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Abstract 

Organizations are flooded with data. The volume and the variety of data that is 

available now to organizations is incredible: companies are storing more data from 

more sources in more formats than ever before. And they have realized the data they 

gather is a valuable resource for understanding their customers, the performance of 

their business in the marketplace, and the effectiveness of their infrastacture. The 

challenge here is that traditional tools are poorly equipped to deal with the scale and 

complexity of much of this data. 

That’s where Hadoop comes in. 

The Hadoop ecosystem emerged as a cost-effective way of working with such large 

data sets. It imposes a particular programming model, called MapReduce, for breaking 

up computation tasks into units that can be distributed around a cluster. Underneath 

this computation model is a distributed file system called the Hadoop Distributed 

Filesystem (HDFS). 

However, a challenge remains; how do you move an existing data infrastructure to 

Hadoop, when that infrastructure is based on traditional relational databases and the 

SQL? 

This is where Hive comes in.   

Hive is a standard for SQL queries over petabytes of data in Hadoop. It provides SQL-

like access to data in HDFS, enabling Hadoop to be used as a data warehouse. The Hive 

Query Language (HiveQL) has similar semantics and functions as a standard SQL in the 

relational database, so that experienced database analysts can easily get their hands 

on it. Hive’s query language can run on different computing engines, such as 

MapReduce, Tez and Spark. In this work although, for all the examples we will use 

MapReduce as the computing engine. 

Ok, with Hive we can easily access and manipulate our data. But this data are valuable 

not being a “data packrat” but rather for building products, features, and intelligence 

predicated on knowing more about the world (where the world can be users, searches, 

machine logs, or whatever is relevant to an organization).  

So, one of the vital components of Data Analytics is Machine learning. 

Machine learning (ML) is the study of computer algorithms that improve automatically 

through experience. It is seen as a subset of artificial intelligence. Machine learning 

algorithms build a mathematical model based on sample data, known as “training 

data”, in order to make predictions or decisions without being explicitly programmed 

to do so. 

Machine learning algorithms learn from data. It is critical that you feed them the right 

data for the problem you want to solve. Even if you have good data, you need to make 

sure that it is in a useful scale, format and even that meaningful features are included. 
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So, the logical question is, can we use SQL over Hive for Machine Learning?  

And the answer is positive since 2016. We can use for Machine Learning theApache 

Hivemall, which is a collection of ML algorithms and versatile data analytics functions. 

It provides a number of ease of use ML functionalities through the Apache Hive 

UDF/UDAF/UDTF interface. 

Apache Hivemall offers a variety of functionalities: regression, classification, 

recommendation, anomaly detection, k-nearest neighbor, and feature engineering. It 

also supports state-of-the-art Machine Learning algorithms such as Soft Confidence 

Weighted, Adaptive Regularization of Weight Vectors, Factorization Machines, and 

AdaDelta. 

 

Key-words: Hadoop, Big Data, Hive, Hivemall, MapReduce, SQL, HiveQL, Machine 

Learning, HDFS, Data Warehouse 
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CHAPTER 1: OVERVIEW OF BIG DATA: HADOOP 

Hadoop and the term Big Data are like synonymous. But like many buzzwords, what 

people mean when they say “big data” is not always clear. This lack of clarity is made 

worse by IT people trying to attract attention to their own projects by labeling them 

as “big data”, even though there’s nothing big about them.  

At its core we can say that big data is simply a way of describing data problems that 

are unsolvable using traditional tools. A well-known saying in this domain is to 

describe big data with the help of three words starting with the letter V: volume, 

velocity and variety. These different Vs are explained as follows [1]: 

Volume: High volume of data ranging from dozens of terabytes and even 

petabytes.  

Variety: Data that is organized in multiple structures, ranging from raw text 

(which, from a computer’s perspective, has little or no discernible structure 

(unstructured data) to log files (semi structured) to data ordered 2 in strongly 

typed rows and columns (structured data). To make things even more confusing, 

some data sets even include portions of all three kinds of data (multi structured 

data). 

Velocity: Data that enters an organization and has some kind of value for a limited 

window time –a window that usually shuts well before the data has been 

transformed and loaded into a data warehouse for deeper analysis. The higher the 

volumes of data entering an organization per second, the bigger the velocity 

challenge. Each of these criteria clearly poses its own, distinct challenge to 

someone wanting analyze the information. 

The commonly held rule of thumb is that if your data storage and analysis work 

exhibits any of these three characteristics, chances are that you’ve got yourself a big 

data challenge. In summary, big data is not just about lots of data, it is a practice to 

discover new insight from existing data and guide the analysis of new data. A big-data-

driven business will be more agile and competitive to overcome challenges and solve 

problems. 

Apache Hadoop is a platform that provides pragmatic, cost-effective, scalable 

infrastructure for building applications based on big data. Made up of a distributed 

filesystem called Hadoop Distributed Filesystem (HDFS) and a computation layer that 

implements (and least when it was introduced) a processing paradigm called 

MapReduce, Hadoop is an open source, batch data processing2 system for enormous 

amounts of data.  

[3]Hadoop uses a cluster of plain old commodity servers with no specialized hardware 

or network infrastructure to form a single, logical, storage and compute platform, or 

cluster that can be shared by multiple individuals or groups. 
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For the history books, Hadoop was modeled after two papers produced by Google. 

The first was published in 2003, the now famous paper “The Google Filesystem1”, 

describes a [3] pragmatic, scalable, distributed filesystem which was based on these 

four salient points [2]: 

 Failures are the norm 

 Files are large 

 Files are changed by appending, not by updating 

 Closely coupled application and filesystem APIs 

The following year, another paper, titled “MapReduce: Simplified Data Processing on 

Large Clusters” was presented, defining a programming model and accompanying 

framework that provided automatic parallelization, fault tolerance and the scale to 

process hundreds of terabyres of data in a single job over thousands machines.  

These papers directly inspired the development of HDFS and Hadoop MapReduce, 

respectively.  

The general idea when an application is running on Hadoop is the work to be divided 

among the nodes (machines) in the cluster, HDFS stores the data that will be 

processed. A Hadoop cluster can span thousands of machines, where HDFS stores 

data, and MapReduce jobs do their processing near the data, which keeps I/O costs 

low. 

HDFS 

The first half of Apache Hadoop is the filesystem HDFS (Hadoop Distributed 

Filesystem). HDFS was built to support high throughput, streaming reads and writes 

of extremely large files. 

There are a number of specific goals for HDFS [3]: 

 Store millions of large files, each greater than tens of gigabytes, and 

filesystems sizes reaching tens of petabytes. 

 Use scale-out model based on inexpensive commodity servers. Accomplish 

availability and high throughput through application-level replication of data. 

 Optimize for large, streaming reads and writes rather than low-latency access 

to many small files. Batch performance is more important than interactive 

response times. 

 Deal with component failures of machines and disks. 

 Support the functionality and scale requirements of MapReduce processing. 
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HDFS does something unique. You take 30 computers for example and install an OS 

on each of them (like Ubuntu). After networking them together you install HDFS on all 

them and declare one of them as a master node and all the others computers (29 in 

our example) as worker nodes. This makes up your HDFS cluster. Now, when you copy 

files to a directory, HDFS stores parts of your file on multiple nodes in the cluster. In 

that way, HDFS becomes a virtual filesystem on top of the Linux filesystem. And the 

most peculiar is that HDFS abstracts the fact you’re storing data on multiple nodes in 

a cluster. HDFS also creates and stores on the master node metadata of every file 

where it is stored on the cluster, acting as a directory, and providing a global picture 

of the filesystem’s state. 

Figure 1-1 shows a view of how HDFS works [2].  

 

 

 

 

 

 

 

 

 

 

The salient point to take away is the ability to grow is now horizontal instead of 

vertical. Instead of adding CPU or RAM to a single machine, you simple need to add a 

new machine, i.e. a node. Linear scalability allows you to quickly expand your cluster 

capabilities based on your expanding resource needs. 

HDFS replicates each block of a single large file to multiple machines in the cluster. By 

default, each block in a file is replicated three times. Because files in HDFS are write 

once, once a replica is written, it is not possible for it to change. This obviates the need 

for complex reasoning about the consistency between replicas and as a result, 

applications can read any of the available replicas when accessing a file. Having 

multiple replicas means multiple machine failures are easily tolerated. 

MAPREDUCE 

Storage is only part of the equation. Data is practically useless if we cannot process or 

analyze them. 

MapReduce involves the processing of a sequence of operations on distributed data 

sets. The data consists of key-value pairs, and the computattions have only two 

Figure 1-1 
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phases: a map phase and a reduce phase. User-defined MapReduce jobs run on the 

compute nodes in the cluster.  

The general workflow of a MapReduce job runs as follows [1]: 

1. During the Map phase, input data is split into a large number of fragments, 

each of which is assigned to a map task. 

2. These map tasks are distributed across the cluster. 

3. Each map task processes the key-value pairs from its assigned fragment and 

produces a set of intermediate key-value pairs. 

4. The intermediate data set is sorted by key, and the sorted data is portioned 

into a number of fragments that matches the number of reduce tasks. 

5. During the Reduce phase, each reduce task processes the data fragment that 

was assigned to it and produces an output key-value pair. 

6. These reduce tasks are also distributed across the cluster and write their 

output to HDFS when finished. 

 

 

 

 

 

 

 

 

 

 

Do not forget Hadoop processes each of these in parallel. There is no need for 

communication between nodes during the Map phase. [2] This is critical when dealing 

with large data sets because you do not want inter-system communication or data 

transfer occurring between nodes. But not all the problems can easily or even be 

parallelized. MapReduce is not a silver bullet for every class of problems. [3] For 

example the act of training a model in ML cannot be parallelized for many types of 

models. This is true for many algorithms where there is shared state or dependent 

variables that must be maintained and updated centrally. 

[5] The Hadoop MapReduce framework in earlier (pre-version 2) Hadoop releases has 

a single master service called a JobTracker and several worker services called 

TaskTrackers, one per node in the cluster. When you submit a MapReduce job to the 

JobTracker, the job is placed into a queue and then runs according to the scheduling 

Figure 1-2 
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rules defined by an administrator. The JobTracker manages thes assignment of map 

and reduce tasks to the TaskTrackers.  

[1] With Hadoop 2, a new resource management system is in place called YARN (Yet 

Another Recourse Manager). YARN provides generic scheduling and resource 

management services so that you can run more than just MapReduce applications on 

your Hadoop cluster. But the JobTracker/TaskTracker architecture run only on 

MapReduce. 

Hadoop offers great promise to organizations looking to gain a competitive advantage 

from data science. Hadoop lets organizations collect a massive amount of data that 

can later be used to extract insights of immense business value for use cases that 

include fraud detection, sentiment analysis, risk assessment, predictive maintenance, 

churn analysis, user segmentation and many more. But deploying Hadoop can be 

extraordinarily complex and time consuming, making it difficult to gain the insights. 

The key point for Hadoop to truly have a broad impact on the IT industry and live up 

to its true potential, is the compatibility with the older technologies: It had to support 

SQL; integrate with and extend the RDBMS; and enable IT professionals who lack skills 

in using Java Map/Reduce to take advantage of its features.  To overcome this 

disadvantage, Hive, one of the Hadoop ecosystem tools can be used. Apache Hive is 

an ETL (Extract, Transform, and Load) and data warehouse solution under the Hadoop 

ecosystem. Hive is an open-source data warehousing solution built on top of Hadoop, 

which facilitates easy data summarization, ad-hoc queries, and the analysis of large 

datasets stored in various databases and file systems that integrate with Hadoop. 

 

 

 

 

 

 

 

 

 

1: The original GFS (Google Filesystem) is not the same as what has become Hadoop. GFS was a 

framework while Hadoop become the translation of the framework put into action. 

2: Batch processing is used to process data in batches. It reads data from the input, processes it, and 

writes it to the output. Apache Hadoop is the most well-known and popular open source 

implementation of the distributed batch processing system using the MapReduce paradigm. 
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CHAPTER 2: INTRODUCING HIVE 

As much as the Hadoop ecosystem evolves and provides exceptional means to access 

new types of data and structures, we cannot deny the influence and purpose of 

traditional relational systems. Relational systems and especially the data access 

methods employed by these systems have served as a valuable tool for over 30 years. 

The SQL query language brought data access to the masses by abstracting away 

concepts such as data location and instead allowed developers to focus on how the 

data will be presented.  SQL excels as a declarative language in which you clearly 

specify what you want to do in simple English language syntax. You SELECT, JOIN SUM, 

data FROM a source WHERE the values equals, or does not equal, something. The 

developer does not have to worry about where the data resides on disk, and the 

structure of the data is already predefined in a relational format consisting of tables 

with rows and columns. 

The attraction of SQL to the Hadoop world was not in its ability to consume data 

schematized as rows and columns or its efficient use of indexes and statistics but 

instead, SQL’s popularity as a data query tool. Simply put – a lot of people who 

accessed data knew how to write SQL statements. Java is the language of MapReduce 

so early in the Hadoop adoption, if you needed to perform computation and access 

data in Hadoop, you had to write Java code, specifically MapReduce programs. Large 

companies like Facebook came to realize that you could not hire enough Java 

developers to write the amount of MapReduce code needed to take full advantage of 

the quantity of data stored in HDFS. In order to increase adoption and ease of use, 

developers needed to abstract away MapReduce complexity in favor of a more 

demotic programming language. 

The answer is Apache Hive and the HiveQL. 

[6] Apache Hive is a data warehouse for Apache Hadoop. It was created at Facebook 

by the Data Infrastructure Team, led by Jeff Hammerbacher and is being used to run 

thousands of jobs on the cluster with hundreds of users, for a wide variety of 

applications. Hive was originally designed as a translation layer on top of Hadoop 

Map/Reduce. Hive takes large amount of unstructured data and place it into a 

structured view, which can be used by business analysts. Hive supports use cases such 

as Ad-hoc queries, summarization, and data analysis. HiveQL can also be exchange 

with custom scalar functions means user defined functions (UDF’s), aggregations 

(UDFA’s) and table functions (UDTF's). 

Hive, a now top-level Apache project and a vital component within the Apache Hadoop 

ecosystem, drives several leading big-data use cases and has brought Hadoop into 

data centers across the globe. [1] It is the entry point into an exceedingly complex data 

storage environment. Hive is the bridge to the traditional RDBS world and provides an 

SQL dialect known as Hive Query Language (Hive QL), which can be used to perform 

SQL-like tasks.  As of this, it is being used and developed by a number of companies 
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like Amazon, IBM, Yahoo, Netflix, Financial Industry Regulatory Authority (FINRA) and 

many others.  

[7] The Hive Query Language (HiveQL) has similar semantics and functions as standard 

SQL in the relational database, so that experienced database analysts can easily get 

their hands on it. [8]Traditional SQL queries must be implemented in the MapReduce 

Java API to execute SQL applications and queries over distributed data. Hive provides 

the necessary SQL abstraction to integrate SQL-like queries (HiveQL) into the 

underlying Java without the need to implement queries in the low-level Java API. Since 

most data warehousing applications work with SQL-based querying languages, Hive 

aids portability of SQL-based applications to Hadoop. Hive’s query language can run 

on different computing engines, such as MapReduce, Tez and Spark. 

[1]Hive also makes possible the concept known as enterprise data warehouse (EDW) 

augmentation, a leading use case for Apache Hadoop, where data warehouses are set 

up as RDBMSs built specifically for data analysis and reporting.  

[9]The versatility and power of Hadoop lies in its ability to store and process any kind 

of unstructured, semi-structured or structured data. Hive allows the users to create a 

metadata layer on top of this data and access it using a SQL interface. As much as it is 

familiar to the end user for its interface, it is different in terms of how it handles the 

underlying data. Hive does not take control of how data is persisted to disk or its 

lifecycle. Users can first store any kind of data in HDFS, in its inherent format, and then 

define metadata to read it independently of the data. Hive makes it easier to manage 

and process data with a variety of tools with this flexibility. It is important the user 

should remember that Hive is not a database; it is a human friendly, familiar interface 

to query the underlying data files that are stored on HDFS. 
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CHAPTER 3: SETTING UP THE HIVE ENVIRONMENT 

This chapter will introduce how to install and set up the Hive environment in the 

cluster. It also covers the usage of basic Hive commands. 

INSTALLING APACHE HIVE ON A MULTINODE CLUSTER 

To introduce the Hive installation, we will use Hive version 3.1.2 as our client. We can 

download it from the Apache mirror (http://apachemirror.wuchna.com/hive/hive-3.1.2/) or 

via the terminal writing the following code: 

wget https://downloads.apache.org/hive/hive-3.1.2/apache-hive-3.1.2-bin.tar.gz 

The pre-installation requirements for the installation are as follows: 

 JDK 1.8 

 Existing up and running Hadoop cluster where Hadoop-3.2.1 deployed and 

configured with 3 DataNodes. 

 Ubuntu 16.04 

 

Setup Installation Guide 

1. Download and untar Apache Hive 

2. Edit .bashrc file 

3. Edit hive-config.sh file 

4. Create Hive directories in HDFS 

5. Initiate Derby database 

6. Start hiveserver2 and beeline interface 

------------------------------------------------------------------------------------------------------- 

1. Download and untar Apache Hive 

Select a healthy DataNode with high hardware resource configuration in the cluster to 

install Hive. Extract the previously downloaded apache-hive-3.1.2-bin.tar.gz from the 

terminal and rename as a hive. 

2. Edit .bashrc file 

The file .bashrc is the one where we have stored the variables for Hadoop. 

sudo gedit .bashrc  

Insert the following lines: 

export HIVE_HOME = /home/hadoopuser/hive (the path where hive is installed) 

export PATH=$PATH:$HIVE_HOME/bin 

source ~/.bashrc 
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3. Edit hive-config.sh file 

Hive-config.sh file is in the bin directory within your Hive installation dir 

sudo gedit $HIVE_HOME/bin/hive-config.sh 

export HADOOP_HOME=/home/hadoopuser/hadoop 

4. Create Hive directories in HDFS 

We need to create two folders, named warehouse and tmp, inside HDFS and give them 

permissions like following: 

hdfs dfs –mkdir /tmp 

hdfs dfs –chmod g+w /tmp 

hdfs dfs –mkdir -p /user/hive/warehouse 

hdfs dfs –chmod g+w / user/hive/warehouse 

hdfs dfs –ls /user/hive 

5. Initiate Derby database 

By default, Hive uses the Derby (http://db.apache.org.derby/) database as the metadata 

store. Is the one we have use in this installation. Hive can also use other relational 

databases, such as Oracle, PostgreSQL or MySQL as the metastore. 

$HIVE_HOME/bin/schematool –initSchema –db Type derby 

If the initiation of the Derby database fails, is probably the guava jar file incompatibility 

between the Hadoop version and the Hive version. 

 Locate the guava jar file in the Hive lib directory: ls $HIVE_HOME/lib 

 Locate the guava jar file in the Hadoop lib directory: ls 

$HADOOP_HOME/share/Hadoop/hdfs/lib 

 We will see that the version are different. We have to remove the guava 

version inside the lib folder of Hive: rm $HIVE_HOME/lib/guava-19.0.jar 

 Copy the guava version from the lib folder of Hadoop inside the lib folder of 

Hive: cp $HADOOP_HOME/share/Hadoop/hdfs/lib/guava-27.0-jve.jar 

$HIVE_HOME/lib/ 

6. Start hiveserver2 and beeline interface 

There are multiple options available to connect with Hive to execute HQL queries, data 

loading etc. Hive CLI can be used by default but Hive should be installed on the same 

machine or the DataNode in the cluster. It connects directly to the Hive Driver. Hive 

CLI won’t be used in real-time/ production environment. since it’s depreciated from 

Hive 2.0 onwards. HiveServer2 (HS2) is a service that enables clients to execute 

queries against the Hive. HS2 supports multi-client concurrency and authentication. 

We don’t need any separate configuration for HiverServer2 . If we can access Hive CLI 
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from the terminal without any issue, HiverServer2 service can be started by executing 

following command in a separate terminal. 

$HIVE_HOME/bin/hiveserver2 

And access the web ui of HiverServer2 from browser at default port 10002. 

Beeline is another thin client CLI to execute queries via HiveServer2 which support 

concurrent client connection and authentication. Beeline can be leveraged by multiple 

user from multiple node in the cluster to execute queries. And it will be the preferred 

interface for this essay. We can access the beeline interface: 

$HIVE_HOME/bin/beeline -n myjio -u jdbc:hive2://localhost:10000 

[7] Hive first started with hiveserver1. However, this version of Hive server was not 

very stable and sometimes suspended or blocked the client’s connection quietly. Since 

v0.11.0, Hive has included a new thrift server called hiveserver2 to replace the first 

server. hiveserver2 has an enhanced server, designed for multiple client concurrency 

and improved authentication. It also recommends using beeline as the major Hive 

command-line interface instead of the old hive command. The primary difference 

between the two versions of servers is how the clients connect to them. Hive is an 

Apache-Thrift-based client and beeline is a JDBC client. The hive command directly 

connects to the Hive drivers, so we need to install Hive libraries on the client. However, 

beeline connects to hiveserver2 through JDBC connections without installing Hive 

libraries on the client. That means we can run beeline remotely from outside the 

cluster. 

WHAT IS INSIDE HIVE? 

[4][10] The core of a Hive library distribution contains three parts. The main part is the 

Java code itself. Multiple JAR files such as hive-exe.jar and hive-metastore.jar can be 

found under the $HIVE_HOME/lib directory.  

The $HIVE_HOME/bin directory contains executable scripts that launch various Hive 

services, including the hive command-line interface (CLI). Although CLI is the most 

popular way for someone to use Hive, in this essay we will use beeline (also a 

command line) as our interface. Hive also has other components. A Thrift service 

provides remote access from other processes. Access in this case is provided by using 

JDBC and ODBC drivers. They are implemented on top of the Thrift service. 

All Hive installations finally require a metastore service, which Hive uses to store table 

schemas and other metadata. It is typically implemented using tables in a relational 

database. By default, Hive uses a built-in SQL server, Derby, which provides limited, 

single process storage. But it the perfect fit for educational and academicals purposes, 

so this is the option we will use in this essay too. 

Finally the conf directory contains the files that configure Hive. Hive has a number of 

configurations properties, some of them we have already mentioned on the 
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installation section. These properties control features such as the metastore, various 

optimazations and safety controls. 

USING HIVE IN THE CLOUD 

[7] All major cloud service providers, such as Amazon, Microsoft and Google, offer 

matured Hadoop and Hive as services in the cloud. Using the cloud version of Hive is 

very convenient. It requires almost no installation and setup. Amazon EMR is the 

earliest Hadoop service in the cloud. However, it is not a pure open source version 

since it is customized  to run only on AWS. Hadoop enterprise service and distribution 

providers, such as Cloudera and Hortonworks also provide tools to easily deploy their 

own distributions on different public or private clouds. Although Hadoop was first built 

on Linux, Hortonworks and Microsoft have already partnered to bring Hadoop to the 

Windows based platform and cloud successfully. The consensus among all the Hadoop 

cloud service providers here is to allow enterprises to provision highly available, 

flexible, highly secure, easily manageable and governable Hadoop clusters with less 

effort and little cost. 
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CHAPTER 4: HIVE ARCHITECTURE 

In contrast to its popularity and widespread use, Hive’s performance was not ideal, 

reason being the data was not efficiently stored or query processing required multiple 

MapReduce jobs. Business users felt that Hive is incapable of handling interactive data 

warehouse workloads, for instance queries would take several hours to return a result 

and often time users would think the cluster has gone down. The fact that the query 

would potentially run against petabytes of data was little consolation to end users 

who just wanted interactive data analytics. Of course, you can horizontally scale your 

cluster for additional compute resources and speed up the processing, but that would 

not be a long-term approach and strategy for increasing Hadoop adoption.   

The need of a low-latency SQL engine was urgent.  

[9] The original Hive on MapReduce open sourced by Facebook required a much 

needed reengineering to provide competitive functionality to the users. As a result, as 

of Hive 1.2.1 you have a choice to run as batch using MapReduce v2, or as interactive 

using Tez or leverage in-memory processing using Spark. Although Tez is now the 

default execution engine, in this essay we will use the MapReduce engine for our case 

study. 

It is true that Hive is a little complicated but its complexity is surmountable and will be 

familiar to those who make a living accessing data. Also, like any software 

development project, Hive is constantly changing and changing fast. We will try to 

cover in this chapter the core elements of Hive as for the 3.1.2 release. 

HIVE OVERVIEW 

The following diagram is the architecture view of Hive in the Hadoop ecosystem. The 

Hive metadata store (metastore) can use either embedded, local or remote databases. 

The thrift server is built on Apache Thrift Server technology. With its latest version, 

hiveserver2 is able to handle multiple concurrent clients, support Kerberos, LDAP and 

provide better options for JDBC and ODBC clients, especially for metadata access. 

 

 

 

 

 

 

 

 

Figure 4-1. Hive Architecture 
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As we have already mentioned, at the bottom of Hive architecture lies the Hadoop 

Distributed File System (HDFS) and above this, on the earlier versions of Hive, the 

MapReduce system, [11] which is the processing layer of Hadoop. MapReduce 

programming model is designed for processing large volumes of data in parallel by 

dividing the work into a set of independent tasks. It is the heart of Hadoop. Hive 

queries are converted to MapReduce code and executed using the MapReduce 

infrastructure, the JobTracker and TaskTracker. 

[12]In a cluster architecture, Apache Hadoop YARN (Yet Another Resource Negotiator) 

sits between HDFS and the processing engines being used to run applications. It 

combines a central resource manager with containers, application coordinators and 

node-level agents that monitor processing operations in individual cluster nodes. 

YARN can dynamically allocate resources to applications as needed, a capability 

designed to improve resource utilization and application performance compared with 

MapReduce's more static allocation approach. The addition of YARN significantly 

expanded Hadoop's potential uses. The original incarnation of Hadoop closely paired 

the Hadoop Distributed File System (HDFS) with the batch-oriented MapReduce 

programming framework and processing engine, which also functioned as the big data 

platform's resource manager and job scheduler. As a result, Hadoop 1.0 systems could 

only run MapReduce applications -a limitation that Hadoop YARN eliminated. 

We can think of the HDFS and MapReduce systems as being parts of the Apache 

Hadoop operating system, with the Hive as higher-level functions or applications. 

To understand the differrent componets of Hive, besides the metastore, the other 

componets of Hive could be broadly classified as Hive clients and Hive servers. Hive 

servers provide interfaces to make the metastore available to external applications 

and check for users’s authorization and authentication, and Hive clients are various 

applications used to access and execute Hive queries on the Hadoop cluster. 

With this in mind and moving up the diagram, [11] we find the Hive Driver, part of Hive 

Services which is responsible for receiving the queries submitted by Thrift, JDBC, 

ODBC, CLI, Web UL interface, which are the part of Hive client. It includes compiler, 

optimizer, parser and executor used to break down the Hive query language 

statements. [13] The Hive Driver may choose to execute HiveQL statements and 

commands locally or spawn a MapReduce job, depending on the task at hand. The 

Hive Driver stores table metadata in the metastore and its database. 

[14] Hive Parser parses the query. It performs semantic analysis and type-checking on 

the different query blocks and query expressions by using the metadata stored in 

metastore and the Planner generates an execution plan. 

The execution plan created by the Planner is the DAG (Directed Acyclic Graph), where 

each stage is a map/reduce job, operation on HDFS, a metadata operation. 

[14] Optimizer performs the transformation operations on the execution plan and 

splits the task to improve efficiency and scalability. 
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[15] The Hive Query executor connects to Hive (or Impala) and performs one or more 

user-defined Hive (or Impala queries) each time it receives an event record. The Hive 

Query executor waits for each query to complete before continuing with the next 

query for the same event record. It also waits for all queries to complete before 

starting the queries for the next event record. Depending on the speed of the pipeline 

and the complexity of the queries, the wait for query completion can slow pipeline 

performance. 

[9] As beneficial as Hive was at providing a SQL abstraction layer for running 

MapReduce, there were still some major limitations. One of them was the ability for 

clients to connect to the metastore using standard ODBC and JDBC connections. A 

feature we take for granted in traditional relational database systems. The open 

source community addressed this limitation by creating the Hiveserver1. Hiveserver1 

allowed clients to access the metastore using ODBC connections. 

[9] But there were still limitations with hiveserver1. Primarily, the limitations included 

user concurrency restrictions as well as security integration with LDAP. Each of these 

components were solved with the implementation of Hiveserver2. The Hiveserver2 

architecture is based on a Thrift Service and any number of sessions comprised of a 

driver, compiler (parser and planner) and executor. The metastore is also a key 

component of Hiveserver2. Figure 4-2 shows Hiveserver2 basic architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

Figure 4-2 
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[9] Hiveserver2 supports Kerberos custom authentication, as well as pass-through 

LDAP authentication. All connection componets –JDBC, ODBC and Beeline, have the 

ability to use any one of these authentications methods. 

Beeline it's a JDBC client that is based on the SQLLine CLI. The Beeline shell works in 

both embedded mode as well as remote mode. In the embedded mode, it runs an 

embedded Hive (similar to Hive CLI) whereas remote mode is for connecting to a 

separate HiveServer2 process over Thrift.  

Start the Hiveserver2:  

$HIVE_HOME/bin/hiveserver2 

Start the Beeline interface:  

$HIVE_HOME/bin/beeline -n myjio -u jdbc:hive2://localhost:10000 

Running Hive queries in Beeline interface: 

 

Metastore is the central repository of Apache Hive metadata. It stores metadata for 

Hive tables (like their schema and location) and partitions in a relational database. It 

provides client access to this information by using metastore service API. [7] Hive’s 

metadata structure provides a high-level, table-like structure on top of HDFS. It 

supports three main data structures, tables, partitions and buckets. The tables 

correspond to HDFS directories and can be divided into partitions, where data files 

can be divided into buckets. Hive’s metadata structure is usually the Schema of the 

Schema-on-Read concept on Hadoop, which means we do not define the schema in 

Hive before we store data in HDFS. Applying Hive metadata after storing data brings 

more flexibility and efficiency to our data work.  

[14] Hive metastore consists of two fundamental units: 

1. A service that provides metastore access to other Apache Hive services. 

2. Disk storage for the Hive metadata which is separate from HDFS storage. 

By default, Hive includes the Apache Derby RDBMS (stored on the local file system) 

configured with the metastore in what’s called embedded mode. Embedded mode 

means that the Hive Driver, the metastore service and Apache 

Derby are all running in one Java Virtual Machine (JVM). [13] The embedded mode of 

Hive has the limitation that only one session can be opened at a time from the same 

location on a machine as only embedded Derby database can get lock and access the 

database files on disk. 

[13] To solve this limitation, a separate RDBMS database runs on same node. The 

metastore service and Hive service still run in the same JVM. This configuration mode 

is named local metastore. Here, local means the same environment of the JVM as well 

as the service in the same node. 
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There is one more configuration where one or more metastore servers run in a 

separate JVM process to the Hive service connecting to a database on a remote 

machine. This configuration is named remote metastore. 

 

Figure 4- 3 

If the metastore service is down or unavailable, then clients would not be able to run 

any HiveQL as metastore data is not accessible. 

Hive supports 5 backend databases which are as follows: Derby, MySQL, MS SQL 

Server, Oracle, Postgres. 

The key to application support is the Hive Thrift Server which enables a rich set of 

remote clients to submit requests to Hive, using a variety of programming languages 

other than Java (PHP or Python, for example), and retrieve results. [16] Hive Thrift 

Server is built on Apache Thrift (http://thrift.apache.org/), therefore it is sometimes 

called the Thrift server although this can lead to confusion because of the newer 

service mentioned earlier, Hiveserver2, which is also built on Thrift. Since the 

introduction of HiveServer2, Hive Thrift Server has also been called Hiveserver1.  

[4]To continue with the Hive architecture, note that Hive includes a Command Line 

Interface (CLI), where we can use a Linux terminal window to issue queries in either 

interactive or batch mode and administrative commands directly to the Hive Driver. 

[6]CLI is the command line interface acts as Hive service for DDL (Data definition 

Language) operations. All drivers communicate with Hive server and to the main driver 

in Hive services as shown in above architecture diagram.  
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Figure 4-4 illustrates the componets of Hive that are needed when running the CLI on 

a Hadoop cluster.  

To run the Hive CLI, you execute the hive command and specify the CLI as the service 

you want to run. 

$HIVE_HOME/bin hive –service cli 

Navigating within the CLI is straight-forward, especially if you are used to other 

database systems. Keep in mind that Hive was developed based on MySQL so syntax 

and data types between the two are quite similar. 

hive> CREATE DATABASE SoccerData; 

Be sure to end all commands with a semicolon (the same applies to Beeline). 

hive> use SoccerData; 

hive> CREATE TABLE Events; 

Note that Hive is not case sensitive, but we prefer to use same syntax as SQL. 

Finally, the Hive Web Interface is an alternative to using the Hive command line 

interface. Using the web interface is a great way to get started with Hive. [16] The Hive 

Web Interface, abbreviated as HWI, is a simple graphical user interface (GUI). HWI is 

only available in Hive releases prior to 2.2.0. Any user with a web browser can work 

with Hive. This has the usual web interface benefits. In particular, a user wishing to 

interact with Hadoop or Hive requires access to many ports. A remote or VPN user 

would only require access to the Hive Web Interface running by default on 0.0.0.0 

tcp/9999.  

[11]Finally, Hive can operate in two modes depending on the size of data nodes in 

Hadoop. 

These modes are: 

 Local mode 

 Map reduce mode 

Local mode: if the Hadoop installed under pseudo mode with having one data node 

we use Hive in this mode. If the data size is smaller in term of limited to single local 

machine, we can use this mode. Processing will be very fast on smaller data sets 

present in the local machine 

MapReduce mode: if Hadoop is having multiple data nodes and data is distributed 

across different node we use Hive in this mode. It will perform on large amount of 
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data sets and query going to execute in parallel way. Processing of large data sets with 

better performance can be achieved through this mode. 

JOB EXECUTION FLOW IN HIVE 

[11] The following diagram demonstrates step by step the job execution flow in Hive 

with Hadoop.  

 

Figure 4-5 

[17] Step-1: Execute Query – 

Interface of the Hive such as Command Line or Web user interface delivers query to 

the driver to execute. In this, UI calls the execute interface to the driver such as ODBC 

or JDBC. 

Step-2: Get Plan – 

Driver designs a session handle for the query and transfer the query to the compiler 

to make execution plan. In other words, driver interacts with the compiler. 

Step-3 & 4: Get Metadata – 

In this, the compiler transfers the metadata request to any database and the compiler 

gets the necessary metadata from the metastore. 

Step-5: Send Metadata – 

Metastore transfers metadata as an acknowledgement to the compiler. 

Step-6: Send Plan – 
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Compiler communicating with driver with the execution plan made by the compiler to 

execute the query. 

Step-7: Execute Plan – 

Execute plan is sent to the execution engine by the driver. 

 Execute Job 

 Job Done 

 Dfs operation (Metadata Operation) 

Step-8: Fetch Results – 

Fetching results from the driver to the user interface (UI). 

Step-9: Send Results – 

Result is transferred to the execution engine from the driver. Sending results to 

Execution engine. When the result is retrieved from data nodes to the execution 

engine, it returns the result to the driver and to user interface (UI). 

TEZ EXECUTION ENGINE 

What we have described so far are the core elements of Hive architecture as it was 

first introduced by Facebook. But the limitations of Hive, as we have discuss so far, led 

to the introduction of two new engines (Hive 1.2.1), one interactive named Tez and 

the other a leverage in-memory processing, named Spark.  

We will cover in this essay the core elements of the execution engine Tez. 

[9] When Hadoop was conceived, only MapReduce engine was available and it was a 

batch operation. It meant that MapReduce had a unique ability to crunch massive 

amounts of data but processing that data was a monumental task, which not only took 

up most of your cluster resources, but was also note expected to finish quickly. 

MapReduce is Java so to access data on Hadoop you had to know Java, specifically 

how to write Java MapReduce code. As we have already mentioned, Facebook solved 

this problem by creating Hive and HiveQL. Although this was a huge step in providing 

access to Hadoop, did nothing for the problem that MapReduce being a batch 

operation. Users wrote similar SQL code on Hadoop (via Hive) but the performance 

was nothing like the one they were used to with RDBM’s. 

Some early Hadoop distributors solved this problem by creating data access 

architectures, which accessed data within Hadoop, but processed the data outside of 

Hadoop. Some of these early SQL-in-Hadoop solutions (Apache Impala and Apache 

Hawq to name the first ones) were based on popular MPP architectures, which utilized 

parallel processing to gather and execute the data. The goal is to execute in-memory 

processing for fastest results and avoid costly disk IO operations. 

These early SQL-in-Hadoop solutions solved many limitations present with Hive on 

MapReduce, most importantly performance and ANSI SQL compliance. The proble 
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with early solutions was that they failed to execute on larger data sets. This is because 

once memory capacity is full, the data needs to spill to disk resulting to IO bottlenecks. 

The other problem was that they were not Hive or open source, so these solutions 

included additional costs. But early Hadoop adopters had been using Hive for quite a 

time and, instead of looking for a new SQL environment, they would prefer to make 

Hive better. 

So the open source community launched what was marketed the Stinger Initiative. 

This initiative aimed to provide interactive SQL-in-Hadoop natively in Hive. In order to 

accomplish this a new engine was required. This new engine was Tez. 

Tez became the new platform for Hive execution. MapReduce is still supported for 

Hive execution but Tez is now the default engine when running Hive queries in 

Hadoop. 

So Tez is a distributed execution framework and alternative of MapReduce to process 

data applications on Hadoop. It is built on Hadoop YARN, and can execute complex 

Directed Acyclic Graphs, short form DAG, of general data processing tasks. In simpler 

words, it can be thought of as a more advanced, optimized, flexible, and powerful 

successor of our conventional MapReduce framework. 

Now what Tez can provide us? 

Tez provides us performance gains over MapReduce execution. It can give us optimal 

resource management and can perform more complex tasks in less time than 

MapReduce. It can also provide us flexible input processor output runtime model i.e 

it can construct runtime executors dynamically by connecting different inputs, 

processors, and outputs. Overall, Tez engine is better than MapReduce in almost all 

fields. It may be in end user empowerment or execution performance, Tez will always 

surpass MapReduce in all aspects. 

And more importantly, Tez can run any MapReduce job without any modification. 

So this allows us easy migration of projects also. Now that being said, the question 

arises, how Tez is better than MapReduce? What exactly Tez does? And how Tez works 

backstage, which makes it better than MapReduce?  

Actually, there are a number of factors involved in this. First is Tez execution plan. Tez 

execution plan is similar like of Spark's, that is, it creates DAG of task from the job. Tez 

represents data processing as a data flow graph, with the graph vertices representing 

application logic and the edges presenting the actual movement of data. This graph 

allows users to involuntarily express complex query logic. Tez will read the full job, and 

out of that job, create a DAG of task setting the dependencies and parallelism of 

various tasks, and then execute the plan to produce output. This enables the YARN 

framework to allocate resources more intelligently, and Tez has a simple Java API to 

express this DAG of data processing. 
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The second factor is number of reduced stages. To understand this, let us take an 

example of it. 

Suppose we have a query in which there is a need to have multiple reduce tasks. In 

that case, what our MapReduce framework will do is, it will break the plan apart and 

create one MapReduce job per reduce task. It means the number of MapReduce jobs 

will be equal number of reduce tasks. And undoubtedly, the more the number of MR 

jobs, the more will be disk reads and writes, because all the MR jobs will then run in 

chain fashion and needs to be scheduled one after another. 

So the output of first MR job will be written to disk in HDFS. Then the next job will read 

the data from disk. And after completion, it again writes the data to disk. And these 

rewrite processes will go on till all the jobs in chain complete, and no developer in the 

world would want these many reads and writes in his job. It will take a boat load of 

time to complete this full job. 

But Tez has addressed this issue by not creating a separate MR job per reduce task. 

Rather, it has linked all those reduce tasks directly in a single job, and data can now 

be pipelined from a reducer to next reducer directly, without the need of any 

temporary HDFS storage. So apparently, less reads and writes in HDFS means less 

execution time.  

Moving towards the third factor, third factor is extension of the previous one, that is, 

disk writes of MapReduce versus in-memory competition in Tez. Conventionally, in 

MapReduce, the data is shuffled across nodes regardless of the data size. Even if the 

data is small and can be processed entirely in memory, even then also it has to get 

shuffled across nodes. But Tez allows for small datasets to be handled fully in memory. 

So small datasets can be entirely computed in memory itself without having to shuffle 

it across the nodes.  

Summarizing, these were some important factors which makes Tez better than 

MapReduce. Although it is not this essay scope to discuss the Tez engine, it is 

important to know that now few SQL jobs still utilize MapReduce engine.  
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CHAPTER 5: DATA TYPES IN HIVE 

DATA TYPES 

Hive data types are categorized into two types: primitive and complex. Hive supports 

many primitive data types that are similar to relational databases, such as INT, 

SMALLINT, TINYINT, BIGINIT, BOOLEAN, FLOAT and DOUBLE. In addition to primitive 

data type, Hive also supports few complex data types, such as ARRAY, MAP, STRUCT 

and UNION. 

Primitive data types 

Hive supports large number of primitive data types, which are divided into the four 

following categories: 

 Numeric data types: Store positive and negative exaxt and floating-point 

numbers 

 String data types: Store alphanumeric data in strings 

 Date/Time data types: Store temporal values 

 Miscellaneous data types: Boolean (True or false) and Binary (Variable length 

array of binary data) 

A complete list of primitive data types is very well documented on the Apache web 

site (https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types) 

[4] It is useful to remember that each of these types is implemented in Java, so the 

particular behavior details will be exactly what you would expect from the 

corresponding Java type. For example, STRING is implemented by the Java String, 

FLOAT is implemented by Java float, etc. 

Note that Hive does not support “character arrays” (strings) with maximum-allowed 

lengths, as is common on other SQL dialects. Relational databases offer this feature as 

a performance optimization; fixed-length records are easier to index, scan etc. In the 

“looser” world in which Hive lives, where it may not own the data files and has to be 

flexible on file format, Hive relies on the presence of delimiters to separate fields. Also, 

Hadoop and Hive emphasize optimizing disk reading and writing performance, where 

fixing the lengths of column values is relatively unimportant. 

Complex data types 

Complex types are also known as collection types. [2] These consist of more than one 

element of primitive data types and are internally implemented using native 

serializers and deserializers. They allow you to store the data in collection format 

without having to break it into further individual fields, as you would do in a 

normalized schema in a relational database. The complex data types are quite useful 

to map real-world data to a schema laver. The following are the complex types 

supported by Hive: 
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 STRUCT: The struct type in Hive is analogous to the STRUCT in C programming 

language. It is a record type that holds a set of named fields that can be of any 

primitive data types. Fields in the STRUCT type are accessed using the dot (.) 

notation, i.e.: .col_name1. 

 

Syntax: STRUCT<col_name1 : data_type, col_name2 : data_type,… > 

 

 MAP: The map data type Contains key-value pairs. In Map, elements are 

accessed using keys. For example, if a column name is of type Map: ‘firstname’ 

-> ‘john’ and ‘lastname’ -> ‘roy’ then the last name can be accessed using the 

name [‘lastname’] 

 ARRAY: This is an ordered sequence of similar elements. It maintains an index 

in order to access the elements; for example, an array day, containing a list of 

elements [‘Sunday’, ‘Monday’, ‘Tuesday’]. In this, the first element ‘Sunday’ 

can be accessed using day[0] and similarly the third element can be accessed 

using day[2]. 

 UNIONTYPE: This data type enables us to store different types in the same 

memory location. It is an efficient way of using the same memory location for 

multipurpose. It is similar to Unions in the C programming language. You can 

define a union type with many data types, but at a time, only one data type 

can be hold by it. 

Syntax: UNIONTYPE<data_type, data_type, …> 

For MAP, the type of keys and values are unified. However, STRUCT is more flexible. 

STRUCT is more like a table, whereas MAP is more like an ARRAY with a customized 

index. 

An example of how to use complex data types: 

We have to create a customer table with name as the struct data type, the following 

command can be used: 

CREATE TABLE customer (id INT, name  

STRUCT<first_name:STRING, last_name:STRING>); 

Here, the column name is of the type STRUCT with two fields –first_name and 

last_name- then the first_name field can be referenced using name.first_name. 

Similarly the last_name field can be referenced using name.last_name 

Most RDBMs does not support such data types, because using them tends to break 

normal form. For example, in traditional data models, structs might be captured in 

separate tables, with foreign key relations between the tables, as appropriate. 

[4] A practical problem with breaking normal form is the greater risk of data 

duplication, leading to unnecessary disk space consumption and potential data 

inconsistencies, as duplicate copies can grow out of sync as changes are made. 
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However, in Big Data systems, a benefit of sacrificing normal form is higher processing 

throughput. Scanning data of hard disks with minimal “head seeks” is essential when 

processing terabytes to petabytes of data. Embedding collections in records makes 

retrieval faster with minimal seeks. Navigating each foreign key relationship requires 

seeking across the disk, with significant performance overhead. 

Similar to SQL, HiveQL supports both implicit and explicit type conversion. Primitive 

type conversion from a narrow to a wider type is known as implicit conversion. 

However, the reverse conversion is not allowed. All the integral numeric types, FLOAT 

and STRING can be implicitly converted to DOUBLE and TINYINT, SMALLINT and INT 

can all be converted to FLOAT. There is a data type cross-table describing the allowed 

implicit conversion between every two types, which can be found at: 

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types 

Hive also supports all the well-known Relational Operators, Arithmetic Operators, 

Logical Operators and also String Operators and Operators on Complex Types. 

HIVE DATA DEFINITION LANGUAGE (DDL) 

Hive’s Data Definition Language (DDL) is a subset of HQL statements that describe the 

Hive data structure by creating, deleting or altering schema objects as databases, 

tables, partitions and buckets. Most DDL statements start with the CREATE, DROP or 

ALTER keywords. The syntax of HiveQL is very similar to SQL DDL and is case-

insensitive. 

DDL Command Use With 

CREATE Database, Table 

SHOW 
Databases, Tables, Table Properties, Partitions, Functions, 

Index 

DESCRIBE Database, Table, view 

USE Database 

DROP Database, Table 

ALTER Database, Table 

TRUNCATE Table 

 

[4] When you write data to a traditional database, the database has a total control 

over the storage. The database is the “gatekeeper”. An important implication of this 

control is that the database can enforce the schema as data is written. This is called 

schema on write. 
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But Hive has no such control over the underlying storage. There are many ways to 

create, modify and even damage the data that Hive will query. Therefore, Hive can 

only enforce queries on read. This is called schema on read.  

Now that we are familiar with various data types in the world of Hive, we can look at 

how these can be used to read data. A Hive data model contains of: Databases, Tables, 

Partitions and Buckets. 

Database 

[18] The database in Hive describes a collection of tables that are used for a similar 

purpose or belong to the same groups. A database in Hive is a namespace that holds 

metadata information for a set of tables. [7] In addition, DATABASE has a name alias, 

SCHEMA, meaning they are the same thing in HiveQL. At the filesystem level, it is a 

directory under which all internal tables that belong to that namespace are stored. 

The syntax for this statement is as follows:  

 

CREATE DATABASE|SCHEMA [IF NOT EXISTS] human_resources 

The above query is executed to create a database named human_resources 

Hive will create a directory for each database. Tables in that database will be stored 

in subdirectories of the database directory. The exception is tables in the default 

database, which doesn’t have its own directory. 

Table 

[6] Apache Hive tables are the same as the tables present in a Relational Database. 

The table in Hive is logically made up of the data being stored. And the associated 

metadata describes the layout of the data in the table. We can perform filter, project, 

join and union operations on tables. In Hadoop data typically resides in HDFS, although 

it may reside in any Hadoop filesystem, including the local filesystem or S3. But Hive 

stores the metadata in a relational database and not in HDFS. 

Each table maps to a directory and all the data in the table is stored in this hive user-

manageable directory (full permission). This kind of table is called internal, or 

managed table. It means that Hive moves the data into its warehouse directory. [7] 

When data is already stored in HDFS, an external table can be created to describe the 

data. It is called external because the data in the external table is at an existing location 

outside the warehouse directory. [1] When an internal table is dropped, its data is 

deleted together. However, when an external table is dropped, the data is not deleted. 

It is quite common to use external tables for source read-only data or sharing the 

processed data to data consumers giving customized HDFS locations. On the other 

hand, the internal table is often used as an intermediate table during data processing, 

since it is quite powerful and flexible when supported by Hive QL. 
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CREATE TABLE managed_table (dummy STRING); 

LOAD DATA INPATH '/user/kyriskou/data.txt' INTO table managed_table; 

This will move the file hdfs://user/ kyriskou/data.txt into Hive’s warehouse directory 

for the managed_table table, which is 

hdfs://user/hive/warehouse/managed_table. 

Further, if we drop the table using: 

 

DROP TABLE managed_table 

Then this will delete the table including its data and metadata. The data no longer 

exists anywhere. This is what it means for HIVE to manage the data. 

The external table in Hive behaves differently. We can control the creation and 

deletion of the data. The location of the external data is specified at the table creation 

time: 

CREATE EXTERNAL TABLE external_table (dummy STRING); 

LOCATION '/user/ kyrisko /external_table'; 

LOAD DATA INPATH '/user/ kyrisko /data.txt' INTO TABLE external_table; 

Now, with the EXTERNAL keyword, Apache Hive knows that it is not managing the 

data. So it does not move data to its warehouse directory. It does not even check 

whether the external location exists at the time it is defined. 

 

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:46:18 EEST - 137.108.70.13



[30] 
 

CHAPTER 6: PARTITIONING AND BUCKETING IN HIVE 

[1] By default, a simple HiveQL query scans the whole table. This slows down the 

performance when querying a big table.  

So in real time, we would have GBs, TBs, even petabytes of data. For example, let's 

suppose we have a file of 10 GB, which contains data about some departments in a 

company. And without the concept of partitioning used, our file will be in a directory 

like this: "home/user/department_table". 

The whole 10 GB file with all the accounts in a single directory. Now on this directory, 

when you fire a search query to select only data of accounts department, Hive has to 

scan the full file and retrieve only those rows where department_column is equals to 

accounts. So in this case, we have made Hive unnecessarily scan other departments 

when it has to fetch only accounts department. So why not we, at pre-hand create a 

separate directory for accounts department, and save only accounts department data 

in it.  

Hive tables can be broken in further logical chunks for ease of management and 

improving performance. There are few ways we can further abstract data in Hive. [2]:  

 

 

 

 

 

 

 

 

PARTITIONING  

Partitioning is often used in the relational database world to enhance performance 

and for better management of the data. The concept of partitioning in Hive is no 

different. 

[6] Apache Hive organizes tables into partitions for grouping same type of data 

together based on a column or partition key. In Hive, each partition corresponds to 

predefined partition column(s), which maps to subdirectories in the table’s directory 

in HDFS. When the table gets queried, only the required partitions (directory) of data 

in the table are being read, so the I/O and time of the query is greatly reduced. Using 

partition is a very easy and effective way to improve performance in Hive. [13] 

Partitions are like horizontal slices of data that allows the large sets of data as more 

manageable chunks. 

Figure 6-1 
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Partitioning in Hive is done using the PARTITIONED BY clause in the create table 

statement of table. Table can have one or more partitions. A table can be partitioned 

on the basis of one or more columns. The columns on which partitioning is done 

cannot be included in the data of table. For example, you have the four fields id, name, 

age and city and you want to partition the data on the basis of the city field, then the 

city field will not be included in the columns of create table statement and will only be 

used in the PARTITIONED BY clause. You can still query the data in a normal way using: 

where city=’Larissa’. The result will be retrieved from the respective partition because 

data is stored in a different directory with the city name for each city 

CREATE EXTERNAL TABLE IF NOT EXISTS employees ( 

id INT, name STRING, age INT) 

PARTITIONED BY (city STRING) 

BUCKETING  

Partitioning is used to increase the performance of queries, but the partitioning 

technique is efficient only if there is a limited number of partitions. To overcome the 

problem of partitioning, Hive provides the concept of bucketing. 

Bucketing is another data organizing technique in Hive. It is a technique for 

decomposing larger datasets into more manageable ports. The basic fundamental of 

bucketing is that, when a table is bucketed on a column, then all the records with same 

column value will go to same bucket. We can use bucketing directly on a table, but it 

gives us best performance result when we do bucketing and partitioning side by side. 

We can assume it as, first we will create a partition, and inside the partition the data 

will be stored in buckets. 

Let's understand it by an example. We have a table of employee salary of a company 

X. My table is containing three columns, employee ID, employee department, and 

employee salary. First of all, to get a good performance and a better organization of 

data, what we can do is, we can create partitions based on department. So each 

department is a partition now.  

 

 

 

 

 

 

 

Figure 6-2 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:46:18 EEST - 137.108.70.13



[32] 
 

But what if still a partition has so many records on it? What if even after creating a 

partition, the latency is high? To achieve better organization of data, we'll do 

bucketing in this table. So within a partition, if I'm creating buckets to break down the 

data, I'll be achieving the best optimization.  

Now, if I'm doing bucketing on salary column and creating two buckets, then inside 

each partition, all the employees with 10,000 salary will be present in a single bucket, 

and nowhere else. Please don't get confused that there will be different buckets for 

different salaries. There can be any number of salaries in a single bucket, but those 

salary records will be present in that bucket only. So 10,000, 20,000, and 40,000 

salaried employees are in this bucket. 30,00 and 50,000 salaried employees are in 

second bucket, and same for every partition.  

 

 

 

 

 

 

 

 

 

 

Please note that unlike partition, a bucket is physically a file, whereas partition is a 

directory. Internally, which salary will go to which bucket, is decided by a hashing 

algorithm. 

CREATE EXTERNAL TABLE employee_salary ( Empid INT, Salary INT) PARTITIONED 
BY (Dept String) CLUSTERED BY (Salary) INTO 2 BUCKETS; 

 

  

Figure 6-3 
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CHAPTER 7: DIFFERENT TYPES OF FILES IN HIVE 

Let’s create a table a little different this time: 

CREATE TABLE data_types_table ( 
... 

> ROW FORMAT DELIMITED 
> FIELDS TERMINATED BY ',' 

> COLLECTION ITEMS TERMINATED BY '|' 
> MAP KEYS TERMINATED BY '^' 

> LINES TERMINATED BY '\n' 
> STORED AS TEXTFILE; 

 
The above lines define the Hive row format for your data_types_table and provide 

specifics on how fields will be separated or delimited whenever you insert or load data 

into the table. The last line defines the Hive file format — a text file — when the data 

is stored in the HDFS (or local file system). You may be wondering why our previous of 

creating a table lacks these extra keywords and delimiters. The reason is that Hive 

tables are created with the default configuration, unless you override the default 

settings. 

The most important on the above code is the last line, “STORED AS TEXTFILE”. 

Although TEXTFILE is the default format for our Hive table records, it is not always the 

most suitable. Text files are slower to process, and they consume a lot of disk space 

unless you compress them. For these reasons and more, the Apache Hive community 

came up with several choices for storing our tables on the HDFS. The following list 

describes the file formats you can choose from as of Hive version 0.11 [1]: 

TEXTFILE: The default file format for Hive records. Alphanumeric characters from the 

Unicode standard (see www.unicode.org) are used to store your data. 

SEQUENCEFILE: The format for binary files composed of key/value pairs. Sequence 

files, which are used heavily by Hadoop, are often good choices for Hive table storage, 

especially if you want to integrate Hive with other technologies in the Hadoop 

ecosystem. 

RCFILE: Stores records in a column-oriented fashion rather than a row-oriented 

fashion — like the TEXTFILE format approach. Using the RCFILE format makes sense 

when tables have a large number of columns, but only a few columns are typically 

accessed. RC files or record columnar files were the first columnar file format adopted 

in Hadoop. These are flat files consisting of binary key-value pairs, and it shares much 

similarity with sequence files. RC files are good and known for faster reads, but writing 

an RC file requires more memory and computation than non-column file formats. So 

we can summarize that RC file gives good read performance, but with a little 

compromise on write performance. RC file gives us significant compression. If data is 

suitable, then RC files can even be compressed with high compression ratio. There is 

no file format which provides all the features, and for RC file, it misses the schema 

evolution support. In order to add a column to our data, we must be rewrite every 

preexisting RC file. 
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ORC: A format that has significant optimizations to improve Hive reads and writes and 

the processing of tables (ORC stands for optimized row columnar.) For example, ORC 

files include optimizations for Hive complex types and new types such as DECIMAL. 

Also lightweight indexes are included with ORC files to improve performance. For a 

complete list of new ORC file format features, consult the Hive Language Manual at 

https://cwiki.apache.org/confluence/display/Hive/ LanguageManual+ORC 

AVRO: Avro actually is not really a file format, it's a file format plus a serialization and 

de-serialization framework. Avro uses JSON for defining data types, and serializes data 

in a compact binary format. Talking about its read-write performance, avro files comes 

in, you can say middle, in terms of read and write performance, neither very fast nor 

very slow. So if your application is mainly dealing with IO operations, then Avro file is 

not the best choice you will go with. Avro supports block level compression and they 

are also split table. And most importantly, avro files are designed to support full 

schema evolution. Avro files store metadata with the data, and thus supports full 

scheme evolution. This file format is actually the best choice if you know that your file 

schema is going to be changed frequently. 

PARQUET: Last comes the parquet file format. This is the most famous columnar file 

format adopted by the Hadoop community. Parquet stores nested data structures in 

a flat columnar format. Like RC and ORC, parquet is also designed for faster reads with 

less concern of write speeds. Parquet files can be compressed with the famous snappy 

compression codec. They are conditionally split table for some compression codecs. 

However, unlike RC and ORC files, parquet serDe support limited schema evolution. In 

parquet, new columns can be added at the end of structure. 
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CHAPTER 8: HIVE QL: BASIC COMMANDS AND FUNCTIONS 

HIVE DATA MANIPULATION LANGUAGE (DML) 

[7] The ability to manipulate data is critical in big data analysis. Manipulating data is 

the process of exchanging, moving, sorting transforming and modifying data. This 

technique is used in many situations, such as cleaning data, searching patterns, 

creating trends and so on. Hive QL offers commands which are used for inserting, 

retrieving, modifying, deleting, and updating data in the Hive table once the table and 

database schema has been defined using Hive Data Manipulation Language (DML) 

commands. 

The various Hive DML commands are: 

 LOAD: Loading data into a Hive table is one of the variants of inserting data 

into a Hive table. In this method, the entire file is copied/moved to a directory 

corresponds to Hive tables. If the table is partitioned, then data is loaded into 

partitions one at a time. 

 

The Hive syntax is as follows: 

 

LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename 

 
LOAD DATA  Keywords for loading data in Hive. 

LOCAL   If included, enables the users to load data from their local files. 

If omitted, the files are loaded from the path set in the Hadoop 

configuration variable fs.default.name. 

INPATH 'filepath'  If LOCAL is used: 

file:///user/hive/example 

If LOCAL is omitted: 

hdfs://namenode:9000/user/hive/example 

OVERWRITE If included, enables the users to load data into an already populated 

table and replace the previous data. 

If omitted, enables the users to load data into an already populated 

table and append the new data to previous data. 

INTO TABLE tablename The tablename is the name of a table that exists in Hive 

 

 SELECT: The SELECT statement in Hive is similar to the SELECT statement in SQL 

used for retrieving data from the database. 

 

 INSERT: The Insert statement is used to append the data into a Hive table or 

partition. It keeps the existing data as it is and adds new data into one or more 

new data files. 

 

 DELETE: Deleting data from a Hive table is the traditional way of deleting data 

in a table in any RDBMs. Deleting data in a table can only be performed if the 

table supports ACID properties. 
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 UPDATE: Updating data in a Hive table is the traditional way of updating data 

in a table in any RDBMs. Updating data in a table can only be performed if the 

table supports ACID properties.  

 

 EXPORT: The Hive EXPORT statement exports the table or partition data along 

with the metadata to the specified output location in the HDFS. 

 

 IMPORT: The Hive IMPORT command imports the data from a specified 

location to a new table or already existing table. 

[7] Another aspect of manipulating data is properly sorting it in order to clearly identify 

important facts, such as top the N values, maximum, minimum and so on. Hive QL 

supports the following keywords for data sorting: 

 ORDER BY [ASC | DESC]: It is similar to the SQL ORDER BY statement. 

 

 SORT BY [ASC | DESC]: It specifies which columns to use to sort reducer input 

records. This means the sorting is completed before sending data to the 

reducer 

 

 DISTRIBUTE BY: When the mapper decides to which reducer it can deliver the 

output.  

 

 CLUSTER BY: It is a shortcut operator we can use to perform DISTRIBUTE BY 

and SORT BY operations on the same group of columns. The CLUSTER BY 

statement does not allow us to specify ASC or DESC yet. 

We have describe Hive data types and Data Model, Hive DDL and Hive DML, but there 

are so many HiveQL features for querying and analyzing data, which are beyond the 

scope of this essay. 

For an exhaustive list of HiveQL features, consult the Hive Language Manual at this 

page: 

https://cwiki.apache.org/confluence/display/Hive/LanguageManual 

HIVE FUNCTIONS 

[7] To further manipulate data, we can also use operators, expressions, and functions 

in HQL to transform data.  

The Hive wiki  (https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF) offers 

specifications for all supported expressions and functions, so we will mention only the 

most useful and common among them.  

Functions in HQL are categorized as follows: 
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Mathematical functions: They are mainly used to perform mathematical calculations, 

such as rand(...) and pi(...). 

Collection functions: They are used to find the size, keys, and values for complex 

types, such as size(...). 

Type conversion functions: These are mainly cast(...) and binary(...) functions to 

convert one type to another. 

Date functions: They are used to perform date-related calculations, such as year(...) 

and month(...). 

Conditional functions: They are used to check specific conditions with a defined value 

returned, such as coalesce(...), if(...), and case when then else end 

String functions: They are used to perform string-related operations, such as upper(...) 

and trim(...) 

Aggregate functions: They are used to perform aggregation (introduced in the next 

chapter), such as sum(...) and count(*) 

Table-generating functions: These functions transform a single input row into 

multiple output rows, such as explode(...) and json_tuple(...)  

Customized functions: These functions are created by Java as extensions and will 

cover them in next chapter. 

To list all operators, built-in functions, and user-defined functions, we can use the 

SHOW FUNCTIONS commands. For more details of a specific function, we can use 

DESC [EXTENDED] function name as follows: 

SHOW FUNCTIONS; -- List all functions 

DESCRIBE FUNCTION <function_name>; -- Detail for the function 

DESCRIBE FUNCTION EXTENDED <function_name>; -- More details 

Explode and Lateral View functions: 

Explode function takes an array as an input and results the elements of that array as 
separate rows. For example, we have the table in Figure 6-4 with two columns. 
Column_1 is of string datatype and column_2 is of array datatype. Now if we apply 
explode function on second column column_2 in select statement, then the output 
would look like Figure 6-4. Explode function has dispersed all the elements of array in 
individual rows. 

 

 

 

 

Figure 6-4 
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The limitation of explode function is that we can select only the column to be exploded 

in our select statement, we cannot select other columns of table along with the 

exploded column. For example, in this above case, we can use only column_2 in the 

select statement, and we cannot select both, column_1 and column_2. If we try to use 

both columns in the select statement, it would give us an error.   

To overcome this limitation, lateral view function was introduced. With the help of 

lateral view, we can select any number of columns from our table along with the 

exploded column. 

Suppose, we have the table shown in Figure 6-5 with two columns; author name as 

string datatype and book's name as array datatype. Book's name contains all the books 

an author has written. Now from this table, we want to select as each book name 

should come along with the author name. 

This is how we want the output. 

 

 

 

 

 

 

 

 

 

Every book name has its corresponding author name. To perform this, we'll use lateral 

view function, because explode function alone can't do this job. 

Lateral view will create a virtual table for the exploded column. Means, the output of 

the exploded column is stored temporarily in a virtual table, and then that virtual table 

is joined with our base table to get the desired output. If we see in this example, book's 

name column was exploded and stored in a virtual table, and then joined with author 

name column of base table to get the desired output. 

Please note that we need not to worry about this virtual table and joining, as Hive 

does it internally by itself. 

The code: 

select author_name, dummy_booksname form table2 lateral view 

explode(books_name) dummy as dummy_booksname; 

  

Figure 6-5 
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CHAPTER 9: HIVE QL: VIEWS AND JOINS 

VIEWS 

Views are logical data structures that can be used to simplify queries by hiding the 

complexities, such as joins, subqueries, and filters. It is called logical because views 

are only defined in metastore without the footprint in HDFS. Unlike what's in the 

relational database, views in HQL do not store data or get materialized. In other words, 

materialized views are not currently supported by Hive. 

When a query references a view, the information in its definition is combined with the 

rest of the query by Hive’s query planner. Logically, you can imagine that Hive executes 

the view and then uses the results in the rest of the query. 

Basically in Hive, view is kind of a searchable object in a database which itself does not 

have any data but can be populated by the results of a query. Here are some few 

properties of view.  

First as we already mentioned, hive views do not contain any data of its own, but they 

are merely the results of any hive query on a table. 

Second is that, all type of DML operations can be performed on a view, same like 

table's DML operations. Views can be created by selecting any number of rows and 

columns from its base table or tables, because views can also reflect the results of join 

of N number of tables. 

Once created, views become independent of it's base table schema. It means, after 

we created a view on a table with a schema, that schema of view gets frozen and it 

won't change if we change its base table schema. If we have to change view schema, 

we have to use alter views command. Also, vice versa is true. 

Changing the view schema won't change our table schema. Views are read-only. Any 

drop or write queries on views will not affect our base table. Next, dropping the base 

table will make the view on that table ineffective. This makes sense because view does 

not have its own data and it is reflecting the queried data of its base table only. 

[4] When a query becomes long or complicated, a view may be used to hide the 

complexity by dividing the query into smaller, more manageable pieces; similar to 

writing a function in a programming language or the concept of layered design in 

software. Encapsulating the complexity makes it easier for end users to construct 

complex queries from reusable parts. For example, consider the following query with 

a nested subquery: 

FROM ( 

SELECT * FROM people JOIN cart 

ON (cart.people_id=people.id) WHERE firstname='john' 

) a SELECT a.lastname WHERE a.id=3; 
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It is common for Hive queries to have many levels of nesting. In the following example, 

the nested portion of the query is turned into a view: 

CREATE VIEW shorter_join AS  

SELECT * FROM people JOIN cart 

ON (cart.people_id=people.id) WHERE firstname='john'; 

JOINS 

[4][7][13] A join in Hive is used for the same purpose as in a traditional RDBMS. A join 

is used to fetch meaningful data from two or more tables based on a common value 

or field. In other words, a join is used to combine data from multiple tables. A join is 

performed whenever multiple tables are specified inside the FROM clause.  

Hive supports most SQL JOIN operations, such as INNER JOIN and OUTER JOIN. In 
addition, HQL supports some special joins, such as MapJoin and Semi-Join too. In its 
earlier version, Hive only supported equal join. After v2.2.0, unequal join is also 
supported. However, you should be more careful when using unequal join unless you 
know what is expected, since unequal join is likely to return many rows by producing 
a Cartesian product of joined tables. When you want to restrict the output of a join, 
you should apply a WHERE  clause after join as JOIN occurs before the WHERE clause. 

 
INNER JOIN or JOIN returns rows meeting the join conditions from both sides of joined 

tables. The JOIN keyword can also be omitted by comma-separated table names; this 

is called an implicit join.  

Besides INNER JOIN, HiveQL also supports regular OUTER JOIN and FULL JOIN. The 

logic of such a join is the same as what's in the SQL. The following table summarizes 

the differences between common joins. Here, we assume table_m has m rows and 

table_n has n rows with one-to-one mapping: 

 

Join type Logic Rows 

returned 

table_m 

JOIN table_n 

This returns all rows matched in both tables. m ∩ n 

table_m 

LEFT JOIN table_n 

This returns all rows in the left table and matched 

rows in the right table. If there is no match in the 

right table, it 

returns NULL in the right table. 

 

m 

table_m 

RIGHT JOIN table_n 

This returns all rows in the right table and matched 

rows in the left table. If there is no match in the left 

table, it returns NULL in 

 

n 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:46:18 EEST - 137.108.70.13



[41] 
 

the left table. 

table_m 

FULL JOIN table_n 

This returns all rows in both tables and matched 

rows in both tables. If there is no match in the left 

or right table, it 

returns NULL instead. 

m + n - m 

∩ n 

table_m 

CROSS JOIN table_n 

This returns all row combinations in both the tables 

to produce a Cartesian product. 

m * n 

 

HiveQL also supports some special joins that we usually do not see in relational 

databases, such as MapJoin and Semi-join. MapJoin means doing the join operation 

only with map, without the reduce job. The MapJoin statement reads all the data from 

the small table to memory and broadcasts to all maps. During the map phase, the join 

operation is performed by comparing each row of data in the big table with small 

tables against the join conditions. Because there is no reduce needed, such kinds of 

join usually have better performance. In the newer version of Hive, Hive automatically 

converts join to MapJoin at runtime if possible.  

However, you can also manually specify the broadcast table by providing a join hint, 

/*+ MAPJOIN(table_name) */. In addition, MapJoin can be used for unequal joins to 

improve performance since both MapJoin and WHERE are performed in the map 

phase. 
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CHAPTER 10: USER DEFINED FUNCTIONS 

UDF means User Defined Functions. So what are these UDFs? Hive supports may 
different types of functions, as we have already mentioned in previous chapter,   
but in real-time projects, these functions are still not sufficient. For example, Hive 
provides a built-in function to convert the uppercase to lowercase, and lowercase to 
uppercase. 

But if a requirement comes that we have to change the case of only first alphabet in a 
word i.e we have to make only the first alphabet to uppercase in a word, then we don't 
have a built-in function for this situation. 

Hive provides a utility UDF to handle this situation. We can define our own functions 
i.e. user-defined functions, according to the requirement. 

These functions will be written in Java, and there are some rules to be followed while 
writing the UDFs.. 

Here is the flow that we follow to run a UDF in Hive. 

Step-1: is to create a java program in any platform (Eclipse, NetBeans), 

Step-2: save or convert the program into a jar file.  

Step-3: adding that jar file into our Hive shell.  

Step-4: create a function from that jar file which we have added. 

Step-5: use those functions in Hive query according to requirement. 

Developing UDFs in Hive is by no means rocket science, and is an effective way of 
solving problems that could either be downright impossible, or very akward to solve 
(for example by using complex SQL constructs, multiple nested queries or 
intermediate tables). Although the lack of documentation and resources to help in this 
process it will make it sometimes quite painful.  

A UDF processes one or several columns of one row and outputs one value. For 
example: 

SELECT lower(str) from table 

For each row in "table," the "lower" UDF takes one argument, the value of "str", and 
outputs one value, the lowercase representation of "str". 

Each argument of a UDF can be: 

 A column of the table 

 A constant value 

 The result of another UDF 

 The result of an arithmetic computation 

[19][20] First, you need to create a new class that extends UDF, with one or more 
methods named evaluate. 
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package com.example.hive.udf; 

import org.apache.hadoop.hive.ql.exec.UDF; 

import org.apache.hadoop.io.Text; 

public final class Lower extends UDF { 

  public Text evaluate(final Text s) { 

    if (s == null) { return null; } 

    return new Text(s.toString().toLowerCase()); 

  } 

} 

After compiling your code to a jar, you need to add this to the Hive classpath. 

hive> addjar my-udf.jar 

hive>create temporary function my_lower as 'com.example.hive.udf.Lower'; 

hive>hive> select my_lower(title), sum(freq) from titles group by my_lower(title); 

UDF can accept a large variety of types to represent the column types. Notably, it 
accepts both Java primitive types and Hadoop IO types. Depending on the use cases 
the UDFs can be written, it will accept and produce different numbers of input and 
output values. 

The general type of UDF will accept single input value and produce a single output 

value. If the UDF used in the query, then UDF will be called once for each row in the 

result data set. 

In the other way, it can accept a group of values as input and return single output 

value as well. 
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CHAPTER 11: QUERYING SEMI-STRUCTURED DATA 

[9] Hive would not be much of a useful data warehouse tool without the ability to 

query data. Luckily, querying and providing schema-on-read capabilities at scale is the 

core foundation for Hive use cases. The power Hive provides is the ability to translate 

a large variety of data formats as well as the ability to customize translations to fit 

your unique business needs. Hive adapts to your data formats instead of the other 

way around. This is the core foundation for a data-driven organization. 

The Hadoop noise machine was fond of referring to data as structured, semi-

structured, or non- structured. Structured data always referred to data represented in 

rows and columns. This is what was most familiar to data analysts, especially 

professionals working with traditional transactional systems like point- of-sales or 

inventory management. Semi-structured data refers to a gray line between columns 

and rows and maybe something more exotic like key-value pairs, arrays, or nested 

data. Maybe the number of columns in the data structure was dynamic, or maybe 

there were multiple values in a single column. This data felt like traditional data but 

its representation was much different. Examples of this data include XML, HL7, and 

JSON.  

Semi-structured data could also be associated with syslog or application event log 

files. Finally, there was unstructured data in the form of images, OCR, PDF, or spatial 

data. Unstructured data was complex data where potentially the structure was not in 

columns, rows, or arrays, but was in the byte patterns in an image of a cat on the 

Internet or a rib cage in a X-ray. The truth of the matter is no data is patternless. What 

matters is the algorithm used to detect the pattern. Granted, the pattern may change 

during moments of ingest or may not be readily or easily detectable, but all data still 

has a pattern and it is up to developers to glean those patterns using all the tools at 

their disposal, and it is up to the tools analyzing the data to have the flexibility to 

accommodate the potential range of patterns. 

INGESTING AND QUERING XML DATA 

XML is a semi-structured format, it contains various tags and inside those tags, the 

actual value is mentioned. So at last, those are the values which we have to insert in 

Hive table, and rest tags should be omitted. 

Now the main point is how to load these semi-structured XML files into Hive.  

Hive provides us various SerDes to read different types of data, and even it allows us 

to write our own SerDes if we have our own formatted data. SerDe is short notation 

for serializer\deserializer and is a means for Hive to read data from a table and write 

it out in any customizable format. Developers write SerDes so that Hive can interpret 

varying file formats. 

But for XML files, we don't have to create our own SerDe because the SerDe for this is 
already available on the internet. The only thing we have to do is to download this 
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SerDe from the internet and add it to our Hive environment. So let's work with an XML 
file to see in practice how to load and query XML data with Hive. 

We will use the following XML file "books.xml". As we can see, there are lots of tags in 
this XML file, and corresponding values for these tags resides in them. 

Actually the structure of XM: is like that only, for each individual tag, there is a value 
associated with it.  

<CATALOG> 

<BOOK> 

<TITLE>Hadoop Defnitive Guide</TITLE> 

<AUTHOR>Tom White</AUTHOR> 

<COUNTRY>US</COUNTRY> 

<COMPANY>CLOUDERA</COMPANY> 

<PRICE>24.90</PRICE> 

<YEAR>2012</YEAR> 

</BOOK> 

<BOOK> 

<TITLE>Programming Pig</TITLE> 

<AUTHOR>Alan Gates</AUTHOR> 

<COUNTRY>USA</COUNTRY> 

<COMPANY>Horton Works</COMPANY> 

<PRICE>30.90</PRICE> 

<YEAR>2013</YEAR> 

</BOOK> 

</CATALOG> 

From this XML, we have to load these values into our Hive table and we have to omit 
these tags. We can think of this XML file as, book will be our table, and the title, author, 
countries, will act as columns into our Hive table, and these columns will have 
different rows containing different values for different books. 
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We will do by using a specific SerDe, and the SerDe name is:  

"com.IBM.SPSS.hive.SerDe2". 

And inside these SerDes, we have this input format and output format specified. 

So first of all, we will download this SerDe from internet and add it into my Hive 
environment, using the command add jar: 

hive> ADD JAR /home/myjio/Downloads/hivexmlserde-1.0.0.0.jar 

And the code for the query in which we create our “XML” table: 

CREATE TABLE book_details(TITLE STRING, AUTHOR STRING,COUNTRY 

STRING,COMPANY STRING,PRICE FLOAT,YEAR INT) 

ROW FORMAT SERDE 'com.ibm.spss.hive.serde2.xml.XmlSerDe' 

WITH SERDEPROPERTIES ( 

"column.xpath.TITLE"="/BOOK/TITLE/text()", 

"column.xpath.AUTHOR"="/BOOK/AUTHOR/text()", 

"column.xpath.COUNTRY"="/BOOK/COUNTRY/text()", 

"column.xpath.COMPANY"="/BOOK/COMPANY/text()", 

"column.xpath.PRICE"="/BOOK/PRICE/text()", 

"column.xpath.YEAR"="/BOOK/YEAR/text()") 

STORED AS  

INPUTFORMAT 'com.ibm.spss.hive.serde2.xml.XmlInputFormat' 

OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.IgnoreKeyTextOutputFormat' 

TBLPROPERTIES ("xmlinput.start"="<BOOK","xmlinput.end"= "</BOOK>"); 

 

In the first line, we are telling Hive to take the value of title from the path 

/BOOK/TITLE/text() as we can see in the XML file; under book, there is a tag "title", 

and inside the title, whatever the text it is, it should take this text as a value. So same 

goes for author, country, company, price and year.  

Then next is "stored as". Now here we have to explicitly mention input format and 

output format, because here we are not using that default input and output formats, 

we have to mention the input and output formats from our SerDe. 

And at last, we have to mention table properties. In table properties, we'll mention 

the start and the end tag for our whole file, which is "xmlinput.start"=<BOOK”, and 

the end tag, "xmlinput.end"= "</BOOK>". 
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Now we have to load the data into our “XML” table using the LOAD statement: 

hive>load data local inpath ‘home/myjio/files/books.xml’ into table book_details’; 

hive>select * from book_details; 

 

Figure 11-1 
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CHAPTER 12: SECURITY 

In today’s era of big data, most of the organizations are concentrating to use Hadoop 

as a centralized data store. Data size is growing day by day, and organizations want to 

derive some insights and make decisions using the important information. While 

everyone is focusing on collecting the data, but having all the data at a centralized 

place increases the risk of data security. Securing the data access of HDFS is very 

important. For this reason, security in Hive is always considered an integral and 

important part of the ecosystem. The earlier version of Hive mainly relied on HDFS for 

security. The security of Hive gradually became mature after hiveserver2 was 

released. Furthermore, when we talk about security, there are two major things –

Authentication and Authorization. 

Hive v0.7.0 added integration with Hadoop security, meaning, for example, that when 

Hive sends MapReduce jobs to the JobTracker in a secure cluster, it will use the proper 

authentication procedures. User privileges can be granted and revoked, as we’ll 

discuss below. 

Authentication 

[7] Authentication is the process of verifying the identity of a user by obtaining the 

user’s credentials. Hive has offered authentication since hiveserver2. In the old 

version of Hive, hiveserver1 does not support Kerberos3 authentication for thrift 

clients. As result, if we could access the host/port over the network, we could access 

the server. Instead, we can leverage the metastore server, which supports Kerberos, 

for authentication. [8] Kerberos allows for mutual authentication between client and 

server. In this system, the client's request for a ticket is passed along with the request. 

[4] But Hive was created before any of this Kerberos support was added to Hadoop, 

and Hive is not yet fully compliant with the Hadoop security changes. For example, the 

connection to the Hive metastore may use a direct connection to a JDBC database or 

it may go through Thrift, which will have to take actions on behalf of the user. 

Authorization 

[7] Authorization is used to verify whether a user has permission to perform a certain 

action, such as creating, reading or writing data or metadata. Hive provides three 

authorization modes: legacy, store-based and SQL standard-based mode. 

Legacy Mode 

This is the default authorization mode in Hive, providing column-and-row-level 

authorization through HiveQL statements. However, it is not a completely secure 

authorization mode and has a couple of limitations. It can be mainly used to prevent 

good users from accidentally doing bad things rather than preventing malicious user 

operations.  
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Storage-based mode 

[13] HDFS supports a permission model for files and directories that is much 

equivalent to the standard POSIX model. Similar to UNIX permissions, each file and 

directory in HDFS is associated with an owner, group and another users. There are 

three types of permissions in HDFS –read, write and execute.  

Although this basic permission model is sufficient to handle a large number of security 

requirements at a bloc level, but using this model we cannot define finer level security 

named users or groups.  

[13] HDFS also has a feature to configure an Access Control List (ACL), which can be 

used to define fine-grained permissions at the file level as well as the directory level 

for specific named users or groups.  

[7] Considering its implementation, the storage-based authorization mode only offers 

authorization at the level of databases, tables and partitions rather than column-and-

row level. With dependency on the HDFS permissions, it lacks the flexibility to manage 

authorization through HiveQL statements. 

SQL standard-based mode 

[15] For fine-grained access control on a column and row level, we can use SQL 

standard-based mode, available since Hive v0.13.0. It is similar to relational database 

authorization by using the GRANT and REVOKE statements to control access through 

the hiveserver2 configuration. However, tools such as Hive or HDFS commands do not 

access data through hiveserver2, so SQL standard-based mode cannot authorize their 

access. 

Therefore, it is recommended we use storage-based mode together with SQL 

standard-based mode to authorize users connecting from various tools. 

 

 

 

 

 

 

 

 

3Kerberos is a network authentication protocol developed by MIT as part of Project Athena. It uses 

time-sensitive tickets that are generated using symmetric key cryptology to securely authenticate a 

user in an unsecured network environment. 
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CHAPTER 13: FUTURE OF HIVE 

ENHANCEMENTS 

When Hive was first introduced over 10 years ago, the motivation of the authors was 

to expose a SQL-like interface (on top of Hadoop Map/Reduce) to users and translate 

data manipulation statements (queries) to a directed acyclic graph (DAG) of 

Map/Reduce jobs. With an abstract SQL interface, the users did not have to deal with 

low level implementation details for their parallel batch processing jobs. Hive focused 

mainly on Extract-Transform-Load (ETL) or batch reporting workloads that consisted 

of (i) reading huge amounts of data, (ii) executing transformations over that data (e.g., 

data wrangling, consolidation, aggregation) and finally (iii) loading the output into 

other systems that were used for further analysis. 

As Hadoop became a ubiquitous platform for inexpensive data storage with HDFS, 

developers focused on increasing the range of workloads that could be executed 

efficiently within the platform. YARN, a resource management framework for Hadoop, 

was introduced, and shortly afterwards, data processing engines (other than 

MapReduce) such as Spark were enabled to run on Hadoop directly by supporting 

YARN. 

Users also increasingly focused on migrating their data warehousing workloads from 

other systems to Hadoop. These workloads included interactive and ad-hoc reporting, 

dash- boarding and other business intelligence use cases. There was a common 

requirement that made these workloads a challenge on Hadoop: They required a low-

latency SQL engine.  

Instead of implementing a new system, the Hive community concluded that the 

current implementation of the project provided a good foundation to support these 

workloads. Hive had been designed for large-scale reliable computation in Hadoop, 

and it already provided SQL compatibility (alas, limited) and connectivity to other data 

management systems. However, Hive needed to evolve and undergo major 

renovation to satisfy the requirements of these new use cases, adopting common data 

warehousing techniques that had been extensively studied over the years. 

In particular the roadmap of enhancements and improvements focus on the following 

topics: 

 ACID Support, MERGE and Locks 

 LLAP (Live Long & Process) 

 Hive on Spark 

ACID Support, MERGE and Locks 

[21][22] ACID transactions are critical requirements in enterprise data warehouses. In 

this section, we describe the improvements made to Hive in order to provide ACID 

guarantees on top of Hadoop. 
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Initially, Hive only had support to insert and drop full partitions from a table. Although 

the lack of row level operations was acceptable for ETL workloads, as Hive evolved to 

support many traditional data warehousing workloads, there was an increasing 

requirement for full DML support and ACID transactions. Hence, Hive now includes 

support to execute INSERT, UPDATE, DELETE, and MERGE statements. It provides ACID 

guarantees via Snapshot Isolation on read and well defined semantics in case of failure 

using a transaction manager built on top of the HMS. Currently transactions can only 

span a single statement; we plan to support multi-statement transactions in the near 

future. However, it is possible to write to multiple tables within a single transaction 

using Hive multi-insert statements. 

[7] For now, all transactions in HQL are auto-committed without supporting BEGIN, 

COMMIT, and ROLLBACK, like as with relational databases. Also, the table that has a 

transaction feature enabled has to be a bucket table with the ORC file format. 

[7] Locks ensure data isolation as described in the ACID principle. Hive has supported 

concurrency access and locking mechanisms since v0.7.0 and updated to a new lock 

manager in v0.13.0. There are two types of lock provided as follows: 

 Shared lock: Also called S lock, it allows being shared concurrently. This is 

acquired when a table/partition is read. 

 Exclusive lock: Also called X lock. This is acquired for all other operations that 

modify the table/partition. 

For partition tables, only a shared lock is acquired if the change is only applicable to 

the newly-created partitions. An exclusive lock is acquired on the table if the change 

is applicable to all partitions. In addition, an exclusive lock on the table globally affects 

all partitions. For more information regarding locks, see: 

https://cwiki.apache.org/ confluence/display/Hive/Locking 

LLAP (Live Long & Process) 

[2] The demand for sub-second queries calls for fast query execution and lower setup 

cost of tasks within the ecosystem. The challenge for Hive is to accomplish this without 

impacting the scale and flexibility that users require from a future distributed solution. 

A future-proof methodology using a hybrid engine that leverages Tez and a new 

engine called LLAP (Live Long and Process) is the next phase for Hive. [21] LLAP is an 

optional layer that provides persistent multi-threaded query executors and multi-

tenant in-memory cache to deliver faster SQL processing at large scale in Hive. LLAP 

does not replace the existing execution runtime used by Hive, such as Tez, but rather 

enhances it. In particular, execution is scheduled and monitored by Hive query 

coordinators transparently over both LLAP nodes as well as regular containers. 

LLAP is an enhanced daemon process running on multiple nodes. YARN will be 

responsible for workload management in LLAP by means of delegation. Queries will 

transport information from YARN to LLAP about their authorized resource allocation. 
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LLAP processes will then distribute supplementary resources to assist the query as 

instructed by YARN. 

The hybrid engine approach delivers fast response times by efficient in-memory data 

caching and low-latency processing, delivered by node resident processes. The 

effective limiting of LLAP usage during the initial phases of query processing means 

that Hive by-passes limitations around coordination, workload management, and 

failure isolation that are normally presented by running an entire query in this 

processing on the databases. 

Hive on Spark 

[2] Apache Spark is rapidly evolving into the programmatic successor to MapReduce 

for data processing on Apache Hadoop. The successful integration will open the 

enormous development that is done in the Spark ecosystem directly to Hive. 

The biggest is the development in the deep-learning capability of spark. The evolving 

research into solutions using Spark and TensorFlow will deliver capacity to Hive 

solutions to use these investments via the Hive-on-Spark stack. 

Machine learning has rapidly developed as a critical portion in mining Big Data for 

actionable insights. 

Built on top of Spark, MLlib is a scalable machine-learning library that delivers high-

quality algorithms. 

FUTURE WORK 

Additionally to fully support ACID capabilities, Hive plans to implement multi-

statement transactions in the near future.  

Materialized views work is still an ongoing project and one of the most requested 

features is the implementation of an advisor or recommender for Hive. Also 

improvements to LLAP performance and stability as well as the implementation of 

new connectors to other specialized systems, e.g., Kafka, are in progress too. 
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CHAPTER 14: HIVEMALL 

With Apache Hive we have a powerful tool, for data preparation and preprocessor for 

our data, which reside in the distributed storage system of Hadoop ecosystem. But so 

far, we have not answered the big question, can we use SQL over Hive for Machine 

Learning? 

The Hadoop ecosystem provides Apache Mahout (among others) to help develop our 

Machine Learning models. But Apache Mahout Core algorithms for clustering, 

classification and batch based collaborative filtering are implemented on top of 

Apache Hadoop using Map/Reduce paradigm. So, the main disadvantage for the 

analysts need to have a basic understanding of Hadoop and Map/Reduce 

programming is still lies here.  

Why not to run Machine Learnings algorithms inside Hive? In that case we will have 

less components to manage and more scalable.  

Apache Hivemall is a collection of Machine Learning algorithms and versatile data 

analytics functions. It provides a number of ease of use ML functionalities through the 

Apache Hive UDF/UDAF/UDTF interface. 

Apache Hivemall offers a variety of functionalities: regression, classification, 

recommendation, anomaly detection, k-nearest neighbor, and feature engineering. It 

also supports state-of-the-art Machine Learning algorithms such as Soft Confidence 

Weighted, Adaptive Regularization of Weight Vectors, Factorization Machines, and 

AdaDelta. 

HIVEMALL ARCHITECTURE 

Apache Hivemall is mainly designed to run on Apache Hive but it also supports Apache 

Pig and Apache Spark for the runtime. Thus, it can be considered as a cross platform 

library for machine learning; prediction models built by a batch query of Apache Hive 

can be used on Apache Spark/Pig, and conversely, prediction models build by Apache 

Spark can be used from Apache Hive/Pig. 

 

Figure 14-1 
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Hivemall is easy and scalable. Existing users of Hive can implement machine learning 

algorithms using the well-known Hive QL language. There is no need to compile 

programs and create executable jars as in MLlib or H2O. Just add UDFs or UDTFs and 

execute Hive queries. It also provides the scalability benefits of Hadoop and Hive with 

additional features to provide scalability to any number of training and testing 

instances and also any number of features. 

For example, the following query automatically runs in parallel on Hadoop: 

CREATE TABLE lr_model AS  

SELECT feature, -- reducers perform model averaging in parallel  

avg(weight) as weight  

FROM ( SELECT logress(features,label,..) as (feature,weight)  

FROM  

train ) t -- map-only task  

GROUP BY feature; -- shuffled to reducers 

 

ALGORITHMS SUPPORTED BY HIVEMALL 

Apache Hivemall provides machine learning functionality as well as feature 

engineering functions through UDFs/UDAFs/UDTFs of Hive. 

Binary Classification 

 Perceptron 

 Passive Aggressive (PA, PA1, PA2) 

 Confidence Weighted (CW) 

 Adaptive Regularization of Weight Vectors (AROW) 

 Soft Confidence Weighted (SCW1, SCW2) 

 AdaGradRDA (w/ hinge loss) 

 Factorization Machine (w/ logistic loss) 

Recommended is AROW, SCW1, AdaGradRDA, and Factorization Machine while it 

depends. 

Multi-class Classification 

 Perceptron 

 Passive Aggressive (PA, PA1, PA2) 

 Confidence Weighted (CW) 

 Adaptive Regularization of Weight Vectors (AROW) 

 Soft Confidence Weighted (SCW1, SCW2) 

 Random Forest Classifier 
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 Gradient Tree Boosting (Experimental) 

Recommended is AROW and SCW while it depends. 

Regression 

 Logistic Regression using Stochastic Gradient Descent 

 AdaGrad, AdaDelta (w/ logistic Loss) 

 Passive Aggressive Regression (PA1, PA2) 

 AROW regression 

 Random Forest Regressor 

 Factorization Machine (w/ squared loss) 

 Polynomial Regression 

Recommended is AROW regression, AdaDelta, and Factorization Machine while it 

depends. 

Recommendation 

 Minhash (LSH with jaccard index) 

 Matrix Factorization (sgd, adagrad) 

 Factorization Machine (squared loss for rating prediction) 

k-Nearest Neighbor 

 Minhash (LSH with jaccard index) 

 b-Bit minhash 

 Brute-force search using Cosine similarity 

Anomaly Detection 

 Local Outlier Factor (LOF) 

Natural Language Processing 

 English/Japanese Text Tokenizer 

Feature engineering 

 Feature Hashing (MurmurHash, SHA1) 

 Feature scaling (Min-Max Normalization, Z-Score) 

 Polynomial Features 

 Feature instances amplifier that reduces iterations on training 

 TF-IDF vectorizer 

 Bias clause 

 Data generator for one-vs-the-rest classifiers 

System requirements 

 Hive 0.13 or later, Java 7 or later 

 Spark 2.1 or later for Apache Hivemall on Spark 
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CHAPTER 15: A CASE STUDY: BUILDING A MODEL FOR 

FOOTBALL PERFORMANCE WITH HIVE AND HIVEMALL 

We now know that modern football and the performance of athletes are increasingly 

based on results and performance indicators, generating from data collection and 

analysis. Just ten years ago, the data used by football clubs were limited to basic 

statistics such as goal, shots, corners, possession, etc. Data that in the hands of the 

coaching staff were of little value, as they "captured" the final image of a match, 

without give the opportunity to process / analyze them to draw useful conclusions for 

the coaching staff. But with the ongoing development of technology (cloud, hd 

monitors, sensors) nowadays a team can literally collects GB of data during games and 

training from every aspect of the game. This data is not just statistical numbers, but 

on-the-ball event data. For example, Opta (there are now many companies, 

Statsbomb, Instats, Wyscout), now provides in a system of axes (x, y) the coordinates 

of each pass, defensive effort and final effort within the dimensions of the field. 

The use of these on-the-ball event data/statistics, has now a very important role in 

the effort to develop/improve the skills of the players (especially the younger ones), 

but also in the in-depth analysis of a match for all areas of the game and in all its 

phases (attack, defense, counterattack). We can thus "discover" possible correlations 

that may lurk in the data and may indicate potential problems or areas for 

improvement. Also very important, a thorough analysis of a player's past performance 

or that of a team as a whole, can contribute to the creation of performance prediction 

models (individually/team) for the future (next match/season), such as which 

formation is best suited, against specific teams/formations or the percentage of 

chances of crosses from a specific side and/or time point to end up in a goal. Also with 

the thorough use of these on-the-ball event data/statistics, prediction models can be 

created for which players to buy fit the roster, based on the current formation and 

performance of the team. Finally, and in collaboration with the medical staff of the 

team, models could be created to predict the fatigue and serious injuries of the team 

players. 

In this chapter we will try to build and demonstrate a simple binary regression model 

with Hive as our ETL tool and Hivemall as our Machine Learning library. 

The scope is to build a model based on statistical (i.e pass, shot) and categorical 

attributes (position), which can predict the position of a new player based only on the 

statistical attributes. For our essay, we will try to build a model to predict for a given 

player, if his position is midfielder (we simplified the positions of a football team, to 

make simpler our paradigm). 

For that purpose, we will use the public share soccer data available in this url: 

https://figshare.com/authors/Luca_Pappalardo/6396764 

and in particular the “PlayeRank” and “Events/Euro” datasets.  
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The first dataset contains among other, the Role of every player, which will be our 

target variable. This will be the only variable we will select from this dataset. The 

second dataset contains a variety of statistical attributes (the on-the-ball event data) 

for every player for every match he participated. 

From that dataset we will choose the statistics/variables that will suit better our model 

and specifically: duel, foul, free kick, offside, challenge, pass, shot 

STEP 1: Install Hivemall and its dependencies 

We must download two files: 

 hivemall-all-xxx.jar 

 define-all.hive (of the hivemall version we download, e.g., v0.5.0) 

Add the following two lines to your $HOME/.hiverc file. 

add jar /home/myui/tmp/hivemall-all-xxx.jar; 

source /home/myui/tmp/define-all.hive; 

This automatically loads all Hivemall functions every time you start a Hive session. 

Alternatively, you can run the following command each time. 

$ hive 

add jar /tmp/hivemall-all-xxx.jar; 

source /tmp/define-all.hive; 

STEP 2: In Hive, prepare the tables of our model. 

The datasets we have downloaded is in JSON format. Although Hive can query of 

course JSON data, we transformed them to a csv file with the help of Excel. Excel is a 

very useful tool for every data analyst for such transformations. 

We saved our files as players_stats.csv, which contains the data for the training, and 

players_sample, which contains the data for the prediction phase. 

After that, we start Hadoop deamons and Hive with beeline interface, via hiveserver2 

and we are ready to build our model. 

First we have to create a new database for our project and use it: 

hive>create database soccer; 

hive>use soccer; 
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Afterwards we have to create our tables in which we will load the data from the 

players_stats.csv file and player_samples.csv file: 
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STEP 3: Feature representation 

First of all, we have to convert the records into pairs of the feature vector and 

corresponding target value. Here, Hivemall requires you to represent input features 

in a specific format. 

To be more precise, Hivemall represents single feature in a concatenation of index 

(i.e., name) and its value: 

Quantitative feature: <index>:<value> 

e.g., pass:135.0 

Categorical feature: <index>#<value> 

e.g., pos#D 

Feature index and feature value are separated by comma. Each of those features is a 

string value in Hive, and "feature vector" means an array of string values like: 

["pass:135.0", "shot:15", "offside:2", "pos#F"] 

Therefore, what we first need to do is to convert the records into an array of feature 

strings, and Hivemall functions quantitative_features(), categorical_features() and 

array_concat() provide a simple way to create the pairs of feature vector and target 

value: 
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STEP 4: Training 

Once the original table player_stats has been converted into pairs of features and 

label, you can build a binary classifier by running the following query: 

 

 

 

 

 

What the above query does is to build a binary classifier with: 

 loss_function logloss 

Use logistic loss i.e., logistic regression 

 optimizer SGD 

Learn model parameters with the SGD optimization 

 regularization l1 

Apply L1 regularization 

Eventually, the output table classifier stores model parameters as: 

 

 

 

 

 

 

 

 

Notice that weight is learned for each possible value in a categorical feature, and for 

every single quantitative feature. 

STEP 5: Prediction 

Now, the table classifier has liner coefficients for given features, we can predict 

unforeseen samples by computing a weighted sum of their features. It is time to test 

our model if it can predict correct the role of a player based on his statistical attributes. 
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Our goal is for the examples in the table player_samples, our model to predict 

correctly the players whose position is Midfielder (“M”). 

Prediction for the feature vectors can be made by join operation between prediction 

table (in which we stored a few samples from the table picture_sample) and classifier 

table on each feature as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some explanations on the above code: 

With the code extract_feature(fv) as feature, we split the feature string of prediction 

table into its name and value, 

With the line extract_weight(fv) as value, -- to join with the model table. 

Because the MapReduce jobs were pushing our system to fail due to lack of physical 

memory, we made a new table (new_player) and populated with just one sample to 

test our model. This player is actually a Midfielder so we expect the probability to be 

equal or exceed 1. 

  

Image 15-9 

Image 15-10 

Image 15-11 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:46:18 EEST - 137.108.70.13



[62] 
 

 

   

 

 

 

 

We are thrilled to see that our model has predicted the desired output, because the 

player with id=7858 is indeed a Midfielder. 

Although it is not precise as we should want. We tried to run the same model with an 

online tool, using the prediction table as our training table and it failed to give 100% 

accuracy. In fact out of five samples our model could not classify one player. 

 

 

 

 

 

 

 

 

 

We could add or remove some statistical properties, or even better to get the average 

values of all the stats of every player, to have a better view of the impact of every 

player in every statistical area. The main reason is the dataset has all the players of 

the European Championship 2016 and their statistics accumulated, even though some 

players played all the matches and others only one. Without this transformation from 

accumulated to average stats, it is very possible to have some outliers entries in our 

data set, which we have to erase them. 

Hive and Hivemall provides plenty of functions (e.g., rescale(), feature_hashing(), 

l1_normalize()) for the features in this step to make your prediction model more 

accurate and stable; it is known as feature engineering in the context of ML. 
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CHAPTER 16: CONCLUSION 

Big Data analysis is the latest popular area for the research and business around the 

globe. Hadoop is a flexible and open source implementation for analyzing large 

datasets using map-reduce, but relatively difficult to implement and programming. 

As a result, Apache Hive’s early success stemmed from the ability to exploit parallelism 

for batch operations with a well-known interface. It made data load and management 

simple, handling node, software and hardware failures gracefully without expensive 

repair or recovery times.  

Apache Hive architecture and design principles have proven to be powerful in today’s 

analytic landscape. With the continuous improvements on storage efficiency and 

query execution performance by the Hive community, Hive has expanded from an ETL 

tool to fully-fledged enterprise-grade data warehouse. We believe it will continue to 

thrive in new deployment and storage environments as they emerge, as it is showing 

today with containerization and cloud. 

With Hivemall, Hive users have now the capability to execute Machine Learning 

algorithms via Hive. Although it is not recommended for large and complex projects 

and models, it allows users, who want to test their early models for various types of 

ML algorithms, on the same environment they pre-processing and analyzing with 

queries their datasets. It is a welcome alternative for testing simple models on sample 

datasets.  
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