
Fast Real-Time Trajectory Planning Method with 3rd-Order Curve
Optimization for Automated Vehicles

Ray Lattarulo1, and Joshue Perez1

Abstract— Automated driving (AD) is one of the fastest-
growing tendencies in the Intelligent Transportation Systems
(ITS) field with some interesting demonstrations and proto-
types. Currently, the main research topics are aligned with
vehicle communications, environment recognition, control, and
decision-making. A real-time trajectory planning method for
Automated vehicles (AVs) is presented in this paper; the
contribution is part of AD’s decision-making module. This novel
approach uses the properties of the 3er order Bézier curves to
generate fast and reliable vehicle trajectories. Online execution
and vehicle tracking capacities are considered on the approach.
A feasible trajectory is selected based on the criteria: (i) the
vehicle must be contained by a collision-free corridor given
by an upper decision layer, (ii) the vehicle must be capable
to track the generated trajectory, and (iii) the continuity of
the path and curvature must be preserved in the joints. Our
approach was tested considering a vehicle length (automated
bus) of 12 meters. The scenario has the dimension of a real test
location with multiple roundabouts.

I. INTRODUCTION

AVs are showing great potential to improve safety, passen-
gers’ comfort, and efficiency under cooperative scenarios.
Applications such as pedestrian detection, lane departure
warning and assistance, and driving through a lane are some
examples of current impressive results. Nevertheless, real-
time trajectory planning is still an issue in this field where
optimal solutions are desired based on vehicle dynamics,
road characteristics, and other participants involved.

This task is part of the vehicle decision module, as well as
obstacle avoidance, optimal route calculation, speed profiles,
among others. Global, behavioral, and local planning are
common names used, in the AD literature, to group the tasks
involved in this module [1].

The local planner includes the path planning generation
and speed profile, which are sent to the vehicle controllers.
Smoother and safer trajectories improve the general perfor-
mance of the AVs. Sampling-based methods [2] and nu-
merical optimization [3] can be summarized as the possible
groups of methods to deal with this task.

Sampling-based methods demand an online or offline
discrete set of precomputed motion primitives based on
road geometry, vehicle dynamics, or a combination of both.
The optimization-based methods generate a real-time tra-
jectory under a continuous set. The main advantage of
the optimization methods, for trajectory generation, is the
capacity of considering the complete solution space with a

1Ray Lattarulo, and Joshue Perez are with TECNALIA, Basque
Research and Technology Alliance (BRTA), Astondo bidea 700, E-
48160, Derio, Biscay, Spain. {rayalejandro.lattarulo and
joshue.perez}@tecnalia.com

small compromise in the computation time [4]. In recent
years, some researchers have been focused on the optimal
trajectory generation, considering different constraints (i.e.:
speed, acceleration, and jerk), as in [5], [6], [7]. However,
real-time planning based on local information remains as a
clear open challenge in urban and dynamic environments.

Consequently, this work has proposed a novel
optimization-based solution for AVs’ trajectory planning. It
has used the Bézier curves’ convex-hull property to generate
a geometrically safe trajectory that fits into a collision-free
corridor while including vehicle kinematic constraints and
passengers’ comfort. The Bound Optimization BY Quadratic
Approximation (BOBYQA) method is used to optimize the
curves. The total area of the vehicle is considered during
the evaluation of the trajectory feasibility.

The rest of the paper is organized as follows. Section II
presents a brief description of the properties of the Bézier
curve, the optimization method, and the vehicle model.
Section III explains the trajectory planning approach based
on highly accurate map information. The proposed scenario,
located in the Malaga’s port, and the results obtained in this
work are presented in sections IV and V, respectively. Finally,
the last section presents some conclusions and future works.

II. CONCEPTS AND BASIS

A. Bézier curves

Bézier curves are parametric curves that are part of the
family of the interpolated curves, as the splines [8]. In the
robotics field, they have been used for trajectory generation
of non-holonomic vehicles, and interesting results have been
obtained [9], [10]. Some examples of these curves are
presented in Fig. 1.

The Bézier curves are defined with the following equation:

B(t|P0, ..., Pn) =

n∑
i=0

bi(t)Pi, bi =

(
n

i

)
ti(1−t)n−i (1)

{bi ∈ R} is the Bernstein polynomial, {Pi ∈ R2} are the
control points which define the curve in the plane x − y,
{n ∈ N+} is the Bézier order, and {t ∈ R, t = [0, 1]} is the
parameter used to interpolate the curve.

They have interesting properties which were summarized
in previous work [11]. This approach considers the following
ones:

• The starting point of the Bézier curve corresponds with
the control point P0, and the ending point corresponds
with Pn.



Fig. 1. 3rd-Order Bézier curves, its properties, and shape

• The direction at P0 will be defined by the vector
−−−→
P0P1,

and the direction at Pn will be defined by the vector−−−−−→
Pn−1Pn.

• The curve will lie in the convex hull formed by the
control points.

• Bézier curves generates continuous curvature and path.

In this work, the Bézier curves define the trajectories to
be tracked by the vehicle’s controllers. Third-order curves
are used to compute fast solutions while preserving the
continuity in geometry and curvature. The four control
points can generate trajectories that define the typical vehicle
maneuvers, such as straight segment, soft and narrow curves,
and S-shape movements (lane-change maneuvers). These
examples are depicted in Fig. 1.

Moreover, the real-time trajectories use the property of
the direction in the point P0 to define the location of P1,
preserving the continuity in geometry with the heading vector
−→v0. Further details will be given in the following sections.

B. Optimization method

The trajectory generation problem of the AVs, considering
the total vehicle area contained into the lane boundaries,
is a highly nonlinear problem with non-smooth, discontin-
uous, and non-convex objective functions. Derivative-based
optimization methods are not capable to solve this type
of problem with reliable results [12]. Although, modern
derivative-free methods achieve better results.

Currently, the developments in derivative-free methods
have suffered a significant improvement considering conver-
gence proofs and theoretical background. This has derived in
different packages for solving this type of complex problems,
such as: NOMAD, OQNLP, NEWUOA, BOBYQA, among
others [13]. Some of these methods have the following
disadvantages: (i) the NOMAD method generates global
optimal solution which demand a long computation time 1,
(ii) OQNLP demands smooth constraints and it is used to find
a global optimal 2, and (iii) the NEWUOA was developed to
solve unconstrained optimization problems (long computa-
tion time) [14].

1https://www.inverseproblem.co.nz/OPTI/index.php/
Solvers/NOMAD

2https://tomopt.com/tomlab/products/oqnlp/

In these terms, the BOBYQA method has been used to
solve online optimization problems finding a quick and
reliable local optimal value. It was originally a Fortran
package used to obtain the minimum value of a function
{F(x), x ∈ Rn} subject to the bound constraints {ai ≤ xi ≤
bi : i = 1, 2, . . . , n} [15]. The method does not require
precomputed derivatives and that is a major benefit in this
type of highly nonlinear problem.

The procedure for solving the optimization problem is the
following:

1) The system verifies the boundaries to avoid crossings
or overlaps between the lower bound elements ai and
the upper bound elements bi. Moreover, the initial
condition x(0) must be into the bounds.

2) The BOBYQA algorithm generates a quadratic approx-
imation of the objective function F(x) in the form of
{Q(xk) = F(xk) : k = 1, 2, . . . ,m}, with m the
number of discretization steps.

3) The truncated conjugate gradient method is applied to
solve the problem, which is a variant of the conjugate
gradient method but with a limitation in the number
of the iterations executed.

The conjugate gradient method obtains the optimal value
x∗ in fewer iterations than traditional methods such as the
steepest descent. Every iteration generates a possible value
of x∗ based on a gradient that is A-orthogonal respect to the
previous gradient [16].

In this work, the solution vector is in R3. The first element
is the distance between the control point P0 and P1, the
distance between P2 and P3 is the second value, and the last
one is the magnitude of the vector that goes from the right
to the left bound and it is perpendicular to the direction of
the point P3.

The DLib toolkit was used to compute the BOBYQA
method. It is distributed under a boost open source license
and it has C++ and python interfaces. The optimization
module was used for this approach. It has been integrated
into the control architecture for AD, developed in the AD-
team of Tecnalia Research and Innovation [11].

C. Vehicle model
The kinematic model was considered to ensure the correct-

ness while tracking the generated trajectories. The reference
point was set in the rear axle to avoid the complexity of
adding the lateral slip component while the vehicle is rotating
around the center of gravity. Moreover, the longitudinal slip
is considered negligible due to the low speed and the flat
surface of the scenario.

Fig. 2 presents the kinematic vehicle model. A relation
between the turning angle δ and the curvature 1

r is extracted
considering similar triangles property and the wheelbase l.
This relation is given by tan(δ) = l

r . In these terms, the
maximum value of the turning angle δmax is introduced, in
the previous relation, to obtain the maximum curvature of
the trajectory that the vehicle can track effectively.

kmax =
1

rmin
=
tan(δmax)

l

https://www.inverseproblem.co.nz/OPTI/index.php/Solvers/NOMAD
https://www.inverseproblem.co.nz/OPTI/index.php/Solvers/NOMAD
https://tomopt.com/tomlab/products/oqnlp/


Fig. 2. Kinematic vehicle model

III. TRAJECTORY PLANNING APPROACH

This work proposes a trajectory planning approach based
on highly accurate map information, also known as lane-
level accuracy [17]. A 3-levels automated vehicle’s decision-
module was considered. The first stage is a global planner
that generates a route based on sensors and map information.
The second part is the behavioral planner that defines a
collision-free corridor. Lastly, the third level is the local
planner that generates trajectories to drive through this
collision-free lane.

Fig. 3. Road and lane definition

Fig. 3 depicts the input of the trajectory planning approach
which comes from the behavioral module. Those are the
collision-free lanes (blue), which are defined by the right
bound RB and the left bound BL. These lanes describe
a collision-free area in terms of obstacles, other vehicles,
pedestrians, vehicle space, and maneuvering capacity into
the corridor. In this example, a first corridor is generated for
the automated car defining a collision-free area that finishes
right before the pedestrian crossing. A second corridor was
generated considering two lanes to defines the drivable space
of a long vehicle, such as an electric bus. This paper has
tested the automated trajectory planning approach in a bus
of 12 meters of length.

The trajectory and speed profile will be generated based
on the corridor. This avoids possible unsafe conditions due
to the violation of the limits given by the bounds and its
maximum distance. These constraints and their use in the
method are explained as follows:

A. Path planning

The lateral part of the trajectory has been developed based
on a numerical optimization method, using the BOBYQA

optimization method and the Bézier curves, due to their com-
putation time and the continuity in geometry and curvature.
The method receives, as input, the lateral bounds BL and
BR with a total length of D as Fig. 4 depicts.

Fig. 4. Bézier control points positioning

The bounds are filtered to reduce the density of points,
remaining the significant ones. The reduction considers the
separation between consecutive points and the difference in
angle. Moreover, the total length of the lane is truncated to
a maximum frontal distance of DF , boosting the responsive-
ness of the method. A segment of the lane, which measures
DR, is left behind the reference point of the vehicle and it
measures two times the distance from the vehicle rear axle
to the rear vehicle limit. DR must be considered because the
rear part of vehicle dimension has a considerable contribution
in the total vehicle area (e.g. automated bus) and it must be
evaluated to generate trajectories which fits into the collision-
free corridor.

The first point of the trajectory P0 is set in the middle
of the vehicle rear axle. This position is selected to reduce
the slip angle contribution of the generated trajectory and
the vehicle motion. The direction of the vehicle movement
and the direction of the trajectory are equal at this point.
Moreover, the direction of the trajectory ψ0 at P0 is equal to
the current vehicle direction ψveh. The final control point of
the trajectory P3 is set at a distance DF from the first point
and over the perpendicular lane axis a3.

The optimization process generates variations of: (i) the
distance D01 between the control point P0 and P1, (ii) the
distance D23 between the control point P2 and P3, and (iii)
the distance between the bound BR and BL of the control
point P3 over the axis a3. The location of the control point
P2 is given by the position of P3, the distance D23, and the
direction ψ3 which is equal to the direction of the lane ψlane

at the point P3.
The optimization process modifies the parameters D01,

D23, and a3 to generate an optimal trajectory. The lane gen-
erated considers the vehicle dimensions while the curvature
is reduced under the maximum vehicle turning limits, which
improves the comfort mitigating rough changes in the vehicle
direction. After the generation of the control points Pn, they
are interpolated using Bézier formulation which creates a



polyline of points pi with a curvature associated ki. They are
evaluated in a cost function which has the following form:

φ =

{∑n
i=1 φ

−(pi, ki), when feasible

| ∆k0 | +
∑n

i=1 φ
+(pi, ki), when unfeasible

φ−(pi, ki) = −(

m∑
j=1

min{dRpvj
, dLpvj

})− 1/ | ki |

φ+(pi, ki) = (

m∑
j=1

max{dRpvj
, dLpvj

})+ | kmax − ki |

(2)
The trajectory is declared unfeasible when for one of the

interpolated points pi, at least one of the points in the set pv
(description of the vehicle outer bound presented in Fig. 4)
is out of the lane. Moreover, a curvature ki, at the point pi,
over the maximum vehicle limit kmax means an unfeasible
solution. Lastly, the deviation between the curvature at the
starting point and the same location in the previous feasible
trajectory ∆k0 must be under a maximum limit. The distance
of the points pv to the right and left bounds are dR and dL
respectively. The best trajectory is obtained evaluating the
optimization problem min{φ}, for a positive value of the
cost function the trajectory is unfeasible and vice-versa.

In the case of an unfeasible solution, the optimization seed
(the result of the last iteration) is randomly modified as well
as the maximum lane distance. Both actions help to converge
the optimization process.

B. Speed profile

In some previous works, good results have been obtained
on speed profiles generation using a Linear Model Predictive
Control approach [18]. This model is a triple integrator chain
that generates a fast and reliable response under vehicle
dynamics constraints, as well as comfort and safety ones
(road speed limit); for further details consult [19], [20].
Results related to the speed profile are not presented in
the current publication because it does not add additional
information respect to the previous tests.

IV. PROPOSED SCENARIO

The approach has been tested in simulation environments
considering an automated bus, the length was 12.0 meters
and the width was 3.0 meters (including a safety lateral
distance). The tests were executed in an industrial PC with
a Intel Core i7-6820HQ processor and 32 GB of RAM.
The proposed scenario was tested on the last segment of
the Malaga’s Port (Spain) which is the scenario of the EU
AutoDrive project 3.

The complete path is presented in Fig. 5. The algorithm
has been validated in a segment with a large number of
bends. Moreover, the selected section has two roundabouts
with 180◦ turns.

The use cases have considered only the real-time trajectory
generation based on collision-free lane information. In these

3https://autodrive-project.eu/

Fig. 5. The proposed scenario

terms, this approach is scalable to the stop-and-go, lane
change, overtaking, obstacle avoidance, and lane-keeping
based on map information maneuvers. The computation
of the collision-free lane is a task of an upper layer of
the vehicle decision module (behavioral planning) which is
beyond the scope of this work.

V. RESULTS

Fig. 6. The vehicle trajectory over the complete scenario

Fig. 6 presents the test scenario and the complete trajec-
tory. It is obtained from the concatenation of all the generated
trajectories in each timestep. The location is given in UTM
coordinates, relative to the position east 373675.8174 and
north 4063258.5712. These results can be used in real test
cases as a pre-computed optimal trajectory which helps to
drive through the scenario as a fallback strategy in case of a
long delay or a failure in the decision module.

Fig. 7 shows a complete movement on the roundabout con-
sidering the vehicle area. In the entrance of the roundabout,
the local planner generates a trajectory which minimized the
vehicle changes passing between the right bound and the
left bound of the inner part of the roundabout. A similar
operation is presented at the exit of the roundabout. The
vehicle is contained by the driveable area (lanes) due to the
verification of this condition in the optimization process.

A sequence of generated trajectories is presented in Fig.
8. The blue line is the last feasible trajectory and the
red one is the current evaluation. The dot-mark shows the
location of the Bézier control points. The upper part of
Fig. 8 represents a solution obtained from the optimization



Fig. 7. Roundabout scenario at the Malaga’s Port

Fig. 8. Evolution of the trajectories

process, nevertheless, its curvature overpassed the maximum
permissible value. In this case, the maximum lane distance
and the optimization seed were randomly modified, and it
generates the solution of the second picture. The middle
part of the figure shows that the trajectory was unfeasible
because the vehicle area was out of the lane. Lastly, another
modification of the optimization seed was done to achieve a
feasible solution.

Fig. 9 depicts four values of interest for each trajectory
which are: (i) the trajectory distance, (ii) curvature of the
first element, (iii) the maximum and the minimum value
of the trajectory, and (iv) the angle of the initial element.
The distance has a target value of 50 meters ahead. This is
reduced if a feasible solution is not obtained. The minimum
value, during the experiments, is around 25 meters. The
second image presents a continuous response of the curvature
in the joints of consecutive trajectories. In the third image,
the gray area represents the maximum and minimum values
of the curvature for each timestep which is into the limit of

Fig. 9. Trajectory variables

0.1 1
m . This value is related to the turning capacities of the

vehicle. Lastly, the angle in the joints is similar to the angle
rebuilt from the trajectory points (based on geometry), with
some small variations due to numerical errors.

Fig. 10. Execution time

Finally, another value of interest was the time consume
during the optimization process which is presented in Fig.
10. The histogram (upper part) concludes that around 72%
of the samples during the experiments consumed less than
30 milliseconds, around 27% of the time was between this
limit and 60 milliseconds and the rest of the samples were
under the limit of 80 milliseconds. The lower part of the
figure relates the long computation time with the most
difficult parts of the experiment which were the 180◦ turns
into the roundabout. The straight segments have the lowest
computation time.

The efficiency of the algorithm was compared with other
methods of the literature. The first method used a combina-
tion of optimal control (OCP) formulation using a kinematic
vehicle model along with a spline parametrization [21] (the
experiments reported the results with 8 knots for the interpo-
lation). The second method was a convex optimization for-



TABLE I
COMPARISON WITH METHODS OF THE STATE OF THE ART

Method Exec. Time [ms] Obstacles

OCP [21] 116 (avg.) - 229 (max.) Static
Convex Opt. [22] 441 Static
RRT-GP [23] 647 (avg.) - 665 (max.) Static

This work < 30 (72% samples) - 80 (max.)∗ Dynamic∗∗
∗ It doesn’t consider the computation time of the collision-free corridor
∗∗ This will be presented in future works

mulation which considered a previously computed collision-
free tube [22]. The third method was a RRT approach
considering a Gaussian process (GP) motion model [23].
The results are presented in table I. This table contains the
execution time for the generation of one trajectory and the
type of obstacles considered during the experiment.

VI. CONCLUSION

This work has presented a novel real-time trajectory plan-
ning method based on Bézier curves. The best trajectory was
generated with a nonlinear local optimization method named
BOBYQA. It has used the principle of the Bézier curves’
convex hull to generate a safe trajectory that contains the
vehicle into the lane considering vehicle’s width and length
which is an improvement respect the typical evaluation of
vehicle width made in the state of the art. The maximum
trajectory distance is used to compute the speed profile with
the distance restriction which keeps a vehicle safe state.

The method has presented a total computation time lower
than 50 milliseconds more than 90% of the time, on different
types of bend segments. The algorithm has been tested in
simulation environments using a dynamic model of the bus,
and modeling a real scenario context.

As future works, this algorithm will be tested with long
non-holonomic vehicles as an automated bus, and maneuvers
such as overtaking, obstacle avoidance, and automated park-
ing will be evaluated. Experiments using real test vehicles
are also considered. Moreover, the algorithm will be tested
with dynamic obstacles, and more advanced state of the art
algorithms will be collected and tested to extract the values
of interest for benchmarking this approach.

ACKNOWLEDGMENT

This work was supported by the European AutoDrive
project from the ECSEL program under the grant agreement
No 737469, and the European SHOW Project from the Hori-
zon 2020 program under the grant agreement No 875530.

REFERENCES
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