φ̂

†
n′ ] = 0, in the limit s → ∞. The resulting spin Hamiltonian after

applying the mapping in Eq. (2.18) to Eq. (2.14) can be addressed with MPS using
standard methods, despite its long-range interactions [42, 53, 61, 62, 63].

2.4.2 MPS Results

In order to examine the effects of truncating the model to a small, finite number of degrees
of freedom on the phase structure, we study the spin Hamiltonian at fixed coupling strength
for a wide range of values of R2, s, and N . To estimate the error due to the finite size
χ of the matrices in our numerical MPS simulations, we repeat the calculation for every
combination of (R2, N, s) for a range of bond dimensions (the size of the truncated matrices
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M ik
k ) χ ∈ [10, 100]. Afterwards we can extrapolate the results to the limit χ→∞ following

Ref. [42]. Figure 2.4 shows the MPS results obtained for the ground state energy density
E0/N and the EFD as a function of ε0 for various system sizes and couplings. For all the
results presented, we have chosen a penalty strength of ` = 3N which is sufficient to ensure
that we are in the sector of vanishing total charge.
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Figure 2.4: MPS plots of Higgs phase diagram. Ground state energy (left column)
and EFD (right column) as a function of ε0 calculated using MPS for β = 1.0 and R2 = 0.3
(first row), 0.6 (second row) and 1.0 (third row). Dots indicate s = 1, triangles s = 2 and
the different colors encode the different system sizes N = 4 (blue), 8 (orange), 20 (green)
and 100 (red). As a guide for the eye the markers are connected with lines. The error bars
represent the uncertainty from the extrapolation in χ. These plots were made by Stefan
Kühn.

In general, we observe that truncation effects due to the finite value of s are rather
small, and even the simplest nontrivial truncation, s = 1, is sufficient to avoid noticeable
effects throughout the range of masses we explore. Only for the smallest mass we study,
corresponding to R2 = 1.0, results for s = 1 and s = 2 start to differ slightly, in particular
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for larger values of ε0. Nevertheless, even in these cases deviations are relatively modest.

In contrast to the spin truncation, finite-size effects are more pronounced. While we
expect the physics to be periodic in ε0 with period 1 as outlined in Section 2.3.2, Fig. 2.4
shows that ground state energy density as well as the EFD only show perfect periodicity
throughout the entire range of ε0 we study for our largest system size, N = 100. For
smaller values of N the characteristic features still repeat, however the graphs for the
energy density and the EFD show an overall increasing trend with ε0. Moreover, the
period at which the characteristic features repeat is increasing with decreasing system size.

Focusing on our results for R2 = 0.3 in Figs. 2.4(a) and 2.4(b), corresponding to the
largest value of the mass we consider, we clearly see the signatures of the first-order phase
transition as discussed in Section 2.3.2. The EFD shows sharp discontinuities accompanied
by cusps in the ground state energy for all system sizes we study. For our largest system
size, N = 100, these transitions occur for ε0 close to integer multiples of 1/2. Decreasing
the system size, we observe that the location of the first transition gradually shifts to
larger values of ε0, in agreement with Eq. (2.17). In particular, even for an extremely
small system size of N = 4 the signatures of phase transition are still clearly visible in
both the EFD and the ground state energy density.

Going to a significantly smaller mass, the discontinuities and cusps in the EFD as well
as the ground state energy density vanish, as our data for R2 = 1.0 in Figs. 2.4(e) and
2.4(f) reveal. The smooth behavior of these observables is giving a clear indication that
we are in the regime below the critical mass, or correspondingly R2 > R2

c , and the phase
transition is gone. In general, finite-size effects seem to shift the critical mass at which
the transitions vanishes towards smaller values (or equivalently R2

c towards higher values),
as our data for R2 = 0.6 reveals. Looking at Figs. 2.4(c) and 2.4(d) we clearly observe a
first-order order transition signaled by a sharp discontinuity in the EFD for system sizes
N ≥ 20. In contrast, the discontinuities are no longer present for the two smallest system
sizes N = 4, 8 we study, and the EFD curves for these cases are smooth.

From our data in Figs. 2.4(a) - 2.4(d) we can extract the location ε′0 of the first-order
phase transition as the first discontinuity (cusp) in the EFD (energy density). Fig. 2.5
contains our results for R2 = 0.3, 0.6 and various system sizes. Both panels show that
finite-size effects shift the location of the first transition to values ε′0 > 1/2. Comparing
our numerical data to the prediction for the large mass limit R2 � 1 in Eq. (2.17), we
observe good agreement for R2 = 0.3. Going to a larger value of R2 = 0.6, or equivalently
to a smaller mass, the approximation in Eq. (2.17) breaks down and is no longer compatible
with the numerical data.

In summary, our MPS data demonstrates that we can observe the relevant features
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Figure 2.5: Location of phase transition for finite lattice size. Location of the first
discontinuity extracted from our numerical data as a function of system size for β = 1.0
and R2 = 0.3 (a), and 0.6 (b). Dots indicate s = 1, triangles s = 2, and the solid line the
prediction from Eq. (2.17) for the large mass limit. The error bars originate from our finite
resolution in ε0. These plots were made my Stefan Kühn.

of the model, even if we restrict ourselves to a small number of degrees of freedom. The
truncation of the bosonic fields does not severely affect the physics in the presence of
a θ-term for the range of parameters we are interested in. In particular, even for very
small system sizes that are accessible with current quantum hardware, we can observe
the characteristic features of the phase structure. For large masses, or equivalently small
values of R2, the EFD and the ground state energy density clearly show the signatures
of the first-order phase transition which eventually vanish as we go to small masses or
correspondingly large R2.

2.5 VQE with Parametric Cavities

In this section we discuss how the phase diagram of the one dimensional Higgs model
with a topological term can be studied using current quantum simulators. As outlined
in the introduction, we propose a VQE approach, which forgoes the need to implement
the complicated interactions that appear in the Higgs model on the quantum simulator.
Instead, the VQE protocol exploits a set of resource Hamiltonians that can be realized on
a given platform and allows for the preparation of an output state that approximates the
targeted ground state using the limited set of resource interactions available (see Appendix
A). We target quantum simulations with parametric microwave cavities [50, 64], which have
not been used for VQE so far, but are a promising candidate system as we explain below. In
particular we first introduce the microwave platform and its features that makes it suitable
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for our simulation in Section 2.5.1. We then present the specific resource Hamiltonian that
can be engineered in the system, and the measurement scheme necessary to run the VQE
in Section 2.5.3 and Section 2.5.4 respectively. We conclude by discussing the experimental
imperfections and their role for the proposed simulation in Section 2.5.5. In the remainder
of the chapter, Section 2.6 will provide a concrete protocol that allows for the study the
effects previously discussed in Section 2.3.

2.5.1 Microwave-Photon Cavity

Here we detail the microwave-photonic hardware that we consider for our VQE of the
U(1) Higgs Hamiltonian with a topological term. As shown schematically in Fig. 2.6,
the quantum processor of our VQE scheme consists of a multimode coplanar waveguide
resonator terminated by a SQUID at one end [50, 64]. The SQUID is coupled both to
a microwave pump mode for classical control and to the total flux of the cavity. The
SQUID - consisting of a superconducting loop with two Josephson junctions - provides a
high degree of dissipationless, nonlinearity in the system. This basic element is the key
to the success of superconducting computing architectures [65] and is used here to control
microwave fields. In the VQE, each lattice site in the model corresponds to a mode on the
experimental platform. In fact, in the multimode cavity the model’s lattice is constructed
in so-called “synthetic dimensions” in frequency space [66].

Using microwave photons as quantum degrees of freedom in a VQE has the advantage
that a larger Hilbert space can be accessed compared to traditional, qubit-based VQE
protocols. This property is a naturally good fit for the simulation of gauge or Higgs fields,
which are defined on infinite dimensional Hilbert spaces. As a result, using bosonic degrees
of freedom requires fewer experimental modes and avoids the translation of two-body terms
into three- and four-body interactions, which usually occurs when when encoding multilevel
gauge fields using qubits.

Additionally, as explained in Section 2.5.3 and Refs. [50, 64, 67], the SQUID circuit
in the experimental setup is an important source for nonlinear interactions, and the pump
mode provides a high degree of classical control on the available interactions. This means
one can create highly-customizable gates: for example, by choosing to use a so-called
symmetric SQUID [67], we can enhance the fourth-order nonlinearity while suppressing the
third-order. In this chapter, we explain in detail only how to use the nonlinear operations
to create interactions involving the product of four photonic operators (see Appendix E for
details), which are necessary for the simulation of the Higgs model, but in principle these
ideas can be extended much further. This flexibility is perfect for special purpose VQEs,

20



Pump line: classical control

QPU

CPU

Optimization

algorithm

~θ

C(~θ)

SQUID

Cavity line

Amplifier |ψ(~θ)〉

Re(S
)

Im(S)

D
(S

)

Figure 2.6: Schematics of the VQE on the microwave-photon platform. The
quantum processor unit (QPU) consists of a microwave cavity terminated by a SQUID.

The variational parameters ~θ determine how the SQUID is pumped and consequently which
interactions are generated between the cavity modes to generate the ansatz state |ψ(~θ)〉. A
quantum-limited amplifier allows to perform heterodyne measurements on the cavity modes
to obtain the cost function C(~θ). In our case the cost function is the expectation value of

the Hamiltonian for which we want to find the ground state, as defined in Eq. (2.26). C(~θ)
is used by the classical processor unit (CPU) to find the optimal variational parameters
that minimizes it. This figure was made by Jinglei Zhang.

including the one considered in this chapter. In addition, it is natural for this platform
to generate effective couplings that are complex (see Section 2.5.3 and Appendix E for
details), which can be beneficial to VQEs of lattice gauge theories. Overall, our approach
is complementary to existing VQE schemes in the sense that it has strikingly different
features than qubit-based protocols, but also uses resource Hamiltonians that are different
from other bosonic platforms, such as optical photons [68, 69] or ultracold atoms [70].

2.5.2 The HOBM Mapping

In order to simulate the Higgs Hamiltonian given in Eq. (2.14) with the microwave-photon
cavity, its operators Q̂n and φ̂n need to be mapped to the degrees of freedom of the chosen
experimental platform. The mapping we used is called the Highly Occupied Boson Model
(HOBM) [71] and is given by

Q̂n → N̂n −N0, φ̂n →
1√
N0

ân, (2.19)
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Figure 2.7: Schematic of HOBM mapping. The charge basis state (left) with charge Q
|Q〉 is mapped to the Fock state (right) with Q+N0 photons |Q+N0〉 under the HOBM
mapping. In the HOBM, â is proportional to the Higgs field operator φ̂ according to Eq.
(2.19).

where N0 ∈ N is a constant such that the zero charge state in the Higgs model maps to the
Fock state with N0 photons (see Fig. 2.7). N̂ and â are the photonic number and lowering
operators, respectively. With this mapping, the U(1) Higgs Hamiltonian becomes

ĤHOBM =
N∑
n=1

(
1

2R2
+
N − n

2β

)
N̂2
n −

R2

2N0

N−1∑
n=1

(
â†nân+1 + H.C.

)
+

N−1∑
n=2

n−1∑
j=1

N − n
β

N̂jN̂n

+
N∑
n=1

(
(N − n)(2ε0 −N0(N + n− 1))

2β
− N0

R2

)
N̂n

− β(N − 1) +
ε2

0

2β
(N − 1) +

N2
0N

2R2
+
N(N − 1)N0((2N − 1)N0 − 6ε0)

12β
.

(2.20)

When simulating the VQE on a classical computer, we must truncate the Hilbert space
of every mode to include only the states with photon number N0 − k to N0 + k for some
integer k. Let us consider the effects of using the untruncated and truncated mappings.
In the following we will omit the lattice site index as these expressions hold for all sites.
Using the untruncated HOBM model, all of the commutation relations remain the same
(see Section 2.2.1 for the commutation relations of the original model), except for

[φ̂, φ̂†]→ 1

N0

. (2.21)

The correct commutation relation should be [φ̂, φ̂†] = 0, which is recovered as N0 → ∞.
Let â(k) and N̂(k) be the truncated operators (truncated to matrices of size 2k+1). When
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we consider the truncated HOBM model (as is the case for our classical simulation) an error
is introduced and the following commutation relations can be derived

[Q̂, φ̂†]→
[
N̂(k)−N0,

1√
N0

â†(k)

]
=

1√
N0

â†(k) +
N0 − k√

N0

â†(k)|N0 − k〉〈N0 − k|,
(2.22a)

[φ̂, φ̂†]→ 1

N0

[â(k), â†(k)]

=
1

N0

+
N0 − k
N0

|N0 − k〉〈N0 − k| −
N0 + k + 1

N0

|N0 + k〉〈N0 + k|.
(2.22b)

To recover the correct commutation relation in Eq. (2.22a), we set k = N0, which gives

[Q̂, φ̂†]→
[
N̂(k)−N0,

1√
N0

â†(k)

]
=

1√
N0

â†(k), (2.23a)

[φ̂, φ̂†]→ 1

N0

[
â(k), â†(k)

]
=

1

N0

− 2N0 + 1

N0

|2N0〉〈2N0|. (2.23b)

Eq. (2.23a) is the same commutation relation as in the full Hilbert space [Eq. (2.1)] and,
given that [φ̂, φ̂†] = 0 in the full Hilbert space, the truncation error in Eq. (2.23b) goes
to zero as N0 → ∞. In general, Eq. (2.23b) shows that the state with maximum photon
number, |2N0〉 is most affected by truncation errors.

2.5.3 Resource Hamiltonians

In this section we discuss the resource Hamiltonians that will be used in the VQE and how
they can be generated by the microwave-photon platform’s interaction Hamiltonian. By
driving the pump at a frequency equal to the difference in the cavity mode frequencies of
two modes c and d [50], we can create a c − d beam splitter interaction (see Ref. [67] for
details)

Û
(c,d)
BS (θ, ~Ω, λ) = exp

(
iθ
(
eiλâ†câd + H.C.

)
+ i

N∑
n=1

ΩnN̂n

)
. (2.24)

This type of interaction has been experimentally realized on the microwave-photon plat-
form. The three types of variational parameters that appear in this Hamiltonian, θ, λ, and
~Ω, can be optimized by the classical algorithm and are set by classical control parameters.
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In principle, one can apply the variational parameters on the considered platform by fixing
the coupling strength and varying the time or vice-versa, though the former offers greater
stability. θ is the product of the coupling strength (which is proportional to the intensity
of the driving field) and the gate application time, and the relative phase λ is given by the
phase of the pump signal. Ωn is the product of the nth effective cavity mode frequency
(which is set by our choice of reference frame) and the gate application time. Note that
this interaction closely resembles the kinetic term in Eq. (2.20).

To create the second resource Hamiltonian, we exploit the ability of the SQUID to
generate nonlinear interactions. For example, cubic nonlinear interactions have been ex-
perimentally demonstrated in Ref. [50]. The underlying principle can be extended by
driving the SQUID at a frequency significantly lower than the effective cavity modes used.
As described in Appendix E, this selects the following interaction while causing all other
interactions to average to zero due to the rotating wave approximation:

ÛO(θ, ~Ω) = exp

(
iθĤNN + i

N∑
n=1

ΩnN̂n

)
, (2.25a)

ĤNN = 6
N∑
n=1

N̂n

(
N̂n + 2N − 1

)
+ 24

N∑
n=2

n−1∑
j=1

N̂jN̂n. (2.25b)

The explicit form of Eq. (2.25b) arises from the underlying SQUID Hamiltonian and is
derived in Appendix E. The basic working principle to create such an interaction has been
experimentally proven; based on experimental demonstrations so far, we expect that this
interaction can be realized with coupling strength up to 107Hz [50, 72]. As before, θ is
the product of the coupling strength (which is proportional to the effective interaction
strength) and the gate application time, and Ωn is the product of the nth effective cavity
mode frequency and the gate application time. Importantly, this interaction contains terms
like N̂n and N̂2

n, both of which appear in the HOBM Higgs Hamiltonian Eq. (2.20). Since
the target Hamiltonian ĤHOBM lies in the Lie algebra spanned by the resource Hamiltonians
give in Eqs. (2.24, 2.25a), the VQE will be able to reach the ground state of the theory
[73, 74].

2.5.4 Measurements

In contrast to the optical domain, a natural measurement for microwave photons is linear
amplification. The noise added during amplification is then a fundamental limit on the
detection efficiency of microwave fields. Here we consider, in particular, a well-established
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measurement available for microwave photons: the linear phase-insensitive amplifier, which
simultaneously amplifies both quadratures of the input field [67, 75]. Quantum mechanics
dictates that amplifying the field in a phase-insensitive manner adds at least one unit
of vacuum noise to the signal. Once the signal is amplified, it is therefore natural to
simultaneously measure two conjugate quadratures, since this does not affect the signal-
to-noise ratio. The signal obtained is equivalent to a heterodyne measurement of the
cavity modes. Additionally, higher-order coherence functions can also be calculated [76]
(see Appendix E) to obtain statistics of nonlinear measurements that cannot be performed
directly (for example, photon number measurements).

The quantum state emitted from the microwave cavity is amplified in the large gain
limit (see Ref. [50] for details). Measuring the field quadratures at the two output ports
corresponds to simultaneously measuring the self-adjoint part X̂S = (Ŝ + Ŝ†)/2 and the
anti self-adjoint part P̂S = (Ŝ − Ŝ†)/2 of the signal operator

Ŝ = â+ ĥ†.

Here â refers to the cavity output state |ψ(~θ)〉 to be measured (see Fig. 2.6) and ĥ is the
amplifier noise mode. Note that Ŝ is a normal operator, meaning [Ŝ, Ŝ†] = [X̂S, P̂S] = 0.
Furthermore, the eigenvalues of X̂S and P̂S correspond to the real and imaginary parts of
the eigenvalues of Ŝ, respectively. Repeated preparation and detection of the output state
of the cavity yields a measurement distribution D(S) (shown in Fig. 2.6), from which any
statistical moment of Ŝ and Ŝ† can be calculated [76].

During the VQE of the HOBM Higgs Hamiltonian ĤHOBM in Eq. (2.20), the cost

function C(~θ) = 〈ψ(~θ)|ĤHOBM|ψ(~θ)〉 is calculated from the data comprising the measure-
ment histogram D(S). Therefore, we express the expectation value of the HOBM Higgs
Hamiltonian in terms of the statistical moments of the measured signal operator Ŝ,

C(~θ) = 〈ψ(~θ)|ĤHOBM|ψ(~θ)〉
=
∑
n

cn〈Ŝ†nŜn〉+
∑
n

c′n〈(Ŝ†n)2Ŝ2
n〉

+
∑
n,m

c′′n,m〈Ŝ†nŜnŜ†mŜm〉+
∑
n

c′′′n 〈Ŝ†nŜn+1 + Ŝ†nŜn+1〉.
(2.26)
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The above mapping of the cost function can be obtained using

〈(Ŝ†n)jŜjn〉 =

j∑
i=0

(
j

i

)2

〈(â†)j âj〉, (2.27a)

〈Ŝ†nŜnŜ†mŜm〉 = 〈N̂nN̂m〉+ 〈N̂n〉+ 〈N̂m〉+ 1, (2.27b)

〈Ŝ†nŜn+1 + ŜnŜ
†
n+1〉 = 〈â†nân+1 + ânâ

†
n+1〉, (2.27c)

which assumes that the noise modes are in the vacuum state |0〉 (i.e. this is a quantum-
limited measurement) and the noise is uncorrelated with the cavity output modes. Exper-

imentally, one can extract the value of C(~θ) from the measured data distributions D(S)
using the following expressions [77]

〈(Ŝ†n)jŜjn〉 =

∫
Sn

|Sn|2jD(Sn), (2.28a)

〈Ŝ†nŜnŜ†mŜm〉 =

∫
Sn,Sm

|Sn|2|Sm|2D(Sn, Sm), (2.28b)

〈Ŝ†nŜn+1 + ŜnŜ
†
n+1〉

=

∫
Sn,Sn+1

(S∗nSn+1 + SnS
∗
n+1)D(Sn, Sn+1). (2.28c)

2.5.5 Measurement Budget and Experimental Errors

In a VQE, the cost function C(~θ) must be computed many times by the quantum device
over the course of the experiment. Each cost function evaluation involves the prepara-
tion of the initial state, applying a sequence of gates, and the measurement of the final
VQE state (together, we refer to this as a shot). As statistical and amplification noise
are present in the cost function evaluation, the number of measurements of the state M
determines how accurately we know the cost function. In particular, the variance of the
cost function is σ2

H/M , where σ2
H is the intrinsic variance of the Hamiltonian. Therefore,

a large number of measurements is required to minimize the noise of the cost function,
which means the number of measurements that can be performed and the repetition rate
are crucial quantities when designing an experiment.

Let us investigate the measurement budget for the microwave-photon platform in more
detail, as it is very different from that of common VQE platforms. The time required to
prepare the initial state can be very short, for example the fastest time to prepare the
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Fock state |2222〉 is estimated to be on the order of 10−8s [78]. All the gates in the circuit,
including beam splitter [Eq. (2.24)] and the ĤNN interactions [Eq. (2.25a)], must be
applied in a time interval less shorter the cavity decay time, which ranges between 10−7s
and 10−4s [79]. For a cavity with fixed coupling, the time required to measure the state is
also limited by the cavity decay time, as we must allow the state to escape the cavity before
measuring it. There is however the possibility to employ cavities with tunable coupling
to the environment [79]; the cavity can be closed to have a long cavity lifetime time and
opened for a fast measurement process. Assuming a tunable coupling, the readout time is
negligible compared to the gate application time.

As a result, the time budget for a single shot is dominated by the coupling strength,
which is on the order of 107Hz for the interactions considered in Section 2.5.3 [50, 72].
Assuming the VQE circuit consists of about ten gates and θ in Eqs. (2.24, 2.25a) is of
order 1, as is the case of our VQE (see Section 2.6), the time for a single shot is therefore on
the order of 10−6s. One advantage of the microwave-photon platform over other potential
VQE platforms is its ability to run continuously without the need for human intervention.
As a result, ignoring the time required for classical computing in the VQE feedback loop,
up to 1011 measurements can be collected in a single day.

This discussion has so far ignored the effects of experimental imperfections present on
this platform. The sources of error on the microwave-photon platform are similar to other
gate-based superconducting processors and as a result we can expect a similar performance.
In particular, Ref. [75] achieved a two-qubit gate infidelity of 10−3 and Ref. [80] achieved a
Fock state preparation infidelity of 10−1. We can also expect similar improvements to the
platform as large commercial entities continue to improve and develop gate-based quantum
computers. In the three steps consisting of a shot - state preparation, gate application,
and measurements - we therefore expect the latter to pose the biggest concern. To access
the impact of experimental imperfections, a realistic simulation of the VQE was made,
which takes the measurement errors fully into account. This is presented in the upcoming
section.

2.6 Microwave VQE for U(1) Higgs Hamiltonian

So far, we have discussed the physics of the U(1) Higgs Hamiltonian with a topological
term, and the microwave-photon platform we wish to implement the VQE on. This section
will focus on the VQE protocol itself. In order to show that our protocol is experimentally
viable, we perform a classical simulation of the VQE and use it to create a plot of the
EFD, similar to Fig. 2.4(b) and 2.4(d). In Section 2.6.1 we explain the VQE protocol
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intended to run on the microwave-photon platform. In Section 2.6.2 we discuss the results
of our simulations and demonstrate that our proposed measurement budget is realistic for
an experiment running on current quantum hardware.

2.6.1 VQE Procedure

In the following, we explain our VQE scheme for approximating the ground state of the U(1)
Higgs Hamiltonian. As detailed below, we include in the simulation the noise added during
amplification of the microwave signal, since it represents the main source of experimental
errors for the considered setup (see Section 2.5 for more details) and leads to imperfect
measurements of the cost functions.

In general, a VQE optimizes over the global space of all the variational parameters
(see Appendix A for a general introduction to VQEs). However, in our case there are a
large number of variational parameters, making the optimization challenging. Therefore,
we designed an optimization protocol that recursively considers a subset of all the variation
parameters. The VQE protocol is as follows. We define B̂c,d(~θ, ~Ω, λ) as the block operator
for the c, d beam splitter

B̂c,d(~θ, ~Ω, λ) = L̂(4)L̂(3)L̂(2)L̂(1)

L̂(j) = ÛO(θ2j, ~Ω)Û
(c,d)
BS (θ2j−1, ~Ω, λ),

where ~θ, ~Ω, and λ are the variational parameters. We call each L̂(j) a layer and as a result
each block contains four layers and each layer consists of an application of Eqs. (2.24,
2.25a). In our VQE protocol, the first block acts on the initial state and the parameters in
that block are optimized so that 〈ĤHOBM〉 is minimized. This produces the optimal state
for the first block, which is then used as the input state when the second block is applied.
The variational parameters in this new block are optimized and the procedure continues
until the parameters in the final block have been optimized. We refer to this final state
as the VQE state, which we can use to approximate the ground state energy or the EFD.
Note that a block consists of N + 9 variational parameters (eight θ’s, N Ω’s, and one λ).
Additionally, notice that all operators used in the VQE protocol preserve photon number
(in other words, they keep the VQE state in the zero charge subsector).

The experimental procedure is as follows. Our VQE is for N0 = 2 and a lattice of size
N = 4, so the experiment will use four modes. First, the initial state |2222〉 is prepared;
this is the ground state of ĤHOBM in the limit when R2, ε0 → 0. Then, the VQE protocol
is applied as explained above. Following the measurement procedure described in Section
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2.5.4, linear measurements are performed on the VQE state; M measurements are done
and the outcomes are complied into a histogram. From the histogram, the expectation
values of the powers of Ŝ† and Ŝ are calculated using Eqs. (2.28a, 2.28b, 2.28c). As-
suming N = 4, the following expectation values need to be calculated: 〈Ŝ†i Ŝi〉, 〈(Ŝ†i Ŝi)2〉,
〈Ŝ†j Ŝj+1 + ŜjŜ

†
j+1〉, and 〈Ŝ†kŜkŜ†mŜm〉 for i ∈ [1, 4], j ∈ [1, 3], k ∈ [1,m− 1], and m ∈ [2, 3].

From these values, the expectation value of each term in Eq. (2.20) can be calculated using
Eqs. (2.27a, 2.27b, 2.27c) and so 〈ĤHOBM〉 is known. This noisy 〈ĤHOBM〉 value is the cost
function used by the classical optimizer to adjust the variational parameters in the VQE
protocol.

To demonstrate that our VQE protocol is experimentally viable, we performed a clas-
sical simulation of this procedure. For this classical simulation we model the noise by a
Gaussian distribution. Once the VQE state is prepared, 〈ĤHOBM〉 and Var(〈ĤHOBM〉) are
computed. The cost function is then randomly sampled from a Gaussian distribution with
mean 〈ĤHOBM〉 and variance Var(〈ĤHOBM〉)/M . Our simulations have shown the probabil-
ity distribution of the experimental procedure discussed above agrees well with a Gaussian
for large M .

2.6.2 VQE Results

To demonstrate that the VQE can reproduce the phase transition of the theory, we classi-
cally simulated the VQE, as described in the previous section, for R2 = 0.3 and R2 = 0.6
and compared the results to the exact diagonalization EFD. Since the ground state for
R2 = 0.3 is relatively simple, only a single block C1,4 is used in the VQE circuit. As
explained in Appendix D, we expect the dominant term in the ground state for R2 = 0.3
to transition from |2222〉 to |1223〉 at the phase transition point, thus the B̂1,4 block is
well-suited for this plot. For R2 = 0.6, the ground state is more complicated, especially
where the dominant term in the ground state transitions from |2222〉 to |1223〉, and so
multiple blocks are used. The choice of blocks for each point in the R2 = 0.6 plot is
motivated by our knowledge of the exact-diagonalization ground state, though it can also
be obtained through trial and error. The blocks and number of measurements M used to
create both plots are shown in Table 2.1. In general, the more difficult points (e.g. close
to the transition point) are given a larger measurement budget.

All the data in our simulation was averaged over multiple VQE simulations, but the
particularly difficult points also underwent classical post-processing. These difficult points
occur whenever the ground state and first excited state energies are close to one another
and the accuracy with which we know the cost function does not resolve the energy gap.
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Experimental Conditions Used for VQE Plots

R2 ε0 Blocks M
Post

Processing

0.3

0.5

1-4
1.00 · 105 No1.0

1.4
1.8

2.35 · 106 Yes
2.0

No

0.6

0.5 1-2, 2-3 1.00 · 105

0.85 1-4, 1-2, 2-3
2.00 · 106 Yes

1.0 1-4, 1-3, 2-4, 1-2
1.25 1-4, 1-3, 2-3, 2-4, 3-4

1.00 · 106 No
2.0 1-4, 2-3, 2-4

Table 2.1: Conditions used to generate the VQE data in Fig. 2.8. The third
column provides the sequence of blocks in the VQE circuit (for example, for R2 = 0.6,
ε0 = 0.5, the 1-4 beam splitter was applied in the first block and the second block used the
2-4 beam splitter). The fourth column gives the number of measurements M used and the
fifth column indicates whether post-processing was applied for that point in the figure.

As a result, the VQE may converge to the wrong state for these points. To combat this, we
created a distribution of the final VQE state energies; if some of the energies are noticeably
larger than the others, then the VQE targeted more the first excited state of ĤHOBM instead
of the ground state in these trials. We then eliminated all data points corresponding to
the fist excited state. The values of R2 and ε0 where we chose to use this post-processing
technique are given in Table 2.1.

The VQE simulation results are shown in Fig. 2.8 for N = 4, β = 1, and N0 = 2.
For the purposes of the classical simulation we used a truncation of k = 2, though it is
important to note that this is an error present only in our simulation of a VQE protocol. In
Fig. 2.8(a) and 2.8(b), the EFD of the ground state is plotted against ε0 for R2 = 0.3 and
R2 = 0.6 respectively. The red dots represent the average EFD of ten VQE simulations,
the error bars represent the standard deviation of those ten trials, and the blue curve is
the EFD of the true ground state calculated via exact diagonalization. The R2 = 0.3 plot
features a sharp phase transition which is absent in the R2 = 0.6 plot. These plots show
good agreement between the VQE EFD and the exact diagonaliztion results. Therefore,
our measurement budget was sufficient to overcome statistical errors and noise from the
amplifier to accurately reproduce the ground state, particularly with a better accuracy
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when ε0 is not close to the transition point. A plot representing the VQE results in the
limit where M → ∞ is given in Appendix F, representing the best possible results this
VQE protocol can produce.

Figure 2.8: Higgs VQE simulation on microwave platform. Electric field density F
as a function of ε0 for β = 1.0 and R3 = 0.3 in (a) and R2 = 0.6 in (b). The blue line is
the EFD of the exact diagonalization ground state and the red dots are the EFD of the
VQE state. The dots represent the average EFD over ten simulations and the error bars
represent the standard deviations. The beam splitter operations used in each block in the
VQE are shown in Table 2.1.

Let us discuss the measurement budget of this protocol. The classical optimizer we
employed to create Fig. 2.8 was a genetic algorithm and it needed 5 · 104 evaluations
of the cost function to choose the optimal parameters for each block. The number of
measurements used to build the histogram for each parameter set is given in Table 2.1.
Using the data presented in Section 2.5.5 and assuming M = 106 measurements are used
in each shot, a block can be optimized in about 4 · 104s. This means the R2 = 0.3 VQE
can be completed in about two days and the R2 = 0.6 VQE can be completed in about
ten days, assuming the VQE protocol is run only once per ε0 value.

2.7 Conclusions

In this chapter we were able to demonstrate that the physical phenomena of the lattice
Higgs model with a topological term, such as its first-order quantum phase transition, can
be reproduced with a VQE running on currently-available quantum hardware. This is the
first VQE of a lattice gauge theory with a topological term, which is important because
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topological terms give rise to rich physics and they cannot be studied using conventional
Markov Chain Monte Carlo lattice methods. Using MPS calculations, we studied the effects
of a finite lattice size and truncated operators on the model. We designed a VQE protocol
to be run on a microwave-photon platform, which is the first quantum simulation to do so
and takes advantage of the specific interactions and number of measurements available on
that platform. In our simulations of the VQE, we were able to capture the phase transition
taking into account the measurement noise specific to the experimental system and showed
that our VQE scheme is experimentally viable.

The next step is to perform the VQE detailed in this chapter on actual quantum
hardware. As possible outlooks, one can use this work as a stepping stone towards studying
a real time-evolution of the lattice Higgs model in 1+1 dimensions, perhaps to simulate
interesting effects such as string breaking or to map out the phase diagram of the Higgs
model with quenched systems. Given the features of the chosen experimental platform,
this is in principle feasible in the near future. One could also expand on this work by
designing and performing a VQE of the lattice Higgs model with a topological term in
higher dimensions with the goal of reaching 3+1 dimensions. A VQE of a high-energy
lattice gauge theory in three spatial dimensions is an important and ambitious milestone
in the field of quantum simulation and a fundamental step towards answering some open
questions about the universe.

Additionally, there are many exciting opportunities to use the unique features of the
microwave-photon platform (as explained in Section 2.5.1) in future VQE experiments.
For example, one is able to perform simultaneous, two-tone pumping on the platform [64],
which would allow one to effectively combine two resource Hamiltonians. This technique
was not used in our VQE protocol but it could greatly expand the types of interactions
available for future VQEs. One could also perform a hybrid simulation that includes both
qubits and bosons on the quantum hardware. This would be an excellent fit for a lattice
gauge theory simulation that involves fermionic matter fields, for example. Given the
highly tunable interactions available on this platform, it would also be suitable for VQEs
of models outside of lattice gauge theories, including quantum chemistry and condensed
matter physics.
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Chapter 3

Measurement-Based Variational
Quantum Eigensolvers

3.1 Introduction

Variational methods are crucial to investigate the physics of strongly correlated quantum
systems. Powerful numerical tools like the density matrix renormalization group [1, 2, 3, 4]
have been applied to several problems including real-time dynamics [81], condensed matter
physics [82], lattice gauge theories [83, 84, 85, 86], and quantum chemistry [87, 88]. Never-
theless, the classes of states that can be studied with classical computers is severely limited
[89]. Variational quantum eigensolvers (VQEs) overcome this problem using a closed feed-
back loop between a classical computer and a quantum processor [7, 8, 9]. The classical
algorithm optimizes a cost function – typically the expectation value of some operator –
which is efficiently provided by the quantum hardware. The VQE provides an approxima-
tion to the (low-lying) eigenvalues of this operator and the corresponding eigenstates. See
Appendix A for a detailed introduction to VQEs. VQEs are advantageous for a variety of
applications [9, 12, 15, 18, 90, 91, 92] and have been experimentally demonstrated in fields
including chemistry [10, 11], particle physics [13, 14, 16, 17], and classical optimization
[19].

Existing VQE protocols are based on the circuit model, where gates are applied on an
initial state [93]. These gates involve variational parameters whose optimization allows
the resulting output state to approximate the desired target state. We propose a new
approach to VQE protocols, based on the measurement-based model of quantum compu-
tation (MBQC) [24, 25, 26, 27, 28, 29]. In MBQC, an entangled state is prepared and the
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Figure 3.1: MB-VQE schemes. (a) Variation of a problem-specific ansatz state by ‘edge
decoration’. An ansatz graph state starts the MB-VQE in a suitable corner of Hilbert space
(choice of green island). Next, a classical algorithm explores the neighbourhood (runner
on black arrow). The variational optimization exploits a custom state that is obtained
by decorating the edges of the ansatz state with auxiliary qubits (orange circles). Their
measurement in rotated bases R(θ) with variational parameters θ transforms |ψin〉 into
the output state |ψout〉. (b) Direct translation of a VQE circuit into a MB-VQE. Left:
circuit consisting of Clifford gates (black) and single-qubit parametric gates (‘knobs’).
Right: corresponding MB-VQE, where the Clifford-part of the circuit has been performed
beforehand. The custom state consists of output (white circles) and auxiliary (orange
circles) qubits only; the latter are measured in rotated bases and are related to the ‘knobs’
in the circuit. This figure was made by Luca Dellantonio.

computation is realized by performing single-qubit measurements. While the circuit-based
and measurement-based models both allow for universal quantum computation and have
equivalent scaling of resources [27], they are intrinsically different. The former is limited
by the number of available qubits and gates that can be performed, and MBQC by the size
of the entangled state one can generate. For certain applications, the required coherence
times [94, 95] and error thresholds [27, 94, 95, 96] are much less demanding for MBQC.

Here, we develop a new variational technique based on MBQC, that we call measurement-
based VQE (MB-VQE). Our protocols determine the ground state of a target Hamiltonian,
which is a prototypical task for VQEs with wide-ranging applications [7, 10, 12, 14, 15, 92,
97]. The underlying idea is to use a tailored entangled state that we call a ‘custom state’,
which allows us to explore an appropriate corner of the system’s Hilbert space [Fig. 3.1(a)].
This custom state includes auxiliary qubits which, once measured, modify the state of the
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output qubits. The choices of the measurement bases, and the corresponding variational
changes to the state, are controlled by a classical optimization algorithm. This approach
differs conceptually and practically from standard VQE schemes since MB-VQE shifts the
challenge from performing multi-qubit gates to creating an entangled initial state.

We present two different MB-VQE schemes and apply them to concrete problems.
First, we introduce a novel method to construct variational state families, illustrated using
the toric code model with local perturbations [98]. This model is equivalent to a two-
dimensional, periodic Z2 matter-free lattice gauge theory [30]. As Fig. 3.1(a) shows, we
start from an ansatz state |ψin〉 in an appropriate corner of the Hilbert space. To explore
this neighbourhood using a classical optimization algorithm, we introduce a custom state
and apply measurement-based modifications of |ψin〉 that have no direct analogue in the
circuit-model. The resulting variational family is not efficiently accessible with known
classical methods and is more costly to access with circuit-based VQEs.

Second, we introduce a direct translation of circuit VQEs to MB-VQEs [Fig. 3.1(b)].
Here, the variational state family is the same for the circuit- and the measurement-based
approach, but the implementation differs as the MB-VQE requires a resource state of re-
duced size and is manipulated by single-qubit measurements only. We exemplify this direct
translation for the Schwinger model [31] and highlight the different hardware requirements
and the scaling of resources. As explained below, a translation to MB-VQE is advanta-
geous for circuits containing a large fraction of so-called Clifford gates (e.g. CX gates), as
these are absorbed into the custom state.

While MB-VQE is platform agnostic, it opens the door for complex quantum com-
putations in systems where long gate sequences or the realisation of entangling gates are
challenging. In particular, MB-VQE offers new routes for experiments with photonic quan-
tum systems, thus enlarging the toolbox of variational computations.

3.2 Fundamentals of MBQC

The main resource of MBQC are so-called graph states [99, 100], which are closely related
to stabilizer states. An N -qubit stabilizer state |ψ〉 satisfies Ŝ|ψ〉 = |ψ〉 for all Ŝ ∈ V , where
V is a set of N independent, commuting N -fold tensor products of Pauli operators. Graphs
as in Fig. 3.1 are stabilizer states of the operators Ŝn = X̂n

∏
k Ẑk, where k refers to the

vertices connected to vertex n by edges in the graph. Operationally, one can create a graph
state by preparing |+〉 = 1√

2
(|0〉+ |1〉) states for each vertex in the graph and then applying
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CZ operations for each edge in the graph. However, this is not the only way to create a
graph state. To obtain the desired final state encoded in the output qubits (white circles),
single-qubit measurements are performed on auxiliary qubits (orange circles), either in the
eigenbasis of the Pauli operators X̂, Ŷ , Ẑ, or in the rotated basis R(θ) ≡ { 1√

2
(|0〉±eiθ|1〉)}.

Depending on the measurement outcomes, the system is probabilistically projected into
different resulting states. To render the computation deterministic, so-called byproduct op-
erators and adaptive measurements are required [27]. For the former, we apply a byproduct
operator ÛΣ =

∏
i X̂

αi
i Ẑ

βi
i to the output state after all the measurements on the cluster

have been performed. Note that αi and βi depend on the measurement outcomes and their
exact form can be calculated following Theorem 1 in Ref. [27]. Additionally, the byproduct
operators can be indirectly applied to the output state via classical post-processing. The
latter involves adapting the measurement bases R(θ), potentially changing θ into −θ de-
pending on previous measurement outcomes. Consequently, these adaptive measurements
must be performed in a specific order.

An advantage of MBQC is the possibility to simultaneously perform all non-adaptive
measurements at the beginning of the calculation [Fig. 3.1(b)]. This corresponds to the
Clifford part of a circuit and includes single- and many-qubit gates. This is indepen-
dent of the position of the gates in the circuit, and reduces the required overhead and
coherence time. Remarkably, this can be either done directly on the graph state in the
quantum hardware, or on a classical computer before the experiment. In the latter case,
the Gottesmann-Knill theorem [101] allows for efficiently determining the custom state
which is local-Clifford equivalent to the quantum state obtained after all non-adaptive
measurements are performed [102]. Note that these local Clifford gates can be indirectly
applied to the state by modifying the bases of the remaining adaptive measurements. This
state can be directly prepared and used for the MBQC, which may have dramatically fewer
auxiliary qubits compared to the initial graph state.

3.2.1 Examples of Measurement Patterns

In this section, we summarize the results of Ref. [27] which are relevant to the proposals
put forward later in the text. In particular, we review how a universal set of gates can be
realized in the MBQC framework.

In the following, we denote the measurement result on qubit n as (−1)sn , where sn ∈
{0, 1}. A generic single-qubit unitary gate can be written as

Û(θ1, θ2, θ3) = Ûx(θ3)Ûz(θ2)Ûx(θ1), (3.1)
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Figure 3.2: Examples of gates in MBQC. (a) Measurement pattern for a general single-
qubit unitary operation. Qubit 1 is the input qubit. (b) Measurement pattern for the CX
gate. Qubits 1 and 9 are the input qubits. This figure was made by Luca Dellantonio.

which corresponds to a rotation of an arbitrary angle around an arbitrary axis. The mea-
surement pattern realizing this gate is shown in Fig. 3.2(a), where qubit 1 is the input qubit
in a state |in〉, qubits 2, 3, and 4 are measured in the bases R(−(−1)s1θ1), R(−(−1)s2θ2),
and R(−(−1)s1+s3θ3), respectively, and qubit 5 is the output qubit. Measuring the qubits
in this order results in the final state of the output qubit ÛΣÛ(θ1, θ2, θ3)|in〉, where the
byproduct operator ÛΣ is

ÛΣ = X̂s2+s4Ẑs1+s3 . (3.2)

This is an example of adaptive measurements, since the measurement bases of qubits
2, 3, and 4 depend on previous results. By contrast, a CX gate acting on two qubits
[see Fig. 3.2(b)] corresponds to a non-adaptive measurement pattern. In this case, the
measurements can be performed in any order or simultaneously. The byproduct operators
for the CX gate are

ÛΣ =X̂s2+s3+s5+s6
7 Ẑs1+s3+s4+s5+s8+s9+s11+1

7 X̂s2+s3+s8+s10+s12+s14
15 Ẑs9+s11+s13

15 , (3.3)

and the output qubits are qubits 7 and 15.

While Fig. 3.2 explains how to implement individual gates in the MBQC formalism,
one can implement a sequence of gates by concatenating the corresponding measurement
patterns. In the remainder of this section, we explain how to merge measurement patterns.
Assume that Â and B̂ are two gates, corresponding to two graph states with input, output
and auxiliary qubits. In order to perform B̂Â in the MBQC framework, we combine the
measurement patterns of Â and B̂ such that the input qubits of B̂ are the same as the
output qubits of Â. As a result, B̂Â has the same input qubits as Â and the same output
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qubits as B̂. Let ÛσA and ÛσB be the respective byproduct operators and assume that B̂
is a Clifford gate. Then, the overall byproduct operator is ÛΣ = ÛσBÛ

′
σA, where

ÛσBB̂ÛσAÂ = ÛσBÛ
′
σAB̂Â, (3.4a)

Û ′σA = B̂ÛσAB̂
†. (3.4b)

If instead B̂ is a rotation gate [as in Eq. (3.1)], the overall byproduct operator is ÛΣ =
ÛσBÛσA, and

ÛσBB̂ÛσAÂ = ÛσBÛσAB̂
′Â, (3.5a)

B̂′ = ÛσAB̂ÛσA. (3.5b)

This modification of B̂ affects the bases of the rotated measurements, which have to be
fixed following the protocol in Ref. [27].

3.2.2 The Simulation Program

In order to simulate the preparation of a graph state and the measurements procedure, we
wrote Python code. Classical simulations of quantum systems are generally inefficient and
so this can only be done for small system sizes for demonstrative purposes. The parts of
the code which work together to perform the MBQC computation are described here and
shown in Fig. 3.3.

First, we need to prepare a graph state; the most straightforward way to do this is to
specify the number of auxiliary qubits and the entanglement structure of the state. The
program then prepares a number of qubits in the |+〉 and acts CZ gates on the specified
qubits in order to produce the graph state. Note that the CZ gates, as well as all gates
used by the program, are represented as sparse matrices to improve efficiency. However, it
is also possible to create the initial graph state from a stabilizer state. Since every stabilizer
state is equivalent to a graph state up to local Clifford gates (Hadamard and phase gates)
[102], the program is also able to produce the initial graph state given a list of N complete,
commuting stabilizers. The program follows the algorithm outlined in Theorem 1 in Ref.
[102]; the algorithm is efficient and it outputs the equivalent graph state as well as the
local Clifford gates.

Next, the Pauli (non-adaptive) measurements are performed on the initial graph state.
This can be done efficiently (the size of the matrices scales linearly with the number of aux-
iliary qubits) following the procedure outlined in Ref. [101]. The program outputs a custom
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Figure 3.3: Schematic for the MBQC simulation code. First the graph state is
prepared, then it is turned into a custom state by applying the Pauli measurements, and
then the adaptive measurements are performed. Finally, byproduct operators act on the
output state. This figure was made by Luca Dellantonio.

state; only the adaptive measurements need to be performed on this state. Depending on
the number of Pauli measurements in the original measurement protocol, this procedure
can greatly reduce the number of auxiliary qubits in the custom state, which means less
computational power is needed to perform the remaining adaptive measurements.

The program is also able to take the byproduct operators ÛΣ and adaptive measure-
ments R((−1)γθ) into account. The byproduct operators and adaptive measurements for
a single gate can be found in the literature [27] and some examples were given in Section
3.2.1, though the program is also able to calculate them following Theorem 1 in Ref. [27].
The program is also able to calculate the byproduct operators and adaptive measurements
for a sequence of gates, following the procedure in Section 3.2.1. For each gate in the
sequence, its byproduct operators are brought to the end of the sequence, getting trans-
formed by the other gates as they move past them. Additionally, each time a byproduct
operator moves past a gate consisting of adaptive measurements, those measurement bases
are modified accordingly.

There are two protocols for performing the remaining adaptive measurements, given the
custom state. In the more-direct approach, the entire custom state is created and then the
adaptive measurements are performed on it sequentially. Each time a measurement is done,
the remaining measurement bases are adjusted. Performing all the adaptive measurements
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yields the state of the output qubits, not yet corrected by the byproduct operators. This
part of the program is identical to what would happen in an experiment, but it has the
disadvantage that the entire state, represented by a 2N component vector, has to be stored
and manipulated at once. Simulating adaptive measurements classically is inefficient and
as a result this can only be done for small system sizes.

For the other protocol, we begin by generating only the input qubits (called layer 0)
and the qubits adjacent to layer 0 in the graph (called layer 1). CZ gates are applied
between the qubits in layers 0 and 1 where necessary and then the qubits in layer 0 are
measured, which changes the states of the qubits in layer 1. Next, the qubits adjacent to
the qubits in layer 1 in the graph (called layer 2) are introduced, the CZ gates are applied,
and the qubits in layer 1 are measured. This sequential prepare-and-measure procedure
is performed until only the output qubits remain. Even though this procedure is different
in practice from what is done in an experiment, it produces an identical result [27]. This
protocol is advantageous since only part of the custom state is generated at any given
time. This is particularly beneficial if the custom state has a grid-like structure, such as
the custom state in Fig. 3.2(b). Regardless of which protocol is used, the final step is to
apply the byproduct operators to the output state.

3.3 State Variation by Edge Modification

Here, we demonstrate how MBQC tools – i.e. adding and measuring auxiliary qubits – can
be used to design a MB-VQE that manipulates states in a completely different way than a
circuit-based VQE. This MB-VQE is advantageous whenever a perturbation Ĥp is added

to a Hamiltonian Ĥ0 whose ground state, used as ansatz state |ψin〉 below, is a stabilizer
state or a graph state. Picking the ground state of Ĥ0 as ansatz is not necessary, but
motivated by the fact that it corresponds to the desired outcome of the MB-VQE without
perturbation.

3.3.1 Edge Modification Procedure

In this section, we explain how we decorate the edges of the ansatz state |ψin〉 to obtain
the custom state. The addition of the perturbation term Ĥp can modify the entanglement
structure in the ground state. Therefore, we need to decorate the edges of |ψin〉 in such a
way that, after the measurement of the auxiliary qubits, we both fine-tune the amount of
entanglement between connected vertices and rotate the state of the output qubits. Though
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Figure 3.4: Edge decoration scheme. Schematic description of the edge decoration used
for the perturbed toric code MB-VQE. The edge connecting a linked pair (m,n) of vertices
in |ψin〉 [shown in (a)] is decorated by adding two auxiliary qubits in an arbitrary state
[shown in (b)]. The corresponding MBQC procedure prescribes the pattern in Section
3.2.1, resulting in the edge decoration protocol presented in (c). By classically removing
Clifford operations, we reduce the number of auxiliary qubits to be added to four, as shown
in (d). The arrows represent the temporal order in which the auxiliary qubits have to be
measured. This figure was made by Luca Dellantonio.

the possibilities on how to add these auxiliary qubits are endless, we choose to follow the
protocol given in Fig. 3.4. The idea is to decorate any edge connecting two output qubits
with two auxiliary qubits in an arbitrary state [green circles in Fig. 3.4(b)], which are then
measured in the X̂ basis. If both these qubits are in the state |+〉, their measurement
leaves the output qubits unaffected. However, if both auxiliary qubits are either in |0〉
or |1〉, their measurement eliminates all pre-existing entanglement between the original
output qubits. For an arbitrary initial state of the two auxiliary qubits, the entanglement
between the output qubits is generally reduced, and their wave vector rotated.

While it is possible to directly prepare the custom state with auxiliary qubits in arbi-
trary states, this does not create a graph state, and as such there are no known methods
to obtain a deterministic outcome after the measurement of all auxiliary qubits. A formal
MBQC protocol can be obtained by following the patterns in Section 3.2.1. Each of the
auxiliary qubits to be used in the decoration is then substituted with five qubits, to be
measured in a specific order [see Fig. 3.2(c)]. Since an arbitrary state can be prepared with
only two measurements in rotated bases, out of the ten auxiliary qubits in Fig. 3.2(c), six
can be eliminated [101]. The resulting state, presented in Fig. 3.2(d), only contains four
auxiliary qubits per edge of the ansatz state.
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Figure 3.5: Toric code notation. (a) Toric code for Nx = 4 and Ny = 5. Qubits exist

on the edges of the lattice, and two of the generators Âs and B̂p are explicitly represented.
Since the lattice lies on a torus, periodic boundary conditions are enforced, as shown by
white circles. Schematic representations of the logical-X and logical-Z operators in the
case Nx = Ny = 2 are given in (b) and (c), respectively. In the whole figure, links colored

in blue (orange) represent the action of the X̂ (Ẑ) operator on the corresponding qubit.
This figure was made by Luca Dellantonio.

Single-qubit rotations can also be implemented with additional auxiliary qubits con-
nected to a chosen vertex, and multi-qubit operations by one or more auxiliary qubits
connected to several vertices of the graph. While a completely deterministic manipula-
tion can always be achieved by following MBQC rules [27], one can reduce the number of
auxiliary qubits used in our scheme by allowing for a probabilistic manipulation.

After creating the custom state, auxiliary qubits are measured in a specific order to
modify |ψin〉. The classical part of the VQE algorithm selects the rotated measurement
bases R(θ) to minimize the energy 〈Ĥ0 + Ĥp〉, calculated with respect to the output qubits.
Generally, the more auxiliary qubits are added, the larger the variational class of states
that the MB-VQE can reach. Just like the success of a circuit-based VQE is determined
by the choice and number of gates used, a MB-VQE will be successful if the ground state
can be efficiently reached by measuring the auxiliary qubits of the custom state.
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3.3.2 Toric Code Hamiltonian VQE

We apply this MB-VQE approach to the toric code model, a quantum error-correcting code
defined on a two-dimensional rectangular lattice with periodic boundary conditions [103].
This model is equivalent to a two-dimensional, periodic Z2 matter-free lattice gauge theory
[30]. On the lattice, the number of rows (columns) of independent vertices is Nx (Ny) and

each edge represents a qubit. The toric code state is a stabilizer state of so-called star Âs
and plaquette B̂p operators. As shown in Fig. 3.5(a), for any vertex s in the lattice, Âs
acts Ẑ on the four incident edges, while B̂p acts X̂ on the four edges in the p-th plaquette.

The toric code Hamiltonian is then Ĥ0 = −∑s Âs −
∑

p B̂p. Since
∏

s Âs =
∏

p B̂p = 1,

the toric code has 2NxNy − 2 independent stabilizers, and Ĥ0 has four degenerate ground
states |r, t〉L (r, t ∈ {0, 1}), called logical states below.

To explicitly write down these logical states, we add two extra stabilizers to the set of
operators Âs and B̂p. There are two common choices for the pair of extra stabilizers to be

added, which are called logical-X (X̂L,1 and X̂L,2) and logical-Z (ẐL,1 and ẐL,2), and are

shown in Figs. 3.5(b) and 3.5(c), respectively. Explicitly, ẐL,1 (ẐL,2) acts Ẑ on all horizontal

(vertical) edges of an arbitrarily chosen column (row). Similarly, X̂L,1 (X̂L,2) acts X̂ on
all horizontal (vertical) edges of an arbitrarily chosen row (column). Both logical-X and
logical-Z operators commute with all the other plaquette B̂p and star Âs operators, but do
not generally commute between themselves. The logical state |r, t〉L can then be defined
as the unique ground state of Ĥ0 − (−1)rẐL,1 − (−1)tẐL,2 (r, t ∈ {0, 1}).

The perturbation added to the toric code Hamiltonian is

Ĥp =

2NxNy∑
n=1

λnẐn, (3.6)

which corresonds to an inhomogeneous magnetic field. As ansatz state for the MB-VQE
we choose |ψin〉 = |0, 0〉L, that approximates the ground state of Ĥ0 + Ĥp for small positive
values of λn (this can be proven with perturbation theory). The graph state representa-
tion of |0, 0〉L can be calculated efficiently classically [102] and is shown in Fig. 3.6(a) for
Nx = Ny = 2. However, if some of the weights λn are negative and/or the perturbation

Ĥp is changed to include other operators – like X̂ – then |0, 0〉L is not a good ansatz
state anymore. Generally, the best ansatz state becomes a superposition

∑
r,t cr,t|r, t〉L,

(
∑

r,t|cr,t|2 = 1; r, t = 0, 1). To create this superposition, it is possible to use the generic
SU(4) rotation described in Ref. [104], with the logical-X and logical-Z operators as gen-
erators. Importantly, this SU(4) rotation can be implemented in a MBQC fashion using
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Figure 3.6: Perturbed toric code. (a) Graph state representation of the ansatz state
|0, 0〉L. Additional Hadamard gates are applied to qubits with dashed lines. (b) Relative
difference between the MB-VQE result and the true ground state energy vs the perturbation
strength. We let λn in Eq. (3.6) be equal on all qubits (solid blue line), or sampled from
a normal distribution PG of average λ and variance 0.1λ (red squares). Green triangles
describe a perturbation acting strongly on λ1 and weakly on the other qubits. Dotted and
dashed lines are computed with respect to |0, 0〉L (ansatz state) and |1〉

⊗
2NxNy (ground

state of Ĥp) for λn = λ ∀n.

the tools described in Ref. [26]. The seven parameters describing this SU(4) rotation can
then be used as input parameters in the MB-VQE, such that the algorithm itself becomes
capable of finding the best ansatz state within the degenerate subsector containing the four
logical states.

As explained above, the custom state is obtained from the ansatz state by decorating
edges with auxiliary qubits. For any pair (m,n) of qubits connected by an edge, we add
four auxiliary qubits to ensure deterministic manipulation [see Fig. 3.4(d)]. Depending on
the measurement bases R(θ), the entanglement between the qubits m and n is modified,
and their state subjected to an additional rotation. For example, if all auxiliary qubits in
the custom state are measured with θ = 0, we obtain the original ansatz state. However,
if all auxiliary qubits are measured with θ = π/2, then all entanglement of the original
ansatz state is eliminated.

Numerical results for the MB-VQE are shown in Fig. 3.6(b). The relative energy
difference between the MB-VQE result and the true ground state (calculated via exact
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diagonalization) is plotted against the perturbation strength. This is done with all λn in
Eq. (3.6) equal to λ (solid blue line), with each λn drawn from a Gaussian distribution
PG(µ, σ2) with mean µ = λ and variance σ2 = 0.1λ (orange squares), and with λ1 = λ, λn
randomly sampled from PG(µ = 0.1, σ2 = 10−4) for n 6= 1 (green triangles). A plot of the
infidelity resembles Fig. 3.6(b), with maximum infidelities for the blue curve, red squares
and green triangles being 6.2×10−2, 6.5×10−2, and 9.4×10−3, respectively. Fig. 3.6(b)
shows that the MB-VQE produces the ground state energy with high confidence when the
perturbation strength is very small or very large. Notably, the MB-VQE outperforms the
ansatz state (dotted black line) and the ground state of Ĥp in Eq. (3.6) (dashed black line)
in all cases. If the perturbation only acts on one qubit, the chosen custom state allows the
MB-VQE to find the exact ground state energy within machine precision. This is also the
case if the perturbation acts on two disconnected qubits, provided we connect them and
add auxiliary qubits as in Fig. 3.4(d). This suggests that the outcome of the MB-VQE can
be significantly improved by adding few extra auxiliary qubits.

3.4 Translating VQEs into MB-VQEs

Instead of the approach described above, one can create a MB-VQE by translating the
circuit of a VQE into its corresponding custom state and a sequence of measurements.
Since a universal set of gates can be realized in a MBQC [27], any VQE can be translated
into a MB-VQE. As we discuss below, this strategy is advantageous if the number of
parametric adaptive measurements [i.e. ‘knobs’ in Fig. 3.1(b)] in the resulting MB-VQE
scheme is small.

As an example, we determine the ground state energy of the so-called Schwinger model
[31], a testbed used for benchmarking quantum simulations in high energy physics [13,
84, 105]. The Schwinger model describes quantum electrodynamics on a one-dimensional
lattice; fermions are placed on the vertices of the lattice and the edges describe the electric
fields. When open boundary conditions are used, one can eliminate the gauge fields at the
expense of creating long-range interactions. By mapping the fermionic operators to Pauli
spin operators, the Hamiltonian becomes [106, 107, 108]

Ĥ =
J

2

S−2∑
n=1

S−1∑
k=n+1

(S − k)ẐnẐk −
J

2

S−1∑
n=1

nmod2
n∑
k=1

Ẑk

+ w

S−1∑
n=1

(
σ̂+
n σ̂
−
n+1 + H.C.

)
+
µ

2

S∑
n=1

(−1)nẐn,

(3.7)
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Figure 3.7: Schwinger model. (a) Ansatz state and VQE circuit for S = 4 qubits and
K layers. Each layer consists of CX gates and local rotations (orange) parametrized by
angles θnν,i (with rotation axis ν = x, z; i = 1, . . . , 4). (b) MB-VQE custom state for
K layers. White circles are output qubits. Auxiliary qubits (orange) are measured in a
rotated bases R(θ). (c) The order parameter 〈Ô〉 vs the fermion mass µ. The dashed line
and dots represent exact diagonalization (ED) and (MB-)VQE results, respectively, with
the number of layers K indicated in the legend. The inset shows the infidelity 1− F . (d)
Relative energy difference ∆E/E between (MB-)VQE results and ED for µ = −0.7, versus
the number of iterations in the optimization procedure. The variational parameters are
initialized at zero, and J = ω = 1 in Eq. (3.7). This plot was made by Abdulrahim Al
Balushi.

where S is the number of fermions (it must be even), µ their mass, w = 1
2a

, and J = g2a
2

.
Here, a and g are the lattice spacing and the coupling strength, respectively, and σ̂±n =
1
2
(X̂n ± iŶn).

For the VQE protocol, we assume the typical situation where parametric single-qubit
gates and fixed entangling gates (CXs) are used [10, 109]. We consider a generic VQE
circuit, in which a sequence of ‘layers’ is applied (see Ref. [7] and Appendix A), each
containing local rotations and entangling gates. As shown in Fig. 3.7(a) for S = 4, we
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choose the layer

S/2−1∏
n=1

CX2n,2n+1

S/2∏
n=1

CX2n−1,2n

S∏
n=1

Ûx,n(θx,n)Ûz,n(θz,n), (3.8)

where Ûν,n(θν,n) = exp (iθν,nV̂n/2) [(ν, V̂ ) = (x, X̂) or (ν, V̂ ) = (z, Ẑ)]. The circuit for the
VQE is created by concatenating K layers, where K is big enough to sufficiently explore
the relevant subsector of the considered Hilbert space. As described in Section 3.2.1, the
MB-VQE custom state corresponding to a K-layer circuit is obtained by concatenating the
measurement patterns of the gates in Eq. (3.8), and performing all non-adpative measure-
ments classically, which effectively removes the Clifford parts of the circuit. The custom
state is shown in Fig. 3.7(b). As ansatz state we use |ψin〉 =

⊗S
n=1|+〉.

The (MB-)VQE simulation results are shown in Fig. 3.7(c) for S = 4 and different val-
ues of K. We plot the order parameter 〈Ô〉 = 1

2S(S−1)

∑
i,j<i〈(1 + (−1)iẐi)(1 + (−1)jẐj)〉

against the fermion mass µ and correctly observe a second-order phase transition around
µ = −0.7 [13, 71, 110]. Increasing K improves the ground state approximation, as demon-
strated by the inset in Fig. 3.7(c) and by Fig. 3.7(d). The points near the phase transition
require K & 3 layers (& 28 qubits), whereas K = 1 layer (12 qubits) suffices for the eas-
iest points. Note that allowing different gates as resources in Eq. (3.8) generally leads to
different convergence rates, as demonstrated by the results in Ref. [13].

Perfect platforms provided, both the VQE and the MB-VQE give the same result.
However, the quantum hardware requirements are different for the two methods. The
circuit-based VQE requires S qubits, 2KS single-qubit operations, and K(S−1) entangling
gates. For the corresponding MB-VQE, a custom state of S(2K + 1) qubits and 2KS
single-qubit operations (measurements) are required. Generally, translating a VQE into
its corresponding MB-VQE is advantageous whenever the VQE circuit involves a large
Clifford part and only a small number of adaptive measurements (i.e. knobs). In this case,
MB-VQE avoids the requirement of performing long gate sequences, which is currently
challenging due to error accumulation. This is especially interesting for platforms where
entangling gates are hard to realize (e.g. photonic setups) or in systems with limited
coherence times.

3.5 Conclusions

In this chapter, we combined the principles of measurement-based quantum computation
and hybrid quantum-classical optimization. We presented two new types of variational
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schemes. The first is useful when the ansatz state is a stabilizer state. In this case,
it is classically efficient to determine the corresponding graph state [102], which can be
decorated with additional control qubits and prepared directly. We applied this MB-VQE
to the perturbed toric code. Additionally, we showed how to adapt any circuit-based VQE
to become a MB-VQE, with the Schwinger model as example.

Experimental proof-of-concept demonstrations can be explored by considering the small-
est instance of the planar code [103] with a perturbation on a single qubit as first step.
In this scenario, the MB-VQE requires as few as eight entangled qubits instead of the
44 used above. This number can be further reduced by switching from a deterministic
to a probabilistic protocol. Promising candidate systems include superconducting qubits,
ions and Rydberg arrays, and photonic platforms. The latter recently demonstrated the
capability to entangle several thousands of qubits [111, 112], and to create tailored graph
states [113, 114, 115, 116]. When designing custom states for future experiments, it will be
important to understand the effect of decoherence and it will be interesting to investigate
whether MB-VQEs retain the high robustness of MBQC against errors [94, 95, 96].

Our scheme based on ‘edge decorations’ provides a new way of thinking about state
variations in VQEs. In particular, the effect on the output qubits resulting from measuring
only one or few entangled auxiliary qubits can be very challenging to describe with a
simple circuit. The resulting state modifications do not necessarily correspond to unitary
operations and can affect a large number of remaining qubits [26]. Accordingly, MB-
VQEs can lead to schemes in which few auxiliary qubits suffice to reach the desired state,
while many gates would be required in a circuit-based protocol. The effect of decorations
can be studied further for tailored decorations, such as the possibility to add new edges
to the entanglement structure. The framework presented here provides a starting point
for designing VQEs whose properties are different and complementary to the standard
approach that is based on varying a state by applying gates.
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Conclusions

In this thesis, we used VQEs to simulate LGTs. We first considered a model with a
topological term that is well-suited to be simulated on a photonic platform. Afterwards,
we switched our focus on the VQE algorithm itself. We developed a novel measurement-
based procedure and highlighted the differences and advantages if compared to existing
techniques.

We presented the Hamiltonian of the U(1) Higgs lattice gauge theory in one spatial
dimension with a topological term and used the Gauss law to eliminate the electric fields.
We then described the phase structure of the model and the phase transition at ε0 = 1/2
(θ = π), which only occurs when R2 is less than the critical value R2

c . We investigated the
ground state properties of the theory in various limits and analytically derived the correc-
tions to the phase transition location due to finite size effects. We used MPS calculations to
find the ground state of the theory for varying lattice sizes; by using the EFD and ground
state energy density as order parameters we observed the phase transition. We found that
the truncation of the operators has a lesser impact if compared to finite size effects. To
efficiently study the ground state on current quantum hardware, a promising path was
to use a VQE. Due to the bosonic nature of photons, we considered microwave-photonic
systems for the quantum platform of the VQE. Moreover, recent experimental advances
allow for a variety of non-linear interactions available for quantum simulations, and the
experimental repetition rate is high. As a first step to perform a VQE, we cast the oper-
ators of the Higgs Hamiltonian into bosonic ladder operators. We then simulated a VQE
with statistical and intrinsic quantum noise to study the phase transition for two values of
R2. In all cases we found good agreement between the order parameter given by the VQE
and the exact diagonalization results, especially for ε0 values far from the transition point.
Importantly, we discussed the feasibility of our VQE on current hardware. For the Higgs
VQE, there are two aspects which can be further investigated. First, the work in this thesis
offers a clear path towards an experimental implementation. A realization of the protocols
presented here would be exciting as the first VQE of a theory with a topological term and
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the first VQE to run on a microwave-photon platform. Second, with the aim of eventually
simulating and studying nature, it is necessary to extend the spatial dimensions of the
U(1) Higgs model from one to three. This would bring us closer to solving the mystery of
CP violation in the universe with quantum simulations. Additionally, the interactions and
flexibility available on the microwave-photon platform makes it ideal for VQEs of other
models in the future.

In the second part of the thesis, we introduced two possible MB-VQEs and compared
them to circuit-based VQEs. We described a novel way to create a MB-VQE: starting with
a graph state as an ansatz state, we decorated the edges with auxiliary qubits and measured
them, thus modifying the entanglement between the qubits adjacent to the original edge.
We explained how this procedure allows one to explore variational state families which
cannot be efficiently accessed with known classical methods and are more costly to access
with circuit-based VQEs. We noted that this technique is useful whenever the ground state
of a perturbed Hamiltonian is sought and the ground state of the unperturbed Hamiltonian
is a stabilizer state. As a result, we applied this technique to the toric code Hamiltonian
with a local perturbation, which is equivalent to a two-dimensional, periodic Z2 matter-
free lattice gauge theory. For various perturbation types and strengths, we found good
agreement between our VQE and the exact diagonalization results. Next, we explored a
different method of creating a MB-VQE: by directly translating a circuit-based VQE to
a graph state and a measurement scheme. Since MBQC allowed us to perform all the
Clifford operations classically and efficiently on the initial graph state, we significantly
reduced the number of auxiliary qubits needed for the ansatz graph state. We applied this
technique to a VQE of the U(1) Schwinger lattice gauge theory in one spatial dimension and
found the ground state with good fidelity for various choices of parameters. In particular,
we compared the resources required for the circuit-based and MB-VQEs and noted how
the MB-VQE has the advantage when there is a large number of Clifford gates in the
VQE circuit. In general, any kind of MB-VQE is advantageous for platforms where it is
difficult to perform long sequences of entangling gates (e.g. optical photons) or platforms
with short coherence times. One can expand upon our MB-VQE work by investigating
the effects of experimental noise on our protocols and further investigating different edge
decoration strategies. For example, new edges can be added to the ansatz graph state and
then decorated. An experimental implementation of MB-VQE, either using the decorated
edges or the direct translation approach, would be an excellent continuation of the results
presented in this thesis.
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[53] M. C. Bañuls, K. Cichy, K. Jansen, and J. I. Cirac. The mass spectrum of the
schwinger model with matrix product states. J. High Energy Phys., 2013(11):158,
2013.

55



[54] Esteban A. Martinez, Christine A. Muschik, Philipp Schindler, Daniel Nigg, Alexan-
der Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter
Zoller, and Rainer Blatt. Real-time dynamics of lattice gauge theories with a few-
qubit quantum computer. Nature, 534(7608):516–519, June 2016.

[55] Christine Muschik, Markus Heyl, Esteban Martinez, Thomas Monz, Philipp
Schindler, Berit Vogell, Marcello Dalmonte, Philipp Hauke, Rainer Blatt, and Peter
Zoller. U(1) Wilson lattice gauge theories in digital quantum simulators. New J.
Phys., 19(10):103020, 2017.

[56] Jochen Heitger. Numerical Simulations of Gauge-Higgs Models on the Lattice. PhD
thesis, Westfälische Wilhelms-Universität Münster, 1997.
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Schiller. Hybrid nrg-dmrg approach to real-time dynamics of quantum impurity
systems. Phys. Rev. B, 87:115115, Mar 2013.

[82] Yin-Chen He, Michael P. Zaletel, Masaki Oshikawa, and Frank Pollmann. Signatures
of dirac cones in a dmrg study of the kagome heisenberg model. Phys. Rev. X,
7:031020, Jul 2017.

[83] Mari Carmen Banuls, Krzysztof Cichy, J. Ignacio Cirac, Karl Jansen, and Hana
Saito. Matrix Product States for Lattice Field Theories. PoS, LATTICE 2013:332,
2014.
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[88] C. Krumnow, L. Veis, Ö. Legeza, and J. Eisert. Fermionic orbital optimization in
tensor network states. Phys. Rev. Lett., 117:210402, Nov 2016.

[89] G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme. Quantum algorithms for
fermionic simulations. Phys. Rev. A, 64:022319, Jul 2001.

[90] Omar Shehab, Isaac H Kim, Nhung H Nguyen, Kevin Landsman, Cinthia H Alderete,
Daiwei Zhu, C Monroe, and Norbert M Linke. Noise reduction using past causal cones
in variational quantum algorithms. arXiv preprint arXiv:1906.00476, 2019.

[91] Raphael Kaubruegger, Pietro Silvi, Christian Kokail, Rick van Bijnen, Ana Maria
Rey, Jun Ye, Adam M Kaufman, and Peter Zoller. Variational spin-squeezing algo-
rithms on programmable quantum sensors. Phys. Rev. Lett., 123(26):260505, 2019.

[92] Bela Bauer, Dave Wecker, Andrew J. Millis, Matthew B. Hastings, and Matthias
Troyer. Hybrid quantum-classical approach to correlated materials. Phys. Rev. X,
6:031045, Sep 2016.

[93] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’Brien. A variational eigenvalue
solver on a photonic quantum processor. Nat Commun., 5:4213, 2014.

[94] M. Zwerger, H. Briegel, and W. Dür. Measurement-based quantum communication.
App. Phys. B, 122:50, 06 2015.

[95] M Zwerger, HJ Briegel, and W Dür. Hybrid architecture for encoded measurement-
based quantum computation. Sci Rep, 4(1):5364, 2014.

[96] M. Zwerger, H. J. Briegel, and W. Dür. Universal and optimal error thresholds for
measurement-based entanglement purification. Phys. Rev. Lett., 110:260503, Jun
2013.

59



[97] Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow, Andrew Cross,
Daniel J Egger, Stefan Filipp, Andreas Fuhrer, Jay M Gambetta, Marc Ganzhorn,
et al. Quantum optimization using variational algorithms on near-term quantum
devices. Quantum Sci. Technol., 3(3):030503, 2018.
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Appendix A

Introduction to VQEs

The purpose of this appendix is to summarize how the variational quantum eigensolver
(VQE) algorithm works; more details can be found in Ref. [7, 8, 123]. In this paper, the
goal of the VQE is to approximate the lowest eigenvalue and corresponding eigenstate of
the considered target Hamiltonian ĤT . This is accomplished by using a closed feedback
loop between the quantum processor and a classical optimizer.

The algorithm is as follows. First, the initial state |ψin〉 is prepared on the quantum
hardware. A good initial state is one which can be easily prepared on the quantum plat-
form with high fidelity. Next, a sequence of gates is applied to the initial state. The gates
in this sequence are the unitaries exp(−iθkĤ(j)

R ), where Ĥ
(j)
R are the available resource

Hamiltonians. Note that the set of available interactions does not need to be a universal
gate set; a restricted gate set specific to the target Hamiltonian or the problem at hand
is sufficient. The θk are the variational parameters; they are controlled by the classical
optimizer and passed to the quantum device. In the circuit, the θk manifest as the prod-
uct of the interaction strength of Ĥ

(j)
R and the time for which the gate is applied. In a

typical VQE circuit a certain sequence of gates is often repeated with different variational
parameters, each elementary sequence of gates that is repeated is called a layer.

Once the VQE circuit has been applied to the initial state, the result is the VQE ansatz
state |Ψ(~θ)〉. For example, if the circuit employs r resource Hamiltonians in each layer and
L layers in the circuit, then

|Ψ(~θ)〉 =
L∏
`=1

r∏
j=1

exp
(
−iθj+r(`−1)Ĥ

(j)
R

)
|ψin〉. (A.1)
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This ansatz state is supposed to approximate the ground state of ĤT , and the higher
the number of layers in the circuit, the more tunable it is. Eq. (A.1) gives a compact
recipe for preparing a highly entangled state. Once the ansatz state is prepared for a
given set of variational parameters, the cost function 〈Ψ(~θ)|ĤT |Ψ(~θ)〉 is evaluated on the
quantum device. Since quantum measurements are an intrinsically stochastic process, the
preparation and measurement of |Ψ(~θ)〉 needs to be repeated in order to have the correct
expectation value with high accuracy. In particular, if the state is measured M times
and σ2

H is the intrinsic variance of the target Hamiltonian, then the variance of the cost
function is σ2

H/M . The value of the cost function is fed to the classical computer which
employs an optimization algorithm to choose new values for the variational parameters,
with the goal of minimizing the cost function. The new variational parameters are fed
to the quantum device, where the process begins anew. This cycle is repeated until the
convergence threshold for the classical optimizer is reached.
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Appendix B

Higgs Mechanism and Phase
Structure in the Absence of a
Topological Term

In this appendix we briefly review the Brout-Englert-Higgs mechanism for the continuum
model and discuss its implications for the phase structure. To this end let us start from
the continuum Lagrangian

L = (Dµβ)∗(Dµβ)− 1

4
FµνF

µν − V (|β|) (B.1)

where β is a classical complex scalar field, Dµ = ∂µ + igAµ the covariant derivative with
the gauge field Aµ and the coupling strength g, Fµν = ∂µAν − ∂νAµ the field strength
tensor and V (|β|) = −m2|β|2 + λ

2
|β|4 with λ > 0. The first term of the action describes the

kinetic energy of the scalar field and the coupling to the gauge field, the second term the
kinetic energy of the gauge field, and the potential V (|β|) contains the mass term and the
self-interaction of the scalar field. It is straightforward to see that the action in Eq. (B.1)
is invariant under U(1) gauge transformations given by

β(x)→ eigα(x)β(x), Aµ(x)→ Aµ − ∂µα(x)

where α(x) is a real, differentiable function.

To get an intuition about the physics of the model, it is instructive to derive a semi-
classical picture. To this end, we assume that the potential term is dominant and in the
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ground state the field β fluctuates only slightly around the vacuum expectation value β0

minimizing the potential V (|β|). Rewriting the potential as

V (|β|) =
λ

2

[(
|β|2 − 2m2

λ

)2

−
(
m2

λ

)2
]

we see that V (|β|) is quadratic function of |β|2 and we can easily read off the minimum.
Taking into account that |β|2 is a positive semi-definite quantity, we have to distinguish
two cases depending on the sign of m2. (i) For m2 ≤ 0 the potential is a parabola in |β|2
(see also lower left inset of Fig. 2.2) with a unique minimum at β0 = 0. For β ≈ 0 Eq. (B.1)
reduces to

L ≈ −1

4
FµνF

µν

which is nothing but a pure gauge theory describing a massless photon and showing charge
confinement [56]. (ii) For m2 > 0 the potential has the shape of a “Mexican hat” (see also
Fig. 2.2 in the main text) with the minima forming a level set given by

|ϕ0|2 =

√
m2

λ
=:

v√
2
. (B.2)

In the expression above, we have defined the quantity v =
√

2m2/λ for convenience.
To account for quantum fluctuations around β0, we parameterize the field using polar
representation

β(x) =
v + h(x)√

2
ei
φ(x)
v

where the real fields h(x) and φ(x) describe the fluctuations of the length of the field in
radial direction and the phase. Plugging this expression in Eq. (B.1) and looking only at
the gauge part Lgauge of the resulting Lagrangian we find

Lgauge = −1

4
FµνF

µν +
1

2
m2
pAµA

µ, (B.3)

showing that the photon is massive with mass mp = gv. Moreover, in that case the U(1)
symmetry is spontaneously broken as the vacuum of the theory corresponds to a single one
of the minima described by Eq. (B.2). Sending λ→∞ while keeping the ratio m2/λ fixed,
the radial fluctuations can be neglected and β has a fixed length of v/

√
2. This is known
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as fixing the length of the Higgs field. Plugging this expression in Eq. (B.1) one finds the
effective Lagrangian

Leff =
1

2
∂µφ∂

µφ+
1

2
m2
pAµA

µ +m2
pAµ∂

µφ− 1

4
FµνF

µν . (B.4)

From Eq. (B.4) one can derive the Hamiltonian in Eq. (2.5) as shown in Ref. [21].

The simple semiclassical picture above shows that the model has two distinct regions. In
the Higgs region the U(1) symmetry of the theory is spontaneously broken and the photon
acquires a mass. In contrast, the confining region corresponds to a pure gauge theory
describing a massless photon and the U(1) symmetry is intact. Going beyond this simple
semiclassical picture and solving the the lattice discretization of Eq. (B.1) numerically
using MCMC methods one finds a that the intuition from the rather simple semiclassical
picture also hold true more generally [46, 56] and one obtains the phase diagram shown in
Fig. 2.2 in the main text.
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Appendix C

Periodicity and Symmetries of the
Higgs Hamiltonian

Here we briefly show that physics is periodic in ε0 with period 1 and discuss the symmetries
of the lattice Hamiltonian. For simplicity we work with the formulation in Eq. (2.5), in
which the gauge field has not been integrated out yet.

To show that physics is periodic in ε0, we consider the transformation

φ̂n → φ̂†n,

Q̂n → −Q̂n,

Ûn → Û †n,

Ên → −(Ên + k), k ∈ Z.

(C.1)

Let us first focus on k = 0. In that case Eq. (C.1) corresponds to a charge conjugation
transformation Ĉn which exchanges particles and antiparticles. This transformation is
unitary, and, in particular, we see that applying it twice we get the initial operators back,
thus showing that Ĉ2

n = 1 and charge conjugation is a Z2 symmetry.

To get further insight into the case k 6= 0, we look at the commutation relation in
Eq. (2.3), from which follows that the unitary operator Ûn introduces integer shifts in Ên:

Û †nÊnÛn = Ên − 1, ÛnÊnÛ
†
n = Ên + 1.

Hence, by combining charge conjugation with Ûn to Ûk
n Ĉn [(Û †n)kĈn], we obtain an additional

shift in the electric field by k positive (negative) units. Since both Ĉn and Ûn are unitary,
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Eq. (C.1) indeed describes a unitary transformation. Applying this unitary transformation
to the Gauss Law in Eq. (2.10) and the Hamiltonian in Eq. (2.5), we see that all terms are
invariant except for the electric field energy which transforms according to∑

n

(ε0 + Ên)2 →
∑
n

(ε0 − Ên − k)2 =
∑
n

(Ên + k − ε0)2.

Looking at that equation, we make the following observations. (i) For any value of ε0

we can find a k such that the Hamiltonian is mapped to a unitarily equivalent one with
k − ε0 ∈ [0, 1). Consequently, physics is periodic in ε0 with period 1, and we can restrict
ourselves to ε0 ∈ [0, 1) without loss of generality. (ii) For k = 0, ε0 = 0 and k = 1, ε0 = 1/2
the transformation from Eq. (C.1) is a symmetry of the Hamiltonian. In particular, for ε0 =
1/2 there are two field configurations yielding the same electric energy. Thus, for R2 → 0
the ground state of the Hamiltonian is double degenerate and has a Z2 symmetry. This
symmetry is preserved for non-vanishing R2 along the critical line, before it is eventually
spontaneously broken upon reaching the critical value R2

c .
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Appendix D

Location of the First Phase
Transition

In this appendix we derive Eq. (2.17) from Section 2.3.2. This formula gives the smallest,
positive value of ε0 where a phase transition occurs and the dominant term in the ground
state after the phase transition. Assume that R2 is small, so that the second term in Eq.
(2.14) (the kinetic term) can be ignored. Then, the Hamiltonian (including the penalty
term) becomes

Ĥ =
N∑
n=1

((
1

2R2
+
N − n

2β
+ `

)
Q̂n +

ε0(N − n)

β

)
Q̂n

+
N∑
n=2

n−1∑
j=1

(
N − n
β

+ 2`

)
Q̂jQ̂n − β(N − 1) +

ε2
0

2β
(N − 1).

(D.1)

Before the transition, ε0 and R2 are small, so we expect the ground state to be approxi-
mately |0〉⊗N plus small corrections from the other basis states (see Section 2.3.2 for more

details). In this approximation, we note that Ĥ|0〉⊗N = (N − 1)(
ε20
2β
− β)|0〉⊗N . Since the

ground state energy is a continuous function of ε0, we expect Ĥ|ψ〉 = (N − 1)(
ε20
2β
− β)|ψ〉,

where |ψ〉 is the ground state after the phase transition. From the form of Eq. (D.1), |ψ〉
must be a charge basis state and, as discussed in Section 2.2.1, it must also have zero total
charge. Additionally, since R2 � 1, the

∑
n cnQ̂

2
n term in Eq. (D.1) strongly penalizes

states with many non-zero charges. As a result, we expect the ground state after the phase
transition to be of the form |ψ〉 = |0〉⊗n1−1|k〉|0〉⊗n2−n1−1|−k〉|0〉⊗N−n2 with n2 > n1 and
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k ∈ Z, where the minimum allowed number of charges have been changed in order to
remain in the zero total charge sector. Acting the Hamiltonian in Eq. (D.1) on this state
gives an energy of

k2

R2
+
k2r

2β
+
kε0r

β
− β(N − 1) +

ε2
0

2β
(N − 1),

where r = n2 − n1. Equating this expression to the energy before the transition gives

ε0 = −k
(

1

2
+

β

R2r

)
.

Since ε0 > 0, that forces k < 0. So, for each value of k and r, this formula predicts where
the first phase transition could occur. Of course, of all the possible choices of k and r,
the one that predicts the smallest value for the phase transition point ε0 will be the true
formula. Since k 6= 0 (no phase transition would occur in that case), we therefore choose
k = −1 and r = N − 1. Thus, we predict the first phase transition to cause the ground
state to transform from |0〉⊗N to |−1〉|0〉⊗N−2|+1〉 at the point

ε0 =
1

2
+

β

R2(N − 1)
. (D.2)

72



Appendix E

Generation of ĤNN Interaction in a
Parametric Cavity

In this appendix, we describe how the interaction ĤNN from Eq. (2.25b), which is one of
the resource Hamiltonians used in the VQE, can be generated on the microwave platform.
The derivation is very similar to the one presented in Ref. [67]. Using a symmetric SQUID,
the fourth order term in the SQUID cosine potential is

ĤSQ = g0

(
âp + â†p

)( N∑
n=1

ân + â†n

)4

,

where âp (ân) is the annihilation operator for the pump mode (cavity mode n) and g0 is
the intrinsic interaction strength between the pump and the cavity modes. The higher
order terms in the cosine potential are neglected. As a result, the full Hamiltonian of the
flux-pumped regulator is

Ĥ = Ĥ0 + ĤSQ,

Ĥ0 = ωpN̂p +
N∑
n=1

ωnN̂n,

where ωp is the natural frequency of the pump and ωn is the natural frequency of mode n.

We then transform Ĥ and go to the interaction picture using the operator Û = exp(iĤ ′0t),
where Ĥ ′0 = ωpN̂p +

∑
n ω
′
nN̂n. The resulting Hamiltonian Ĥint is

Ĥint =
N∑
n=1

(ωn − ω′n)N̂n + g0

(
âpe
−iωpt + H.C.

)( N∑
n=1

âne
−iω′

nt + H.C.

)4

. (E.2)
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The first term of Ĥint can be identified with the free rotation part of the unitary evolu-
tion given in Eq. (2.25a), with Ωn = (ωn − ω′n)t. Let us focus on the second term in
Eq. (E.2) for the rest of the derivation. We choose the frequency of the pump ωp to be
very small, in particular such that it is much less than each ω′n. With this choice, the
only terms in Eq. (E.2) without time dependence will be the terms in the expansion of
(
∑

n ân exp(−iω′nt) + H.C.)4 with zero frequency. There are two types of these terms: a

product of {â†i , âi, â†j, âj}, and a product of {â†i , âi, â†i , âi}. Using combinatorics and the
bosonic commutation relations, the first type of terms sum to

24
N∑
n=2

n−1∑
k=1

N̂kN̂n + 12(N − 1)
N∑
n=1

N̂n + 3N(N − 1) (E.3)

and the second type of terms sum to

6
N∑
n=1

N̂2
n + 6

N∑
n=1

N̂n + 3N. (E.4)

Combining Eqs. (E.3, E.4) together gives Eq. (2.25b) [the constant term is ignored since
it contributes an overall phase to Eq. (2.25a)]. Using the rotating wave approximation,
the remaining terms in Eq. (E.2) will average to zero, which results in only Eq. (2.25b)
remaining. Finally, we assume that the pump has a strong coherent tone such that we can
apply the parametric approximation and substitute âp with its classical amplitude |α|eiφ.

With this approximation the time evolution induced by Ĥint is exactly the one given in
Eq. (2.25a) with θ = (2g0|α| cosφ)t.
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Appendix F

Ideal Higgs VQE

In this appendix we perform a simulation of a VQE that we call an ideal VQE. In an
ideal VQE, we simplify the problem by neglecting the noisy statistics of the cost function
and using the exact expectation value 〈ĤHOBM〉. An ideal VQE can be considered as a
limiting case of a realistic VQE (detailed in Section 2.6) in the limit M → ∞, that is, in
the limit where one can perform an infinite number of measurements to evaluate the cost
function. As a result, the variance of the cost function goes to zero, and the exact average
〈ψVQE|ĤHOBM|ψVQE〉 is given to the classical optimizer. The purpose of performing this
ideal simulation is to show the best possible results that our VQE protocol, outlined in
Section 2.6.1, can produce.

The numerical results for the ideal VQE are shown in Fig. F.1. The EFD is plotted
against ε0, both for the ideal VQE state (red dots) and the exact diagonalization ground
state (blue curve). We can see that for both values of R2 there is a good agreement between
the EFD obtained by VQE and by exact diagonalization. In particular for the smaller value
of R2 the ideal VQE captures the discontinuity of the EFD, which is a sign of the phase
transition, and for the larger value of R2 the VQE result follows a smoother behaviour.
For the R2 = 0.3 plot, the fidelity of the VQE state (compared of the exact diagonalization
ground state) is above 0.95 for all points and for the R2 = 0.6 plot, the fidelity is above
0.85 for most points, with a maximum fidelity of 0.92 for ε0 = 0.5 and a minimum fidelity
of 0.78 for ε0 = 1.0. The excellent results in the EFD comparison are confirmed by good
fidelities and prove that our VQE procedure works in principle and is able to capture the
phase transition given a large enough measurement budget.
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Figure F.1: Ideal Higgs VQE results. Electric field density F as a function of ε0 for
β = 1.0 and R3 = 0.3 in (a) and R2 = 0.6 in (b). The blue line is the EFD of the exact
diagonalization ground state and the red dots are the EFD of the VQE state. The beam
splitter operations used in each block in the VQE are shown in Table 2.1.
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