
On the generation of equational dynamic logics
for weighted imperative programs

Leandro Gomes1, Alexandre Madeira2,1, Manisha Jain2 , Luis S. Barbosa1,3

1 HASLab INESC TEC - Univ. Minho, Portugal
2 CIDMA - Univ. Aveiro, Portugal
3 QuantaLab, INL, Braga Portugal

Abstract. Dynamic logic is a powerful framework for reasoning about
imperative programs. This paper extends previous work [9] on the sys-
tematic generation of dynamic logics from the propositional to the equa-
tional case, to capture ‘full-fledged’ imperative programs. The generation
process is parametric on a structure specifying a notion of ‘weight’ as-
signed to programs. The paper introduces also a notion of bisimilarity
on models of the generated logics, which is shown to entail modal equiv-
alence with respect to the latter.

1 Introduction

The development of dynamic logic [3] along the past twenty years went hand-
in-hand with the evolution of its object, i.e. the very notion of a program. The
result was the emergence of a plethora of dynamic logics tailored to specific pro-
gramming paradigms. This ranges from the well-known classical case [2] to less
conventional examples for which e.g. programs are compositions of actions in
UML state machines [6] or event/actions regular expressions [4]. Other rephras-
ing of what should count for a program in each specific context, lead to different
variants of dynamic logics: Examples include probabilistic [7], fuzzy, concurrent
[10], quantum [1] and continuous [11] computations, and combinations thereof.

Reference [9] initiated a research agenda on the systematic development of
propositional, multi-valued dynamic logics parametric on an algebraic structure,
actually an action lattice, which defines both the computational paradigm where
programs live, and the truth space where assertions take value. This paper ex-
tends this agenda to a new level, taking computational states as valuations of
variables over a given domain, and programs as their modifiers. The idea is to
capture typical imperative programs and their interpretation over different no-
tions of ‘weighted’ computation — the very notion of weight being brought to
scene as a parameter, encoded in the action lattice, for the generation of the cor-
responding dynamic logic. Depending on each action lattice chosen, such weights

?
This work was founded by the ERDF — European Regional Development Fund through the Operational Pro-
gramme for Competitiveness and Internationalisation - COMPETE 2020 Programme and by National Funds
through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project
POCI-01-0145-FEDER-030947. The second author is supported in the scope of the framework contract foreseen in the
numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Portuguese Law
57/2017, of July 19.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/370794949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

will be interpreted as e.g. vagueness degree associated to the effectiveness of a
particular computation, or a measure of the resources consumed in it, or even
the associated cost or execution time.

Note that in all approaches discussed in the literature, even when some form
of structured computation is considered, validity of assertions is always stated
in classical terms. The approach proposed here goes a step further in the sense
that validity of structured computation (e.g. fuzzy, costed, timed) is discussed
in a logic capturing itself the corresponding notion of behaviour.

Differently from our previous work [9], ’fully-fledged’ programs are considered
here. This means that assignment of values from a data space to a variable is
taken as the elementary construction, programs being defined over an equational
signature of program variables, predicate and function symbols. Thus, in the
sequel, programs are expressions generated by the following grammar:

π ::= x := t | π;π | if c then π else π fi | while c do π od (1)

where t denote terms with variables from a set X.

Bisimulation is defined parametrically on an action lattice, over the resulting
computational models. Finally, bisimilarity is shown to entail modal equivalence
for the corresponding dynamic logic.

The remaining of this paper is organised as follows. After a brief background
overview in Section 2, to recap the definition of an action lattice and some
of its fundamental properties, Section 3 extends the method proposed in [9]
to incorporate ’fully-fledged’ imperative programs, i.e. program variables and
assignments. All constructions are illustrated in detail for three paradigmatic
parameters: classical Boolean lattices, Gödel algebras to capture vagueness in
computation, and the tropical semiring to reason about resource consumption.
Bisimilarity and an invariance result is discussed, as a second contribution of
the paper, in Section 4. Finally, Section 5 concludes, and enumerates topics for
future work.

2 Action Lattices

As explained in the Introduction, the construction of multi-valued, equational,
dynamic logics is parametric on an action lattice which induces both the compu-
tational model for programs and the truth space for logics. This section recalls
the relevant definition and properties [9].

Definition 1. An action lattice is a tuple

A = (A,+, ; ,0,1,∗ ,→, ·)

where A is a set, 0 and 1 constants, and +, ; ,→ and · binary operations and ∗

a unary operation in A satisfying the axioms in Figure 1, where the relation ≤
is induced by +: a ≤ b iff a+ b = b.

a + (b + c) = (a + b) + c (2)

a + b = b + a (3)

a + a = a (4)

a + 0 = 0 + a = a (5)

a; (b; c) = (a; b); c (6)

a;1 = 1; a = a (7)

a; (b + c) = (a; b) + (a; c) (8)

(a + b); c = (a; c) + (b; c) (9)

a;0 = 0; a = 0 (10)

1 + a + (a∗; a∗) ≤ a∗ (11)

a;x ≤ x ⇒ a∗;x ≤ x (12)

x; a ≤ x ⇒ x; a∗ ≤ x (13)

a;x ≤ b ⇔ x ≤ a→ b (14)

a · (b · c) = (a · b) · c (15)

a · b = b · a (16)

a · a = a (17)

a + (a · b) = a (18)

a · (a + b) = a (19)

Fig. 1. A possible axiomatisation of action lattices.

An action lattice A is complete when every subset of its carrier A has both
supremum and infimum with respect to ≤. The greatest and least elements are
denoted in the sequel by > and ⊥, respectively. Note that in any action lattice
⊥ = 0, since for any a ∈ A, a + 0 = a, i.e. 0 ≤ a. Consider a non-empty set I.
We say that A is linear if it satisfies, for any set {ai|i ∈ I}, the property∑

i∈I
ai = aj , for some j ∈ I (20)

Since operators +, ; and · are associative, they admit a n-ary iterated version,
represented by

∑
,
∏

and
∧

, respectively. Note that the structure (A,+, ; ,0,1,∗)
axiomatised by (2) - (13) forms a Kleene algebra.The following handy properties
are easily proved [9]:

x ≤ y ⇒ x; a ≤ y; a (21)

a ≤ b & c ≤ d⇒ a+ c ≤ b+ d (22)

The generation of dynamic logics illustrated in the following sections will
be parametric on the class of complete action lattices. Actually, completeness
is required to guarantee the existence of infinite sums. The following are exam-
ples of complete action lattices, with which the proposed constructions will be
illustrated along the paper.

Example 1. The first example is the Boolean lattice

2 = ({>,⊥},∨,∧,⊥,>,∗ ,→,∧)

with the standard interpretation of Boolean connectives. Operator ∗ maps each
element of {>,⊥} to >, and → corresponds to logical implication.

Example 2. Gödel algebras are the locally finite variety of Heyting algebras.
Formally,

G = ([0, 1],max,min, 0G, 1,
∗ ,→,min)

where

x→ y =

{
1, if x ≤ y
y, if y < x

Example 3. Finally, the (min,+) Kleene algebra [8], known as the tropical semir-
ing, can be extended to an action lattice through the introduction of residuation
→:

R = (R+
0 ∪ {+∞},min,+R,+∞, 0R,∗ ,→,min)

where, for any x, y ∈ R+
0 ∪ {+∞}, x∗ = 0R and x → y = max{y − x, 0}, with

R+
0 = {x ∈ R | x ≥ 0}.

3 Generation of Equational, Dynamic Logics

Each complete action lattice A induces a multi-valued, equational dynamic logic
Γ (A) to reason, as explained above, about ’full-fledged’ imperative programs
with weighted computations interpreted over A. Such programs are generated
as indicated in (1).

Example 4. This toy program over a set of variables {x, y} and the real numbers
as data space will be used for illustration purposes in the sequel.

x := 2;x := x+ y; (if x ≤ 3 then x := x+ 1 else y := y × 2)

Note that its execution can be represented by the following transition system,
where the conditional statement is encoded as a sum of alternatives guarded by
a test.

w0start w1 w2

w2

w2

w3

w3

x := 2 x := x + y

(x ≤ 3)?

¬(x ≤ 3)?

x := x + 1

y := y × 2

Let us start by carefully fixing the syntactic support for the generated logics.
Programs are defined over a data signature Σ = (F, P), where F and P de-
note sets of function and predicate symbols, respectively. As usual, let notation
TΣ(X) stand for the set of Σ-terms with variables in X, and represent by TFΣ (X)
(respectively, TPΣ (X)) its restriction to functional (respectively, predicate) terms.
Thus,

Prg0(Σ,X) = {x := t | x ∈ X and t ∈ TΣ(X)}
defines the set of atomic programs for the pair (Σ,X), from which an arbitrary
(composed) program is generated as an expression described by the following
rule

π ::= π0 |φ? |π;π |π + π |π∗

with π0 ∈ Prg0(Σ,X), and φ? standing for a suitable notion of test. The latter,
however, needs to be handled with some care: indeed the meaning of a test
depends on the logic Γ (A), and therefore on A itself, as we will discuss below
on defining its semantics in terms of the satisfaction relation for Γ (A). For the
moment, it is enough to notice that choice (+), iteration (∗) and and tests
(φ?) encode the usual ’syntactic sugar’ constructs for conditionals and loops as
considered in rule (1). The set of composed programs for (Σ,X) is denoted by
Prg(Σ,X).

Once a language for programs is fixed, the set of formulas for Γ (A) in-
troduces, as expected, the universal and existential modalities over programs.
Formally,

Definition 2. A signature for Γ (A) is a tuple

∆ = (Σ,Π)

where Σ is a data signature and Π ⊆ Prg0(Σ,X) is a set of variable assignments.

The set of formulas for ∆, denoted by FmΓ (A)(∆), are the ones generated by
the rule

ϕ ::= > |⊥ | p |ϕ ∨ ϕ |ϕ ∧ ϕ |ϕ→ ϕ | 〈π〉ϕ | [π]ϕ

for p ∈ TPΣ (X) and π is a program in Prg(Σ,X) that only uses atomic programs
in Π.

Note that we sometimes make use of ¬ϕ as an abbreviation for ϕ → ⊥, as in
Example 4.

We can now turn to semantics. For each A, models are defined over state
spaces whose elements are graded valuations of variables, i.e. functions w : X ×
R→ A, where A is the carrier of action lattice A. We denote the set of all states
by AX×R.

Definition 3 (Models). Let ∆ = (Σ,Π) be a signature and X a set of vari-
ables. A Γ (A)-model for ∆ is a structure

M = (W,E)

where

– W ⊆ AX×R is a set of states;
– E : Π × (W ×W)→ A is a program grading function.

The set of Γ (A)-models for ∆ is denoted by ModΓ (A)(∆).

Intuitively the value of E(π, (w0, w1)) represents the graded execution of
program π from state w0 to w1, i.e. the weight associated to corresponding
transition. For instance, in Example 4, taking A as a Gödel algebra (Example
2), the expression E(x := 2, (w0, w1)) = 0.6 would mean that the system allows
the execution of the assignment x := 3 from state w0 to w1 with 0.6 as a
degree of certainty. Note that these values are attributed in the model. The
interpretation of functional terms and predicates becomes as detailed in the
following definitions.

Definition 4 (Interpretation of functional terms). Let ∆ = (Σ,Π) be

a signature and M ∈ ModΓ (A)(∆). The interpretation of a functional term
t ∈ TFΣ (X) in M , for each w ∈W , is given by the map

JtKw : TFΣ (X)→ AR

defined recursively as follows:

– JxKw(r) = w(x, r)

– JcKw(r) =

{
1 if r = c

0 otherwise

– Jf(t1, . . . , tn)Kw(r) =
∑
i∈I{

∏n
j=1JtjKw(rij) | f(ri1, . . . , r

i
n) = r}, where I is

the cardinality of the set of all possible solutions of f(ri1, . . . , r
i
n) = r in

R, with each f of arity n being interpreted as a function on real numbers
Rn → R (e.g. +, ×, 2,

√
, . . .).

where x ∈ X and c is the syntactic representation of the constant c ∈ R.

Example 4 may also help in illustrating this issue. Consider a model M =
(W,E), w0, w1, w2 ∈ W , X = {x, y}, and the complete action lattice G =
([0, 1],max,min, 0, 1,∗ ,→,min) of Example 2. Take JxKw0

(1) = w0(x, 1) = 0.5,
JxKw0

(2) = w0(x, 2) = 0.2, JyKw0
(1) = w0(y, 1) = 0.1, JyKw0

(2) = w0(y, 2) = 0.4
and 0 otherwise for state w0. The interpretation of the term 2 in w0 is given by
J2Kw0(2) = 1 and 0 otherwise. The interpretation of the term x+y in w0 is given
by:

Jx+ yKw0
(2) =JxKw0

(1); JyKw0
(1) = min{0.5, 0.1} = 0.1

Jx+ yKw0
(3) =JxKw0

(1); JyKw0
(2) + JxKw0

(2); JyKw0
(1)

=w0(x, 1);w0(y, 2) + w0(x, 2);w0(y, 1)

=max{min{0.5; 0.4}},min{0.2; 0.1}} = 0.4

Jx+ yKw0
(4) =JxKw0

(2); JyKw0
(2) = min{0.2, 0.4} = 0.2

and 0 otherwise.

Definition 5 (Interpretation of predicates). Let ∆ be a signature and M ∈
ModΓ (A)(∆). The interpretations of a predicate p ∈ TPΣ (X) in M is given by
the map

JpKw : TPΣ (X)→ A

defined by

Jp(t1, . . . , tn)Kw =
∑
i∈I
{
n∏
j=1

JtjKw(rij) | p(ri1, . . . , rin) is true}

where I is the cardinality of the set of all possible values (ri1, . . . , r
i
n) ∈ Rn

satisfying p(ri1, . . . , r
i
n), with each p of arity n being interpreted as a function

over terms TFΣ (X) like boolean predicate symbols (e.g. ≤, =, . . .).

Again this can be illustrated by computing the truth degree of predicate x ≤ 3
in state w2, of Example 4. Jx ≤ 3K(w2) = JxKw2

(3); J3Kw2
(3):

G: min{0.3, 1} = 0.3. The value 0.3 means that the predicate is true with a
certainty 0.3.

R: 1.2+R3.7 = 4.9. This interpretation corresponds to the energy consumed
by evaluating the predicate.

Definition 6 (Interpretation of atomic programs). The interpretation of

atomic programs in a Γ (A)-model M ∈ ModΓ (A)(∆) is a map

J K0 : Π → AW×W

mapping each x := t ∈ Π into function

Jx := tK0(w,w′) =

{
E(x := t, (w,w′)) if (w,w′) ∈ Lx := tM
0 otherwise

where Lx := tM is the standard relational semantics of a program assignment,
typically given by:

(w,w′) ∈ Lx := tM⇔

{
w′(y, r) = w(y, r) if y 6= x

w′(x, r) = JtKw(r) otherwise

This is made concrete by interpretation in each of the three distinct models
of computation considered in the paper, as captured in the action lattices of
examples 1, 2 and 3, respectively.

2: The degree of certainty of execution is bivalente: either > or ⊥, coincid-
ing with the classical setting where an action simply may or may not execute.

G: Assume Jx := 2K0(w0, w1) = E(x := 2, (w0, w1)) = 0.8, Jx := x +
yK0(w1, w2) = E(x := x+ y, (w1, w2)) = 0.4, Jx := x+ 1K0(w2, w3) = E(x :=
x+ 1, (w2, w3)) = 0.7 and Jy := y × 2K0(w2, w3) = E(y := y × 2, (w2, w3)) =
0.9. Such values are regarded as degrees of certainty, or, in a complementary
reading, vagueness, associated to the execution of actions x := 2, x := x+ y,
x := x+ 1 and y := y × 2, respectively.
As a consequence of executing these assignments, the weights of the variables
are updated accordingly in the next state. That is the case of x in state w1,
by assuming the value w1(x, 1) = J2Kw0

(2) = 1, and 0 otherwise, according
to definition 6. The weights of y are maintained, since the assignment x := 2
does not modify the value of y. The situation may be interpreted as follows:
from a state where property x = 1 has a truth degree of 0.5 and x = 2 has a
truth degree of 0.2, the execution of action x := 2 with a certainty value of
0.8, whenever occurs, leads to a state where x = 2 is true (i.e. has 1 as its
truth degree). The weights of the variable x in w2 are updated as follows:

w2(x, 3) = Jx+ yKw1
(3) = JxKw1

(2); JyKw1
(1) = min{1, 0.1} = 0.1

w2(x, 4) = Jx+ yKw1
(4) = JxKw1

(2); JyKw1
(2) = min{1, 0.4} = 0.4

R: Consider, for example, E(x := 2, (w0, w1)) = 8, E(x := x+y, (w1, w2)) =
4, E(x := x + 1, (w2, w3)) = 7 and E(y := y × 2, (w2, w3)) = 9. These
values can be regarded as resources (e.g. energy) consumed by executing the
associated actions. Analogously to the previous case, the weights associated
to y are kept.

Finally, to interpret an arbitrary program in Prg(Σ,X) one proceeds in two
steps. First, the semantics of composed program constructs is given directly in
terms of operations on A-valued binary relations AW×W : union, composition,
and Kleene closure. To interpret such operators, we define the following algebra:

Definition 7. Let A = (A,+, ; , 0, 1, ∗,→, ·) be an action lattice and W be a
finite set of states. The algebra of program grading functions is the structure

E = (Z(E),∪, ◦,∅, χ, ∗)

where:

– Z(E) is the universe of all the program grading functions
– (E(π1) ∪ E(π2))(w,w′) = E(π1, (w,w

′)) + E(π2, (w,w
′))

– (E(π1) ◦ E(π2))(w,w′) =
∑

w′′∈W
E(π1, (w,w

′′));E(π2, (w
′′, w′))

– ∅(w,w′) = 0

– χ(w,w′) =

{
1, if w = w′

0, otherwise

– (E(π))∗(w,w′) =
∑
i≥0

(E(π))i(w,w′) = (E(π))0(w,w′) + (E(π))1(w,w′) +

(E(π))2(w,w′) + . . .

with E(π1), E(π2) ∈ Z(E).

Note that operator ∗ can be defined as an infinite sum due to the completeness
of the action lattice.

Definition 8. Let M ∈ ModΓ (A)(∆) be a model of Γ (A). The interpretation of
a program π ∈ Prg(Σ,X) is a map

J−K : Prg(Σ,X)→ AW×W

recursively defined by

– Jπ0K = Jπ0K0, for each π0 ∈ Prg0(∆)
– Jπ;πK = JπK ◦ Jπ′K
– Jπ + πK = JπK ∪ Jπ′K
– Jπ∗K = JπK∗.

where, for r ∈ AW×W , r∗(w,w′) =
∑
k≥0

rk(w,w′).

Again Example 4 can be called to illustrate choice and sequential composition
by interpreting fragments (x := 2); (x := x+ y) and (x := x+ 1) + (y := y × 2).
The first one yields,

Jx := 2;x := x+ yK(w0, w2) = (Jx := 2K0 ◦ Jx := x+ yK0)(w0, w2)

= Jx := 2K0(w0, w1); Jx := x+ yK0(w1, w2)

= E(x := 2, (w0, w1));E(x := x+ y, (w1, w2))

which can be instantiated within the three usual lattices we have been consid-
ering:

2: Under this interpretation programs either fail or succeed. In the absence
of failure execution proceeds sequentially; otherwise, if one (or both) fails
(takes ’weight’ ⊥), so does the composite.

G: In this case a degree of confidence, or certainty, is associated to the com-
position based on the corresponding degree for the atomic components. This
is computed as a minimum. For example, if E(x := 2, (w0, w1)) = 0.8 and
E(x := x+ y, (w1, w2)) = 0.4 the overall confidence degree for the composi-
tion becomes min{0.8, 0.4} = 0.4.

R: Computations have a cost, under this interpretation, for example the
amount of energy dissipated. Thus, E(x := 2, (w0, w1));E(x := x+y, (w1, w2))
= 8 +R 4 = 12 represents the sum of the energy consumed by both atomic
programs x := 2 and x := x+ y.

The interpretation of (x := x+ 1) + (y := y× 2), on the other hand, is given by

J(x := x+ 1) + (y := y × 2)K(w2, w3) = (Jx := x+ 1K0 ∪ Jy := y × 2K0)(w2, w3)

= Jx := x+ 1K0(w2, w3) + Jy := y × 2K0(w2, w3)

= E(x := x+ 1, (w2, w3)) + E(y := y × 2, (w2, w3))

Again,

2: In this case choice is exactly nondeterministic choice: either one of x :=
x+ 1 or y := y × 2 will be executed.

G: This interpretation yields the maximum certainty degree of executing
the composition, e.g. E(x := x + 1, (w2, w3)) + E(y := y × 2, (w2, w3)) =
max{0.7, 0.9} = 0.9.

R: In this action lattice, operator + picks the minimum value. This cor-
responds to choose the path that consumes less energy, e.g. E(x := x +
1, (w2, w3)) + E(y := y × 2, (w2, w3)) = min{0.7, 0.9} = 0.7.

Note that nothing prevents the state space W from being infinite, because
of completeness enforced upon A. However, one may only compute explicitly a
truth value associated with a program execution when W is finite.

The second element to care about when computing the semantics is the
interpretation of tests. Our goal is to introduce a notion of a test in an arbitrary
dynamic logic generated by a parameter A. As mentioned above, tests are written
as ϕ?, for ϕ ∈ FmΓ (A)(∆). Their semantics resort, therefore, to the satisfaction

relation for FmΓ (A)(∆), which is defined as follows:

Definition 9. Given a complete action lattice A over a carrier A, the graded
satisfaction relation for a model M ∈ ModΓ (A)(∆), consists of a function

|=Γ (A) : W × FmΓ (A)(∆)→ A

recursively defined by

– (w |=Γ (A) >) = >
– (w |=Γ (A) ⊥) = ⊥
– (w |=Γ (A) p) = JpKw, for any p ∈ TPΣ (X)
– (w |=Γ (A) ϕ ∧ ϕ′) = (w |=Γ (A) ϕ) · (w |=Γ (A) ϕ

′)
– (w |=Γ (A) ϕ ∨ ϕ′) = (w |=Γ (A) ϕ) + (w |=Γ (A) ϕ

′)
– (w |=Γ (A) ϕ→ ϕ′) = (w |=Γ (A) ϕ)→ (w |=Γ (A) ϕ

′)
– (w |=Γ (A) 〈π〉ϕ) =

∑
w′∈W

(
JπK(w,w′); (w′ |=Γ (A) ϕ)

)
– (w |=Γ (A) [π]ϕ) =

∧
w′∈W

(
JπK(w,w′)→ (w′ |=Γ (A) ϕ)

)
The interpretation of tests in the classical, Boolean case is given by co-

reflexive relations Rϕ? = {(w,w)|w |= ϕ}. In the generic setting of the present
work this generalises to

Jϕ?K(w,w′) =

{
(w |=Γ (A) ϕ) if w = w′

⊥ otherwise

Let us revisit Example 4 to interpret the conditional statement

if x ≤ 3 then x := x+ 1 else y := y × 2

translated to ((x ≤ 3?);x := x+ 1) + ((((x ≤ 3)→ ⊥)?); y := y × 2). Using the
value computed for predicate x ≤ 3, this leads to

J((x ≤ 3)?;x := x+ 1) + (((x ≤ 3)→ ⊥)?; y := y × 2)K(w2, w3) =

= J(x ≤ 3)?;x := x+ 1K(w2, w3) + J((x ≤ 3)→ ⊥)?; y := y × 2K(w2, w3)

= J(x ≤ 3)?K(w2, w2); Jx := x+ 1K0(w2, w3) + J((x ≤ 3)→ ⊥)?K(w2, w2); Jy := y × 2K0(w2, w3)

= (w2 |= x ≤ 3);E(x := x+ 1, (w2, w3)) + (w2 |= (x ≤ 3)→ 0);E(y := y × 2, (w2, w3))

= (w2 |= x ≤ 3);E(x := x+ 1, (w2, w3)) + ((w2 |= x ≤ 3)→ (w |= 0));E(y := y × 2, (w2, w3))

which can be, once again, instantiated for the three action lattices under con-
sideration, yielding

2: (T ∧ T) ∨ ((> → ⊥) ∧ >) = >. This interpretation coincides, as ex-
pected, with the standard if-then-else statement. In this case, only program
x := x+1 is executed, since y = y×2 is guarded by the test ((x ≤ 3)→ ⊥)?
which has the value ⊥ at state w2.

G:max{min{0.3, 0.7},min{0.3→ 0, 0.9}} = 0.3, which expresses the weighted
choice of executing x := x+ 1.

R: min{3 + 7, 0 + 9} = 9. In this situation, contrary to what happens in the
previous cases, the assignment y := y×2 is executed. The value 9 stands for
the energy consumed by the machine when executing such an assignment.

4 Bisimulation

The characterisation of relations that identify states with equivalent behaviours
is crucial to support a set of development practices, including reuse, refinement
and minimization of programs and models. On the logic view, these relations
usually enjoy a modal invariance property, i.e. they preserve the satisfaction of
formulas. We introduce in this section a parametric notion of bisimulation, and
we prove its modal invariant for any Γ (A). The bisimulation generalises the
notion recently introduced by the authors in [5] in the context of fuzzy modal
logic.

Definition 10 (Π-Bisimulation). Let ∆ = (Σ,Π) be a signature, X a set of
variables, and M = (W,E) and M ′ = (W ′, E′) two Γ (A)-models, for any linear
action lattice A.

A Π-bisimulation from M to M ′ is a non empty relation B ⊆W ×W ′ such
that whenever w B w′, the following conditions hold:

(Atoms) for any x ∈ X, r ∈ R, JxKw(r) = JxKw′(r) and, for any p ∈ TPΣ (X),
JpKw = JpKw′

(Fzig) for any u ∈W and π ∈ Π, JπK0(w, u) ≤
∑

u′∈ B[{u}]
JπK0(w′, u′)

(Fzag) for any u′ ∈W ′ and π ∈ Π, JπK0(w′, u′) ≤
∑

u∈B−1[{u′}]
JπK0(w, u)

We write w ∼ w′ whenever, there is a bisimulation B such that (w,w′) ∈ B.

Next result establishes the well-known word bisimulation result on this generic
graded settings. This result reduces the invariance property of formulas involving
composed programs in Prg(Σ,X) to the one involving just the set of atomic pro-
grams Π. In other words, it reduces the modal invariance problem of a generated
dynamic logic to the modal invariance of the underlying multi-valued logic.

Proposition 1. Let A be a linear action lattice and (Σ,X) a data signature.
Then, any Π-bisimulation over Γ (A)-models is a Prg(Σ,X)-bisimulation.

Proof. The proof is done by induction over the programs structure. Let B ⊆
W ×W ′ be a bisimulation and w ∈W,w′ ∈W ′ such that (w,w′) ∈ B.

The result for atomic programs is given by hypothesis. Let us prove the
(Fzig) condition for programs π;π′. By induction hypothesis, let us assume
that (Fzig) of B for π and π′. Hence, for any v ∈W

JπK(w, v) ≤
∑

v′∈B(v)

JπK(w′, v′) (23)

holds. By (20) we have also that, for any v ∈ W there is a v′v ∈ B(v) such
that

∑
v′∈B(v)JπK(w′, v′) = JπK(w′, v′v). Moreover, since (v, v′v) ∈ B, we have by

(Fzig) of B for π′ that

Jπ′K(v, u) ≤
∑

u′∈B(u)

Jπ′K(v′v, u
′) (24)

By (21) in (23) we get, for any v ∈W ,

JπK(w, v); Jπ′K(v, u) ≤ JπK(w′, v′v);
∑

u′∈B(u)

Jπ′K(v′v, u
′) (25)

and by (22),∑
v∈W

JπK(w, v); Jπ′K(v, u) ≤
∑
v′v∈W ′

JπK(w′, v′v);
∑

u′∈B(u)

Jπ′K(v′v, u
′) (26)

Moreover, since {v′v : v ∈W} ⊆ {v′ : v′ ∈W ′}, and by (8), (2) and (3), we have
that∑

v′v∈W ′
JπK(w′, v′v);

∑
u′∈B(u)

Jπ′K(v′v, u
′) ≤

∑
u′∈B(u)

(
∑
v′∈W ′

(JπK(w′, v′); Jπ′K(v′, u′))

(27)
By (26) and (27), we achieve Jπ;π′K(w, u) ≤

∑
u′∈B(u)Jπ;π′K(w′, u′). The prove

of (Fzag) condition is analogous.
For programs π + π′, we observe that

Jπ + π′K(w, u)

= { interpretation of programs}
JπK(w, u) + Jπ′K(w, u)

≤ { (Fzig) and (22)}

∑
u′∈B(u)JπK(w′, u′) +

∑
u′∈B(u)Jπ

′K(w′, u′)

= { definition of +}∑
u′∈B(u)Jπ + π′K(w′, u′)

Finally, for programs π∗ we observe that by definition of ∗

Jπ∗K(w, u) =
∑
k≥0

JπKk(w, u) = JπK0(w, u) + JπK(w, u) + JπK2(w, u) + . . .

But for each k, JπKk(w, u) ≤
∑
u∈B(u)JπKk(w′, u′) by Fzig.

Hence,

∑
k≥0JπKk(w, u)

≤ { (22)}∑
k≥0

(∑
u′∈B(u)JπKk(w′, u′)

)
= { (2) and (3)}

∑
u′∈B(u)

(∑
k≥0JπKk(w′, u′)

)
= { definition of ∗}∑

u′∈B(u)Jπ
∗K(w′, u′)

Now we are in conditions to prove the modal invariance for Γ (A) with A linear.

Theorem 1 (Modal invariance). Let ∆ = (Σ,X) be a signature, A a linear
action lattice, and M = (W,E) and M ′ = (W ′, E′) two Γ (A)-models for ∆.
Then, for any w ∈ W , w′ ∈ W ′ such that w ∼ w′ and for all formulas ϕ ∈
FmΓ (A)(∆),

(M,w |= ϕ) = (M ′, w′ |= ϕ)

Proof. We prove this result by induction on the structure of formulas.
For the invariance of the formula >, note that (M,w |= >) = > = (M ′, w′ |= >)
and similarly for the formula ⊥.
Invariance of p ∈ TPΣ (X) is a direct consequence of (Atoms),

(M,w |= p) = JpKw = JpKw′ = (M ′, w′ |= p).

For the invariance of formulas ϕ ∧ ψ, we observe that

(M,w |= ϕ ∧ ψ) = (M,w |= ϕ) · (M,w |= ψ) =I.H.

(M ′, w′ |= ϕ) · (M ′, w′ |= ψ) = (M ′, w′ |= ϕ ∧ ψ)

and the proof for the invariance of formulas ϕ ∨ ψ and ϕ → ψ can be proved
similarly.

Now it just remains to prove sentences 〈π〉ϕ and [π]ϕ. Since A is linear, we have
by Proposition 1 that, it is enough to prove the invariance for formulas involving
atomic programs π0 ∈ Prg0(Σ,X). For the invariance of formulas 〈π0〉ϕ, we
observe that By (Fzig) condition we have

∀u ∈W, Jπ0K0(w, u) ≤
∑

u′∈ E[{u}]

Jπ0K0(w′, u′) = Jπ0K0(w′, u′u) for some u′u ∈W ′

(28)
Since for every u ∈W,u′u ∈ E[{u}], we have u E u′u. By I. H., we have (M,u |=
ϕ) = (M ′, u′u |= ϕ) and, by (28),

∀u ∈W, Jπ0K0(w, u) · (M,u |= ϕ) ≤ Jπ0K0(w′, u′u) · (M,u′u |= ϕ) (29)

and, in particular,∑
u∈W

(Jπ0K0(w, u) · (M,u |= ϕ)) ≤
∑

u′u:u∈W
(Jπ0K0(w′, u′u) · (M,u′u |= ϕ)) (30)

Since {u′u : u ∈ W} ⊆ {u′ : u′ ∈ W ′} we have
∑
{u′u : u ∈ W} ≤

∑
{u′ : u′ ∈

W ′} and by 30∑
u∈W

(Jπ0K0(w, u) · (M,u |= ϕ)) ≤
∑
u′∈W ′

(Jπ0K0(w′, u′) · (M,u′ |= ϕ)) (31)

i.e.(M,w |= 〈π0〉ϕ) ≤ (M ′, w′ |= 〈π0〉ϕ). Similarly we can prove (M,w |=
〈π0〉ϕ) ≥ (M ′, w′ |= 〈π0〉ϕ) by using (Fzag) condition.

For the invariance of formulas [π0]ϕ, with π0 ∈ Π, since w E w′ we have by
(Fzig)

∀u ∈W, Jπ0K0(w, u) ≤
∑

u′∈ E[{u}]

Jπ0K0(w′, u′) = Jπ0K0(w′, u′u) for some u′u ∈W ′

(32)
Since for every u ∈W,u′u ∈ E[{u}], we have u ∈W,u E u′u. Hence, by I.H.

(M,u |= ϕ) = (M ′, u′u |= ϕ) (33)

It follows from the definition of I that x0 ≤ x1 implies I(x0, y) ≥ I(x1, y). Then,
from (32) and (33) we have

∀u ∈W, I
(
Jπ0K0(w, u), (M,u |= ϕ)

)
≥ I
(
Jπ0K0(w′, u′u), (M ′, u′u |= ϕ)

)
and, in particular∏
u∈W

(I
(
Jπ0K0(w, u), (M,u |= ϕ)

)
) ≥

∏
u′u:u∈W

(I
(
Jπ0K0(w′, u′u), (M ′, u′u |= ϕ)

)
)

(34)
Since {u′u : u ∈ W} ⊆ {u′ : u′ ∈ W ′}, we have

∏
{u′u : u ∈ W} ≥

∏
{u′ : u′ ∈

W ′} and hence∏
u∈W

(I
(
Jπ0K0(w, u), (M,u |= ϕ)

)
) ≥

∏
u′∈W ′

(I
(
Jπ0K0(w′, u′), (M ′, u′ |= ϕ)

)
) (35)

Therefore (M,w |= [π0]ϕ) ≥ (M ′, w′ |= [π0]ϕ). The proof for (M,w |= [π0]ϕ) ≤
(M ′, w′ |= [π0]ϕ) is analogous.

We now provide an illustration for the introduced notion of bisimulation.

Example 5. Consider the Γ (G)-modelsM = (W,V,E), withW = {w1, w2, w3, w4}
and M ′ = (W ′, V ′, E′), with W ′ = {w′1, w′2, w′3, w′4}, and the programs Π =
{x := x+1, x := 3}, with E(x := x+1, (w1, w2)) = 0.9, E(x := 3, (w1, w3)) = 0.8,
E(x := 3, (w1, w4)) = 0.7, E(x := x + 1, (w′1, w

′
2)) = 0.9, E(x := 3, (w′1, w

′
3)) =

0.8, E(x := x+ 1, (w′1, w
′
4)) = 0.6.

To show that the relationB = {(w1, w
′
1), (w2, w

′
2), (w2, w

′
4), (w3, w

′
3), (w4, w

′
3)}

is a bisimulation from M to M ′, the (Fzig) and (Fzag) conditions of Definition
10 need to be satisfied. To exemplify, only the calculations for the case w1 ∼ w′1
are provided, since the other pairs can be verified analogously.

(Fzig):

Jx := x+ 1K0(w1, w2) ≤ max{Jx := x+ 1K0(w′1, w
′
2), Jx := x+ 1K0(w′1, w

′
4)}

⇔0.9 ≤ max{0.9, 0.6} ⇔ 0.9 ≤ 0.9

Jx := 3K0(w1, w3) ≤ Jx := 3K0(w′1, w
′
3)⇔ 0.8 ≤ 0.8

Jx := 3K0(w1, w4) ≤ Jx := 3K0(w′1, w
′
3)⇔ 0.7 ≤ 0.8

w1 w′1

w2

w4

w3 w′2

w′4

w′3

x := x + 1
x := 3

x := 3

x := x + 1
x := 3

x := x + 1

Fig. 2. Two bisimilar Γ (G)−models

(Fzag):

Jx := x+ 1K0(w′1, w
′
2) ≤ Jx := x+ 1K0(w1, w2) = 0.9

Jx := x+ 1K0(w′1, w
′
4) ≤ Jx := x+ 1K0(w1, w2) = 0.9

Jx := 3K0(w′1, w
′
3) ≤ max{Jx := 3K0(w1, w3), Jx := 3K0(w1, w4)

⇔0.8 ≤ max{0.8, 0.7} ⇔ 0.8 ≤ 0.8

5 Conclusions and future work

This paper extended the process of systematic generation of multi-valued dy-
namic logics from the original propositional case [9], to ‘fully-fledged’ programs,
which incorporate variables and assignments. As before, the method is paramet-
ric on an action lattice which supports both a computational model in which
programs are defined, and a truth space, suitable to handle different aspects of
the application domain. Both states, specified by assignments of real values to
variables, and transitions between them have an associated ‘weight’, i.e. a value
taken from the carrier of a action lattice. As detailed in the examples discussed,
the notion of ‘weight’ as formalised in an action lattice, is the real parameter of
this process. Actually, they can capture quite a range of effects: from the degree
of vagueness of an execution, to the cost of resources. The notion of bisimula-
tion presented in Section 4 generalises previous work done by the authors [5],
in the sense that a generic action lattice is considered as a parameter of the
generated logics. A prominent application of dynamic logic lies in the field of
formal verification of programs, as a simplification of the deductive apparatus of
Hoare logic. In such formalism, the correctness of a program is proved by stating
the validity of an Hoare triple ϕ{π}ψ. As it is well known, the validity of the
dynamic logic formula w |= ϕ → [π]ψ, is an abstraction of such proof. In this
sense, the multi-valued nature of the logics generated in this paper may present a
proper formalism to state program correctness in a multi-valued setting as well:

the “degree of correctness” of a program may be computed as the value, in the
parameter A, of the above dynamic logic formula. Motivated by this example,
it is our intention to include a calculi for such logics as part of our research
agenda.

References

1. A. Baltag and S. Smets. The dynamic turn in quantum logic. Synthese, 186(3):753–
773, 2012. doi:10.1007/s11229-011-9915-7.

2. M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18(2):194–211, 1979. doi:10.1016/

0022-0000(79)90046-1.
3. D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. MIT Press, Cambridge, MA,

USA, 2000.
4. R. Hennicker, A. Madeira, and A. Knapp. A hybrid dynamic logic for event/data-

based systems. In Reiner Hähnle and Wil M. P. van der Aalst, editors, Fun-
damental Approaches to Software Engineering - 22nd Int. Conf., FASE 2019,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, vol-
ume 11424 of Lecture Notes in Computer Science, pages 79–97. Springer, 2019.
doi:10.1007/978-3-030-16722-6_5.

5. M. Jain, A. Madeira, and M. A. Martins. A fuzzy modal logic for fuzzy transition
systems. Electr. Notes Theor. Comput. Sci., (in print).

6. A. Knapp, T. Mossakowski, M. Roggenbach, and M. Glauer. An institution
for simple UML state machines. In Alexander Egyed and Ina Schaefer, edi-
tors, Fundamental Approaches to Software Engineering - 18th Int. Conf., FASE
2015, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, vol-
ume 9033 of Lecture Notes in Computer Science, pages 3–18. Springer, 2015.
doi:10.1007/978-3-662-46675-9_1.

7. D. Kozen. A probabilistic PDL. J. Comput. Syst. Sci., 30(2):162–178, 1985. doi:
10.1016/0022-0000(85)90012-1.

8. D. Kozen. The design and analysis of algorithms. Springer-Verlag New York, 1992.
9. A. Madeira, R. Neves, and M. A. Martins. An exercise on the generation of many-

valued dynamic logics. Journal of Logical and Algebraic Methods in Programming,
1:1–29, 2016. doi:10.1016/j.jlamp.2016.03.004.

10. D. Peleg. Concurrent dynamic logic. J. ACM, 34(2):450–479, 1987. doi:10.1145/
23005.23008.

11. A. Platzer. Logical Analysis of Hybrid Systems - Proving Theorems for Complex
Dynamics. Springer, 2010. doi:10.1007/978-3-642-14509-4.

http://dx.doi.org/10.1007/s11229-011-9915-7
http://dx.doi.org/10.1016/0022-0000(79)90046-1
http://dx.doi.org/10.1016/0022-0000(79)90046-1
http://dx.doi.org/10.1007/978-3-030-16722-6_5
http://dx.doi.org/10.1007/978-3-662-46675-9_1
http://dx.doi.org/10.1016/0022-0000(85)90012-1
http://dx.doi.org/10.1016/0022-0000(85)90012-1
http://dx.doi.org/10.1016/j.jlamp.2016.03.004
http://dx.doi.org/10.1145/23005.23008
http://dx.doi.org/10.1145/23005.23008
http://dx.doi.org/10.1007/978-3-642-14509-4

	On the generation of equational dynamic logics for weighted imperative programs
	Leandro Gomes, Alexandre Madeira, Manisha Jain , Luis S. Barbosa

