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Abstract

The first part of this thesis addresses the canonical structure of general relativity on generic
null surfaces. The pre-symplectic potential of metric general relativity, evaluated on a null
surface, is decomposed into variables describing the intrinsic and extrinsic geometry of the
null surface, without fixing the gauge. Canonical pairs on the null surface and its bound-
ary are identified and interpreted. Boundary contributions to the action corresponding to
Dirichlet boundary conditions are identified. The constraints on a null surface are written
in the same variables, and naturally take the form of conservation laws mirroring those at
null infinity, equating the divergence of a relativistic current intrinsic to the null surface
to a flux which has a canonical form. The conservation laws are interpreted canonically
and related to Noether’s theorem. The second part of this thesis addresses the problem
that in asymptotically simple spacetimes, such as asymptotically flat spacetimes, the pre-
symplectic potential of field theories on constant-radius surfaces generically diverges in
the radius. A scheme is introduced for electromagnetism and gravity which, on-shell, for
any spacetime dimension, allows one to absorb the divergences into counterterms, which
correspond to the ambiguities of the pre-symplectic potential. The counterterms are local
including in the radius, and render also the action and the pre-symplectic potential on
constant-time surfaces finite. The scheme employs Penrose’s conformal compactification
of spacetime. The scheme is introduced and explored for electromagnetism in D > 5
dimensions. The equations of motion are analyzed in an asymptotic expansion for asymp-
totically flat spacetimes, and the free data and dependencies among the data entering the
symplectic potential are identified. The gauge generators are identified, and are rendered
independent of subleading orders of the gauge parameter by introducing further local, finite
counterterms. The generators and their fluxes coincide with expressions derived from soft
theorems of quantum electrodynamics in even dimensions. Finally, the renormalization
scheme is developed for general relativity in asymptotically simple spacetimes, where it
applies in D > 3 dimensions and for any cosmological constant, and does not require any
boundary or gauge conditions beyond asymptotic simplicity and some degree of regularity.
The resulting expression for the pre-symplectic potential is specialized to a relaxation of
the Bondi gauge conditions for four-dimensional asymptotically flat spacetimes, and an
existing result is recovered. The scheme is compared to holographic renormalization in
four and five spacetime dimensions, and the renormalized stress-energy tensors on asymp-
totically AdS space are recovered up to scheme-dependent terms. The canonical generators
of diffeomorphisms under the renormalized symplectic form are computed.
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Chapter 1

Introduction

The aim of this thesis is to elucidate aspects of the canonical structure of general relativity,
on general null surfaces, and for asymptotically flat spacetimes.

1.1 Background

While it was assumed until the sixties that the asymptotic symmetry group of four-
dimensional asymptotically flat spacetimes is just the Poincaré group, it was shown by
Bondi, van der Burg, Metzner [9] and Sachs [10] that this is not the case: Motivated by
defining gravitational waves, they defined “asymptotically flat” by introducing a physi-
cally motivated coordinate system and asymptotic boundary conditions, and found that
the symmetry group preserving the coordinate and boundary conditions is what is now
known as the Bondi-Metzner-Sachs (BMS) group. In addition to the three rotations and
three boosts of the Lorentz group, the four translations contained in the Poincaré group
are replaced by an infinite number of angle dependent translations called supertranslations,
which may be labeled by a function on an asymptotic two-sphere.

The BMS group has since catalyzed and featured in many developments in gravity and
quantum gravity.

Through Noether’s theorem, the enlargement of the asymptotic symmetry group leads
to the appearance of additional conserved charges: the Bondi mass and momentum are
generalized to a whole “sphere’s worth” of supertranslation charges. More recently, those
additional conservation laws have been connected with a seemingly different fact: Wein-
berg’s soft graviton theorem of perturbative quantum gravity [ 1] was shown to be equiv-
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alent to the Ward identity associated with the conservation of supertranslation charges
[12, 13]. This development connects asymptotic symmetries with the infrared sector of
perturbative quantum gravity: the BMS group is then conjectured to be a symmetry of
the quantum gravity S—matrix [13].

The enlargement of the asymptotic symmetry group is also connected to more im-
mediately observable consequences: The memory effect [14, 15, 16], which describes the
permanent displacement of detectors after the passage of a gravitational wave, can be
understood as a rewriting of the soft theorem [17], or as the transition between classical
vacua labeled by different supertranslation charges. The connection between asymptotic
symmetries, memory effects and soft theorems has been dubbed the “infrared triangle”,
see [18] for a pedagogical overview.

In connecting asymptotic symmetries to the infrared sector of perturbative quantum
gravity, a careful analysis of the symplectic form at null infinity becomes important. This
is because of the correspondence between the Dirac brackets, which are determined by the
symplectic form, and the commutators of quantum field operators. Next to the radiative
phase space, which has been identified by Ashtekar and Streubel [19], the phase space
has a “Coulombic” part, containing the Bondi mass aspect, which also features in the
supertranslation charges, and a field which may be interpreted as the Goldstone boson
associated to the broken supertranslation symmetry [12, 20]. The two sectors are connected
through conservation laws, which arise from the constraints [21], and express the time
evolution of the Bondi mass aspect in terms of the radiative data.

While the connection to soft theorems has led to a resurgence of interest in the BMS
group, it has also challenged its status as the symmetry group of asymptotically flat space-
times: That is due to the existence of subleading [22] and double [23] soft graviton the-
orems. It has been suggested that they also could be obtained as the Ward identities
of asymptotic symmetries, thereby requiring an enlargement of the asymptotic symmetry
group, larger than BMS, to accommodate them [24, 25]. This has led to much interest to
develop more lenient boundary conditions for asymptotically flat spacetimes, with larger
asymptotic symmetry groups, and there are competing proposals in the literature [26, 25],
some of which predate the connection to soft theorems. Subleading soft theorems have also
been related to conservation laws at subleading orders around null infinity [27].

A difficulty that arises is that for lenient boundary conditions, the usual expression for
the symplectic form diverges as null infinity is approached, which would lead to divergent
expressions for Hamiltonians and fluxes. This was remedied in [28] for the specific case
of the relaxation of the Bondi gauge boundary conditions proposed by [25], by using an
ambiguity inherent in the definition of field theory symplectic forms, of adding terms which



are integrals on the boundary of the initial value surface. A general prescription to remove
such divergences, or arguments about under which conditions they can be removed, have
not been given for gravity in asymptotically flat spacetimes to the best of our knowledge.
In [29] it was shown that a scheme to remove such divergences, if it exists, cannot be fully
spacetime covariant. Brackets on a phase space carrying the same symmetry group as [28]
have been derived using a different approach in [30]. Earlier work, showing finiteness of
canonical quantities in four dimensions using stricter conditions, includes [31, 32].

On asymptotically anti-de Sitter spacetimes, a similar problem arises: the action and
the momenta, which are commonly derived using the Brown-York description [33], also
diverge in the radius. They can be renormalized using the holographic renormalization
scheme [31], which is an important component of the holographic dictionary for theories
with a holographic dual. The ideas of holographic renormalization can be expressed in a
canonical form, and extended to theories which do not admit a holographic dual [35]. Also,
holographic renormalization of asymptotically flat general relativity has been considered
in [306, 37].

For asymptotically AdS spacetimes, it is well appreciated that too much regularity of
the metric around infinity cannot be required [33]. For asymptotically flat spacetimes, there
are also interesting spacetimes leading to asymptotic metrics with only limited regularity
[39, 40, 41, 42]. In much of the asymptotic symmetries literature for asymptotically flat
spacetimes however, a large degree of regularity is assumed.

The analysis of asymptotically flat spacetimes and their symmetries has been put on
a more geometric footing by Penrose [13]. He defined asymptotic flatness and related no-
tions by introducing an auxiliary, unphysical spacetime, in which the original spacetime
is compactified by adding a boundary at infinity, and the original metric is rescaled such
that is asymptotically finite. This elegant definition makes powerful conformal techniques
applicable. The BMS group, the definition of radiation, the Bondi mass and its conser-
vation, have all been translated to this setting. Quantization and numerical calculations
have also been studied in this arena. See [11, 15] for overviews.

Asymptotically flat spacetimes, their symmetries, connections to quantum gravity and
to memory effects have been fruitful avenues of investigation, particularly in recent years,
including many developments not covered here. The work in the second part of this thesis
is motivated by some of the open questions and challenges in this area.

The first part is concerned instead with the canonical structure of general relativity at
generic null surfaces at finite distance.

Null surfaces are physically special locations in spacetime: The boundaries of light
cones are null surfaces, and thus null surfaces are a natural arena to study causality and



information in gravity. Many event horizons are null surfaces, making their study broadly
applicable for example to questions about black holes. The distinguished physical status
of null surfaces also has mathematical consequences, and the constraints and equations of
motion have special properties at null surfaces. Null surfaces also provide a possible route
to quantization [16, 47].

By analyzing the equations of motion, Sachs first showed that the initial data could
be given in an unconstrained form using a double null sheet as an initial value surface
[18], which, among others, has spurred many developments in numerical relativity ([19]
for an overview). The analysis has been extended using twistor variables by Penrose [50].
The equations of motion and constraints have also been examined in many guises, us-
ing geometric variables pertaining to a “null 242" foliation of spacetimes, into spacelike

codimension-two surfaces with two null normals [51, 52, 53, 51]. From an explicitly canon-
ical perspective, generic null surfaces have been addressed by Epp [55], who gave the sym-
plectic structure in a partially gauge fixed setting. Reisenberger in [50] also investigated

the symplectic form, and used it to give Poisson brackets of free data [57].

In order to reach a well defined variational principle under Dirichlet boundary conditions
on the metric, a boundary term has to be added to the Einstein-Hilbert Lagrangian. Such
boundary terms are important beyond the question of making the Lagrangian field theory
consistent, as they contribute to the value of the on—shell action, which features for example
in the “Complexity = Action” conjecture of Brown et al [78] in the context of holography.
Boundary and corner actions at null boundaries were examined in [59, 60, 61, 62].

Much work related to null surfaces has focused on black hole horizons. In the membrane
paradigm, Damour [63], Znajek [64] and others described gravitational effects at and close
to black hole horizons using language from fluid mechanics and thermodynamics [65].

An important concept related to black holes is their entropy, which is widely believed to
provide a conceptual probe of quantum gravity. Black hole entropy, and questions on the
information content of black holes, are also related to asymptotic symmetries, as argued
by Hawking, Perry and Strominger in [66]. A classical, canonical perspective on black hole
entropy was given by Wald [67], and is also discussed in the framework of isolated horizons

[08].

The connection between horizons and null infinity through black hole entropy has moti-
vated research on the symmetries and conserved quantities of black holes, and null surfaces
more generally, along the lines of how BMS symmetries and conservation laws are obtained,
for example in [69, 70, 71, 72, 73, 74]. Symmetry groups, charges and conservation laws
appear that mirror those at null infinity. Besides the application to asymptotically flat
spacetimes with an inner null boundary such as a black hole horizon, by analyzing null

4



surfaces in this way one may hope to transfer conceptual lessons from finite distance to
null infinity, and vice versa.

As we have seen, at null infinity an important question is which symmetries should be
regarded as physical symmetries relating inequivalent solutions, and which as as unphysical
“pure gauge” redundancies. At finite distance, there is a more general approach to the
similar question of identifying the degrees of freedom of a gauge theory, in a region with
boundaries. Edge modes are introduced, which live on the boundary of the initial value
surface. These modes, even though they can be removed by acting with an element of
the local gauge group, are argued to be physical, and necessary to “glue” a region to its
complement, e.g. in [75, 76, 77], see also [6]. They acquire dynamics, for example in [3, 78],
and contribute to field theoretic entanglement entropy [79]. The edge modes are valued
into the gauge group, and under gauge transformations, transform by group multiplication.

At null infinity, fields have been introduced that transform similarly, for example the
Goldstone boson of spontaneously broken supertranslation invariance in [18]. It has been
conjectured that edge modes could be related to such fields (see, e.g., [30]), but so far there
is only little work on what happens to symmetries in the limit as null infinity is approached

[51, 82].

1.2 Outline and Main Results

In this thesis, we will use canonical methods from the covariant Hamiltonian formalism
(83, 31] (briefly introduced in chapter 2) to investigate general relativity for finite distance
null surfaces, and electromagnetism and general relativity at null infinity.

Throughout, we will avoid fixing the gauge freedom as far as possible. This approach
has several advantages: From a pragmatic standpoint, it leads to expressions from which
various gauge-fixed expressions can be derived, and can thus unify work in different gauges
and inform the decision which gauge fixing is appropriate to different situations. Since
many different gauge fixings are used, such expressions that allow bridging between them
may be useful. For example, at null infinity there is work in Bondi [9] gauge, in relaxations
thereof [28], in Newman-Unti gauge [34] and in harmonic gauge (e.g., [¢5]). For finite
distance null surfaces, gauge fixings have been used in which the free variables are the
shear of the null generators [18], or the shift that encodes how the null directions relate to
lines of constant spatial coordinates [55], and a wide array of conditions in the phase space
sector containing the area of spatial cross-sections, their expansion and the acceleration of
the null generators have been used for different purposes.



More conceptually, from a relativist’s viewpoint, physical statements about general
relativity should not depend on a particular gauge choice, so it is preferable to derive
them without a choice of gauge where possible. Moreover, in the context of the “edge
modes” literature, any diffecomorphism (or internal gauge transformation) that is not in
the kernel of the pre-symplectic! form is elevated to a physical degree of freedom. In that
view, in order to identify the physical phase space, the safest route is to calculate the
symplectic form without any gauge fixing, and only then use diffeomorphisms in its kernel
to introduce coordinate conditions. While of course many diffeomorphisms are clearly “pure
gauge”, exactly which ones depends on many details. It varies with otherwise equivalent
formulations of the same theory [36, 87, 88], and is also subject to the ambiguities in the
symplectic form.

One may worry that this insistence to leave the gauge unfixed leads to complicated,
bloated derivations and expressions, but that turns out not to be the case. On the contrary,
taking along all degrees of freedom allows using covariant methods, to a greater degree than
working in partially gauge fixed coordinates.

However, leaving the gauge free leads to degenerate symplectic forms, which cannot
readily be inverted to give Poisson brackets. Similarly, it is a step removed from identify-
ing free initial data for evolution problems, or from considering scattering, which requires
matching conditions connecting the past and future boundaries. However, as we saw, phys-
ically relevant questions often pertain to identifying which symmetry transformations are
canonical transformations, what are the Hamiltonians generating them, and what are the
fluxes describing the non-conservation of those Hamitonians. In the covariant Hamiltonian
formalism, one can make much headway on these questions without fixing the gauge.

In a similar vein, most of the work in this thesis is for spacetimes of arbitrary dimension.
This also does not introduce much additional difficulty, but brings out some structures more
clearly.

We begin by summarizing some aspects of the covariant Hamiltonian formalism in
section 2. A central object is the symplectic potential, which is a codimension-one form on
spacetime, and may thus be integrated on hypersurfaces. In the simplest case, it is of the
form ). P,0Q);, i.e., it pairs the variation of configuration variables ) with their momenta
P, and those pairs form the initial data of the Hamiltonian evolution problem.

After collecting the relevant definitions, we show how the action of symmetry trans-
formations is connected with conservation laws. That leads to the introduction of the

'We will drop the prefix pre- in the following. All the symplectic potentials and forms in this thesis
have degenerate directions, i.e. are pre-symplectic.



Noether charge aspect, which is a codimension-two form on spacetime, and can be inter-
preted as a relativistic current on a boundary. Its conservation equation, which arises from
the constraints associated with the symmetry transformations, involves fluxes, which have
a canonical form.

As not all our pre-symplectic potentials will be fully spacetime covariant, we introduce
some technology to deal with the non-covariance. That leads to an expression relating
the Hamiltonian generating an infinitesimal diffeomorphism, if it exists, to the Noether
charge of the same diffeomorphism, while allowing for some non-covariance. Lastly, we
collect explicit expressions for general relativity for the objects of the covariant Hamiltonian
formalism, which will form the starting points of much of the remainder of this thesis.

1.2.1 Part I: Canonical Structure at Finite Distance Null Sur-
faces

The first part of this thesis aims to provide a complete accounting of the canonical degrees
of freedom of gravity on a null surface, and how they enter the constraints.

Chapter 3 is devoted to identifying and analyzing the pre-symplectic potential on a null
portion of an initial value surface, without fixing the gauge, in variables with geometric
and physical meaning. We start by defining those variables: The null surface is foliated
by a family of spacelike codimension-two spheres, which may be understood as the equal
time surfaces of a clock. A general metric is expressed in terms of such a codimension-two
foliation. A set of tensors describing the extrinsic geometry of the foliation is given, some
of which will feature as momenta in the symplectic potential. The definitions utilize the
two null normals to the codimension-two foliation, a choice that is well adapted to the
analysis of null surfaces.

The symplectic potential is then brought into a form where the configuration variables
depend only on the induced metric of the null hypersurface, and do not contain derivatives
— corresponding to Dirichlet boundary conditions on the null metric. We recover that
the conformal metric on the spatial cross—sections is conjugate to the shear of the null
generators, a fact well-known for both finite distance null surfaces, and null infinity. The
shift, which encodes the relationship of the null generators of the null surface with the
lines of constant spatial coordinates, is paired with what we call the twist. The twist
appears in the membrane paradigm as the linear momentum of the “horizon fluid”, and
integrating it against a rotation vector field on a black hole horizon gives the black hole
angular momentum. Perhaps the most subtle sector is the one comprising the area element
of the spatial cross-sections. It is conjugate to a linear combination of the surface gravity

7



and expansion. In the case of a non-expanding horizon, this reduces to the relationship
between area and surface gravity familiar from black hole thermodynamics. In addition
to the canonical pairs in the interior of the initial value surface, the standard choice of
symplectic potential contains canonical pairs on its corner.

The “Dirichlet” requirement that the configuration variables depend only on the in-
duced metric, in the interior and at the corner of the initial value surface, requires adding
boundary and corner terms to the action. We identify them from our analysis and compare
with existing proposals.

Throughout chapters 3 and 4, the initial value surface is restricted to be null, and to
remain so under variations of the metric. After the appearance of the published versions
of these chapters, this restriction has been lifted by Aghapour, Jafari and Golshani in [39].

Chapter 4 is concerned with the gravitational constraints on a null surface, which are
interpreted as canonical conservation laws, analogous to the conservation laws for gauge
generators at null infinity. Attention is restricted to the equivalent of the momentum
constraints, i.e., constraints smeared with vector fields tangential to the null surface.

As a first step of marrying the symplectic analysis of chapter 3 with conservation laws,
the action of diffeomorphisms on the variables in the symplectic potential is summarized.
That action is non-trivial because of the non-covariance introduced by foliating the null-
surface into codimension-two surfaces.

An analysis of the constraints associated with infinitesimal diffeomorphisms tangential
to the null hypersurface then allows identifying a current associated with each diffeomor-
phism. The current can be understood as a vector field on the null surface. The con-
straints then become conservation laws, equating the divergence of this boundary current
to a flux. The flux has the same form as the energy-momentum tensor of a generic field
theory, and can thus be understood as the flux of gravitational energy-momentum. The
time-component of the current, integrated on a codimension-two sphere, is interpreted to
describe the energy and momentum contained within the sphere. The variables used in
this analysis are the same ones appearing in the symplectic potential of chapter 3.

Those conservation laws are then tied more explicitly to the symplectic analysis of
chapter 3. The boundary current is identified with the Noether charge aspect, and the flux
is obtained by evaluating the symplectic potential on variations of the metric induced by
the infinitesimal diffeomorphism. However, to match the analysis of the constraints, the
symplectic potential needs to be modified, and differs from the standard expression: In
particular, the pairs on the boundary of the initial value surface need to be dropped, yield-
ing what we call the intrinsic symplectic potential. This modification, which is within the
ambiguities of the symplectic potential, also leads to expressions for the boundary current



and diffeomorphism generators which are independent of the extension of the infinitesimal
diffeomorphism outside the initial value surface.

Lastly, the canonical generators of infinitesimal diffeomorphisms are analyzed. For
diffeomorphisms tangential to the spacelike spheres, the result is simple and expected: The
canonical generator is the twist, which at the same time is the momentum conjugate to
the shifts encoding spatial displacement, and the time-component of the boundary current
for those vector fields. Its conservation equation, Damour’s Navier-Stokes-like equation,
involves the gradient of the momentum conjugate to the area element. This momentum
is hence naturally interpreted as a pressure term in a fluid analogy, an interpretation
compatible with its role in the boundary current for “null time” translations. Because of the
corner modification of the symplectic potential, the generator for spatial diffeomorphisms
does not coincide with the Komar charge in general.

For diffeomorphisms with a component parallel to the null generators, the situation is
more subtle. Boundary conditions at the boundary of the initial value surface are needed
if the symmetry is to be realized as a Hamiltonian symmetry: the shear needs to be
zero, reminiscent of a “no-radiation” condition at null infinity. In addition, a constitutive
relation needs to be provided in the sector containing the area element and the pressure,
and we give the Hamiltonians arising from some such relations.

In summary, we decompose the degrees of freedom and constraints on a null surface
in terms of geometrical variables, and read the constraints as canonical conservation laws,
similar to those at null infinity. Since the appearance of the published version of chapters 3
and 4, a similar approach has been taken by [74], focusing also on the algebra of symmetries
and Hamiltonians.

1.2.2 Part II: Canonical Structure at Null Infinity

In the second part of this thesis, we turn our attention to the asymptotic canonical struc-
ture, first of electrodynamics in five or more spacetime dimensions, then of gravity in three
or more dimensions.

The central problem addressed in these chapters is that the expressions for the sym-
plectic potential that are usually used at finite distance diverge with the radius as infinity
is approached, except in low enough dimension and for strict enough boundary conditions.
In the canonical theory at infinity, these divergences would lead to an ill-defined symplectic
form and brackets, as well as divergent Hamiltonians and fluxes.

Resolving this issue is a necessary step on the way to developing a canonical viewpoint



on symmetries on phase spaces where the boundary conditions do not take care of the di-
vergences. As mentioned above, considering such lenient boundary conditions is necessary
to accommodate subleading soft theorems as the Ward identities of asymptotic symmetries.
Removing the divergences is also necessary in the context of the “edge modes” literature,
where fixing gauge conditions risks removing physical degrees of freedom.

We remove the divergences for electromagnetism and general relativity by introducing
a renormalization scheme, exploiting the ambiguities in the definition of the symplectic
potential of a field theory. The divergences are absorbed into counterterms, which translate
into boundary contributions to the action, and contributions from the corner of the initial
value surface to the symplectic potential. We focus on divergences in the radius, and do
not address divergences arising from infinite integration domains in other directions.

The counterterms are local, including in the radius, rather than being defined order
by order. The resulting renormalized symplectic potential is thus also local, and has a
finite limit onto the boundary at infinity on-shell. The scheme is viable for a large class
of boundary conditions: all that is required is asymptotic simplicity, i.e., the existence
of a conformal compactification in the sense of Penrose, and some regularity of the fields
at infinity. No gauge fixing or additional condition on the conformal factor are required.
In particular, the recipe works for any cosmological constant, and allows for some non-
analyticity in the expansion of the fields around the conformal boundary.

The scheme relies on two pieces of background structure: the conformal factor, which
doubles as the canonical time, and a radial vector field, which asymptotically is used to
“take orders” in the radius. The background structure introduces some non-covariance,
and in the gravitational case allows the resulting symplectic structure to evade the no—go
result of [29], that an asymptotically finite, local, and fully spacetime-covariant symplectic
structure for general relativity does not exist.

In chapter 5, the basic idea of the renormalization scheme is outlined, using electrody-
namics in five or more spacetime dimensions as an example. The motivation for studying
higher dimensional electrodynamics as a toy example is the similarity in the structure of
asymptotic divergences of six—dimensional electrodynamics with that of four-dimensional
gravity. That similarity comes from the fact that, in both cases, the dimension is two
greater than the dimension in which the theory is conformal.

We start by working out the consequences of asymptotic simplicity, in general and
covariant terms. That sets the stage for deriving an identity for the radial evolution of
the symplectic potential on a constant-radius hypersurface, which follows directly from
the implicit definition of the symplectic potential in the covariant Hamiltonian formalism.
This identity is then used to iteratively remove factors of the radius in the symplectic
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potential to render it finite, allowing for some non-analyticity in the expansion of fields
around infinity. In D spacetime dimensions, there are D — 5 factors of the radius to be
removed.

It is shown that the counterterms arising from that procedure simultaneously renor-
malize the radial divergence of the action, and of the symplectic potential integrated on
surfaces transverse to the constant-radius surfaces. Asymptotically, assuming analyticity,
the renormalized symplectic potential coincides with the finite order of a Laurent expan-
sion in the radius of the original symplectic potential. It exhibits a layer structure: In six
dimensions, there are two layers. The leading components of the gauge field are paired
with the subleading components of the radial components of the field strength tensor, and
the subleading components of the gauge field with the leading components of the field
strength.

The expression for the renormalized symplectic potential is valid on any “compactifi-
able” background, but there are dependencies among its constituents, on-shell and even
off-shell. To resolve the dependencies, the asymptotic equations of motion are specialized
to Minkowski space, and analyzed to identify the free data, assuming analyticity. In the
course of that analysis, some consequences of analyticity are identified, which indirectly
impose further conditions on the fields. For example, the fact is recovered that assuming
analyticity, radiative solutions exist only in even spacetime dimensions.

In six dimensions, the radiative free data are the first subleading order of the gauge
potential tangential to the asymptotic spheres. In the symplectic potential, they are paired
with a certain order of the magnetic field tangential to the spheres, which we dub the
“Maxwell news” and which coincides with the time derivative of the free data.

In addition to the radiative data, to determine all the data entering the symplectic
potential, a field on null infinity needs to be specified which encodes the gauge part of the
leading order gauge potential. We call it the soft potential, and it is present because the
gauge has not been fixed. In the symplectic potential, it is paired with the charge aspect,
which is the radial electric field at the order corresponding to the falloff of the Coulombic
field of a charged point particle in the bulk. The time evolution of the charge aspect is
controlled by the free radiative data via the Gauss law. A special role in the symplectic
potential is played by the zero-mode of the radiative data, which appears in both the
radiative and the “Coulombic” pair.

In higher (even) dimensions, the radiative data are given by more subleading orders
of the sphere components of the gauge field. While in six dimensions, the radiative data
directly determines the time derivative of the charge aspect, in higher dimensions, it deter-
mines only its higher time derivatives. We give an explicit expression for that evolution.
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We compute the generators of asymptotic symmetries under the renormalized symplec-
tic form. They can be rendered independent of subleading orders of the gauge parameter
by adding further local, finite counterterms to the symplectic potential. The symmetry
generator contains the charge aspect.

Soft theorems in higher dimensional quantum electrodynamics were considered in [90].
We connect to those results, by showing that the flux of the renormalized generator of
asymptotic symmetries coincides with an expression derived starting from the soft theorem.
This is in contrast to the generator derived from the un-renormalized symplectic potential,
which diverges, and thus supports the necessity of our scheme, and its compatibility with
other approaches.

In chapter 6, we address the renormalization of the symplectic potential in the case of
gravity in three or more dimensions, on asymptotically simple spacetimes of any cosmo-
logical constant. Extra steps are necessary compared to electromagnetism. One cause of
this is that for gravity, the Lagrangian does not transform homogeneously under conformal
transformations, leading to additional, higher divergences.

We start, again, by summarizing the consequences of asymptotic simplicity, and impose
falloffs that solve the two most divergent orders of the equations of motion. The renormal-
ization of the symplectic potential now proceeds in two steps: First, its two most divergent
orders are absorbed into counterterms. The remainder of the symplectic potential diverges
as 7?73, Then, analogously to electromagnetism, an identity for the radial evolution of
that remainder is found, and used to iteratively remove the remaining divergences. This
does not require choosing a gauge. The result for the renormalized symplectic potential on
constant radius surfaces is local, asymptotically finite on-shell, and valid in any dimension

and for any cosmological constant.

A renormalized symplectic potential for a specific relaxation of the Bondi coordinate
conditions has been given in [28], starting from the usual expression from the covariant
Hamiltonian formalism and removing the divergences order by order. The authors also
identified the need for a more geometric prescription to render the symplectic potential
asymptotically finite, and we provide such a prescription here. We connect to the results
of [28] by imposing their gauge conditions on our result, and find that our renormalized
symplectic form essentially agrees with theirs.

Similarly to our scheme, in holographic renormalization of pure gravity on asymptoti-
cally AdS space, the on-shell action and the stress-energy tensor, which is closely related
to the canonical momentum, are renormalized to be asymptotically finite. Since asymp-
totically AdS space is asymptotically simple, our scheme applies, raising the question what
the relationship between the two prescriptions is. We specialize to Fefferman-Graham co-
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ordinates in four and five spacetime dimensions, and include a Gibbons-Hawking term in
our scheme. In that case, our renormalized symplectic potential pairs the leading order
metric with the renormalized stress-energy tensor of holographic renormalization, up to
scheme dependent terms which are part of the ambiguity of the holographic renormaliza-
tion prescription.

Finally, the “would-be” Hamiltonians which generate infinitesimal diffeomorphisms un-
der the renormalized symplectic form are computed. That can be done efficiently by ex-
ploiting that our scheme is relatively covariant.
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Chapter 2

The Covariant Hamiltonian
Formalism

The pre-symplectic geometry of field space can be obtained in a covariant way (see, e.g.,
[83, 91, 76]), some aspects of which we briefly review here.

2.1 Pre-symplectic Form and Potential

A central object is the pre—symplectic form (2, which is a closed two—form on field space
and an integral over a (possibly partial) Cauchy hypersurface B in space-time. The prefix
“pre” refers to the fact that {2p on field space has degenerate directions, so it does not
qualify as “symplectic”. The degenerate directions are the gauge degrees of freedom, which
have to be ultimately quotiented out to obtain the physical phase space.

Schematically, {25 can be written as

QB:/5PA§Q+ op A dq. (2.1)
B aB

Here, 0 is the exterior derivative on field space, and A is the wedge product on field space.
The pairs (@, P) of configuration and momentum variables are the canonical pairs. We
have allowed for the presence of corner degrees of freedom (g, p) on the codimension two

boundary of B. There is not a unique way to split Qg into P, @, p and ¢: The freedom of
doing canonical transformations is left. In order to fix that freedom, i.e., fix a choice of
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polarization, one may require that the Q)s depend only on the pullback of the fields to B,
and contain no derivatives. We will do so in chapter 3.

Qp is the field space exterior derivative Qg = dOpg of the pre-symplectic potential Op.
The symplectic potential ©p is the integral of the pre-symplectic potential current 6, which
is a one—form on field space and a (D — 1)—form on spacetime, where D is the dimension
of spacetime. In the covariant Hamiltonian formalism, 6 is defined implicitly through the
equation

0L =:d0 — E. (2.2)

Here d is the spacetime exterior derivative, and L is the Lagrangian density. E are the
equations of motion, which may be obtained from the Euler-Lagrange equations, and they
are a one—form on field space and a D—form on spacetime. By definition they do not
contain derivatives of the variations of the fields, and they are uniquely determined by the
Lagrangian.

(2.2) determines 6 only up to the addition of a closed (D — 1)—form on M. A criterion
that is often cited to fix those ambiguities is spacetime covariance. While that criterion
keeps with the spirit of the covariant Hamiltonian formalism, often the spacetime region
under consideration has boundaries or even corners. That is certainly the case with initial
value problems, and also at null infinity in Penrose’s framework. Those boundaries, and
any additional background structure, break diffeomorphism invariance, so demanding full
spacetime covariance may not always be appropriate.

We will fix this ambiguity in several different ways in this thesis: In chapter 3, we
will use the most common expression for 6 for general relativity, which is covariant under
diffeomorphisms. In chapter 4, we will use the ambiguity to make sure that there are no
corner pairs in Q2. Finally, in chapters 5 and 6, we will use the ambiguity in such a way
that the integrand of 2 has a finite limit onto the conformal infinity of asymptotically
simple spacetimes.

Schematically the symplectic potential is of the form
@B = @%lﬂk + @8B + (5143 + 51433, (23)

where O = [0 P6Q and Oy = [, pdq. The total variation terms 6Ap and dagp do
not contribute to the symplectic form, because 00 = 0. These terms can be reabsorbed
into a redefinition of the action S — S — Agp — Ayp: Sending L — L + da modifies 6
as 0 — 6 + da. The inclusion of these terms corresponds to a choice of polarization, and
for general relativity is necessary if one demands that the configuration variables do not
include metric derivatives.
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Finally, we will assume throughout that the field space exterior derivative  and the
integral || 5 commute. That means the location of the hypersurface B must be specified in
a field independent way.

2.2 Noether Charge Aspect

For a diffeomorphism covariant Lagrangian density!' L, the diffeomorphism Noether charge
aspect ()¢ on spacetime M is defined implicitly by:

1'59 — LgL = Cg + ng (24)

Here I¢ is the contraction on field space, i.e., I¢0(¢, 0¢) = 0(¢, L¢¢) with the spacetime Lie
derivate £, while ¢ is the space-time contraction.

The LHS of (2.4) is the Noether current density associated with diffeomorphism sym-
metry. The first Noether theorem is the statement that this current is conserved on-shell,
ie., d(lgf —1eL) = 0. The RHS of (2.4) expresses this current as the sum of a bulk piece Cy
and a boundary piece dQ¢. The bulk piece C¢ is the constraint (D — 1)-form, and vanishes
when the equations of motion are satisfied.

The Noether charge aspect Q)¢ is a (D —2) form that can be integrated on codimension
two spheres S, such as the boundary of a partial Cauchy hypersurface B. In general
relativity, it is sometimes referred to as the gravitational “superpotential” [92]. When
pulled back onto B, it may be interpreted as a current, and the pullback of (2.4) becomes
its conservation law. We will do so in chapter 4.

Under the modifications L +— L + da with a covariant under the class of ¢ considered,
and 6 — 6 + da + da, the Noether charge aspect changes as
Qe — Q¢ + tea+ o (2.5)

Lastly, since Q)¢ is defined implicitly through (2.4), it may also be modified by the addition
of a closed (D — 2)-form. The three ambiguities encoded by a, a and the closed ambiguity
in Q¢ are known as the JKM ambiguities [93].

For metric gravity with minimally coupled matter, it is useful write the full Noether
current density on the LHS of (2.4) as the sum of a matter contribution associated with

INote that the Gibbons-Hawking boundary term, and existing proposals for null generalizations thereof
[62, 60] are not fully covariant.
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LM and a gravitational contribution associated with the Einstein-Hilbert Lagrangian L.
The matter contribution to the Noether current density is

I0M — 1 LM = Te%, — dQY. (2.6)
We have introduced the directed volume (D — 1)-form

V1ol

MGaaz...aDdIQQ VANPIRAN dz?P. (27)

€q = Lg€ =
The LHS is, by definition, the canonical matter energy-momentum tensor, and the RHS
contains the gravitational matter energy-momentum tensor 7:* and possibly a total deriva-
tive dQé” : Qé” is the matter contribution to the gravitational Noether charge aspect.
The fact that there could be a difference between the canonical energy momentum ten-
sor and the gravitational energy momentum tensor is well known (see [94] and references
therein for an elementary review). The presence of a corner contribution to the canoni-
cal energy-momentum tensor is due to the presence of a spin current, which vanishes for
scalar fields, but not for non-zero spin fields such as gauge fields. For Yang-Mills with
Lagrangian LM = g%tr(*F A F) the diffeomorphism Noether charge aspect Q' coincides
with the gauge Noether charge aspect associated with the gauge parameter (s A and reads
Qé” = g%Tr(*FLEA). It is thus natural to accompany the infinitesimal diffeomorphism &
with a field dependent gauge transformation with parameter —¢¢A. Under this combined
transformation, the matter Noether charge aspect vanishes and the canonical and gravita-
tional energy-momentum tensors agree. The total Noether charge aspect then only involves
the gravitational fields, i.e., the metric.

2.3 Covariance

As we saw, the covariant Hamiltonian formalism admits several ambiguities, which we
will fix using various criteria. Demanding that all objects are covariant under spacetime
diffeomorphisms is a common criterion used to fix those ambiguities, but we will have
reason to depart from it. Let us thus formalize the notion of covariance, so that we can
deal with the resulting non-covariant objects cleanly.

As an example, consider a scalar field ¢ on spacetime, defined to be the 00-component
goo of the metric, in a fixed coordinate system. On the one hand, as a scalar field it
transforms under an infinitesimal diffeomorphism as

o= ¢+ L= ¢+ £°0u0. (2.8)
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On the other hand, the metric transforms as g, — gap + Legap- If we transform ¢ according
to its field space dependence on the metric, we are lead to the transformation

¢ ¢+ (Legloo = ¢+ £ 0 — 2902008, (2.9)

which is not the same. The discrepancy arises because there is fixed background structure
that is not transformed under diffeomorphisms. Here that background structure is the
vector field 9/92°.

We introduce the field space Lie derivative £¢, which acts on field space scalars according
to their dependence on the metric: In our previous example, £¢¢ = I:0¢ = %Eggab. The
field space Lie derivative is extended to higher field space forms via the Cartan formula
Le = 10 + 01¢, and the Leibniz rule.

From that, we may introduce the anomaly as the difference between the field space and
spacetime Lie derivatives:
Ag = 25 - [,5 - ]55. (210)
We have also allowed the vector field £ to be itself dependent on the fields. The term I,
compensates the dependence on 6§ of £, which arises from the contribution /¢ to £¢ if
acting on a field space form. The anomaly A, thus does not depend on d§. Note that I
satisfies an anti-Leibniz rule, and does not contribute if acting on a field space scalar.

We call an object covariant if its anomaly vanishes. As we will see, the anomaly is
a useful bookkeeping device to calculate transformations of non-covariant objects: For
example, it commutes with the covariant derivative, which will be useful in practice. It is
itself a derivation. For more details on related technology, see, e.g., [76, 95].

2.4 Hamiltonians

Let us lastly consider the relation between the Noether charge and the Hamiltonian gen-
erating the symmetry . The Hamiltonian for &, if it exists, should satisfy

{H&F} = LF, (2.11)

for any functional F' of the fields.

The Poisson brackets are given in terms of the inverse symplectic form (which is a
bivector on field space, and of course ill-defined before performing the symplectic reduction)
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as {F,G} = Q3'(6F,5Q). Using that F is arbitrary and contracting both sides with the
symplectic form g one obtains the equivalent expression

§He = —IQp. (2.12)

In general, there is no guarantee that —I;Qp is an exact variation and thus that a Hamil-
tonian exists. Wald and Zoupas [31] have given a prescription which defines a charge even
when [¢{2p is not a total variation, and gives a unique result in some circumstances, but
we will not use their prescription here.

Let us calculate —I¢{2p, for a symplectic potential ¢ = 6y 4+ do, where 6y is covariant
under diffeomorphisms, but « need not be.

We have
—I.Q = —/15(50 (2.13)
B
_ / 5(1:6) — £¢6, (2.14)
B
where we used the definition of the symplectic form on B, Q = [, 500, and the Cartan

formula £¢ = 6 + 01 for the field space Lie derivative. Next, use identity (2.4) for 1.0,
and the definition of the anomaly (2.10).

IO = / 5(Ce + teL + dQg) — Lef — A — Iseh. (2.15)
B

Now use dteL = 1e(—E + df) + tse L, and L0 = 1edf + deeh, and I5e0 = Cse + t5e L + dQse.
Setting all constraint terms to zero, we get

—I.Q= /B —Agl + /83 5(@5) — Qse — b (2.16)

Using our assumption that 8 = 6y + da, where 6, is covariant under diffeomorphisms, the
anomaly of 6 comes from the boundary modification: A¢f = d(A¢cr). Thus we get:

—IgQﬁ ((5(@5) — Q55 — L50 — AgOé). (217)

0B

We will use this expression in sections 4.4 and 6.5.
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2.5 Expressions for General Relativity

Let us specialize to the case of metric general relativity with cosmological constant A, with
the Einstein-Hilbert Lagrangian L = %G(R — 2A). Here € is the volume form of the metric
gap- We will consider also a total Lagrangian LT = L + L™, with a minimally coupled
matter Lagrangian LY. The equations of motion are

1
ET = 5e(G“b + Ag®™ — T)5 g, (2.18)

with T the gravitational matter energy-momentum tensor (we work in units where 87G =
1).

The standard choice (see, e.g., [96]) for the gravitational symplectic potential reads
1 1
0= §(gb651“§c — g™0T. e, = §Vb(6g“b — g™9)e,. (2.19)

59 = g%¢g*§ g,y denotes the metric variation with indices raised, not the variation of the
inverse metric. dg = g*dg, is its trace.

The constraints read

Ce = E(G" + A, — T,P) e = 0. (2.20)
The Komar charge aspect [97], which is a (D — 2)-form on spacetime M, and is related

to the standard symplectic potential by (2.4), is given by
Qe = 3+ dg(€) = e V€, (2.21)

where €., = tolp€.
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Part 1

Canonical Structure at Finite
Distance Null Surfaces
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Chapter 3

Gravity Degrees of Freedom on a
Null Surface

In this section, we evaluate the standard symplectic potential (2.19), pulled back onto
a null hypersurface. We use variables describing the intrinsic and extrinsic geometry of
the null surface. The freedom to integrate by parts and to extract total variations from
the symplectic potential is fixed by demanding that the bulk and corner configuration
variables ) and ¢ depend only on the intrinsic geometry of the null surface, and do not
contain derivatives.

The remainder of this chapter is organized as follows. Section 3.1 contains the def-
initions of our variables, and decomposes the variation of the metric. In section 3.2 we
perform our central calculation, obtaining the null canonical pairs of gravity in section 3.3.
Section 3.4 contains a suggestion for a Lagrangian boundary term.

3.1 Setup

In this section, we introduce the structures and notation we will use to evaluate the sym-
plectic potential on the null hypersurface B. The setup is taken from [95] and [3]. Previous,
similar formalisms were set up e.g. in [99, 51, 100].
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Final time slice ¥

Null surface B

Spacetime region R

Initial time slice X

Figure 3.1: A typical situation where the symplectic structure on the null surface B is of
interest is when B is part of the boundary of the spacetime region R under consideration.
The other parts of the boundary are spacelike surfaces ¥;.

3.1.1 Foliations, Normal Forms and Coordinates

Let M be the D—dimensional space—time. We are typically interested in a region R of M
with boundary BU3Y,U >, where X; are spacelike hypersurfaces and B a null hypersurface
(see figure 3.1). More generally we want to understand the nature of the symplectic
potential O on a null hypersurface B. The location of B is specified by the condition
¢'(x) = 0, where ¢! is a suitable scalar field on M that increases towards the past of B. B
is a finite hypersurface with a boundary 0B that we will call a “corner”. It is a member of
the foliation specified by ¢' = const. We do not assume that every member of the foliation
is a null hypersurface, but assume that ¢! is a good foliation function in a neighbourhood
of B, i.e., d¢' # 0 on B.

We introduce another foliation given by ¢° = const. of spacelike hypersurfaces, where
¢ is a field that increases towards the future. We require that ¢° is a good foliation
function in a neighbourhood of B, and that nowhere d¢® is a multiple of d¢!'. At the
intersections of the two foliations lies a two—parameter family of spacelike codimension 2
surfaces S. Coordinates o0(z) are also chosen on each surface S. They are not required to
be constant on the null generators of B. Doing so would be a partial gauge fixing which
we want to avoid, since the direction of the null generators is metric dependent.

Using also the foliation fields as coordinates, we introduce a frame (X)(x) = (¢*, 04)(z)
on M. This frame represents an invertible mapping X : U — M, from a domain U € R
to M. The metric G on M can be represented as a metric on U via the pullback: X*G = g.
Here and in the following, a € {0, ..., D—1},i € {0,1} and A € {2,..., D —1}. x represents
a choice of coordinates while X?(z) represents points of M. We will refer to X* as the
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foliation frame. In the foliation frame, the tangent vectors e4 to the surfaces S become

o
Oo4

while the metric in the foliation frame can be parametrised as

e = €%0,, where ey =

= 04, (3.1)

ds® = gupdr® @ da’ = Hy;d¢' @ d¢? + qap(do? — Ade') @ (do® — Aquﬁj). (3.2)

Here we have defined the shift connection A* := Ad¢’, which is a one—form in the normal
plane to S valued into T'S. We also defined the normal metric H;j, which determines the
geometry of the normal two—planes (T'S)t to S, while ¢ is the tangential metric which
determines the geometry of the sphere S. The metric ¢ contains %D(D + 1) parameters
and this parametrization is completely general. No gauge fixing has taken place, and we
have not yet specialized to the case of a null hypersurface B.

The inverse metric is
9%0, @ 0y = H(0; + A'04) ® (0; + AP0p) + ¢*P04 ® 0p, (3.3)

where H and ¢'# are the inverses of H;; and gag, respectively. We introduce the covariant
normal derivatives

D; = (0; + A#0,). (3.4)

They can be understood as normal derivatives covariant under the gauge group Diff(,S) of
diffeomorphisms on S. That is because under an infinitesimal change of foliation frame
Sy¢' = 0 and &y0? = VA(x), the normal metric transforms as a scalar 0H;; = VcﬁgHij,
the tangential metric transforms as a tensor dyqap = Ly qap, while A;A transforms as a
connection:

Sy AL =9, VA + (A, V4, (3.5)

where [.,.]s is the Lie bracket on S. Then, the derivative D; transforms covariantly as a
scalar under the gauge group Diff(S): 0y (D;f) = VA94(D;f) for a field f on M. The
curvature of the normal connection is the vector field

[Do, Di]* = 0A — 0, AL + [Ao, Alls. (3.6)

We will use V, for the covariant derivative of g, and d4 for the covariant derivative of ¢
on S.

We introduce the logarithmic normal volume element h as
e = /|H)|. (3.7)
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It will play an important role in the symplectic structure and the boundary action. The
determinants of the normal metric H;;, the induced metric g4p and the full metric g, are

therefore linked by
Vgl =¢"va (3.8)

In order to write the symplectic potential using quantities intrinsic to the surfaces S we need
to be able to project along its two normal directions. We therefore have to choose a basis
of one—forms normal to S. There is a simple choice of basis which is metric independent,
and depends only on the choice of foliation. It is given by (d¢°, d¢!) € (T'S)*. However,
since the surfaces S are part of a null hypersurface, the most convenient choice is to use a

null co—frame (£, £) consisting of two null forms normal to the family of surfaces S, one of
which will be normal also to B. This is what we do here.

Let £ = ¢,dz® and € = (,dz® be two smooth, null one-form fields normal to the surfaces
S (here and in the following bold-face letters denote one—forms). Let € be such that at
B, £ is normal to B, and g~'(£) = (%9, is future pointing. On the forms (£, £), we impose
the normalization condition that ¢g~!(£,£€) = 1. These conditions uniquely determine £
and £ in a neighbourhood of B, up to a rescaling (£ — e¢£,£ — e~£), where ¢ is an
arbitrary function. Our choice of a null dyad diagonalizes the SO(1,1)-symmetry of the
plane normal to S, and the rescaling is the action of a SO(1, 1) transformation. Since (£, £)
and (d¢®,d¢') both form a basis of (7'S)* their relationships can be parametrized in terms

of four fields o, @, 3 and B which form a set of generalized lapses. We set

£=¢(dg' — Bdg"),
_ e _
= _(de? + Bdoh). 3.9
e+ 5o (3.9)
The condition that the slices ¢! = const. are timelike or null and that the slices o= const.
are spacelike is encoded in the inequalities 5 > 0,5 > 0. The four functions («, &, 3, f)
determine the inverse normal metric H through the conditions HY = g~1(d¢’,d¢’). We
get

et (=28 1—65) e (—2ﬁ_ 1—_56)
H__1+65(1—ﬁ5 o6 )0 Hi=1rg\u-ss 25 )0 G0

where the normal volume element A is

h=a+a. (3.11)

The quantity o — & does not enter the metric, and encodes the rescaling freedom in
£ and £ alluded to above. o — & is therefore not physical, it is pure gauge freedom. We
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will refer to it as the boost gauge, because a boost transformation in the normal plane to

S will change o — @, keeping h and the directions of (€, £) fixed. A boost transformation

(0,0) — (el,e~<l) acts as (o, @) — (. +¢€,a — ).

Even though it is pure gauge, we will not fix @ — & for now. In the literature different
choices are made, and the generality of our boost gauge can be a starting point to connect
them. For instance, [61] and some work at null infinity work in the gauge a = 0 while
[62] works in the gauge & = 0. We will see that it is more convenient for the problem at
hand to choose & = 0 such that o = h. Note that the boost gauge can be fixed only with
reference to the foliation functions ¢°, ¢!, and a boost gauge fixing thus depends on how
we parametrize the family of surfaces S.

While the forms are denoted by bold letters, we denote the corresponding vectors with
non-bold letters as ¢ = g 1(£) and ¢ = g~1(£). They are obtained by raising the index on
£ and £ and are given by

—Q

e

T 1+48

Note that the forms (£,£) as well as the vectors (¢, ¢, D;) contain metric parameters and
are thus metric dependent.

(= E“@a = 6_&(D0 + ﬂD1>, [7: 17“8,1 (Dl - BD()) (312)

For notational convenience, we will mostly work with tensors that have D—dimensional
indices, even if they are intrinsic to S. Vectors v* and contravariant tensors on S are pushed
forward into M along the inclusion, yielding in the foliation frame v* = e4v? = §%4v4.
Covectors and covariant tensors like g4 are pushed forward using the forms

et = eddr® = (¢*Pguely)da® = (02 — A)da®, (3.13)

yielding, e.g., g, = (5&4 — Ag‘)(é{? — AbB)qAB.

Using that notation, we can write the components of the shifted derivative in foliation
coordinates as Df = 0 + A?. It can be checked that qabDf = gl = qup?® = 0. The two
vectors (D;) span the same space as the vectors (¢,¢), and all four are indeed orthogonal
to S. It can easily be checked that the induced metric ¢ on S satisfies the completeness
relation

Gab + Laly + Laly = Gab- (3.14)
q also satisfies ¢, qhe = Gue.

We now have a variety of ways to repackage the information contained in the metric
g. The basic variables are the matrices (H;;, gagp, A7) in the parametrization (3.2). Using
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¢ =10,
SO0

Y = const.

¢! = const.

B

Figure 3.2: The geometry of our setup is depicted. The null hypersurface B is a member
of the foliation ¢! = const. that need not be null everywhere. It is ruled into codimension
two surfaces S by a second foliation ¢° = const. The vectors ¢ and £ are null and normal
to S. ¢ is normal also to B, and since B is null it is at the same time tangential to B. ¢ is
transverse to B, and the vectors are normalized as (*(’g,, = 1.

(3.10), H;; can be rewritten as (h, 3, 3), which contains the same number of independent
components. After introducing the quantity o — &, we can rewrite (o« — @, H) as the one—
forms (£, £) using (3.9). The one-forms have two independent components each, because
they are constrained to be orthogonal to S. Finally, the variables (£, £, A%) can be rewritten
as the vectors (¢, ¢) using (3.12). The vectors (¢, £) contain the shifts A2, and determine 2D
independent variables, one of which is (a—a). The variables (£, £, g4p) thus fully determine
the metric, and the quantity (v — @). They combine covariance with an intuitive picture

adapted to null structures, and we will use them in the following®.

So far, the setup we described works for any two foliations (¢°, ¢!) with spacelike
intersections. Let us now specialize to the case that ¢! = 0 describes a null hypersurface
B. For an illustration of the null geometry, see figure 3.2. The nullness condition reads

g(Ved!)(Vpo!) = H £ 0, and from (3.10) we see that this is equivalent to the condition
6] £0. So we get
320,  eZedst, ZeeD,. (3.15)

Note that also the derivatives V,3 and ¢,°V;3 vanish on B. We see that as expected,

IExcept for the ambiguity o — &, the situation is analogous to the spacelike case, where the metric
is parametrized in terms of induced metric, lapse and shift. These variables can be repackaged into the
induced metric and the unit normal vector n.
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the vector ¢ is parallel to B since on B it does not contain a transverse derivative J.
Its integral curves are the null generators of B. If we had chosen the coordinates o to
be constant along the null generators of B, then the shift A} would vanish on B yielding
0* = e*040. The induced metric on B is

ds®|p = qap(do? — Af'd¢”) @ (do® — ABd¢°), (3.16)

where we have used that hgg 20 Its parameters are g4 and AOA, and the number of
parameters is %D(D — 1) — 1, as expected for the induced metric of a codimension 1
hypersurface that satisfies one condition.

Since the metric on B is degenerate, it does not have a preferred volume (D — 1)-form.
However, there is an covariant area (D — 2)-form eg. Let ¢ be the volume form? on M.
The area (D — 2)-form on B is given by?

€s = Jp(LgLec) (3.17)

where again ¢ is the contraction of vectors with forms. The pullback of es to any cross-
section S, of B coincides with the induced volume form dS := ,/gd”~? o on the cross-
section, i.e., we have i§eg = dS with the inclusion ig : S < B. The area form is orthogonal
to the null directions, we have tyeg = 0. It is covariant under diffeomorphisms of B.

We also introduce a (non-covariant) volume (D — 1)-form on B given by
e = dé’ A eg (3.18)

It is related to eg as tpyep = €5. A (D — 1)-form ¢¢e then pulls back to B as
Ip(te€) = —e"l,&"en. (3.19)

The combination L, = e“/, that enters here will play a special role in our construction, as
we will see.

The introduction of the auxiliary foliation ¢° on S should be thought of as a choice of
reference frame on B. It avoids dealing with the degenerate induced metric on B and makes

2In our coordinates it is explicitly given by € = eh\/add)o Ade! AdP~ 20,
3In our coordinates it reads

€s = VA gy €as. ap (do™ — AG2de°) A A (do?P — AgPdg).

It is invariant under the redefinitions ¢ — e/ and £ — e~¢(£ 4+ v) where v is tangent to B, and covariant
under diffeomorphisms of B.
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calculations more straightforward, but comes at the cost of introducing some additional
structure into the setup: the decomposition of B into spheres S. Note, however, that
we need an auxiliary foliation ¢° in order to locate the position of the corner 9B, so we
cannot avoid introducing such extra data, at least near the boundary of B. This data can
be interpreted as edge modes in the setting of [70].

3.1.2 Decomposition of Metric Variations

The symplectic potential contains the variation of the space—time metric, dg,,. For now, we
will consider a completely general metric variation, but later we will specialize to the case
that the metric variations leave the hypersurface B null. We view the foliations (¢°, ¢')
and the coordinates o as fixed, so they do not vary: §¢* = do* = 0. Since the position
of B is described using the foliations, this also ensures that B does not move, while its
geometry varies, so that integral signs and variations commute. We write dg = g% gy for
the trace of the metric variation, and 6¢®° = ¢*¢*¥dg.4 is the variation of the metric with
the indices raised.

The variation of the metric will be decomposed into tensors intrinsic to S, using the
structure of the two foliations. We then express it using the variations of ¢,¢ and /.
Note that since the forms (£,£) are linear combinations of the d¢® which do not vary,
their variations stays orthogonal to the surfaces S, i.e., ¢**df, = 0 (and similarly for
£). The relationships among ¢ and /¢, which are implemented by the definition of the
metric dependent coefficients (o, @, 3, 3), are also preserved under variations: We have

S(Lal2)8(0,0%) = 8(£27,) = 0.

Our first variation quantity,
0qab = Ga“0"0gar = 6qaBe, €} (3.20)

is the variation of the induced metric, pushed forward into M. Its trace dq := ¢*0qy, =
qABdqap is related to the change of the area element on S as 0\/q = %\/ﬁéq. Note that
8qay # 0(qay), because the latter expression contains the variation of the tensors e

The vector ¢ is null and normal to S by definition, but both of these properties are
metric dependent. When the metric varies, ¢ will therefore change to restore the properties.
The change in ¢ parallel to S is ¢%,6¢°. It can be written as

B

g0l = —q G g, = e (5 A% + BSAT) 2 ema5 AL, (3.21)

29



For the first identity, we have used £%0g., = 60, — gap00®, and that the variation ¢,°6¢, = 0,
since £ is fixed to be normal to S. For the second identity, we varied the expression (3.12),
and used that 6D¢ = §A¢ and that D{q,, = 0. Similarly, we get

—Q

W50 = — "G gy, = ——(JA? — B5A). 3.22
4 q 9o 1 —l—ﬁﬂ( | — BOAG) ( )

The change of the normal volume element e” is given by £%0°6g,:
008 gay, = —L,00% — £,00" = 6(a + @) = Oh. (3.23)

The second equality can be checked explicitly using the expressions (3.9) and varying them.
Remembering that \/|g| = /ge", and noting that d/|g| = %\/|g|5g, we get

89 = g"0gap = 0q — 2(Ladl® + £,00%). (3.24)

The part of the change in ¢ that lies in the normal plane to S and is not parallel to ¢ is
given by £,0¢*. We obtain

1 )
0,60% = —56%"59@,, = e, (3.25)

so on B, {,00* encodes how much B changes away from being null. We will later fix this
quantity to zero on B. Similarly, we get

_ 1- et _

0y00% = ——00P5 g = ———=—013. 3.26

5 Yab (1+ 8B g ( )
In (3.20) through (3.26), we have listed all possible projections of dga, with , ¢ and g,

and expressed them using the variations 0£%,0(* and dg4p. We have also given them as

variations of the parameters (o, @&, 3, 3, qap, A'). The set of variations

(5qups §“0C%, ¢ 4000, 0,507, 0,50, 0,56, 0,50 (3.27)

are independent, as can be seen from their expressions in metric parameters. Using the
completeness relation (3.14) the metric variation can be expressed fully in terms of the
variations we have given, as

5gab = 5Qab - (gaqbcégc + gbqacégc) - (Zach(Sgc + ngac(Sgc) - (gagb + Eagb)(gcégc + EC(SZC)
— 20,0,(£.00°) — 20,0,(£,6L°). (3.28)
The change of normalization of £ is £,6¢%, and the change of the normalization of lis ﬁaélza.
They enter the metric variation only through the symmetric combination £,00% + £,0¢°.

This is the variational expression of the fact that the boost gauge of ¢ and ¢ is indeed pure
gauge.
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3.1.3 Extrinsic Geometry

The momenta conjugate to the metric are the extrinsic geometry of S. As it was the case
with our variations, all of the extrinsic geometry is expressed in tensors intrinsic to .S,
which we push forward onto M. We will not give a complete list here, but just define the
ones that will appear in our calculations.

The extrinsic curvature associated with ¢ is

1
iqacqbdfzch (3.29)

It describes how the induced two—metric changes along the vectors ¢ and is symmetric. Its
trace 6, = qagﬁ?b = ¢V 0, is the expansion. It measures how the area element Vqon S
changes along ¢, corrected for the divergence of the coordinate lines o = const. relative to
¢ and the normalization of ¢, and can be written as

Vae 0y = 0.(v/aDg) — B0a(v/aDy) £ .(v/aDy). (3.30)
(see appendix A.1). If the shift A7 is set zero, and the boost gauge & = 0 is chosen such

that ¢ 2 0/040, the last expression reduces on B to the usual \/q0 = 0y\/q. The barred
expansion is analogously defined as §; = ¢**V /.

egb = qacqbdvcgd —

The tangential acceleration a, is defined as
Qg ‘= qabvg&,. (331)

It vanishes on B. That can be seen by writing a, = ¢,“¢*(d€);., and using that (d€). is
orthogonal to S in both indices, or by explicitly evaluating a, = e %¢,*V,3 £ 0. Since
Qg 2 and also (*Vl, = 0 because ¢ has constant modulus, we obtain that V,/, on B
must be parallel to ¢,: ¢ is geodesic. The proportionality factor is the normal acceleration

v = 0"Vl (3.32)

Although 7 is in general not geodesic, we introduce the “barred” normal acceleration

5 = 1"V il,. (3.33)
Lastly, we introduce the twists 1, and 7,, and the normal connection w,.
Mo = — qa"Vily
Na ‘= — Qabvﬂgb
Wa = ¢V 0, (3.34)
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The combination —7 which computes the commutator gq[¢, €]° is essentially the curvature
of the Diff(S)—connection:
n® — " = e "[Dy, D1]". (3.35)

This completes our geometrical setup. We will have more to say about some of these
variables in section 3.3.

Let us note that under the boost transformations (¢,¢) — (e/,e (), the tensors
(0,1, 0, 07) transform covariantly to become (1,7, €0y, e=0;), while (7,7, w,) transform
inhomogeneously as connections and become (ef(y+ V), e (7 — Vze), (wa +¢."Vie)). We
now turn to our main task of evaluating the symplectic potential on a null hypersurface.

3.2 The Symplectic Potential on a Null Hypersurface

The symplectic potential current integrated on B is

Op = —/B (ea‘G)aEa) €g = %/B (e‘_’ (Vgég - ﬁavbégab))qg, (3.36)

where we have used the expression (2.19) for the symplectic potential current and our
expression (3.19) for the pullback of a contraction with the volume form. Let us first
evaluate

1
— 0%, = E(wsg — £, V69™), (3.37)

using the decomposition of variations and the extrinsic geometry introduced in section 3.1.

3.2.1 Evaluation of 6%/,

The second term —%favb5gab of the last equation requires some work. We integrate it by
parts, and using that dg.,¢° = 60, — ga»0¢° obtain:

1 1
- §£avbégab = 5(5gabvatzb + Va(60° — g™60y)). (3.38)
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Let us consider the last term of the last equation, and insert the completeness relation
(3.14) inside the derivative.

%va((w — g™ot,) = %va (q°80 + £(B00° + 0,60) + 20 (4,00%))
1 a b g Spb pb b\ (pn =
= 5 (Vala™00) + (B3¢ + £,50) (00 + ) + 2(0s6¢) (0 +7)

+ V(080 + 0,08 + zvgwbw)). (3.39)

In the first line we have used that the variations stays orthogonal to the surfaces S, i.e.
g0, = 0, for the second line, we have used V,* = 0, + v and V0% = 0; + 7.

The first term in (3.38) is 0g, VP, It is already of the form P§Q. To evaluate it,
we insert the decomposition of the metric twice. Comparing with the projected variations
and the definitions of extrinsic geometry from section 3.1, it becomes the sum of six terms
which are not identically zero:

89ab0"°q"'V by = 0qap0;"
6gapq Ll by = — q"0l"w,
6gab£agcqbdvc€d = qabf%b??a
8 Gapl 0N Uy = 20,607
§gal™°q"'V by = — q"60a,
Sgupl LTI by = — (0,50° + £,67%). (3.40)

We have used that ¢?°6¢, = 0 and that the remaining terms are zero because (V,/, = 0.
Adding this up yields

%5gabvaéb = %(5%;,9;1’ S0 (1 — wa) — 0%y — (L,00% + u60%)y — 20,60°7).  (3.41)

We have dropped some projectors ¢,” where they are unnecessary. Now all that is left to
evaluate is the term $V,dg in (3.37). Using (3.24), it becomes just

Sy = SVe(bq — 2060 + 5T)). (3.42)
We add everything up to obtain
—0%, = %(6%1)921’ + 00" (1 — wa) + 00(£,00% + £,60%)
+ Vo (8g — (L0 + £,60%)) + Vo(q"p6L°) + 2V 5(£,6¢%)
- 2(£,609) (07 + 27) — M‘aaa) (3.43)
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Remembering that Op = — || 5(e¥©%, e, this is our first version of the symplectic poten-
tial on a null hypersurface. It is obtained by integrating by parts, inserting the completeness
relation, and substituting the variations and extrinsic geometry we defined, and was first

derived in [3] We have not yet assumed 03 Zoorglo.

In this form, the result is not suited yet to read off the canonical pairs of gravity, since
it still contains derivatives of variations. It is not of the form PJ(@Q with the configuration
variable ) depending only on the geometry of B.

3.2.2 Splitting the Symplectic Potential into Bulk, Boundary
and Total Variation

In the following, we will restrict attention to metrics for which B is null and metric varia-
tions that keep the hypersurface B null, i.e., we set

Lo, ssto. (3.44)

This nullness condition means that we restrict attention to the submanifold of field space
on which B is null, and consider only metric variations which are tangential to this sub-
manifold. In other words, what is calculated in the present section is the pullback of the
pre—symplectic potential ©p to the submanifold of field space where B is null. If B is part
of the boundary of spacetime, fixing # and its variation is a partial boundary condition.
To avoid removing any degree of freedom by fixing 3, one might “turn on” the frame field
¢1, hence making the location of B dynamical. We will not consider that here.

Using those conditions, the expressions a, and ¢*§/¢, vanish on B (but not the transverse
derivative V;(¢*6¢,) of the latter expression). These conditions therefore lead to a simpler
expression for the symplectic potential:

1 _
Op = —/ e ((5(1&1)0?1’ + 00%(ng — wa) — 0s0h
2/B
+ V(5 + 0h) + Va(g",00") + 2vg(£a5£a)>63. (3.45)

We have written 0k for (—£¢5¢, — (260,).

This expression is not fully satisfactory yet for two reasons: It is not manifestly boost
gauge invariant, and it still contains derivatives of variations. From (3.36) we see that the
integrand of ©Op is boost invariant because the combination e®/, is, but in the equation
above the invariance is not insured term by term. In order to achieve this it is worthwhile
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to notice that the combination e®/ enters the symplectic potential in many instances. We
therefore introduce the boost invariant (but non-covariant) combination

L*:=¢™", L0, =Do+BD1 2 Dy,  6L" 2 ¢"0L" =5A3.  (3.46)

We also denote its extrinsic curvature 0% simply by %, which is equal to 0% = e®2°.
Now using the identity 7, — w, = ¢.°V,@, we can evaluate

€OV o (q%00°) = Vo0 L — (g — wa)dL". (3.47)

We can also use that e*V;(£,60%) e Vi(e*€,00%) since £,60° £ 0. The symplectic potential
can then be written as

1
@B = —/ <6qab0ab + 6La(na — ’fla> — 0(5]1

2/B

+ V5 (0q + 6h) + Vao L + 2vg(e@£a5£a)> . (3.48)

In this form all the terms are now individually boost invariant. For the last term this is

due to the fact that %64, £ ). We have also discovered that the most convenient boost
gauge for the symplectic structure is @ = 0, since it identifies £ = L. Note that the induced
metric (3.16) on B is determined by (qap, L?).

The last term Vj(e®l,0¢%) is still problematic though. Indeed even if ¢,6¢* vanishes
on B, its derivative V(¢,6¢*) does not, since the derivative is in a direction transverse to
B. The challenge we are facing is to find a way to eliminate this transverse derivative.
In the case where the boundary is spacelike a similar issue arises, and there it is possible
to eliminate the transverse derivative by including it into the variation of the densitized
extrinsic curvature, which leads to the Gibbons-Hawking term. This is therefore exactly
the strategy we are now going to follow: We show that it is possible to absorb the transverse
derivative Vz(e*(£,0¢%)) into a total variation.

Using that 08 2 0, we can evaluate that Vile® (£,00%)] Z D;(08). Note that (even
outside of B) the normal acceleration can be written as y=e"[Dye® + Di(e“3)]. This
suggests that we can extract from its variation the transverse derivative up to tangential
derivatives. Before doing so, one has to remember that the normal acceleration transforms
as a connection under boosts, while we want to keep boost invariance manifest. Under the

rescaling (¢,¢) — (e“l,e~<(), v transforms as
v = e (7 + Vie). (3.49)
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This suggests introducing the surface gravity which is the boost invariant combination
k= e*(y+ V). (3.50)

It is boost invariant, since the transformation of & and V,a cancels the non-invariant terms
in v. It corresponds to the normal acceleration k = L,V L of the vector L=Dy + SD;.
Using metric parameters, the surface gravity x can be written as

k2 Doh + Dy B, (3.51)

and is manifestly boost gauge invariant (see appendix A.1).

In appendix A.2, we calculate the total variation of the surface gravity on B for varia-
tions that preserve the nullness of B, i.e., such that §3 2o Ttis given by
5k Z L0y + 7a) + VLR + V(e ,60%). (3.52)

By using these results we can now write down the symplectic potential in a form intrinsic
to B which does not involve any transverse derivatives. It reads

1
Op = - / (5%0“’7 — 6L*(nq + 30,) — O5h
2B

+ V1(9 = 6h) + VaOL® + 26k ) e (3.53)

In order to finalize the expression we first need to integrate by parts the derivative along
L, producing a total derivative. We use that for any p,

VaVip 2 du[\aDipl — V/abp. (3.54)

where we used that Lo 2 Dg and that d,(,/qDg) = /qf. We can also express divergences
of vectors tangential to S as

VAV L = 0,(\ /@0 L") + L (Mg + 7a)- (3.55)

These identities are proven in appendix A.3. We also need to convert the last term into a
total variation, using that §(2xeg) = (20K + kdq)ep. This gives us

1

O = / (50" — 2615, — (1 + )54 ) e
2 /s

v /aB (L(60 = o) + 6L )tae + 8 /B Fen). (3.56)

36



Here the directed volume element t,eg on OB appears. Recall that in the foliation frame
we have (e = €g.

This expression is the sum of three terms, a bulk symplectic potential, a boundary
symplectic potential and a total variation. The variational terms in the bulk symplectic
potential only involve dq,, and 6L, which form the intrinsic geometry of B. In particular
we see that the term involving the variation dh has cancelled from the bulk part. This
term is still present in the boundary contribution of the symplectic potential. In order to
remove it we introduce another total variation

—O0h L%ep = —5(hL“LaeB) + [5L“h + %héqL“} La€RB, (3.57)

where we have used deg = %5(163. We get

Op = 1 / (5qab€“b —20L7, — (k + 0)5q> €B
2 B
1
+ -/ (L )27 5g + (14 )L e
2 Jop

—|—5</B/£€B—%/8Bhes). (3.58)

The boundary part and the total variation part of the symplectic potential can be
written in a variety of different ways, all keeping with our principle that ©5 should just
contain variations of induced geometry and total variations. First using /g0 = 0,(,/qD§)

and Dy e L, it is important to note that the expansion 6 is a boundary term on B:

/96]3:/ LabaéB:/ €s. (3.59)
B OB OB

The variation of the last equation becomes

5(/BeeB> - 5(/63 63) - /BB(éL“+ 15qL%) g€, (3.60)

We can thus rewrite the last expression as

1 1
Op =5 / (0wt — 2017, — (1 + 0)oq ) e + / (37176 + (h = 1)0L%)tacr
2 /B 2 Jon

+(5</B(9+f£)63—%/83h65>. (3.61)
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Also noting that V,L* = 6 4+ k, we see that in this form, the bulk total variation
Ap = [5(0 4 K)ep is a close null analog of the Gibbons-Hawking term which features
the divergence K = V,n® of the unit normal to the hypersurface. A boundary action of
this form is given in [60)].

Note that the momenta for the trace dg = d¢.q® and the traceless part 0q(ap) of the
variation of the induced metric on S have different forms. It is therefore natural to split the
induced metric into a conformal part and the volume element. We parametrize the sphere
metric gap in terms of a conformal factor ¢ and a conformal metric v of unit determinant:

Gab = € yap,  det(y) =1, (3.62)

The conformal factor determines the luminosity distance R = e®.

The variation of the conformal metric dv, = € 2°(0qa — 200qq) is traceless. Its
momentum is the conformal shear
5% = ¥ (0" — 554"0) (3.63)

which is also traceless, and captures the change of the conformal inverse metric Y% = ¢2¢¢®
along L. Splitting the term §g,,0%° into its trace and traceless parts then yields

6qan0™ = 67" + 550q 0. (3.64)

Lastly, we will substitute ¢ = 2(D — 2)dp to produce an exact variation. These
replacements give the symplectic potential as the sum of a bulk term, a boundary term,
and the variations of a boundary action and a corner action:

Op = @%ulk + Oy + 0Ap + 5@33, (365)

where

1. . _ af
Qbulk — /B <§5%b0 "~ (B=20+ k) (D—2)0p— 6L 7}a> €B,

Ou = 1/ ((1 +h)LO (D = 2)5p + h5La)LaeB
2 Jon

AB: /FLEB
B

1
app = 5/ (1 — h)és.
0B

This is the final expression we are looking for. We analyze it in the next sections.

(3.66)
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3.3 Canonical Pairs

We now read off the null canonical pairs of gravity from (3.66), comparing with the
schematic expression (2.3).

Bulk configuration Bulk momentum

Conformal metric: Yab T Conformal shear

Normal vector: L® —Na Twist (3.67)
Volume element: (D —2)p — (/i + %9) Expansion, surface gravity

Note that what we call momenta are B-densities Peg. The boundary canonical pairs can
also be read off from (3.66) and are

(L“, %hqababes) and ((D — 2)o, %(1 + h)es) . (3.68)

Written in this form, the configuration variables in the bulk of B contain only variations
of the induced metric (3.16) on B, and no variations of the normal metric, nor derivatives of
variations. That is analogous to the symplectic structure on spacelike and timelike surfaces,
and it was not obvious from the outset that there is such a form. Also the configuration
variables on the corner 0B are a subset of the induced geometry. Let us analyze each of
the pairs in turn. We will refer to them as the “spin-2”, “spin-1”7 and “spin-0" pairs in
accordance to the number of their independent components.

3.3.1 Spin-2

The spin-2 configuration variable is the conformal metric v45, which allows measuring
angles, but not lengths, on the surfaces S. Its momentum is the conformal shear, which
is given by the Lie derivative along L of the conformal metric: 647 := VAA'VBBléﬁ LYAB
where v4# is the inverse of v45. That the shear is conjugate to the conformal metric
was first established by Ashtekar et al. [19] in the context of asymptotic null infinity. The
shear is automatically trace free, and can be defined from the trace free part of the extrinsic

curvature! as 648 = e220<AB> with 48 = ¢4%¢P*V,L;. In metric parameters, the shear

AB
4We denote the trace free components of a tensor as §<48> = gAB _ (%_2) q“Plcp
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becomes (see appendix A.1)
5_AB — _ %aO,YAB + 62<pd<AAg>
= — 307" + 3 (Y*0c AL +7"C0c A} — AT 0cyP) — 5500 AT (3.69)

Note that the shear is independent of the conformal factor ¢. It is determined by the
intrinsic geometry of B. If we interpreted A as the velocity field of a fluid on B, the term
e~ 2%d_4App> is naturally interpreted as the rate of strain tensor. It is complemented by
the time derivative of the metric in the case where the metric is explicitly time dependent,
which is not usually the case in fluid dynamics. Also note that both y45 and 547 are
invariant under conformal rescalings of the metric.

3.3.2 Spin-1

The spin 1 configuration variable is L. Since its dgp—component is fixed, its variation is
0L* = §Af and is purely tangential to S. The momentum 7 conjugate to L is given by
Mo = —qa"Vly. Since ¢ determines the orientation of S within B, 7, describes how the
cross—sections S of B tilt and twist when parallel-transported along ¢. It can be expressed

as the sum of two terms (see appendix A.1):
1
na = 5(8,4]1 — FA), Fy = qABefh (8014{3 — 81./4(? + [Ao, Al]B) (370)

Here F4 is the curvature of the shift connection, and measures the non-integrability of the
normal two-planes. The other term d4h measures the rate of change of the normal volume
element h along the cross—section S.

Using the boost gauge @ = 0, Damour ([63]) first interpreted w, = ¢,"l°V,l. as a
momentum density. He was motivated by the fact that for a cylindrically symmetric black
hole, an integral of w, is the total angular momentum, and that in the Navier—Stokes-like
equation ¢,°L¢Ry. = 0, w, plays the role of a linear momentum. However, w, is not boost
gauge invariant and transforms as a connection under the boost gauge. The twist 7 is boost
gauge invariant and coincides with w in the boost gauge & = 0 since 7, —w, = ¢.°V,a&. The
twist 7 is thus the proper boost gauge invariant generalization of w. In the light of the fluid
interpretation of null surfaces, it is thus very natural that we found 7 as the momentum
conjugate to the “displacement” Ay. We have thus confirmed Damour’s interpretation of
w from a symplectic analysis.

Under conformal rescaling of the metric ¢ — e*g, the size of the normal geometry
transforms as h — h + 2¢ while Ag and A; do not change. The twist then transforms by a
total derivative, 74 — 74 + Oa¢€, and its curvature dj47p is conformally invariant.
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3.3.3 Spin-0

The spin-0 sector is especially interesting, since it carries information about mass and
energy. The first ingredient is the expansion. Even though it is part of the extrinsic
geometry of S, it is determined by the intrinsic geometry of B. That can also be seen
noting that the divergence of the area form on B is des = feg. More generally, we have
for any function g on B:

d(ges) = (L0ug + g0)en, (3.71)

The expansion also plays a central role in the Raychaudhuri equation. In terms of our
parametrization of the metric, the expansion becomes

0 = (D — 2) Dy + 04 AL (3.72)

In the case of a non—expanding null surface, the spin-0 sector becomes the pair from
black hole thermodynamics: the volume element ,/q is conjugate to the surface gravity .

For a general null surface, x can be interpreted as an infinitesimal redshift: Suppose
¢" = —1, such that ¢° corresponds to the clock of a family of geodesic observers. Consider
a lightray propagating along L. It may be described by an affinely parametrized null
geodesic r = fL, where for r to be affine, f needs to satisfy L%J,(In f) = —k. The
light’s frequency will be measured by the observers to be fL%(d¢g), = f. The infinitesimal
redshift then becomes

f(¢° —d¢°) — f(¢°)

f(¢%)

The coordinate expression for the surface gravity x is derived in appendix A.1 and reads

dz = = rde’. (3.73)

k= (Do + BD1)h + D1 £ Doh + 8,8 (3.74)

The coefficients x and 6 are not invariant under local rescalings of the metric. Under a
change gu, — €**ga, holding L fixed, we have on B

(#,8) — (k + 2Doc, 0 + (D — 2) Doa). (3.75)

A wide variety of different linear combinations of the spin-0 variables x and 6 appear
in the literature. The conformally invariant combination is kK — %9, it is constant on con-

formal Killing horizons [101]. The combination k — 556 features in the null Raychaudhuri
equation written as

Grr = — L°00 + (k — 5550) 0 — oaP0p?, (3.76)

2
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so if one gauge fixes that combination to zero and knows the shear o4, the equation can
straightforwardly integrated for € (such as in [53]). The combination k + 6 is obtained as
k+ 0 = V,L* and has been suggested as the null analogue of the Gibbons-Hawking-York
term [60]. However the combination that is of crucial interest for us is the combination

=K+ 2=30 (3.77)

which we call the spin-0 momentum. It enters our analysis as the canonical variable
conjugate to the conformal factor ¢, and naturally appears in the densitized Raychaudhuri
and Damour equations as we will see in the next chapter. This combination appeared

in dimension 4 in the canonical analysis of Torre [52] and of Epp [55], see also [102]
for its interpretation in the first order formalism. It combines the pressure and bulk
viscosity terms from the membrane paradigm [65]. The coordinate expression for the spin-

0 momentum becomes

12 Do(h+ (D —3)p) + D1 + B=20, A7 (3.78)

3.3.4 Geometrical Interpretation

Remarkably, the elements of extrinsic geometry that form the momenta appear naturally
in the comparison between two different ways of transporting a vector field £ on B: the Lie
transport L&, which is purely intrinsic to B, and the parallel transport V£, which through
the Christoffel symbols contains information about the metric components transverse to
B. Let us decompose the vector field £ € I'(T'B) as

£ = fL" + 0, (3.79)

with v || S. The difference between the parallel and Lie transport along L of a vector £
tangent to B is given by

V68— [L,€]" = VeL® = ¥ (wpL® + 03" + 22550) + frLe. (3.80)
This difference is encoded into the so-called Weingarten map V¢ L* | see e.g. [L00]. Note

that in our boost gauge, w, = 7,, so all three momenta are contained in the Weingarten
map.

3.4 Lagrangian Boundary Terms

In the expression (3.65) for the symplectic potential, we have extracted a total variation
from the symplectic potential. That corresponds to a choice of polarization: It tells us
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which are the configuration and which the momentum variables. This can be seen most
clearly by noting that such a total variation can be used to interchange to roles of config-
uration and momentum variables:

O = P6Q = —Q5P + §(PQ). (3.81)

The choice of polarization we have made is that the configuration variables () should
not contain derivatives of the metric. As discussed in chapter 2, the total variation in
Op = 0% + Oyp + 5(Ap + asp) can be canceled by adding a boundary term and a corner
term to the action:

S:/ L—AB—CI@B (382)
M

From (3.66), we therefore make the following suggestion for the action of a space-time
region with null boundaries that may possess corners:

S—l/}%—/ﬁ@—lf (1 — h)es. (3.83)
2M B 28B

Note that the corner term vanishes for segments of 9B that contain the null direction L,
since in that case the pullback of €5 vanishes.

A similar line of reasoning to this section was followed in the recent paper by Lehner et
al. [62], and a proposal for the boundary and corner action for null boundaries was given.
We have thus reproduced one of the results there with a different calculation.®

Parattu et al. ([01]) also gave a suggestion for the boundary action and the canonical
structure. They mostly work in the boost gauge o = 0, and extract a total variation
containing the normal acceleration 7 rather than the surface gravity x. As can be seen
from (3.50), v and k are inequivalent unless & = 0. For that reason Parattu et al. obtain
an extra canonical pair on B, which contains a piece of normal geometry as a configuration
variable. As we have seen, that pair can be removed by choosing k rather than « in the
total variation extracted.

5Up to the summand 1 in the corner term, which is a choice of corner polarization.

43



Chapter 4

Null Conservation Laws for Gravity

In this chapter, we analyze the gravitational constraints on a null surface, reading them as
conservation laws and connecting to the symplectic analysis of chapter 3.

The plan for the chapter is as follows: Section 4.1 recalls the relevant pieces of intrinsic
and extrinsic geometry of the null surface and gives the action of the field space Lie deriva-
tive. Section 4.2 rearranges the constraint equations as a canonical conservation equation,
and derives the boundary current J; and the flux terms F¢. Section 4.3 addresses the
rationale and consequences of modifying the symplectic potential away from the standard
one, giving the intrinsic symplectic potential, and derives the canonical conservation equa-
tion starting from the intrinsic symplectic potential. Section 4.4 addresses the question
how the boundary current J¢ is related to the Hamiltonian generators of the infinitesimal
diffeomorphism £. Technical manipulations have been relegated to appendices.

4.1 Geometry

This section recalls the pieces of intrinsic and extrinsic geometry that will appear, and
gives their transformations under diffeomorphisms.

4.1.1 Intrinsic and Extrinsic Geometry of a Null Surface

The null surface B is located at the level surface ¢' = 0. It is foliated by a “time”
coordinate ¢° into spacelike codimension-two spheres S with coordinates x*. The pieces
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of intrinsic geometry of B that we will use in this chapter are the conformal (D — 2) metric
vaB, the conformal factor ¢ and the null direction L®. The metric on the spheres S is
qap = €**yap. As we saw, these data determine a covariant vector valued (D — 1)-form
L%g, and a covariant area (D — 2)-form es. We also introduce the form L, which is normal
to the (D — 2)-spheres S and satisfies L2L, = 1. We have parameterized

_ T _ 1 0 241
L=Dy+8Di,  L=1725(d6" + ")
—h
o(L) = e(dg! = as’),  g7(L) = 55D~ BDy). (41)

The variable 8 vanishes on the null surface.

The extrinsic geometry of the null surface B which we will encounter here are the
shear 042, the twist 74, the expansion 6 and the surface gravity . They are defined and
explained in section 3.3. We use o4p = 0.5~ for the shear, and 642 = 29048 for the
conformal shear, which is invariant under rescaling of the metric.

The spin-0 momentum is the combination p = & + 2=20. We will write £[f] := £°0, f
for the directional derivative.

4.1.2 Transformations of Intrinsic and Extrinsic Geometry under
Diffeomorphisms

We now turn to the transformations under infinitesimal diffeomorphisms of the pieces of
intrinsic and extrinsic geometry of the null surface B, which we will need to understand the
conservation laws. The expressions we have introduced make reference to the coordinate
fields, especially to the “time” variable ¢" in the normalization of L. As explained in section
2.3, we thus cannot expect them to transform covariantly under diffeomorphisms. The non-
covariance is made precise by the anomaly, which acts on field-space scalars T', which may
be spacetime tensors of arbitrary rank, as AT = £/ — L. Here £T1 = I.0T = %L'Egab
derives T" according to its metric dependence, and L is the ordinary Lie derivative, acting
according to the index structure of T

The covariance of the covariant derivative is encoded as
Ae(VoT) = V(AT (4.2)

for any tensor 7', which may have a non-vanishing anomaly. The identity may be checked
explicitly using the standard identity 61", = %(Vzﬁg‘lc + V9% — V@gp.). We make use of
this in appendix B.3 to derive the diffeomorphism transformations of extrinsic geometry.
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The anomaly of the null vector L can be understood as the source of all the anoma-
lous diffeomorphism transformations, and it will be instructive to calculate it here. The
anomaly stems from the normalization condition L[¢°] = 1, which introduces the field ¢°
as background structure and thus breaks covariance.

Restricting attention to vector fields parallel to B, we have (L¢L)* = £°0, L% — LP9,&°.
However, viewing L as a function of the metric, we may write

1
59"

L* [gbc] 10

(4.3)

Q

Using the Leibniz rule, we get

gla
(g'0)2
Now use that the components of the inverse metric transform by the spacetime Lie deriva-

tive: £¢(g%) = £°0.9" — g*0.£" — g*9.£*. Parametrizing £* = fL*+v® with v || S, we get
after a short calculation that £,L* = [v, L]*, and hence, on B, the anomaly becomes

1
Ll = ﬁsggla — Leg™. (4.4)

ALt = [v, L]* = [§, L]* = L[f]L". (4.5)

The field space Lie derivatives of all the data we have defined so far are derived in the
appendix B.3, and we summarize the relevant results now. As before, let £ = fL* + 0
be a vector field on B, and let v || S. In addition to the transformation of L, we will have
the following: The conformal metric transforms as

Levap = 2(foap + e *d_avps), (4.6)

where we recall that d4 is the covariant derivative of gap = €?*vap, and we have written
T ap~ for the trace free part of a tensor. Note that e 2d_ v~ is independent of ¢,
and that the RHS is trace free as expected of derivatives of a unimodular matrix. The
conformal factor transforms as

Lep = 555 (0 + dav?). (4.7)

As argued earlier, the combination L%g is covariant; it transforms under diffeomorphisms
of B as

Le(L%p) = Le(L%s) = ([v, L]* + (6f + dpv”)L*)ep. (4.8)
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Here, the spacetime Lie derivative acts on L%g as a vector valued top form, i.e., L¢(L%p) =
(€, L% + L*d(1¢ep). The area (D — 2)-form is covariant, and by contracting the previous
equation we obtain

2563 = Egﬁs = LédES + dLgES = ([U, L]abaeB —+ (9f -+ dBUB))Es. (49)

Finally, we need the transformation of the spin-0 momentum, which is more subtle. Under
finite rescalings of the null generators L — gL (or equivalently under redefinition of the
coordinate ¢° with 9¢°/0¢” = g), the spin-0 momentum transforms as a connection and
goes to

= pg = (L+p)lg]. (4.10)

The spin-0 momentum can thus be fixed to any value by controlling the “clock” ¢°. We
will make use of that fact in section 4.4. Infinitesimally, the transformation involves a
second derivative of the vector field &, and reads:

Lep = v[p] + L[(L + p)[f]]. (4.11)

Note the appearance of the differential operator L + u, which is a covariant derivative with

respect to local rescaling of the null generators!.

Two remarks are in order: Firstly, the transformations of (p,7, L, i, 7, 0%) only
involve ¢ as a vector field on B, and do not depend on how (and if) it is extended to
a vector field on M. This is not obvious looking at the coordinate expressions given in
section 3.3, and is an important and desirable feature of those variables. Secondly, note
that u, L, eg and 74 transform covariantly under diffeomorphisms v parallel to the cross-
sections S: Anomalies arise only for diffeomorphisms transverse to S.

We will also need the transformation of A, the logarithmic determinant of the metric in
directions normal to S. It depends on the extension of £, and we parametrize an arbitrary
extension as £ = fL® + fL® + v* with f vanishing on B. Using dh = L°L§g,, we get

Leh = (L+R)[f1+ (¢ (L) + B)[f] + (na + )0, (4.12)

where N4 = —q4°V;L, and k = L,V;L* Note that  and & are not part of the extrinsic
geometry of B, but rather part of the extrinsic geometry of S as embedded in M.

To summarize, the tensors that make up the intrinsic and extrinsic geometry of B can be
Lie-derived in two ways: The spacetime Lie derivative views them as tensors and Lie-derives

Under L — e®L holding fL fixed, we have f — e~ f and pu — e®(u+ L[a]), so (L + p)[f] is invariant.
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them according to their index structure, and the field space Lie derivative views them as
functionals of the metric and derives them according to their metric dependence. The
difference between the two prescriptions is the anomaly A;. We have given the field space

Lie derivatives that we will need in the following; more transformations are in appendix
B.3.

4.2 Einstein Equations as Conservation Equations

Having completed the setup, let us turn to our central task of interpreting the Einstein
constraint equations as conservation equations. We are looking for a conservation equation
intrinsic to the null surface B which is of the form “Divergence of current = gravitational
flux + matter energy-momentum flux”. Both the current and the gravitational flux will
depend on a vector field ¢ parallel to B. The conservation equation is an equality of
(D — 1)-forms, and can be integrated on portions of the null surface B.

The current on the LHS is the boundary current j¢. It is a vector tangent to B and we
can associate with it a (D — 2)-form Je = ¢j.ep. Je is a codimension one form on B and
the divergence of the current corresponds to d.Je. In the following we will interchangeably
use the denomination boundary current for je or J¢ even if the later is the dual boundary
form. The boundary current j¢ can be expanded in terms of a time component, i.e., the
component along ¢°, and a component tangential to the sphere. Its time component may
be thought of as the gravitational charge aspect, and the spatial components as the finite
boundary analogue of soft currents.

The Einstein equations we consider are the null Raychaudhuri equation [103] for G,
and the Damour equation [104] for 7.°G 1.

They are derived, using our variables, in appendix B.2. This set of equations are the
null analogue of the ADM momentum constraint equations. Since we are looking for a
conservation law that can be integrated on the null surface B, and since the canonical
constraints are best thought of as densities on a hypersurface, we multiply them with the
density eg. The densitized expressions are

Grreg = —L1(fep) + (10 — 0,04 )es,

b b — b (413)
¢ Groes = Qo Lr(Mpep) — (dopt + dpoy”) €.

Note that densitizing with e, and performing the trace-traceless split on # and ¢,°, natu-
rally leads to the appearance of the spin-0 momentum pu = K + %9 in both equations.
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Let us analyze them as conservation equations on B, first when contracted with a
“constant” vector field, and then for a general vector field.

4.2.1 Conservation Law for “Constant” Vector Fields

To gain a first understanding, consider the Raychaudhuri and Damour equations smeared
with a vector field £ = fL + v parallel to B which is Lie dragged along L, i.e.,

L,&] = 0. (4.14)

This simplifying assumption means that £ is “constant in time” and implies L[f] = 0 and
[L,v] = 0. It is sensitive to the choice of normalization of L, i.e., to a choice of clock. Let
us go on-shell and set Gy, = Ty (in units where 87G = 1). Contracting with &, we can
rewrite our two equations as

—L‘L(fQEB) = f [TLL — /JQ + O'baO'ab] €B, (415)
LL(UaﬁaGB) =° [TaL -+ (da/L — dbO'ab>] €B, (416)

where we used L (ges) = (L[g] + gf)ep for any function g. Since L (gep) = d(ges), the
LHSs of both equations are total derivatives.

Written in this manner the Raychaudhuri equation (4.15) can be understood as a con-
servation equation for an energy Ef := — |, ¢ f0dS. Indeed, by integrating the Raychaud-
huri equation on a portion of B delimited by S; and S, one gets the balance equation
ALy = fsbzf f(Trz + TS, )es, which expresses that the change in energy E; is due to ex-
change of material and gravitational energy with the exterior. This allows us to identify
the gravitational energy momentum tensor

TS, = (00" — ), (4.17)

which appears alongside the matter energy-momentum tensor and measures the amount
of gravitational energy that leaves the region enclosed by S per unit time and unit area,
according to the observer £. Part of the gravitational energy is carried out by the gravita-
tional waves or spin 2 components 0,%0,”, but another part is carried out by the spin zero
component and measures the work done by the rescaling of the surface through the term
—uf. Since 6 is the rate of change of area, this naturally leads to the interpretation of
as a boundary pressure term.
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In the Damour equation (4.16), P, := [(v-77)dS is interpreted as the super-momentum
enclosed by the region S. We can identify a gravitational momentum flux TS, given by

TEL = a(daﬂ - dbo-ab)- (418)

This expression confirms the interpretation of p as a pressure term, while the shear o
appears as a viscous stress component. Integrating the Damour equation then gives the

balance equation AP, = f;/ (Tro + TE )eg.

4.2.2 The Boundary Current and its Conservation

We would now like to understand the conservation equations more covariantly and locally.
This requires that we use a general vector field ¢ € T'B, and combine the Raychaudhuri
and Damour equations as components of one equation.

In order to decide which terms on the RHS of (4.13) should be seen as part of the
boundary current and which as part of the fluxes, let us recall the form of the energy-
momentum flux for a scalar field with Lagrangian Lg.aa = % g*0,¢00,0 — V(¢). On a null
surface, the canonical momentum density P conjugate to ¢ is P = L|¢|ep, and the energy
momentum tensor becomes

TLLEB = L[gb]L[gb}EB, TLvEB = L[QZS]?}[QMEB (419)

Those components combine into Trceg = L[¢|¢[plep for € || B. For a scalar field, the flux
that controls the flow of energy and momenta through B thus has a natural canonical
expression given by the product of the momenta with the field transforms

TLgeB == P£€¢ (420)

We therefore expect the gravitational flux term to have a similar canonical form ), P,£:Q;.

In order to establish this we need to isolate terms that can be interpreted in a canonical
form P£:Q, from the equations (4.13). Lets first recall the action of diffeomorphisms on
our data (section 4.1.2): We have

Levap = 2(fUAB + 672@d<AUB>)a Leep = (f0 + dAUA)GBa
Ll = [o, L), Lep = LUL + w)[f]] + vlp]. (4.21)

We can now express the Raychaudhuri equation contracted with fL® as a canonical con-
servation law. Using again L1 (geg) = d(ges) = (L[g] + 0g)en, we get

(fL)*Gapes = — d(fOes) + (fu+ L{f])des — fo,lopep. (4.22)
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The second term on the RHS is not of the canonical form P£:(Q), so we integrate by parts
and use (dg) A es = L[glep to get
(fL)*Gares = d( — fOes + (L + p)[fles) — LI(L + p)[flles — foo"op’en (4.23)
= d((L + m— (9)[f]63) — eB(SfLu + %UABSfL’}/AB). (4.24)
The RHS is now written as the sum of the differential of a (D — 2)-form and two canonical
flux terms. This is the form we want.

Let us turn to the densitized Damour equation (4.13). Contracting with v* and using
d,v%ep = d(1€5), we can rewrite it as

VG aep 2 d(v7aes + (V"0 )wes) + (Talv, L* — (v0dap) — (e7*90™d,vp))es (4.25)
= d(v“ﬁaes + (vaaab)LbeB) —eg(Lopt — MLy L — %JABS{)/AB). (4.26)

The RHS is also written as the sum of a differential plus three canonical flux terms.

We can now combine the Raychaudhuri and Damour equations and express the Einstein
equations G¢;, = T¢ as a canonical conservation equation. Let us again parametrize
§ = fL + v, and define the boundary current j¢ as

J¢ = (L4 p = 0)[f] + o'my) L* + v'oy”. (4.27)

The corresponding boundary current form is the (D — 2)-form J; := 1), ep given by

Je = (L + p—0)[fles + v'mpes + 003 €. (4.28)

Setting G, = T,p, we can then write the Raychaudhuri and Damour equations as

AJe 2 (Ter + 36" (Levan) — Ta(LeL?) + Lept)en. (4.29)

In this expression the gravitational flux is now expressed in a canonical form. The equations
(4.28, 4.29) summarize the null gravitational constraint equations. The expression for the
boundary current .J¢ is determined by this analysis up to a total differential J; — J¢ +dfe.

The gravitational flux terms, which appear alongside the matter flux terms on the RHS
of (4.29), are of the canonical form P£¢(Q). The canonical pairs are usually identified using
the symplectic potential or related technology, but this analysis provides an alternative
route towards their identification. We see that the gravitational canonical pairs (P, Q)
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are the spin-2 pair (%6ABGB,")/AB) of densitized shear and conformal metric, the spin-1

pair (—17,€ep, L*) consisting of the twist and the null directions, and the spin-0 pair (eg, )
consisting of the area form and spin-0 momentum.

Let us interpret the boundary current vector (4.27). In a given reference frame, the
time component of a current vector is interpreted as the charge density and the spatial
components as non-relativistic currents. In analogy, we may interpret the components
along L of j¢ as charge aspects. First, consider a vector field { = fL parallel to L, which
we interpret as a “null time” translation. The conserved charge of time translations is
energy, and we thus find the gravitational energy aspect

€r = (—9 +u+ L)[f]ES (430)

It can be rewritten as ey = (k — 550 + L)[fes, and features the combination x — 50,
which also appears in the non-densitized Raychaudhuri equation. Note that the gravita-
tional energy aspect ey differs from the previous energy density — ffeg by the addition of a
pressure term preg with pp := fp+ L[f]. We can therefore interpret — ffeg as an internal

energy of the sphere S while ey is its enthalpy.

The conserved charge for spatial vector fields is the momentum. We can thus identify
from (4.27) the momentum aspect

Py = V0T €g. (4.31)

The term v°0% then finds interpretation as a spatial momentum current.

In (4.27), we have written the boundary current je¢ using the split £ — (f,v) and the
extrinsic geometry of B. It can also be written more covariantly and geometrically if we
recognize (see eq. 3.80) that

Vi = —[v, L + ((k + L)[f] + ") L* + 06,7, (4.32)
andusen—ﬁ@z,u—@. We get

jé = V& — 5506 + [v, L) (4.33)

The dependence on the extrinsic geometry of B is now captured by the spacetime covariant
derivative V&%,

To summarize, in (4.29) we have rewritten the null Raychaudhuri and the Damour
equations as a conservation law on the null surface B, equating the divergence of the gravity
boundary current (4.28) to the matter energy-momentum flux T¢;, plus a gravitational flux
of the canonical form ), P,£:Q);.
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4.3 Charges from Symplectic Potential

We will now give a more canonical derivation of the conservation equation, starting from
the explicit expression for the null gravity symplectic potential in terms of the intrinsic
and extrinsic geometry of B derived in chapter 3, and using technology from the covariant
Hamiltonian formalism.

In chapter 2, we saw that the Noether charge density satisfies (2.4),
IeOy — 1eL=Ce + dJ¢. (4.34)
Here, we will write 6, for the standard symplectic potential (4.38), whose pullback © 5 was

computed in chapter 3, and Jg for the associated Noether charge aspect.

Pulling back onto B and contracting with a vector § tangential to B, the term ¢¢L
and the cosmological constant contribution to the constraints do not contribute, and if the
canonical and gravitational matter energy-momentum agree, we get

faGaLEB = j*B(ng - Ig@B). (435)

Since the symplectic potential contains the terms © e PiQ), we expect that [0 = P£:Q
reproduces the flux terms of the last section. Then, we can identify the pullback of the
Noether charge aspect 75(.J¢) with the boundary current of the conservation law (4.29),
and (4.35) and (4.29) become the same canonical conservation equation.

4.3.1 Null Symplectic Potential and Intrinsic Symplectic Poten-
tial

The Einstein-Hilbert Lagrangian leads to the well-known standard symplectic potential
current

é[g, dg) = %Vb(5g“b — g™6g)e,. (4.36)

The standard symplectic potential current is covariant in the sense that it does not make

N

reference to any background structure. Hence, its anomaly vanishes: A:© = 0 for all &.
We recall that the anomaly is defined on field-space forms such as © as

A = Le — Le — I, (4.37)
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and the field space Lie derivative acts on field space forms via the Cartan formula £, =
0l + I¢0.

In chapter 3, we rewrote the pullback of 8y onto the null surface B along the embedding
9B : B — M in terms of the intrinsic and extrinsic geometry of B. There we took the view
that the configuration variables should not contain derivatives of the metric. However,
in (4.29), the derivative £¢p1 appears. Thus, in order to interpret the conservation law
canonically, we will change the polarization so that the symplectic potential contains dpu.
A further argument favoring that polarization is given in section 4.4.

In appendix B.1 we write the symplectic potential O = 55,6 as the sum of a bulk and
a corner term:

@B = @int — dOéS (438)

The bulk term is

Ot = (%(Haba“b — N0 L% + 5u) €B (4.39)

We recognize the canonical Ps and (s appearing in the flux terms of the conservation law
(4.29). The boundary contribution is

g = % (Ohes +15p€p) — ﬁées. (4.40)

Recall that " is the scale of the normal metric, e" = /|g|/,/g. The expression (4.38) is

valid for variations dg4, of the metric that keep the surface B null, i.e. such that 65 =)
in the parametrization (3.10).

The boundary contribution can be rewritten as follows: using es = treg and deg =
(D — 2)dpep we have deg = 15065 + (D — 2)dpes, S0

1
ag = 5 <5h — 25g0) €g + D—:;l 1SLEB- (441)

1
2D

It is interesting that the combination i —2¢ is invariant under local rescaling of the metric,
and that the extra contribution vanishes in dimension D = 4.

A further possible rewriting is

1
g = (iLaégacgbc + 5Lb) wep — 50(€s). (4.42)
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To pass from (4.40) to the last line, use that L20¢,.g> = 6(L.)g**—d(L"), and 6(L.) L ShL..

As we have seen the symplectic potential current is defined up to the addition of a closed
form. That means that the corner term ag can be removed by exploiting the ambiguity.
We define the intrinsic symplectic potential current on B as

Ot := O + das. (4.43)

Its explicit form is given in (4.39). This choice fixes the closed ambiguity in the symplectic
potential in such a way that the modified symplectic potential has no boundary pairs. Our
symplectic potential current contains only the intrinsic geometry {74, L%, ¢} and extrinsic
geometry {0, #,, u} of B. This is in contrast to the usual expression (4.38) that also
contains dh, which fits in neither of these categories. We choose the name “intrinsic”
because as we saw in section 4.1.2, the transformation under diffeomorphisms of the data
contained in the intrinsic symplectic potential does not depend on how the diffeomorphism
is extended outside B. Again, h is not intrinsic in this sense.

Let us take a closer look at the three terms that appear in the boundary contribution
(4.40). Removing the first term —%d(éhés) from ©p is central to our analysis, as we will
see in the next subsection. The second term —%d(b(;LEB) does not enter the integral f B Op
if the boundaries 0B are aligned with the foliation S, since §L is parallel to S. Its removal
thus does not influence the boundary current integrated on S, but rather modifies the parts
of the boundary current that vanish when pulled back to S. Lastly, the term dﬁées is
both a total derivative and a total variation, it could thus also be understood as arising
from a codimension two corner action proportional to the corner area. Removing it does
not change the symplectic form.

Having fixed the ambiguity of the symplectic potential current, we can now evaluate
the flux term 7,0 on the RHS of (4.35). It becomes

‘Ifgint = (%UABSWAB — NaLel” + Sg,u)EB,

(4.44)

which coincides with the flux term from the conservation equation (4.29).

4.3.2 Noether Charge and Conservation Law

Let us now turn to the boundary current term on the RHS of (4.35). To evaluate it, we
start from the boundary current J of the standard symplectic potential (4.36). J¢ is the
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well-known Komar charge form [97], which is a (D — 2)-form on spacetime M, and given
by

J¢ = 3% dg(§) = 3ea Ve, (4.45)

where €4, = tqtpe. Pulling back onto S and parameterizing € = fL + fL + v, one gets
i5(J¢) = 5((L+ R)[f] = (L +&)[f] + (7la = na)v*)dS, (4.46)
where as before 1, = —¢,’ViL, and & = L,V;L® The Komar charge form has the

advantage of being simple, and covariant under all diffeomorphisms. However, it possesses
two features that make it unsatisfactory for the analysis of conservation laws along a null
hypersurface B: It depends not only on ¢ as a vector field on B, but on its extension
outside of B through the transverse derivative L[f]. Therefore even a vector field which
vanishes on B may have non-zero charge. We also see that in addition to the variables «, 7,
that form part of the extrinsic geometry of B as embedded in M, J involves the variables &
and n, which cannot be interpreted in terms of the intrinsic or extrinsic geometry of B. In
trying to describe physics from the viewpoint of the null surface B, both of these features
are undesirable.

We now show directly that the Noether boundary Jgnt associated with the intrinsic
symplectic potential Oy, of (4.39) resolves both issues affecting the Komar boundary cur-
rent: The boundary current Jént does not contain derivatives of £ transverse to B, so it
vanishes if ¢ vanishes on B. Furthermore, ng is entirely determined by the intrinsic and
extrinsic geometry of B. We also show that Jgnt coincides, up to a total differential, with
the boundary current (4.28) which we found from analyzing the constraints.

By (2.5), the boundary current J¢ of the modified symplectic potential is related to the

Komar charge form J; as .
Jént — Jg + Ig(){s. (447)

The core reason ensuring the properties of ng is that we removed dh from the symplectic
potential current. Using the transformation of A given in (4.12), we have

Ie(30ndS) = L((L+ K)[f] + (L + R)[f] + (0 + 1a)v*)dS. (4.48)

It is then clear that adding this term to (4.46) removes both the transverse derivative
acting on f as well as the dependence on & and 7,.

In detail, Jgnt is obtained as follows: As a form on B, the Komar charge form reads

I5(J0) = §La(VE" = V€M e, (4.49)
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where we used j5(€a) = La(tpes) — Li(ta€B).

The expression Izag is computed most efficiently from the form (4.42) for ag. Recall
from 4.1.2 that for £ = fL + v we have

Iedes = Lees = 1e(Oeg) + d(rees)
0L = [v, L]°. (4.50)
Using also I¢dga, = V& + Vi, altogether we get

1
Icag = éLa(Vaﬁb + VP wep + [v, L] taen — 55 (tebep + diges). (4.51)

Adding (4.49) and (4.51) yields the Noether boundary current J@* = J¢ + lcas:

T = (V) + 0Lt — pprclen — Al phgrees) (452)

As claimed, this coincides with the boundary current (4.28) that we found analyzing the
constraints, up to the total derivative term d(555t¢€s), which is within the ambiguity of
both prescriptions, since both Js are defined implicitly by specifying dJ, and vanishes
when integrated on any closed surface.

Let us reiterate the results of this section: The general identity (4.35) on B reads
GéLEB = ng - [§@int- (453)

This equation coincides exactly with the conservation equation (4.29) for the edge mode
current — if we use the intrinsic symplectic potential current O, of (4.39), which differs
from the standard one by a total derivative and has no corner pairs. The gravitational flux
terms are given by 1.0, and are of the same form as the canonical energy-momentum of
matter, i.e., PL¢(Q). The boundary current Jg is (essentially) given by the Noether boundary
current of the intrinsic symplectic potential current ;. As a further consequence of
modifying the symplectic potential current, everything is expressed in terms of the intrinsic
and extrinsic geometry of the null surface B, and independent of the extension of the vector
field ¢ outside of B.

4.4 Hamiltonians

What makes conserved charges interesting, especially in the quantum theory, is that they
are the generators, i.e., the Hamiltonians, of symmetries. We now turn to the question how
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the charge | op Je is related to the Hamiltonian generating the infinitesimal transformation
€. See [105] for a related discussion. Some related results have also appeared in [69],
focusing mainly on isolated horizon boundary conditions.

We saw in section (2.4) that in our present situation with a non-covariant corner mod-
ification, the Hamiltonian and the Noether charge aspect are related as

—IgQé/ (5(J5) — Jgg — L§®int — Ag@s) . (454)
OB

We will thus need the anomaly of the modification ag = %Laégabbbeg + 0L% g — ﬁées.
The anomalies of deg, of g% and of L,ep vanish for £ || B, so we are left with

Agag = (25 - ,Cg - Igg)((SLaLaeB) (455)
= (Ag(;La)LQEB + (SLaLa(qug), (456)

where for the second line we have used that A satisfies the Leibniz rule. Now use that
0Ae = Agd + Ase. Using the results AL = L[f|L* and Ageg = —L[f]ep, as well as
AseL* = L]0 f]L”, one obtains

Agas = (OL)[fles, (4.57)

where as before £ = fL +v with v || S.

To proceed further, let us fix the metric dependence of &, and set £ = fL 4+ v with
0f = 0 and dv = 0, such that 06 = fJL. Intuitively this means that the direction of
¢ relative to the null generators is fixed, or from a fluid perspective that £ is fixed in a
“co-moving” frame. As before, we also assume that the boundaries 0B are aligned with
the cross-sections S. Using that i%(tcep) = fdS, the ingredients are?:

i50(Je) = 8(AS (=0 + ) f + LIf) +v*7.)
—i%(Jse) = — fOL7,dS
—i5(t¢Ohnt) = ( 0" 6yap — 6L 7q + 5u) ds
—i%(Acas) = — SL[f]dS. (4.58)

Let us denote py = fu+ L[f]. py can be understood as the spin-0 momentum in the frame
of the observer £. Noting dpy = fou + dL[f] we get the following, remarkably compact

2Recall that d.S is the induced volume element on a cross-section S of B.
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result:

—IQ =94 ( / Jg) - / (30%6%a + pip) dS. (4.59)
0B 0B

The transformation £, is a Hamiltonian symmetry with Hamiltonian H, if and only if the
RHS is a total variation d H¢. Due to the presence of the second term we see that boundary
conditions are needed to ensure the existence of a Hamiltonian. The simple form of (4.59)
is a consequence of using the modified symplectic structure which has the corner pair (h, €g)
removed. Similar equations have also been given in [69], and from a first order perspective
in [47].

Let us analyze the result (4.59) for some different cases. First consider a “superrotation-
like” transformation, i.e., a vector field v which is parallel to the foliation S to first order
around 0B. Then, no boundary conditions are needed, and the Hamiltonian is just the
charge:

H, = gy :/ V7, €5. (4.60)
OB OB

The charge, the momentum conjugate to the null directions L and the Hamiltonian co-
incide. This simple situation is a consequence of using the modified symplectic potential
without boundary pairs.

Next, consider null dilatations that “stretch” the null surface in the null direction at
its corners, i.e., { = fL with f =0 at 9B. We get ous = (6L)[f] = 0, since 0L is parallel
to 0B, so

HfL = /83 L[f]ES (461)

The null dilatations are thus generated by the corner area element, they are Hamiltonian
symmetries even if no boundary conditions are fixed.

The case of null translations ¢ = fL with f non-vanishing at the corners 0B is more
subtle. Boundary conditions are needed to ensure the existence of a Hamiltonian. The
boundary conditions can be split up into conditions on the pair (0%, v,) and the pair
(€s, fty). No boundary conditions are needed for the spin-1 pair (L%, 7,), this is because we
have chosen & to vary with L.

For the spin-2 pair (6%, v,), a possible boundary condition is fixing the shear 6% = 0
at 0B. That is done, e.g., at isolated, Killing and conformal Killing horizons, and in the far
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past and far future of future null infinity. More generally we can impose at the boundary
of B any relationship of the form o, = F(74). Alternatively, one can fix the conformal
metric to be the conformal metric of the unit sphere such that d-,, = 0. Note that in four
spacetime dimensions, 0B is two-dimensional. If it has spherical topology, every metric
is diffeomorphic to a metric conformal to the unit sphere metric. Thus, fixing v, can be
interpreted as a condition on the coordinates, rather than on the metric degrees of freedom.
The residual transformations preserving the condition are the conformal Killing vectors of
the unit sphere.

For the spin-0 pair €sduy, one possible boundary condition is fixing the area element
such that the term becomes the total variation d(egpis). This leads to a Hamiltonian for
null translations

HEe = — / 0fes. (4.62)
0B

Under boundary conditions fixing the area element of the corner, the generator of trans-
lations along L is minus the expansion.® See [100] for related results. Fixing the area
element can also be viewed as a condition on the location of the spheres 0B, rather than
a condition on the metric, such as in Bondi gauge at null infinity. A null translation then
has to be accompanied by a radial diffeomorphism to restore the size of the spheres.

As a more general spin-0 boundary condition, one could provide a constitutive relation
linking eg and piy. This situation arises in black hole thermodynamics [67], where (4.59)
becomes the “Hamiltonian first law” of black hole thermodynamics.

As another spin-0 boundary condition, one can fix py. We remind the reader that
=K+ %0 and pif = fu+ L[f]. For an isolated horizon, where the expansion vanishes,
this conditions amounts to fixing the horizon “temperature” .

Since any value for 11y can be reached by choice of the coordinate field ¢° or by choosing
the coefficient f, fixing py can be interpreted as a condition on the clock ¢° or the vector
field £ rather than on the metric degrees of freedom. The most obvious choice is fixing
py = c with a fixed constant c. The residual transformations preserving this condition
satisfy L[f]/f = —c. The null translation Hamiltonian for fixed ;1 becomes

He= [ (us=07)es (4.63)

It coincides with the energy aspect (4.30), which we found by analyzing the constraints.

3However, ¢ does not preserve this condition unless § = 0. It is thus an outer symmetry.
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Since fixing ¢ gives a condition on how the coordinates are extended around the corners
0B, while fixing the area element eg requires moving the corners, from the viewpoint of
a null surface at finite distance fixing 1y seems a more natural condition than fixing eg.
It is well known that boundary conditions are linked to a choice of boundary action: the
symplectic potential of the full action should be made to vanish by the boundary conditions.
As we saw, the symplectic potential of the Einstein-Hilbert action contains dueg, which
vanishes when 4 is fixed. If a Gibbons-Hawking like null boundary action containing [ 5 HEB
is added, the term in the symplectic potential becomes —(deg)u, which vanishes if dS is
fixed. From the perspective of a null hypersurface at finite distance, it thus seems more
natural to work with the pure Einstein-Hilbert Lagrangian, rather than adding a “null
Gibbons-Hawking” boundary action to switch to the metric polarization.

Different conditions on the spin-0 sector have appeared in the literature. The “time”
#° can be linked to the total area of the cross-section S at ¢° as in [50], which fixes the
expansion #. One can use an affine parameter along the null geodesics, which fixes k = 0.
As stated earlier, the combination x — ﬁ@ = u — 6 can be set zero to simplify the
Raychaudhuri equation [53]. For a generic expanding null surface, the condition py = 0 is
different from all of those.

To summarize, we asked for which symmetries ¢ and under which boundary conditions
there exists a Hamiltonian generating the symmetry, using the intrinsic symplectic form.
For spatial transformations £ = v®, a Hamiltonian always exists and is given by the twist
field n,. Null dilatations are generated by the area element eg. For null translations, spin-2
and spin-0 boundary conditions are needed for the existence of a Hamiltonian. The most
natural spin-0 boundary condition seems to be fixing the spin-0 momentum p, and the
resulting Hamiltonian is the energy aspect (4.30).
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Part 11

Canonical Structure at Null Infinity
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Chapter 5

Asymptotic Renormalization of the
Canonical Structure of
Electromagnetism in Flat Space

In this chapter, we present a general scheme to remove the divergences in the radius of the
asymptotic symplectic potential (SP) and canonical charges of electromagnetism on flat
space in D > 5 dimensions.

Section 5.1 contains the definitions of the conformally compactified spacetime, asymp-
totic simplicity and a radial vector field. The equations of motion are analyzed in general
terms in section 5.2. The SP is then renormalized in section 5.3, and the asymptotic
equations of motion are analyzed in detail in 5.4 to identify the free data. Section 5.5
goes towards writing the renormalized SP in terms of the free data. Finally, section 5.6
calculates the canonical generators, comments on their layer structure, and connects them
to previous work on soft theorems in higher dimensional electromagnetism.

5.1 Spacetime Structure

This section lays out the basic spacetime structures used in the remainder. We consider
vacuum Maxwell theory on Minkowski spacetime of spacetime dimension D > 5.
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We will find useful to work in an auxiliary spacetime, obtained through a conformal
compactification of Minkowski spacetime a la Penrose [107, , ]. The key advantage
of this approach is that asymptotic infinity presents itself as a boundary at finite coordinate
distance in the unphysical spacetime. The structure of infinity is reflected in the behavior
of the conformally rescaled fields near this boundary. To avoid technicalities, we restrict
our analysis to a coordinate patch, that of retarded Bondi coordinates, which covers only
future null infinity.

The Minkowski metric in retarded Bondi coordinates, with « = ¢t —r, reads §u,dz®dz® =
—du? — 2dudr + r?qapdz?da?, g4 being the metric of a unit round (D — 2)-sphere. We
introduce the coordinate @ = 1/r, and work in the conformally compactified spacetime
with the rescaled metric gq := Q?§q, and inverse g% = Q25:

Japdr®dz’ = — Q2du? + 2dudQ + gapdr*da® (5.1a)
g“b(?a@b 292832 + 2000, + qABE)AE)B. (51b)

All indices will be contracted with respect to this metric unless otherwise specified by the
use of hats, *. Note that in these coordinates \/m =q= OP/g. In these coordinates,
future null infinity . = SP~2 x R (we will drop the plus in the following) is located at
2 = 0, corresponding to the limit at r — oo of the timelike level surfaces of r. We define
the conormal to the surfaces at 2 = const.,

N, = 0, (5.2)

The normal N, becomes null in the unphysical metric ¢ at 2 = 0. Note that N, is
the inward-pointing normal, this will lead to a sign in the Stokes theorem. Some of the
equations in the following will be simplified by the introduction of the normalized normal,
which has unit modulus with respect to the conformal metric g,:

N,. (5.3)

Working with the coordinate 2 and the metric g5, rather than r and g, is useful
because the components of gq; in the coordinates (2, u, z4) are asymptotically finite. This
framework will also automatically provide natural fall-offs for the fields, and allow for a
systematic analysis of the finiteness of asymptotic canonical quantities.

The Bondi coordinates determine a coordinate vector field dq, which is defined through-
out the spacetime. This vector field will play a crucial role in the following. At .#, g can
be used to “take orders in 1/r” of tensors.
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Let 2 = (u,2") be the coordinates on € = const. surfaces. The retarded Bondi
coordinates (€2, u, ) determine a coordinate projector P!, which maps spacetime vectors
to vectors on §2 = const. by dropping their d, component. Vectors may then be decomposed

as
Ve, = V'd; + (N,V*)q. (5.4)

We will suppress the projector in the notation. For example F% = PiPJg* " ., is the
projection of the field strength with raised spacetime indices, and not the pulled back field
strength with indices raised by the inverse of the induced metric (which does not have a
finite limit since .# is null in the conformal metric). Because g“ = 1, F¥ contains Fg’,
and depends not only on the pullback of the gauge potential A; but also on Ag and the
transverse derivatives of A;. The projector commutes with coordinate derivatives, including

Ja.

We will focus on finite intervals in the retarded time u, and will not consider any possible
divergences in u. I = I(Q = 0) C .# will denote the limit of the following hypersurfaces
(with boundary)

I(w) ={(u, Q2 : Q=w,u; <u<u;} with 9I(w) = Si(w) U Sy(w), (5.5)

where S;(w) (Sf(w)) is a codimension-2 sphere obtained as the cut of the hypersurface
Q=w at u=uw;, (u=uy), respectively.

5.2 Equations of Motion: Asymptotic Simplicity and
the Conformal Current

Utilizing Penrose’s idea of asymptotic simplicity, we will assume that the components of
the gauge field A, in the coordinates (u,(2,z4) have finite values at .# and admit an
expansion in powers and logarithms of €2:

A= A+ > Ay (InQ). (5.6)
k=0

k=0,l=1

We will make further assumptions on the coefficients A,y of the logarithmic terms as we
go along, and summarize them in subsection 5.3.4.
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The Lagrangian of vacuum electrodynamics is
. 1 A 1
L:= —Z\/EF“bFab =P, where L:= —Z\/aFabFab. (5.7)

Since A, = A,, we get Fy = Fop = 0,4, — 04, and F* = 99" Fp = QUF%. We
assume that L has a finite limit onto .#.

Varying L with respect to A, gives!
5L = E%A, + 0,0° (5.8)

where 6% is the SP current density, which we will come back to shortly, and E" are the
equations of motion (EoM):

E* = 0,(/§F"™) (5.9a)
1
= (P-4 (ab(\/ana) — (D - 4)5Nbea). (5.9b)
We assume that 9,(,/gF") has a finite limit at large r. Then, in D # 4, the dominant
asymptotic order of the equations of motion comes from the second term. The dominant
order of the equations of motion is hence solved by requiring that N, F°? is of order 2. We
call these the asymptotic Maxwell conditions

(D — 4)N,F* Z o, (5.10)

and will require that they are implemented as a restriction on the field space itself.

The asymptotic Maxwell conditions allow us to define what we call the conformal
current as
1
T = ﬁNbea =F", (5.11)
where we recall n, = Q7 'N, = 9719,9. The conformal current is defined in a finite
neighbourhood of .#, not just on .# itself or order by order. By the antisymmetry of F,
it is tangential to the level surfaces of €2. By the asymptotic Maxwell conditions, it has a
finite limit onto .#.

'We use boldface letters for forms and “hats” for unrescaled quantities referring to the physical space-
time. Hatted quantities can diverge in the limit Q — 0, while bareheaded quantities are defined so that
they will not. Geometrically, E* and 8% are codimension-1 forms, or current densities.
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We can then rescale the EoM to remove negative powers of {2, obtaining
E® = QPIE" = 9,(\/qF") — (D — 4)\/gJ". (5.12)

In D > 5, the vacuum EoM take the form of Maxwell equations in presence of an external
source: the conformal current.? The origin of the conformal current is the fact that the EoM
transform inhomogeneously under the conformal rescaling of the metric, or alternatively,
that in the conformal frame the Lagrangian is non-minimally coupled to a background
scalar field €2. The normal component of the EoM reads

E" = —0,(\/aJ"), (5.13)

The conformal current is thus conserved on-shell. This concludes the analysis of the EoM
for now, we will come back to them in more explicit detail in section 5.4.

5.3 Renormalizing the Symplectic Potential

5.3.1 The Standard Symplectic Potential and its Ambiguities

The SP current density 6 determines the canonical structure of the theory. In the covariant

Hamiltonian formalism [110, 83, , 91], which we use here, it is related to the Lagrangian
through the equation (5.8), which is usually taken to imply
6° = P=V9*  where 0% := — JGF™P0A,. (5.14)

We refer to 6% as the standard SP. Its normal component, which determines the standard
symplectic form on I(£2), is

6% = QP99 where 0" = —/qT A, (5.15)

The symplectic form on the 2 = const. surfaces is the integral of the (antisymmetrized)
variation of 9.3 Since N, is the inward facing normal, the integration comes with a sign.
Hence, the contribution to the symplectic form from an interval I(€2) is

w() = 60(N) (5.16)

2To avoid specifying further asymptotic properties, we neglect any matter contribution to the current.
It seems however natural to require that the conformal current is a well defined quantity at .# even in
presence of matter.

3In the language of differential forms, of the pullback of @ onto I (Q).
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where

0(Q) = — / 6% = —~ (P9 / 0" (5.17)
() 1(©)

Notice that since 2 has a double role as “canonical time” for the radial evolution and as
the conformal factor, the conformal current appears both as a source term in the EoM and
in the SP as the momentum canonically conjugate to the tangential connection A; . 6"
has a finite, non-zero limit onto .Z.

In D > 6, the SP on the level surfaces of Q diverges as O (P=5 when approaching
# . The divergence seems like bad news for the canonical theory, signifying potentially
infinite Hamiltonians, infinite charge generators and ill-defined Poisson brackets. However,
as is well known [93], the SP is ambiguous. Firstly, adding a boundary term to the action
adds a total variation to the SP (which does not change the symplectic form). Secondly,
since ¢ is defined only implicitly through (5.8), it is ambiguous by the divergence of an
antisymmetric tensor. The ambiguities are

6% — 6° + 9,a™ + 63° (5.18a)
and thus

6 — 6° + 9,6 + 03%. (5.18D)
Here, & = &l is the corner counterterm. It is a (D — 2)-form and it modifies the

canonical expression of the charges. B“ is a change of polarization coming from a choice
of boundary action, L — L+ 0,3°.

We can now phrase the main idea behind our construction. In order to have a well
defined action on an asymptotically simple spacetime and a finite symplectic structure at
#, what really matters physically is that it is possible to reabsorb all the divergences of
6° into a divergent boundary action and divergent corner terms. We now show that this
is exactly the case.

5.3.2 Radial Equation and its Solution

Splitting the divergence in the defining relation (5.8) for the SP, 5L = E*A, + 0,0°,
into a divergence on the {2 = const. surfaces and a transverse derivative by using the
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decomposition (5.4) of the identity, one obtains
0L = §(Q"P=9L) = Q" PYEWA, + Q" P99,0° + (P Dm). (5.19)
Rearranging the terms and extracting the factor in €2, one obtains
[(D —5)— Q@g]@" = 0;0' — L + E“6 A,,. (5.20)

Up to EoM terms, the RHS contains only a total derivative and a total variation which are
part of the ambiguity in 8. We call equations involving the operators (n — Qdq) radial
equations.

The radial equation (5.20) implies that 89 can be made finite on-shell by subtracting
counterterms that fall under the ambiguities (5.18b). As a first way to see it, if fields are
analytic, note that at each order of a Laurent series for 8%

0% = PPy + QP00 + L+ Q70 + O s + W0y .. (5:21)
the radial equation reads
(D —5— k)0, = 00y — 0L, (5.22)

where = denotes on-shell equality. The orders & < D — 5 of 8", which are the ones that
come with divergent prefactors in 62, are fixed on-shell by the radial equation to be total
derivatives plus total variations, while O?D_@, which gives the finite order of éQ, is not
determined. The remaining terms do not contribute in the asymptotic limit 2 — 0. Thus,
it is clear that the divergences in 6% can be removed order by order in the Laurent series.

Rather than working order by order, we perform the counterterm subtraction at finite
distance and take the limit in the end. In this way we obtain the asymptotic SP as the
finite limit of a renormalized SP.

At any Q, applying 9 to (5.20) gives
(D —5—k)0s0™ — QOET 0™ = OER, (5.23)

where R is the RHS of (5.20), which is made up from EoM terms, and total variations and
derivatives which may be absorbed into the ambiguities of the SP. We can thus replace 8"
by Q000™ up to ambiguity terms, and then replace Q0900™ by Q2030™ up to ambiguities,
and so forth until k = D — 6.
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To do this all at once, we act with the operator MQ’@Q on (5.20) to obtain:

(D—5)!
(D=5—(F+ D) hpigprign . (D=5—(k+1)!
D5 L % (D —5)!

(D—5—k)! k
) QFOLR
(D —5)! ol
(5.24)
This relation holds for integers 0 < k < D — 6, with the convention 0! = 1. Taking the

sum EkD:_(]6, the middle terms cancel and we are left with

000" —

1 D—6

On: QD SaD 59n+
(D —5)! kzo

(D—=5—(k+1))!

D 5) QFOLR. (5.25)

Remembering that 0% = Q- (D-5gn , if we assume that 8D °0" has a finite limit, this

relation is enough to absorb the divergences in 62 into the ambiguities of the SP on-shell.

However, requiring 950" to have a finite limit may be too restrictive: In terms of the
expansion (5.6), it would mean that 6f, , = 0 for k < (D —5). On the other hand, oy~°
of (5.20) gives:

Q050" = o) °R. (5.26)
The condition 8f ;) = 0 for k < (D — 5) implies that Q056" limits to zero, and hence
that 85 ~°R limits to zero, which may be overly restrictive.

To allow a non-zero limit of 85 R, we need to allow a term 0?D7571)QD “21nQ in 6™.
That term is determined by the radial equation as

(D —5)100p 51 = — 05 °R, (5.27)

so it is itself part of the ambiguity of the SP. It spoils the finiteness of 85 ~20™, however,
instead we get

857°0" = (D —5)'07_5 1) In Q + finite. (5.28)

The combination 85 59" — O ln Q@g 40" has a finite limit even when 9?D—5,1) is “on”. To
complete the renormalization of the SP, we can thus subtract this logarithmic piece. With
these arguments, we can then deduce from (5.20) that:

1
0" = D=5 ———OP3(957%0" — QIn QO 0™) + D(R), where
= (D- 5— (k+1))! QD5
= Z QFOER — QISR and
— —5)! (D-5)!
R = 0,0 — L + E% A,. (5.29)
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We have introduced the operator D to summarize the radial derivatives.

Now, we can finally absorb the divergences of 6% into a boundary action and corner
counterterm: We set

0% := 0" + 9,6 + (5,8“ where (5.30)
&% =—a" = - PIPE)  and & =0; (5.31)
Br= PODIL) and G =0. (5.32)

The choice & = 0 = 3 is not unique, and can be modified without interfering with the
renormalization of the SP on .#. Using the first (D — 5) orders of the EoM, the normal
component of the renormalized SP then becomes

1
(D —5)!
This expression has a finite limit, even if there is a term B?D 5.1) QP=2InQ in 6". Let us
reiterate that the counterterms are defined at any value of 2, and are local in €.

6%= (057°6™ — QIn QoY ~em). (5.33)

5.3.3 Renormalization of the Action and Transverse Symplectic
Potential

The addition (5.30) of counterterms also modifies the transverse components 6’ of the SP,
and the Lagrangian L: we get Ly = L + 89,8 and 9Z = 0' + 9o&™. To understand the
effect of this modification, note that for any functlon F,

1
O (U PID(F)) = -~ PHF - D5 In QoY F. (5.34)
The renormalized Lagrangian and transverse SP current thus become:
. 1
Lp = In Qo)L
"ot
i _ 1 D—4pi

We recall that L = QP4L and 6" = QP40 are rescaled to be asymptotically finite.
Let us assume that 05 *L and 0} *@" diverge at most as a power of (In{2). Then, since
limgo [, _o dw In*(w) is finite, the action and the integrated transverse SP are finite in

the limit. Our scheme to renormalize the SP 62 has thus automatically renormalized the
action and the remainder of the components of the SP too.
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5.3.4 Analyticity Requirements

Let us summarize which degree of analyticity is sufficient to obtain a finite SP in our
scheme. For 6% in (5.33) to have a finite limit, we must have:

0" =) Q"0 +60, ;)" I+ D 6, (InQ) (5.36)

k>0 k>(D—4),1>1

Let us work out sufficient conditions on the gauge fields A to make that true. We have
0" = —%/qF*"6A;. The most leading possible term involving In €2 comes from F**, which

involves a do—derivative. A sufficient condition, which implies the finiteness of é%, is thus

Fu=Y QFuum+ Q" mOQFypan+ > Q(WQ) Fu . (5.37)

k>0 k>(D-3),1>1

Because F;, involves an ()-derivative, the conditions on A, need to be stricter. The fol-
lowing is sufficient:

Ag=> QA u+ Q" mQA psny + Y. () Ay . (5.38)

k>0 k>(D-2),1>1

The conditions on F,;, and A, also ensure that 85 L and 85 10" diverge at most as In €,
which ensures the renormalized action and transverse SPs are finite.

In the remainder of this chapter, we will however discard all logarithmic terms, and
work in the fully analytic setting.

5.3.5 Layers

In the absence of any logarithms, in (5.33) the term Q1In Q095%™ does not contribute in
the limit. We get, on .¢

D5

. .

07 = (D-5) = Z VAT (D510 Aitry- (5.39)
k=0

1S

We see that the renormalized SP coincides with the finite part in a Laurent series expansion
of the original SP 8. Asymptotically, it is therefore correct to simply drop the divergent
orders of the SP.
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The SP splits into layers: The most leading gauge potential, which is affected by leading
gauge transformations, is conjugate to the (D — 5)th order of the conformal current. As
we will see in section 5.4, the constraints involve exactly that order. Intermediate gauge
potentials are conjugate to intermediate orders of the conformal current, and as we will
see from the analysis of the EoM, the radiative data for Minkowski space live primarily in

the pair ‘7(1 (D—6)/2 10 Ai((D-12)/2)-

One may wonder why, instead of the expected D — 1 degrees of freedom (before gauge
fixing), we now have (D — 4) layers of (D — 1) degrees of freedom each. The answer is
that the quantities appearing at different layers are not independent: They are related
through equations of motion, and are not even independent off-shell — knowledge of some
components of A1) and Aoy determines ‘7&)

The upshot of not using those relationships until now is the generality of the renormal-
ization scheme: So far, we have not used the explicit form of the metric (5.1a) at all, and
the scheme would work as well for other metrics, for example, on AdS space. To relate
to soft theorems, however, requires expressing the SP in terms of free radiative data, and
thus needs a detailed analysis of the equations of motion.

5.4 Asymptotic Equations of Motion

In this section, we give the complete set of relations between the quantities entering the
renormalized SP. Specifically, we will identify the free data needed to solve the EoM asymp-
totically. Computations are performed in general D > 6 (even).

5.4.1 Asymptotic Expansion of the Equations of Motion

The first step is to split the EoM into their radial, retarded-time, and sphere components,
and to develop them in orders of 2. We will write the equations in “radial-time” gauge®

4Since .# is null and transverse to Oq, the radial gauge Ao = 0 shares there various features with the
usual time gauge A; = 0 fixed at a standard Cauchy surface ¥;—const.-
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The residual gauge transformations satisfy doe = 0. The gauge fixing may be un-done by
setting

Q
Ast = A, — aa/ dwAq, (5.41)
0
which satisfies Aé‘f' = 0. Order by order, we have
Ay = Ai - Loa (5.42)
i(k) ) L i (k-1)- .

The equations of this section may then be regarded as equations for A%%. Equations for
A, itself may be derived by performing the replacement, and regarding all orders of Ag as
free data.

Consider first the conformal current J¢ = Q' N,F®. We write the definitions of J*
as a radial evolution equation for A, and the definition of J* as a retarded time evolution
equation for A4:

OoA, = —QT" (5.43a)
OuAp = 04A, + QT4 — Q2aQAA. (543b)

The EoM, E* = §,(,/qF") — (D — 4),/qJ*, can be decomposed as:

- -0, <fJ“> 04(\iT"). (5.44a)
E'= — Qag] (V/aT") — 040a(/gA%), (5.44b)
E'= Qaﬂ] (VaT™) + 0,0a(v/GA%) + 05(\/aFP4) (5.44c)

- -(D —6)— 2959} (VaTh) + 9(VaFP4) — a(1 + Q0e)(Q0aA%)

_ Q\/_aAj“ (5.44d)

where in the last line we have rewritten E4 as a purely radial evolution equation, by
means of (5.43). Notice the factor of 2 which appeared in the radial derivative operator as
a consequence of this manipulation.

We now develop the equations in orders of €. First, consider the normal component of
the EoM,

Efy = — 0u(vVaT) — 0a(VaT)- (5.45)
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Note that the identity 8(18;,(\/515“1’) = 0 can be written as
(D —5)— Qag] E" = 9,B" + 9,E* (5.46)

Asymptotically, this implies that the only independent information contained in E" lies in
its k = (D —5) order. The rest of its orders automatically vanish once the tangential EoM
are solved, and do not need to be considered separately. Thus we define

G:=E}p ;= _au(\/aj(uD%)) - 8A(ﬂ$%,5)). (5.47a)

As it will become clear shortly, this is the Gauss law on the €2 = const. slices. The orders
of the remainder EoM and the definitions of the conformal current are

Aty = — g ) (5.47b)
DAy = 0aAuiwy + Tag—1) — (k — 1) Aag-1) (5.47c)
By = — (D — 5~ K)(VaT) — (k + )0a(yaAd) (5.47d)

)

Eé) = —(D—-6-— 2/@)(\/5%3)) + aB(\/aF(%A) — Vak(1+ k;)A(% — \/gaf‘jg,g,l). (5.47e

These equations hold for £ > 0 if we set negative orders of 7 and A to zero. The equations
(5.47) are the complete set of asymptotic EoM.

These equations contain the asymptotic Maxwell conditions N,F® z 0, which are
explicitly given by

Auy =0, Jly =0, OuA ) = Oadu()- (5.48)
The last equation can be conveniently solved by introducing a Hodge decomposition of
Aa) = €a” Oppic.. + 0ap =: aa) + Oagp. (5.49)

Then, equation (5.48) says that the purely magnetic part a4(o) must be u-independent and
that the purely electric part ¢ is related to A, by

Au(O) = augo. (550)

We call ¢ the soft potential.®

®Notice that ¢ in (5.50) is not fully determined by the Hodge decomposition of A A(0), but only up
to a time-dependent sphere-constant term. We will see that ¢ is in an appropriate sense canonically
conjugated to the local electric flux. Thus, since in absence of charged matter the total flux vanishes, this
sphere-constant term does not play much of a role, see section 5.5.
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5.4.2 Free Data

We are now going to analyze the asymptotic EoM to identify the asymptotic free data. As
before, we focus on a finite region I C .#, with u; < u < uy. The boundary of I is the
union of two codimension-two spheres, denoted 0I = S; U Sy, where S; (Sy) is the cut of
J at u=u; (u=uy, respectively).

We define ayry := Aaw)(u;) which is a corner variable evaluating the value of A4 at
the initial slice. The value of A4 on a arbitrary time slice can then be obtained as

AA(k = OzA / 0 AA k) (551)
For later convenience we introduce the new symbol
D—6
(=" (5.52)

Note the obvious relations D =6 +2¢ and D —5 =2¢ + 1.

We will now show that the free canonical data which enter the renormalized SP are
given by
{gp, j(‘?)} on .#, {‘7(%_5), QA ,aA(D,g,)} on S;. (5.53)

We view the conformal current [J° as an a priori independent variable from the gauge
field, such that the definition of J* in terms of components of the gauge field has the same
status as the EoM. The key to identifying the free data is that the factor (D — 5 — k) in
(5.47d) becomes zero for k = D — 5, and the factor (D — 6 — 2k) in (5.47d) becomes zero

fork‘z%.

We prove (5.53) by recurrence. We start the recurrence by assuming that we are given
the variables A, (determined by ¢) and aaq). (5.48) then determines 0,A4.4(), and
together with a4y determines A4 ). To continue the recurrence it is convenient to lay
out the equation of motions as follows®

(D—4-k)T4 1y = —kDaAj, (5.54a)
(D—6—2k)T45 = DpFgi—[0"Ti 1)+ k(k+1)Aj)], (5.54b)
OuAlry = Ty — w30 Ty + Kk + 1D AR). (5.54c¢)

6D, is the covariant derivative on the sphere S, so that e.g. 6,4(\/@11 )= \/aDAUA.
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We now assume that A(}c) is known on I. The first equation allows to obtain .7(1,271)
from Aé)» as long as k # (D —4). It does not determine J, 5 = J(5,, 1), which we assume
as given for now. The second equation allows to obtain «7(21) from (A(}c), .7(1,2_1)), as long
as k # (. The third equation determines GuAé ) from (A(%, T -1y .7(2‘)). This in turns

determines A’& +1) from aé +1) and (5.51) and we can start a new cycle of recurrence.”

This establishes that the free data is {¢, \7(?), J(p_s 1} on I and {a{}g)} on S. One can
then use the Gauss law (5.47a) to deduce the value of 81“7&)_5). This effectively reduces
the free part of \7(UD75) to its initial value on S;.

Of course, knowledge of more subleading orders of a4 1~ p—5) would allow to solve the
equations of motion to higher orders into the bulk. These more subleading orders, however,
do not appear in the SP at .#. Since a portion of .# is not on its own a Cauchy surface, to
obtain a solution in the bulk the data at .# has to be complemented by data on a spacelike
hypersurface, and there will be a contribution to the total SP from that hypersurface. The
subleading orders a4 (1~p—s5) should thus be regarded as belonging to the free data on such
a spacelike hypersurface.

5.4.3 News, Charge Aspects, and Radiative Modes

As we have seen there are two pieces of data that are exceptional in the sense that they are
not determined recursively by the rest of the data. The first exception appears at order
k=10= %: the variable j(‘?) is not determined by (5.54b), contrarily to its other orders
which are algebraically determined. It is free data on all of .. We call it the Mazwell
news:

N4 = T0, (5.55)

for its role in the asymptotic EoM analogous to the Bondi news in 4D General Relativity.
It is the free radiative data. Let us further introduce, the radiative modes

Aa = Aawry (5.56)

"The knowledge of Ayks1) for k> 1is not explicitly required, one just deduce its value from A, ) =
—Juk-1)/(k+1)
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Using (5.54c), A4 is determined by N4, up to an integration constant. Explicitly, we have

Y (DpAf) )

ENES) (5:57)

N4 =0,AY +1 (A(;) -

In odd spacetime dimensions, all orders of .,7(% are algebraically determined by (5.47e).
We thus see from an asymptotic perspective that in odd spacetime dimensions, solutions
that are analytic around .# do not have free radiative data. This is why we restrict our
analysis to even dimensions. A similar statement has been made, albeit from a different
perspective, for gravity e.g. in [112, 12].

For the last exception, consider the order k& = D — 5, where the factor in (5.47d)
vanishes. J(,_s is hence not determined by (5.47d), unlike the other orders of J ) which

are algebraically determined. The retarded time evolution is, however, determined by the
Gauss law (5.47a). We hence call

0= T (5.58)

the charge aspect, for its role analogous to the (Bondi) mass aspect in general relativity.
Note also that asymptotic Coulombic fields, such as the spherically symmetric Coulombic
field of a finite point charge in the interior of spacetime, fall off such that they contribute
to o, but not to the more leading orders \7(7€<D_5).

The charge aspect conservation is controlled by the Gauss law (5.47a),
84,0 + DaT(p 5 = 0. (5.59)

This can be more explicitly expressed by using (5.54), and taking the divergence of (5.54b),
as D
Our = 5— (DAD 4—(D— 4)) (DpAS,_5). (5.60)

In D = 6, this readily gives a relation between the conservation of the charge aspect
and the radiative modes:

du0 =3 (D'Ds—2) (DpA”) (D =6). (5.61)

However, in general A4p—_s5) does not correspond to the radiative modes, and one might
wonder whether a relation analogous to this one still holds in general dimensions (this
relation is crucial for the derivation of the soft theorems, see [90]). Indeed, a similar
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relation exists, but it rather expresses the higher time derivatives 5"1o in terms of higher
spatial derivatives of A 4. This relation can be found by taking the divergences of equations
(5.54b) and (5.54c). To see this, it is convenient to rewrite equations (5.54) for k # 2¢ + 2
as

Tioy = —amsmPDaAl (5.62a)
20— k)T3y = DeFii'+ = [D*Ds — 03] A, (5.62b)
OuAffsy = ~7<k>+mw Dp — 03] Afky. (5.62¢)
where
= (k+1)(20+2—k) (5.63)

is a symmetric coefficient under the exchange k <» D — 5 — k.

Thus, the divergences of (5.54b) and (5.54c) readily give a recursion relation® for
D AAA .
(k)

DAJ mAe (DAAA ) (564&)
0u(DaAj} 1) = s ey AL (DaAf) (5.64b)

where we introduced the elliptic negative-definite differential operator
AL = (DADA . c@. (5.65)

Using the above recursion relation, we find

85“0 = —aﬁ(DAj(ng)) = 2%1} Agé—i—laé(DAAéﬁ-f—l))
GV ¢ A
T 2( 9(6+1) (€+ 1) <A24+1Aze"‘A£+1)(DA-A ) (566)

Thus, we see that in dimensions D > 6 (even), i.e. ¢ > 0, the radiative potential only
controls the higher time derivative 9‘*1o of the charge aspect.

8With similar methods, a recursion relation can be found for F( %) by taking the antisymmetric deriva-
tive of equations (5.54b) and (5.54c), instead of their divergences.

79



5.4.4 Consequences of Analyticity

u

Even though the equations E(AH = E@) =0 and E/,_5 = E(5,1) = 0 do not determine
the Maxwell news and the Chalrfge aspect, they of course still hold true. Their status is
similar to (5.26): assuming analyticity, they indirectly require their RHS to vanish. In order
to avoid that requirement, one would have to allow a logarithmic terms in the Maxwell
news and the charge aspect.

E{p_s) gives

DAAlp 4 =0. (5.67)
Because only the values of the potential {AE%), e ,A(AD_S)} enter the SP at .#, this con-

dition should be regarded as a condition on the data on a spacelike hypersurface, which
together with I forms a Cauchy surface.

The LHS of (5.54b) becomes zero at k = { = %. Its vanishing hence restricts A@).

Using that Ji-1) = —H%DBA&, one gets

DBF(;})B + [+ 1)A(§) — ﬁaA(DBA{;))} = 0. (5.68)

In D # 6, taking the divergence of this equation we get that [DaD* — (£ + 1)(¢ +
2)](DBA5)) = 0. The Laplacian on the sphere has non-positive eigenvalues so this equa-
tion implies DpAfj) = 0 and DpF(’ = —((£ + 1)A(j). Using the relation (5.54a), we can
translate the first condition into a restriction on j&ffl). Hence,(5.68) implies

Ji-y =0 and DpFul = —((+1)Af. (5.69)

In dimension D = 6, £ = 0 and the above manipulations fail. However, the two equations
(5.69) stay true: the first one degenerates with the asymptotic Maxwell condition (5.48),
while the second one simply means that DBF(‘?EO) = 0, compatible with (5.68). Thus
F4p as a form on the spheres is closed and co-closed, and must vanish since there are no
non-trivial harmonic forms on the sphere®.

Fyfy=0 (D =6), (5.70)

9In [00], the same condition is derived from a finite energy argument. Since we have here renormalized
the symplectic form, the generators of time translations, whose on-shell value is energy, are likewise
renormalized and their argument cannot be directly applied.
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an equation that holds only in D = 6. Furthermore, in all dimensions, (5.69) simplifies the
expression (5.57) for the news tensor, giving

NA = 0,AY + LAY = 0,A" + g D (Y. (5.71)

5.5 Renormalized Symplectic Potential

With these results, we can now analyze the renormalized asymptotic SP in the case where
D > 6 and even. We focus on the contribution from a subregion I C . with u; < u < uy.
As we have shown in section 5.3, the renormalized SP organized itself as a sum of different
layers (5.39). It is convenient to rearrange these layers as

¢
AR in in
Of — O¢ + O, + Z (O +op™,). (5.72)
p=1
where
@i(‘;ﬁ = /I\/(_]‘j(if+p)5Ai(€+1p) (5.73)

is the contribution of the “intermediate potentials” (present only when ¢ > 1, i.e. D > 8),
while ©¢ and ©,,4 are the Coulombic and the radiative contributions respectively:

O¢ = /\/C_J Taes1)044(0), Oraq = /ﬂ«y(ie)dAi(eH)- (5.74)
I I
The Coulombic and radiative contributions are common to all even dimensions D > 6.

In order to express the radiative component of the SP, one has to remember that
analyticity requires ' that A, 1) = —J -1 /(¢ +1) = 0. Therefore, the radiative compo-
nent is purely transverse and pairs the Maxwell news N4 := \7(‘2‘) to the radiative modes
Ax = Aue41), hence its name:

Orad = /\/c‘]/\/AaAA. (5.75)
I

10Recall also that in D = 6 the same condition follows from the asymptotic Maxwell conditions.
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The study of the Coulombic component is more subtle. Recalling our definitions of the
soft potential (5.50) and of the charge aspect, o := J 5041y, and making use of the Gauss
law (5.47a), the Coulombic component can be cast in the form

[ ViTdtio = [ViTh-spasn+ [ ViTin 00
= ]é\/a<~7(%—5)>5aA(0) +jl£\/§[0590]f- (5.76)

S

Here, we used the notation [X]/ := X (us) — X (u;), and introduced the Fourier zero-mode

f
/ Vi X (u (5.77)

This shows that the charge aspect 0; = o(u;) (resp.oy = o(uy)) is canonically conju-
gated to ¢; = p(u;) (resp. ¢r = ¢(uys)) while the zero-mode of the current (\76‘)75)) is
conjugated to 4.

It is convenient to introduce the charge aspect (semi-)sum, 0", and difference, o :
ot = 1(oy + 0y), o =o(uy) —o(u), (5.78)

and similarly for the soft potential. Using

# Vilosel! = § Vil s+ o7 a0"), (5.79)

the Coulombic part of the soft potential can be finally written as

O = f ﬂ((@g‘zﬂ))am(o) oo + 0_5g0+>. (5.80)
S

What is interesting in this formulation is that a4, ¢, and ¢~ have a clear meaning
in terms of the leading gauge potential A;p): the soft potential difference ¢~ is equal to

[go]{ = f;f Ay); the sum " is the electric component in the Hodge decomposition of

AX(O) and since this expression does not depend on the retarded time explicitly, it does not
enter Ay, (). @4 is the magnetic component in the Hodge decomposition of A 4(g), which
the asymptotic Maxwell conditions requires to be time independent (see (5.49)).
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5.5.1 D=6

In D = 6, which means ¢ = 0, the SP contains only two layers. Moreover, while A4 = An)
is the radiative mode, the curvature F4p) vanishes by analyticity. We thus get that
a4 = 0, in this case. Hence, the Coulombic component simplifies further. We also have
in this case that the charge conservation is directly determined by the radiative zero modes,

0~ = 3(DaD" —2)Dp(A"). (5.81)

In six dimensions, the SP thus becomes
Op = / (VAN 544+ 0607 + 006" (5.82)
I

The zero mode of A enters both the Coulombic part and the radiative part of the SP. Thus,
to find Poisson brackets, it is necessary to carefully disentangle the zero mode contribution
of A from its purely radiative component contained in d,A. For a study of this problem
in the case of four-dimensional gravity, see [20)].

5.5.2 Coulombic Contribution in Higher Dimensions

Now, we briefly turn to the higher dimensional case, i.e. D > 8 (even) or equivalently
¢ > 1, and focus on the soft contribution to the renormalized symplectic structure. In this
case the key equation is (5.4.3), i.e.

a@+1 — <_—1>£# AZ AE A@ D AA 5 83
u 0_2(e+1) (€+1>! 26+172¢0 77T 2 ]( A ) ( )

where we also recall that

AL .= (DADA (k12042 k)). (5.84)

From this, assuming D%y = 0 for k € {4+ 1,...,2¢ + 1}, one finds that the soft
potential sum % is conjugated to

_ K (-1 1
o= Ao = Sty gy (M A ) (DM A (589

i
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where the “generalized zero-mode” is defined as'!

uf Up41 u2
<DAAA>(@ :/ dUg_H/ du@---/ du; DA A4 (uy). (5.86)

Notice that the neglected contributions proportional to D« A(k) contain powers of the
interval (uy — u;) and therefore require a more subtle analysis. Moreover, in these cases
where D > 8, the intermediate potentials also contribute via @i‘;t. These contributions,
once fully unraveled in terms of the free data, end up “dressing” the different contributions
to the SP while also providing new terms involving daa). We do not attempt a full
analysis here.

5.6 Generators and Connection to Soft Theorems

5.6.1 Generators

What is the physical role of the counterterms &% and ﬁa? Whereas the physical interpre-
tation of B“ is clear—it renormalizes the action—the interpretation of &% may seem more
mysterious. However, its role is physical and it renormalizes the symmetry generators,
associated with the (asymptotic) gauge symmetries. We now turn to the analysis of those
generators.

The asymptotic renormalized symplectic form is'?
D-5
@ =00" = [ >0 A 0Aip—s-), (5.87)
I'k=0

where A denotes antisymmetrization of the d’s. The generators of gauge transformations
HZE are related to the symplectic form as

SHE = —Iog (5.88)

"Thus (-) ) = () of the previous section.
12Recall there is a sign because N, is the ingoing normal.
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where [ is the action of a gauge transformation, i.e., I.wg(d A4, 0A,) = Wr(04€,0A,). The
action of a gauge transformation € = €(g) + 2¢(;) + ... on the variables is

L6Aiw) = Oiey,  T0Agpy = (k+ Degrr),  10TG = 0. (5.89)

Using the conservation of the conformal current @(\/@7&)) = 0, we obtain for the asymp-
totic renormalized on-shell generators

D—-5
HE = [QF)]  where QF =) ?{ VAT b5 k€ (5.90)
k=0 7S

and [X]/ := X (us) — X (u;). This expression is manifestly finite, and should be contrasted
with the generators obtained from the standard symplectic form & = Q=P=% [ 1) VIOT N

0A;, which read H. = [Qg]f with
Qc(Q2) = P9 f VaT e (5.91)
S(Q)

and diverge in the asymptotic limit (unless one puts extra restrictions on the space of
asymptotic data).

Observe that just as the renormalized SP coincides asymptotically with the finite part
of the Laurent series of the standard SP, the renormalized generators are the finite part
of the standard generators. The “layering” structure also transfers from the SP to the
charges.

5.6.2 Extension Independent Symplectic Potential and Charges

From (5.90), one may wonder if the dependence of the charges on the radial derivatives of
the gauge parameter (or asymptotically, on its subleading orders) is an essential feature of
higher dimensions. If so, there would be not one, but (D —5) “sphere’s-worth” of physical
symmetries.

But as we will see, the extension dependence of the charges can be removed by adding
further, finite corner counterterms involving dAq to the SP. In that sense, the extension
dependence is not essential. We call the resulting SP, with the extension dependence
removed, the total SP.
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A corner term 0% — 6%, = 0% + d,a®, modifies the Hamiltonians as
HE s B = AR 4 1.5 7{ ()] (5.92)

Noting that for & > 1, eg) = %[6(514{2(]@_1), the extension dependence of the charges is
easily removed by setting

afey = Z =T(p-5-1)0Aa(r-1) (5.93)
leaving the total Hamiltonian

ot & u f
H: t L fi\/ﬂjw_me(oﬂi . (594)

Subleading gauge transformations are in the kernel of the total symplectic form, and should
thus be regarded as pure gauge transformations. Only one “sphere’s-worth” of physical
symmetries survive, which are generated by the charge aspect ‘7(%75) =o.

Removing the extension dependence of the charges in this way relies on the gauge in-
variance of the current J?. The counterterms o’ can also easily be extended to spacetime-
local expressions, which cancel the dependence of Hamiltonians on dge also at finite dis-
tance. Asymptotically and on-shell, the total SP may also be obtained by replacing, for
k>1, Aigy — Af(',i‘) =A; — %@Ag(k_l) in the expression (5.39) for the layers of the SP. It

is thus closely related to going to radial gauge.

5.6.3 Connecting to Soft Theorems

Let us compare the expression (5.94) for the symmetry Hamiltonian to the results of
[90]. There, starting from the QED soft theorem in dimensions D = 6 + 2/, the authors
derive the charge expression whose Ward identity encodes the soft theorem. They then
fix the classical Poisson brackets, or equivalently the symplectic form, by demanding that
the charge expression generate the correct gauge transformations of the gauge field A4
Here, we took a different route. We determined the symplectic form using the covariant
Hamiltonian formalism and our renormalization procedure, and derived the charge from
the symplectic form rather than deriving the symplectic form from the charge.
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The charge expression of [90] coincides with our ﬁEtOt’R, for u; — —o0, uy — 400, and
under the assumption made in [90] that o(uy) = 0. That is, using (5.81), in D = 6 we find

A 1
HPVE — %9\/66(0)@‘ D) jé Vaeo)(D'Da —2){DaA”) (5.95)

In higher dimensions, the correct generalization is obtained through equations (5.85),
and also coincides with the results of [90]

ﬁ:Ot’R%fg\/ae(O)ai

—1f 1
- <2<e_+2> (0+1)! fé\/‘_lem) [Bop1 By Dby Al ] (DaAY) - (5.96)

In particular, the “soft-theorem charge” is not the total radial electric field, which would
lead to divergent charges, but only the finite part of its Laurent series, which is the charge
aspect 0. The agreement of the charge obtained from the renormalization procedure with
the charge obtained from soft theorems supports the physical viability of the asymptotic
renormalization procedure in gauge theories.
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Chapter 6

Asymptotic Renormalization of the
Canonical Structure of General
Relativity

In this chapter, we renormalize the asymptotic symplectic potential (SP) and action of
metric general relativity on asymptotically simple spacetimes, using a scheme similar to
that of chapter 5. See page iv for acknowledgments.

Section 6.1 defines asymptotic simplicity and our variables, writes the Einstein equa-
tions in those variables, solves their two most divergent orders, and introduces background
structure we will need. The renormalization is carried out in section 6.2. In section 6.3, we
connect our results to the SP of [28], who work in a generalized Bondi gauge. In section
6.4, we connect to holographic renormalization in asymptotically AdS spacetimes, using
Fefferman-Graham coordinates in four and five spacetime dimensions. In section 6.5 we
give the diffeomorphism generators (if they exist) of the renormalized symplectic form.
Technical manipulations are in the appendices C.
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6.1 Asymptotic Simplicity, Variables and Einstein
Equations

Following [13], by an asymptotically simple spacetime M with metric gq, we shall mean a
spacetime which satisfies the following:*

e There exists a manifold M with boundary Z and metric gq;, whose interior is confor-
mal to M, with g = Q2%0ap.

e M and and g, are suitably regular in a neighbourhood of Z.

e Q=0onZ:=0M,V,Q+#0onZ, and () is suitably regular in a neighborhood of Z.

Asymptotic simplicity captures asymptotically de Sitter, anti-de Sitter as well as flat space-
times of any dimension. We will call g the physical metric, refer to g as the conformal or
unphysical metric, and set 87G = 1.

Let us first write the Einstein equations using the conformal metric gq,: we get
2Eab = éab - Agab
1
= Gap+ QD —2)(VaNy — gy VeN©) + Q2 (Agap + §(D —1)(D — 2)N.N€ga),
(6.1)

where N, = V, Q2 is the unnormalized, inward pointing normal to the 2 = const. surfaces.
For the Einstein equations to be satisfied, in particular 22E,, must limit to zero on Z:

1
Agas + 5(D = 1)(D = 2)NeN°ga Z0. (6.2)

We introduce the reduced cosmological constant \ = ( 1 A. Then the last equation

D—1)(D—2)
may be solved by requiring %NCNC + A = 0(£2). We thus introduce
= L NNy (6.3)
X T Q 2 C 9 .
and require that it has a finite limit onto Z. With that definition, the Einstein equations
become )
2F. = Gap + Q71D = 2)(VaNy — gt Ve N + (D — 1) gapX) - (6.4)

1[13] also includes the global condition that every null geodesic on M has two endpoints on its boundary
. Since we are working locally, we won’t need that condition.
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The next order may then be implemented by requiring that

VoNy — YGap = 0. (6.5)
As before, we implement this by introducing:
1
Nab = 5(vaNb - Xgab)7 (66)

and require that N, has a finite limit onto Z. Because N, is an exact form on M, Ny is
symmetric. One may check that NN, = dyx. With those definitions and requirements,
the Einstein equations finally become

Eup = %(Gab + (D —2)(Ng — gabN)>7 (6.7)

where N' = ¢ N,,. Let us comment that we view N,, ¥ and Ny as fields on the whole of
M, not just at Z. We have not employed the Bondi condition on the conformal factor, i.e.,

T
we allow QV, N #£ 0.
The combination Ny, — gV is conserved on-shell:
V(N — 0f N)=0. (6.8)

That can be seen by taking a divergence, with the unphysical derivative V¢, of (6.7), and
using the Bianchi identity of G,.

As in chapter 5, we will regard the conformal factor {2 and the vector field Jg as fixed
background structures. We may then decompose vectors as

X0y = No X0 + X'0;, (6.9)

where ¢ indexes coordinates on the = const. surfaces. We will also write P! for the
coordinate projector onto the {2 = const. surfaces, i.e.

E1P0; = 0, — NoE"g. (6.10)

6.2 Renormalization of Symplectic Potential and Ac-
tion

In this section, we will renormalize the normal component 6% of the SP such that it is
finite in €2, and renormalize the transverse components 0 as well as the Lagrangian L up
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to terms in In €2, such that their integrals are asymptotically finite. To do so, we will use
the ambiguities

0" — 6° + 63 + 8™, L — L + 8,8, (6.11)

and construct counterterms 3% and & = —@&"* that are local in the metric and its
variations.

The renormalization proceeds in two steps: in the first step, we identify counterterms
that ensure 8% = O(Q~(P=3)) 9" = O(Q~P=2) and L = O(Q~(P=?). In the second step,

the remainder of the negative orders in {2 are removed using a recursion.

The second step is exactly analogous to the procedure for electromagnetism in chapter
5. The first step does not have an analogue for electromagnetism, and becomes necessary
because of inhomogeneous transformations under conformal rescalings of the metric, which
lead to additional, higher divergences in the Lagrangian and SP.

6.2.1 First Step

The standard choice of SP for the Einstein-Hilbert action L = %\/E(R — 2A) reads:
0° = SVBNLOTE, — §61,) (6.12)
Let us translate this into the unphysical metric. o1 is related to oI as:
S, = 0T4, + & 0(N“ge). (6.13)

Plugging that in, and replacing /g% = Q*(sz)\/ﬁg“b, gives
) Lo —(p- c a
6 = AL L= (\/gN.g" 6 (N gy.))
1
+ 5Q—<D—2> VN, (g"6Ty, — g™oTs,). (6.14)

To treat the first line, we distribute the variation, and use that \/EgbC(Sgbc = 20,/g, and
N N =20y — 2)\. We will also need that

NSN® = §(N,N) = 206, (6.15)
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which follows using (6.3) because 2 does not vary and hence N, does not vary, and A is
constant as well. We get:

6% = Q PV (- 2)5/9)

1
+ (02 <D\/§5X + 20y + 5 VTN (90T - g“b5F§C)>. (6.16)
We see that the most divergent piece of the standard SP goes as Q= (P~Y_ and is absent

in asymptotically flat spacetimes. It is a total variation which can be absorbed into a
boundary action.

To continue, we focus on the piece which looks like the rescaled SP of the Einstein-
Hilbert action of the metric g,:

A= %@Na (g7°0Tg, — g™oTs,) = %(@N“vbégab — \/EN“Vaég), (6.17)
where 6g = g*0g,. For the first term, we integrate by parts and “vary by parts”, giving
NV 6 ga = VO (N ga) — (VEN)Ggay = —VaON® — (VPN gap. (6.18)

For the second term of (6.17), we use that
NV 09 =25(V,N®) — 2V, 0N, (6.19)

which may be shown by noting /gV,N® = 0,(,/gN®) and varying both sides. Combining
the previous two equations yields

A %@(va&va — (VN0 g — 20(V,N)). (6.20)

For the first term, let us split the divergence into parts tangential and transverse to 2 =
const. according to (6.9):

VIVaON® = 0,(/gON®) = 0;(\/gON") + 00 (292,/95X)
= 0i(/gON") + 2,/g6x + 2Q00(/96%), (6.21)

where we used (6.15) again. For the second and third term of (6.20), we use the definition
of M, which may be inverted as

va]\[b = QNab + XYab, VaNa == QN + DX (622)
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Together we get

1

A= (—D+1)\/gcsx—xé\/g%ai(\/gaNi)JrQ(—5\/§N“b5gab—\/§5/\/+ag(\/§5x)). (6.23)

We change polarization in the term proportional to 2, plug into (6.16), and combine

X0/9 + /90x = d(\/gx) to give:
6% = Q=P ( —2)4,/7)
FO (5530 + S0(VFIN))
+ Q" P=3g" where

0" = — LGN — N )ogus + Ba(/3X) — 3(/GN). (6.24)

We see that the two most divergent orders of 6 may be absorbed into counterterms.
The remainder goes as Q~(P=3) by virtue of the two most divergent orders of the Einstein
equations.

Let us turn to the transverse components 6. Plugging in (6.13) as before, we get
i L~ c ST ~ib $The
o' = 5\/§(gb 5Fbc -9 bérbc)
1 —(D— C CTi % c 1 c %
= EQ (D 2)\/57(91’ oTh — g™oTs, + ﬁﬂgb (N gbc)). (6.25)

Distributing the variation in the last term gives
o' = Q<Dl>(§\/§51\ﬂ + Nig/g) + Q" P2g
1 , . 1 .
= — 500 (Q‘(D‘Q)\/EMV’) + QP V5(/gNY) + QP (' + 5aQ(@(W)). (6.26)

In the second line, we have extracted a total Jg-derivative and a total variation. We have
abbreviated the SP of the Einstein-Hilbert action of the unphysical metric as

. 1 . .
0' = S (g"oT}, — 47T (6.27)

We see that also the most divergent order of the transverse SP may be absorbed into
counterterms. To remove the most divergent orders, let us define the counterterms which
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will lead to the partially renormalized SP OA%: We set

09 = 0° + 9,65 + 037, where
B = PVA/g) + Q7P (= gv), Bi= - P gN'
. ) 1 . .
&= —af = —§Q‘(D‘2) VION', &yl =0. (6.28)

Using (6.24) and (6.26), the partially renormalized SP becomes
67 = Pgn
A 1 .
6, = P2(0" + 589(\/55]\”)). (6.29)

Let us turn to the Lagrangian. By taking the trace of (6.7), we get that

~

L=\gR—-20)=0P.2D-1)\/g+Q P2 @(%R +(D-1N).  (6.30)

The Lagrangian will be modified by 8(1,3%. Bl may also be written as:

B = -~ P=Y sgNe + Q= P2 Jgyee,. (6.31)
Its divergence then becomes, using the definitions of y and of N:
8uB8% = —2(D — QPN /g + QP2 (— /N + 9a(v/9X)) (6.32)

The partially renormalized Lagrangian is thus
. . . 1
L =L+0,8=0""? (5\/5}% + (D = 2)\/gN + da(1/9X)). (6.33)

To summarize, we have identified local counterterms &y, ﬁl, which remove the most leading
divergences from the Lagrangian and SP. Asymptotic simplicity implies that the partially
renormalized transverse SP éi and Lagrangian L, go as Q~(P=2) and the normal compo-
nent of the SP 8% goes as Q~(P—3).

6.2.2 Second Step

We will now turn to removing the remaining divergences in the SP and action with a recur-
sive scheme, exactly along the lines of chapter 5 (with the replacement (D —5) — (D — 3),
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since electrodynamics is conformal in four dimensions and gravity in two). For self-
containedness, we briefly repeat the arguments here. The partially renormalized La-
grangian and SP are linked by

5Ly = —E™5gy, + 0,05 (6.34)

This follows from 6L = —Eabéga,, + 8a0 together with the definitions of L, and 0 ¢, and
from 9,0,&$® = 0 by antisymmetry of &;. Splitting the divergence in the last equations
gives

(D —3—Q0q)0"=0,0% — 6L, (6.35)
where we have dropped EoM-terms and written
) A . 1 )
0! = QP %0 = 0" + 5aﬂ(\/gw\ﬂ) and (6.36)
|
L, =0 L, = 5\/§R + (D = 2)\/gN + 0a(v/9X) (6.37)

for the finite versions of 8¢ and L;. Recall that 6% = Q~(P-3@" We introduce the
operator

D— 4
— 3 — (k QD3
b= 1) QF0" — ———In Q" . (6.38)
—3)! (D — 3)!
k=0
Acting with it on (6.35) gives
n —QD_3 D-3 D—-2\pgn ~ i
0" — e 3)|(8Q — QInQ0a"%)0"=0,(DO}) — 5(DL,). (6.39)

This holds on-shell and at any €2, and allows the absorption of the remaining divergences
in % into additional counterterms. The counterterms are

&Y = — & = - Pp(g), &y =0
B = Q" PD(Ly), Bi=0 (6.40)
The renormalized SP and Lagrangian become
1
0 —OQ (5 20 AQzA 3_91 Q D—2 en
R + 035 0;&x (D— 3) (8 n Qg °)
1 ,
7 ~ i£) D—-2ni
OR—G +8Q ——mlnﬂag 91
. . . 1
_ Q_ D—2
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For the second and third line, we have used that
1

(D-3) —__0o— D=2 _ _ -
Do (- PID) = —Q Do

In Qa2 (6.42)
The component ég, which determines the symplectic form at infinity, is finite in €2 assuming
sufficient analyticity. The analyticity requirement is that 8™ may have a term proportional
to P73 In Q, but any other logarithms must be accompanied by at least 2”~2. While the
transverse components of the SP current 9 and the Lagrangian Ly still dlverge as In €,
their integrals in €2 are asymptotically ﬁmte.

Let us note that if one is only concerned with renormalizing 89, and assumes analytic
field expansions, then the term in In {2 may be safely dropped from D. In that case, the

renormalized SP becomes {

noln — m
In subsection 6.4.3 we will see a case where the logarithmic term is necessary.

6% oo (6.43)

6.2.3 The Renormalized Symplectic Potential

We have thus completed the renormalization of the SP and action, by adding total variation
and total derivative counterterms local in the fields.

The renormalized SP we have given works for asymptotically AdS, dS, and flat space,
and is continuous in the cosmological constant. To achieve this, we needed to treat Jqg
and N® as separate objects, and make no condition on the norm of N. However, the
terms in the renormalized SP are not all independent. The structure of their dependencies
is different depending on the cosmological constant, but by staying sufficiently off-shell,
and not resolving these dependencies, the renormalized SP can be valid for any A. The
renormalized SP may thus be a useful tool in connecting asymptotic structures of asymp-
totically flat and AdS spaces - either by finding analogues of BMS and extended BMS
symmetries and conservation laws on (A)dS space (see, e.g., [113]) or by finding analogues
of holographic structures on flat space (see, e.g., [30]).

In addition to the ADM-like pair (N — g**N')dgqp, and the term 6(,/gN’) reminiscent
of the Gibbons-Hawking term, the SP 6" contains the term Jqo(/gdx), which is more
puzzling. Its role can be understood as follows: Consider a vector field &, parallel to the
level surfaces of €. The quantities x, gu, and Ny, are covariant under such a vector field,
i.e., they transform by the Lie derivative. Hence we get

0" = — \/gN™ — g N) V& + Da(/gE'0ix) — 0i(v/gNX). (6.44)
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Now let us integrate by parts in the first term, and use V, (N — N g?®)=0. Splitting the
resulting divergence —9,(,/g(N* — %N )E") as usual, we get

16" = — O(VGN',€) — 0a(\INTE) + Da(VFE D). (6.45)

Lastly, using that N%;, = N°N,; = 0;x, the last two terms cancel and we are left with
10" = —0;(\/gN";€&’). This is a divergence on the {2 = const. surfaces.

The dx -term in 6" thus ensures that I;0" leads to a conservation law intrinsic to
the level surfaces of €2, equating the divergence of a boundary current to a flux. This is
analogous to the conservation laws on a finite distance null surface of chapter 4.

6.2.4 Laurent Expansions and Higher Divergences

One may wonder what the relationship of our renormalized SP with the Laurent expansion
of the standard SP is. Let us assume full analyticity, and expand the standard SP as

0% = ) 63,08 (6.46)
k=—D

The partially renormalized SP differs from the standard SP by a corner term and a varia-
tion, see (6.28). Its orders are thus

o

0 = >, (60 + 06l +0BT). (6.47)
=—(D-3)

The orders (—D) to —(D —2) of 8 vanish, by construction of the counterterms & and B
Finally, the asymptotic renormalized SP corresponds to the finite order of 8. This may be
seen from (6.41): The (Q1nQ)-term does not contribute in the limit assuming analyticity,

so we are left with
r0 T 1

6= ——
(D - 3)!

which picks out the finite order. To summarize, we have

P73 (QP269), (6.48)

A Z ~ A N Z

Assuming analyticity, the limit of the renormalized SP é}% agrees with the finite order of
the partially renormalized SP 6%, and differs from the finite order of the standard SP 0
by the finite orders of the counterterms &; and (3.
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Let us also note that the renormalization can also be carried out when higher diver-
gences are present, as long as the metric admits a Laurent expansion around 2 = 0: If
the standard SP diverges as (27", we can simply carry out the second step of the previous
section, using the operator

n—1
n—(k+1))! Qr .
k=0

instead of choosing n = D — 3 as above. Asymptotically, the renormalized SP is then still
the finite order of 8. This may be useful for considering spacetimes with metrics diverging
faster than is allowed by asymptotic simplicity.

6.3 Connecting to Generalized Bondi Gauge

In [28], Compere, Fiorucci and Ruzziconi, motivated by extending the symmetry algebra
of four-dimensional asymptotically flat spacetimes, work on a phase space in which the
Bondi gauge conditions are relaxed: In contrast to the BMS phase space, the leading order
of the sphere metric is not fixed, but may vary. Its determinant is fixed however, and it is
restricted to be independent of the retarded time u. This relaxation allows the inclusion
of arbitrary diffeomorphisms of the asymptotic spheres in the symmetry algebra.

On this phase space, the standard SP diverges. The authors give a renormalized SP, by
showing that the divergent orders become total variations and total derivatives on-shell. It
is instructive to make contact with that, by writing our SP out in their parameterization
of the metric, and comparing the results.

After identifying 2 = %, the unphysical metric and its inverse, in the parameters of
[28], become

Jap = L2 (QV)e*du® + 2 (dudQ + dQdu) + qap(dz? — UAdu)(dz® — UBdu),

90,0, = — e QX (QV)00” + € (0 + U"04)00 + 00(0y + UP03)) + g*P0405.
(6.51)

Our sphere metric gap is related to the sphere metric g5 of [28] as gap = Q%¢SER. One
of the Bondi gauge conditions is that the determinant of (our) gap is independent of €.

We have /g = 625\/51.
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The parameters in the metric have asymptotic expansions

QV =V +20M + ..,

B=0%B+ ..,
gap = Qap + QCap + Dag...,
Ut = 02U + ..., (6.52)

where we have just given the orders that we need. We have written Q45 for the leading
order of the sphere metric, whereas [28] write qap, i.e. Qap = ¢55%. The rest of the
parameters are the same. Cyp is trace free (according to @ 4p) by the condition da+/q = 0.
We will also need the equation of motion

1
Dap = ZQAB(CCDCCD)- (6.53)

Dropping the total variation, to arrive at a Gibbons-Hawking-like polarization, our renor-
malized SP becomes, in 4D:

A 1 1
0}%,GH = = 5(\/§(Nab - gabN))(O)(sg((li) - 5(\/&(/\/’% - gabN))(l)CSgc(fb))

Here, as before, the subscripts and superscripts (i) refer to the ith order in an asymptotic
expansion, i.e. X = > X(;Q". The calculation is done in C.1 and the result reads:

Bon = — 2(/TM) + S0u(V/QURQ")

1/1 1. .
— 5 (5V0(0.Cam)5CH + SV Capd Q" + UpDasQ™). (6.55)

The first term is a total variation, which does not contribute to the symplectic form and
Hamiltonians. It may be absorbed into a boundary action. The second term is a total
derivative, and vanishes when éRGH is integrated on a portion of Z with boundaries at
spheres with u = const. The third line consists of terms that cannot be removed, and
coincides with the core piece Ogy,, from [28] (up to a sign because N, is the ingoing normal).

The agreement with g, supports the correctness of our renormalization scheme, and
shows that coordinate expressions, as they are commonly used at null infinity, can be
derived from it. It is also encouraging that there is no total d,~derivative in (6.55): For
regions of Z with boundaries at constant u, our scheme and [28] fix the finite corner
ambiguity of the SP in the same way, which implies that the symplectic forms derived
from Og,y and from OA%,GH, and hence also the Hamiltonians, agree.
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6.4 Connecting to Holographic Renormalization

In the holographic renormalization (HR) of pure Einstein gravity on asymptotically AdS
spacetimes (see e.g. [114]), the on-shell action is renormalized by the addition of counter-
terms, rendering it finite. The stress-energy tensor, which is obtained through the Brown-
York [33] prescription from the on-shell action, is likewise renormalized and finite. In our
case, the action is also renormalized, as is the symplectic potential. Since the Brown-York
tensor corresponds closely to the momenta conjugate to the leading-order metric, one may
suspect that the renormalized stress-energy tensor of HR coincides with our momenta.

HR starts from the action with a Gibbons-Hawking term, corresponding to Dirichlet
boundary conditions. Since the Gibbons-Hawking term effects a canonical transformation
among configuration and momentum variables, we can expect our momenta to agree with
the HR stress-energy tensor only once we add a Gibbons-Hawking term as well. In addition,
since HR proceeds largely on-shell, we can expect agreement between our momenta and
the HR stress-energy tensor only on-shell. We will focus on the standard case of HR in
Fefferman-Graham coordinates, where partial gauge conditions are chosen to fix the lapse
and shift of the radial foliation. Those conditions identify dq and N® up to a fixed factor,
while to address also the asymptotically flat case we kept 0p and N separate.

The HR prescription admits an ambiguity in odd spacetime dimensions, of adding
a multiple of the holographic anomaly to the renormalized action at finite order. The
holographic anomaly may be defined from the trace of the renormalized stress-energy
tensor, and enters the logarithmic counterterm to the action. This ambiguity, which goes
by the name of scheme dependence, also modifies the renormalized stress-energy tensor by
a trace-free piece.

Even on-shell, and in Fefferman-Graham coordinates, it is not obvious that there would
be agreement between our momenta and the stress-energy tensor: In HR it is important
that the counterterms, on-shell, can be written in a form that depends only on the leading-
order metric, and not on the free part of the stress-energy tensor. Here, we have made
no such requirement. While the divergent orders of the action counterterms must agree
on-shell because both actions are finite, it would be conceivable that the finite order of our
action counterterms is not part of the scheme dependence ambiguity of HR.

We will now explicitly show that the momenta of our renormalization scheme coin-
cide with the renormalized stress-energy tensors given in [114]; in four and five spacetime
dimensions, up to scheme dependent terms.

In Fefferman-Graham coordinates, we have y = 0 everywhere. In addition, we set
—2\ = 1, corresponding to unit AdS radius. That entails N,Nyg® = 1. Since also the
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shift of the radial foliation is zero, we have N®0, = Jq.

6.4.1 Switching to Gibbons-Hawking Polarization

In Fefferman-Graham coordinates and with unit AdS radius, the lapse of the physical

metric isN = %, and the normal, normalized w.r.t. the physical metric, is

1
At = =" N, = QN (6.56)
N
The Gibbons-Hawking term is

Vik = Vivae = %aa(\/gﬁa) = Q0,(Q~P=D, /gN?), (6.57)

where h denotes the physical induced metric on constant radius surfaces. Writing that out
in our variables gives

Q0, (- PV gN?) = —(D — 1) PV /g 4+ QP35 JgN. (6.58)
We can thus pass to the Gibbons-Hawking polarization by setting
Lop =L+ @a,égH, where
BLy = Q0,(Q" PV /gN®), Biy = 0, (6.59)

where we recall that ¢ indexes coordinates on the level surfaces of €). Of course, one can
make the same modification of the action also in the case x # 0, but in that case it is not
quite the Gibbons-Hawking term.

In any case, the Gibbons-Hawking term changes the coefficients of the most leading
divergences of the action. Thus we need to modify the counterterms of our first step to
account for them. Combining (6.58) and (6.28), and using that —2\ = 1, x = 0, N* = 0,
the modified first step is

0%y, = 0" + 6BLyy + 0By, where
Bony =D -2)2 P Vg, Bgy,=0. (6.60)

The corner term & is eliminated because we have eliminated the shift N¢. The partially
renormalized SP and Lagrangian become

égH,l = Q_(D_3)08’H = P9 (%\/E(Nz‘j - gz'jN)fsgij)
Loy = L+ 0a(B8y + Ben1) = 0PI (L/gR + 9a(Qy/gN)). (6.61)
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For the first line, we have used that the lapse and shift do not vary, and thus §¢g? is
tangential to the constant-radius surfaces. For the second line we have used that in our

present setting, do./g = Q/gN.

The partially renormalized Gibbons-Hawking SP in the first line now involves only
variations of the inverse metric g?°, in contrast to the previous expression (6.24), which
involves a total variation term. We have written the SP in terms of the inverse metric for
convenience below. Following the second step of our scheme, the renormalized Gibbons-
Hawking SP is then, on-shell,

. . 1 B o
eg,GH:m(aﬂD P —QIn Q0" Q)OGH, (6.62)

We will need that N is related to gq, as

1 1

Nij = 5qEng)i = 55095, Noa=0= N (6.63)

We see that the asymptotic finiteness of N; implies g(1y;; = 0.

6.4.2 Four Dimensions

In four (spacetime) dimensions, the asymptotic expansion of the unphysical metric used in
[114] reads

9ij = 9015 + V925 + Vg, + O(QY). (6.64)

There is no logarithmic term, and g is trace-free and covariantly conserved. The only
term that contributes to the asymptotic limit of the renormalized SP becomes

~ 1 ii
05y = 5(\/5(/\% - gijN))(1)5g(é)- (6.65)

Now using that g1);; = 0, that N1);; = 335, and that g(3) is traceless such that Ny = 0,
we get

. 3 .
ogH = _Z\/E(o)g(éﬁg(o),zj, (6.66)

where the indices on g(3) are raised with g). The momentum _%\/E(o) gg) is in agreement
with the results of [1 11] for the stress-energy tensor, remembering that we get a sign because
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N, is the ingoing normal, and the Brown-York stress tensor is enhanced by a factor of 2
compared to the gravitational momentum.

Our procedure thus agrees with HR in four dimensions. A symplectic form which, in
four dimensions, agrees with HR in asymptotically AdS space, and with the symplectic
form of [28] in flat space, has previously been given in [115].

6.4.3 Five Dimensions

In five spacetime dimensions, the situation is a little more complex. The expansion of the
metric now reads

9i5 = 9045 T L9245 + Q9.5 + 20 In Qhy 45 + O(Q°). (6.67)

It features a logarithmic piece, and hy) is traceless and covariantly conserved. The trace
of gy is

ij L i Lo,
9(%)9(4),@‘ = Zgé)gm),zj = Ztrg(g)- (6.68)
The nonzero contributions to the asymptotic SP are
02 o = ~(00? — Q1N 03’ Nij = 919" Nia)dg”
ran = (0 nQ90") (V9(WNij — 9ij9" Nu)dg (6.69)

= 259%) (\/5(0)(5f5§ ~ 9(0).59(0)) - (9a® — Q1n 9393)Nkl>
+ %5923) <\/§(2> N = 901N ) = V9(0)9@.iN0) — \/E(o)gmm'j(9“)@)/\/(0),“)
+ 58067 (Vg Nows — 90.5N). (6.70)
We have used that the operator Q1n Q0o gives a non-zero limit only when acting on Nij,

because the most leading non-analytic term in the metric is at order Q*In . For the first
line of (6.70), using (6.63), we get that asymptotically

((992 —Qln Qagg)./\/’kl = 49(4),kl + 14h(4),k:l- (671)

The Q1n Q0,* term is necessary to cancel the divergence in In § arising from the 9g? term.
The first line of (6.70) becomes

1 |
5V90)990) (29(4),1'1 + Thiayij — 59(0),@“"9(22))7 (6.72)
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where we have also used (6.68) and that h( is traceless. For the second line of (6.70), we
use /g, = %\/ﬁ(o)g%)g(g),kl and (g") ) = —gg), and we get

1 1
\/_(0)59 ( 9.3t 92) + 90),i5 (trgly) — §tr29(2))>. (6.73)

The third line of (6.70) involves variations of a subleading order of the metric, which
we need to remove by extracting a total variation. Firstly, using N);; = g(2);; and

(972 = _9(2) we have

%\/E(o)é(gij)(z) (NMoyis = 90),iNw) = —%\/5(0)5(98))(9@),@ — 90),ijtT9(2))- (6.74)
We add and subtract the total variation
;15 (V30 (trgtzy — t179(2))) = —5(\/_ (900890011 = 90,5900 (93 9(2)))
= %\/5(0)59%) (9(2),@'“9(2) — 9(2),%9?2),]- + ig(()),ij (tr2g(2) — tr9(22)))
+ %\/5(0)5(922)) (9245 — 90).i5t192)) - (6.75)

The third line of (6.70) becomes

1 1
—\/_ 697 (9(2),45tr902) — g(z),ikgfz),z + 190, (tr’g2) — tl“g(Qz))) - 15 (x/?(tfg(Qz) — tr’g(2)))-

Adding all up gives

Oncr = — V9090 (9(4> + 49(2)tf9< ) = 5(90) - 92)" + 590 (g — trzg(m))
2
9(2)

— 300, — 10 0t — ). (6.77)

The momentum in the first line agrees with the stress-energy tensor given in [I 4], noting
again that there is a sign because N, is the ingoing normal and that the stress-energy
tensor has an extra factor of 2.

The second line contains terms which are scheme dependent: In five dimensions, the
conformal anomaly is %(trgé) — tr?g(2)). [111] show that the stress-energy tensor of the

conformal anomaly is proportional to k), or in our language, that o (\/E ©) (trg(22) —trzg@)))
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is proportional to \/E(O)h’é)ég(o),ij. Thus both terms on the second line combine into one
total variation, and can be absorbed into a finite boundary action proportional to the
conformal anomaly. Such a finite counterterm satisfies the requirements that HR puts on
the counterterms, and is part of the scheme dependence ambiguity of HR.

To summarize, we have specialized to Fefferman-Graham coordinates on asymptotically
AdS space in four and five spacetimes dimensions, and included a Gibbons-Hawking term in
our scheme. We obtained that the momenta, which in the renormalized SP are conjugate
to the leading order metric, are consistent with the results of HR for the renormalized
stress-energy tensor, up to terms which fall under the scheme-dependence ambiguity of
HR.

6.5 Hamiltonians

In this section, we find the Hamiltonians associated with é%, in any gauge, for any A and
in any dimension, exploiting that our expressions are fairly covariant. The result may serve
as a starting point to derive Hamiltonians in various partial gauges.

The variation of the Hamiltonian (if it exists) is given by —I00%. We will use (6.41)
for 6%, and that Iz commutes past the do-derivatives. We have

A 1
—I:00% = ———— (9”73 — QIn Q0P 160", )
00 (D_?))!((?Q n Q0o ") (6.78)
Thus it is enough to evaluate —1¢00".
We parameterize the vector field as
%0, = £'0; + Qpda. (6.79)

This parameterization is motivated by the action of & on the unphysical metric g,;, which
reads

2
Iedgay = LeGap — ﬁchcgab = LeGab — 2PGab- (6.80)
To preserve the finiteness of the unphysical metric, it is thus sufficient (though not neces-
sary) that & and p are asymptotically finite. We will take the vector field to be field-space
constant, i.e. 6§ = 0, but the dependence on 0§ can be simply reinstated since the final

result —Ic60$ should not depend on 4¢.
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Calculating —I00™ directly is quite laborious, because the constituents Ny, gap, X in-
volve background structure and hence do not transform straightforwardly under diffeomor-
phisms. Rather, we start from (6.24), which implies

0~ D-3) 59" — 56 — %Q—(D—m@(g(\@(s]vi)_ (6.81)

The total variation terms from (6.24) drop because the Js are antisymmetrized. The
result of [55é9, written in the physical metric, may be obtained from the differential
version of (2.17). It involves the variation of the Komar charge, and symplectic flux terms
for diffeomorphisms that displace the codimension two surface where the Hamiltonian is
integrated.

To get the Hamiltonians, we need to translate 15(599 to the unphysical metric g, and
evaluate I¢6(,/goN"). The calculation is performed in appendix C.2. The result is

—1:00" = &ﬁhi, where
Fhi = 6( — VIN'oE" + /99" 0ap) + PO} — £'0" — \/gOxDaE' — 5\/559” ip, (6.82)

and 0! = QP20 is given in (6.29). Here tensors with indices 7 and j are projected onto the
level surfaces of Q2 along dq, with the coordinate projector P'. dg" is the variation of the
projection of the inverse spacetime metric, not the inverse of the pulled-back metric. The
result is valid on-shell for on-shell variations. It holds at any 2 and for any cosmological
constant, and no gauge conditions have been chosen, beyond the conditions of asymptotic
simplicity.

As expected, the result for —/:00™ is asymptotically finite for finite £ and p, and on-shell
is a total derivative on the level surfaces of 2. In addition to the integrable piece, there
are several non-integrable terms: symplectic flux terms associated with the displacement
of the codimension-two sphere, and also extra non-integrable terms involving derivatives
of the gauge parameters. The Hamiltonians, associated with a portion of an 2 = const.
surface with boundaries S; and St are then given by

St 1 )
§Hp = /S m(aQD—3 — QIn Q" 7?)s,0, (6.83)

where s; is the normal of S; ¢ embedded into the €2 = const. surface.

In chapter 4, we used a counterterm involving  N* to remove the dependence of charges
on the extension of £ outside the hypersurface considered. Here the sign of the counterterm
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is opposite, and the “would-be Hamiltonian” contains terms in 0o&. However, if we consider
the integral of the Hamiltonian on a sphere at constant u and €2, and the level surfaces of
w are null (i.e., ¢"* = 0 as in Bondi gauge), then the Hamiltonian does not depend on the
extension of the gauge parameters outside the u = const. surface. In Fefferman-Graham
coordinates, §hi does not involve radial derivatives of the gauge parameters.

Since we have not fixed any gauge, there are no conditions on £&. On the face of it, it
then seems that there would be a large number of non-zero charges, associated to orders up
to (D —1) of the gauge parameters. However, it seems likely that some of that dependence
can be removed by adding further finite corner counterterms, along the lines of section
5.6.2. Since not all the terms in the Hamiltonian are functionally independent, it is also
possible that there would be non-zero field-dependent vector fields in the kernel of the
symplectic form, reducing the dimension of the symmetry algebra.
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Chapter 7

Conclusions

In the first part of this thesis, we examined the canonical degrees of freedom and con-
servation laws of general relativity on generic null surfaces: In chapter 3, we understood
the canonical degrees of freedom in terms of the null geometry. In chapter 4, we wrote
the constraints in conservation law form, equating the divergence of a relativistic current
intrinsic to the null surface to a flux through the surface. The flux describes the passage
of gravitational energy and momentum through the surface, and is built from the degrees
of freedom. The current is closely related to the generators of diffeomorphisms.

A similar network of relationships between degrees of freedom, constraints, conserva-
tion laws and generators is an integral part of the “infrared triangle” at null infinity of
asymptotically flat spacetimes [18]. By working out similar relationships at generic null
surfaces, we took a step towards connecting the situations at null infinity and generic null
surfaces. The work in the first part also fits well with the interpretation in the membrane
paradigm of geometrical quantities on null surfaces as charges and fluxes, thereby providing
a canonical perspective on the membrane paradigm.

Let us mention some possible future avenues of investigation. Building on the work in
chapters 3 and 4, it would be interesting to apply the results to achieve a more detailed
canonical perspective on the thermodynamics of spacetime, generalizing black hole ther-
modynamics to more general situations [116]. It would also be interesting to extend the
analysis of constraints to include the null analogue of the Hamiltonian constraint.

In the second part of this thesis, the asymptotic canonical structure of general relativity
in D > 3 and of electrodynamics in D > 5 was addressed for asymptotically flat spacetimes.
In many situations, the symplectic potentials of those theories diverge with the radius as
the boundary at infinity is approached. For example, the divergence occurs for gravity in
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four dimensions, with relaxations of the Bondi gauge conditions which are relevant for the
study of spacetimes with asymptotic symmetry groups larger than the BMS group.

We proposed a general scheme to remove such divergences, absorbing them into coun-
terterms by exploiting the ambiguities of the symplectic potential. The scheme works in
any dimension, and requires no gauge choice; only the existence of a conformal compact-
ification of spacetime in the sense of Penrose and some degree of analyticity of the fields
around infinity are required.

We spelled out the scheme for electrodynamics, where we also removed the remaining
dependencies among the constituents of the renormalized symplectic potential by writing
everything in terms of free data, and showed agreement with earlier work which derived
canonical quantities using the connection to soft theorems [90]. In terms of the structure
of asymptotic divergences, electrodynamics in six dimensions was seen to be analogous
to gravity in four dimensions. It would be desirable to further develop and exploit that
analogy, for example regarding falloffs and matching at spatial infinity, or the role of
logarithmic terms in the expansions of the fields in the flat case.

The scheme was applied also to general relativity. We gave an expression for the
renormalized symplectic potential in terms of geometrical data, and connected to earlier
work considering divergences in a specific partial gauge [28]. The scheme, when applied to
asymptotically AdS spacetimes, bears some similarity to holographic renormalization, and
we connected the two explicitly.

Our work shows that an asymptotically finite asymptotic symplectic potential exists
for gravity under quite general conditions, and gives expressions which may be straight-
forwardly specialized to (partial) gauges for any cosmological constant. The results may
be applied to consider asymptotically flat phase spaces with weaker boundary conditions:
For example, one may attempt to turn on the time dependence of the leading order of the
metric, which was left as an open problem in [28].

We obtained the canonical structures of asymptotically flat spacetimes in Bondi gauge
and aAdS spacetimes in Fefferman-Graham coordinates as specializations of the same ex-
pression, thereby connecting the two (see [113, , | for prior work). Our expressions
thus forms a “canonical bridge” between asymptotically flat and aAdS spacetimes; they
may be used to consider holography at null infinity, or asymptotic symmetry groups of
aAdS spacetimes. It would also be interesting to relate to the Mann-Marolf counterterm
at spatial infinity of asymptotically flat spacetimes [36, 37]).

A limitation of the scheme as presented here is that we have not kept track of what
the counterterms depend on when written in terms of free data, nor of the precise status
of the equations of motion. For example, the renormalized Lagrangian as presented does
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not have the same equations of motion as the original Lagrangian. The on-shell symplectic
form, which forms the basis of much work on asymptotic symmetries, is not affected by
these questions. But in order to consider the Hamilton-Jacobi functional starting from
our scheme, or to interpret the counterterms more physically, or to connect to holographic
renormalization more tightly, more work is needed.

The renormalization scheme for gravity of chapter 6 leaves open the possibility of adding
finite counterterms. Such counterterms influence the charges and their algebra, including
the number of nonzero charges, which corresponds to the size of the asymptotic symme-
try algebra. It would be desirable to fix the ambiguity, for example with an “extension
independence” argument as in chapter 5; or at least to restrict the set of allowable finite
counterterms and understand their status, as in the “scheme dependence” ambiguity in
holographic renormalization. At a technical level, to do so for the gravitational case, it may
be useful to “dress” the full metric with a metric dependent diffeomorphism implementing,
e.g., Bondi gauge; doing so would mirror the correspondence of the extension independent
symplectic potential of chapter 5 with the symplectic potential of the “dressed” gauge field.
A calculation along the lines of [95] for the symplectic form in terms of the dressed metric
may be useful. u-falloffs may also ameliorate the corner ambiguities.

Once the finite corner ambiguity is fixed, one can pose the question whether any of
the diffeomorphisms implementing Bondi gauge have non-zero charges, and should be “up-
graded” to physical symmetries. In [28] it was already shown that the sphere diffeomor-
phisms which fix the leading order sphere metric to be that of the unit sphere correspond
to non-zero charges. A further candidate may be dilatations along the null generators of
Z, which have non-zero generators at finite distance null surfaces as we saw in chapter 4 (a
similar result was obtained in [71]). Another candidate may be the radial diffeomorphisms
which implement the Bondi condition on the conformal factor.

Lastly, since the asymptotic gravitational symplectic potential of chapter 6 is the limit
of a local expression, it may be used to write down an explicit limit of the “edge modes”
construction, and see to which extent edge modes and associated structures coincide with
similar fields at null infinity.
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Appendix A

Appendices to Chapter 3

A.1 Extrinsic Geometry Expressed in Metric Param-
eters

We relate the extrinsic geometry to the derivatives of metric parameters. The versions of
these identities which hold true on B were used in section 3.2. We start with the normal
acceleration, which is the most involved expression:
v o= OVl = 1(£el)g = Ve + e OV + B _V,3
1+ 58

= ¢ %[(Dy+ BDy)av+ Dy f] = e 7 [Dye” + Di(eB)] £ Voo + " V8. (A1)

From this we can evaluate the surface gravity
R = €&<”y + V@O_é) = (DO + 5D1>h + Dlﬁ (A2)
The tangential acceleration a, the twists (n,7) and normal connection w are given by:

o = qa"Vily = ¢."(£0£)y = e %¢."V,,8 Lo

Ma +Wwe = — Qabvfgb + Qabgcvbgc = _Qab('ffe)c - Qab(vba + 5 *Vb6> 2 Qabvb@

1450
ﬁa —Wg = — Qabvfzb + Qabgcvﬂgc = _Qab(ffz)b - Qab(vb@ - ﬁvaﬁ) 2 QCvab@
Na — Na = — Qabvigb + Qabvfgb = Qabwa g]b = e_hQab[DOa Dl]a- (AB)
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These identities are proven by inserting the parametrizations (3.9) and (3.12), and execut-
ing the Lie derivatives. Linear combinations of the last three identities yield

Na +1Ma = Qabvbha

1
ﬁa = 5 (qabvbh - Qabeh[DO7 Dl]b) . (A4)

In section 3.2, we used the identity 0,(,/qD§) = 1/qf. Let us prove it. First evaluate
VoLl = (q¢" 4+ 04" + 0"\ oLy = 01, + (*V L, = 0 + k. (A.5)
Let us evaluate the same object using now the relationship between covariant and regular

derivative and that L* = Dy + SDq:

—h

a L a :e_ eaJro’z a
VlL* = \/WMML) g OeVae L)

1 a
e \/aaa(\/a.[/ )+ th'
]_ a a _
= %aa(\/a(Do +6DY)) + k= Difs

_ i a ﬂ a K
= OuVADE) + O + (A6)

Comparing (A.6) and (A.5) gives what we wanted to show:

1 B
0 =—09, —
NG NG

Lastly, the extrinsic curvature of L is given by

(vaDy) + o, (yaDs) £ iqaawaDg» (A7)

(9AB - _ %ELqAB — _%aoqAB i %(chacAoB +qCBaCA64 o AgvaAB)
= — 100" + L(a* AP + dPAD). (A.8)

The bulk momentum for the conformal metric 7, is the conformal shear, which is related
to the traceless part of the extrinsic curvature:

1
&AB _ e2(,09<AB> — —580’)/AB + €2¢d<AADB>

1 1 1
- _ 5307AB + 5(71“CaCAg§f +vPC0c A — A§ 0crP) — o 230143‘7143. (A.9)
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A.2 Calculation of the Variation of the Surface Grav-
ity

Let us evaluate the total variation dx that was used in 3.52. Using the coordinate expression

for k given in the previous appendix and assuming ¢ 2 0, we obtain

5k Z 6(Doh + Dy f3). (A.10)

We distribute the variation, and use that 63 2 0, that the variations 0D} = 6AY are
purely tangential to S, that ¢,’V,h = 1, + 7, and that ¢,°V,3 = 0:

0r £ Dobh + 0AG(n, + 7a) + D10, (A.11)
Substituting 0 L¢ £ §AL, £,60* = e2%§B3 and the coordinate expressions for L and ¢ yields
8k 2V 16h + 0L (g + 1) + V(e 0,60%). (A.12)

That is the expression we used.

A.3 Calculation of Integration by Parts

We prove identities that we used in section 3.2.2 to integrate by parts in ©pg, producing
boundary terms on dB. We first use that for any vector V'

VAV Ve =/ |g|e*hVaV“ = eih&l(\/ lg|lV®) = e’hﬁa(\/&ehva)

= 0u(v/qV?) + /qV*O,h. (A.13)
If Ve = ¢%V? is a tangential vector to S this means that
VaVaV® = 0u(vaV?) + aV* (N + 1a)- (A.14)

If on the other hand we take V* = pL® we obtain the identity

VaVip = Val'Vap £ \JaDiV.p = \JqVu(Dip) — p/aV D]
= 0u(v4Dgp) = pu(V/a D)
— Ou(\/aDip) — o, (A1)

where we used that L® £ D2 and that 0a(\/qDg) = /40
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Appendix B

Appendices to Chapter 4

B.1 Symplectic Potential

This appendix derives the form of the symplectic potential used in 4.3. From (3.61) we

read that O = A + dB where
A= (%5qab9“b — 0L+ 0(k + 0)) ep
is the bulk symplectic potential and the boundary potential is given by
B =1[(3hL%q+ (h — 1)6L") teep — 6 ([RL10€8)] -
Let us perform a trace-traceless split in A, using
0% = e 722 (6™ + 5557™0),  Oqu = 6(€*Vap) = €2(2607ab + 0Vab),
therefore

(%Mabeab)EB = (%5%&;5@)63 + 00peg
(%57ab5'ab)€B + TI*Z)(%EB)@
= (5070")en — iy (00)en + pigy0(enf).

Plugging in:
A= (3™~ BL 1 305+ B30 o + e,
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The boundary term can be rewritten, using that %&] to€p = 0(14€B) as

B - %((h ~ )OI — S[ALY)) tacn

1
= —5 (BhL* + 6L e

1
= —5 <5h2L€B + Z(;LEB) (B6>

Noting also deg = fep and using the definition (3.77) of p, we get the equation (4.38)
used in the main text:

1 1 1
Op = ep (56/\35%43 —o0L%, + (5,&) — d(§5hLLGB + §L6L€B — ﬁ(%s). (B.7)

B.2 Derivation of Raychaudhuri and Damour equa-
tions

This appendix derives the densitized Damour equation
0."Groen = ¢ Lr(wpe) + (dpoa” — dap)en (B.8)

and the densitized null Raychaudhuri equation

GLLEB = —ﬁL(GEB) + (MG — UabO'ba)EB. (Bg)
We define
Na = —qa’ LV Ly (B.10)
Qg = qavaLb (Bll)
éab = QaaIbe/va’Eb’ (B'12)
and recall 7, := —q,"L°V Ly, while w, = ¢,°L.V,L¢ and p = k + %9. The tangential

acceleration a, vanishes on B since, L is geodesic on B.

For the Damour equation, we have

0."Gry = "Ry = q.“(VyV LP — V.V, L). (B.13)
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For the first term, use the decomposition of the identity 6 = q,* + Lo L® + L, L’ to obtain
VoL’ = LyL'% — Lan’” + wo L” + 0,° + Laa®. (B.14)
Taking an additional derivative and projecting with ¢ yields

0 (VoVal?) = ¢.° ((vLia,)ﬁ; (VoL )+ War Vo Lb + V pwar + Vol + vbia,ab)

= —ﬁa,‘{: — nbeba —’—/wa(/'i _|_ 9) + qaa,vaa/ _|_ qaa/Van/b _'_ ébaab
= (W—1)ek + " Viwy + 0w, + dp8. + 0,57 + 0,°ay, (B.15)

where for the second line we used V,L* = k + 0 and for the third line we used V;0,’ =
dpf.” + (1 + 7)p8.°. The latter follows from

Vy® = ¢®V,u, + [:“Ebvavb + LPLOV vy
= dv" — VL, — VLo, (B.16)

for v® = ¢%°. Using that a, = 0 and 7, = w, on B, and using that 6,° = (0,° + ﬁ%be),
this gives

G"VoVeL? 2 ¢,V 1w, + 0u we + Owa + Ay’ + 55d,0 (B.17)
= ¢ (L1, + O)wy + dyo,” + 55 dab. (B.18)

For the second line, we used ¢,°Lrwy = ¢.°Viwy + 0,°w,. The other term in ¢,°Ry, is
simply —q,°V.V,L? = —d, (0 + k), yielding

Ga" Ry = ¢u" (L + 0)ily + dpo” — da(k + 5730). (B.19)
Finally, using Ly eg = feg, this may be written in the form

0" Riven = qu"Lr(Taep) + dyosen — d,puep. (B.20)

Let us turn to the null Raychaudhuri equation. We have
Grr = Ry = L*(VV,L" — V,V,L"). (B.21)
For the first term, we use that

L'V VL' = Vi (VL) — (VL) (VL")

(
(

= Vi(LPk — @) — (L*(kLy + wp) + 0" + Lya®) (L (kLo + wy) + 0" + Laa®)
= LK + 6V,L" — Vaa® — [k + 2wpa® + 6,°6,"]
= L[K] + K0 — 6,°0," — d,a® — (n + 7 + 2w),a”. (B.22)
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We used
Vol' = L'(Lok + wo) + 0" + Loa® — Lo, (B.23)

and V,a® = d,a”+ (1, + 7.)a®. The second term in Gy, is simply L[« + 6] and taking the
difference gives

Grr = —L[0] + k0 — 6,°0," — dua® — (n + 7 + 2w)a”. (B.24)
Using that a = 0 on B and splitting 6%, into trace and traceless part as before we get
G 2 — L[0) + kb — 0,0, — ﬁGZ (B.25)
= —(L+0)[0] + 10 — o0, (B.26)
Using L eg = feg, we get
Grres = —L(0ep) + pbeg — 030, ep. (B.27)

The form of this equation is sensitive to the normalization of the null normal L. Introducing
pg = fu+L[f] for an arbitrary function f on B, we can write the densitized Raychaudhuri
equation for an arbitrary normalization of L:

fLaGabLbEB = —ﬁfL(QEB) + (,uf9 — fO'baO'ba)GB. <B28)

B.3 Diffeomorphism Actions

This appendix derives the field space Lie derivatives of intrinsic and extrinsic geometry
along a spacetime vector field £. Since we are interested in which pieces of geometry “talk
to” the extension of £ outside of B, we fix £ || B at B but allow for an arbitrary extension
outside of B, setting £* = fL* + fL* + v® with f =0 on B.

Intrinsic Geometry:
o £:L% We have —q®LSg,. = —q®(0Ly — gudL’) = L. We used that the ¢°-

component of L* is fixed: JL° = 0, such that ¢%dL? = 6L°. We also used that
0L, = 6hL, is normal to S. We get

Ll = IOL" = —q™L(Vie + Ves)
— q"L¢(Vyve + Veuy)
= ¢%(v°VyL, — L°V )
= q%[v, L]* = [v, L]". (B.29)
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We used that V, L is symmetric when pulled back to S, and that [v, L]* is tangential
to S since L preserves the foliation S. Noting LL* = —L(f)L* + [v, L], we obtain
the anomaly A¢L® = —[fL, L]* = L(f)L".

Leh: We have 0h =9 gapL*LY, as may be checked explicitly in coordinates. Then

Leh = (L“[_/b + Z_}aLb)Va(be + fLy+wp)
= (L+&)[f]+ (L+R)f] + (10 + 7a)0", (B.30)

\yhere Ne = —qu Vi LP and & = L,V;L® Since h contains the transverse derivative

L[f], it “talks to” the extension of £ outside of B.

Leqap: We have 6gap = qa“qp0gas, hence, also using that 0ap = 1q4°qs" L1 g,
Leqap =2f0ap + Logas. (B.31)
Similarly,
LeqP = 2018 + L¢P (B.32)

1

Lep, ep and es: We have ¢ = 55 1In /g, hence dp = 3 55¢"Pdgap. Using the

previous we get

1 -
Lep = mqabva(be + fLp + vp)

_ ﬁ( 16+ duv™). (B.33)

Using deg = (D — 2)dypep, one gets
Leeg = (fO + dav?). (B.34)

Using also Leep = digep = (f0+L[f]+dav?)ep, which may be checked in a coordinate
calculation, one gets

AgEB = — L[f]EB (B35)
Using that A satisfies the Leibniz rule, we get

AE(LaEB) = 0, (B36)

130



thus as we claimed L%eg is a density on B valued into vectors of B which is covariant
under diffeomorphisms of B. Putting together the previous results, we have

Le(L%p) = Le(L%g) = [v, L]* 4+ (f0 + dav™?) L. (B.37)
Since eg = L% e, we also get
Ageg =0
Lees = Lees =ty pyen + (f0 + dav?)es. (B.38)
Using Leeg = tedeg + diges, we have

tedeg = fles + Ouyep
degeg = dsvtes + Lj,1)€B — OLyeR. (B.39)

e The derivative £¢v45 may be derived using yap = e~2%q,p and the chain and Leibniz
rules and reads

Levap = 2foap — 2¢”¥d avps. (B.40)

Extrinsic Geometry: The Weingarten map is the tensor V,L°, which is a tensor on B
(i.e., the index a is pulled back onto B and the index b is tangential to B). Its transfor-
mation is easily worked out as

Le(VaL") 2 Le(VaL”) + Ae(Val?) = Le(VaL') + Va(AcL)
= Le(VoLP) + Vo (L(f)L). (B.41)
We used that the anomaly A, commutes with the covariant derivative V as argued in
section 4.1.2, and plugged in the anomaly A¢L® = L[f]L*. The Weingarten map is thus
non-covariant, but its transformation is independent of the extension of £. We will get the

transformations of extrinsic geometry by taking components of the transformation of the
Weingarten map. Recall that as a tensor on B,

VoL? = (wy + Lor)LP 46, (B.42)

o £ is the ¢°-component of LV, LY, thus

Ler = LyLe(L°V, L)
= Ly[Le(LVoLP) + (ALY VLY 4+ LAV, L))
= v[s] + LI(L + &)[f]] (B.43)

131



e 0: We have that (k+0) is the trace (on B) of the Weingarten map. Taking the trace
of B.41 gives:

Le(h +0) =[x + 0]+ LILIf]] + L{f](x + 0)
=v[k+ 0]+ L[(L+r+0)[f]] (B.44)

Then using the result for , 6 transforms as
L0 = v[0] + L[f6)]. (B.45)

We get that fep is covariant, which can also be seen because €g is covariant and
496]3 = des.

e 4i: combining the previous two results, we get

Lepp = vlp] + L{[L + p] f]. (B.46)

e We have 6,, = g,.V,L° (remember that everything is pulled back onto B), and using
that g, has vanishing anomaly and that g(L) vanishes when pulled back,

LeOap = Lebup + L[ 10w = (fLL + L[f])0ab + L0 (B.47)

Thus 0,,e5 as a tensor on B is covariant. The transformation of the upstairs extrinsic
curvature and shear are obtained by combining with the transformation of ¢4# and
. The upstairs extrinsic curvature transforms as

£e048 = (foo + fLy + L[f))O*P + L£,075. (B.48)

e ws: Note that g4” = d2°/9c” is independent of the metric, such that £¢q4" = 0.
Also, L, = (d¢°), as a tensor on B is independent of the metric, so Le¢L, = 0. With
that,

Lewa = Le(quLyVoL?) = qa“LyLeV, LP)
= qa"Ly(LeVoL® + Vo(L[f]L"))
= qa"LyLe(woL® + KLoL® + 6,°) + O4L[f] + L[ f]wa
= Lowa + fqa"Lrwe + 0a(0Lf) + kOaf — 04" 0p . (B.49)

The same transformation has been given in [(5].
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Appendix C

Appendices to Chapter 6

C.1 Connecting to Bondi Gauge

We want to express (6.54) in the parameterization of [25].

C.1.1 Orders of the Metric and y

For y, we get:

1 1 _ 1o
X = EgQQ =—35€ V), X =0, X(1) = —§V; X =—-M. (C1)

The determinant of g4 is fixed, and 3 starts only at second order, so we have: /g 0= V@
and /g ) =0 The only term that survives from the second line of (6.54) is thus:

21/0)0X(2) = —2/ QM. (C.2)

It is a total variation and may thus be dropped.

The only components that vary at the leading and first subleading order of g,; are:

gir=Qas and  gi}=Cus. (C.3)

To get the symplectic potential in this partial gauge, we thus need to compute the leading
and first subleading order of the sphere-sphere components of |/g(N AB _ ¢ABN). To do
so, we will need

N9y = e 220, + U404 — Q*(QV)00). (C4)
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C.1.2 Orders of Some Components of N
Let us start with the leading and first subleading orders of /gN: we have
QN = 0,(v/GN®) — 4/9X = 0ur/q + 0a(\/qU™) — /G20 (V). (C.5)

Now ,/q is independent of €2, and U 4 starts only at second order. We get

(VaN) =0 (VaN)) = VQ(DAU* —2M), (C.6)

where D is the covariant derivative of ().

Finding the orders of N'4# is more involved. We start from
1 1
QNab — VaNb . gabX — _§£Ngab o gabX — §(_]Vcacgab + gacach + gbcacNa) . gabX.
(C.7)
The sphere-sphere components become
1
QNAB — 5( _ 6—25aquB _ e—QﬂUC’vaAB i qACaC(e—QBUB) i qBCaC(e—QﬁUA)
+ Oa(ePUAUP) + 202 (QV)d0g P + e 2PQ(QV) gAB>. (C.8)
The leading order is
1 1o
NGP = 0a(QN*P) | = §aucAB + 5VQAB. (C.9)

We have used that dgg*P|g—g = —C4P where C48 = QA QPP Cyp.. The subleading
order is

1 1 1 o
(C.10)

We have used that @ is independent of u, so that (9q*e 2%)9,¢*" does not contribute.
qéf)g = %&quB |o=0 is the second order of the inverse sphere metric.
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C.1.3 Symplectic Potential in Generalized Bondi Gauge

Let us put these pieces together. For the first term in (6.54), we get

1
= 5 (VI = g™N) 098 = = VQO.LH + Vig@*)6Cs

(= 0(v/Q(0.,CP)CaR) + 0, (v/QC4pdCAP) — \/QB,CapdCAE + \/QVCapdQP).
(C.11)

>J>IP—‘N’|'_‘

Here, Q4% is the variation of the inverse of Q4p, and 6C4? is the variation of C4F =

QA QPP Cypr, which is the negative of the first order of ¢*f: CAB = —qé’)g. For the

second line, we have integrated and varied by parts, using that 9,/Q = §/Q = Q*PCysp =
0.

For the second term, using that Ny = 0, that \/5(1) = 0, and that Q4P5Q sz = 0, we
get:

1 1
= 5 (VIW™ = g™N) )04, = =5V QNG 5Quas

= 1\/_( — DAUP + VAP + laquB>5QAB

:—aA (V/QUBQAP) + a f Q43 0Qn) —§UBDA6QAB——VCA 5QAB. (C.12)

For the last line, we have used 6Qap = —QaaQprpdQ* P, and that Q is constant in w.

Altogether, we get

O =0(~ %L\/@(&CAB)CAB ~2/QM)
+3u(i@CAB5CAB + i\/@q( $6Qan) +0a(5 L JQU56077)

1/1 1.
3 (5 VQ(0,C4p)3C*P + §VCAB5QAB + UBDA(SQAB)‘ (C.13)

In the first line, note that —4v/Q(9,C*?)Cup = —10,(vVQCapC*P). In the second line,
use that qé]f = —DAB + CACCE. By the equation of motion (6.53), D48 is proportional
to @*F and does not contribute since Q*6Q 45 = 0. Using also that $0(\/QC*PCyp) =
IVQCAESCHP + 1/QCACCESQ ap, the O,-term in the second line becomes a total varia-
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tion and cancels against the term in the first line. We are left with

Bfon = — 20(/QM) + S04(V/QUIQ)

1/1 1. .
5 (5V@0.Can)5CH + SV CasdQ + UsDasQ™P). (C.14)

C.2 Hamiltonians
We want to evaluate —1:60". The starting point is
~ 1 .
Q- P=350" = 56 — 59*“”@5(@51\/@). (C.15)

The expression for Igééﬂ reads, translating (2.17) to our notation and dropping terms in
the constraint and its variation:

—15599 = @-ﬁﬁi, where
§h = N, P (%5(@(@1’5& — V) 4 €76 — gbé“). (C.16)
It features the variation of the Komar charge, where the index on V is raised with the phys-
ical metric. We have made the coordinate projector P explicit, however, the expression
is automatically tangential to the level surfaces of €2 because of the antisymmetry of the

terms in parentheses. Geometrically, Shiis a (D —2)-form, pulled back onto an €2 = const.
surface.

The correction term can be written as
1 —(D— 7 1 7 ~ClAa
50 D-21.5(,/goN?) = ENanlgé(\/Eé(g "). (C.17)
We have used that N, and P} do not vary, and §(¢%°) is the variation of the inverse metric.

The term /g8 (§*°) is covariant, in the sense that the action /¢4 coincides with the spacetime
Lie derivative, since it involves no background structure. Using L¢ = 01¢ + 10, we get

ENPIS(VE5(E™) = S NP~ 610 (V30(5™)) (C.18)

1 i ~IYTa =bea 1 7 ~Caa
= 5NaB 3 (Va(VE" + VIE) + SN BLe(V/505™). (C19)
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Together, we get
—Q_(D_?’)I@O” = &-ﬁﬁi, where
fhi = N, P (5(\/5@’5“) 4 gagb — gbg v cg (V304 ) (C.20)

Let us now consider each of the pieces of (C.20) in turn. In the term NaPib\/E@bga,
translating to the unphysical metric gives

Napib\/gﬁbfa :Q_(D_z)\/g}]\f 7, bb nga—‘—Q \/E(—ZNiNa£Q+NaNafi). (021)

Now integrate by parts in the first term, and use Vi, N, = QN+ X Gas, as well as N,£¢ = Qp
and N,N® = 2Qx — 2. We get

NaPib\/gﬁbfa - 2Qf(D71)\/§£i)\ + Q*(D*Q)\/E(Xé-i . sz)
+ QPG ( = NGE + Fig™ Vyp). (C.22)

Here N' = P/N® and N = PIN?.
Using (6.26), the next term of (C.20) becomes
N,Pi¢"0" = Qpb' = —§QpN Pida(+/569%) + QP Dps(\/gN) + Q- P=9pei.  (C.23)
The next term of (C.20) is, using (6.24):

—N,Pi€"0" = €% = 207 P=VeiNs g+ QP2 ( — £5(/gx) — 1610;(/gONY))
—(D=3)¢ign, (C.24)

Lastly, the Lie derivative may be written as

N WPiLe(\/505™) = —N Pb( (Va067€°) — \/386%°0," — \/§5gbcacga). (C.25)

Splitting the summation over ¢ into tangential and transverse contributions in all three
terms, we get

1
“NaPiLe(v/359°) =

. NP (30(Qp\/358") + 0,(v/300"€) — \/aPL5" 0,

2
— JINSGD0E — \/GoG e PidgT — @Ncagbcagga). (C.26)
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Now, we use that /§6g® = Q~P=2, /gg, that N, and P} commute with the coordinate
derivatives 0; and Oq, that Naé\/gab = dN?, and that N,0N® = 2Qy. Altogether, that
gives

1 . ~cna 1 i ~ cAQ —(D— 1 i 7 1 j 7
ENLBL(V305”) = SOpNLEO6(v/305) + Q- (S0, (VPN — 3 JIONIOLE)

) 1 -
+ QP (— fgox0ag’ — 5\/§5g”(9jp). (C.27)

Putting the previous equations together gives

1

fhi = 5070 (0,(VGEON') — VIINIOE = £0,(/GONY))
) . ) . 1 .
+ Q—(D—B) <5( _ \/ENZafa + \/ggza ap) _I_peclz _ gzen . \/55)((9951 _ 5\/559%] jP)-

(C.28)

The terms in the first line combine to 9;(,/g§?dN* —/g§'dN7). Since ultimately only d;fhi
is determined, and 0; of the first line is zero, they may be dropped. We thus get

—1:00" = @-ﬁhﬁ, where
Fhi = 0(— VaN'oE" + /99" 0up) + O] — £'0™ — /90X’ — 5\/559” ip- (C.29)

Here tensors with indices i and j are projected onto the level surfaces of €2 with the
coordinate projector along dg. ¢ is the projection of the inverse spacetime metric, not
the inverse of the pulled-back metric.
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