
Combining Advantages from Parameters in
Modeling and Control of Discrete Event Systems

Luiz F. P. Southier1, Muriel Mazzetto1, Dalcimar Casanova1, Marco A. C. Barbosa1,
Luis S. Barbosa2 and Marcelo Teixeira1

Abstract—Although Finite-State Automata (FSA) have been
successfully used in modeling and control of Discrete Event Sys-
tems (DESs), they are limited to represent complex and advanced
features of DESs, such as context recognition and switching.
The literature has suggested that a FSA can nevertheless be
enriched with parameters properly collected from the modeled
system, so that this favors design and control. A parameter
can be embedded either on transitions or states. However, each
approach is structured within a specific framework, so that their
comparison and integration are not straightforward and they
may lead to different control solutions, modeled, computed and
implemented using distinct strategies. In this paper, we show how
to combine advantages from parameters in modeling and control
of DESs. Each approach is structured and their advantages are
identified and exemplified. Then, we propose a conversion method
that allows to translate a design-friendly model into a synthesis-
efficient structure. Examples illustrate the approach.

Index Terms—Discrete Event Systems, Formal Modeling, Mod-
eling Integration, Event-parameter, State-parameter, Control.

I. INTRODUCTION

Modern automation systems aim to transform material
into products by properly, flexibly and efficiently integrating
people, equipments and technology [1]–[3]. It is expected
that factory components can interact with each other and
with the environment in a concurrent manner, sharing re-
sources and behaving in a safe, controllable and maximally
permissive way. In conjunction, those features make it hard
the task of programming industrial controllers, as traditional
paradigms for software development are usually inappropriate.
An alternative is to adopt model-driven strategies to express
system behavior and requirements [4]. In this case, automated
operations can be processed in order to calculate a controller
that holds properties of interest.

When an industrial process is seen as a Discrete Event
System (DES) [5], the control objective is to obtain sequences
of events to be allowed under control. Events are assumed
to occur spontaneously in the system plant, and they are
restricted by specifications, which are in general modeled
using Finite State Automata. Then, formal approaches, such as
the Supervisory Control Theory (SCT) [6], can be applied to
synthesize controllers to be finally implemented in hardware.

Despite their practical relevance and formal background,
FSA face significant limitations when modeling large and

Luiz F. P. Southier, Muriel Mazzetto, Dalcimar Casanova, Marco
A. C. Barbosa and Marcelo Teixeira are with the Universidade
Technológica Federal do Paraná, Pato Branco, Brazil ({luizsouthier,
murielmazzetto}@alunos.utfpr.edu.br,{dalcimar,mbarbosa,
marceloteixeira}@utfpr.edu.br); Luı́s S. Barbosa is with the
Universidade do Minho, Minho, Portugal (lsb@di.uminho.pt).

complex systems. Advanced features of flexible DES, such as
context recognition and switching, are difficult to be expressed
through ordinary FSA and they are usually associated with
complex models, both in terms of modeling and processing [2],
[7], [8]. Parameterized FSA allow to address complexity issues
in modeling and control of DESs. A so-called parameter is
an engineered argument, embedded on a modeling formalism,
that captures and carries context semantics throughout a FSA.
This mechanism expands the information potential of a DES
model and extends its control techniques to cover a broader
class of problems [8]–[10].

Technically, a parameter can be embedded either on transi-
tions [10] or states [9] of a DES model. State-parameterized
FSA (SpFSA) can be modeled by using Extended Finite State
Automata [11], structures that implement control by disabling
events based on the evaluation of logical formulas that manipu-
late variables. Differently, Event-parameterized FSA (EpFSA)
are mechanisms that systematically map events into sets of
new events, called parameterized events, which carry a given
context semantic for the modeled system.

In theory, both SpFSA and EpFSA play a similar role in
modeling and control of DES, so that their choice should
be straightforward. However, it does not exist so far in the
literature an explicit way to compare them and evidence
their advantages. As each approach is structured within a
specific framework, their integration is not direct and they
may lead to different control solutions, modeled, computed
and implemented using distinct strategies [9], [10], [12].

It has been reported that EpFSA benefit modeling and
synthesis [10], besides to be modular [13] and to reduce imple-
mentation costs [12]. But, in this case, the entire parametriza-
tion structure depends on an engineer to be constructed.
Differently, SpFSA are more suitable for modeling as they
allow to express control conditions by simple formulas [8],
[9], [11]. However, the variable structure of a SpFSA is
not natively modular, which may complexify synthesis and
implementation.

This paper shows how to combine advantages from SpFSA
and EpFSA. A conversion process is formally structured and
algorithms are provided to systematically extract meanings
(parameters) from the states of a SpFSA, transferring them to
an event-based structure that leads to an equivalent EpFSA.
Then, we show how the resulting EpFSA can be used as
input to efficient synthesis frameworks [13], [14] and related
implementation options [12]. The proposed conversion method
is illustrated by an example of a manufacturing system with

978-1-7281-0303-7/19/$31.00 ©2019 IEEE 370

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 20,2020 at 11:21:03 UTC from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/370795042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

intermediate buffering of materials.
The manuscript is structured as follows: the mathematical

background is presented in Section II; the main results are in-
troduced, assessed and exemplified in Section III; and Section
IV brings some conclusions and perspectives.

II. BACKGROUND

Many real systems share the feature of being event-driven,
i.e., their evolution in time is guided by the occurrence of
asynchronous signals, called events, in opposition to time-
driven behaviors. Systems that share these features are called
Discrete Event Systems (DES) [5] and they cover a wide range
of domains, such as robotics, manufacturing, logistics, etc.

A DES can be modeled using formal languages. Events
define the basic structures of languages, and they are elements
of a finite set, Σ, called the alphabet, such that Σ∗ denotes the
set of all strings possibly built using events in Σ, including the
empty string ε. Then, any subset L ⊆ Σ∗ is called a language,
and it is said to be regular if it can be represented by the well-
known Finite-State Automata (FSA) [5].

A FSA is a 5-tuple A = (Σ , Q, q◦, Qω, γ), where Σ is the
alphabet; Q is the set of states; q◦ ∈ Q is the initial state;
Qω ⊆ Q is the subset of marked states; and γ : Q × Σ → Q
is a partial transition function. Notation q1

σ−→ q2 means a
transition from q1 ∈ Q to q2 ∈ Q with the event σ ∈ Σ.

Two FSA can be combined by the usual synchronous
composition, denoted by ||, which synchronizes shared events
and interleaves the others [5]. In the following, notation A‖

means the composition of a set A = {A1, ...An} of FSA, i.e.,
A‖ = A1‖...‖An. The language recognized by A is denoted
L(A), and Lω(A) ⊆ L(A) is the marked language, which
in this paper is associated with the idea of tasks that are
completed by the system modeled by A.

When designing DES, the system model can be represented
by a composition of FSA, denoted by G = ‖mj=1G

j , which is
called the plant model. The plant is expected to be restricted
by a specification E , so that it can behave as intended under
control. E can also be designed by a set E = ‖ni=1E

i of FSA
and composed to G afterwards. In this way, the composition
K = G || E , such that Lω(K) ⊆ Lω(G), materializes the
control actions on G exactly as projected by the engineer, so it
can be implemented or used as input to synthesis frameworks,
such as Supervisory Control Theory [6].

In this paper, we are interested in the steps that precede
synthesis, i.e., we exploit different methods to obtain K .
Although further verification, synthesis and implementation
are not considered here, the way K is obtained guides the
options for the next steps, and this is discussed properly along
the paper, whenever convenient.

A. Example of a simple manufacturing system

For illustration, consider a DES composed by two machines,
1 and 2, interconnected by an intermediate buffer as in Fig. 1.
Machine 1 receives external raw material (event a), produces
workpieces and puts them on a buffer (event b). Then, machine

Fig. 1. Manufacturing system with intermediate buffering

Machine 1 BufferBufferBuffer Machine 2a b c d

2 takes workpieces from the buffer (c), manufactures, and
removes them from the system (d).

Machines 1 and 2 can be respectively modeled by the 2-
state FSA G1 and G2 shown in Fig. 2, so that the system plant
can be modeled by the composition G = G1 ||G2.

For control, it is assumed that the buffer has capacity of 3
workpieces, and one aims to control overflow and underflow
in the buffer. Specification E in Fig. 2 is modeled to prevent
overflow and underflow. Dashed lines are used to illustrate the
events disabled by E .

Fig. 2. Plant and specification models for the example

q0

G1:

q1
a

b

q2

G2:

q3
c

d
r0

E :

r1 r2 r3 bc
b b b

ccc

Note that the event b is disabled when the buffer is full
(state r3) and event c when the buffer is empty (state r0).
Then, the composition K = E ||G, with 16 states, expresses
the behavior expected under control.

B. A motivating gap in using ordinary FSA models

Despite the recognized role played by FSA for automation
systems modeling and control, they face significant limitations
when applied on real industry-scale problems. It can be shown
[8]–[10], [13]–[15] that workflows commonly found in factory
floors, such as recycling, buffering, parallel manufacturing,
etc., may require hundreds of thousands of states to be properly
expressed by ordinary FSA.

As this is a manual nonautomated task, memorizing com-
plex sequences of events and states relies entirely on the
designer and it is not rarely unworkable. Alternatively, the
literature [9], [10] has suggested the possibility of providing
extra information or meaning (in this paper called parameter)
about particular parts of a DES. The use of parameters allows
to identify and isolate certain contexts from others, along
the system model. When properly engineered, this parame-
terization can simplify modeling. Two formalisms that allow
embedding parameters in FSA are presented in the following.

C. Parameterization of States

State-parameterized FSA (SpFSA) are similar to ordinary
FSA, but their transitions include formulas over variables.
Formally, a SpFSA can be expressed as a tuple AE =
(Σ, V,Q,Q◦, Qω, PV , γ) [9], [11] where Σ is the alphabet
of events; V = {v1, ..., vn} is the set of variables; Q is the
set of states; Q◦ ∈ Q is the set of initial states; Qω ⊆ Q is
the subset of marked states; PV is the set of formulas over V ;
and γ : Q ×Σ × PV → Q is the transition relation that leads
from a state to another in Q, with an event taken from Σ and
formula taken from the set of formulas PV .

371

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 20,2020 at 11:21:03 UTC from IEEE Xplore. Restrictions apply.

In this definition, a variable v is an entity with a finite
domain Dom(v) and an initial value vo ∈ Dom(v). Then,
V = {v1, . . . , vn} has a domain Dom(V) = Dom(v1) ×
· · · × Dom(vn). In order to manipulate variables, SpFSA
define a set of formulas PV = {p1, . . . , pm}. In conjunction,
variables and formulas establish a new transition mechanism,
also denoted differently: a transition from q0 ∈ Q to q1 ∈ Q,
with σ ∈ Σ and p ∈ PV is exposed as q0

σ:p−−→ q1.
In order to differentiate variable values before and after a
transition, a next-state variable set V ′ = {v′1, . . . , v′n}, with
Dom(V) = Dom(V ′), is associated to V . Then, v ∈ Dom(v)
and v′ ∈ Dom(v′) mean respectively the value assumed
by v in the current and next state. For variables in con-
junction, the samples v̂ = (v0, . . . , vn) ∈ Dom(V) and
v̂′ = (v0

′, . . . , vn
′) ∈ Dom(V ′) are called valuations.

A formula p ∈ PV can be used either to update or test
variable values upon transitions. Updates allow to handle
context switching in the plant, while tests are more related with
control restrictions. An update p aims to replace the valuation
v̂ associated to the current state, to a new valuation v̂′ in the
reached state, which is denoted by v̂′ = p(v̂). A valuation v̂ is
said to be valid for p if v̂ ∈ Dom(V), and p(v̂) ∈ Dom(V ′).

Differently, test formulas (or guards) do not change any
variable value, they simply test values associated to the current
state, disabling or not the transition depending on the test
result, i.e., p(v̂) = true or p(v̂) = false. Therefore, any
valuation v̂ ∈ Dom(V) is valid over test formulas. When a
transition does not implement any formula, or it implements
only tests, then v̂′ = v̂ is implicit, and it is hidden in this
paper for the sake of clarity. In this case, the transition is said
to be passive. Otherwise, it is said to be active.

To exemplify, let v be a variable with Dom(v) = {1, 2, 3},
V = {v}, and let v′ = v + 1 be a formula p1 ∈ PV that
changes the current value of v by adding 1. If v̂ = 1, then
p1(v̂) = 2 and v̂ is valid with respect to p1. If v̂ = 3, then
p1(v̂) = 4 /∈ Dom(V ′), and v̂ = 3 is not valid for p1. Now,
let p2 ∈ PV be a test formula v > 2. Then, p2(v̂) is true for
the valuation v̂ = 3, and false, otherwise.

In this paper, plants implement only updates, while spec-
ifications only test values. It is furthermore assumed that
updates are all exact, i.e., for each valuation v̂, an update p(v̂)
leads to a unique valuation v̂′. This differs from the literature
that handles abstractions, for example, which has to address
nondeterminism of variable values [9]. Also, we consider
only convergent updates, i.e., two updates cannot implement
divergent changes on a same variable. Here, however, plants
are not required to include only valid valuations, as invalid
values are removed by our conversion algorithms.

Remark that, so far, a SpFSA is exposed in its implicit
form, i.e., including all its formulation structure. In this case,
the valuations to be associated with each state is unknown
until each formula is in fact evaluated. After that, the SpFSA
becomes explicit, as each variable value is revealed for each
state and the state-space is unfolded.

In its explicit form, a SpFSA AE is seen as an ordinary FSA
A•E = (Σ, Q•, Q

◦
•, Q

ω
• , γ•), such that Q• = Q × Dom(V);

Q◦• = Q◦ × {(vo1, . . . , von)}; Qω• = Qω ×Dom(V); and γ• :
Q•×Σ → Q• assumes the form of (q0, v̂)

σ−→ (q1, v̂
′) if there

is q0
σ:p−−→ q1, with p(v̂) = true and v̂′ ∈ Dom(V ′).

Thus, a DES plant can be modeled by an implicit SpFSA
GE, enriched with context semantics updates, and its explicit
version, GE•, is assumed to be such that

L(GE•) = L(G). (1)

If furthermore EE expresses the same control rules as E , then
L(KE

•) = L(K), for K = G‖E and KE = GE‖EE .
In terms of control, both implicit and explicit SpFSA can be

used in synthesis, and both versions lead to the same control
solution. The implicit SpFSA controller can be calculated as
in [9], while its explicit form can be obtained through the
conventional method as in [6].

1) Example with SpFSA: Here, we show how the example
presented in Section II-A can be reintroduced by using SpFSA
and we highlight possible benefits from this reconstruction.

Let the FSA G1 and G2 from Figure 2 be now modeled
respectively by G1

E and G2
E in Fig. 3. Structurally, they are

essentially the same, except that G1
E and G2

E update a variable
x ∈ V , with domain Dom(x) = {-1, 0, 1, 2, 3, 4} and initial
value xo = 0, which has been created to memorize the number
of workpieces in the buffer, and it is updated by formulas on
transitions with the events b (insertion) and c (removal).

The benefits brought by updating x in the system plant can
really be seen when remodeling E . Overflow and underflow
can now be prevented respectively by the modular specifica-
tions EE

1 and EE
2 depicted in Fig. 3.

Fig. 3. SpFSA models for the example

q0

G1
E:

q1
a

b
x′ ← x+ 1

q2

G2
E:

q3
c

x′ ← x− 1

d
r0

EE
1:

b
if x < 3

r1

EE
2:

c
if x > 0

Note that, now, the n + 1-state model E can be simply
designed by single self-looped states r0 and r1 that test the
values of x before enabling the events b and c, so that overflow
and underflow can be equivalently avoided.

Then, the plant is now modeled by the composition GE =
G1

E||G2
E, and the specification is modeled by EE = EE

1||EE
2,

so that KE = GE ||EE expresses the expected behavior under
control, with 16 unfolded states, therefore the same number
as K . It can be checked (by language inclusion, for example)
that L(KE

•) = L(K), which means that the computational
cost to process both models is the same, but the modeling of
KE is much simpler and it remains the same, for any buffer
size to be considered.

2) A motivating gap in using SpFSA models: Despite pos-
sible modeling advantages brought by the easy way conditions
and behaviors are expressed, SpFSA are entities that do not
fully exploit modularization. There are variable abstraction
techniques [9] that work modularly [7] by removing unneces-
sary variables from control synthesis, chosen according to the

372

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 20,2020 at 11:21:03 UTC from IEEE Xplore. Restrictions apply.

role they play in control. This reduces a lot the computational
effort needed to process the SpFSA-based synthesis.

However, they do not work with partial abstractions, i.e.,
abstractions that, besides removing unnecessary variables to-
tally, also remove unnecessary parts of the domain of a
necessary variable. Partial abstractions are more difficult to
be constructed, as a domain is intrinsically inseparable, so
that its is usually taken entirely for synthesis. When the
variable domain is large, its transformation to the explicit
form, in combination with other variables, leads to huge
states-spaces, necessary for algorithmic treatment. In some
extent, this prevents modeling advantages to be propagated for
synthesis and implementation. Parallel advantages can be taken
by converting SpFSA into Event-parameterized FSA, which
are presented in the following.

D. Parameterization of Events

Event-parameterized FSA (EpFSA) are state-machines that
use a different mechanism to store parameters of a DES model.
Their premises and purposes are similar to SpFSA but, instead
of using variables to store context semantics, they embed it on
a refined alphabet of events, systematically mapped from the
original set of events. The result is a model that implicitly
stores the same information as a SpFSA, however using a
different construction mechanism, hopefully more modular.

Formally, a EpFSA maps each event σ ∈ Σ into a set
of parameterized events ∆σ = {δ1, δ2, . . . , δn}, and each δ
aims to store certain context semantics, which is to be further
defined. In this way, Σ becomes a reference event set for a
dilated, parameterized event set ∆ =

⋃
σ∈Σ ∆σ .

The mapping from ∆ to the reference Σ can be imple-
mented by Π : ∆∗ −→ Σ∗, defined recursively such that
Π(ε) = ε and Π(tδ) = Π(t)σ for t ∈ ∆∗, δ ∈ ∆σ and
σ ∈ Σ [10]. This map can be generalized to any language
LD ⊆ ∆∗ by Π(LD) = {s ∈ Σ∗|∃t ∈ LD,Π(t) = s}.

Inversely, Π−1 : Σ∗ −→ 2∆∗ implements the mapping
from the reference set Σ to the dilated domain ∆. It can be
defined as Π−1(s) = {t ∈ ∆∗|Π(t) = s}, and extended to any
language L by Π−1(L) = {t ∈ ∆∗|Π(t) ∈ L}.

The extension of this mapping to FSA, instead of languages,
follows the same idea, i.e., given a FSA A, the map Π−1(A)
replaces the event of every transition in a FSA A by the re-
spective set of parameterized events in AD. Inversely, Π(AD)
recovers each original event, so that

Π(Π−1(A)) = A (2)

follows by construction [10]. The process of events dilatation
and recovering is depicted in Fig. 4.

Fig. 4. Event dilatation and recovering
σ1

σ2

. . .

σn

Π

Π−1

∆σ1 = {δσ11 , δ
σ1
2 , . . . }

∆σ2 = {δσ21 , δ
σ2
2 , . . . }

. . .

∆σn={δσn1 ,δ
σn
2 ,... }

Σ ∆

From now, we assume that a DES plant G is modeled by a
EpFSA GD that expresses G with enriched context semantics
carried by parameterized events, i.e., GD = Π−1(G), such that
Π(Π−1(G)) = G follows from (2). Note that, with a dilated
alphabet, a transition may enable more than one instance for
each event in the reference set. This means that the plant model
may recognize different context semantics, but it is unable to
choose which one applies at every step.

The precise choice among the instances {δ1, δ2, . . . , δn} of
an event σ ∈ Σ depends on constructing an additional model
to filter GD. A filter is denoted in this paper by HD and it has
the unique role of imposing context switching to the plant.
That is, a filter has no intention to disable events completely
in the plant, as a specification does. Instead, it simply chooses
which parameterized event δi ∈ ∆σ should occur when they
are dubious. Here, the filter is assumed to be precise, i.e., for
each set ∆σ eligible upon a transition, HD chooses one, and
only one of them to remain eligible. It represents the context
to be enabled and all others are disabled.

Thus, let the plant G be expressed by GD‖HD, such that,

Π(GD‖HD) = G. (3)

Let also ED be a specification expressing the same control
rule as E (and indirectly EE). Then, it is expected that
L(Π(KD)) = L(K), for K = G‖E and KD = GD‖HD‖ED .
Under this equality and under the assumption that HD is
precise, it can be shown [10] that either KD or K can be used
as input to any conventional synthesis framework [6] and the
resulting control solution is equivalent.

In comparison with FSA, EpFSA are more efficient to
design and memorize contexts, at the price of modeling the
filter HD. However, HD is expected to be modular, as it
defines a non-homonym set of events that can be modularly
distinguished from each other [10], so that HD can be modeled
by HD = HD1‖ . . . ‖HDm. Furthermore, EpFSA enable for
modular control that can be combined with abstraction-based
synthesis [13] and disjoint implementation [12].

1) Example with EpFSA: For the example in Section II-A,
the corresponding EpFSA models are depicted in Fig. 5.

Fig. 5. EpFSA models for example

q0

Π−1(G1) = G1
D:

q1
a

b0, b1, b2, b3

q2

Π−1(G2) = G2
D:

q3

c0, c1, c2, c3

d
r0

ED
1:

b3

b0, b1, b2

r1

ED
2:

c0

c1, c2, c3

Events b and c are parameterized such that ∆b =
{b0, b1, b2, b3} and ∆c = {c0, c1, c2, c3}, for them to be able
to carry extra information about the number of workpieces
present in the buffer. Observe, nevertheless, that G1

D and G2
D do

not recognize how many workpieces in fact the buffer has, as
they enable any parametrized instance of b and c. For example,
transition q1

b0,b1,b2,b3−−−−−−→ q0 is labeled with all parameters for
b, while they actually should be properly ordered.

373

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 20,2020 at 11:21:03 UTC from IEEE Xplore. Restrictions apply.

This ordering depends on HD to choose which parameter
should uniquely occur. For the plant in Fig. 5 the filter HD

can be designed by the set of automata shown in Fig. 6.

Fig. 6. Filter for the example

h0H1
D: h1

b0

c0 b1, b2, b3
c2, c3

c1

h2H2
D: h3

b1

c2

b2, b3
c3

b0
c0, c1

h4H3
D: h5

b2

c3

b0, b1
c0, c1, c2

b3

When composed with G1
D and G2

D, HD leads to a partic-
ular case of parameterized plant that keeps a single string
t ∈ L(G1

D ||G2
D ||HD) for each corresponding s ∈ Σ∗, while

still simplifying the specification ED with respect to E .

III. PROPOSED CONVERSION METHOD

In this section, we show how advantages from SpFSA and
EpFSA can be combined. The idea is to conduct modeling
using SpFSA, which are then converted into EpFSA for
posterior modular synthesis and implementation. To illustrate
better where the proposed conversion method fits, Fig. 7
structurally compares FSA, SpFSA and EpFSA.

Fig. 7. Structural comparison of FSA, SpFSA and EpFSA

FSA SpFSA EpFSA

Events

States

Plant

Specifications

Synth. input

Framework

Σ

Q, q◦, Qω

G

E

G || E

[6]

Σ

Q,Q◦, Qω V, PV

GE

EE

GE‖EE

[9]

Σ Π,∆

Q, q◦, Qω

GD HD

ED

GD || ED ||HD

[13]

GD

C
on

ve
rs

io
n

The first column illustrates the conventional case where a
DES and its specifications are respectively modeled by the
FSA G and E , where K = G ||E is the synthesis input using
the classic monolithic SCT framework [6].

The second column applies SpFSA to address modeling. It
uses the same event set Σ as for FSA, but it is helped in
modeling by variables and updates. The result is that FSA G
and E are now expressed by SpFSA GE and EE , which leads
to a composition KE that can be used as synthesis input for
the algorithm in [9].

The third column structures modeling on a different, dilated,
set of evens, ∆. This leads to a plant GD that is complemented
with HD for context recognition. In the same way, E turns to
be modeled by ED and the synthesis input is then given by
the composition KD = GD ||HD || ED , such that Π(KD) is
expected to be equivalent to K [10].

Summarizing, it is expected that FSA, SpFSA and EpFSA
lead to equivalent synthesis inputs. However, SpFSA are more

suitable for modeling, while EpFSA are advantageous have
the advantage of keeping modularity by renaming events
according to contexts, which in synthesis is essential to split
computation in smaller, simpler, parts [13].

Next, we show a conversion method that allows to con-
duct modeling tasks using SpFSA, and convert them into
corresponding EpFSA for further steps of control engineering.
Figure 7 highlights in white the conversion flow.

A. Proposed Conversion Method

Initially, let us recall that, in a SpFSA, a transition with
a given event σ ∈ Σ may implement formulas p ∈ PV that
change or test variables values {v0, . . . , vn} = v̂ ∈ Dom(V),
leading to a deterministic valuation {v0

′, . . . , vn
′} = v̂′ ∈

Dom(V ′) at every state.
The valuations v̂ and v̂′ are parameters that represent the

DES context in current and next states, respectively. In order to
reproduce the same effect using parameterized events, we have
to concatenate each original event with parameters describing
current and reachable contexts. This notion leads to the new
set of parameterized events.

Systematically, if there is no context switching upon a
transition, i.e., v̂ = v̂′, then there is no need for creating a
parameterized event. However, if v̂ 6= v̂′, then at least one
variable value will change upon the transition and a parameter
representing it must be constructed in the resulting EpFSA.

This notion is represented in this paper by the combination
σvv , that is: when a transition with σ is capable of changing
the value of v from v to v′, and v 6= v′, then the current context
is carried by the event σvv . By doing this for all states and
all possible variable changes, an EpFSA can preserve exactly
the same semantic of updates a SpFSA, but using a distinct
mechanism, exploiting transitions instead of states.

Fig. 8. Conversion process from SpFSA to EpFSA

Context
extraction

Switching
extraction

Control
extraction

GE Algorithm 1 GD

Algorithm 2

Algorithm 3

HD

EE ED

SpFSA EpFSA

Thus, the conversion method proposed in this paper can be
conducted by the three-steps procedure shown in Fig. 8. The
first step extracts all possible contexts that can be updated
by the SpFSA plant GE (Algorithm 1). This is more related
to the coverage of the variable domain and it leads to a
EpFSA that may not be precise. For that, it requires a filter,
which is constructed in the second step by extracting the
context switching behavior from variable updates (Algorithm
2). Finally, the third step maps the control rules imposed by
the specification models, from SpFSA to a EpFSA (Algorithm
3). The conversion process is introduced, discussed and exem-
plified in the following.

374

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 20,2020 at 11:21:03 UTC from IEEE Xplore. Restrictions apply.

1) Context Extraction: for context extraction, Algorithm
1 initially constructs a structure of states identical to the
input SpFSA. As the new alphabet and transition relation are
undefined at this point, they are started as empty.

Then, all active transitions are read from the input SpFSA
GiE (line 6) in order to identify and construct the sets of
parameterized events and corresponding transition structure for
the output EpFSA GiD. For each valuation v̂ ∈ Dom(V) that
is valid with respect to the update formulas in the SpFSA
transition, the algorithm compares current and next values of
each variable v ∈ V , i.e., v ∈ v̂ and v′ ∈ v̂′. If the values are
different (v 6= v′), then the context has switched and a new
parameterized event σvv is created to report this switching to
the new alphabet ∆σ (line 9). Then, a new transition labeled
σvv is added to GiD (line 10).

Afterwards, all passive transitions are read to construct GiD.
In case an event σ has not yet been parameterized, i.e., ∆σ =
∅, the transition is added without changes to GiD (line 17) and
σ is added to ∆σ . Otherwise, i.e., ∆σ 6= ∅, σ is replaced by
all its parameterized instances ∆σ and the transition is added
to GiD (line 21). At the end (line 26), all sets of parameterized
events are added to ∆D.

As a result, Algorithm 1 identifies all possible contexts in
GiE and reproduces the same effect in GiD, using a different
mechanism that is free from formulas and variables. In terms
of modeling benefits and decision making in control, they both
are expect to contribute in very similar ways, but their con-
structions are different, which may return further advantages.

a) Example: For the input models G1
E and G2

E in Fig. 3,
it is possible to obtain the corresponding EpFSA G1

D and G2
D

by using the Algorithm 1. Fig. 9 shows the result.

Fig. 9. Conveted EpFSA plant models for the example

q0GD1: q1
a

bx−1, bx0,
bx1, bx2, bx3

q2GD2
: q3

cx0, cx1,
cx2, cx3, cx4

d

As in G1
E the value x = 4 is not valid with respect to the

update formula in the transition q1
b:(x′=x+1)−−−−−−−→ q0, because

it would assign x′ = 5 to x and it is not in Dom(x), then
this combination is not added to G1

D, while all others (x =
−1, . . . , x = 3) are added. The same occurs with the transition

q2
c:(x′=x−1)−−−−−−−→ q3, that prevents cx−1 to be added to G2

D.
2) Context Switching: Note that the models resulting from

Algorithm 1 require to be complemented with an context
switcher (filter model), for them to behave properly. Without
the filter, events of an EpFSA may become ambiguous with
respect to the source event they represent in a DES plant. For
example, in Fig. 5 the occurrence of events created for b and
c in ∆, i.e., events in ∆b and ∆c, is ambiguous with respect
to the occurrence of the source events b and c in Σ.

To avoid such a problem, Algorithm 2 uses the updates of
the plant model GE to create an additional EpFSA HD, named
filter, that implements context switching based on how vari-
ables in V change their values upon transitions. As calculated

Algorithm 1: CONTEXT EXTRACTION FROM SPFSA TO EPFSA

input : GiE = (Σ, V,Q,Q◦, Qω , PV , γ)
output: GiD =

(
∆D, QD, q

◦
D, Q

ω
D, γD

)
1 begin
2 QD ← Q, q◦D ← Q◦, QωD ← Qω ,∆D ← ∅,γD ← ∅
3 for each event σi ∈ Σ do
4 ∆σi ← ∅
5 end
6 for each active transition q1

σ:p−−→ q2 ∈ γ, such that
q1, q2 ∈ Q, σ ∈ Σ, and p ∈ PV do

7 for each valuation v̂ ∈ Dom(V) that is valid with respect
to update formula p, such that v̂′ = p(v̂) do

8 for each value v ∈ v̂, such that v 6= v′ do
9 ∆σ ← ∆σ ∪ {σvv}

10 γD ← γD ∪
{
q1

σvv−−−→ q2
}

11 end
12 end
13 end
14 for each passive transition q1

σ−→ q2 ∈ γ, such that
q1, q2 ∈ Q, σ ∈ Σ do

15 if ∆σ = ∅ then
16 ∆σ ← ∆σ ∪ {σ}
17 γD ← γD ∪

{
q1

σ−→ q2
}

18 end
19 else
20 for each parameterized event σvv ∈ ∆σ do
21 γD ← γD ∪

{
q1

σvv−−−→ q2
}

22 end
23 end
24 end
25 for each event σi ∈ Σ do
26 ∆D ← ∆D ∪ {∆σi}
27 end
28 return GiD
29 end

by Algorithm 2, HD can be exposed as the composition of
several modular filters Hvi , each one addressing a particular
variable vi ∈ V . Algorithm 2 describes the construction
of each EpFSA Hvi =

(
∆vi , Qvi , q

◦
vi , Q

ω
vi , γvi

)
and it is

explained as follows.
For each variable vi ∈ V it is created a state qvi , denoting

every corresponding value possibly assumed by vi. The initial
state is set as qvoi (line 5). Then, for every active transition of
the input SpFSA GE, and for each valuation v̂ ∈ Dom(V) that
is valid with respect to its update formulas, a corresponding
transition is created in the EpFSA Hvi (line 11) and it
is labeled with a new parameterized event σvivi (line 10).
Updates with equal v̂ and v̂′ do not lead to a new transition,
as they just keep context without any change.

By repeating this procedure for all transitions, variables
and possible variable values, one obtains a set of EpFSA
H = {Hv1 , . . . ,Hvn}, that can be composed to form HD =
H‖. When composed to the plant model GD, HD represents
equivalently the context updated by variables and formulas in
GE, using a different construction.

Proposition 1: Let GD‖HD be calculated as in algorithms
1 and 2, for an input plant GE that models G with variables.
Then, L(Π(GD‖HD)) = L(GE

•).
Proof: This trivially follows from (1), (2) and (3).

375

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 20,2020 at 11:21:03 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: SWITCHING EXTRACTION FROM SPFSA TO EPFSA

input : GE = (Σ, V,Q,Q◦, Qω , PV , γ)
output: HD

1 begin
2 H ← ∅
3 for each variable vi ∈ V , such that

Dom(vi) = {vi1, · · · , vin} do
4 Qvi ← {qvi1 , · · · , qvin}
5 q◦vi ← qvoi , Qωvi ← Qvi
6 ∆vi ← ∅,γvi ← ∅
7 for each transition q1

σ:p−−→ q2 ∈ γ, such that q1, q2 ∈ Q,
σ ∈ Σ, and p ∈ PV do

8 for each valuation v̂ ∈ Dom(V) that is valid with
respect to update formula p, such that v̂′ = p(v̂) do

9 for each value vi ∈ v̂, such that vi 6= vi
′ do

10 ∆vi ← ∆vi ∪
{
σvivi

}
11 γvi ← γvi ∪

{
qvi

σvivi−−−−→ qvi′

}
12 end
13 end
14 end
15 Hvi =

(
∆vi , Qvi , q

◦
vi
, Qωvi , γvi

)
16 H = H ∪ {Hvi}
17 end
18 HD = H‖

19 return HD
20 end

a) Example: For the inputs G1
E and G2

E (Fig. 3), we
obtain the corresponding EpFSA HD = Hx, as V = {x}, by
using the Algorithm 2. Fig. 10 shows the result.

Fig. 10. Filter HD

q0 q1 q2 q3 q4q−1HD:
b−1 b0 b1 b2 b3

c4c3c2c1c0

Remark that each value in Dom(x) = {−1, . . . , 4} leads to
a state in HD. The values −1 and 4, and equivalently the states
q−1 and q4 (highlight in Fig. 10), represent the possibility of
underflow and overflow in the plant, so that they are expected
to become unreachable when specifications are composed.

As HD in Fig. 10 includes an appropriate non-homonym
alphabet, it can be modularized as in Fig. 11.

Fig. 11. Modular HD

h0

h1

b−1

b0
b1
b2
b3
c1
c2
c3
c4

c0 h2

h3

b0c1
b1
b2
b3
c2
c3
c4

b−1

c0

h4

h5

b1c2b2
b3
c3
c4

b−1

b0
c0
c1 h6

h7

b2c3

b3
c4

b−1

b0
b1
c0
c1
c2

h8

h9

b3c4

b−1

b0
b1
b2
c0
c1
c2
c3

The modular version of HD can be quite advantageous for
abstraction-based synthesis [10], modular synthesis [13], and
implementation strategies [12].

B. Control extraction

One remains to show how control rules can be extracted
from SpFSA-defined models to control-equivalent EpFSA.

This construction is structured by the Algorithm 3. For each
model EE

i, it is created a corresponding event-parameterized
model ED

i that expresses the same control rules. However, in-
stead of disabling transitions using test formulas, ED

i exploits
the dilated alphabet to reproduce the same effect.

To construct ED
i, the Algorithm 3 applies a very simple

strategy: it reads EE
i and identifies the variable value that

have been prohibited by test formulas. Then, it disables in
ED

i transitions including events that correspond exactly to
those variable values.

Algorithm 3: CONTROL EXTRACTION FROM SPFSA TO EPFSA

input : EE
i = (Σ, V,Q,Q◦, Qω , PV , γ)

output: ED
i = (∆e, Qe, q

◦
e , Q

ω
e , γe)

1 begin
2 Qe ← Q, q◦e ← Q◦, Qωe ← Qω ,∆e ← ∅,γe ← ∅
3 for each transition q1

σ:p−−→ q2 ∈ γ, such that q1, q2 ∈ Q,
σ ∈ Σ, and p ∈ PV do

4 for each valuation v̂ ∈ Dom(V) do
5 for each value v ∈ v̂ do
6 ∆e ← ∆e ∪ {σvv}
7 end
8 end
9 for each valuation v̂ ∈ Dom(V), such that p(v̂) = true

do
10 for each value v ∈ v̂ do
11 γe ← γe ∪

{
q1

σvv−−−→ q2
}

12 end
13 end
14 end
15 return ED

i

16 end

Initially, Algorithm 3 creates a structure of states identical to
the input SpFSA and starts the alphabet and transition relation
of ED

i as empty. Next, it reads all transitions from EE
i

to create the alphabet and transition relation for the output
ED

i. For each value v, of each valuation v̂ ∈ Dom(V),
a corresponding event σvv (line 6) is created and added to
event set. Then, a transition is created for each events that is
enabled by the specification (test formula is true). The others
are disabled. Each valuation v̂ ∈ Dom(V) that makes a test
formula true, is associated with a transition in ED

i by labeling
it with the corresponding event σvv (line 11).

a) Example: The result of converting EE
1 and EE

2 from
Fig. 3 into the EpFSA ED

1 and ED
2, is shown in Fig. 12.

Fig. 12. Converted EpFSA specification models for the example

r0b3ED
1:

b−1, b0,
b1, b2

r1c0ED
2:

c1, c2
c3, c4

Note that, in EE , the formula x < 3 is false for x = 3 and
x = 4. Similarly, the formula x > 0 is false for x = −1 and
0. Therefore, the events that correspond to these combinations
are disabled by the converted model ED , so that they impose
the same control rule to the plant.

376

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 20,2020 at 11:21:03 UTC from IEEE Xplore. Restrictions apply.

C. Analysis of results

In this section, we provide a numerical analysis that gives a
hint about the benefits that our conversion method aggregate
to the practice of control engineering of DES.

Table I shows the number of states unfolded by the models
that represent plant, specification and synthesis input, for each
modeling approach exploited in this paper. We assume number
of states as a fair interpretation of the different spheres of
complexity in DES, as it in general gives an idea about the
effort to obtain and process models.

The buffering example is again used to quantify the three
modeling approaches, for which it is assumed that plant
models aim to express the same behavior and specification
models intend to impose equivalent control rule over the plant.

TABLE I
COMPARISON AMONG MODELING APPROACHES APPLIED TO THE

EXAMPLE

Model FSA SpFSA EpFSA
Plant G: 4 GE: 4 GD‖HD: 24
Specification E : 4 ED : 1 ED : 1
Synth. Input K : 16 KE

•: 16 KD : 16

Note, in the last row, that all approaches lead to a synthesis
input with the same number of states. By Prop. 1, it follows
that L(K) = L(KE

•) = L(Π(KD)). In fact, their differences
rely only on the way modeling is conducted.

In the column FSA, K results from G and E which are
totally non-automated, i.e., their modeling depends entirely
on the engineer. As a result, E (second row) has more states
(4 states) than the other parameterized versions (1 state).

Differently, SpFSA reduce the model E from 4 to 1 state
in EE , at the price of designing update formulas in the plant,
which in general is a simple task. Similarly, ED (column
EpFSA) has also a single state, at the price of designing the
filter and compose it to the plant. In both cases, EE and ED

remain with 1 state when the buffer size n changes, while E
has always n+ 1 states.

The problem involving SpFSA and EpFSA is that, indi-
vidually, they do not provide a complete mechanism to both
simplify modeling and lead to efficient modular synthesis
inputs. On one hand, SpFSA are modeling friendly, but they
are not directly modular. On the other hand, EpFSA are more
suitable for modularization, but they require to implement
manually the update semantic.

Therefore, the conversion method proposed in this paper
combines the advantage of designing GE using only 4 states,
while providing an event-parameterized output that is suitable
for the modular abstraction-based synthesis framework in [13].

IV. CONCLUSION

This paper discussed how parameters can simplify modeling
and control of DESs. Two methods are presented, each one
constructed on a specific framework, so that they do not
directly combine advantages. A conversion method is then
proposed to allow conducting modeling using a design-friendly

approach, and systematically migrate from this framework to
another, more suitable for synthesis.

The algorithms presented in this paper are all polynomials
in the number of states of the input automata models. An
example of a buffering system illustrates the approach.

Prospects of future research aim to assess possible advan-
tages of our conversion method over implementation issues.
We also intend to provide tooling support and test the approach
on more complex examples.

ACKNOWLEDGES

This work was supported by CNPq, under grant num-
ber 402145/2016-0, 09, Araucaria Foundation, CAPES, and
FINEP, and partially supported by ERDF - The European Re-
gional Development Fund through the Operational Programme
for Competitiveness and Internationalisation - COMPETE
2020 Programme, and by National Funds through FCT -
Fundação para a Ciência e a Tecnologia, within project POCI-
01-0145-FEDER-030947 (KLEE).

REFERENCES

[1] B. Esmaeilian, S. Behdad, and B. Wang, “The evolution and future of
manufacturing: A review,” Journal of Manufacturing Systems, vol. 39,
pp. 79 – 100, 2016.

[2] A. L. Silva, R. Ribeiro, and M. Teixeira, “Modeling and control of flex-
ible context-dependent manufacturing systems,” Information Sciences,
vol. 421, pp. 1 – 14, 2017.

[3] Y.-J. Chen, K.-S. Hwang, and W.-C. Jiang, “Policy sharing between
multiple mobile robots using decision trees,” Information Sciences, vol.
234, pp. 112 – 120, 2013.

[4] Y. Qamsane, M. El Hamlaoui, T. Abdelouahed, and A. Philippot,
“A model-based transformation method to design plc-based control of
discrete automated manufacturing systems.”

[5] C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems. Springer Science & Business Media, 2009.

[6] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[7] R. Malik and M. Teixeira, “Modular supervisor synthesis for extended
finite-state machines subject to controllability,” in Discrete Event Sys-
tems (WODES), 2016 13th International Workshop on. IEEE, 2016,
pp. 91–96.

[8] S. Mohajerani, R. Malik, and M. Fabian, “Compositional synthesis of
supervisors in the form of state machines and state maps,” Automatica,
vol. 76, pp. 277 – 281, 2017.

[9] M. Teixeira, R. Malik, J. E. Cury, and M. H. de Queiroz, “Supervi-
sory control of des with extended finite-state machines and variable
abstraction,” IEEE Transactions on Automatic Control, vol. 60, no. 1,
pp. 118–129, 2015.

[10] J. E. Cury, M. H. de Queiroz, G. Bouzon, and M. Teixeira, “Supervisory
control of discrete event systems with distinguishers,” Automatica,
vol. 56, pp. 93–104, 2015.

[11] Y.-L. Chen and F. Lin, “Safety control of discrete event systems using
finite state machines with parameters,” in American Control Conference,
2001. Proceedings of the 2001, vol. 2. IEEE, 2001, pp. 975–980.

[12] M. Rosa, M. Teixeira, G. W. Denardin, C. R. C. Torrico, and J. E. R.
Cury, “Efficient implementation of distinguished controllers for discrete-
event systems,” in IFAC World Congress, WC’17, Toulouse, France,
2017, pp. 1215–1220.

[13] M. Teixeira, J. E. R. Cury, and M. H. de Queiroz, “Exploiting dis-
tinguishers in local modular control of discrete-event systems,” IEEE
Transactions on Automation Science and Engineering, vol. 15, no. 3,
pp. 1431–1437, July 2018.

[14] M. Rosa, M. Teixeira, and R. Malik, “Exploiting approximations in
supervisory control with distinguishers,” in International Workshop on
Discrete Event Systems, Sorrento, Italy, 2018.

[15] P. Gohari and W. M. Wonham, “On the complexity of supervisory
control design in the RW framework,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B, vol. 30, no. 5, pp. 643–652, 2000.

377

Powered by TCPDF (www.tcpdf.org)

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on July 20,2020 at 11:21:03 UTC from IEEE Xplore. Restrictions apply.

