
Published in final edited form as:
Biostatistics & Epidemiology (2019), 3(1): 178–200
DOI: 10.1080/24709360.2019.1699341

Cohort study design for illness-death processes with disease
status under intermittent observation

NATHALIE C. MOON
Department of Statistical Sciences,

University of Toronto, Toronto, ON, M5G 1X6, Canada

E-mail: nmoon@uwaterloo.ca

LEILEI ZENG
Department of Statistics and Actuarial Science,

University of Waterloo, Waterloo, ON, N2L 3G1, Canada

RICHARD J. COOK
Department of Statistics and Actuarial Science,

University of Waterloo, Waterloo, ON, N2L 3G1, Canada

Summary

Cohort studies are routinely conducted to learn about the incidence or progression rates of chronic
diseases. The illness-death model offers a natural framework for joint consideration of non-fatal
events in the semi-competing risks setting. We consider the design of prospective cohort studies
where the goal is to estimate the effect of a marker on the risk of a non-fatal event which is sub-
ject to interval-censoring due to an intermittent observation scheme. The sample size is shown
to depend on the effect of interest, the number of assessments, and the duration of follow-up.
Minimum-cost designs are also developed to account for the different costs of recruitment and
follow-up examination. We also consider the setting where the event status of individuals is ob-
served subject to misclassification; the consequent need to increase the sample size to account for
this error is illustrated through asymptotic calculations.
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1 INTRODUCTION

Longitudinal cohort studies are commonly used to study the progression of individuals through stages
of a chronic disease. Multistate models offer an appealing framework for modeling such disease pro-
cesses (Andersen and Keiding, 2002) but the infeasibility of continuous monitoring of individuals
means that disease status is typically only determined at intermittent assessment times; the result-
ing data are referred to as panel data. Kalbfleisch and Lawless (1985) developed a Fisher-scoring
method for fitting multistate Markov models with time homogeneous or piecewise-constant transition
intensities to panel data. In some settings transition times into some states may be observed subject
only to right censoring; Jackson (2011) shows how to fit multistate models when processes are un-
der a hybrid panel and continuous observation scheme and these methods are implemented in the R
packages msm. Missing scheduled assessments and time trends in transition intensities often arise in
longitudinal cohort studies of chronic disease processes, and while these pose challenges for analysis,
methods have been proposed to accommodate missingness (both ignorable and non-ignorable) for
non-homogeneous Markov processes through use of a time transformation (Kalbfleisch and Lawless,
1985; Chen and Zhou, 2011).

The cost of conducting a longitudinal cohort study is often appreciable, in great part due to the cost
of repeatedly assessing individuals, often via in-person examination by a physician and/or expensive
clinical tests; as such, there is great interest in the design of longitudinal studies which allocate re-
sources most efficiently (Moskowitz et al., 2017; Timmons and Preacher, 2015; Collins and Graham,
2002; Singer and Willett, 1991). Design considerations depend on the stochastic process generating
the response of interest and the precise objectives of the study. Much work has been carried out on
the design of studies where interest lies in detecting differences in the mean of a continuous outcome
between two groups, where the outcome is measured intermittently over time (Galbraith et al., 2002;
Diggle, 2002; Kirby et al., 1994). This work has focused on the optimal frequency and timing of
assessments in relation to the expected trajectory of the response. In other contexts, the focus of
longitudinal studies has been on time-to-event outcomes, and oftentimes these are interval-censored;
in this case, the lag between assessments is of critical importance at the design stage and has been
investigated by a number of authors (Cook, 2000; Lawless and Rad, 2015; Kim et al., 2016; Jóźwiak
and Moerbeek, 2012). More generally, and as described above, longitudinal studies may also be used
to monitor individuals as they progress through various stages of disease, and some work has been
done to consider the impact of assessment frequency on the precision of resulting estimators in a few
special cases; for example for a simple progressive disease process (Hwang and Brookmeyer, 2003)
and for a two-state reversible process (Mehtälä et al., 2015).

In this paper, we develop design criteria for a longitudinal study for an illness-death process in
which individuals are under intermittent observation according to a protocol. Although missingness
is a common issue arising in longitudinal studies, we restrict attention to the case of complete assess-
ments in order to evaluate the impact of the schedule of planned visits on study cost and the precision
of estimates. We consider the case in which disease progression status is observed intermittently, but
transitions into the death state are observed subject to right censoring. Such an observation scheme
is routinely used when monitoring a cohort of individuals at high risk for the onset of a disease, or
of diseased individuals where interest lies in monitoring them for the development of a complication
from the disease.

The remainder of this paper is organized as follows. In Section 2, we consider the design of such
cohort studies and consider the impact of the frequency of assessments, in relation to the disease in-
cidence rate and the frequency of a covariate of interest. We consider both statistical power and the
minimal cost design. In Section 3, we derive the form of the Fisher information matrix for longitu-
dinal studies in which there is misclassification in the states recorded at inspection times and use this
to evaluate the impact of misclassification on study design subject to cost constraints. Concluding
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remarks are made in Section 4.

2 PROSPECTIVE COHORT STUDIES

2.1 MULTISTATE MARKOV MODELS AND MAXIMUM LIKELIHOOD ESTIMATION

The multistate model is a flexible and powerful framework for modeling a chronic disease process
with multiple stages (Cook and Lawless, 2018). Let {Z(t), t > 0} be a continuous time stochastic
process with state space S = {0, 1, 2} as described in Figure 1, where state 0 is the initial state of
the process, state 1 denotes the presence of some condition of interest (e.g. onset or progression of a
disease), and state 2 is an absorbing state, typically representing death. Without loss of generality, the
states 0, 1 and 2 are often referred to as “disease-free”, “disease” and “death” states accordingly.

Figure 1: Multistate diagram for the three-state illness-death process

Let H(t) = {Z(s), X; 0 ≤ s ≤ t} be the history of the multistate process, and the intensity for
k → ` transitions is defined as

lim
∆t↓0

P (Z(t+ ∆t−) = `|Z(t−) = k,H(t−))

∆t
= λk`(t|H(t−)) ,

where k < ` ∈ S. Markov models are among the most commonly used types of multistate models due
to the broad range of conditions it can represent, their simplicity and tractibility. Under such models,
all dependence of transition intensities on the history of the process are encompassed in the current
state, so we may write λk`(t|H(t−)) = λk`(t). The transition probabilities pk`(s, t) = P (Z(t) =
`|Z(s) = k) relate to intensities via the Kolmogorov forward differential equation

∂

∂t
P(s, t) = P(s, t)A(t) s < t , (1)

where P(s, t) is the transition probability matrix with entries P(s, t)[k,`] = pk`(s, t), and A(t) is the
transition intensity matrix with entries A(t)[k,`] = λk`(t) for k 6= ` ∈ S and A(t)[k,k] = −

∑
` 6=k λk`(t)

(Cox and Miller, 1965). A time-homogeneous model in which transition intensities are independent
of t (i.e. λkl(t) = λkl for all k, l) is the simplest model to consider. In this case, we write A(t) = A0

and note

P(s, t) = exp{(t− s)A0} =
∞∑
n=0

An
0 (t− s)n/n! .

Non-homogeneous Markov models can be adopted by specifying a piecewise-constant model so that
A(t) = Ar if t ∈ Br = [br−1, br), r = 1, . . . , R, with the sequence of pre-defined cut-points 0 = b0 <
b1 < . . . < bR−1 < bR = ∞. Under such models, transition probability pk`(s, t) can be obtained by
multiplying a sequence of transition probabilities over the constant segments of the interval [s, t] and
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then summing over the unobserved disease status at the cut-points. More specifically, if rs = {r; s ∈
Br, r = 1, . . . , R} and rt = {r; t ∈ Br, r = 1, . . . , R}, then

P(s, t) =
rt∏

r=rs

P
(

max{s, br−1},min{t, br}
)

=
rt∏

r=rs

exp
{(

min{t, br} −max{s, br−1}
)
Ar

}
(2)

where the matrix exponential is used to obtain transition probabilities within each piece intersecting
the interval of interest [s, t]. The effect of an explanatory variable X on the transition intensities is
modeled using proportional intensities such that λk`(t|X) = λk`(t) exp(βk`X), k < ` ∈ S.

Prospective cohort studies are commonly employed to collect data on life history processes. This
involves acquiring a sample of size n from a population of individuals and tracking the occurrence
of the event of interest (generally referred to as disease event) longitudinally over a certain follow-up
period. It is generally infeasible to monitor individuals’ disease status continuously, thus assessments
are made intermittently at J specified time points 0 = a0 < a1 < · · · < aJ = τ over the study period
(0, τ ] although the exact event times are not available. On the other hand, the vital status is often
tracked in continuous time and the exact death time is typically known or subject to right censoring
if the participants become lost to follow-up at time C before the end of study. As such, the multistate
data arising from longitudinal cohort studies may be mixed in its nature: disease status data may be
available under a panel observation scheme, along with exact or right-censored death data. Let T1 be
the time to disease progression, T2 be the time to death, T † = min(T2, C, τ) denote the minimum of
the time to death and censoring and δ = I(T † = T2) indicate that death is observed (see Figure 2).
Assume Z(a0) = 0 and let Z̄j = (Z(a1), . . . , Z(aj)) denote the history of the observed disease status
up to and including assessment j, j = 1, . . . , J and M = max{j ; aj < T †, j = 0, . . . , J} be the
random number of assessments for an individual prior to right censoring or death. Under a Markov
model indexed by the parameter vector θ in general, the likelihood contribution from a single subject
is written as

L(θ) = P (Z̄m, t
†, δ | X)

=
m−1∏
j=0

P
(
Z(aj+1) | Z(aj), X

) 1∑
`=0

P
(
Z(t†) = ` | Z(am), X

)
λδ`2(t† | X) (3)

where the summation accounts for the fact that the disease status right before death or censoring
may not be known due to the intermittent observation scheme. The estimates of θ can be obtained by
maximizing the product of terms having the form of (3) over a sample of independent subjects. Instead
of using a Newton-Raphson algorithm, a simple Fisher scoring method was proposed by Kalbfleisch
and Lawless (1985) for obtaining the MLEs in which only first derivatives are required; this can be
adapted to deal with observed times of death as shown by Zeng et al. (2018).

Figure 2: Schematic for mixed observation scheme, where the time of disease progression (T1) is
subject to interval-censoring and the time of death (T2) is subject to right censoring.

We assume censoring is independent of the disease processes. We let Yk(t) = I(Z(t) = k)
indicate that an individual is in state k at time t, Y †(t) = I(t ≤ T †) indicate they are under observation
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(i.e. alive and uncensored), and Y †k (t) = Y †(t)Yk(t) indicate that they are under observation and in
state k at time t, k < 2. For an individual who is under observation at aj−1 with Z(aj−1) = k (i.e.
Y †k (aj−1) = 1), the partial log-likelihood contribution pertaining to the disease process for the jth
interval Aj = [aj−1, aj) is

`kj =
1∑
`=0

Y †` (aj) log
[
pk`(aj−1, aj | X)

]
+
(
1− Y †(aj)

)
log

[
1∑
`=0

pk`(aj−1, t
† | X)λδ`2(t† | X)

]
.

The Fisher information matrix thus takes the form

I =
1∑

x=0

J+1∑
j=1

∫ aj

aj−1

j∑
q=1

1∑
k=0

E

[
Y †k (aq−1)

∂`kj
∂θ

∂`kj
∂θ′
| C = c,X = x

]
dG(c)P (X = x), (4)

where we suppose X is a binary explanatory variable, and let G(·; ρ) be the distribution function for
censoring time C indexed by parameter ρ and aJ+1 = ∞. The calculation details of the conditional
expectation in the inner summation of (4) can be found in Zeng et al. (2018). Note that the construc-
tion of the Fisher information relies on transition probabilities and their first derivatives. Under the
piecewise-constant model, the transition probability matrix can be obtained using (2), and its first
derivatives can be taken in a straightforward manner. For the illness-death process, for example, sup-
pose the derivatives are taken with respect to the vector of constant transition intensities associated
with the rth piece Br, λ(r) = (λ

(r)
01 , λ

(r)
02 , λ

(r)
12 )′, then we will simply have

∂ pk`(s, t | X)

∂λ(r)
=
∑
zr−1,zr

pk,zr−1(s, vr−1 | X)

[
∂ pzr−1,zr(vr−1, vr | X)

∂λ(r)

]
pzr−1,`(vr, t | X),

where vr−1 = max{s, br−1}, vr = min{t, br}, and pk`(vr−1, vr | X) = 0 if vr−1 > vr. The time-
homogeneous model can be viewed as a special case with constant transition intensities over the
whole time span, and the above calculations can be much further simplified.

2.2 DESIGN CHOICES: SAMPLE SIZE AND NUMBER OF ASSESSMENTS

Prospective cohort studies are generally very costly, so careful consideration should be given to the
design of such studies in multiple dimensions such as sample size, frequency of assessments, timing
of the assessments and duration of follow-up. These design factors jointly affect both the estimation
precision and the cost of the study itself. In practice, the choices for these design factors are often
driven by logistical reasons. While several authors have suggested that the assessment frequency
should be justified carefully (Collins and Graham, 2002; Nesselroade, 1991), this is not commonly
done in the clinical literature (Timmons and Preacher, 2015). In the present framework, we present
a more formal approach to choose the sample size and frequency of assessments, by deriving the
asymptotic variance of the estimates of interest and using this as the basis for study design.

Suppose the primary interest of a cohort study lies in the estimation of the effect of a covariate on
the 0→ 1 transition (e.g. disease progression). We assume a binary covariate X has a multiplicative
effect on the 0 → 1 transition, with intensity λ01(t | X) = λ01(t) exp(βX) under a Markov model.
The estimator obtained from fitting the Markov models described in Section 2.1 has the following
asymptotic distribution √

n(β̂ − β) ∼ N
(
0, Iββ(θ, ρ, J, τ)

)
, (5)

where n is the sample size, and Iββ(θ, ρ, J, τ) is the (β, β) element of the inverse of the Fisher infor-
mation I(θ, ρ, J, τ) given in (4). The asymptotic variance depends on θ and ρ from the disease and
censoring processes respectively, as well as the number of assessments (J), the asessment times (aj ,
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j = 1, . . . , J), and the administrative censoring time (τ ). The dependence on the actual assessment
times is suppressed for convenience since we assume here that the assessment times are fixed and
evenly scheduled over the interval (0, τ ]. It is straightforward to extend this work to irregular assess-
ment times as long as the visit process is independent of the disease process. Response-dependent
assessment processes and their impact on estimation and study design are further discussed in Section
5. Following the argument of Demidenko (2007), the power for a two-sided Wald-test of H0: β = β0

vs H1: β 6= β0 at a significance level of α1 for detecting an effect of size β = βA is

power(β) = Φ

−zα1/2 −
β0 − βA√

IββA (θ, ρ, J, τ)/n

+ Φ

−zα1/2 +
β0 − βA√

IββA (θ, ρ, J, τ)/n

 , (6)

where IββA (·) is evaluated at β = βA, and Φ(·) is the cumulative distribution function of a standard
normal distribution. The power is a function of (i) the sample size (n), (ii) the number of evenly
scheduled assessments (J), and (iii) the maximum duration of follow-up (τ ). When τ is fixed and
assessments are evenly scheduled, the study properties can be determined in terms of (i) sample size
n and (ii) the frequency of assessments J for different desired levels of power; different pairs of
design factors (n, J) may achieve the same power. Furthermore, if either n or J is fixed, the other
can be solved by using (6). For example, if the number of assessments J is fixed, the required sample
size for a Wald-test at significance level α1 and power 1− α2 to detect an effect β = βA is

n =

(
zα1/2 + zα2

βA

)2

IββA (θ, ρ, J, τ). (7)

We provide empirical examples of the sample size calculation and relationship between power,
sample size and the number of scheduled assessments for prospective cohort studies targeting the
estimation of the effect of a binary covariate X on disease incidence. We assume all subjects are
in state 0 (i.e. progression-free) at the time origin (i.e. Z(0) = 0), disease status is determined at
J equally spaced assessments, and survival status is monitored continuously over the study period
(0, τ ] subject to random right censoring. Without loss of generality, we let τ = 1. For simplicity, we
consider a time-homogeneous disease process with transition intensities λk`(t|X) = λk` exp(Xβk`)
where λ01, λ02, and λ12 are baseline transition intensities and there is a covariate effect on disease
progression denoted by β01 = β but no covariate effects are assumed on death (i.e. β02 = β12 = 0).
Let β = log 0.75 indicate a covariate (biomarker) which is protective for disease progression, and
P (X = 1) = {0.05, 0.25}. The values for parameters (λ01, λ02, λ12) are set to satisfy the following
constraints: (i) P1 = P (T1 < τ | X = 0) = {0.10, 0.25, 0.50}, (ii) P2 = P (T2 < τ | X =
0) = {0.10, 0.25, 0.50}, and (iii)λ12/λ02 = {1.10}. We assume individuals may become lost to
follow-up at a random time C which follows an exponential distribution with a rate ρ with the value
of ρ set to satisfy P (T2 < min(C, τ)|X = 0) = {0.05, 0.20}, where

P (T2 < min(C, τ)|X = 0) = P (T2 < τ |X = 0)(1−G(τ)) +

∫ τ

0

P (T2 < c|X = 0)g(c)dc .

In Table 1, we report the sample size n for testing H0: β = 0 vs HA: β 6= 0 calculated using
formula (7), when the frequency of the assessments is fixed at J = {5, 10}, power at {80%, 90%} and
significance level α1 = 0.05. To validate these sample size calculations, for each scenario we simulate
2, 000 datasets as described in Cook and Lawless (2018), get point estimates β̂01 and their variance
estimates using the msm package in R (Jackson, 2011), and report the empirical power. Sample sizes
were calculated under the assumption that follow-up visits occur precisely at times aj = jτ/J for all
individuals at risk. Code for the computation of the Fisher information and calculation of the required
sample size/number of assessments is available from the first author upon request, both for the settings
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with β02 = β12 = 0 and without these constraints. We simulated data under this assumption and
calculated the empirical power (EP 1% in Table 1). Since this assumption is generally not plausible in
practice, we conducted sensitivity analyses by simulating 2,000 datasets with modest variation in the
visit times by adding a stochastic variation in the form of independent error terms with εj ∼ N(0, σe)
for visit j with σe = τ/(20J); we calculated the resulting empirical power and denote it by EP 2%
in Table 1. The empirical power is close to the nominal level across all scenarios, although it can be
slightly elevated when the covariate X is rare (i.e. when P (X = 1) = 0.05).

Table 1: Empirical power (EP%) for detecting an effect of covariate X on disease progression at
the significance level α = 0.05, when β01 = log 0.75, λ12/λ02 = 1.1, P2 = 0.25, and P (T2 <
min(C, τ)|X = 0) = 0.2, based on 2, 000 simulated datasets of size n and sample sizes n are calculted
as in (7); for EP1%, the follow-up assessments occur exactly at times aj = jτ/J , while for EP2% the
follow-up assessments vary slightly from the scheduled times, with aj ∼ N (jτ/J, τ/(20J))

P (X = 1) = 0.25 P (X = 1) = 0.05

Power P1 J n AVSE ASE EP1% EP2% n AVSE ASE EP1% EP2%
80% 0.10 5 8,442 0.1031 0.1027 81.3 81.9 35,025 0.1029 0.1027 82.0 84.1

10 8,102 0.1030 0.1027 82.0 82.1 33,615 0.1030 0.1027 81.9 83.6

0.25 5 3,290 0.1031 0.1027 82.0 82.9 13,601 0.1031 0.1027 81.0 82.2
10 3,157 0.1031 0.1027 82.1 81.2 13,052 0.1032 0.1027 82.5 83.3

90% 0.10 5 11,301 0.0890 0.0887 90.8 91.7 46,888 0.0889 0.0887 91.3 92.7
10 10,846 0.0890 0.0887 91.4 91.6 45,001 0.0889 0.0887 91.2 92.3

0.25 5 4,405 0.0890 0.0887 91.7 91.4 18,208 0.0890 0.0887 92.1 92.2
10 4,227 0.0890 0.0887 92.1 91.6 17,472 0.0890 0.0887 92.2 92.9

The figures in the remainder of this section are plots based on the asymptotic variance. Figure 3
displays power curves to illustrate the impact of features of the process (P1 and P2) and of the study
design (n and J) on power; with P1 = {0.10, 0.25, 0.50} across rows, and P2 = {0.10, 0.25, 0.50}
across columns. For all panels, we have β = log 0.75. As before, the focus is on testing H0: β = 0
vs HA: β 6= 0 at a significance level of α = 0.05. As expected, the power increases monotonically
with the frequency of scheduled assessments over [0, τ ]. More generally, the power for detecting a
covariate effect on progression is also higher when more precise information about disease progres-
sion is available, which, by comparing across the plots, can be seen to be driven by factors such as the
proportion of disease progression events (P1) and deaths (P2) over [0, τ ]. As the proportion of deaths
over [0, τ ] increases, the number of realized clinical visits (M) decreases, and with it the extent of
information on disease progression is reduced which leads to a large reduction in power; this can be
seen by comparing across panels from left to right. For example, when P1 = P2 = 0.10, a sample
of size n = 15, 000 with J = 5 planned assessments over (0, τ ] yields approximately 80% power
for rejecting H0: β = 0 vs HA: β 6= 0, but if P2 increases to 0.25 and 0.50, the power decreases
substantially to 30% and 10% respectively. When interest lies in estimating the effect of a covariate
on disease progression (β), we intuitively expect that an increase in the probability of progression
should lead to an increase in power and these figures confirm this. When P2 is fixed at 0.10, prospec-
tively following a sample of n = 5, 000 individuals for J = 5 planned assessments over (0, τ ] leads
to approximately 40% power when P1 = 0.10, and this increases to 80% and 95% for P1 = 0.25 and
0.50 respectively (comparing across rows in Figure 3).
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(a) P1 = 0.10, P2 = 0.10
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(b) P1 = 0.10, P2 = 0.25
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(c) P1 = 0.10, P2 = 0.50
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(d) P1 = 0.25, P2 = 0.10
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(e) P1 = 0.25, P2 = 0.25
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(f) P1 = 0.25, P2 = 0.50
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(g) P1 = 0.50, P2 = 0.10
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(h) P1 = 0.50, P2 = 0.25
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(i) P1 = 0.50, P2 = 0.50

Figure 3: Plots of power curves for testing H0: β = 0 vs HA: β 6= 0, where β = log 0.75 and type-I
error rate is α1 = 0.05; across all panels, we have λ12/λ02 = 1.1, P (T2 < min(C, τ)|X = 0) = 0.05,
and P (X = 1) = 0.25.
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2.3 COST-EFFECTIVE DESIGN OF COHORT STUDIES

Cost is a very important factor to consider when it comes to the design of prospective cohort studies.
The effort of recruiting a subject into the study and assessing disease status may differ with the
former being more expensive than the latter in many practical applications, therefore designs defined
by different pairs (n, J) achieving the same power may lead to substantially different study costs. We
consider the expected cost of cohort study designs, with a view to identify the one with the minimum
cost.

Let C0 be the cost for recruiting a subject into the study, C1 be the cost of each follow-up assess-
ment, and assume the assessment times are common to all individuals. The expected total cost of
recruitment and follow-up of n subjects each with J intended visits over a period of τ years is then

E[C] = n
[
C0 + C1E(M)

]
= n

[
C0 + C1

1∑
x=0

J∑
j=1

jP (M = j|X = x)P (X = x)
]
.

Recall M is the random number of assessments for an individual; M = j implies T † ∈ Aj+1 =
[aj, aj+1) and

P (M = j|X) =
1∑

k=0

p0k(0, aj|X)
1∑
l=0

{∫ aj+1

aj

pkl(aj, t|X)λl2(t|X)dt (1−G(aj+1))

+

∫ aj+1

aj

[
pkl(aj, c|X) +

∫ c

aj

pkl(aj, t|X)λl2(t|X)dt

]
dG(c)

}

for j < J , and P (M = J |X) =
∑1

l=0 p0l(0, τ |X)(1−G(τ)).
A minimum-cost design is a design which minimizes expected total cost among all the designs

(n, J) that achieve the same desired power to detect an effect of size β = log 0.75. Figure 4 shows
the relative expected cost of a design (n, J) versus the optimal one (nopt, Jopt) represented by the dot
on each line, when the power is fixed at 80%. The lines correspond to different values of cost ratio
C1/C0 = {0.50, 0.20, 0.05} and we set C0 = 1 without loss of generality. As expected, the opti-
mal frequency of assessments Jopt increases as the cost of conducting a follow-up assessment (C1)
decreases. As the probability of death over [0, τ ] increases (comparing across columns in Figure 4),
minimum-cost designs are achieved by scheduling more visits (e.g. increasing Jopt); this is sensible
given that death terminates the observation process, and hence limits expected costs even when as-
sessments are frequent. This observation is consistent with the power profile plots in Figure 3. On the
other hand, the probability of progression (P1) has little effect on the determination of the frequency
of assessment Jopt in minimum-cost designs, as can be seen by comparing across rows in Figure 4.
While Figure 3 demonstrated the large effect of P1 on power for testingH0: β = 0 vsHA: β 6= 0, Jopt

is far less sensitive to it. However, this does imply an increase in nopt as P1 decreases, which would
in turn lead to an increase in expected study cost. Finally, note that the above discussion extends to
any desired (fixed) level of power, as we can easily show that

n80(J1)

n80(J2)
=
n90(J1)

n90(J2)
,

where np(J) is the sample size obtained from (7) to achieve p% power with J regular assessments
over (0, τ ]. This implies that given the cost of follow-up assessments C1, the value Jopt minimizing
the expected total study cost does not change as a function of power.

Rather than identifying the most cost-effective design achieving a desired level of power, this
approach may also be used to identify the design (n, J) which is most powerful among all designs
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Figure 4: Ratio of expected study cost (to achieve 80% power for testing H0: β = 0 vs HA: β 6= 0 at
a significance level of α = 0.05 when β = log 0.75 ) given J and the expected cost of the minimum-
cost design; minimum-cost designs identified by dots for C1/C0 = {0.5, 0.2, 0.05}, λ12/λ02 = 1.1,
and P (T2 < min(C, τ)|X = 0) = 0.05, and P (X = 1) = 0.25
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satisfying a budgetary constraint. This is illustrated in Figure 5, where the budget is set at 3,500
times the cost of recruiting one individual, and the cost of each follow-up assessment is 20% of this
(i.e. C0 = 1 and C1 = 0.2); the scenario considered here is the same as in the bottom-left panel of
Figure 4. As the cost of each follow-up assessment increases, we see that the number of follow-up
assessments maximizing power subject to the budgetary constraint decreases, which mirrors the trend
observed in the minimum-cost designs, as shown in Figure 4.
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Figure 5: Power of designs subject to a budgetary constraint on the expected study cost, with the
most powerful design identified by a dot for each of C1/C0 = {0.5, 0.2, 0.05}; P1 = 0.50, P2 = 0.10,
λ12/λ02 = 1.1, P (T2 < min(C, τ)|X = 0) = 0.05, and P (X = 1) = 0.25

3 ACCOMMODATING MISCLASSIFICATION OF DISEASE STATUS

3.1 LIKELIHOOD AND EM ALGORITHM

In the previous section, we assumed that the ascertainment of disease status was always made without
error, which is not often the case in practice. For example medical tests may yield false positives or
false negatives, and diagnosis of many diseases may be based on subjective criterion leading to error.
In some instances, while a gold standard test may exist to diagnose a condition, cost and patient burden
may render the test impractical to administer in standard practice. In this section, we propose an EM
algorithm (Dempster et al., 1977) for estimation in this framework and derive the Fisher information
to use as the basis for investigation of study design implications, taking into account the expected
cost.

Let W (aj) denote the misclassified disease status obtained from an error-prone assessment tool
at assessment j, and W̄j = (W (a1), . . . ,W (aj)) be the classification history. The true disease
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status vector Z̄m is latent and missing and the vital status is ascertained in continuous time up to
min(C, τ) without error so T † = min{T2, C, τ} and δ are observed. The likelihood of the observed
data {W̄m, t

†, δ,X} can be written as

Lo ∝
∑
Z̄m

P (Z̄m, t
†, δ | X)P (W̄m | Z̄m, t†, δ,X). (8)

Note that the first term within the summation above only depends on the disease process, and the
event time T1 uniquely determines the true disease history Z̄m, so it is equal to

P (t1 ∈ Aj, Z̄m, t†, δ | X; θ) =

 p00(0, aj−1|X)p01(aj−1, aj|X)p11(aj, t
†|X)λδ12(t†|X) j ≤ m

p00(0, am|X)
[∑1

k=0 p0k(am, t
†|X)λδk2(t† | X)

]
j = m+ 1

,

where Aj = [aj−1, aj) is the jth intermittent observation interval as before but an extra interval is
defined as Am+1 = [am,∞). For the misclassification process, we assume W (aj) depends only on
the current true state Z(aj) but not on the classification history or the true disease status in the past
and future, thus the second term in (8) becomes

P (W̄m | t1 ∈ Aj, Z̄m, t†, δ,X; π) =

j−1∏
`=1

π
1−W (a`)
0 (1− π0)W (a`)

m∏
`=j

π
W (a`)
1 (1− π1)1−W (a`) ,

where π = (π0, π1) with π1 = P (W (aj) = 1|Z(aj) = 1), π0 = P (W (aj) = 0|Z(aj) = 0); the
misclassification rates FP = 1 − π0 and FN = 1 − π1 are often assumed to be known (Ma et al.,
2016). Given the above, the observed likelihood (8) can be expressed as

Lo(θ, π) =
m+1∑
j=1

P (t1 ∈ Aj, Z̄m, t†, δ|X; θ)P (W̄m|t1 ∈ Aj, Z̄m, tδ, X; π). (9)

For the estimation of disease process parameters θ, direct maximization of the observed likelihood
(9) is difficult in general. An EM algorithm can alternatively be employed by casting the problem into
a missing-data framework where the time of entry into state 1, T1, is viewed as missing. We define
the complete log-likelihood as

`c(θ) =
n∑
i=1

log f(ti1, t
†
i , δi | Xi; θ),

where subscript i is used to index the individuals. At each iteration of the EM algorithm, an E-step
computes the expected complete-data log-likelihood given the observed dataD = {W̄mi

, t†i , δi, Xi; i =

1, . . . , n} and the current parameter estimates θ̂(r), that is

E
[
`c(θ) | D; θ̂(r)

]
=

n∑
i=1

∫ ∞
0

log
[
f(ti1, t

†
i , δi | Xi; θ)

]
f(ti1|W̄Mi

, t†i , δi, Xi; θ̂
(r), π) dti1 , (10)

where the conditional distribution of T1 given the observed data {W̄m, t
†, δ,X} takes the form

f(t1|W̄m, t
†, δ,X; θ, π) =

f(t1, t
†, δ | X; θ)P (W̄m|t1, t†, δ,X)∫∞

0
f(t1, t†, δ | X; θ)P (W̄m|t1, t†, δ,X)dt1

.

The M-step then requires maximizing the conditional expectation in (10) to get updated estimates of
θ, and the iteration between the E- and M-steps continues until convergence. Variance estimation
for the estimates θ̂ from the EM algorithm is done by calculating the observed information via Louis
(1982). The details of an EM algorithm procedure for the estimation of a time-homogeneous three-
state model with observed disease status subject to misclassification are provided in Appendix A.
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3.2 FISHER INFORMATION AND DESIGN

Obtaining the Fisher information matrix with misclassified disease status requires taking derivatives of
the logarithm of the observed likelihoodLo(W̄M , T

†, δ,X) given in (8). Let `o = logLo(W̄M , T
†, δ,X)

and So = ∂`o/∂θ be the vector of first-order derivatives. In general, the form of the observed-data
score So may be complicated due to taking the logarithm of a sum. It is helpful to write it as an
expectation of the complete-data score given the observed data,

So(W̄m, t
†, δ,X) =

∂ logLo(W̄M , T
†, δ,X)

∂θ
= E

[
∂ logLc(T1, T

†, δ,X)

∂θ

∣∣∣W̄M , T
†, δ,X

]
.

Under the assumption of non-informative censoring, the Fisher information E[SoS
′
o] is then ob-

tained by taking the expectation of SoS ′o with respect to {W̄M , T
†, δ,X}.

I(θ) =
1∑

x=0

J∑
j=0

∫ aj+1

aj

E
[
SoS

′
o

∣∣∣C = c ∈ Aj, X = x
]
dG(c)P (X = x) (11)

=
1∑

x=0

J∑
j=0

∫ aj+1

aj

[
H(j,min(c, τ), 0, x) +

j∑
q=1

∫ min(aq ,c)

aq−1

H(q, t2, 1, x)dt2

]
dG(c)P (X = x),

where

H(m, t†, δ, x) = E

[
∂

∂θ
`o(W̄m, t

†, δ, x)
∂

∂θ′
`o(W̄m, t

†, δ, x)
∣∣∣t†, δ, x] f(t†, δ|x)

=
∑
W̄m

(
So(W̄m, t

†, δ, x)S ′o(W̄m, t
†, δ, x)

)
Lo(W̄m, t

†, δ, x),

and m satisfies am ≤ t† < am+1 and t† = min(t2, c, τ).
We validate the asymptotic variance obtained from the Fisher information (11) by comparing it

to the empirical variance and average estimated variance of MLEs obtained via the EM algorithm
for each of 2, 000 simulated datasets. These results are reported in Table 2; the parameter settings
mirror those in Section 2.2. Note the excellent agreement between the empirical standard error and
the asymptotic standard error, as well as the coverage achieving the nominal level of 95%, even in
presence of slight and moderate misclassification.

Intuitively, it is clear that the scheduling of more frequent assessments mitigates, to some degree,
the loss of information due to potential state misclassification. However, when considering both
the cost of increasing the sample size (C0) and the cost of follow-up assessments (C1), it is not
obvious whether it would be more cost-effective to increase n or J to achieve a desired level of
power. In Figure 6, we see that as the degree of misclassification increases, the minimum-cost design
is achieved by increasing the frequency of assessments over [0, τ ]. This is particularly apparent when
disease progression is rare in the cohort (i.e. when P1 is low), in which case even a modest rate of
false positives/negatives has a significant impact on Jopt.

Finally, we consider the differential impact of false positive and false negative errors on features
of the minimum-cost design (see Figure 7). For example, when P1 is low (that is when progression
events are rare in the cohort) and interest lies in detecting a covariate effect on disease progression,
an increase in the rate of false positives (FP = 1− π0) has a much larger impact on Jopt than does an
increase in the rate of false negatives (FN = 1− π1).
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(a) P1 = 0.10, P2 = 0.10 (b) P1 = 0.50, P2 = 0.10

Figure 6: Ratio of expected study cost (to achieve 80% power for testing H0: β = 0 vs HA: β 6= 0 at
a significance level of α = 0.05 when β = log 0.75 ) given J and the expected cost of the minimum-
cost design; minimum-cost designs identified by dots for different degrees of misclassification where
we assume equal false positive (FP) and false negative (FN) rates; C1/C0 = 0.5, λ12/λ02 = 1.1,
P (T2 < min(C, τ)|X = 0) = 0.05, and P (X = 1) = 0.25

(a) P1 = 0.1, P2 = 0.1 (b) P1 = 0.5, P2 = 0.1

Figure 7: Ratio of expected study cost (to achieve 80% power for testing H0: β = 0 vs HA: β 6=
0 at a significance level of α = 0.05 when β = log 0.75 given J and the expected cost of the
minimum-cost design; minimum-cost designs identified by dots for various combinations of false
positive rate (FP= 1 − π0) and false negative rate (FN= 1 − π1); C1/C0 = 0.5, λ12/λ02 = 1.1,
P (T2 < min(C, τ)|X = 0) = 0.05, and P (X = 1) = 0.25
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4 ILLUSTRATION MOTIVATED BY THE CANADIAN LONGITUDINAL STUDY ON

AGING

Here we consider an illustrative calculation motivated by the kinds of questions investigators involved
in large cohort studies find of critical scientific interest. The Canadian Longitudinal Study on Aging
(CLSA) (Raina et al., 2018) is a large longitudinal cohort study with the objective of better under-
standing various facets of aging in Canada. Approximately 50,000 Canadians aged 45-85 have been
recruited into the CLSA, with planned follow-up assessments every 3 years over a period of 20 years.
Data from the CLSA will allow investigators to study the effect of several genetic and environmental
risk factors on the incidence and progression of several diseases such as diabetes and dementia. To
reflect the design of the CLSA, we consider a study with J = 7 (corresponding to visits every 3 years
over a period of 21 years) and calculate the sample size that would be required to achieve 80% and
90% power to detect a covariate effect β. Given the target age range of individuals at recruitment,
we set P2 = P (T2 < 21|X = 0) = 0.35 and assume P (T2 < min(C, 21)|X = 0) = 0.2. We
set P1 = P (T1 < 21|X = 0) = {0.14, 0.02} to reflect the prevalence of diabetes and dementia
respectively in the population (Ma et al., 2016), and λ12/λ02 = 1.1 as both diabetes and dementia are
associated with slight increases in the mortality rate. Finally, we consider P (X = 1) = {0.05, 0.25}
to reflect the prevalence of potential risk factors (e.g. genetic and environmental). In Table 3, we
see that sample sizes of less than 30,000 are required to achieve 90% power to detect a covariate ef-
fect β when the disease and the covariate of interest are both relatively common (e.g. P1 = 0.14 and
P (X = 1) = 0.25), even when the ascertainment of disease status is subject to 20% misclassification.
However, we see that when the disease is less common (e.g. P1 = 0.02) or the covariate of X less
frequent (e.g. P (X = 1) = 0.05), the sample sizes required to achieve 80% and 90% power become
much larger, even when disease status may be determined without error. These findings are consistent
with those of Ma et al. (2016).

Table 3: Sample sizes required to achieve 80% and 90% power to detect a covariate effect β with
J = 7, where MIS=1− π is the misclassification proportion, P2 = 0.35, λ12/λ02 = 1.1, and P (T2 <
min(C, 21)|X = 0) = 0.2

Power = 0.80 Power = 0.90

P †1 P (X = 1) β MIS=0 MIS=0.1 MIS = 0.2 MIS=0 MIS=0.1 MIS = 0.2
0.14 0.25 log 0.75 8,734 13,850 22,251 11,692 18,542 29,788

log 0.6 3,295 5,385 8,881 4,411 7,208 11,889
log 0.5 2,075 3,482 5,883 2,778 4,661 7,876

0.05 log 0.75 36,215 57,821 93,401 48,481 77,406 125,036
log 0.6 14,111 23,293 38,734 18,890 31,183 51,854
log 0.5 9,090 15,437 26,329 12,168 20,665 35,248

0.02 0.25 log 0.75 62,971 140,990 317,798 84,300 188,746 425,441
log 0.6 23,938 55,661 131,126 32,046 74,514 175,541
log 0.5 15,155 36,428 89,291 20,288 48,767 119,536

0.05 log 0.75 261,729 590,992 1,244,226 350,381 791,171 1,799,541
log 0.6 102,839 242,123 577,870 137,671 324,134 773,606
log 0.5 66,624 162,464 404,134 89,190 217,493 541,021

† P1 = 0.14 is specified to correspond roughly to the onset of diabetes; and P1 = 0.02 is specified for
the onset of dementia in such a cohort study.
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5 DISCUSSION

We have developed a framework for the design of cohort studies in which interest lies primarly in
the effect of a covariate on the development of an intermediate event; this event could represent the
onset of a disease (e.g. diabetes) in a large cohort study or the development of a complication if the
cohort is comprised of disease individuals (onset of kidney damage in a diabetes cohort). This work
offers a theoretical underpinning of the simulation-based study of Ma et al. (2016). While we have
examined the features that most influence the sample size requirements for a three-state illness-death
model, the framework naturally accommodates progressive multistate processes with more than three
states. Diseases such as dementia, hepatitis, retinopathy or nephropathy all represent progressive
conditions for which several intermediate states can be introduced for a more detailed modeling of
the progression. Sample size can be likewise determined if estimation of a covariate effect on any
particular transition in the disease process is of primary interest.

Ma et al. (2016) considered the impact of misclassification of a genetic marker when the goal is
to assess the power of a cohort study for detecting its effect. There is a large literature on the impact
of covariate measurement error or misclassification (Yi, 2016; Carroll et al., 2006; Fuller, 1987) and
likelihood methods can be employed to accommodate this either with external or internal validation
samples. A natural extension of our work would be to base study design on a model accommodating
covariate misclassification based on a prior external validation sample.

We considered the setting in which the status of individuals may be misclassified at examination
times. We presumed that individuals would continue to be examined after any positive assessments
suggesting the intermediate event had occurred; this corresponds to the setting in which the analysis
might be done retrospectively upon completion of the cohort study. In practice, if the assessments are
made by treating physicians, individuals testing positive would be referred immediately for definitive
diagnostic checks. If they were found to have experienced the event based on a gold standard test then
the schedule for the subsequent follow-up assessments may be modified. If they were subsequently
found not to have experienced the event, but the false positive assessment was suggestive of higher
risk, the subsequent assessment times might be more frequent. Study designs accommodating such
adaptive observation schemes warrant further development.

More generally, longitudinal cohort studies are designed under idealized assumptions which may
not always be realized in practice; participants may not adhere to the visit schedule specifed in the
protocol, some may not take treatments as directed, and responses may be misreported or missing.
While some departures from design assumptions are unavoidable, it is important to capture as many
realistic features of the study as possible at the design stage. In longitudinal studies where responses
are collected on an individual repeatedly over time, it is reasonable to expect that the schedule of
assessments and/or the treatment protocol may change over time, and this is an area that warrants
future work. For example, while we assumed the assessments were scheduled at regular intervals
over (0, τ ], this need not be the case. The asymptotic variance can be calculated with (11) with
unequally spaced assessment times, as long as their adaptive scheduled is described in the protocol.
This allows for the assessment schedule to be optimized at the design stage; this may be of particular
interest if transition intensities are vary with time, for example via piecewise constant intensities, and
scheduling more frequent assessments for participants in high-risk periods may lead to more cost-
effective designs.

Further generalizations of this design work could be considered to accommodate departures from
Markov models. Models involving shared or correlated random effects acting multiplicatively on
state transition intensities have been developed by Satten (1999), Cook et al. (2004), Chen and Zhou
(2013), and O’Keeffe et al. (2013). Such models yield information matrices of the sort considered
here, conditional on random effects, so the design would need to be modified to accommodate this
additional source of variation; Louis’ method (Louis, 1982) could again be useful in this calculation.
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Jóźwiak, K. and Moerbeek, M. (2012). Cost-effective designs for trials with discrete-time survival
endpoints. Computational Statistics & Data Analysis, 56(6):2086–2096.

Kalbfleisch, J. and Lawless, J. F. (1985). The analysis of panel data under a Markov assumption.
Journal of the American Statistical Association, 80(392):863–871.

Kim, H.-Y., Williamson, J. M., and Lin, H.-M. (2016). Power and sample size calculations for
interval-censored survival analysis. Statistics in Medicine, 35(8):1390–1400.
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APPENDIX A: AN EM ALGORITHM WHEN DISEASE STATUS IS MISCLASSIFIED

For illustration purposes, we consider a time-homogeneous model, with λk`(t | X) = λk`(X) =
λk` exp(βk`X) for k < ` and assume the misclassification parameters π are known. The transition
probability matrix can be obtained via matrix exponential P(s, t | X) = exp

{(
t− s)A(X)

}
and

A(X) = [λk`(X)] is the constant transition intensity matrix; we obtain explicit expressions for the
individual transition probabilities

p00(t | X) = exp{−(λ01(X) + λ02(X))(t)} ,
p11(t | X) = exp{−λ12(X)(t)} ,

p01(t | X) =
λ01(X)

λ01(X) + λ02(X)− λ12(X)

[
exp{−tλ12(X)} − exp{−t(λ01(X) + λ02(X))}

]
.

Under the time-homogeneous model with misclassified disease status, the likelihood function of the
observed data D = {W̄m, T

†, δ,X} can be written in closed form

Lo(θ, π) =
λ01(X)λ12(X)δe−λ12(X)t†

λ01(X) + λ02(X)− λ12(X)

m+1∑
j=1

[
e−λ

∗(X)aj−1 − e−λ∗(X) min{aj ,t†}
]

× P (W̄m | t1 ∈ Aj, Z̄m, t†, δ,X)

+ λ02(X)δe−(λ01(X)+λ02(X))t†P (W̄m | t1 ∈ Am+1, Z̄m, t
†, δ,X) (A.1)

and

P (W̄m | t1 ∈ Aj, Z̄m, t†, δ,X) =

j−1∏
`=1

π
1−W (a`)
0 (1− π0)W (a`)

m∏
`=j

π
W (a`)
1 (1− π1)1−W (a`) , (A.2)
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where π = (π0, π1) with π1 = P (W (aj) = 1|Z(aj) = 1), π0 = P (W (aj) = 0|Z(aj) = 0) and we
have Aj = [aj−1, aj) for j = 1, . . . ,m and Am+1 = [am,∞).

The objective here is to estimate the disease process parameters θ, assuming the misclassification
parameters π are known. We discuss the steps of the EM algorithm considering a single subject only
for convenience, but note that the generalization over all subjects is straightforward.

The E-step:

The joint distribution of the complete data {t1, t†, δ} is

f(t1, t
†, δ|X) =

[
p00(t1|X)λ01(t1|X)p11(t† − t1|X)λδ12(t†|X)

]I(t1<t†)[
p00(t†|X)λδ02(t†|X)

]I(t1>t†)
.

The complete log-likelihood then can be written as

`c(θ) = log f(t1, t
†, δ | X)

= I(t1 < t†)
{

log λ01(X)− λ12(X)t† + δ log λ12(X)−
[
λ01(X) + λ02(X)− λ12(X)

]
t1

}
+ I(t1 > t†)

{
δ log λ02(X)−

[
λ01(X) + λ02(X)

]
t†
}
.

The conditional expectation Q(θ; θ̂(r)) = E
[
`c(θ) | D; θ̂(r)

]
becomes

Q(θ; θ̂(r)) =w
(r)
1

{
log λ01(X) + δ log λ12(X)− λ12(X)t†

}
− w(r)

2

{
λ01(X) + λ02(X)− λ12(X)

}
+
[
1− w(r)

1

]{
δ log λ02(X)−

[
λ01(X) + λ02(X)

]
t†
}

(A.3)

where w(r)
1 = P (t1 < t† | D; θ̂(r), π) and w(r)

2 =
∫ t†

0
t1f(t1 | D; θ̂(r), π)dt1. The weight functions are

calculated as follows:

w1(θ, π) =

∫ t†

0

f(t1 | D; θ, π)dt1

= 1− λ02(X)δe−(λ01(X)+λ02(X))t†P (W̄m|t1 ∈ Am+1, t
†, δ,X)

Lo(θ, π)

w2(θ, π) =

∫ t†

0

t1f(t1 | D; θ, π)dt1

=

∑M+1
k=1

∫ min{ak,t†}
ak−1

t1f(t1, t
†, δ|X; θ)dt1P (W̄m|t1 ∈ Ak, t†, δ,X)

Lo(θ, π)

where P (W̄m|t1 ∈ Ak, t†, δ,X) is given in (A.2), Lo(θ, π) is given in (A.1), and the integration∫ b
a
t1f(t1, t

†, δ|X; θ)dt1 takes following form

λ01(X)λ12(X)δe−λ12(X)t†

λ∗(X)2

{[
aλ∗(X) + 1

]
e−aλ

∗(X) −
[
bλ∗(X) + 1

]
e−bλ

∗(X)
}
,

here λ∗(X) = λ01(X) + λ02(X)− λ12(X).

The M-step:
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The updated estimates of θ are obtained by maximizing the conditional expectation Q(θ; θ̂(r)). Note
that under time-homogeneous model, the Q(θ; θ̂(r)) function given in (A.3) can be re-organized as

Q(θ; θ̂(r)) = w
(r)
1

[
log λ01(X)− v(r)λ01(X)

]
+
(

1− w(r)
1

) [
δ log λ02(X)− t†λ02(X)

]
+ w

(r)
1

[
δ log λ12(X)−

(
t† − v(r)

)
λ12(X)

]
+
(

1− w(r)
1

) [
−t†λ01(X)

]
+ w

(r)
1

[
−v(r)

1 λ02(X)
]

(A.4)

Note thatQ(θ; θ̂(r)) function resembles the sum of weighted log-likelihood function of Poisson obser-
vations with offsets. This implies that the maximization can be done by generating a pseudo dataset
and fitting log-linear Poisson models. More specifically for each subject i, we create five pseudo
responses yij (j = 1, . . . , 5), and we assume yij ∼ Poisson(λijuij) with a pseudo offset uij and a
log-linear model for the rate log λij = z′ijθ where zij is a vector of pseudo covariates associated with
yij . The conditional expectation (A.4) is then equivalent to the weighted log-likelihood of a pseudo
dataset

Q(θ; θ̂(r)) =
∑
i,j

ŵij log f(yij; θ) =
∑
i,j

ŵij

{
yij
[

log λij + log uij
]
− λijuij

}
where we let θ = (log λ01, log λ02, log λ12, β01, β02, β12)′, and the values of weights (i.e. ŵij), re-
sponses (i.e. yij), covariates (i.e. zij) and offsets (i.e. uij) of this pseudo dataset are given in Table
A.1

Table A.1: Pseudo-data for loglinear model

ŵij yij z′ij uij log λij = z′ijθ

w
(r)
1,i 1 (1, 0, 0, X, 0, 0) w

(r)
2,i /w

(r)
1,i log λ01(X)(

1− w(r)
1,i

)
δ (0, 1, 0, 0, X, 0) t† log λ02(X)

w
(r)
1,i δ (0, 0, 1, 0, 0, X) t† − w(r)

2,i /w
(r)
1,i log λ12(X)(

1− w(r)
1,i

)
0 (1, 0, 0, X, 0, 0) t† log λ01(X)

w
(r)
1,i 0 (0, 1, 0, 0, X, 0) w

(r)
2,i /w

(r)
1,i log λ02(X)

In other words, we can use the glm function in R to do the maximization by fitting a Poisson log-linear
model on a pseudo dataset where each individual in the original sample will give rise to a number of
‘pseudo-individuals’ with their weights, responses, and associated covariates and offsets generated as
described in Table A.1.

Observed Information:

We calculate the observed information I(θ̂) by taking the expectation of derivatives of the complete
data log-likelihood lc(θ) given the observed data D = {W̄M , T

†, δ,X} as in (Louis, 1982)

I(θ̂) = E

[
∂2lc(θ)

∂θ∂θ′

∣∣∣D; θ̂

]
− E

[
∂lc(θ)

∂θ

∂lc(θ)

∂θ′

∣∣∣D; θ̂

]
+ E

[
∂lc(θ)

∂θ

∣∣∣D; θ̂

]
E

[
∂lc(θ)

∂θ′

∣∣∣D; θ̂

]
.

Evaluating the above amounts to calculating w1(θ) = P (T1 < t†|D; θ̂, π), w2(θ) = E
[
T1|t1 <

t†,D; θ̂, π
]
, and w3(θ) = E

[
T 2

1 |t1 < t†,D; θ̂, π
]

for each individual, where w1(θ) and w2(θ) are as in
the E-step of the EM algorithm and

w3(θ, π) =

[∑M+1
j=1

∫ min{aj ,t†}
aj−1

t21f(t1, t
†, δ|X; θ)dt1P (W̄m|t1 ∈ Aj, t†, δ, π)

]
Lo(θ, π)
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where∫ b

a

t21f(t1, t
†, δ|X; θ)dt1 =

λ01(X)λ12(X)δe−λ12(X)t†

(λ∗(X))3

{[
(aλ∗(X))2 + 2aλ∗(X) + 2

]
e−aλ

∗(X)

−
[
(bλ∗(X))2 + 2bλ∗(X) + 2

]
e−bλ

∗(X)
}
.


	Introduction
	Prospective Cohort Studies
	Multistate Markov Models and Maximum Likelihood Estimation
	Design Choices: Sample Size and Number of Assessments
	Cost-effective Design of Cohort Studies

	Accommodating Misclassification of Disease Status
	Likelihood and EM Algorithm
	Fisher Information and Design

	Illustration Motivated by the Canadian Longitudinal Study on Aging
	Discussion
	An EM algorithm when disease status is misclassified

