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Characterization of increased persistence and intensity
of precipitation in the northeastern United States
Justin Guilbert', Alan K. Betts?, Donna M. Rizzo', Brian Beckage?, and Arne Bomblies'

'School of Engineering, University of Vermont, Burlington, Vermont, USA, 2Atmospheric Research, Pittsford, Vermont, USA,
3Department of Plant Biology, University of Vermont, Burlington, Vermont, USA

Abstract we present evidence of increasing persistence in daily precipitation in the northeastern United
States that suggests that global circulation changes are affecting regional precipitation patterns. Meteorological
data from 222 stations in 10 northeastern states are analyzed using Markov chain parameter estimates to
demonstrate that a significant mode of precipitation variability is the persistence of precipitation events. We
find that the largest region-wide trend in wet persistence (i.e., the probability of precipitation in 1 day and given
precipitation in the preceding day) occurs in June (+0.9% probability per decade over all stations). We also
find that the study region is experiencing an increase in the magnitude of high-intensity precipitation events. The
largest increases in the 95th percentile of daily precipitation occurred in April with a trend of +0.7 mm/d/decade.
We discuss the implications of the observed precipitation signals for watershed hydrology and flood risk.

1. Introduction

Concurrent with the global increase of temperature is a change in precipitation, which varies widely in
magnitude and direction depending on the region considered. In general, dry areas have become drier and
wet areas have become wetter [Dore, 2005]. Warming temperatures increase the potential intensity of
precipitation, as saturation vapor pressure increases steeply with temperature [Durack et al., 2012; Berg et al.,
2013]. Changing global circulation patterns may also have pronounced local impacts on the distribution of
precipitation, influencing watershed hydrology as well as humans and natural systems. However, spatial
and temporal variability in precipitation is very high, and for many regions, including the northeastern
United States (NE U.S.), the connection of local-scale precipitation changes to global climate change
remains elusive.

Recent research on global circulation changes suggests that arctic amplification and sea surface temperatures
are drivers of changes in jet stream wave amplitude and propagation speed [e.g., Francis and Vavrus, 2012;
Petoukhov et al., 2013; Screen and Simmonds, 2013; Tang et al., 2013]. One hypothesis [Francis and Vavrus,
2012] is that changing meridional temperature differences reduce jet stream intensity, resulting in higher-
amplitude waves and slower velocities, both of which can affect storm tracks and result in local weather
impacts. However, the proposed role of arctic amplification in regulating weather patterns resulting from jet
stream meanders has been criticized [Kintisch, 2014]. Other hypotheses suggest that changing sea surface
temperature [Muller, 2013; Palmer, 2014] plays a similar role. Palmer [2014] proposes a mechanism that links
increased sea surface temperatures (SSTs) to larger-amplitude planetary waves. In this mechanism, increased
SSTs generate more powerful storms in the western tropical Pacific, and the release of latent energy excites
propagating wave trains that interact with and amplify the midlatitude planetary waves. Muller [2013]
suggests that warming SSTs may also contribute to the organization of squall lines in convective systems that
can lead to increases in extreme precipitation.

The NE U.S. has experienced an increase in precipitation of approximately 10 mm/decade and the greatest
increases in extreme precipitation in the United States [Horton et al., 2014]. For example, the return period of
daily rainfall intensity greater than 101.6 mm (10.16 cm) has decreased in the last century from 26 to 11 years
in the NE U.S,, and the frequency of the upper 10% of rainy days has increased in the NE U.S. [Groisman et al.,
2001, 2005]. Under the recently proposed mechanisms that yield slower-moving planetary waves, storms are
expected to propagate more slowly resulting in more persistent weather patterns. Changes in the persistence
of precipitation in the NE U.S. have not been studied in detail. However, NE U.S. precipitation magnitudes
show little dependence on large-scale climate variability [Brown et al., 2010; Dai, 2013]. Brown et al. [2010]
considered six teleconnection patterns, while Dai [2013] looked only at the interdecadal Pacific oscillation.
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Table 1. Statistical Analysis of Regional Trends in the Probability of a Wet Day Following a Wet Day, P14
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ann

Positive trends 139 146 156 157 179 178 159 160 168 166 157 150 168
Significant positive trends 109 117 112 121 145 146 131 126 128 137 118 115 141
Negative trends 83 76 66 65 43 44 63 62 54 56 65 72 54

Significant negative trends 57 50 50 39 32 28 44 43 42 39 46 55 36

Understanding the nature of precipitation variability in the NE U.S. is critical especially with respect to severe
flooding, which has become more frequent with time in this region [Collins, 2009]. In this study, we provide a
statistical analysis of regional trends in the median and 95th percentile of daily precipitation and trends in
wet and dry persistence. We focus on these metrics because as global temperatures continue to increase,
shifts in these metrics are expected due to the dynamics of the jet stream and increasing vapor pressure of
water in the atmosphere. Also, if there are continued positive trends in these metrics, we expect significant
hydrologic implications including the magnitude and return intervals of severe flooding and problematic
nonstationarity [Milly et al., 2008] in precipitation and river discharge.

2. Methods

We characterized statistical trends in regional precipitation believed to have the greatest hydrological
implications: the median and 95th percentile of daily precipitation and wet and dry persistence. We used the
daily data from the Global Historical Climatology Network (GHCN), retrieved from the National Climatic Data
Center and covering the entire NE U.S. as defined by the National Climate Assessment. The NE U.S. as defined
for this study thus includes the states of Connecticut, Delaware, Maine, Maryland, Massachusetts, New
Hampshire, New York, Pennsylvania, Vermont, West Virginia, and the District of Columbia. However, no
climate stations from the District of Columbia or Maryland satisfied our selection criteria. Daily precipitation
from 222 stations was analyzed with record lengths varying between 51 and 174 years and a mean record
length of approximately 84 years. Stations were selected such that each had over 50 years of data, and the last
data point was recorded after 1 January 1990. We removed any station that was missing 10 continuous years of
data; and daily precipitation values were rounded to the nearest 1 mm. Station names and locations are
included as supplemental information.

2.1. Characterization of Changes in Precipitation Extremes

For each station, the depths of daily precipitation were subdivided and modeled using two distributions to
better represent the extreme events of the distribution, that is, to better account for rare but important
events. The first distribution was best fit to all daily precipitation depth values up to the 75th percentile, and
the second distribution was fit to the remaining upper tail. The lower values were fit utilizing an exponential
distribution, while the upper values were fit with a generalized Pareto distribution. Both distributions were
fit using the method of maximum likelihood estimation. The two distributions were fit for moving 30 year
windows by month and annually. A 30 year window was chosen because it was found to generate enough
samples within the upper 25% of the distribution to minimize noise in the Pareto fitting parameters without
overly smoothing the signals. For each window, the 95th percentile and median of daily precipitation were
calculated from the two distributions. This was completed for each month and annually. The 95th percentile
and median of daily precipitation were selected to represent heavy and average daily precipitations,
respectively. A linear model was fit to determine the trends of these metrics over time. Trend magnitudes were
calculated using the slope of the best fit linear model. Interquartile ranges were calculated for the trend

Table 2. Statistical Analysis of Regional Trends in the Probability of a Dry Day Following a Dry Day, Pgq
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ann

Positive trends 128 132 151 125 105 108 112 106 71 70 95 108 110
Significant positive trends 98 108 117 101 85 83 84 73 48 45 60 81 83
Negative trends 94 90 71 97 17 114 110 116 151 152 127 114 112

Significant negative trends 71 60 40 64 84 80 78 89 121 120 101 84 82
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Table 3. Statistical Analysis of Regional Trends in Median Daily Precipitation

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ann
Positive trends 114 113 128 129 126 129 129 141 135 161 148 136 136
Significant positive trends 71 58 79 75 72 78 86 97 87 120 101 88 93
Negative trends 108 109 94 93 96 93 93 81 87 61 74 86 86
Significant negative trends 76 74 66 69 71 65 59 48 55 46 41 61 66

magnitudes of each metric for the whole region by combining all 222 stations. Comparisons were performed
between the number of positive trends and negative trends and significant (p < 0.01) positive and negative
trends using the Mann-Kendall test (Table 1).

2.2. Characterization of Changes in Wet and Dry Persistence

The Markov chain parameters in this study represent the probability of transition from dry day to dry day (Pgo)
and the probability of transition from wet day to wet day (P+,) (Tables 1 and 2). Py is used as an analogue for
dry persistence, while P4 is used as the analogue for wet persistence. Wet days are defined as days that
record >0.5 mm of precipitation. For each station, a moving average of Pyo and Py, was calculated by month
and annually using a 30 year window. A 30 year window was used to be consistent with the window size
used to characterize the precipitation extremes. Again, the slope of a best fit linear model was used to
calculate the trend magnitudes in the metrics, and comparisons were performed on the trends in Pyg and P44
across the study region as described in the previous section.

3. Results and Discussion

The observation records show precipitation to be nonstationary in time. Of the four statistics computed, only
the median daily precipitation (Table 3) remained largely unchanged. The 95th percentile of daily precipitation
for the study region generally increases over the observed record (Figure 1). More than 148 (two thirds) of
the 222 stations show positive trends for the 95th percentile of daily precipitation in the months of October
through May, and at least half of the stations display significant (p < 0.01) positive trends during every month
except July and September. The strongest regional trend in the 95th percentile of daily precipitation was
observed in April when the average trend was +0.7 mm/d/decade. It should also be noted that the interquartile
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Figure 1. Regional trends in the median and 95th percentile of daily precipitation over the period of record for 222 Global Historical Climate Network stations.
The dots represent the monthly or annual mean trend, the rectangle represents the interquartile range of the trend, and the whiskers represent the full range.
Outliers are not shown for viewing purposes. This figure shows that the trends in the 95th percentile of daily precipitation are most significant during December,
March, and April and are generally increasing at a greater rate than the median. However, there is much greater variability in the trends of the 95th percentile.
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Figure 2. Regional trends in the Markov chain parameters of daily precipitation over the period of record for 222 Global Historical Climate Network stations. The dots
represent the monthly or annual mean trend, the rectangle represents the interquartile range of the trend, and the whiskers represent the full range. Outliers are not
shown for viewing purposes. This figure displays the trends in P;4; the greatest increases in wet persistence occurred during the months of May and June, while the
trends in Pgg show decreasing dry persistence during September and October and increasing dry persistence in March.

range of the observed trends for the 95th percentile of daily precipitation is largest in September. The trends
in the median of daily precipitation are much less pronounced with October being the only month with
more than half of the stations showing significant (p < 0.01) positive trends; and there are no months in
which more than half of the stations show significant negative trends for the median of daily precipitation.
These results are representative of the 10 NE U.S. states. However, these trends are not spatially uniform.

The entire region experienced an average trend of +0.5 mm/decade in the annual 95th percentile daily
precipitation, while Connecticut was found to have the greatest increase with a trend of +1.1 mm/d/decade in
the annual 95th percentile daily precipitation. No trend was found for West Virginia in the annual 95th
percentile daily precipitation.

Figure 2 shows the trends in both Markov chain parameters, wet persistence (P11), and dry persistence (Pqoo).
However, the trends in dry persistence are generally smaller in magnitude with some seasonal variation, small
increases in spring, and small decreases in fall. For trends in dry persistence, the most positive trends (151)
and significant (p < 0.01) positive trends (117) occur in March, the most negative trends (152) occur in
October, and the highest number of significant (p < 0.01) negative trends (121) occur in September. The wet
persistence of events increases throughout the entire year with the greatest number of increasing trends
occurring in May and June with 179 and 178 stations displaying positive trends, respectively, and 145 and 146
significant (p < 0.01) positive trends, respectively. May and June show the strongest trends with an average
regional trend in the probability of a wet day following a wet day of +0.8 and +0.9%/decade, respectively.
The trends in Markov chain parameters vary spatially. Vermont and Massachusetts displayed the greatest
trends in wet persistence with the annual average probability of a wet day following a wet day increasing by
0.013/decade, while Pennsylvania and Connecticut showed the smallest trend in the annual wet persistence
with increases of 0.003/decade.

For daily precipitation events, the warmer months show the greatest increase in wet persistence, the colder
months show larger increases in the magnitude of extremes, and dry persistence increases in early spring and
decreases in early fall. Annually, the interquartile ranges of the trends in both P;; and the 95th percentile of
daily precipitation are above zero. Therefore, on an annual basis, it is likely that the study region will
experience increasingly persistent and intense precipitation events.

Our results are largely consistent with previous work on precipitation trends in the NE U.S. Wet and dry
persistence, however, have not been studied in detail for the NE U.S.. Studies of precipitation persistence
have been performed in areas such as Europe where it has been observed that precipitation is trending
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Table 4. Statistical Analysis of Regional Trends in the 95th Percentile Daily Precipitation
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ann

Positive trends 150 155 168 181 162 150 137 147 143 156 152 177 179
Significant positive trends 113 125 137 148 127 115 92 113 97 116 113 136 150
Negative trends 72 67 54 M 60 72 85 75 79 66 70 45 43

Significant negative trends 41 40 31 20 38 38 54 45 56 44 37 31 28

toward longer wet spells with higher intensities [Zolina et al., 2010]. Intense precipitation has been studied in
the NE U.S. [Douglas and Fairbank, 2011; Walsh et al.,, 2014]. The National Climate Assessment reported that in
the NE U.S., more precipitation is falling annually and a higher percentage of rainfall is occurring in the upper
1% of daily events with time [Walsh et al., 2014]. Our results are consistent with increases in total annual
precipitation because with increases in wet persistence and the 95th percentile of daily precipitation, and
minimal trends in dry persistence and median daily precipitation, there would be more annual precipitation.
Also, our results are consistent with an increased amount of precipitation occurring in the upper 1% of the
events. Our results are consistent because we found that the 95th percentile of daily precipitation was
increasing, which can be translated as a greater percentage of daily precipitation events falling above a
stationary threshold in time.

Increases in the 95th percentile of daily precipitation (Table 4) indicate that the upper tail of the distribution of
daily precipitation is increasing in magnitude, thus higher probability density in the upper percentiles of the
distribution. If the probability of persistent precipitation is increasing along with the probability of observing a
given high-intensity event, then the probability of an intense event following a persistent pattern is likely
increasing with time, which has significant flooding implications. High-magnitude flooding can result even
when long periods of time pass between a persistently wet regime and an intense precipitation event due to
hysteresis within soils and watershed memory. All of this is consistent with an intensification of the water cycle
and large-amplitude, slow-moving planetary waves. Another possible explanation for the observed increases

in wet persistence during the spring months is that more moisture may be available earlier for evaporation as a
result of earlier spring thaws. Similarly, if arctic regions that had previously stayed frozen are now thawing during
summer months, this could increase moisture fluxes into the northeastern U.S. These linkages would need further
study, but it is possible that long-term satellite imagery of the Northern Hemisphere could be used for this.
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