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1. Introduction

1.1. Motivation and context

Systems whose behaviour has both discrete and continuous aspects are traditionally qualified as hybrid [1–3]. They often 
arise as complex networks of computational units, sensors, and actuators, suitably coordinated so that a desired outcome 
can be reached. A classic example is provided by a cruise control system as it is essentially a digital device that interacts 
with actuators and sensors which control and measure a vehicle’s velocity. The same pattern also occurs in thermostats, 
planes, electric grids, and surgical robots (see e.g. [3,2,4]).

The formal specification and analysis of hybrid systems typically resorts to the theory of hybrid automata [5], whose 
distinguishing feature is the ability of state variables to evolve continuously — thus making them able to express the 
behaviour of physical processes, like movement, time, temperature, or pressure. In addition, they carry syntactical machinery 
(guards, state invariants, and assignments) to facilitate the description of complex behaviour in a concise manner.

Being perhaps the most famous answer to the rapid emergence of hybrid systems [6–8], hybrid automata form an active 
research area that encompasses a broad range of topics, from decidability issues [5] to extensions that cater for input
mechanisms [6,9] and uncertainty [10,11]. To create a new extension, however, frequently entails a return to the drawing 
board in order to redesign or adapt whatever definitions, notions or techniques are deemed relevant for it. The notion of 
bisimulation is a prime example of this, as it usually takes an apparently different form in each extension.

In a previous paper [12] we showed how to treat a number of variants of hybrid automata in a uniform manner using 
the theory of coalgebras [13]. In particular, we proved that the notions of bisimulation adopted by different types of hybrid 
automata are instances of a generic, coalgebraic definition; and we discussed briefly how to introduce new variants of hybrid 
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automata in a systematic way, with notions of bisimulation and behaviour coming for free and tailored to the context at 
hand. This was illustrated by reconstructing the theory of some classes of hybrid automata (for example, reactive Markov
hybrid automata), and developing new variants (for example, of what was then called replicating hybrid automata). On the 
whole, that paper provided, we believe, a first step towards a coalgebraic, uniform theory of hybrid automata.

1.2. Contributions

In the current paper we give a complete and formal account of the research avenue announced in [12]. More concretely,

• we show that every functor F : Set → Set induces a category of a specific type of hybrid automata (F shapes their 
‘discrete’ transition type) and also a category that suitably captures their semantics. Both are categories of coalgebras 
and therefore several useful notions come for free.

• We prove the existence of a ‘semantics’ functor between these two categories, which, intuitively, associates every hybrid 
automaton to its corresponding model. This functor generalises the standard semantics for both classic hybrid automata
[5] and probabilistic hybrid automata [11].

The idea of seeing hybrid automata as coalgebras emerged from our adoption of the black-box perspective as a strategy 
to handle hybrid systems (cf. [14]). In this view, the (discrete) state transitions of a hybrid system are internal, hidden 
from the environment whereas the continuous evolutions are external, making up the observable behaviour — think again 
about the operation of a cruise control system. One cannot directly observe the computations of the digital device; only 
their influence over the car’s velocity which evolves over time. The black-box approach is a central concept in the theory of 
coalgebras and thus it naturally leads to the idea of regarding hybrid automata as coalgebras.

As discussed in [12], the coalgebraic perspective facilitates the analysis and design of hybrid automata once a suitable, 
coalgebraic semantics for them is set. For example, it provides a uniform, canonical notion of behaviour that faithfully re-
flects the black-box perspective and frames the behaviour into well known constructions (e.g. streams, binary trees) that 
mark a clear frontier between the discrete behaviour and the continuous one. Interestingly, the coalgebraic view also fa-
cilitates the understanding of hybrid automata and helps to systematise the concept along a plethora of, often elaborated, 
definitions in the literature. In its most basic variant, a hybrid automaton is reduced to a machine that from a state (inter-
nally) jumps to another and (externally) produces a continuous evolution. Moreover, the coalgebraic characterisation paves 
the way to a hierarchy of different types of hybrid automata organised with respect to their ‘expressivity’, a concept which 
is itself understood here coalgebraically.

In order to discuss some of these benefits in detail, we devote a large portion of the paper to a specific variant of 
hybrid automata classified as reactive — intuitively, it combines deterministic evolutions with an input dimension. We 
thoroughly study the coalgebraic theory of this variant, with special focus on the notions of behaviour and bisimulation. 
Furthermore, we use standard coalgebraic techniques to show that reactive hybrid automata admit a Kleene-like theorem. 
Along the process an illuminating message emerges: hybrid automata are hybrid also in the sense that they are neither 
purely syntactic nor purely semantic entities.

1.3. Roadmap

In Section 2 we recall briefly the theory of hybrid automata [5] and the theory of coalgebras [13]. Then, in the same sec-
tion, we start our study by showing that classic hybrid automata, and some of their variants (e.g. reactive hybrid automata), 
can be straightforwardly interpreted as coalgebras.

In Section 3 we explore and discuss the coalgebraic theory of reactive hybrid automata. In particular, we introduce 
the aforementioned Kleene-like theorem, the semantics functor associated with reactive hybrid automata, and some of its 
properties. We also study the notions of behaviour and bisimulation that coalgebras provide in the context of this variant.

In Section 4 we take the generic perspective. In particular, we establish the formal correspondence between functors 
F : Set → Set and variants of hybrid automata that document [12] alludes to. This leads to the (re)discovery of several 
variants of hybrid automata (e.g. probabilistic [11], weighted, and replicating). In the same section we revisit the generic 
notion of �-bisimulation and the hierarchy of hybrid automata introduced in [12], but now under the light of the functorial 
semantics that the current paper provides.

Finally, in Section 5 we conclude and discuss future work.
We assume that the reader has basic familiarity with category theory [15] and topology [16]. Throughout the paper 

we use an arrow with a tail f : A � B to stress that a map f : A → B is injective. Dually, we use a two-headed arrow 
f : A � B to represent a surjection. We use P to denote the powerspace construction and D to denote the distribution 
space construction whose distributions have finite support. Finally, for two sets A and B we denote by B A the set of maps 
from A to B . If A and B are topological spaces then B A denotes the set of continuous maps from A to B .

2. Preliminaries

2.1. Classic and probabilistic hybrid automata

Let us start by formally introducing the notion of predicate and the classic definition of hybrid automata [5].
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Definition 2.1. Given a finite set X , the set of predicates ϕ over X , denoted by P(X), is generated by the grammar below in 
the left.

ϕ � ¬ϕ | ϕ ∧ ϕ | t < t | t = t, t � t + t | t · t | x | r (x ∈ X, r ∈R)

Definition 2.2. A hybrid automaton is a tuple (M, E, X, inv, dyn, asg, grd) such that

• M is a finite set of control modes and E ⊆ M × M is a transition relation between them.
• X is a finite set of real-valued variables {x1, . . . , xn}.
• inv : M → P(X) is a function that associates modes to invariants, the latter being given as predicates over the variables 

in X .
• dyn : M → P(X ∪ Ẋ) is a function that associates each mode to a predicate over X ∪ Ẋ , where the set Ẋ = {ẋ1, . . . , ̇xn}

represents the first derivatives of the variables in X . This map is used to dictate which continuous evolutions may occur 
in a given mode.

• asg : E → P(X ∪ X ′) is a function that returns a predicate over X ∪ X ′ for a given edge, where X ′ = {x′
1, . . . , x

′
n} represents 

the variables in X immediately after a discrete jump. In other words, asg is a function that provides an assignment to 
each edge.

• Finally, the function grd : E → P(X) associates each edge with a guard.

The following examples may help to illustrate and clarify some aspects of this quite complex definition.

Example 2.3. Consider a bouncing ball dropped at a specific positive height p and with no initial velocity v. Due to the 
gravitational acceleration g, it falls into the ground and then bounces back up, losing part of its kinetic energy in the 
process. The following hybrid automaton sums up this behaviour.

ṗ = v
v̇ = g
p ≥ 0

p = 0 ∧ v > 0,
v′ = v × −0.5

Observe that only one mode exists; let us call it m. Furthermore there exists exactly one discrete transition: (m, m) ∈ E . 
Then X = {p, v}, and inv(m) is p ≥ 0. Moreover, grd(m, m) is p = 0 ∧ v > 0, dyn(m) is ṗ = v ∧ v̇ = g, and asg(m, m) is 
v′ = v × −0.5 ∧ p′ = p. Note that the second conjunct does not appear in the hybrid automaton above, a common practice 
to avoid a notational burden.

Example 2.4. Consider now a system comprised of a tank and a valve connected to it. The valve allows water to flow in 
filling the tank at a rate of 2 cm/s during intervals of c seconds; between these periods the valve is shut (also) for c seconds. 
We can describe this behaviour via the hybrid automaton below.

l̇ = 2
ṫ = 1
t ≤ c

t ≥ c

t′ = 0 l̇ = 0
ṫ = 1
t ≤ ct ≥ c

t′ = 0

The variable l denotes the water level, which rises when the valve is open (differential equation l̇ = 2). The differential 
equation ṫ = 1 defines the passage of time, which, along with invariant t ≤ c, forces the current mode to be active for at 
most c seconds. On the other hand, the guard t ≥ c and assignment t′ = 0 present in both transitions force the current mode 
to be active at least c seconds before a switch. Finally, note that the guard t ≥ c does not force a transitions to happen, 
but only makes it possible. This means that, if not for invariant t ≤ c, the valve could be open (or shut) indefinitely — note, 
however, that according to the assumptions below this type of behaviour cannot occur.

Contrary to document [5], we do not consider initial states nor labels in the definition of hybrid automata. This is 
because we wish to keep our results simple and intuitive. Moreover both mechanisms can be accommodated later on in a 
straightforward manner.

Assumptions 2.5. We also make the following assumptions.

1. For every mode the function dyn returns a system of differential equations with exactly one solution. Even if it seems 
too restrictive this is actually a common assumption (e.g. [17–19]) since most hybrid systems described in the literature 
rarely involve nonlinear differential equations. The important point is that this condition allows function dyn to induce 
a map
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sol : M ×R
n ×R≥0 →R

n

such that given a pair (m, v) ∈ M ×R
n , the map

sol (m, v,−) :R≥0 →R
n

is the solution to the system of differential equations associated to a specific mode and valuation (m, v) ∈ M × R
n . Its 

domain (R≥0) represents time and n is the cardinality of set X (i.e. the number of real-valued variables).
2. Hybrid automata cannot have invalid jumps. Intuitively, they cannot jump from a valid state (m, v) ∈ M × R

n into an 
invalid one, where by valid we mean that

(m, v) ∈ {
(n, u) ∈ M ×R

n | u |= inv(n)
}

and by invalid we mean the opposite of valid. Formally, assume that for every pair (m1, v1,m2, v2) ∈ M ×R
n × M ×R

n

such that

(m1,m2) ∈ E, v1 |= grd(m1,m2), (v1, v2) |= asg(m1,m2)

entails property v2 |= inv(m2). This is another standard assumption. Later on, when going generic, we will need to 
express it in terms of factorisations and to generalise the notion of valid state. In the sequel, we denote the set of valid 
states of a hybrid automaton X by Z X , or simply Z if no ambiguities arise.

3. All assignments must be deterministic i.e. they must take the form x′ = θ , where θ is a term that corresponds to exactly 
one real value. Clearly, both the bouncing ball and the water tank system respect this assumption.

4. Finally, as soon as all edges outgoing a mode become enabled (i.e. the associated guards are satisfied) that mode must 
switch and never before. A similar condition is adopted in [20], where hybrid automata with this property are called 
time-deterministic. In detail, assume that each pair (m, v) ∈ Z has exactly one duration ([0, d] ⊆ R≥0) for its evolution 
sol(m, v, −) : R≥0 →R

n , which intuitively corresponds to the time that the mode m takes to jump starting from (m, v). 
At the end of the duration all associated guards must be enabled. This happens, for example, in the hybrid automaton 
that describes the tank-and-valve (c seconds) and the bouncing ball system (the time that the ball takes to reach the 
ground from a specific height and velocity). Later on we will further discuss this condition.

The traditional semantics of hybrid automata is given in terms of labelled transition systems [5].
Let 1 be a one-point set, and A + B the disjoint union of two arbitrary sets A and B .

Definition 2.6. A hybrid automaton induces a labelled transition system (Z , L, T ) such that L = 1 + R≥0 and the transition 
relation T ⊆ Z × L × Z is defined as 

(
(m1, v1), l, (m2, v2)

) ∈ T iff

1. l ∈ 1 entails (m1, m2) ∈ E , v1 |= grd(m1, m2), and (v1, v2) |= asg(m1, m2)

2. l ∈R≥0 entails m1 = m2, sol(m1, v1, l) = v2, and

sol(m1, v1, t) |= inv(m1) (t ∈ [0, l])

We write a triple (z1, l, z2) ∈ T as z1
l→ z2.

Example 2.7. Recall the hybrid automaton that describes the bouncing ball in Example 2.3. The associated labelled transition 
system (Z , L, T ) is defined as follows: Z = {m} ×R≥0 ×R and (m, p1, v1) 

l→ (m, p2, v2) iff

1. l ∈ 1 entails p1 = 0 ∧ v1 > 0 and v2 = v1 × −0.5 ∧ p2 = p1

2. l ∈R≥0 entails sol(m, p1, v1, l) = (p2, v2), and

sol(m, p1, v1, t) |= p ≥ 0 (t ∈ [0, l])
The function sol, determined by dyn, describes the continuous evolution of the ball’s position and velocity between jumps.

Note that both discrete events and continuous evolutions are embedded in the relation T . Not only this makes difficult to 
adopt the black-box perspective mentioned before, but it also makes the verification of hybrid automata extremely challeng-
ing, as a large number of states and edges needs to be taken into consideration. The standard technique for overcoming this 
issue is to quotient the state space by a bisimulation equivalence, i.e. to collapse states that possess equivalent behaviour. 
The resulting states become symbolic representations of (possibly infinite) regions, and verification techniques are applied 
to the reduced system instead.

Note also that mixing discrete events with continuous evolutions blurs the frontier between discrete and continuous 
behaviour, and consequently hampers the application of techniques that require either a purely continuous universe or a 
purely discrete one.
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Definition 2.8. Consider the underlying labelled transition system (Z , L, T ) of a hybrid automaton and an equivalence re-
lation � ⊆ Z × Z over the states. A �-bisimulation R ⊆ Z × Z is a relation R such that (x1, y1) ∈ R (or, more concisely, 
x1 R y1) entails the following cases:

1. x1 � y1, and for every label l ∈ L

2. if x1
l→ x2 then there exists a state y2 such that y1

l→ y2 and x2 R y2,

3. if y1
l→ y2 then there exists a state x2 such that x1

l→ x2 and x2 R y2.

Two states x, y ∈ Z are �-bisimilar (in symbols, x ≡� y) if they are related by a �-bisimulation.

This is the notion of bisimulation that hybrid automata traditionally use.
Let us consider now a probabilistic variant of hybrid automata, often referred to as probabilistic hybrid automata [10,11].

Definition 2.9. A probabilistic hybrid automaton is a tuple (M, X, inv, dyn, e) where

• M is a finite set of control modes.
• X is a finite set of real-valued variables {x1, . . . , xn}.
• inv : M → P(X) is a function that associates each mode to a predicate over the variables in X .
• dyn : M → P(X ∪ Ẋ) is a function that associates each mode to a predicate over the variables in X ∪ Ẋ .
• e : M → PD 

(
M × P(X ∪ X ′) × P(X)

)
is a function that associates each mode to a set of probability distributions over 

modes, assignments, and guards.

Probabilistic hybrid automata allow to dictate the likelihood of events associated with digital computations. For example, 
the probability of a computer malfunction if temperature gets too high or the probability of a reset after a specific time 
is achieved. Technically, these automata harbour such a behaviour due to their transition map, which before a jump (or 
state transition) presents us with set of distributions (over modes, guards, and assignments) to choose from. The chosen 
distribution will then be used to compute the likelihood of a given state being the next one in the execution process.

The documents [11,10] provide several elegant examples of probabilistic hybrid automata and explain some of their 
intricacies. Their semantics is also discussed. It is given in terms of probabilistic transition systems and it requires some 
preliminary definitions which we will recall next.

Definition 2.10. Consider a probabilistic hybrid automaton. Given a pair (m, v) ∈ Z , define N(m,v) ⊆ DZ as the set such that 
μ ∈ N(m,v) iff there exists a distribution ξ ∈ e(m) that respects the following condition.

Let {(m1, φ1,ϕ1), . . . , (mn, φn,ϕn)} denote the support set of ξ and {v1, . . . , vn} denote the set of valuations such that

(v, vi) |= φi (1 ≤ i ≤ n)

Then for every pair (m′, v ′) ∈ Z we have

μ(m′, v ′) =
∑
i∈I

ξ(mi, φi,ϕi), I = {
1 ≤ i ≤ n | m′ = mi, v ′ = vi, v |= ϕi

}

Intuitively, the summation above is used to add the probabilities of triples in M ×P(X ∪ X ′) ×P(X) that lead to the same 
result. For example, let the current value of a variable x be 10. Then, neglecting modes and guards, give probability 0.5 to 
the assignment x = x + 1 and the same probability to assignment x = 1 + x. Clearly, the probability of x to become 11 is 1.

Remark 2.11. The previous definition is slightly simpler than the one given in [11,10]. This is a consequence of Assump-
tions 2.5 (3). Note also that the definition of probabilistic hybrid automata presented here (Definition 2.9) is slightly more 
general than the usual version, as we allow guards to be probabilistic as well. Finally, probabilistic hybrid automata tradition-
ally come equipped with a colouring map M → C . Such a feature can be accommodated in Definition 2.9 in a straightforward 
manner: recall the embedding

MC � P(M × C)

and observe that a probabilistic hybrid automaton with a colouring map M → C can be seen as a probabilistic hybrid 
automaton whose set of modes is a subset of the cartesian product M × C .

Definition 2.12. A probabilistic hybrid automaton induces a probabilistic transition system

(Z , t : Z × L → PDZ)

such that L = 1 +R≥0 and the map t : Z × L → PDZ is defined as
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t(m, v,∗) = N(m,v)

t(m, v, r) =
{

{δ} if sol(m, v,a) |= inv(m) (a ∈ [0, r])
∅ otherwise

where δ is the Dirac distribution of sol(m, v, r).

Finally, let us recall the standard notion of bisimulation for probabilistic hybrid automata.

Definition 2.13. Consider two arbitrary sets X, Y , a relation R ⊆ X × Y , and two distributions μ1 ∈ DX , μ2 ∈ DY . Define 
the relation �R⊆ DX ×DY as μ1 �R μ2 iff there is a distribution ν ∈D(X × Y ) that respects the following condition: for 
all elements x ∈ X , y ∈ Y ,

ν(x, y) > 0 entails x R y, μ1(x) = ν({x} × Y ), μ2(y) = ν(X × {y})
where for every S ⊆ X × Y the expression ν(S) denotes 

∑
s∈S

ν(s).

Definition 2.14. Consider a probabilistic hybrid automaton and its underlying probabilistic transition system

(Z , t : Z × L → PDZ)

Let � ⊆ Z × Z be an equivalence relation. Then a relation R ⊆ Z × Z is a probabilistic �-bisimulation iff z1 R z2 entails:

1. z1 � z2,
2. if μ1 ∈ t(z1, l) then there exists a distribution μ2 ∈ t(z2, l) such that μ1 �R μ2,
3. if μ2 ∈ t(z2, l) then there exists a distribution μ1 ∈ t(z1, l) such that μ1 �R μ2.

Two states x, y ∈ Z are �-bisimilar (in symbols, x ≡� y) if they are related by a �-bisimulation.

2.2. Coalgebras

The theory of coalgebras [13,21] provides an abstract, categorial framework for state-based transition systems that allows 
to derive notions and results parametric on their transition type. The idea is that a functor F : C → C over a category C, 
typically the category Set (of sets and functions), corresponds to a specific transition type and the arrows typed as X → FX
(F-coalgebras, or simply coalgebras) comprise the corresponding family of state-based transition systems. To be concrete,

Definition 2.15. A functor F : C → C gives rise to the category CoAlg(F) whose objects are F-coalgebras and morphisms 
between two coalgebras (X, c : X → FX), (Y , d : Y → FY ) are C-arrows f : X → Y that make the diagram below commute.

X

c

f
Y

d

FX
F f

FY

Examples 2.16. Here are some classic examples of coalgebras.

1. Coalgebras for the powerset functor P : Set → Set, i.e. P-coalgebras, are Kripke frames and vice-versa.
2. Let L denote a set of symbols and 2 the two-point set {0, 1}. Deterministic automata are (_ × 2)L -coalgebras.
3. Let D : Set → Set be the functor of distributions, which given a set X and a map f : X → Y returns

DX =
{
μ ∈ [0,1]X |

∑
x∈X

μ(x) = 1, supp(μ) finite

}

D f (μ)(y) =
∑

x∈ f −1(y)

μ(x)

D-coalgebras are discrete Markov chains (cf. [22]).

A category of coalgebras brings for free a number of generic, useful constructions (e.g. bisimulation and behaviour). The 
following lines briefly review some of those considered in the paper. For simplicity’s sake this revision adopts Set as the 
working category, but note that most notions presented below can be considered in other categories as well.



JID:TCS AID:11343 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.224; Prn:23/10/2017; 9:53] P.7 (1-30)

R. Neves, L.S. Barbosa / Theoretical Computer Science ••• (••••) •••–••• 7
Definition 2.17. Let F : Set → Set be a functor over Set and consider an F-coalgebra (X, c). We say that an F-coalgebra (S, d)

is a subcoalgebra of (X, c) if there is a morphism (S, d) � (X, c) in CoAlg(F) whose underlying function is an inclusion.

Theorem 2.18. Consider a functor F : Set → Set that preserves intersections (see [13]). The set of subcoalgebras of an F-coalgebra 
(X, c) is closed under intersections, the order being set inclusion.

Thus, assuming that a functor F : Set → Set preserves intersections, for every F-coalgebra (X, c) and state x ∈ X there 
exists a subcoalgebra (x, c) of (X, c) whose carrier contains the state x and is the smallest one among such all subcoalgebras 
of (X, c). We invite the interested reader to read more about subcoalgebras in e.g. [13,21].

Let us now recall the notions of bisimulation and behaviour.

Definition 2.19. Consider two F-coalgebras (X, c), (Y , d) and a relation R ⊆ X × Y . Then R is an F-bisimulation (or simply, 
bisimulation) if there exists a third coalgebra (R, r) that makes the following diagram commute.

X

c

R
π1 π2

r

Y

d

FX FR
Fπ1 Fπ2

FY

We say that two states x ∈ X and y ∈ Y are coalgebraically bisimilar, in symbols x ∼ y, if they are related by some 
F-bisimulation. If R ⊆ X × Y is an equivalence relation and an F-bisimulation then we call it an F-bisimulation equivalence.

Before giving examples of coalgebraic bisimulation let us fix some notation: the so-called Mealy functors

(F(_) × O )I : Set → Set

play an important role in this paper. We denote them simply by FI
O : Set → Set due to their frequent presence. Moreover, 

we use the expression

f : X → Z Y

to denote the curried form of a map f : X × Y → Z .

Remark 2.20. In many cases, currying allows to shift between the algebraic and the coalgebraic perspectives. In particular, 
it allows to see an algebra X × I → X as a coalgebra X → X I and vice-versa.

Consider now an IdI
O -coalgebra (X, 〈nxt,out〉) and a state x ∈ X . Whenever no ambiguities occur, denote the expression 

nxt(x, i) by xi and the expression out(x, i) by x[i].

Example 2.21. Consider two IdI
O -coalgebras (X, c), (Y , d) and a relation R ⊆ X × Y . Then R is a bisimulation iff for all states 

x ∈ X , y ∈ Y the condition x R y entails

x[i] = y[i], xi R yi (i ∈ I)

Example 2.22. Bisimulation for P-coalgebras corresponds exactly to bisimulation for Kripke frames [13, Example 2.1].

Example 2.23. Consider two D-coalgebras (X, c), (Y , d) and a relation R ⊆ X × Y . Then R is a bisimulation iff for all states 
x ∈ X, y ∈ Y the condition x R y entails c(x) �R d(y).

Example 2.24. Consider two PD-coalgebras (X, c), (Y , d) and a relation R ⊆ X × Y . Then R is a bisimulation iff for all states 
x ∈ X, y ∈ Y the condition x R y entails the following conditions.

• If μ1 ∈ c(x) then there exists a distribution μ2 ∈ d(y) such that μ1 �R μ2,
• if μ2 ∈ d(y) then there exists a distribution μ1 ∈ c(x) such that μ1 �R μ2.

Note the similarity between the last example and probabilistic �-bisimulation (Definition 2.14).
The following two propositions are proved in [13].

Proposition 2.25. Let F : Set → Set be a functor that preserves weak pullbacks and consider a morphism f : (X, c) → (Y , d) in 
CoAlg(F) between two F-coalgebras. The graph R ⊆ X × Y of the map f : X → Y is a bisimulation for (X, c) and (Y , d).
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Proposition 2.26. Let R ⊆ X × X be a bisimulation equivalence for a coalgebra (X, c). There exists a coalgebra

X/R → F(X/R)

that makes the diagram below commute with q : X � X/R as the quotient map induced by R.

X

c

q
X/R

FX
Fq

F(X/R)

Let F : Set → Set be a functor over Set. Under mild conditions the category CoAlg(F) has a final object, often called 
the final coalgebra. Unfolding the definition of final object and assuming its existence in CoAlg(F), every F-coalgebra has 
a unique morphism in CoAlg(F) to the final F-coalgebra. Intuitively, the final F-coalgebra collects the behaviours of all 
F-coalgebras and the universal maps associate a state of an F-coalgebra to its behaviour.

Example 2.27. Take the functor (_ × O ) : Set → Set where O is an arbitrary set. The category CoAlg(_ × O ) has a final 
coalgebra

〈tl,hd〉 : Oω → Oω × O

where Oω is the set of infinite lists (streams) whose values are in O , and, for a given list, the map hd : Oω → O selects the 
first element of the list and the map tl : Oω → Oω discards the first element of the list.

This means that for a coalgebra X → X × O the behaviour of each state x ∈ X is an infinite sequence of values in O .

Example 2.28. Take the functor IdI
O : Set → Set where I and O are arbitrary sets. The associated category of coalgebras has 

a final coalgebra

〈sng,apd〉 : O I+ →
(

O × O I+
)I

where I+ is the set of non-empty lists whose values are in I and the maps sng : O I+ × I → O , apd : O I+ × I → O I+ are 
defined by the equations below.

sng( f , i) = f [i], apd( f , i)(is) = f (i : is)

Note that the elements of O I+ can be intuitively seen as trees whose nodes are labelled by elements of O and whose edges 
are labelled by elements of I .

Example 2.29. Recall that deterministic automata are IdL
2-coalgebras. Given an IdL

2-coalgebra (X, c), the behaviour of a state 
x ∈ X corresponds precisely to a set of words of the alphabet L.

In the category Set a functor F : Set → Set admits a final coalgebra whenever it is bounded (cf. [13]). This is not a 
too strong condition. Indeed, it holds for all polynomial functors, the finitary version of the powerset functor (Pω), the 
distribution functor with finite support (D), and all composites made up of these cases. The reader will find in e.g. [13,23,
24] a complete characterisation of the condition of boundedness and related properties.

2.3. Hybrid automata as coalgebras

We will now show that classic hybrid automata are in fact instances of a particular type of coalgebra. We start with a 
simple but useful remark.

Remark 2.30. For every finite set X denote the cartesian product P(X ∪ X ′) × P(X) by Tr. Then note that each hybrid 
automaton induces the composite below.

M × M E? E + 1
〈asg,grd〉+id

Tr + 1

which associates every pair in E with an element of Tr (an assignment and a guard) and every other pair with ‘fail’. We 
denote this composite by

nxt : M × M → Tr + 1



JID:TCS AID:11343 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.224; Prn:23/10/2017; 9:53] P.9 (1-30)

R. Neves, L.S. Barbosa / Theoretical Computer Science ••• (••••) •••–••• 9
Observe that it is an equivalent representation of the transition relation E ⊆ M × M together with the map asg : E →
P(X ′ ∪ X) and the map grd : E → P(X). Moreover, we can embed it into the set of maps P(M × Tr)M as shown by the 
following isomorphisms

(Tr + 1)M×M (PTr)M×M ∼= ((PTr)M)M ∼= P(M × Tr)M

Therefore every hybrid automaton is equivalently represented by a coalgebra typed as

〈nxt,out〉 : M → P(M × Tr) × Ev

where out = 〈dyn, inv〉 : M → Ev, Ev = P(X ∪ Ẋ) × P(X).

Even if quite simple this remark has several useful consequences. For example, it tells that classic hybrid automata can 
be organised in a category of coalgebras, and therefore part of their theory will come for free. Moreover, it provides the 
basis for a systematic, coalgebraic description of hybrid automata and associated variants, in many cases the coalgebraic 
descriptions being simpler than their standard counterparts. For example, probabilistic hybrid automata are simply finite 
coalgebras

M → PD(M × Tr) × Ev

The perspective ‘hybrid automata as coalgebras’ also allows to instantiate previous results on coalgebraic regular expressions
[25] to derive for free a Kleene-like theorem for different variants of hybrid automata.

3. Reactive hybrid automata

This section illustrates the coalgebraic approach by focusing on the notion of reactive hybrid automata, described in [12,
9]. Formally,

Definition 3.1. A reactive hybrid automaton is a finite IdI
Tr×Ev-coalgebra

M → (M × Tr × Ev)I

with I a finite set.

We start by pursuing a Kleene-like theorem for reactive hybrid automata, using document [25] as basis.

3.1. A coalgebraic language

The following definitions and results on semilattices will be useful for this paper.

Definition 3.2. Recall that a join-semilattice (X, ∨) is a set equipped with an idempotent, commutative, and associative 
operation ∨ : X × X → X . It is bounded if there exist two points {⊥, �} ⊆ X such that for any x ∈ X the equations below 
hold.

⊥ ∨ x = x, � ∨ x = �

Definition 3.3. The product (X × Y , ∨X×Y ) of join-semilattices (X, ∨X ), (Y , ∨Y ) is the cartesian product X × Y equipped 
with the map ∨X×Y , given by the commuting diagram below.

(X × Y ) × (X × Y )

∨X×Y

〈π1×π1,π2×π2〉
(X × X) × (Y × Y )

∨X ×∨Y

X × Y

Proposition 3.4. The product of bounded join-semilattices is also bounded.

Remark 3.5. Every set X induces a bounded join-semilattice TX = (X + 2, ∨) such that for any two elements x1, x2 ∈ X

x1 ∨ x2 =
{

x1 if x1 = x2

� otherwise

called the trivial join-semilattice of X .
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We are ready to introduce a grammar of regular expressions for reactive hybrid automata. In order to be more familiar 
to the hybrid systems’ community, this grammar (and associated notions) will be slightly different than the one introduced 
in [25, Chapter 4]. The changes, however, do not require substantial modifications to the theory nor to the underlying proofs 
of most results in the original reference.

Definition 3.6. Let I be a finite set of inputs, and X a finite set of variables. Regular expressions for reactive hybrid automata 
are given by the following grammar:

ε � ∅ | x | i (ε | a) | i ↓ b | ε ⊕ ε | μx. γ

γ � ∅ | i (ε | a) | i ↓ b | γ ⊕ γ | μx. γ (a ∈ T Tr,b ∈ TEv, i ∈ I, x ∈ X)

We say that an expression ε is closed if every variable x in ε is under the scope of the binder μx. The set of closed 
expressions is denoted by Exp. Expressions γ that occur right after a binder μx are called guarded. The set of guarded 
expressions is denoted by Expg .

Intuitively, for an input i the expression i(ε | a) denotes a transition to a state specified by ε . The letter a records the 
assignments and guards associated with the transition. The expression i ↓ b specifies the continuous behaviour associated 
with an input i ∈ I . Finally, the construct μx. introduces recursion and the construct ⊕ works as a conjunction.

Remark 3.7. Assume that the set of inputs I is the singleton set. The grammar above can then be simplified into the 
following one.

ε � ∅ | x | (ε | a) | b | ε ⊕ ε | μx. γ

γ � ∅ | (ε | a) | b | γ ⊕ γ | μx. γ (a ∈ T Tr,b ∈ TEv, x ∈ X)

Example 3.8. Recall the bouncing ball introduced in the previous section. Its behaviour is specified by the expression

μx. (x | a) ⊕ (ṗ = v ∧ v̇ = g, p ≥ 0)

where a is the pair (v′ = v × −0.5, p = 0 ∧ v > 0).

In the following lines we will show that the set of closed expressions Exp is the carrier of a coalgebra

Exp → (Exp × Cmd)I

where Cmd is the product of join-semilattices TTr and TEv. This provides a natural semantics for expressions and allows to 
relate the latter with modes of reactive hybrid automata in regard to coalgebraic bisimilarity.

Consider the composite of maps

X × X = 2
[a,b]

Y

where a, b : 1 → Y are points in Y . Denote this composite by a � = � b and, whenever no ambiguities arise, denote the 
expression (a � = � b) (x, y) simply by a � (x = y) � b. It reads: ‘if x = y return a; otherwise return b’.

Definition 3.9. Define the coalgebra δ : Exp → (Exp × Cmd)I as δ(ε)(i) = (ε[i], εi) where

∅[i] = ⊥
j (ε | a)[i] = (a,⊥) � (i = j) � ⊥
( j ↓ b)[i] = (⊥,b) � (i = j) � ⊥

(ε1 ⊕ ε2)[i] = ε1[i] ∨ ε2[i]
(μx.γ )[i] = (γ [μx.γ /x])[i]

∅i = ∅
( j (ε | a))i = ε � (i = j) � ∅

( j ↓ b)i = ∅
(ε1 ⊕ ε2)i = (ε1)i ⊕ (ε2)i

(μx.γ )i = (γ [μx.γ /x])i

The expression γ [μx.γ /x] denotes syntactic substitution. It reads: ‘in the expression γ replace any free occurrence of x
by μx.γ ’.

Proposition 3.10. The coalgebra δ : Exp → (Exp × Cmd)I is well-defined. More concretely, the equations

(μx.γ )[i] = (γ [μx.γ /x])[i], (μx.γ )i = (γ [μx.γ /x])i

do not entail an infinite number of computations.
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Proof. The proof is analogous to the one in [25, page 55]. Start by considering the function

dpth : Expg →N

that measures the ‘depth’ of guarded expressions:

dpth(∅) = dpth(i(ε | a)) = dpth(i ↓ b) = 0

dpth(γ1 ⊕ γ2) = 1 + max(dpth(γ1),dpth(γ2))

dpth(μx.γ ) = 1 + dpth(γ )

Clearly every expression γ ∈ Expg has finite depth. So to conclude the proof we just need to show that the following 
inequalities hold.

dpth(γ1 ⊕ γ2) > dpth(γ1), dpth(γ1 ⊕ γ2) > dpth(γ2), dpth(μx.γ ) > dpth(γ [μx.γ /x])
The first two cases are obvious. The third case is a direct consequence of the equation

dpth(γ ) = dpth(γ [ε/y])
where ε ∈ Exp is a closed expression and y ∈ X a variable. This can be easily shown by induction on the structure of 
guarded expressions. �

Recall that the functor IdI
Cmd : Set → Set admits a final coalgebra

〈sng,apd〉 : CmdI+ →
(

Cmd × CmdI+
)I

Moreover, note that if I is the singleton set we have a bijection CmdI+ ∼= Cmdω . Hence, for a finite set I , every expression 
ε ∈ Exp can be mapped into its behaviour [ (ε) ] ∈ CmdI+ , and, if I = 1, we have [ (ε) ] ∈ CmdI+ ∼= Cmdω .

Consider the composite of maps,

beh : Exp
[(_)]

Cmd1+ ∼= Cmdω

We will use it to compute the stream associated with the expression from Example 3.8.

Example 3.11. Recall the bouncing ball described in Example 2.3 and the associated expression (Example 3.8)

μx. (x | a) ⊕ (ṗ = v ∧ v̇ = g, p ≥ 0)

The associated stream is simply ((a, b), (a, b), . . . ) where b is the pair (ṗ = v ∧ v̇ = g, p ≥ 0). To see why, abbreviate the 
expression above into μx.ψ . The associated stream is then obtained by unfolding,

beh(μx. ψ) = ((a,⊥) ∨ (⊥,b)) : beh(μx. ψ ⊕ ∅)

= (a,b) : beh(μx. ψ ⊕ ∅)

= ((a,b), (a,b) ∨ ⊥) : beh(μx. ψ ⊕ ∅ ⊕ ∅)

= ((a,b), (a,b)) : beh(μx. ψ ⊕ ∅ ⊕ ∅)

= . . .

= ((a,b), (a,b), (a,b) . . . )

Given the set of expressions Exp, the next natural step is to provide a correspondence between modes of reactive 
hybrid automata and expressions. For this, observe that every reactive hybrid automaton can be interpreted, without loss of 
information, as a finite IdI

Cmd-coalgebra.
Now consider a finite IdI

Cmd-coalgebra M → (M × Cmd)I with M = {m1, . . . , mn}. Then for every mode ml ∈ M define the 
expression

A0
l = μml.

⊕
i∈I

i((ml)i | al) ⊕ i ↓ bl

where (al, bl) = ml[i]. Moreover, define Ak+1
l = Ak

l {Ak
k+1/xk+1} with k ∈ {0, . . . , n − 1} and where {Ak

k+1/xk+1} denotes sub-

stitution without renaming the free variables in Ak
k+1 that become bound due to the substitution. Finally, define εl = An

l . 
Intuitively, this construction eliminates free variables at each iteration, starting with m1 and ending with mn .
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Proposition 3.12. Consider an expression Ak
l with k ∈ {1, . . . , n}. All variables m1 ≤ m ≤ mk are closed in Ak

l .

Proof. The proof proceeds by induction. First, it is easy to see that the variable m1 is closed in A1
l , due to the equation A1

l =
A0

l {A0
1/m1}. So now consider an expression Ak

l . By assumption, all variables m1 ≤ m ≤ mk−1 are closed in the expressions 
Ak−1

k and Ak−1
l , and mk is closed in Ak−1

k by definition. Since the equation

Ak
l = Ak−1

l {Ak−1
k /mk}

holds, all variables m1 ≤ m ≤ mk are closed in Ak
l . �

Example 3.13. Recall Example 2.4, which describes the behaviour of a water tank system. We will compute the expression 
relative to the left mode of the associated hybrid automaton. For this, let a denote the tuple (t′ = 0, t ≥ c), and b1, b2 denote, 
respectively, the tuples(̇

l = 2 ∧ ṫ = 1, t ≤ c
)
,

(̇
l = 0 ∧ ṫ = 1, t ≤ c

)
We then compute,

A0
1 = μm1.(m2 | a) ⊕ b1

A0
2 = μm2.(m1 | a) ⊕ b2

A1
1 = A0

1{A0
1/m1} = A0

1

A1
2 = A0

2{A0
1/m1}

A2
1 = A0

1{A1
2/m2}

A2
2 = A1

2{A1
2/m2} = A1

2

Hence, the left mode of the hybrid automaton (i.e. A2
1) corresponds to the expression below.

μm1. (ε | a) ⊕ b1, ε = μm2. (μm1. (m2 | a) ⊕ b1 | a) ⊕ b2

We showed how to generate expressions from modes of reactive hybrid automata. A further result to pursue is to show 
that a given mode and the corresponding expression are coalgebraically bisimilar.

Remark 3.14. First note that for every expression ε ∈ Exp we have

ε ∼ ε ⊕ ∅
One can then generate a bisimulation equivalence R from the set of pairs {(ε, ε ⊕ ∅) | ε ∈ Exp}. As discussed in Proposi-
tion 2.26, this induces an obvious quotient map [_] : Exp � Exp/R and corresponding coalgebra

Exp/R → (Exp/R × Cmd)I

that make the diagram below commute.

Exp

δ

[_]
Exp/R

(Exp × Cmd)I
([_]×id)I

(Exp/R × Cmd)I

In order to avoid a burdened notation, we will use the coalgebra of expressions δ : Exp → (Exp × Cmd)I as if it were the 
‘quotient’ coalgebra obtained by this process.

Theorem 3.15 (Kleene theorem I). Let ml ∈ M be the mode of a reactive hybrid automaton (M, c) and εl the associated expression. 
These states are coalgebraically bisimilar, i.e. ml ∼ εl .

Proof. We will show that the map f : M → Exp that associates each mode with its expression makes the diagram below 
commute.

M

c

f
Exp

δ

(M × Cmd)I
( f ×id)I

(Exp × Cmd)I

After this we simply apply Proposition 2.25 to finish the proof.
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Clearly for every input i ∈ I , the equation ml[i] = εl[i] holds. Therefore, it remains to show that equation (ml)i = (εl)i
also holds. So we reason,

(An
l )i

= ((μml.ψl){A0
1/m1} . . . {An−1

n /mn})i

{Definition of (_)i and definition of ψl}
= (ψl{A0

1/m1} . . . {Al−2
l−1/ml−1}{Al

l+1/ml+1} . . . {An−1
n /mn})i[An

l /ml]
{Definition of ψl and An

l has no free variables}
= (ψl{A0

1/m1} . . . {Al−2
l−1/ml−1}[An

l /ml]{Al
l+1/ml+1} . . . {An−1

n /mn})i

{An
l has no free variables}

= (ψl{A0
1/m1} . . . {Al−2

l−1/ml−1}{An
l /ml}{Al

l+1/ml+1} . . . {An−1
n /mn})i

{(∗)}
= (ψl{A0

1/m1} . . . {Al−2
l−1/ml−1}{Al−1

l /ml}{Al
l+1/ml+1} . . . {An−1

n /mn})i

{Definition of (_)i and definition of ψl}
= Ak−1

k {Ak
k+1/xk+1} . . . {An−1

n /xn}
= An

k

The step (∗) relies on the equality

ϕ{B{C1/y1} . . . {Cn/yn}/x}{C1/y1} . . . {Cn/yn} = ϕ{B/x}{C1/y1} . . . {Cn/yn}
which always holds if ϕ does not bind the variables y1, . . . , yn . Actually, note that Ak−1

k can only bind the variables m1 ≤
m ≤ mk . �

Let us now see how to generate a reactive hybrid automaton from an expression ε ∈ Exp (the former being here inter-
preted as an IdI

Cmd-coalgebra and vice-versa). Actually, we already know that there exists a smallest subcoalgebra (ε, δ) of 
(Exp, δ) whose carrier contains the expression ε . Unfortunately, as discussed in [25], this coalgebra is not always finite. To 
overcome this we need to further quotient the coalgebra

δ : Exp → (Exp × Cmd)I

with the following equivalences.

(ε1 ⊕ ε2) ⊕ ε3 ≡ ε1 ⊕ (ε2 ⊕ ε3)

ε1 ⊕ ε2 ≡ ε2 ⊕ ε1

ε ⊕ ε ≡ ε

Again, we have a quotient map [_] : Exp � Exp/R and a coalgebra δ : Exp/R → (Exp/R × Cmd)I that make the diagram 
below commute, where, as before, the symbol δ is overloaded in a slight abuse of notation.

Exp

δ

[_]
Exp/R

δ

(Exp × Cmd)I
([_]×id)I

(Exp/R × Cmd)I

We need to prove that for every expression ε ∈ Exp the subcoalgebra ([ε], δ) of (Exp/R, δ) is finite. For this, we will show 
that there exists a finite set C(ε) that contains [ε] and that forms a subcoalgebra of (Exp/R, δ). By the definition of smallest 
subcoalgebra, the subcoalgebra ([ε], δ) must thus be finite.

Definition 3.16. Consider an expression ε ∈ Exp. Let cl(ε) be the smallest set generated by the following equations, with a 
slight abuse of notation in the last one

cl(x) = {x}
cl(∅) = {∅}

cl(i(ε | a)) = cl(ε) ∪ {i(ε | a)}

cl(i ↓ b) = {i ↓ b}
cl(ε1 ⊕ ε2) = cl(ε1) ∪ cl(ε2) ∪ {ε1 ⊕ ε2}

cl(μx.γ ) = cl(γ )[μx.γ /x] ∪ {μx.γ }
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Define

C(ε) = { [ε1 ⊕ · · · ⊕ εk] | ε1, . . . , εk ∈ cl(ε), and ε1, . . . , εk all distinct }
with [∅] as the empty sum.

Theorem 3.17. For every ε ∈ Exp the associated set C(ε) is finite and forms a subcoalgebra of (Exp/R, δ).

Proof. Since the set cl(ε) is finite the set C(ε) must be finite as well. In order to show that the set C(ε) forms a subcoalgebra 
of (Exp/R, δ) we will prove that

if [κ] ∈ C(ε) then [κi] ∈ C(ε).

This result follows by induction on the structure of closed expressions. In particular,

• [∅i] = [(a ↓ b)i] = [∅] ∈ C(ε), by definition of C(ε).
• If [i(ψ | a)] ∈ C(ε) then i(ψ | a) ∈ cl(ε) and therefore [ψ] ∈ C(ε);
• If [κ1 ⊕ κ2] ∈ C(ε) then by the induction hypothesis [κ1i], [κ2i] ∈ C(ε). We may assume that κ1i = [ψ1 ⊕ · · · ⊕ ψk], 

κ2i = [ψ ′
1 ⊕ · · · ⊕ ψ ′

l ] and see that [ψ1 ⊕ · · · ⊕ ψk ⊕ ψ ′
1 ⊕ · · · ⊕ ψ ′

l ] ∈ C(ε).
• If [μx.γ ] ∈ C(ε) then, by definition of cl(ε), [γ [μx.γ /x]] ∈ C(ε). Using the induction hypothesis [(γ [μx.γ /x])i] ∈

C(ε). �
Theorem 3.18 (Kleene Theorem II). Let ε ∈ Exp be an expression. Then there is a finite IdI

Cmd-coalgebra ([ε], δ) with [ε] ∼ ε .

Example 3.19. Recall Example 2.3, which describes the behaviour of a bouncing ball. Recall also the associated expression

μx. (x | c) ⊕ (ṗ = v ∧ v̇ = g, p ≥ 0)

Abbreviating this expression to μx.ψ , the subcoalgebra ([μx.ψ], δ) is the hybrid automaton below on the left, or more 
explicitly, the reactive hybrid automaton below on the right.

μx.ψ
ṗ = v
v̇ = g
p ≥ 0

p = 0 ∧ v > 0,
v′ = v × −0.5

Example 3.20. Let us now recall Example 2.4 which describes the behaviour of a water tank system using a hybrid automa-
ton. In Example 3.13 we saw that the expression below specifies the left mode of the automaton.

μm1. (ε | a) ⊕ b1, ε = μm2. (μm1. (m2 | a) ⊕ b1 | a) ⊕ b2

To keep the notation simple, abbreviate expression μm1. (ε | a) ⊕ b1 to μm1. ψ1, expression ε to μm2. ψ2, and expression 
μm1. (m2 | a) ⊕ b1 to μm1.ψ3. The subcoalgebra ([μm1.ψ1], δ) is the hybrid automaton below.

μm1.ψ1 μm2.ψ2 μm1.ψ3

The attentive reader may notice that in Example 2.4 we specified the water tank system using a hybrid automaton with 
two modes, but somehow we ended up with three here. This is because the subcoalgebra ([μm1.ψ1], δ) is not necessarily 
minimal. There exist however, several works on minimisation of coalgebras (e.g. [26,24,27,28]) that can be used to obtain a 
better result. For example, it is well-known that every IdI

Cmd-coalgebra (X, c) has a minimal coalgebra (Y , d) which results 
from the factorisation of the universal map X → CmdI+ , as illustrated in the diagram below (see e.g. [24]).

X

c

Y

d

CmdI+

〈sng,apd〉

(X × Cmd)I (Y × Cmd)I (CmdI+ × Cmd)I

The subcoalgebra ([μm1.ψ1], δ) can therefore be turned into a minimal coalgebra. For this particular case, one just needs to 
show that

μm1. ψ1 ∼ μm1. ψ3

and collapse both modes by identifying them (recall Proposition 2.26).
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3.2. A coalgebraic semantics

Recall that a reactive hybrid automaton is a finite IdI
Tr×Ev-coalgebra (M, c). This entails that for each mode m ∈ M there is 

an associated behaviour [(m)] ∈ (Tr × Ev)I+ . However, calling an element of the set (Tr × Ev)I+ ‘behaviour’ may be somewhat 
misleading, as the elements of Tr × Ev are basically syntactic constructs — for this reason we say that [(m)] is the syntactic 
behaviour of m.

Actually, the observable behaviour of hybrid systems traditionally comprises continuous evolutions intercalated with 
variable resets. So, building on our previous work [12], the current subsection shows how to systematically compute such 
a behaviour from reactive hybrid automata. More generally, assuming the four conditions in Assumptions 2.5, we prove the 
existence of a functor between a category of reactive hybrid automata and a category that suitably captures their semantics 
in terms of continuous evolutions and discrete jumps. We then study some properties of this functor, compare it with the 
traditional semantics of hybrid automata, and use it in the analysis of hybrid systems.

Definition 3.21 ([12,14]). Let O be a topological space and U : Top → Set the forgetful functor from Top to Set. Then define 
HO as the set

U

⎛
⎝ ∐

d∈R≥0

O [0,d]
⎞
⎠

where [0, d] is equipped with the subspace topology induced by the Euclidean one. Intuitively, the set HO is the sum of all 
continuous evolutions with a finite duration.

Note that for every topological space O there is a map lst : HO  → U O that returns the last point of a given evolution.

Remark 3.22. Since reactive hybrid automata accommodate a notion of input, the conditions in Assumptions 2.5 need to be 
slightly generalised so that this dimension can be taken into account. In most cases the generalisation is quite straightfor-
ward, except perhaps for case of condition (2) in Assumptions 2.5, which we will present below.

Consider a reactive hybrid automaton with a finite set of real-valued variables X = {x1, . . . , xn} and denote the corre-
sponding set of valuations Rn(∼= R

X ) by V . As discussed in Assumptions 2.5 (1), we may assume the existence of a map

sol : M × V × I ×R≥0 → V

The assumption of time-determinism ensures that for each pair (m, v, i) ∈ M × V × I there exists a continuous map

sol(m, v, i,−) :R≥0 → V

whose domain can be restricted to a specific interval [0, d] ⊆ R≥0. This canonically induces a map

sol : M × V × I →HV

Whenever no ambiguities arise we drop the overline in sol. Moreover, the assumption on deterministic assignments induces 
a map

jmp : M × V × I → M × V

defined as

jmp(m, v, i) = (E(m, i),asg(m, i)(u)) , u = lst · sol (m, v, i)

Note that deterministic assignments can be seen as maps V → V . Therefore, with a slight abuse in notation, every pair 
(m, i) ∈ M × I corresponds to a function asg(m, i) : V → V .

Definition 3.23. Consider a reactive hybrid automaton (M, c). A state (m, v) ∈ M × V is valid if

v |= inv(m, i) (i ∈ I)

Finally, we generalise Assumptions 2.5 (2).

Definition 3.24. A reactive hybrid automaton (M, c) has no invalid jumps if the map

Z × I M × V × I
jmp

M × V

can always be factorised through the obvious inclusion map Z � M × V . Diagrammatically,



JID:TCS AID:11343 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.224; Prn:23/10/2017; 9:53] P.16 (1-30)

16 R. Neves, L.S. Barbosa / Theoretical Computer Science ••• (••••) •••–•••
M × V × I
jmp

M × V

Z × I Z

We will refer to the generalisation above of Assumptions 2.5 (2) and the obvious generalisations of Assumptions 2.5 (1,3,4) 
as generalised Assumptions 2.5.

We are now ready to introduce a functorial semantics for reactive hybrid automata. For this, let SimpHat(IdI
Tr×Ev) be the 

full subcategory of CoAlg(IdI
Tr×Ev) whose objects respect the generalised Assumptions 2.5.

Proposition 3.25. Consider two coalgebras (M, c), (N, d) ∈ SimpHat(IdI
Tr×Ev) and two modes m ∈ M, n ∈ N such that m ∼ n. Then 

we have

(m, v) ∈ Z(M,c) ≡ (n, v) ∈ Z(N,d)

Proof.

(m, v) ∈ Z(M,c)

≡ v |= inv(m, i) (i ∈ I) (Definition of Z(M,c))

≡ v |= inv(n, i) (i ∈ I) (m ∼ n)

≡ (n, v) ∈ Z(N,d) (Definition of Z(N,d)) �
Theorem 3.26. There exists a ‘semantics’ functor

S : SimpHat
(

IdI
Tr×Ev

)
→ CoAlg

(
IdI

HV

)
defined by the mappings

S(M, c) = (Z ,Sc), S f = f × id

and the commuting diagram below.

M × V × I
〈jmp,sol〉

M × V ×HV

Z × I
Sc

Z ×HV

Proof. The proof is a direct consequence of Theorem 4.7 below. �
Intuitively, every reactive hybrid automaton (M, c) ∈ SimpHat(IdI

Tr×Ev) induces an IdI
HV -coalgebra

〈jmp, sol〉 : Z → (Z ×HV )I

that encodes the former’s behaviour: each state z ∈ Z and input i ∈ I give rise to an observable, continuous evolution (an 
element of HV ) and an internal, discrete transition to the next state. Let us illustrate this idea with a few examples. To 
keep them simple and illustrative assume that I = 1.

Example 3.27. Recall the tank-and-valve system described in Example 2.4 and denote the corresponding hybrid automaton 
by (M, c) ∈ SimpHat(IdI

Tr×Ev). We then have Sc : Z → Z ×HV defined as

Sc (m1, l, t) = ((m2, l + 2c,0), f ), Sc (m2, l, t) = ((m1, l,0), g)

with the functions f , g : [0, c] →R
2 given by

f (r) = (l + 2r, t + r), g(r) = (l, t + r).

The maps f , g : [0, c] →R
2 encode the evolution of the water level and time.



JID:TCS AID:11343 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.224; Prn:23/10/2017; 9:53] P.17 (1-30)

R. Neves, L.S. Barbosa / Theoretical Computer Science ••• (••••) •••–••• 17
Example 3.28. Consider again the bouncing ball from Example 2.3. Denoting the corresponding hybrid automaton by (M, c) ∈
SimpHat(IdI

Tr×Ev), we have Sc : Z → Z ×HV given by

Sc (m, p, v) = (
(m,0, v ′),mov(p, v,−)

)
where the value v ′ corresponds to the (abrupt) change of velocity due to the collision with the ground, function 
mov(p, v, −) : [0, d] → R describes the ball’s movement and velocity between jumps, and d denotes the time that the 
ball takes to reach the ground from the state (p, v). In symbols,

v ′ = (v + gd) × −0.5, mov(p, v, t) = (p + vt + 1
2 gt2, v + gt), d =

√
2gp+v2+v

g .

Example 3.29. Suppose also that one is able to change the dampening factor of the ball at each bounce. This gives rise to 
an obvious reactive hybrid automaton

(M, c) : M → (M × Tr × Ev)I

with I (now not necessarily 1) as the set of possible dampening factors. We then have

Sc (m, p, v, i) = (
(m,0, v ′),mov(p, v,−)

)
where the value d and the map mov(p, v, −) : [0, d] →R are defined as before, and the change of the ball’s velocity after a 
collision is expressed by the equation below.

v ′ = (v + gd) × −i

As mentioned in the previous subsection, each IdI
Tr×Ev-coalgebra (X, c) with I = 1 yields a map beh : Z → (HV )1+ ∼=

(HV )ω which for a given z ∈ Z computes the stream of (observable) continuous evolutions [ (z) ], as illustrated in the follow-
ing example.

Example 3.30. Consider again the bouncing ball system discussed in Examples 2.3 and 3.28. Hiding the evolutions concern-
ing the ball’s velocity, to keep our illustration simple, the first three elements of beh(m, 5, 0) are shown in the following 
plots.
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Example 3.31. Recall from Example 3.29 the bouncing ball that allows to change its dampening factor at each bounce and 
the corresponding reactive hybrid automaton (M, c). We can use the universal map [ (_) ] : Z → (Tr × Ev)I+ to compute the 
behaviour of this system. For example, expressions [ ((m, 5, 0)) ] [1.5], [ ((m, 5, 0)) ] [1.5, 0.7], and [ ((m, 5, 0)) ] [1.5, 0.7, 0.7] yield 
the following sequence of plots.
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[((m,5,0))] [1.5]
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[((m,5,0))] [1.5,0.7]
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[((m,5,0))] [1.5,0.7,0.7]

Interestingly, and in contrast to the traditional semantics of hybrid automata (Definition 2.6), the coalgebraic semantics, 
illustrated in the examples above, puts a clear frontier between the discrete domain and the continuous one: the elements 
of HV live in the continuous domain whereas the structures (HV )ω and (HV )I+ clearly possess a discrete nature.

Moreover, recall that the coalgebraic semantics was obtained in a completely canonical manner and, as discussed in the 
previous section, bears a well-known relationship with coalgebraic bisimulation. We will take advantage of this knowledge 
in the ensuing section.
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3.3. Bisimulation

Recall that the coalgebraic definition of bisimulation (see Definition 2.19) is parametrised by a functor F : Set → Set. 
Thus, taking the functor IdI

Tr×Ev : Set → Set, a relation R ⊆ X × Y between two IdI
Tr×Ev-coalgebras (or two reactive hybrid 

automata) (X, c) and (Y , d) is a bisimulation if there is a third coalgebra (R, r) that makes the diagram below commute.

X

c

R
π1 π2

r

Y

d

(X × (Tr × Ev))I (R × (Tr × Ev))I
(π1×id)I (π2×id)I

(Y × (Tr × Ev))I

In other words, the relation R ⊆ X × Y is a bisimulation if x R y entails

x[i] = y[i] and xi R yi (i ∈ I)

In the context of hybrid automata, however, this notion of bisimulation (which we call syntactic bisimulation) is too strong. 
For example, in the bouncing ball system (Example 2.3) to replace the differential equation ṗ = v by ṗ = v +0 yields a totally 
different hybrid automaton in the sense that the mode of the original one is not coalgebraically bisimilar to the mode of the 
modified version. Nevertheless, we know that at the semantic level both modes will produce exactly the same behaviour.

The reason is that the notion of bisimulation above is anchored to the syntactic level rather than to the semantic one. 
Fortunately, we know that the category CoAlg(IdI

HV ) also carries a notion of bisimulation (see Definition 2.19) and that 
there exists a functor

S : SimpHat
(

IdI
Tr×Ev

)
→ CoAlg

(
IdI

HV

)
that maps each reactive hybrid automaton to its corresponding model. Thus,

Definition 3.32. Consider two reactive hybrid automata (M, c), (N, d) ∈ SimpHat(IdI
Tr×Ev). A relation R ⊆ Z(M,c) × Z(N,d) is a 

semantic bisimulation (or simply, a bisimulation if no ambiguities occur) for S(M, c) and S(N, d) iff z1 R z2 entails

sol(M,c)(z1, i) = sol(N,d)(z2, i), jmp(M,c)(z1, i) R jmp(N,d)(z2, i) (i ∈ I)

The following properties involve the semantics functor and the two types of bisimulation for reactive hybrid automata 
discussed above.

Proposition 3.33. Consider two reactive hybrid automata (X, c) ∈ SimpHat(IdI
Tr×Ev), (Y , d) ∈ CoAlg(IdI

Tr×Ev) and two modes x ∈ X, 
y ∈ Y that are coalgebraically bisimilar x ∼ y. Then the mode y respects the generalised Assumptions 2.5.

Proof. We analyse each assumption in detail.

1. We need to show that dyn(y, i) has exactly one solution. For this, note that x ∼ y and therefore dyn(x, i) = dyn(y, i) for 
every i ∈ I . Hence, by assumption, dyn(y, i) has exactly one solution.

2. In order to see that for every i ∈ I the assignment asg(y, i) is deterministic proceed as above.
3. We focus now on time-determinism. The duration associated with each pair (x, v) ∈ Z(X,c) and input i ∈ I depends solely 

on the values dyn(x, i), grd(x, i), and inv(x, i). By assumption, these three values must be equal to dyn(y, i), grd(y, i), 
and inv(y, i), respectively. Moreover, the condition

(x, v) ∈ Z(X,c) ≡ (y, v) ∈ Z(Y ,d)

holds. For every pair (y, v) ∈ Z(Y ,d) the state (x, v) ∈ Z(X,c) is time-deterministic which then entails that (y, v) is 
time-deterministic as well.

4. Finally, a similar argument shows that there are no invalid jumps. �
Corollary 3.34. Consider two reactive hybrid automata (X, c) ∈ CoAlg(IdI

Tr×Ev) and (Y , d) ∈ SimpHat(IdI
Tr×Ev). If there is a morphism 

(X, c) → (Y , d) in CoAlg(IdI
Tr×Ev) then (X, c) ∈ SimpHat(IdI

Tr×Ev).

Corollary 3.35. Consider two reactive hybrid automata (X, c) ∈ SimpHat(IdI
Tr×Ev), (Y , d) ∈ CoAlg(IdI

Tr×Ev). If there is surjective mor-

phism (X, c) � (Y , d) in CoAlg(IdI
Tr×Ev) then (Y , d) ∈ SimpHat(IdI

Tr×Ev).

Theorem 3.36. Consider two reactive hybrid automata (M, c), (N, d) ∈ SimpHat(IdI
Tr×Ev) two modes m ∈ M, n ∈ N that are coalge-

braically bisimilar m ∼ n and a state (m, v) ∈ Z(M,c) . The property (m, v) ∼ (n, v) holds.
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Proof. Assume that m ∼ n. We then have a span

(R, r)
π1 π2

(M, c) (N,d)

in the category SimpHat(IdI
Tr×Ev) by Proposition 3.25 and Corollary 3.34. The functor

S : SimpHat
(

IdI
Tr×Ev

)
→ CoAlg

(
IdI

HV

)
maps it into the span

S(R, r)
π1×id π2×id

S(M, c) S(N,d)

in CoAlg(IdI
Tr×Ev). Applying Proposition 2.25, we obtain

(m, v) ∼ ((m,n), v) ∼ (n, v) �
Theorem 3.37 (Kleene Theorem III). Let (M, c) ∈ SimpHat(IdI

Tr×Ev) be a reactive hybrid automaton, consider a mode m ∈ M and 
associated expression ε . Then the diagram below commutes

M

c

f
Exp

δ

(M × Cmd)I
( f ×id)I

(Exp × Cmd)I

and f (m) = ε . Moreover, we have the factorisation

M

c

f
f [M]

d

Exp

δ

(M × Cmd)I
( f ×id)I

( f [M] × Cmd)I (Exp × Cmd)I

and the following conditions hold: ε ∈ f [M], ( f [M], d) ∈ SimpHat(IdI
Tr×Ev). Finally, for every state (m, v) ∈ Z we have

(m, v) ∼ (ε, v)

Proof. Direct application of Corollary 3.35 and Theorem 3.36. �
Corollary 3.38. Let (M, c) ∈ SimpHat(IdI

Tr×Ev) be a reactive hybrid automaton. For every state (m, v) ∈ Z the following property holds

(m, v) ∼ ([(m)](M,c), v)

Intuitively, this last corollary states that to compute the behaviour of a specific mode one can either move directly 
to CoAlg(IdI

HV ) and compute its behaviour there, or first compute its syntactic behaviour [ (m) ](M,c) and then move to 
CoAlg(IdI

HV ) to compute the behaviour of [ (m) ](M,c) .
Using standard coalgebraic definitions, we introduced two notions of bisimulation for reactive hybrid automata, one at 

the syntactic level and other at the semantic one. However, the standard notion of bisimulation for hybrid automata differs 
from these two. In the next section we show how to frame coalgebraically the standard notion as well.

4. Going generic

4.1. The general picture

In the previous section we studied reactive hybrid automata from a coalgebraic perspective. We saw that their discrete (or 
internal) transition type reflects a deterministic setting and showed that discrete transitions can be seen as state transitions 
of a computational device. Digital controllers, however, produce far more complex behaviours than what the deterministic 
setting allows for, often combining nondeterministic, or probabilistic features, among other things. Naturally, this calls for 
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Table 1
Possible variants for F.

Coalgebra Functor F Behaviour

M → (M × Tr × Ev)I Id X = X Deterministic [12,9]
M → (M(M × Tr) × Ev)I M X = X + 1 Faulty
M → (�(M × Tr) × Ev)I � X = X × X Replicating
M → (P(M × Tr) × Ev)I P X = {A ⊆ X} Non-deterministic [5]
M → (D(M × Tr) × Ev)I D X ⊆ {μ ∈ [0,1]X |μ[X] = 1} Probabilistic [11]
M → (PD(M × Tr) × Ev)I PD — Segala [11]
M → (W(M × Tr) × Ev)I W X ⊆ S X . S is a semiring. Weighted [29]

variations in the definition of hybrid automata and, consequently, for a more general coalgebraic semantics than the one we 
have pursued in the paper so far.

Therefore, in this section we consider FI
Ev · (_ × Tr)-coalgebras typed as

〈nxt,out〉 : M → (F(M × Tr) × Ev)I

where the functor F : Set → Set determines a discrete transition type and the set I denotes an input set. Technically, such 
arrows can be decomposed into

nxt : M × I → F(M × Tr), out : M × I → Ev

This makes clear that variations in the functor F : Set → Set correspond to variations in relation E and functions asg and grd
(recall Definition 2.2). As we will see in the following subsection, such variations dictate how a system (discretely) jumps to 
a next state.

Table 1 lists functors F : Set → Set and associated variants of hybrid automata. Some of the latter are already well known 
(e.g. the non-deterministic case in row 4, if I = 1), and others are new (e.g. the replicating case in row 3). This illustrates 
the high level of genericity that coalgebras bring to the theory of hybrid automata: specific types of automata are captured 
in specific instantiations of F : Set → Set and global constructions and results are defined parametric on F once and for all.

Faulty and replicating behaviour
The Maybe functor M : Set → Set (second row) brings faulty behaviour into the scene by giving rise to finite coalgebras

M → (M(M × Tr) × Ev)I

which we call faulty hybrid automata. Intuitively, these automata can terminate an execution at a discrete transition, as a 
response, for instance, to a program exception or loss of information.

The diagonal functor � : Set → Set yields finite coalgebras typed as

M → (�(M × Tr) × Ev)I

These behave like reactive hybrid automata (see Section 3), but a discrete transition forces a jump to two different places 
at the same time. The intuition is that such systems replicate themselves at each discrete transition. For example, in this 
context the bouncing ball would turn into two at each bounce.

From a strict computer science point of view this kind of behaviour may seem strange, but in other areas it is quite 
common: e.g. in biology, cells indeed replicate when a specific saturation point is reached. We call this variant of hybrid 
automata replicating hybrid automata

Nondeterministic, probabilistic, and Segala behaviour
The powerset functor P : Set → Set leads to finite coalgebras typed as

M → (P(M × Tr) × Ev)I

which clearly subsume classic hybrid automata (see Section 2). Next, the functor D : Set → Set leads to Markov hybrid 
automata, or more concretely finite coalgebras typed as

M → (D(M × Tr) × Ev)I

Similarly to probabilistic hybrid automata (see Section 2), they allow to consider computational devices with probabilistic 
features. On the same note, observe that finite coalgebras typed as

M → (PD(M × Tr) × Ev)I

subsume classic probabilistic hybrid automata.
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Weighted behaviour
Consider a semiring S and a functor W : Set → Set such that for every set X and map f : X → Y the following equations 

hold.

WX =
{
μ ∈ S X | supp(μ) finite

}
, W f (μ)(y) =

∑
x∈ f −1(y)

μ(x)

This functor yields finite coalgebras typed as

M → (W(M × Tr) × Ev)I

which we call weighted hybrid automata. Such automata decorate each edge, associated guard and assignment, with a cost. 
This is often a relevant feature which has been discussed in the hybrid systems’ domain several times (e.g. [29,30]). In the 
case of the bouncing ball, for example, one may need to consider the cost of throwing the ball up.

4.2. A generic semantics

We will now introduce a generic semantics for hybrid automata that is parametric on the type of their discrete transi-
tions. We start by mentioning some useful properties.

Proposition 4.1. Every functor F : Set → Set has two natural transformations

τ : F × Id → F(Id × Id), υ : Id × F → F(Id × Id)

defined as

τX,Y (a,b) = F(_,b) (a) , υX,Y (a,b) = F(a, _) (b) (X, Y ∈ Set)

Proposition 4.2. Consider a functor F : Set → Set, a non-empty set X, and an injective map f : X � Y . The map F f : FX → FY is 
injective as well.

Proof. See for example [13]. �
We will also use the natural transformation

α : (Id × Id) × Id → Id × (Id × Id)

with Id : Set → Set as the identity functor over Set.
Let us focus on the conditions enumerated in Assumptions 2.5, in particular the notion of valid state and the notion of 

invalid jump.

Definition 4.3. Consider an F-hybrid automaton (M, c). We say that a state (m, v) ∈ M × V is valid if the condition below 
holds.

v |= inv(m, i) (i ∈ I)

Consider an FI
Ev · (_ × Tr)-coalgebra (M, 〈nxt,out〉). It induces a map

jmp : M × V × I → F(M × V )

given by the commuting square below.

F(M × Tr) × V
Fα·τM,Tr,V

F(M × (Tr × V ))

F(id ×ev)

(M × V ) × I

〈nxt ·(π1×id),lst·sol〉

jmp
F(M × V )

where ev : Tr × V → V is the map that given an assignment, a guard, and a value v ∈ V , it returns the result of the 
application of the assignment to v . Note that in the definition of jmp we are implicitly using the assumptions that impose 
deterministic assignments, unique solutions, and time-determinism.
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Definition 4.4. An F-hybrid automaton (M, c) has no invalid jumps if the map

Z × I M × V × I
jmp

M × V

can always be factorised through the obvious map FZ � F(M × V ). Diagrammatically,

M × V × I
jmp

F(M × V )

Z × I FZ

At first sight the function ev : Tr × V → V may seem rather strange, because it applies the assignment given as input 
independently of the guard that is also given as input. This is actually a consequence of time-determinism (see Assump-
tions 2.5 (4)). Recall that, according to this assumption, at the end of the duration associated with a state all corresponding 
guards must be enabled. For example, in the case of replicating hybrid automata this notion of time-determinism tells that 
at the end of the duration of a state the two corresponding guards must be enabled; and similarly for reactive hybrid au-
tomata. In the case of Markov hybrid automata time-determinism tells that at the end of the duration of a state all guards 
in the support of the associated distribution must be enabled.

Remark 4.5. In some settings such a notion of time-determinism is too strong, a prime example being the non-deterministic 
case (P). In the conclusions we will also show that one may consider instead a map

ev : Tr × V → FV

for a discrete transition type F : Set → Set. This allows to relax the condition on time-determinism and deterministic as-
signments, but at the cost of putting assumptions on the functor F : Set → Set that are not always met.

Let F : Set → Set be a functor and denote by SimpHat(FI
Ev · (_ × Tr)) the full subcategory of CoAlg(FI

Ev · (_ × Tr)) whose 
objects respect the generalised Assumptions 2.5.

Remark 4.6. Take a coalgebra (M, c) ∈ SimpHat(FI
Ev · (_ × Tr)). Note that the solution map sol : Z → HV can be seen as a 

composite of maps as shown by the diagram below

(M × I) × V c×id
(F(M × Tr) × Ev) × V

(Fπ2×id)×id

Z × I
sol

〈π1×id,π2·π1〉

HV FTr × Ev × Vevo

where evo : FTr × Ev × V →HV is the function that calculates evolutions from triples in FTr × Ev × V . Recall that the latter 
is given by the assumption on unique solutions and the assumption on time-determinism.

Theorem 4.7. There exists a semantics functor

S : SimpHat
(

FI
Ev · (_ × Tr)

)
→ CoAlg

(
FI
HV

)
defined by the mappings

S
(
M, c

) =
(

Z ,Sc
)

, S f = f × id

and the commuting diagram below

M × V × I
〈jmp,sol〉

F (M × V ) ×HV

Z × I
Sc

F Z ×HV

where FZ ×HV � F(M × V ) ×HV is the obvious inclusion map.

Proof. It is straightforward to show that the construction above preserves identity maps and distributes over composition. 
So it remains to show that it sends morphisms in SimpHat(FI

Ev · (_ × Tr)) to morphisms in CoAlg(FI
HV ).

Assume that we have a morphism f : (M, c) → (N, d) in SimpHat(FI · (_ × Tr)). We will show that the diagram
Ev
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Z(M,c) × I
( f ×id)×id

Sc

Z
(N,d)

× I

Sd

Z(M,c) ×HV
( f ×id)×id

Z
(N,d)

×HV

commutes by showing that the diagrams below commute.

Z(M,c) × I
( f ×id)×id

jmp(M,c) (1)

Z
(N,d)

× I

jmp
(N,d)

Z(M,c) f ×id
Z

(N,d)

Z(M,c) × I
( f ×id)×id

sol(M,c) (2)

Z
(N,d)

× I

sol
(N,d)

HV
id

HV

Recall Remark 4.6. Then, note that, by assumption, the diagram below commutes. This entails the commutativity of the 
diagram above in the right (2).

Z(M,c) × I

( f ×id)×id

〈π1×id,π2·π1〉
(M × I) × V

((Fπ2×id)·c)×id

( f ×id)×id

FTr × Ev × V

id

Z
(N,d)

× I 〈π1×id,π2·π1〉 (N × I) × V
((Fπ2×id)·d)×id

FTr × Ev × V evo HV

Finally, by assumption and by naturality, the diagram below must commute

Z(M,c) × I
〈c·(π1×id),π2·π1〉

( f ×id)×id

F(M × Tr) × V

F( f ×id)×id

Fα·τM,Tr,V
F(M × (Tr × V ))

F(id ×ev)

F( f ×(id × id))

F(M × V )

F( f ×id)

Z
(N,d)

× I 〈c·(π1×id),π2·π1〉 F(N × Tr) × V
Fα·τN,Tr,V

F(N × (Tr × V ))
F(id ×ev)

F(N × V )

This entails the commutativity of the diagram above in the left (1). �
Consider a hybrid automaton (M, c) ∈ SimpHat(FI

Ev · (_ × Tr)) and a pair ((m, v), i) ∈ Z × I . We denote the map 
〈m, sol(m, v, i)〉 : [0, d] → Z simply by ev(m,v,i) : [0, d] → Z .

The following two theorems show that the generic semantics defined above generalises the semantics of both classic and 
probabilistic hybrid automata.

Theorem 4.8. Let (M, c) ∈ SimpHat(PEv ·(_×Tr)) be a classic hybrid automaton and consider two states z1, z2 ∈ Z . Then the following 
equivalences hold.

z1
l→ z2 ≡ evz1 (l) = z2 (l ∈ [0,d])

lst · sol (z1)
∗→ z2 ≡ z2 ∈ jmp (z1)

Proof. Follows from Definition 2.6 and the definition of the map jmp : (M × V ) × I → F(M × V ). �
Theorem 4.9. Let (M, c) ∈ SimpHat(PDEv ·(_ × Tr)) be a probabilistic hybrid automaton and consider two states z1, z2 ∈ Z . Then the 
following equivalences hold.

z1
l→ δz2 ≡ evz1 (l) = z2 (l ∈ [0,d])

lst · sol (z1)
∗→ μ2 ≡ μ2 ∈ jmp (z1)

Proof. Follows from Definition 2.12 and the definition of the map jmp : (M × V ) × I → F(M × V ). �
4.3. �-bisimulation coalgebraically

In this subsection we generalise the definition of �-bisimulation (see Section 2) so that it becomes parametric on a type 
of discrete transition as captured by F : Set → Set. This provides a notion of �-bisimulation for F-hybrid automata and thus 
allows to study the notion across several variants of hybrid automata in a uniform manner.

In the generalisation process we use the notions of colouring and up-to bisimulation, two common concepts in the 
theory of coalgebras.



JID:TCS AID:11343 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.224; Prn:23/10/2017; 9:53] P.24 (1-30)

24 R. Neves, L.S. Barbosa / Theoretical Computer Science ••• (••••) •••–•••
Definition 4.10. Let F : Set → Set be a functor. Then consider an FI
HV -coalgebra (X, 〈nxt,out〉) and a map c : X → C , which, 

intuitively, associates states to colours in C . There exists an FI
H(C×V )

-coalgebra (X, 〈nxt,out†〉) with the map out† : X × I →
H(C × V ) given by the commuting diagram below.

X × I
〈c·π1,out〉

out†

C ×HV

υC,V

H(C × V )

The map υC,V : C ×HV →H(C × V ) is defined as τC,V (a, f ) = 〈a, f 〉 where a is the constant map over a.

Consider an FI
HV -coalgebra (X, c). We denote by (X, c†) the FI

H(C×V )
-coalgebra that is built from (X, c) as shown in the 

previous definition with id : X → X as the colouring map.
Note that there exists an obvious ‘projection’ functor

� : CoAlg
(

FI
H(C×V )

)
→ CoAlg

(
FI
HV

)

Remark 4.11. Denote by CoAlg(F, X) the full subcategory of CoAlg(F) whose objects have the set X as carrier. We have a 
cospan of functors

CoAlg
(
FI
HV , X

)
CoAlg

(
FI
H(X×V )

)
�

CoAlg
(
FI
HV

)
and the image of the projection functor contains the image of the inclusion functor. More concretely, for every coalgebra 
(X, c) ∈ CoAlg(FI

HV , X) there exists the coalgebra (X, c†) ∈ CoAlg(FI
H(X×V )

) and �(X, c†) = (X, c).

The following theorem is well-known and helps to characterise a generic notion of �-bisimulation.

Theorem 4.12. Let α : F → G be a natural transformation between two functors F, G : Set → Set. It induces a functor

α : CoAlg(F) → CoAlg(G)

defined as

α(X, c) = (X,αX · c), α( f ) = f

Moreover, the functor α : CoAlg(F ) → CoAlg(G) preserves bisimulations: i.e. if R is a bisimulation for two F-coalgebras (X, c) and 
(Y , d) then R is a bisimulation for G-coalgebras α(X, c) and α(Y , d).

Proposition 4.13. Let � ⊆ S × S be an equivalence relation over a set S and q : S � S/� the corresponding quotient map. There exists 
a natural transformation

ζ� : FI
HS → FI

H(S/�)

defined as ζ�X = (id×(q·))I for every set X.

Finally,

Definition 4.14. Consider an F-hybrid automaton (M, c) ∈ SimpHat(FI
Ev · (_ × Tr)) and an equivalence relation � ⊆ Z × Z . A 

relation R ⊆ Z × Z is a coalgebraic �-bisimulation if it is a bisimulation for the coalgebra ζ�(S(M, c)†).
We say that two states z1, z2 ∈ Z are coalgebraically �-bisimilar if they are related by a coalgebraic �-bisimulation.

As discussed in Section 2, classic hybrid automata and probabilistic hybrid automata already carry a notion of 
�-bisimulation, detailed in Definition 2.8 and Definition 2.14. In the following lines we relate both definitions with the 
one above.

We start with non-deterministic hybrid automata.

Lemma 4.15. Consider a hybrid automaton (M, c) ∈ SimpHat(PEv ·(_×Tr)) and a �-bisimulation R ⊆ Z × Z . The relation R ⊆ Z × Z
is a coalgebraic �-bisimulation as well.
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Proof. Assume that x R y, with x = (x1, x2), y = (y1, y2). We will show that the following cases hold.

• The condition evx � evy holds.

x R y

⇒ evx R evy (Defn. of �-bisimulation)

⇒ evx � evy (Defn. of �-bisimulation)

• For every x′ ∈ jmp(x) there is a y′ ∈ jmp(y) such that x′ R y′ .

x R y, x′ ∈ jmp(x)

⇒ (x1, lst · sol(x)) R (y1, lst · sol(y)) (Defn. of �-bisimulation)

⇒ (x1, lst · sol(x))
∗→ x′, (y1, lst · sol(y))

∗→ y′

and x′ R y′ (Defn. of �-bisimulation and jmp)

⇒ y′ ∈ jmp(y), x′ R y′ (Defn. of jmp)

• For every pair y′ ∈ jmp(y) there is a pair x′ ∈ jmp(x) such that x′ R y′ .
Analogous to the previous case. �

Interestingly, to assume that R ⊆ Z × Z is a coalgebraic �-bisimulation does not entail that R is a �-bisimulation. 
However, we can construct a relation R ⊆ Z × Z such that R ⊆ R and R is �-bisimulation. This relation is defined as the 
smallest relation such that R ⊆ R and if x R y then evx R evy .

Lemma 4.16. Consider a hybrid automaton (M, c) ∈ SimpHat(PEv · (_ × Tr)) and a coalgebraic �-bisimulation R ⊆ Z × Z . Then the 
relation R ⊆ Z × Z is a �-bisimulation.

Proof. Assume that x R y. We will show that the following cases hold.

• The condition x � y holds.

x R y

⇒ ∃a,b ∈ Z , l ∈ [0,d]
a R b ∧ eva(l) = x ∧ evb(l) = y (Defn. of R)

⇒ x � y (Defn. of coalgebraic �-bisimulation)

• if x l→ x′ then there exists a state y′ such that y l→ y′ and x′ R y′ .
In the case of an evolution step,

x R y, x
r→ evx(r)

⇒ evx R evy, x
r→ evx(r) (Defn. of R)

⇒ evx R evy, y
r→ evy(r) (Defn. of coalgebraic �-bisimulation)

⇒ y
r→ evy(r), evx(r) R evy(r)

In the case of a discrete transition,

x R y, x
∗→ x′

⇒ ∃a,b ∈ Z , l ∈ [0,d]
a R b ∧ eva(l) = x ∧ evb(l) = y (Defn. of R)

⇒ x′ ∈ jmp(a) (jmp(a) = jmp(x))

⇒ y′ ∈ jmp(b), x′ R y′ (Defn. of coalgebraic �-bisimulation)

⇒ y
∗→ y′, x′ R y′ (jmp(b) = jmp(y), R ⊆ R)

• if y l→ y′ then there exists a state x′ such that x l→ x′ and x′ R y′ . Analogous to the previous case. �
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Then, using the two previous lemmas one obtains the following result.

Theorem 4.17. Consider a hybrid automaton (M, c) ∈ SimpHat(PEv · (_ × Tr)) and two states x, y ∈ Z . The equivalence below holds.

x ∼� y iff x ≡� y

Proof. A direct consequence of Lemma 4.15 and Lemma 4.16. �
Let us now focus on probabilistic hybrid automata. Again in this context, to assume that R ⊆ Z × Z is a coalgebraic 

�-bisimulation does not entail that R is a �-bisimulation. Hence, like in the non-deterministic case, we will need to 
consider the construction R .

Lemma 4.18. Consider a hybrid automaton (M, c) ∈ SimpHat(PDEv · (_ × Tr)) and a �-bisimulation R ⊆ Z × Z . The relation R ⊆
Z × Z is a coalgebraic �-bisimulation as well.

Proof. Assume that x R y, with x = (x1, x2), y = (y1, y2). We will show that the following cases hold.

• The condition evx � evy holds.

x R y

⇒ evx R evy (Defn. of �-bisimulation)

⇒ evx � evy (Defn. of �-bisimulation)

• μ1 ∈ jmp(x) entails that there is some μ2 ∈ jmp(y) such that μ1 �R μ2.

x R y, μ1 ∈ jmp(x)

⇒ (x1, lst · sol(x)) R (y1, lst · sol(y)) (Defn. of �-bisimulation)

⇒ (x1, lst · sol(x))
∗→ μ1, (y1, lst · sol(y))

∗→ μ2

and μ1 �R μ2 (Defn. of �-bisimulation and jmp)

⇒ μ2 ∈ jmp(y), μ1 �R μ2 (Defn. of jmp)

• μ2 ∈ jmp(y) entails that there is some μ1 ∈ jmp(x) such that μ1 �R μ2. Analogous to the previous case. �
Lemma 4.19. Consider a hybrid automaton (M, c) ∈ SimpHat(PDEv · (_ × Tr)) and a coalgebraic �-bisimulation R ⊆ Z × Z . Then 
the relation R ⊆ Z × Z is a �-bisimulation.

Proof. Assume that x R y. We will show that the following cases hold.

• The condition x � y holds.

x R y

⇒ ∃a,b ∈ Z , l ∈ [0,d]
a R b ∧ eva(l) = x ∧ evb(l) = y (Defn. of R)

⇒ x � y (Defn. of coalgebraic �-bisimulation)

• If x l→ μ1 then there exists a μ2 such that y l→ μ2 and μ1 �R μ2.
First consider an evolution step.

Assume that x R y and x l→ δevx(l) . By the definition of R and coalgebraic �-bisimulation we have y l→ δevy(l) . Hence it 
remains to show that condition μ1 �R μ2 holds. For this consider the Dirac distribution δ of (evx(l), evy(l)). We will 
show that the three conditions below hold.
1. δ(a, b) > 0 entails a R b.
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x R y, δ(a,b) > 0

⇒ evx R evy, δ(a,b) > 0 (Defn. of R)

⇒ evx R evy, a = evx(l), b = evy(l) (Defn. of δ)

⇒ a R b

2. δevx(l)(a) = δ({a} × Z).
If a = evx(l) then the equation below holds.

δevx(l)(a) = 1 = δ({a} × Z)

Otherwise, the equation below must be true.

δevx(l)(a) = 0 = δ({a} × Z)

3. δevy(l)(b) = δ(Z × {b}).
Analogous to the previous case.

Now assume that x R y and x ∗→ μ1.

x R y, x
∗→ μ1

⇒ ∃a,b ∈ Z , l ∈ [0,d]
a R b ∧ eva(l) = x ∧ evb(l) = y (Defn. of R)

⇒ μ1 ∈ jmp(a) (jmp(a) = jmp(x))

⇒ μ2 ∈ jmp(b), μ1 �R μ2 (Defn. of coalgebraic �-bisimulation)

⇒ y
∗→ μ2, μ1 �R μ2 (jmp(b) = jmp(y), R ⊆ R)

• If y l→ μ2 then there exists a μ1 such that x l→ μ1 and μ1 �R μ2. Analogous to the previous case. �
Theorem 4.20. Consider a probabilistic hybrid automaton (M, c) ∈ SimpHat(PDEv ·(_×Tr)) and two states x, y ∈ Z . The equivalence 
below holds.

x ∼� y iff x ≡� y

Proof. Direct consequence of Lemma 4.18 and Lemma 4.19. �
Another interesting aspect to mention concerns reactive hybrid automata, studied in detail in the previous section, and 

the apparent absence of a suitable notion of �-bisimulation for them. However, instantiating Definition 4.14 with F = Id, 
we obtain a suitable notion of �-bisimulation for such automata as follows.

Definition 4.21. Consider a reactive hybrid automaton (M, c) ∈ SimpHat(IdI
Tr×Ev) and an equivalence relation � ⊆ Z × Z over 

its states. A relation R ⊆ Z × Z is a coalgebraic bisimulation if z1 R z2 entails

ev(z1,i)�ev(z2,i), jmp(z1, i) R jmp(z2, i) (i ∈ I)

4.4. A hierarchy of hybrid automata

Natural transformations are an interesting mechanism to transform a coalgebra into another of a different transition type 
since naturality entails preservation of bisimilarity (see e.g. [22] and Theorem 4.12). Reflection of bisimilarity is also ensured 
if the natural transformation involved is injective (i.e. all of its components are injective) and the underlying functor in its 
domain preserves weak pullbacks (cf. [22]).

The latter condition (preservation of weak pullbacks) is quite mild. In fact, it holds for polynomial functors, the powerset 
functor, and the distribution functor respect it (cf. [22]). Therefore, in many cases checking for reflection reduces to checking 
for injectivity. Observe also that a natural transformation τ : F → G induces another natural transformation

(τ × id)I : FI
HV → GI

HV

This means that an injective natural transformation τ : F → G between two discrete transition types induces a functor

(τ × id)I : CoAlg
(

FI
HV

)
→ CoAlg

(
GI
HV

)
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that bridges the semantics of F-hybrid automata to the semantics of G-hybrid automata and moreover the functor preserves 
and reflects bisimilarity given that the functor F preserves weak pullbacks. Therefore, such natural transformations can be 
used to establish formal relationships between different variants of hybrid automata, in particular they generate a hierarchy 
of hybrid automata in terms of their expressive power.

‘To be more expressive’ here means that looking at the model of an F-hybrid automaton as a GI
HV -coalgebra (through 

the natural transformation τ : F → G) does not entail loss of observable information. In different words, if two states of an 
FI
HV -coalgebra are bisimilar when looking at the latter as a GI

HV -coalgebra, then they were already bisimilar before the 
application of τ (i.e. coalgebraic bisimilarity is reflected).

A possible hierarchy of hybrid automata is expressed in the diagram of injective natural transformations below.

Id

M � Pω D PωD W

All of them are quite well-known or can be easily derived, so we will just make a few remarks about absent transformations 
that the reader may be wondering about. Note that there is no injective natural transformation � → Pω as order is not 
preserved. Moreover observe that the obvious mapping Pω → D (which maps any finite set to the corresponding uniform 
distribution) does not respect naturality.

5. Conclusions and future work

Despite being the standard formalism for hybrid systems, the notion of hybrid automata frequently needs to be modified 
so that different types of computational behaviour can be taken into account. To tackle this issue, the current paper proposes 
a coalgebraic theory of hybrid automata where definitions and results are parametric on a discrete transition type F :
Set → Set. We showed that within this theory suitable notions of bisimulation, behaviour, and state minimisation are easily 
derived. These can be studied across several variants of hybrid automata in a uniform manner and, consequently, results can 
be stated at a generic level, independently of whatever intricacies in each particular variant of hybrid automata one may 
encounter. As mentioned before, such an abstraction level is possible because our work is based on the theory of coalgebras.

Recall also that the latter promotes a black-box perspective in which discrete actions are hidden from the environment 
whereas continuous evolutions make up the observable behaviour. Interestingly, a somewhat dual perspective appears in 
document [17], where an object-oriented approach for hybrid systems is introduced: hybrid systems are viewed as coalge-
bras equipped with a monoid action (to represent time) that acts over the state space, forcing continuous evolutions to be 
hidden from the environment. This allows to consider physical processes that (continuously) evolve internally and that are 
possible to interact with at specific instants of time.

Adopting the same perspective than [17], the authors of document [31] study different notions of behavioural equivalence 
for timed systems using a coalgebraic approach and the notion of lax functor. They also consider different variants of these 
systems by assuming that their transition type is given by a monad that follows certain conditions.

We believe that our paper opens several research avenues. We detail some of them next along with related work.

Relaxing the assumptions

A natural research line pertains (the generalised) Assumptions 2.5, in particular the ones associated with deterministic 
assignments and time-determinism. The former can be dropped by assuming the existence of an ‘evaluation’ map (recall 
Remark 4.5)

ev : Tr × V → FV

and by assuming that the functor F : Set → Set comes equipped with a natural transformation μ : FF → F.

Remark 5.1. All functors F : Set → Set that can be equipped with a monadic structure (e.g. M, P, D, W) have such a natural 
transformation.

Then proceed like before, defining the map

jmp : M × V × I → F(M × V )

as the composite in the diagram below.
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F(M × Tr) × V
Fα·τM,Tr,V

F(M × (Tr × V ))

F(id ×ev)

(M × V ) × I

〈nxt ·(π1×id),lst·sol〉

jmp
F(M × V ) F(M × FV )μ·υM,V

Finally, similarly to Theorem 4.7, one can show that there exists a semantics functor

S : SimpHat
(

FI
Ev · (_ × Tr)

)
→ CoAlg

(
FI
HV

)
but now without the assumption of deterministic assignments.

The case of time-determinism is much more complex. A simple approach would be to regard as the semantics of F-hybrid 
automata coalgebras typed as

S → F(S ×HV )I

and extend the theory developed in the paper accordingly. In many cases, however, this may be problematic, as the tran-
sition type would need to have a continuous nature. In other words, the functor F : Set → Set would need to behave well 
in the presence of infinite or uncountable possibilities in a jump of a hybrid automaton, which usually arise when the con-
dition of time-determinism is dropped. Such is indeed not the case for the powerset functor and the distribution functor 
and it suggests a shift from the category Set to other categories where this kind of behaviour can be better handled. For 
example the category of topological spaces Top [32] and the category of Polish spaces Pol [33].

Bisimulation

Haghverdi et al. [34] resort to the notion of open map, which is closely related to coalgebras, to provide an abstract 
notion of bisimulation for dynamical, control, and hybrid systems (the latter being understood as hybrid automata). However, 
variants of hybrid automata were not taken into consideration.

In our case, we showed that the coalgebraic perspective allows to systematically define and study notions of bisimulation 
for different variants of hybrid automata. Recall that we introduced ‘syntactic’, and ‘semantic’ bisimulation for reactive hybrid 
automata, and �-bisimulation parametrised by a discrete transition type F : Set → Set. An interesting next step is to study 
(and generalise) other notions of bisimulation, one prime example being approximate bisimulation for hybrid automata [35].

Languages for hybrid automata

We also used standard coalgebraic results [25] to derive a language for reactive hybrid automata and a corresponding 
Kleene-like theorem. Using again document [25] this result can be straightforwardly extended to a much more general set-
ting by allowing the discrete type functor F : Set → Set to be, for example, polynomial, the powerset functor, the distribution 
functor, the functor of weights, or certain composites of these.

Moreover, the op. cit. can be used to produce axiomatisations for the derived languages. In many cases, however, the 
axioms may not be rich enough as they do not reflect the fact that differential equations themselves are part of a language 
and, therefore, that syntactic equality is a too fine grain equivalence notion for them. Actually, this problem is completely 
analogous to that which syntactic bisimulation carries and this suggests that we may follow a similar strategy to the one 
we employed for the latter case — this will be part of our main research for the near future.

Finally, note that there already exist a number of interesting works on regular expressions for subclasses of classic 
hybrid automata. For example, the document [36] introduces the so-called hybrid regular expressions that allow to describe 
possible executions of linear hybrid automata in terms of sequences of modes visited and respective durations of the visits. 
Such expressions, however, are not sufficiently rich to capture the behaviour of every linear hybrid automata and therefore 
a Kleene-like theorem cannot be established. On the other hand, document [37] establishes a Kleene-like theorem for timed 
automata, which form an exiguous subclass of classic hybrid automata, but does not provide an axiomatisation.

Compositional operators

In document [14], we showed that a slightly different version of the continuous evolution space (H) is a monad. This 
allows us to extend the theory developed in Section 3 with different kinds of compositional mechanisms in a straightforward 
manner. Recall that every monad generates a so-called Kleisli category, the latter being usually a rich, powerful universe 
where different types of composition operators for a family of systems can be worked out. In the same note, we showed 
that H’s Kleisli category carries a calculus with several forms of composition operators (e.g., parallel, pipelining, sum), 
refinement techniques, and wiring mechanisms, as well as the corresponding algebraic laws. The systems in this Kleisli 
category cover reactive hybrid automata and therefore this calculus comes to them for free. Such a result opens up a 
number of possibilities. For example, we are currently studying the regular expressions detailed in Section 3 (Definition 3.6) 
combined with the composition operators provided by H’s Kleisli category.
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