
Introducing Synchrony in Fuzzy Automata 1

Leandro Gomes 2

INESC TEC
Univ. Minho

Braga, Portugal

Alexandre Madeira3

CIDMA
Univ. Aveiro

Aveiro, Portugal

Luis Soares Barbosa4

INESC TEC
Univ. Minho

Braga, Portugal
United Nations University

UNU-EGOV
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Abstract

This paper introduces a sort of automata and associated languages, often arising in modelling natural
phenomena, in which both vagueness and simultaneity are taken as first class citizens. This requires a fuzzy
semantics assigned to transitions and a precise notion of a synchronous product to enforce the simultaneous
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setting; in particular it is shown that any subset of a fuzzy synchronous language with the suitable signature
forms a synchronous Kleene algebra.
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1 Introduction

The notion of an automaton [7] as the de facto mathematical abstraction of a

computational process over discrete spaces, is being constantly revisited to capture

different sorts of computational behaviour in the most varied contexts, either pre-

scribed in a program or discovered in Nature. Already in 1997 Robin Milner [15]

emphasised that

from being a prescription for how to do something

– in Turing’s terms a ‘list of instructions’, soft-

ware becomes much more akin to a description of

behaviour, not only programmed on a computer,

but also occurring by hap or design inside or out-

side it.

Over time different kinds of automata have been proposed accordingly, generating

(or recognising, depending on the perspective) such behaviours (or the languages

that express them) [2,3,21]. In this context, Kleene algebra was introduced [8]

as an algebraic structure to capture axiomatically the basic properties of regular

expressions.

This paper focus on a specific sort of automata and languages, often arising in

modelling natural phenomena, in which two extra ingredients cannot be overlooked.

The first is vagueness. In a biological network [4], for example, this expresses the

possibility of a certain enzyme being absent or scarce in certain configurations. The

other is simultaneity, i.e. the fact that certain events (for example the flow of some

reagents in a chemical reaction) are required to happen at the same time, instead of,

as usually considered in interleaving models of concurrency, in a non deterministic

alternation.

The first ingredient — vagueness — is formalised by the notion of a fuzzy finite-

state automata (FFA), a structure introduced in the Sixties [23] to give a formal

semantics to vagueness inherent to several computational systems. Variants of this

idea, e.g. incorporating fuzziness to either states or transitions, or both, are well

documented in the literature [3,10,12]. In any case, fuzzy languages [9,1] are recog-

nised by a FFA only up to a certain membership degree. Applications are transversal

to several domains [11,16,17,24]. Probabilistic automata [19], another approach to

handle uncertainty, fixes the interpretation of the latter as a probability, always

enforcing the production of an outcome (as expressed by the requirement that the

outgoing probabilities always sum 1). Such is not the case in the fuzzy framework

adopted in this paper.

On its turn, simultaneity, our second ingredient, was suitably formalised in what

Milner called the ‘synchronous version of CCS’ — the SCCS [14] calculus, a variant

of CCS [13] where arbitrary actions can run synchronously. This very same idea of

synchronous evolution appears in the work of C. Priscariu on synchronous Kleene

algebra (SKA) [18]. Kleene algebras are idempotent, and thus partially ordered,

semirings endowed with a closure operator. Models for SKA, as well as for its
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variant with tests (SKAT), are given in terms of sets of synchronous strings and

finite automata accepting synchronous strings. These structures found application,

for instance, in variants of deontic logic to formalise contract languages [20,22], and

of Hoare logic to reason about parallel synchronous programs with shared variables

[18].

y0start y1

y2 y3

m

c c

m

Fig. 1. Interleaving two automata representing deterministic flows.

Both of these ingredients are combined in this paper. The sort of systems we have

in mind is illustrated in Fig. 1. Suppose that two automata represent the flow of two

reagents c and m into a solution. The scheme of Fig. 1 represents their interleaving

as two alternative sequential compositions. Our objective, however, has a different

focus. First we intend to record that elementary steps are ‘uncertain’, in the sense

that each individual flow may exhibit failures or interruptions. The transitions

in the automata are thus labelled with the flow identifier and a ‘certainty’ degree

measuring how certain it is for each flow (event) effectively flowing. Second, their

combination makes sure that both flows (actions) occur simultaneously combining

their ‘certainty’ degrees into the ‘certainty’ degree of their joint flow. These features

are expressed in the fuzzy synchronous automata that this paper proposes to add

to the broad family of finite-state automata mentioned above.

In order to formalise such a behaviour, the paper introduces a synchronous

product construction between a variant of fuzzy transition automata in the spirit

of reference [12] where, depending on the application scenario, “vagueness” can be

modelled in an arbitrary, either discrete or continuous, domain. This is captured

by a complete Heyting algebra introduced as a parameter in the model. The notion

of synchronous sets in reference [18] is generalised to that of fuzzy synchronous

languages, and some operators over them suitably defined. A map that interprets

the terms of SKA as fuzzy synchronous languages is provided. Then we prove

that the terms of a SKA can be used to generate a H-NFA accepting precisely the

fuzzy synchronous language that constitutes its interpretation. Obtaining a regular

expression from a H-NFA proceeds by state elimination as in the classical case

[6]. The procedure results in a H-NFA with a single transition from the initial to

the final state, labelled by an action α of SKA such that its interpretation is the

language recognised by that H-NFA.

This paper is organised as follows. Section 2 recaps some fundamental con-

cepts required later. Section 3 introduces fuzzy synchronous languages and defines

some suitable operators over them. Section 4 introduces a method for constructing

L. Gomes et al. / Electronic Notes in Theoretical Computer Science 348 (2020) 43–60 45



the synchronous product of two nondeterministic automata with fuzzy transitions.

Moreover, it is proved that the algebra constituted by any set of fuzzy synchronous

languages and the signature previously defined forms a SKA. Finally, Section 5

concludes and enumerates some topics for future research.

2 Preliminaries

Definition 2.1 (Kleene algebra) A Kleene algebra (K,+, ·,∗ ,0,1) is an idem-

potent semiring with an extra unary operator ∗ satisfying the axioms (1) − (13) of

Fig. 2. A partial order ≤ is defined as α ≤ β ⇔ α+ β = β.

The operators +, · and ∗ are typically understood as nondeterministic choice,

sequence and iteration, respectively. Actions 0 and 1 represent fail and skip, re-

spectively.

Well-known examples of Kleene algebras are the algebra of binary relations over

a set X, the set of all languages over Σ∗, and the (min,+) algebra, also known as

the tropical algebra.

Extending the original definition with an operation × to capture the synchronous

execution of actions 5 lead to the notion of a synchronous Kleene algebra [18].

Definition 2.2 (Synchronous Kleene algebra) A synchronous Kleene algebra

(SKA) is a tuple

S = (A,+, ·,×,∗ ,0,1,AB)

where AB is a finite discrete set of basic actions and A a (possible infinite) set of

composed actions, satisfying the axioms in Fig. 2.

The sets of actions A and AB are structured by AB ⊆ A×
B ⊂ A, where AB is

the set of basic actions and A×
B is its closure under ×.

We denote by TSKA the term algebra of SKA, generated by the grammar:

α ::= ab | 0 | 1 | α+ α | α · α | α× α | α∗

where ab ∈ AB. Following a common practice, we write abbb, rather than ab · bb, for
ab, bb ∈ AB. The elements of A×

B are called ×-actions (e.g. a, a× b ∈ A×
B but a+ b,

a× b+ c, 0, 1 /∈ A×
B).

Definition 2.3 (Complete Heyting algebra) A complete Heyting algebra

(CHA) is a tuple

H = (H,+, ; ,0,1,→)

which satisfies axioms (1)-(9) in Fig. 2, replacing · by ; and, additionally, the fol-

lowing axioms:

5 Following [18], the symbol × stands for the synchronous product; any possible confusion with the same
symbol used for Cartesian product is desambiguated by context.
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+(β + γ) = (α+ β) + γ (1)

α+ β = β + α (2)

α+ α = α (3)

α+ 0 = 0+ α = α (4)

α · (β · γ) = (α · β) · γ (5)

α · 1 = 1 · α = α (6)

α · (β + γ) = (α · β) + (α · γ) (7)

(α+ β) · γ = (α · γ) + (β · γ) (8)

α · 0 = 0 · α = 0 (9)

1+ (α · α∗) = α∗ (10)

1+ (α∗ · α) = α∗ (11)

β + α · γ ≤ γ ⇒ α∗ · β ≤ γ (12)

β + γ · α ≤ γ ⇒ β · α∗ ≤ γ (13)

α× (β × γ) = (α× β)× γ (14)

α× β = β × α (15)

α× 1 = 1× α = α (16)

α× 0 = 0× α = 0 (17)

ab × ab = ab ab ∈ AB (18)

α× (β + γ) = (α× β) + (α× γ) (19)

(α+ β)× γ = (α× γ) + (β × γ) (20)

(α× · α)× (β× · β) = (α× × β×) · (α× β) α×, β× ∈ A×
B (21)

Fig. 2. Axiomatisation of SKA from [18].

h1;h2 = h2;h1 (22)

h;h = h (23)

h1 + (h1;h2) = h1 (24)

h1;h2 ≤ h3 ⇔ h2 ≤ h1 → h3 (25)

h;

(∑
i∈I

hi

)
=
∑
i∈I

(h;hi) (26)(∑
i∈I

hi

)
;h =

∑
i∈I

(hi;h) (27)

with Σ denoting the iterated version of the associative operator +, and I being an

(possible infinite) index set.

We assumeH to be complete to ensure that all suprema exist when characterising

operators ·, × and ∗ on fuzzy synchronous languages as (possible) infinite sums.

Such property, together with axiom (25) ensure that every suprema distributes over

arbitrary infima, which is used to prove Theorem 4.6. The examples below illustrate
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this structure.

Example 2.4 (2- the Boolean algebra) A first example is the well-known bi-

nary structure

2 = ({
,⊥},∨,∧,⊥,
,→)

with the standard interpretation of Boolean connectives.

Example 2.5 A second example is the three-valued Gödel chain, which introduces

an explicit denotation u for “unknown” (or “undefined”).

G3 = ({
, u,⊥},∨,∧,⊥,
,→)

where

∨ ⊥ u 

⊥ ⊥ u 

u u u 


 
 
 


∧ ⊥ u 

⊥ ⊥ ⊥ ⊥
u ⊥ u u


 ⊥ u 


→ ⊥ u 

⊥ 
 
 

u u 
 


 ⊥ u 


Example 2.6 (Gödel algebra) Another example is given by the standard Gödel

algebra

G = ([0, 1],max,min, 0, 1,→)

where

x → y =

{
1, if x ≤ y

y, if y < x

3 Fuzzy synchronous languages

This section introduces a notion of fuzzy synchronous language, based on C.

Prisacariu proposal for the crisp synchronous case [18]. A number of operations

over fuzzy synchronous languages are also defined. Finally, a map that interprets

each term of TSKA as a fuzzy synchronous language is formalised. The reader is

referred to any classical introduction to fuzzy logic, e.g. [1], for the standard defi-

nitions of fuzzy sets and fuzzy languages used in the sequel.

Definition 3.1 (H-Fuzzy synchronous language) Let AB be a set of basic ac-

tions and H a CHA over carrier H, and Σ = P(AB) \ {∅} the alphabet of all

the nonempty subsets of AB (denoted by x, y). Sequences u, v, . . . ∈ Σ∗ are called

AB-synchronous strings, with notation ε standing for the empty string. A H-fuzzy

synchronous language over AB is an element of HΣ∗
, i.e. a function L : Σ∗ → H.

We can then generalise for this setting, the standard operators from regular

language theory. For any H-fuzzy synchronous languages L, L1, L2, and for all

w ∈ Σ∗, we define the following operations:

- ∅(w) = 0, for all w ∈ Σ∗
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- χ(w) =

{
1 if w = ε

0 otherwise

- (L1 ∪ L2)(w)=L1(w) + L2(w)

- (L1 · L2)(w) =
∑

u,v L1(u);L2(v), with w = uv standing for the

concatenation of strings u and v

- L∗(w) =
∑

i≥0 Li
1(w), with L0(w) = χ(w), L(i+1)(w) = (L · Li)(w)

- (L1 × L2)(w) =
∑

u,v L1(u);L2(v), with w = u× v defined by

· u× ε = u = ε× u

· u× v = (x ∪ y)(u′ × v′) where u = xu′ and v = yv′, with x, y ∈ Σ.

One may notice that the expressions that define operators · and × seem related.

Note, however, that operator · ranges over all possible ways to construct the word

w by concatenation of the smaller words u and v, while operator × looks over all

the possible constructions by “classical” synchronous product of words u×v defined

above.

Definition 3.2 (Basic H-fuzzy and ×−H-fuzzy synchronous languages)

A basic H-fuzzy synchronous language, denoted by LB, is a H-fuzzy synchronous

language such that LB(w) = 0 whenever w �∈ AB. A × − H-fuzzy synchronous

language, denoted by L×, is a H-fuzzy synchronous language such that L×(w) = 0

whenever w �∈ A×
B.

Note that A×
B does not contain any action built from operator · (e.g. for AB =

{a, b, c}, abc /∈ A×
B).

Without loss of generality, we write ab for the singleton set {ab}, for any ab ∈ AB.

Moreover, expression a1 . . . an, for n ≥ 1 will denote in the sequel a synchronous

string where ai ∈ Σ, with 1 ≤ i ≤ n.

Similarly to the homomorphism used to interpret SKA as synchronous sets [18],

we define a map to interpret term actions of α ∈ TSKA as H-fuzzy synchronous

languages.

Definition 3.3 (Fuzzy interpretation) Consider a map FISKA : AB∪{0,1} →
HΣ∗

such that

• FISKA(ab) = LB

• FISKA(0) = ∅

• FISKA(1) = χ

where LB is a basic H-fuzzy synchronous language such that LB(w) = 0 for all

w �= ab.

Its extension F̂ ISKA : TSKA → HΣ∗
over the term algebra is called a fuzzy inter-

pretation of SKA and defined as

F̂ ISKA(α) = FISKA(α), ∀α ∈ AB ∪ {0,1}
F̂ ISKA(α+ β) = F̂ ISKA(α) ∪ F̂ ISKA(β)

F̂ ISKA(α · β) = F̂ ISKA(α) · F̂ ISKA(β)
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F̂ ISKA(α× β) = F̂ ISKA(α)× F̂ ISKA(β)

F̂ ISKA(α
∗) = F̂ ISKA(α)

∗

4 Synchronous product of fuzzy automata

This section presents our main results. First a new type of fuzzy automata is

defined on top of a CHA which models the space of possible membership values

for fuzzy transitions. An appropriate notion of a synchronous product for these

sort of automata then is presented. The section ends with the generalisation of two

classical results:

• for every term α of TSKA, there is a H-NFA which accepts precisely F̂ ISKA(α);

• given a H-NFA M, there is a function f mapping M to α of SKA such that

F̂ ISKA(α) = L(M).

Definition 4.1 (Nondeterministic automata with fuzzy transitions) For a

CHA over H, a set AB of basic actions, a nondeterministic finite-state automaton

with fuzzy transitions (H-NFA) is a tuple M = (X,Σ, x0, F, δ) where:

• X is a finite set of states;

• Σ = P(AB)\{∅} is the input alphabet (i.e. the powerset of the set of basic actions

minus the empty set);

• x0 is the initial state;

• F is the set of final states;

• δ : X × Σ×X → H is the fuzzy transition function.

Intuitively, δ(x1, a, x2), for a ∈ Σ, can be interpreted as the truth degree of “input

a causing a transition from x1 to x2”.

The fuzzy transition relation can be inductively extended to the free monoid Σ∗

over Σ through a function δ∗ : X × Σ∗ ×X → H such that, for any x1, x2 ∈ X,

δ∗(x1, ε, x2) =

{
1 if x1 = x2

0 otherwise

and, for any x1, x2 ∈ X,w ∈ Σ∗ and a ∈ Σ,

δ∗(x1, aw, x2) =
∑
x′∈X

δ(x1, a, x
′); δ∗(x′, w, x2)

For any states x1, x2 ∈ X and any word w ∈ Σ∗, δ∗(x1, w, x2) can be interpreted

as the truth degree of “word w causes a transition from x1 to x2”.

Given a residuated lattice A with support set A, a fuzzy language over an

alphabet Σ is classically defined as a fuzzy subset of Σ∗, that is, a function λ :

Σ∗ → A [9]. Thus,

Definition 4.2 Given a CHA over H and a H-NFA M = (X,Σ, x0, F, δ), the fuzzy

synchronous language recognised by M is a function L(M) : Σ∗ → H defined as
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L(M)(w) =
∑
x∈F

δ∗(x0, w, x)

for w ∈ Σ∗.

We can interpret L(M)(w) as the truth degree of “the word w causes a transition

from an initial state to a final state in M”. L(M)(w) is the degree of recognition

of w by M.

Now we prove a Kleene theorem for H-NFA and fuzzy synchronous languages.

The proof proceeds by taking a class of H-NFA denoted Mα whenever the automa-

ton is a H-NFA associated to an action α ∈ TSKA.

Theorem 4.3 For any action α ∈ SKA there exists a H-NFA Mα which accepts

precisely F̂ ISKA(α).

Proof. We construct a H-NFA Mα for each regular expression built from a

basic action ab ∈ AB and operators +, · and ∗. Then we provide a construction

similar to the one in [18] for the synchronous operator ×. Each transition of the

automaton is labelled by a pair (α, δ(xi, α, xj)), 0 ≤ i, j ≤ n where α ∈ TSKA is the

action relating to the input that causes a transition between states xi and xj , and

δ(xi, α, xj) ∈ H the is “weight” of the transition. Slightly abusing the notation,

let α ∈ TSKA represent the input of the automaton that relates to action α, a

convention that allows a clearer presentation of the inductive proof. Thus,

Base case:

The automata corresponding to ab ∈ AB, 0 and 1, i.e. Mab , M0 and M1, are

depicted in Figure 3 from top to bottom, respectively. By Definition 4.2 it is easy to

see that the fuzzy synchronous language recognized by each one of these automata

coincides precisely with F̂ ISKA(ab), F̂ ISKA(0) and F̂ ISKA(1), respectively.

x0start x1
(ab,δ(x0, ab, x1))

x0start

x0start x1
(ε,1)

Fig. 3. Automata representing actions a ∈ AB , 0 and 1.

By Definition 4.2, the fuzzy synchronous language recognized by Mab is given

by

L(Mab)(ab) = δ∗(x0, ab, x1) = δ(x0, ab, x1)

and L(Mab)(w) = 0, for all w �= ab. Thus, L(Mab) = F̂ ISKA(ab). The fuzzy

synchronous language recognized by M0 is given by L(M0)(w) = 0, for all w ∈ Σ∗.
That is exactly F̂ ISKA(0).

L. Gomes et al. / Electronic Notes in Theoretical Computer Science 348 (2020) 43–60 51



Analogously, the fuzzy synchronous language recognized by M1 is defined as

L(M1)(ε) = 1 and

L(M1)(w) = 0, for all w �= ε. Clearly L(M1) = F̂ ISKA(1).

Inductive case:

The automata Mα+β , Mα·β and Mα∗ depicted in Figures 4, 5 and 6, respec-

tively, correspond to terms α+ β, α · β and α∗. Their construction is the standard

one [6].

x0start

x1

x3

x2

x4

x5

(ε,1)

(ε,1)

(α,δ(x1, α, x2))

(β,δ(x3, β, x4))

(ε,1)

(ε,1)

Fig. 4. Automata representing action α+ β.

The fuzzy synchronous language recognized by Mα+β is given by:

L(Mα+β)(εαε) = δ∗(x0, εαε, x5) = δ(x0, ε, x1); δ
∗(x1, αε, x5) + δ(x0, ε, x3); δ

∗(x3, αε, x5)
= 1; δ∗(x1, α, x2); δ(x2, ε, x5) + 1; δ∗(x3, α, x4); δ(x4, ε, x5)
= δ∗(x1, α, x2);1+ 0;1 = δ∗(x1, α, x2)

and analogously for word εβε,

L(Mα+β)(εbε) = δ∗(x2, β, x3)

On the other hand, F̂ ISKA(α + β) = Lα ∪ Lβ and (Lα ∪ Lβ)(α) = δ∗(x1, α, x2),
(Lα∪Lβ)(β) = δ∗(x2, β, x3) and (Lα∪Lβ)(w) = 0 for w �= α, β. Thus, L(Mα+β) =

F̂ ISKA(α+ β).

x0start x1

x2 x3

(α,δ(x0, α, x1))

(ε,1)

(β,δ(x2, β, x3))

Fig. 5: Automata representing action

α · β.

x0start x1 x2 x3

(ε,1)

(ε,1) (α,δ(x1, α, x2))

(ε,1)

(ε,1)

Fig. 6: Automata representing action

α∗.

The fuzzy synchronous language recognised by Mα·β is defined as
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L(Mα·β)(αεβ) = δ∗(x0, αεβ, x3) = δ∗(x0, α, x1); δ∗(x1, εb, x3)
= δ∗(x0, α, x1); δ(x1, ε, x2); δ∗(x2, β, x3) = δ∗(x0, α, x1);1; δ∗(x2, β, x3)
= δ∗(x0, α, x1); δ∗(x2, β, x3)

Analogously as before, F̂ ISKA(α · β) = Lα · Lβ with (Lα · Lβ)(w) =

δ∗(x0, α, x1); δ∗(x2, β, x3) if w = α · β and 0 otherwise. Hence, L(Mα·β) =

F̂ ISKA(α · β).
Finally, automaton Mα∗ recognizes the fuzzy synchronous language given by

L(Mα∗)(εαα∗ε) = δ(x0, ε, x1); δ
∗(x1, αα∗ε, x3) = 1; δ∗(x1, α, x2); δ∗(x2, α∗ε, x3)

= δ∗(x1, α, x2); δ∗(x2, α∗, x2); δ(x2, ε, x3) = δ∗(x1, α, x2); δ∗(x2, α∗, x2);1
= δ∗(x1, α, x2); δ∗(x2, α∗, x2)

and for word ε, L(Mα∗)(ε) = δ(x0, ε, x3) = 1. F̂ ISKA(α
∗) = F̂ ISKA(α)

∗ = L∗
α

where

L∗
α(w) =

∑
i≥0

Li
α(w) = χ(w) + Lα(w) + L2

α(w) + . . .

= Lα(αα
∗) + L2

α(αα
∗) + . . . = Lα(αα

∗) + Lα(αα
∗);Lα(αα

∗) + . . .

= Lα(αα
∗) = Lα(α);Lα(α

∗) = δ∗(x1, α, x2); δ∗(x2, α∗, x2)

L∗
α(w) = χ(ε) = 1 if w = ε and 0 otherwise. Therefore, L(Mα∗) = F̂ ISKA(α

∗).

�

The synchronous product of two H-NFA Mα = (Xα,P(Aα
B) \ {∅}, xα0 , Fα, δα)

and

Mβ = (Xβ ,P(Aβ
B) \ {∅}, xβ0 , F β , δβ) is

Mα×β = (Xα ×Xβ ,P(Aα
B ∪ Aβ

B) \ {∅}, (xα0 , xβ0 ), Fα × F β , δα×β)

where

δα×β : (Xα ×Xβ)× (P(Aα
B ∪ Aβ

B) \ {∅})× (Xα ×Xβ) → H

is defined, for u ∈ P(Aα
B) \ {∅} and v ∈ P(Aβ

B) \ {∅}, w = u ∪ v, by

δα×β((xα, xβ), w, (yα, yβ)) =

⎧⎪⎨⎪⎩
δα(xα, u, yα) if xβ = yβ ∈ F β

δβ(xβ , v, yβ) if xα = yα ∈ Fα∑
u,v δ

α(xα, u, yα); δβ(xβ , v, yβ) otherwise

The corresponding construction is illustrated in Fig. 7.

Definition 4.4 Let Mα = (Xα,P(Aα
B) \ {∅}, xα0 , Fα, δα) and Mβ = (Xβ ,P(Aβ

B) \
{∅}, xβ0 , F β , δβ) be two H-NFA and Mα×β = (Xα × Xβ ,P(Aα

B ∪ Aβ
B) \
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{∅}, (xα0 , xβ0 ), Fα × F β , δα×β) its synchronous product. The fuzzy synchronous lan-

guage recognised by Mα×β is the function L(Mα×β) : P(Aα
B∪Aβ

B)\{∅} → H defined

by

L(Mα×β)(w) =
∑

xα
f ∈Fα

xβ
f∈Fβ

(
δα×β

)∗
((xα0 , x

β
0 ), w, (x

α
f , x

β
f )).

Analogously to other cases, we prove that Mα×β recognizes the fuzzy syn-

chronous language F̂ ISKA(α× β):

L(Mα×β)(α× β) = (δα×β)∗((xα0 , x
β
0 ), α× β, (xαf , x

β
f )) = δα×β((xα0 , x

β
0 ), α× β, (xαf , x

β
f ))

= δα(xα0 , α, x
α
f ); δ

β(xβ0 , β, x
β
f )

But F̂ ISKA(α×β) = Lα×Lβ such that (Lα×Lβ)(w) = δα(xα0 , α, x
β
f ); δ

β(xα0 , β, x
β
f )

if w = α× β and 0 otherwise. Hence, L(Mα×β)(α× β) = F̂ ISKA(α× β).

x1start

x2

s1 ×
x3start

x4

s2 −→
x1,x3start x1,x4

x2,x3 x2,x4

s

s1

s2

Fig. 7. Example of the automaton construction corresponding to α× β.

where s1 denotes the label (α,δα(x1, α, x2)), s2 the label (β,δβ(x3, β, x4)) and s the

label

(α×β, δα×β((x1, x3), α×β, (x2, x4))) corresponding to the synchronous action α×β.

The proof of completeness of SKA w.r.t. the fuzzy interpretation proceeds by

eliminating states which generates a regular expression. Consider a function f which

takes a H-NFA Mα and returns an action α ∈ SKA. The weight associated with

this action is computed accordingly, depending on the weight of each transition of

the automaton. Note that this procedure considers actions of SKA as labels for the

automaton transitions, rather than as elements of the input alphabet Σ.

Theorem 4.5 For all α ∈ TSKA, f(Mα) results in an action α such that

F̂ ISKA(α) = L(Mα).

Proof. The proof uses induction on the structure of the actions.

Base case:

Let us consider the automata Ma, M0 and M1 of Figure 3. Applying f , we

obtain the actions a, 0 and 1 with weights δ(x0, a, x1), 0 and 1, respectively.

Inductive case:

Case α = α1 + α2. The automaton Mα1+α2 is obtained with the construction

for + of Theorem 4.3 from the automata Mα1 and Mα2 . Then, f eliminates states
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x1 and x2, obtaining a single transition labelled with the action 1 · α1 · 1 ≡ α1,

with weight 1; δ(x1, α1, x2);1 = δ(x1, α1, x2), and states 3 and 4 obtaining a single

transition labelled by the action 1 · α2 · 1 ≡ α2 with weight 1; δ(x3, α2, x4);1 =

δ(x3, α2, x4). Finally it combines the two transitions into one labelled by the action

α1 + α2 with weight δ(x1, α1, x2) + δ(x3, α2, x4).

x0start

x5

α1 + α2

x0start

x3

α1 · α2

x0start

x3

α∗
1

Fig. 8. Application of f in automata Mα+β , Mα·β and Mα∗ .

Case α = α1 · α2.

The automaton Mα1·α2 is obtained from Mα1 and Mα2 by the process of

Theorem 4.3. By eliminating intermediate states x1 and x2 we obtain a single

transition labelled α1 · 1 · α2 ≡ α1 · α2 with weight δ(x0, α1, x1);1; δ(x2, α2, x3) =

δ(x0, α1, x1); δ(x2, α2, x3).

Case α = α∗
1.

Using the same procedure, f eliminates states x1 and x2 of Mα∗
1
, obtaining an

automaton with a single transition labelled by 1 · α1 · (1 · α1)
∗ · 1 + 1 ≡ α∗

1 with

weight 1; δ(x1, α1, x2); (1; δ(x1, α
∗
1, x2));1+ 1 = δ(x1, α1, x2); δ(x1, α

∗
1, x2) + 1.

The resulting automata obtained by the procedure of the cases above are shown in

Figure 8.

Case α = α1 × α2.

Analogously, function f eliminates states (x1, x4) and (x2, x3), obtain-

ing an automaton with a single transition labelled by α × β with weight

δα1(x1, α1, x2); δ
α2(x3, α2, x4) = δα1×α2((x1, x3), α1 × α2, (x2, x4)).

�

Next we characterise the set of fuzzy synchronous languages as a SKA.

Theorem 4.6 Any set of fuzzy synchronous languages containing ∅ and χ and

closed under the operations of Definition 3.1 is a synchronous Kleene algebra, for

any CHA.

Proof. The proofs of (1)-(13) are analogous to [5]. Note that in [5], instead of

(12) and (13), the proofs of the equivalent axioms α · γ ≤ γ ⇒ α∗ · γ ≤ γ and

γ · α ≤ γ ⇒ γ · α∗ ≤ γ are presented. We present only the proof for axioms dealing

with operator ×, for a given word a1 . . . an ∈ Σ∗, with n ≥ 1.

Axiom (14):
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(L1 × (L2 × L3))(a1 . . . an)

= { definition of ×}
∑

k≥1(L1(a1 . . . an); (L2 × L3)(a1 . . . ak) + L1(a1 . . . ak); (L2 × L3)(a1 . . . an))

= { definition of ×}
∑

k≥1

(
L1(a1 . . . an);

(∑

l≥1

(L2(a1 . . . an);L3(a1 . . . al) + L2(a1 . . . al);L3(a1 . . . an))
)

+ L1(a1 . . . ak);
(∑

l≥1

(L2(a1 . . . an);L3(a1 . . . al) + L2(a1 . . . al);L3(a1 . . . an))
))

= { (26) and (5)}
∑

k≥1

(∑

l≥1

(
(L1(a1 . . . an); (L2(a1 . . . an));L3(a1 . . . al) + (L1(a1 . . . an);L2(a1 . . . al));L3(a1 . . . an)

)

+
∑

l≥1

(
(L1(a1 . . . ak); (L2(a1 . . . an));L3(a1 . . . al) + (L1(a1 . . . ak);L2(a1 . . . al));L3(a1 . . . an)

))

= { (27) and change indexes without loss of generality}
∑

k≥1

(∑

l≥1

(
(L1(a1 . . . ak);L2(a1 . . . al) + L1(a1 . . . al);L2(a1 . . . ak));L3(a1 . . . an)

)

+
∑

l≥1

(
(L1(a1 . . . an);L2(a1 . . . al) + (L1(a1 . . . al);L2(a1 . . . an))

;L3(a1 . . . ak));L3(a1 . . . ak)
))

= { definition of ×}
∑

k≥1

(
(L1 × L2)(a1 . . . ak);L3(a1 . . . an) + (L1 × L2)(a1 . . . an);L3(a1 . . . ak)

)

= { definition of ×}
((L1 × L2)× L3)(a1 . . . an)

Axiom (15):

(L1 × L2)(a1 . . . an)

= { definition of ×}
∑

k≥1

(L1(a1 . . . an);L2(a1 . . . ak) + L1(a1 . . . ak);L2(a1 . . . an))

= { (2) and (22)}
∑

k≥1

(L2(a1 . . . an);L1(a1 . . . ak) + L2(a1 . . . ak);L1(a1 . . . an))

= { definition of ×}
(L2 × L1)(a1 . . . an)

Axiom (16):

(L × χ)(a1 . . . an)

= { definition of ×}
∑

k≥1

(L(a1 . . . an);χ(a1 . . . ak) + L(a1 . . . ak);χ(a1 . . . an))

= { definition of χ and (6)}
∑

k≥1

(L(a1 . . . an) + L(a1 . . . ak)) = L(a1 . . . an) definition of ×

χ× α is proved analogously.
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Axiom (17):

(L × ∅)(a1 . . . an)

= { definition of ×}
∑

k≥1

(L(a1 . . . an);∅(a1 . . . ak)

+ L(a1 . . . ak);∅(a1 . . . an))

= { definition of ∅ and (9)}
∑

k≥1

0

= { definition of ×}
∅(a1 . . . an)

The proof of ∅× α uses a similar reasoning.

Axiom (18):
This axiom applies only to basic fuzzy synchronous
languages LB . So, given a basic fuzzy synchronous
language LB ,

(LB × LB)(ab)

= { definition of ×}
∑

k≥1 LB(ab);LB(ab)

= { (23)}
∑

k≥1 LB(ab)

= { definition of ×}
LB(ab)

Axiom (19):

(L1 × (L2 ∪ L3))(a1 . . . an)

= { definition of × and ∪}
∑

k≥1

(L1(a1 . . . an); (L2(a1 . . . ak) + L3(a1 . . . ak))

+ L1(a1 . . . ak); (L2(a1 . . . an) + L3(a1 . . . an))
)

= { (7)}
∑

k≥1

(L1(a1 . . . an);L2(a1 . . . ak) + L1(a1 . . . an);L3(a1 . . . ak)

+ L1(a1 . . . ak);L2(a1 . . . an) + L1(a1 . . . ak);L3(a1 . . . an)
)

= { (2)}
∑

k≥1

(L1(a1 . . . an);L2(a1 . . . ak)

+ L1(a1 . . . ak);L2(a1 . . . an)

+ L1(a1 . . . an);L3(a1 . . . ak)

+ L1(a1 . . . ak);L3(a1 . . . an)
)

= { definition of × and ∪}
((L1 × L2) ∪ (L1 × L3))(a1 . . . an)

Axiom (20): Analogously to (19) but using (8).

Axiom (21): This proof is done by considering ×-fuzzy synchronous languages.

((L×
1 · L1)× (L×

2 · L2))(a1 . . . an)

= { definition of ×}
∑

k≥1

(
(L×

1 · L1)(a1 . . . an); (L×
2 · L2)(a1 . . . ak) + (L×

1 · L1)(a1 . . . ak); (L×
2 · L2)(a1 . . . an)

)

= { definition of ·}
∑

k≥1

((∑

l≥0

L×
1 (a1 . . . al);L1(al+1 . . . an)

)
;
(∑

l≥0

L×
2 (a1 . . . al);L2(al+1 . . . ak)

)

+
(∑

l≥0

L×
1 (a1 . . . al);L1(al+1 . . . ak)

)
;
(∑

l≥0

L×
2 (a1 . . . al);L2(al+1 . . . an)

))

= { L×(a1 . . . ak) = 0 for k �= 1}
∑

k≥1

(
(L×

1 (a1);L1(a2 . . . an)); (L×
2 (a1);L2(a2 . . . ak)) + (L×

1 (a1);L1(a2 . . . ak)); (L×
2 (a1);L2(a2 . . . an))

)

= { (5) and (22)}
∑

k≥1

(
(L×

1 (a1);L×
2 (a1)); (L1(a2 . . . an);L2(a2 . . . ak)) + (L×

1 (a1);L×
2 (a1)); (L1(a2 . . . ak);L2(a2 . . . an))

)

= { (7)}
∑

k≥1

(
(L×

1 (a1);L×
2 (a1)); (L1(a2 . . . an);L2(a2 . . . ak) + L1(a2 . . . ak);L2(a2 . . . an))

)

= { definition of × and L×(a1 . . . ak) = 0 for k �= 1}
∑

k≥1

(
(L×

1 × L×
2 )(a1 . . . an); (L1 × L2)(a2 . . . an)

)

= { definition of ·}
((L×

1 × L×
2 ) · (L1 × L2))(a1 . . . an)

�
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Let us revisit the example mentioned in the Introduction, concerning the joint

fuzzy flow of two reagents. The fuzzyness in a flow represents potential malfunctions

in the control apparatus. In order to model the confidence values of execution, we

assume the structure G of Example 2.6. Consider, for instance, that the machine

releases the reagents c and m with certainty values 0.95 and 0.93, respectively. We

model such situation by taking the action corresponding to adding c with certainty

0.95 and the action of adding m with certainty 0.93 by the two H-NFA depicted in

Fig. 9, where c abbreviates the label (c, δc(x0, c, x1)) and, analogously, m the label

(m, δm(x0,m, x1)).

x1start x2
c x3start x4

m

Fig. 9. Two H-FA representing the basic actions c and m.

Let us consider a machine able of execute both actions c and m simul-

taneously. Its behaviour is modelled by the synchronous product of the au-

tomata above, the result being depicted in Fig. 10, with c,m abbreviating label

({c,m}, δc×m((x1, x3), {c,m}, (x2, x4))).

x1,x3start x1,x4

x2,x3 x2,x4

c,m

c

m

Fig. 10. The synchronous product.

The weight of action c×m, corresponding to the certainty of obtaining the mix of

both reagents, is given by

δc×m(((x1, x3), {c,m}, (x2, x4))) = δc(x1, c, x2); δ
m(x3,m, x4) = min{0.95, 0.93} = 0.93

5 Conclusions

In this work we defined the concept of a fuzzy synchronous language, a number

of operators over such languages, and a synchronous product construction of two

H-NFA. A generalisation of two classic results was proved: for every term α of

TSKA, it is possible to construct a H-NFA which accepts precisely F̂ ISKA(α); and,

for all α ∈ TSKA, there exists a function f mapping Mα into α of SKA such that

F̂ ISKA(α) = L(Mα). Finally, we have shown that any set of fuzzy synchronous

languages enriched with the fuzzy operators previously defined is a SKA.
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Note that some axioms of Figure 2, namely (10)-(13), may have different rep-

resentations in some literature. Even the very axiomatisation here presented for

Kleene algebra is not minimal ((3) and (4) may be omitted). However, the axioma-

tisation from [18] was maintained, since we intend to present the algebra of fuzzy

languages as a model of SKA. One may notice also that operator → is absent from

the automata constructions presented in the paper. Its role is however related with

the proof of Theorem 4.6, as it assures, together with the complete property of the

Heyting algebra, the infinite distribution of “;” over arbitrary suprema.

The construction of FFA with membership degrees in a lattice-ordered monoid

L [10] is studied in an analogous context of this work, based on the concept of

L-fuzzy regular expression. Such expressions are defined as regular expressions from

an alphabet X with a scalar λ ∈ L multiplication, using the monoid multiplication

operator. It is precisely this scalar that attributes the weight to a transition in the

automaton. In the approach presented in this paper, on the other hand, automata

are built using standard regular expressions instead of fuzzy regular expressions.

Regular expressions are then interpreted as fuzzy languages accepted by a fuzzy

automaton, using the interpretation map F̂ I.

Most of the results presented in the context of fuzzy languages are constructed

using either the real interval [0, 1] or a generic residuated lattice L to model the

(possible) many valued membership values. However, one of the main results of this

paper, Theorem 4.6 relies on properties provided by a specific characterisation of a

lattice ordered structure: the operator ; of the parameter must be idempotent and

commutative. The definition presented for H-NFA differs from [12] in the semantic

structure used for membership values. Although the original definition uses the unit

interval [0, 1], we consider values from a more generic structure, a complete Heyting

algebra.

A set of possible directions for future work emerge. The extension of SKA

to tests, known as the synchronous Kleene algebra with tests, SKAT [18], mod-

elled by a notion of fuzzy guarded synchronous languages is worth to be dis-

cussed. This entails the need for defining guarded H-NFA and extending the syn-

chronous product construction accordingly. Another extension worth to be con-

sidered is to study a relaxation of SKA. Considering, for instance, the structure

R = (R+ ∪ {∞},min,+,∞, 0,→) with x → y = max{y− x, 0}, ∀x, y ∈ R+ ∪ {∞},
known as the tropical semiring, as a parameter, would make possible to address

situations where the experimenter could choose the desired proportion of reagents

c and m involved. The synchronous action c×m would then represent the sum of

the respective quantities. Such extension would not only broaden the number of

applications of the approach proposed in this paper, but also open the discussion

on which implications the more generic algebra would have in the proven results.
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[5] Leandro Gomes, Alexandre Madeira, and Lúıs Soares Barbosa. Generalising KAT to verify weighted
computations. Technical report, HASLab INESC TEC - Univ. of Minho, Portugal, Department of
Informatics, 2018.

[6] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory, languages,
and computation - international edition (2. ed). Addison-Wesley, 2003.

[7] S. C. Kleene. Representation of events in nerve nets and finite automata. In Claude Shannon and John
McCarthy, editors, Automata Studies, pages 3–41. Princeton University Press, Princeton, NJ, 1956.

[8] Dexter Kozen. On Kleene algebras and closed semirings. In Branislav Rovan, editor, Mathematical
Foundations of Computer Science 1990, MFCS’90, Banská Bystrica, Czechoslovakia, August 27-31,
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