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Abstract

Exercise induces free radicals’ overproduction and therefore, an enhancement of oxidative stress, defined as an
imbalance between the production of reactive species and the intrinsic antioxidant defense. Redox activity of
reactive species plays an important and a positive role on exercise adaptation, but these species at very high
concentrations have detrimental effects. As a result, the use of antioxidant supplements for reducing oxidative
stress can be an effective health strategy to maintain an optimal antioxidant status. In this sense, grapes are an
important source of natural antioxidants due to their high content in polyphenols. They have shown antioxidant
potential benefits for the reduction of intense exercise effect in athletes of different sport disciplines. Consequently,
it is plausible to hypothesize that a strategic supplementation with grape based products may be a good approach
to mitigate the exercise induced oxidative stress. The goal of this review is to present the state of the art of
supplementation effects with grape beverages and grape extracts on the oxidative stress markers in athletes. The
data of polyphenolic dosages, participant characteristics and exercise protocols are reported.
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Background
The World Health Organization defines physical activity
as any bodily movement produced by skeletal muscles
that requires energy expenditure. Regular physical activ-
ity has significant health benefits at all ages. Conversely,
physical inactivity (insufficient physical activity) is one of
the leading risk factors for noncommunicable diseases
(NCD) and death worldwide [1].
The scientific evidence is strong regarding how a physic-

ally active lifestyle decreases oxidative stress (OS) [2]. This
reduction may be one of the mechanisms responsible for
an attenuated cellular aging [3], increased insulin sensitivity
and lipid profile regulation [4], and reduced endothelial
dysfunction [5]. In fact, oxidative stress status is generally
found to be lower in athletes than in sedentary individuals.

Nevertheless, several studies have also suggested that
acute and strenuous bouts of aerobic and anaerobic
exercise induce the overproduction of free radicals and
therefore, an enhancement of OS [6]. This effect varies
according to the exercise mode, volume, intensity, train-
ing level, age, sex or nutritional status [6–9]. As a result,
the use of supplements with antioxidant properties [10]
for reducing the oxidative stress may be an effective
health strategy.
In this sense, there is growing interest in the use of

polyphenol-rich fruit and vegetables to mitigate exercise
induced physiologic stress [11–13]. And grapes are an
evident example of a fruit with a high content in poly-
phenols and with an evident nutritional value. Table 1
details the nutrients present in grapes.
Grapes are the fourth most produced fruit worldwide.

The first place is for bananas with 115.75 million tonnes,
followed by watermelons with 103.97 million tonnes and
apples with 86.14 million tonnes [14]. The world pro-
duction of grapes was 77.8 million tonnes in 2018, 57%
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of wine grape, 36% of table grape and 7% of dried grape
[15]. However, considering that fresh grapes might not
be available everywhere during the whole year, natural
supplements obtained from grapes, such as grape bever-
ages or grape extracts may be an interesting alternative
to fresh fruit.
Fruit polyphenols have shown antioxidant potential

beneficial for the reduction of the effects of oxidative
damage during intense exercise in athletes of different

disciplines [16, 17]. Polyphenols are poorly absorbed in
the human small intestine and undergo extensive
biotransformation after ingestion [18, 19]. Evidence sup-
ports that biological activities of many polyphenols are
actually improved after their biotransformation [20–22].
This process takes time, hence, a prolonged period of
polyphenol intake is recommended prior to exercise
stress interventions to allow body tissues to adapt to a
higher phenolic flux level. That is the reason besides
using appropriate outcome measures, long periods are
needed to capture such bioactivities [23]. In this context,
targeted metabolomics is a suited tool that allows to
investigate the shifts of gut-derived metabolites after
polyphenol supplementation. Several human trials are
revealing an increasing number of metabolites that
appear at high concentration levels in the colon and sys-
temic circulation which could be directly associated with
polyphenols positive effect against OS [23, 24]. In fact, a
systematic review suggested the key role of gut micro-
biota in controlling the OS during intense exercise [25].
Currently, few papers are available and research

designs vary widely regarding to grape polyphenolic sup-
plementation form (drinkable or edible), dosage (acute
to multiple weeks and months), type of exercise stress
(acute or chronic), profile of subject (trained or un-
trained), and oxidative stress outcome measures. The
aim of this review is to examine the potential effect of
these dietary supplements on oxidative stress promoted
by exercise in athletes/trained subjects. For this purpose,
an evaluation of the available scientific literature has
been carried out since it is an important step to deter-
mine the efficacy of these polyphenolic based products
on the redox status of the athletes. A “dietary supple-
ment” has been considered as a product that is intended
to supplement the diet and contains a “dietary ingredi-
ent” [26]. In this work, the ingredient refers to the poly-
phenols present in the grape-based products studied.

Exercise-induced oxidative stress
Oxidative stress is defined as a result of an imbalance
between reactive species production and intrinsic anti-
oxidant defense [27]. For example, athletes participating
in one bout of prolonged and intensive exercise such as
marathon and ultramarathon race event show acute
physiological stress reflected by muscle microtrauma,
oxidative stress, inflammation, and gastrointestinal dys-
function [11, 23, 24, 28–34].
The discovery that muscular exercise increases oxidant

damage did not occur until the late 1970s [35–37].
Although the biological significance of this finding was
unclear, these pioneering studies generated interest for
future investigations to examine the important role that
radicals, reactive nitrogen species (RNS), and reactive
oxygen species (ROS) play in skeletal muscle and other

Table 1 Essential nutrients in 100 g of grapes

Nutrienta Amount Unit

Water 80.54 g

Energy 69 kcal

Protein 0.72 g

Total lipid (fat) 0.16 g

Carbohydrate 18.1 g

Fiber, total dietary 0.9 g

Sugars, total 15.48 g

Minerals

Calcium, Ca 10 mg

Iron, Fe 0.36 mg

Magnesium, Mg 7 mg

Phosphorus, P 20 mg

Potassium, K 191 mg

Sodium, Na 2 mg

Zinc, Zn 0.07 mg

Copper, Cu 0.127 mg

Selenium, Se 0.1 mg

Vitamins

Vitamin A 3 μg

Thiamin, Vitamin B1 0.069 mg

Rivoflavin, Vitamin B2 0.07 mg

Niacin, Vitamin B3 0.188 mg

Pyridoxine, Vitamin B6 0.086 mg

Folate, Vitamin B9 2 μg

Cyano-cobalamin, Vitamin B12 0 μg

Vitamin C 3.2 mg

Vitamin E 0.19 mg

Vitamin K 14.6 μg

Phytonutrients

Carotene, alpha 1 μg

Carotene, beta 39 μg

Lutein-zeaxanthin 72 μg

Polyphenols, total (black)b 184.97 mg

Polyphenols, total (green)c 121.80 mg
aData from USDA Nutrient Data Laboratory
b, cData from Phenol-Explorer 3.0 database
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metabolically active organs during exercise. Indeed,
growing evidence reveals that while uncontrolled pro-
duction of RNS and ROS can damage cells, intracellu-
lar oxidants also play important regulatory roles in
the modulation of skeletal muscle force production,
regulation of cell signaling pathways, and control of
gene expression [35, 38–42].
Although a multitude of free radicals exists, those

derived from either oxygen and/or nitrogen represent
the most important class of radicals generated in
living systems [43, 44]. The radicals themselves as
well as the nonradical species created via interaction
with free radicals are collectively referred to as reactive
oxygen/nitrogen species (RONS) [45].
The redox activity of RONS plays a critical role in cell

signaling and exercise adaptation. It is a phenomenon
widely known as hormesis, which means that low levels
of stress promote adaptation and therefore, protection
from subsequent stress [46, 47]. Exercise-induced RONS
act as signaling molecules for the beneficial effects in
response to exercise training. RONS produced during
muscle contractions are responsible for key adaptations
to exercise training as mitochondrial biogenesis [48],
endogenous antioxidant enzyme upregulation [49], muscle
hypertrophy [50] and glucose uptake by the skeletal
muscle [51].
However, at very high concentrations, free radicals in-

stead of being advantageous they can have detrimental
effects [46]. During heavy endurance training, endogen-
ous antioxidant capacity cannot counteract the increas-
ingly high RONS generation, resulting in a state of OS
and subsequent cellular damage [52].
OS can be basically estimated measuring free radicals,

radical mediated damages on lipids, proteins or deoxy-
ribonucleic acid (DNA) molecules and performing the
total antioxidant capacity.
The results of free radicals must be interpreted with

caution because of the short life of the ROS, their strong
ability to react and their low concentration.
Regarding lipid peroxidation, the conventional oxida-

tive stress marker is malondialdehyde (MDA) which is
produced during fatty acid oxidation. This product is
measured by its reaction with thiobarbituric acid which
generates thiobarbituric acid reactive substances
(TBARS) in blood samples. F2-isoprostanes are also ana-
lyzed to estimate the damage on lipids. They are pro-
duced by non-cyclooxygenase dependent peroxidation of
arachidonic acid. They are stable products released into
circulation before the hydrolyzed form is excreted in
urine. Different methodologies can be used for their ana-
lysis such as Gas chromatography-Mass Spectrometry
(GC–MS), High Performance Liquid Chromatography/
Gas Chromatography-Mass Spectrometry (HPLC/GC–
MS), Gas Chromatography-tandem Mass Spectrometry

(GC-tandem MS), and more recently some immunoassay
techniques [53].
Free radical induced modification of proteins causes

the formation of carbonyl groups into amino acid side
chains. An increase of carbonyls is linked to oxidative
stress in blood samples.
For DNA modification quantification, the most used

marker is the nucleotide 8-hydroxy-2′-deoxyguanosine
(8-OHdG), excreted via blood and urine which is
produced by free radicals-induced guanine oxidation and
analyzed by Enzyme-Linked ImmunoSorbent Assay
(ELISA assays), High Performance Liquid Chromatography-
Electrochemical Detection HPLC-ECD or HPLC/GC-MS
methods [53].
Regarding total antioxidant capacity, is commonly

assessed via the application of one of several antioxidant
capacity assays: trolox equivalent antioxidant capacity
(TEAC assay), ferric reducing ability of plasma (FRAP
assay), 2,2-diphenyl-1-picrylhydrazyl (DPPH assay) and
oxygen radical absorbance capacity (ORAC) and/or
measurement of changes in specific antioxidant enzym-
atic activity like superoxide dismutase (SOD), catalase
(CAT) and glutathione peroxidase (GPX) by enzymatic
assays.
The use of antioxidant supplements for ameliorating

the exercise-induced RONS has become a current topic
as there is considerable evidence that these supplements
might not only prevent the toxic effects of RONS, but
also blunt their signaling properties responsible for the
adaptive responses [54]. While chronic daily use of anti-
oxidant supplements should be avoided, strategic use of
these products in and around periods of heavy training/
game scheduling is the best approach [55]. Anyway, fur-
ther research to observe effects of nutritional antioxidant
supplements on exercise-induced oxidative stress must
be performed [56].

Polyphenols: a natural source of antioxidants
An antioxidant can be defined as a substance that helps
to reduce the severity of OS either by forming a less
active radical or by quenching the damaging free radicals
chain reaction on substrates such as proteins, lipids,
carbohydrates or DNA [57]. Some antioxidants can
interact with other antioxidants regenerating their
original properties; this mechanism is usually referred to
as the “antioxidant network”.
The antioxidants can be endogenous or obtained ex-

ogenously as a part of a diet or as a dietary supplement.
Some dietary compounds that do not neutralize free radi-
cals but enhance endogenous antioxidant activity may also
be classified as antioxidants. While exogenous antioxidant
may attenuate intracellular adaptation in response to exer-
cise training, there is no literature to suggest that increas-
ing endogenous antioxidants has this effect [46].
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Endogenous antioxidants keep optimal cellular func-
tions and thus systemic health and well-being. However,
under some conditions endogenous antioxidants may
not be enough, and extra antioxidants may be required
to maintain optimal cellular functions. Such a deficit is
evident in some individuals during the overloaded period
of training or in circumstances where athletes have little
time for recovery like in tournament situations. How-
ever, available data still do not allow to define the opti-
mal antioxidant intake that would protect overloaded
or, even more so, overtrained individuals [58].
Humans have developed highly complex antioxidant

systems (enzymatic and non-enzymatic) which work
synergistically and together with each other to protect
the cells and organ systems of the body against free rad-
ical damage.
The most efficient enzymatic antioxidants are super-

oxide dismutase (SOD), catalase (CAT) and glutathione
peroxidase (GPX). In Fig. 1, the antioxidant enzyme sys-
tem in the cell is shown.
SOD is the major defense upon superoxide radicals

and is the first barrier protection against oxidative stress
in the cell. SOD represents a group of enzymes that
catalyse the dismutation of O2

.- and the formation of
hydrogen peroxide (H2O2). Manganese (Mn) is a cofac-
tor of Mn-SOD form, present in the mitochondria and
copper (Cu) and zinc (Zn), are cofactors present in cyto-
sol [57]. In muscular cells, 65–85% of SOD activity is
done in the cytosol [59]. Furthermore, CAT is respon-
sible of the decomposition of H2O2 to form water (H2O)
and oxygen (O2) in the cell. This antioxidative enzyme is
widely distributed in the cell, with the majority of the ac-
tivity occurring in the mitochondria and peroxisomes

[59]. With high ROS concentration and an increase in
oxygen consumption during exercise, the enzyme GPX,
present in cell cytosol and mitochondria, is activated to
remove hydrogen peroxide from the cell [60]. The reac-
tion uses reduced glutathione (GSH) and transforms it
into oxidized glutathione (GSSG). GPX and CAT have
the same action upon H2O2, but GPX is more efficient
with high ROS concentration and CAT with lower H2O2

concentration [61, 62]. In response to increased RONS
production the antioxidant defense system may be re-
duced temporarily, but may increase during the recovery
period [63, 64] although conflicting findings have been
reported [65]. GPX requires several secondary enzymes
glutathione reductase (GR) and glucose-6-phosphate
dehydrogenase (G-6-PDH) and cofactors GSH and the
reduced nicotinamide adenine dinucleotide phosphate
(NADPH) to remove H2O2 from the cell.
By contrast, non-enzymatic antioxidants include vita-

min A (retinol) [57], vitamin E (tocopherol) [66], vitamin
C (ascorbic acid), thiol antioxidants (glutathione, thiore-
doxin and lipoic acid), melatonin, carotenoids, micronu-
trients (iron, copper, zinc, selenium, manganese) which
act as enzymatic cofactors and flavonoids, a specific
group of polyphenols [67].
Among non-enzymatic antioxidants, polyphenols are a

group of phytochemicals that have received great atten-
tion of researchers in the last years considering their
beneficial effects in the prevention of many chronic dis-
eases [68, 69]. They constitute one of the most numer-
ous and widely distributed groups of natural products in
the plant kingdom. Polyphenols can be classified by their
origin, biological function, and chemical structure. More
than 8000 phenolic structures are currently known, and

Fig. 1 The antioxidant enzyme system in the cell
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among them over 4000 flavonoids have been identified
[70–72]. The major groups of flavonoids of nutritional
interest are the flavonols, the flavones, the flavanols, the
flavanones, the anthocyanidins and the isoflavones [73].
See Fig. 2.
Polyphenols have showed to act as a defense against

OS caused by excess reactive oxygen species (ROS) [74].
Their potential health benefits as antioxidants is
mediated by their functional hydroxyl groups (OH) that
determine the ROS synthesis suppression, the chelation
of trace elements responsible for free radical generation,
the scavenging ROS and the improvement of antioxidant
defenses [75, 76].
Commonly, grapes and grape based products are

recognized as natural food products with strong antioxi-
dant activity precisely due to their high content in poly-
phenolic compounds [77].
In fact, some nutraceuticals based on polyphenols have

already showed efficacy in reducing the oxidized low-
density lipoprotein levels and trimethylamine N-oxide
(TMAO is a recognized biomarker of increased cardiovas-
cular risk) serum levels in overweight/obese adults [78]
and the gut microbiota remodeling [79]. At the same time,
these products have also demonstrated a reduced OS and
the oxidative damage at muscular level and improved the
muscle performance but in aged rats [80].
Table 2 provides a summary of the different polyphe-

nol families found in grapes.
Considering their polyphenolic composition, it is

plausible to hypothesize that the strategic supplementation
with grape based products may have a positive antioxidant
effect in athletes in particular situations. However, pilot
studies on the antioxidant capacity of grapes and grape
based products with athletes are scarce. Few studies are
focused on the consumption of antioxidant supplements

obtained from grape based products to reduce the immedi-
ate increase of oxidative stress biomarkers.
Table 3 shows a descriptive summary of 12 studies

published since 2005 that investigate the effect of
supplementation with grape based products on exercise-
induced oxidative stress markers and the antioxidant
enzymatic system efficiency. The studies collected in
Table 3 fulfill the following inclusion criteria: (i) pilot
studies conducted with healthy human participants
(active or trained subjects), (ii) original studies with an
acute or long-term grape supplementation intervention
on physiological responses associated with OS produced
by exercise, (iii) published until June 2020. Exclusion cri-
teria are animal studies and studies in which no exercise
is performed. Wine may be a good option as a product
obtained from grapes with an important source of phen-
olic compounds. However, considering that wine con-
tains alcohol may not be an option for all consumers
due to certain disease conditions, religious restrictions,
or age, it has not been considered.

Grape polyphenols supplementation effect
Among the studies found, six of the products are bever-
ages made with grape and the rest are grape extracts and
only one is referred to dried grapes.

Grape beverage supplements
Within the beverages, one is a grape beverage but mixed
with raspberry and red currant [81], another one a grape
beverage specified as organic [82], two of them are grape
concentrate drinks [83, 84] and the last two a purple
grape juice [85].
Regarding the polyphenolic content, the studies show

a wide number of dosages. Morillas-Ruiz et al.dose
range. [81] established an acute dose of the beverage at

Fig. 2 Flavonoid structures. R1 = OH: Quercetin; R1 = H: Kaempferol; R2 = OH: Luteolin; R3 = OH, R4 = H: Catechin; R3 = gallate, R4 = OH:
Epigallocatechin-3-gallate; R5 = OH, R6 = OH: Eriodictyol; R5 = H, R6 = OH: Naringenin; R7 = OH, R8 = H: Cyanidin, R7 = OCH3, R8 = OCH3: Malvidin
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30ml/kg before doing exercise and 30ml/kg every 15
min during 90 min of constant-load test on a bicycle
ergometer. Considering the total phenolic content of
1.41 mg/l of the beverage, this means a total poly-
phenolic dose of 17.76 mg for a moderate trained cyclist
with 70 kg for example. In this study no significant dif-
ference from basal to post-exercise period was detected
for plasma thiobarbituric acid reactive substances ana-
lysis (TBARS) neither in the placebo group (n = 13) nor
the group receiving the antioxidant supplemented bever-
age (n = 13). This could be explained by a not high
enough intensity exercise to alter the redox state or by
the adaptation on antioxidant defenses in well-trained
subjects. However, the antioxidant supplementation had
a beneficial effect on the oxidation of proteins induced
by exercise and reduced this index. In fact, the group re-
ceiving antioxidants obtained a 29% reduction in protein
carbonyls. However, an unexpected result was obtained
for 8-oxo-7,8-dihydro-2′ deoxyguanosine (8-OHdG) in
urine with a greater decrease in comparison to the study
group. Despite these results, the authors defend the use-
fulness of 8-OHdG determination as a sensitive index of
the relationship between exercise and oxidative stress
and demonstrate that antioxidant-supplemented bever-
ages reduce 8-OHdG excretion following a 90min exer-
cise protocol.
Other authors established an intake of 300ml/day of

an organic grape juice for 20 days [82]. Considering the
total phenolic content of 5.32 mg/ml, the total ingestion
of polyphenols per day was 1.59 g for each trained male

triathlete (n = 10). In this case, the results showed a
decreased superoxidase dismutase (SOD) activity in
erythrocytes activity after 20 days. SOD is a cytosolic
antioxidant enzyme responsible for superoxide anion
radical dismutation into oxygen and hydrogen peroxide
and is sensitive to the intake of polyphenols in humans.
The reduction before (baseline) and after 20 days was
27.8 ± 6.3 to 24.3 ± 2.5 U/mg protein. The authors attrib-
uted this decrease to the reduction of intra- and extra-
cellular oxidative imbalances.
The effect of the same volume of 300 ml/day of a

grape concentrate juice (Vitis labrusca) with a total
phenolic content of 45.8 g GAE (Gallic Acid Equiva-
lents)/kg beverage was studied by Silvestre et al. [83]. In
this case, the total intake of polyphenols for each trained
triathlete (n = 6) was 3 g. The acute intake was in two
equal doses before and after the training. The results
showed a significant increase in SOD in the blood sam-
ples regardless of the drink consumed (grape drink or
placebo). A lower increase in reduced glutathione (GSH)
levels in the test group in comparison to the placebo
group was obtained. This result may indicate a lower
oxidation of GSH to GSSG, oxidized glutathione, due to
the action of glutathione peroxidase (GPX) or even more
efficient synthesis by glutathione reductase. Besides,
higher values in TBARS value with placebo in compari-
son to the grape concentrate drink were obtained just
after the exercise and after one hour. This means a lower
value in this oxidative stress marker related to lipid per-
oxidation when grape concentrate drink is consumed.

Table 2 Classification of major polyphenols present in grapes and derivatives

Group Subclass Compound

Flavonoids Flavonols Quercetin, Kaempferol, Myricetin, Isorhamnetin, Laricitrin, Syringetin

Flavones Luteolin, Genistein, Apigenin

Flavanols Catechin, Epicatechin, Gallocatechin, Epigallocatechin, Epicatechin
gallate, Epigallocatechin gallate

Flavanones Eriodictyol, Naringenin, Hesperetin

Anthocyanins Cyanidin, Peonidin, Delphinidin, Pelargonidin, Petunidin, Malvidin

Flavanonols Taxifolin, Astilbin, Dihydromyricetin-3-0-rhamnoside

Flavanes

Chalcones and Dihydrochalcones

Phenolic acids Hydroxybenzoic acids Parahydroxybenzoic, Protocatechuic, Vanillic, Gallic, Syringic

Hydroxycinnamic acids p-Coumaric, Caffeic, Ferulic, Sinapic, Caftaric, p-Coutaric, Fertaric

Tannins Hydrolyzable tannins Gallotannins, Ellagitannins

Condensed tannins Proanthocyanidins

Stilbenes Resveratrol, Viniferins, Piceid, Piceatanol, Astringin, Pterostilbene,
Pallidol, Parthenocissin, Ameurensin G

Coumarins Umbelliferone, Esculetin, Scopoletin

Phenylethanol derivatives Tyrosol, Hydroxytyrosol

Lignans and neolignans Isolariciresinol, Secoisolariciresinol, Lariciresinol, Cedrusin
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But the antioxidant enzyme catalase (CAT) activity
remained stable in the group that consumed the beverage.
The authors suggest that the studies on the CAT response
to exercise have shown conflicting results especially to a
single exercise session. The study concludes that TBARS,
CAT and GSH values suggest that this grape concentrate
drink presents potential to modulate exercise-induced
oxidative stress.
In another study Tavares-Toscano et al. [85] provided

purple grape juice to recreationally active street runners
(n = 53) at a total dose of 10 ml/kg/day for 28 days. Con-
sidering the total phenolic content of 1821 ± 101 mg
GAE/l the total intake of polyphenols reached the total
of 1.27 g per day and 35.69 g polyphenols after 28 days.
The results showed a significant increase, up to 39% in
the plasma antioxidant activity after 28 days. In this case
the total antioxidant capacity (TAC) was evaluated in
the plasma by evaluating the radical scavenging according
to the α, α-diphenyl-β-picrylhydrazyl (DPPH) method. This
analytical method is used to determine the TAC of a
compound, an extract or other biological sources by using
a stable free radical DPPH. The assay is based on the
measurement of the scavenging capacity of antioxidants to-
wards it [86]. The authors showed a deep characterization
of the grape juice. They did not analyze any oxidative stress
markers, but showed an increase in high density
lipoprotein-cholesterol (HDL-cholesterol) fraction and a
decreased low-density lipoprotein-cholesterol (LDL-choles-
terol) fraction demonstrating that grape juice may enhance
the benefits of physical training,
The same author [84] demonstrated, with the same

beverage and dosage in recreationally active amateur
runners (n = 28), an increase in TAC by 38% in compari-
son to the control group after 28 days. Besides the
malondialdehyde (MDA) data indicated that grape juice
supplementation did not prevent lipid peroxidation in
athletes, but the increase was lower than in the group
with no grape juice.
Tavares-Tocano et al. [87] also showed that a single

dose of purple grape juice of 10 ml/kg with a concentra-
tion of 3106.6 mg/l was able to promote increased
plasma antioxidant activity in recreational male runners,
but did not change the plasma concentration of lipid
peroxidation by MDA.

Grape extract supplements
Studies found with this type of supplements are focused
on an extract obtained from the grape’ skin [88], extracts
obtained from grape seeds [89, 90], the whole grape [91],
an innovative polyphenol-based food supplement based
on a grape extract [92] and dried grapes with almonds
and dried cranberries [93].
Concerning the edible grape products, to the best of

our knowledge the first study that analyzed the effect of

grape polyphenols supplementation on the blood anti-
oxidant status was in 2008 [88]. In this study an intake
of 3 capsules containing 390 mg of red grape skin extract
per day for 6 weeks to fourteen physical education stu-
dents (n = 14) was established. This dosage means 0.22 g
polyphenols per day and a total 9.24 g after the 6 weeks.
The results showed an insignificant modification of anti-
oxidant enzyme: SOD, CAT, GSH and glutathione re-
ductase (GR) activities, concentrations of non-enzymatic
antioxidants: GSH and uric acid (UA) and total antioxi-
dant status (TAS). However, the authors indicated that
the supplementation with the alcohol-free red wine
grape polyphenolic extract might influence the attenu-
ation of the post-exercise release creatine kinase (CK)
into the blood.
Lafay et al. [91] established a dosage of 400 mg of a

commercial grape extract over a month period for elite
sportsmen (n = 20). In this case, no information regard-
ing the total polyphenolic content was given. The
authors showed that consumption of grape extract stan-
dardized in flavanols permits to ameliorate the oxidative
stress/antioxidant status balance in elite athletes during
a competition period, and to enhance physical perform-
ance in one category of sportsmen (handball). Besides
the administration of grape extract decreased the plasma
CK concentration and increased the hemoglobin (Hb)
level in plasma suggesting a protection of cells against
oxidative stress damage.
In another work [86] the authors gave to each male

rower (n = 22) one gelatin capsule containing a commer-
cial black grape extract three times a day for six weeks
what results an amount of 0.21 g polyphenols per day
and a total of 8.69 g total polyphenols after the 43 days.
The study revealed that this preparation and doses con-
tributed to a significant increase in plasma TAC and to
an insignificant increase in SOD, as well as a lower GSH
activity and reduce concentration in TBARS.
Taghizadeh et al. in a pilot study [90] tested the effect

of a grape seed extract (GSE) on female volleyball
players (n = 40). The dosage was 300 mg of GSE twice a
day for 8 weeks. No information about the polyphenol
content was given but the results showed a significant
rise in plasma GSH and a significant decrease in MDA.
Besides, the players who received GSE exhibited a sig-
nificant decrease serum insulin concentration. On the
other hand, the administration of GSE had no significant
effects on parameters like creatine kinase (CK) or TAC
when compared with the administration of the placebo.
Another pilot study [92] is developed with an acute in-

take of 1000mg of a commercial grape supplement with
pomegranate in two 500 mg capsules 60 min before the
start of an intense and continuous cycling exercise
(Wingate test). The polyphenol content was 29 g/100 g
which results a dose of 0.29 g polyphenols. The study
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resulted in an increase in SOD, GSH and CAT activity,
which remained stable until the end of the recovery
period. The authors explained that in comparison with
the placebo group the subjects supplemented showed no
need to mobilize more antioxidant defenses before the
exercise because and that the supplement probably con-
tributed to spare oxidative homeostasis.
Finally, it must be pointed out the protocol [93] estab-

lished for a pilot study that includes a product mix made
of dried grapes with almonds and dried cranberries. No
results are given but the authors describe the necessity
of studying the F2-isoprostanes as a lipid peroxidation
biomarker for oxidative stress.

Conclusions
Supplementation with grape polyphenols seems to have a
positive effect against oxidative stress. These effects are
dependent on the supplement dose, the length of the
supplementation period or the polyphenolic profile (total
polyphenol content and the distribution among poly-
phenolic families). Besides, according to several reports, it
appears that the type and intensity of exercise can affect
the response of the blood antioxidant defense system, just
as the training status of the athlete, or the sport discipline.
Considering the supplementation dosage in these studies
it seems unlikely athletes would gain enough quantity of
polyphenols from diet. Therefore, grape-based polyphenol
concentrated products would be an interesting approach.
Moreover, inter-individual variability the age, sex, diet,

environment factors, exercise protocols and even variability
in gene expression could influence the polyphenols bio-
availability and physiological responses to oxidative stress.
Given the promising evidence, although still limited, more
pilot studies on effect of grape polyphenols on the oxidative
stress produced by sport should be conducted to determine
the optimal concentration, dosage and effect on the oxida-
tive stress for target athletes.
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