
HopliteRT Source Queuing Bound Correction
Ian Elmor Lang

ielmorlang@uwaterloo.ca
Rodolfo Pellizzoni

rpellizz@uwaterloo.ca
Nachiket Kapre

nachiket@uwaterloo.ca

Abstract—We present a correction to the analytical source
queuing bound for HopliteRT [1], [2], which addresses the
counter-example put forward in Section IV-D of [3] by taking
the effect of the in-flight jitter suffered by data flits into account.
We reproduce the evaluation experiments from [1], [2] related to
source queuing with this corrected approach, observing bounds
that are 1.2× to 1.7× larger than those originally reported.

I. BACKGROUND

The HopliteRT NoC architecture includes a token bucket
regulator present at the injection point of each client, which
ensures the number of flits of a flow f injected over a time
interval t is upper-bounded by the arrival curve λf (t):

λf (t) = λσf ,ρf (t) = min(t, σf + bρf · (t− 1)c) (1)

Let f be the flow under analysis in a HopliteRT NoC. The
source-queuing analysis presented in [2] gives an upper bound
T s for the injection of a sequence of flits of f as:

T s =


σ
(

ΓCf

)
1− ρ

(
ΓCf

)
 (2)

For the first flit and:

max

 1

ρf
,

1

1− ρ
(

ΓCf

)
 (3)

For each subsequent flit, as long as the length of the
sequence is smaller than or equal to the burstiness σf of the
flow f .

The parameters σ
(

ΓCf

)
and ρ

(
ΓCf

)
correspond to an

arrival curve that upper-bounds the arrival, at the link where f
is injected, of flits from of all flows belonging to the set ΓCf of
flows that may interfere with f . The analysis in [2] calculates
σ
(

ΓCf

)
and ρ

(
ΓCf

)
in terms of the arrival curves enforced

by regulators at the injection points of the flows g ∈ ΓCf :

σ
(
ΓCf
)

=
∑
g∈ΓCf

σg (4)

ρ
(
ΓCf
)

=
∑
g∈ΓCf

ρg (5)

This approach to the calculation of σ
(

ΓCf

)
and ρ

(
ΓCf

)
corresponds to an assumption that the arrival curve for the
injection of a flow g ∈ ΓCf is also an upper-bound for the
arrival of flits from g at the link where f is injected.

II. IN-FLIGHT JITTER

As pointed out in [3], the assumption described at the end
of the previous section does not necessarily hold. This is due
to the in-flight jitter Jgf on the time it takes for a flit of g to
travel from its injection point to injection point of f . This jitter
is introduced by deflections, which may not occur uniformly
to all flits of g.

As a result of the in-flight jitter, a sequence of flits that
were not sent consecutively from the source of g may arrive
consecutively at the link where f is injected, effectively
increasing the burstiness of g experienced at said link. The
counter-example from Section IV-D of [3] is a construction of
one such situation.

In particular, the bounds for the in-flight latency shown
in [1], as well a the method for constructing the set of
interfering flows ΓCf , remain unchanged, as they do not depend
on the burstiness of interfering flows.

The value of Jgf depends on the relative positions of the
injection points for flows f and g:

• If the router where g is injected is in the same row as
the router where f is injected, Jgf = 0, regardless of
whether f is injected East or South. This is because, if
both are in the same row, a flit from g will only ever travel
horizontally, with maximum priority, up until it interferes
with f .

• Otherwise, if f is injected South, Jgf = ndef (g, f) ·W ,
where ndef (g, f), is the number of deflections that a flit
of g might suffer before interfering with f , and W is the
NoC width. Each possible deflection adds W time units
to the jitter, as that is the extra time it may add to the
trajectory of a a flit of g through the network.

• In the remaining case (where g is injected East) Jgf =
(ndef (g, f) − 1) ·W . We count one deflection less than
the previous case because the deflection of g in the row
where f is injected must necessarily happen if g is to
interfere with f . Because this deflection must necessarily
happen if there is interference, it cannot be part of the
variability in the time it takes a flit of g to reach the
injection point of f (the in-flight jitter).

Figure 1 illustrates the second and third cases described
above: the green line shows the path of flow g without
deflections, the red line shows the path of g with maximum
deflections, and the blue line shows the injection of f . Note
how, in the case with f injected East, the interference only
happens if the second deflection of g occurs.



The figure also shows ∆Ygf , the number of links that must
be traversed south to move from the row where g is injected
to the row where f is injected. This quantity can be used an
upper bound for ndef (g, f), as a flit can only suffer up to one
deflection for each link travelled south.

ΔYgf 

(a) Flow f injected South

ΔYgf 

(b) Flow f injected East

Fig. 1: Illustration of scenarios for calculating the in-flight
jitter Jgf .

III. CORRECTION TO SOURCE QUEUING ANALYSIS

Before modifying the source queuing analysis, we first adopt
a new definition for the arrival curve λf (t):

λf (t) = min(t, σf + ρf · (t− 1))

≥ min(t, σf + bρf · (t− 1)c)
(6)

This new curve is greater than or equal to the curve enforced
by the token bucket regulator, so we may adopt it without
being optimistic. Appendix A reproduces the demonstrations
from [2] for this arrival curve, showing that it also admits
Equation 2 and Equation 3 as bounds for the source queuing
of flows.

The motivation for the change in the arrival curve formula
is that it allows for a less pessimistic expression for source-
queuing bounds once the in-flight jitter has been incorporated
into the analysis.

To produce an arrival curve for g ∈ ΓCf at the injection
point of f , accounting for the in-flight jitter, we displace the
injection arrival curve for g in time:

λgf (t) = min(t, σj + ρg · (Jgf + t− 1))

= min(t, σj + ρg · Jgf + ρg · (t− 1))
(7)

We define σgf as:

σgf = σg + Jgf · ρg (8)

to rewrite λgf (t) as:

λgf (t) = min(t, σgf + ρg · (t− 1)) (9)

which is in the same format as (6), just with a higher bursti-
ness constant, so the rest of the reasoning from Appendix A
still applies. We now just need to calculate σ

(
ΓCf

)
as:

σ(ΓCi ) =
∑
g∈ΓCf

σgf (10)

Appendix C applies Equations 8-10 to the counter example
to the original analysis presented in [3], to obtain a safe upper
bound for the source queuing of the flow under consideration.

IV. EVALUATION

The plots in Figure 2 show a comparison between the
original and the corrected bounds on the source queuing
latency, using the RANDOM and ALL2ONE communication
patterns and a burstiness of 1. The corrected source queuing
upper bound for these test cases is 1.21× to 1.75× larger than
the corresponding bound originally presented in [1].

We also consider the effect of increasing the burstiness
parameter. The plots in Figure 3 shows a comparison between
the original and the corrected bounds on a 4 × 4 HopliteRT
NoC, for burstiness values ranging from 1 to 10. As the
burstiness increases, the effect of the correction represents a
diminishing fraction of the total worst-case queuing latency.

ACKNOWLEDGMENTS

We would like to thanks Yilian Ribot and Geoffrey Nelissen
for identifying the counter example to the original HopliteRT
source-queuing analysis, which motivated this work.

REFERENCES

[1] S. Wasly, R. Pellizzoni, and N. Kapre, “Hoplitert: An efficient fpga noc
for real-time applications,” in 2017 International Conference on Field
Programmable Technology (ICFPT), 2017, pp. 64–71.

[2] Wasly, Saud, Pellizzoni, Rodolfo, and Kapre, Nachiket, “Worst case
latency analysis for hoplite fpga-based noc,” 2017. [Online]. Available:
http://hdl.handle.net/10012/12600

[3] Y. Gonzalez and G. Nelissen, “Hoplitert*: Real-time noc for fpga,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, pp. 1–1, 11 2020.



(a) RANDOM

(b) ALL2ONE

Fig. 2: Comparison of original and corrected bound on worst-
case source queuing latency in HopliteRT for various system
sizes

APPENDIX A
DERIVATION OF SOURCE QUEUING BOUNDS

This appendix adapts the demonstrations in Appendix C
- Derivation of Delay Bounds of [2] to the arrival curve
formulation in Equation 6.

We first define the operation ⊕, which produces an arrival
curve for a router output port in terms of the router’s inputs:

Lemma A.1. Let λσ1,ρ1 and λσ2,ρ2 bound the traffic on input
ports (West, North or PE) directed to the same output port
(East or South). Then the traffic on the output port is bounded
by the following curve:

(λσ1,ρ1⊕λσ2,ρ2)(t) = min(t, σ1+σ2+(ρ1+ρ2)·(t−1)) (11)

Proof. In any time window of length t, the number of packets
transmitted on an output port cannot be greater than the traffic
produced by the input ports; hence it holds:

(λσ1,ρ1⊕λσ2,ρ2)(t) ≤ σ1 +σ2 +ρ1 ·(t−1)+ρ2 ·(t−1) (12)

Furthermore, since the number of packets cannot be larger
than t, it also holds that (λσ1,ρ1 ⊕λσ2,ρ2)(t) ≤ t. Equation 11
then immediately follows.

The number of free cycles that f has to inject packets into
the network, over a time interval t, is then lower-bounded by

(a) RANDOM

(b) ALL2ONE

Fig. 3: Comparison of original and corrected bound on worst-
case source queuing latency in HopliteRT for various bursti-
ness values.

t−⊕ΓCf (t). ⊕ΓCf (t) is the combination of all other flows that
enter the router where f is injected and leave it through the
same link as f .

Lemma A.2. Flow f cannot suffer starvation if ρ
(

ΓCf

)
< 1.

Proof. By expanding the expression for the guaranteed num-
ber of free injection cycles t−⊕ΓCf (t) we obtain:

t−⊕ΓCf (t) = t−min

t, σ (ΓCf )+
∑

∀λσ,ρ∈ΓCf

ρ · (t− 1)


= max

0, t− σ
(
ΓCf
)
−

∑
∀λσ,ρ∈ΓCf

ρ · (t− 1)


= max

(
0, t− σ

(
ΓCf
)
− ρ

(
ΓCf
)
· (t− 1)

)
= max

(
0, t ·

(
1− ρ

(
ΓCf
))
−
(
σ
(
ΓCf
)
− ρ

(
ΓCf
)))

(13)

We now note that ρ
(

ΓCf

)
< 1 implies that 1−ρ

(
ΓCf

)
> 0;

thus, the number of guaranteed free slots increases with t,
which means that the flow cannot be starved.

Lemma A.3. If ρ(ΓCf ) < 1, then:



t−⊕ΓCf (t) ≥ max(0, b(t−(T s+1))·(1−ρ
(
ΓCf
)
)c+1) (14)

with T s as defined in Equation 2.

Proof. The lemma follows directly by algebraic manipulation,
where the last equality is based on Equation 13.

max(0, b(t− (T s + 1)) · (1− ρ
(
ΓCf
)
)c+ 1)

≤ max(0, (t− (T s + 1)) · (1− ρ
(
ΓCf
)
) + 1)

= max(0, t · (1− ρ
(
ΓCf
)
)− (T s + 1) · (1− ρ

(
ΓCf
)
) + 1)

= max(0, t · (1− ρ
(
ΓCf
)
)−


σ
(

ΓCf

)
1− ρ

(
ΓCf

)
+ 1


· (1− ρ

(
ΓCf
)
) + 1)

≤ max(0, t · (1− ρ
(
ΓCf
)
)−

 σ
(

ΓCf

)
1− ρ

(
ΓCf

) + 1


· (1− ρ

(
ΓCf
)
) + 1)

= max
(
0, t ·

(
1− ρ

(
ΓCf
))
−
(
σ
(
ΓCf
)
− ρ

(
ΓCf
)))

= t−⊕ΓCf (t)
(15)

Theorem A.4. Assume ρ(ΓCf ) < 1 and the client wishes to
inject a sequence of k ≤ σf packets for flow f . The delay to
inject all packets in the sequence is then upper bounded by:

⌈
1

ρf

⌉
−1+T s+

(k − 1) ·max

 1

ρf
,

1

1− ρ
(

ΓCf

)
 (16)

Proof. In the worst case, the token bucket for f can be initially
empty for at most d1/ρfe−1 clock cycles. Afterwards, a new
token is added to the bucket every 1/ρf cycles, at which point
the next packet in the sequence becomes ready to be injected
once the NoC port is free. Note that, since k ≤ σf , the times
at which the first k tokens are added, and thus the packets
in the sequence become ready at the regulator, do not depend
on the time at which the packets themselves are sent; this is
because the bucket does not become full until the k-th token
is added.

Now consider the effects of conflicting NoC traffic. Let
λfree(t) = max(0, b(t− (T s + 1)) · (1− ρ

(
ΓCf

)
)c+ 1), and

consider any subsequence of i packets out of the sequence
of k packets under analysis which are being delayed by NoC
traffic. Since the time at which the packets become ready is
fixed, the delay suffered by the last packet in the subsequence
cannot be larger than both d(i − 1) · (1/ρf )e and t̄, where t̄
is the minimum window length for which λfree(t̄) = i (that
is, the time that it takes for the NoC to have i free cycles
based on Lemma A.3). Based on the expression for λfree, it
is then trivial to see that if 1/ρf ≥ 1/1− ρ

(
ΓCf

)
, the worst

case delay for the sequence is found when the first (k − 1)
packets are sent as soon as they become ready at the regulator,
while the last packet suffers NoC delay of T s; whereas if
1/ρf < 1/(1 − ρ

(
ΓCf

)
), the worst case is found where all

k packets are delayed by NoC traffic rather than regulation.
Combining the two cases yields Equation 16.

Theorem A.4 only holds for sequences of packets of length
at most equal to the burst length of the flow. If the sequence
is longer than the burst length, then the token buffer might
become full during a window of length T s when the NoC
port is blocked, at which point the time when further tokens
are added is delayed based on when packets in the sequence
are sent.

APPENDIX B
SUMMARY OF FORMULAS CHANGES

Table I shows a summary of formulas changes due to the
source queuing analysis correction.

original corrected

T s

⌈
σ
(
ΓCf

)
1−ρ

(
ΓC
f

)
⌉

unchanged

ρ
(

ΓCf

) ∑
g∈ΓC

f
ρg unchanged

σ
(

ΓCf

) ∑
g∈ΓC

f
σg

∑
g∈ΓC

f
σgf

σgf N/A σg + Jgf · ρg
Jgf N/A Described in Section II

TABLE I: Summary of formulas changes

APPENDIX C
IN-FLIGHT JITTER EXAMPLE

The counter-example to the original HopliteRT source-
queuing analysis presented in [3] corresponds to the four flows
depicted in Figure 4. We wish to find an upper bound T sf on
the time flow f = f4 must wait to inject the first packet of a
sequence into the network.

Flow f4 may suffer interference from flow g = f1, which
has regulator parameters σ1 = 0.5, ρ1 = 3. The counter-
example consists of the following sequence of events:
• g = f1 injects three flits at times 0, 4 and 8 (which

complies with its regulator rate of 0.25).
• f2 injects two flits at times 0 and 4, which causes the

first two flits from g to be deflected in router (1,1) - but
not the third. These deflections cause the three flits from
g to arrive at router (1,2) at times 5, 9 and 10.

• f3 injects one flit at time 5 which causes the the first flit
from g to be deflected again, now in router (1,3). This
deflection causes the three flits from g to arrive at router
(1,5) at times 11, 12 and 13.

• f3 injects one flit at time 5 which causes the first flit
from g to be deflected again, now in router (1,3). This
deflection causes the three flits from g to arrive at router
(1,5) at times 11, 12 and 13.

The consequence of this sequence of events is that, at time
11, flow f would need to wait for 3 time units in order to



inject a flit, due to interference from the flits from g. This
means that a safe upper bound TSf must be ≥ 3.

This also happens to be the ”tightest” upper bound possible
for this case, as a T sf > 3 would imply that two flits from g
released at least 12 time units apart (three periods) arrive only
3 time units apart, which is not possible as the two deflections
by f2 and f3 can only add a total of 6 time units to a flit’s
trajectory.

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

0,3 1,3 2,3

0,4 1,4 2,4

0,5 1,5 2,5

0,6 1,6 2,6

f2

f3

f4

f1

Fig. 4: Diagram for the counter-example to the original Ho-
pliteRT source-queuing analysis (adapted from [3])

A. Original Source Queuing Bound

We can verify by inspection that ΓCf = {g}. Thus, according

to Equations 4 and 5, we have that σ
(

ΓCf

)
= σ1 = 0.5 and

ρ
(

ΓCf

)
= ρ1 = 0.25. Substituting into Equation 2:

T sf =


σ
(

ΓCf

)
1− ρ

(
ΓCf

)
 =

⌈
1

1− 0.25

⌉
= 2 < 3 (17)

Which is not a safe upper bound, as we have seen above
that it should be ≥ 3.

B. Corrected Source Queuing Bound

We begin by calculating the in-flight jitter Jgf . This example
falls under the second case described in Section II, as the flow
under analysis is injected South. We notice that the NoC is
three switches-wide (W = 3), and that each flit of g can be
deflected up to twice before interfering with f : once by f2

and once by f3 (so ndef (g, f) = 2):

Jgf = ndef (g, f) ·W = 2 · 3 = 6 (18)

We can now apply Equation 10 to determine the new value
of σ

(
ΓCf

)
:

σ
(
ΓCf
)

= σgf = σg + Jgf · ρg = 1 + 6 · 0.25 = 2.5 (19)

We substitute σ
(

ΓCf

)
= 2.5 into Equation 2 to calculate

the new upper bound T sf :

T sf =


σ
(

ΓCf

)
1− ρ

(
ΓCf

)
 =

⌈
2.5

1− 0.25

⌉
= 4 > 3 (20)

Which is a safe upper bound for the source queuing of
f = f4, unlike the bound provided by the original approach.


