
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2011

A Framework for Analysis of Java-Based XACML Engines A Framework for Analysis of Java-Based XACML Engines

Ildar Rakhmatulin

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Rakhmatulin, Ildar, "A Framework for Analysis of Java-Based XACML Engines" (2011). Digitized Theses.
3239.
https://ir.lib.uwo.ca/digitizedtheses/3239

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3239&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3239?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3239&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

A Framework for Analysis of Java-Based XACML Engines

(Spine Title: A Framework for Analysis of Java-Based XACML Engines)

(Thesis format: Monograph)

by

Ildar Rakhmatulin

Graduate Program
in

Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Ildar Rakhmatulin 2011

THE UNIVERSITY OF WESTERN ONTARIO
THE SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Supervisor:

Dr. Sylvia Osborn

Examination committee:

Dr. M. Katchabaw

Dr. R. Solis-Oba

Dr. A. Ouda

The thesis by

Ildar Rakhmatulin

entitled:

A Framework for Analysis of Java-Based XACML Engines

is accepted in partial fulfillment of the
requirements for the degree of

Master of Science

Date Chair of the Thesis Examination Board

Abstract

A lot of applications enhance their security via access-control systems. XACML (exten

sible Access Control Markup Language) is a standardized policy language, which has been

widely used in access-control systems. In an XACML-based access-control system, policies,

requests, and responses are encoded in XACML. An XACML implementation provides func

tionalities to evaluate XACML requests against XACML policies.

There are many XACML libraries implemented in the Java programming language which

are supposed to provide a set of Java classes that understand the XACML language, as well as

the rules about how to process requests and how to manage attributes and other related data.

This thesis focuses on the performance analysis of such libraries. We first implement a

framework for analysis of Java-based XACML engines. This is accomplished by creating

the hierarchy of Java classes representing the main functionality of XACML engines. We

then conduct experiments by means of our framework investigating performance features of

such XACML engines as Sun XACML, XEngine, and Enterprise Java XACML. The proposed

approach differs from previous work in the engines chosen as well as the variety of experiments

conducted and their parameters.

Keywords: Java, XACML, PDP, PEP, Sun XACML, XEngine, Enterprise Java XACML

iii

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Sylvia Osborn, who has

provided me with an unbounded amount of attention and guidance throughout my work on this

thesis. Without her support and valuable suggestions, the work could not have been completed.

I am also thankful to my friends and lab colleagues at Department of Computer Science for

their help and participating in interesting discussions where I received a few beneficial ideas.

Above all, I acknowledge the support of my family and relatives. The work would not be

possible without their inspiration and encouragement.

Contents

Certificate of Examination u

Abstract Hi

Acknowledgements iv

List of Figures v*ii

List of Tables xi

List of Appendices xii

Glossary xiii

1 Introduction 1

1.1 S e ttin g ... 1

1.2 Our C o n trib u tio n .. 2

2 Background and Previous Work 5

2.1 The extensible Access Control Markup Language - X A CM L............................. 5

2.1.1 The XACML A rch itectu re ... 6

2.1.2 The XACML Policy L anguage... 6

2.1.3 General Syntax of XACML Request and R e sp o n se 10

2.1.4 Policy Evaluation... 12

2.2 XACML Entities In te ra c tio n ... 12

v

2.2.1 P D P -P E P .. 12

2.2.2 P D P -P A P .. 13

2.2.3 PD P-PIP... 14

2.3 XACML E n g in e s .. 14

2.3.1 Sun’s X A C M L .. 16

2.3.2 X Engine... 17

2.3.3 Enterprise Java X A C M L .. 18

2.3.4 Industry Practices... 21

3 Implementation of the Framework for Analysis of Java-Based XACML Engines 22

3.1 Choosing a L anguage..22

3.2 The Framework A rchitecture...23

3.3 The Software S tru c tu re ...23

3.4 The Hierarchy of C la sse s ... 26

3.5 The PDP Importing Im plem entation.. 27

3.6 C onfiguration .. 29

3.7 Storing results of experiments... 32

4 Performance Evaluation and Experimental Results 35

4.1 Performance Benchmarks and T o o l s .. 35

4.2 General Settings of E xperim en ts...37

4.3 XACML Requests G e n e ra tio n ..38

4.4 Testing XACML Requests Loading Tim e..42

4.5 Testing Performance on Small Real-Life XACML P o lic ie s47

4.6 Testing Performance on Large Real-Life XACML P o lic ie s 50

4.7 Testing Performance on Synthetically Generated XACML P o lic ie s 52

4.8 Testing Memory U s a g e ...54

5 Conclusions and Future Work 56

vi

5.1 C onclusions..56

5.2 Future w o r k ..58

5.2.1 Benchmarking..58

5.2.2 Software Implementation...58

Bibliography 60

A XACML Policy Examples 63

A.l c o d e A ...63

A.2 c o d e B ...66

A.3 c o d e C ...70

Curriculum Vitae 75

2.1 XACML Main Components [28]... 7

2.2 Policy Language Model [28].. 8

2.3 XACML Request Syntax.. 10

2.4 XACML Response Syntax.. 11

2.5 XEngine System Architecture [21].. 18

2.6 Enterprise Java XACML Architecture [2]...20

3.1 The Framework A rchitecture...24

4.1 XACML Requests Loading Time. XACML Policy: continue-a; Platform: Con

figuration 1... 43

4.2 XACML Requests Loading Time. XACML Policy: continue-b; Platform:

Configuration 2.. 43

4.3 XACML Requests Loading Time. XACML Policy: demol; Platform: Config

uration 2..44

4.4 XACML Requests Loading Time. XACML Policy: demo2; Platform: Config

uration 1.. 44

4.5 XACML Requests Loading Time. XACML Policy: pluto; Platform: Configu

ration 3.. 44

4.6 XACML Requests Loading Time. XACML Policy: codeA; Platform: Config

uration 1..45

4.7 XACML Requests Loading Time. XACML Policy: codeB; Platform: Config

uration 1.. 45

List of Figures

viii

4.8 XACML Requests Loading Time. XACML Policy: codeC; Platform: Config

uration 2..45

4.9 XACML Requests Loading Time. XACML Policy: SyntheticPolicy.400; Plat

form: Configuration 2..46

4.10 XACML Requests Loading Time. XACML Policy: SyntheticPolicy.800; Plat

form: Configuration 2..46

4.11 XACML Requests Loading Time. XACML Policy: SyntheticPolicy.1600;

Platform: Configuration 3...46

4.12 XACML Requests Loading Time. XACML Policy: SyntheticPolicy.4000;

Platform: Configuration 3...47

4.13 Small Real-Life Policies Evaluation Time. XACML Policy: codeA; Platform:

Configuration 3.. 48

4.14 Small Real-Life Policies Evaluation Time. XACML Policy: codeB; Platform:

Configuration 3.. 48

4.15 Small Real-Life Policies Evaluation Time. XACML Policy: codeC; Platform:

Configuration 2.. 49

4.16 Small Real-Life Policies Evaluation Time. XACML Policy: pluto; Platform:

Configuration 1.. 49

4.17 Large Real-Life Policies Evaluation Time. XACML Policy: continue-a; Plat

form: Configuration 3..51

4.18 Large Real-Life Policies Evaluation Time. XACML Policy: continue-b; Plat

form: Configuration 3..51

4.19 Large Real-Life Policies Evaluation Time. XACML Policy: demol; Platform:

Configurations.. 51

4.20 Large Real-Life Policies Evaluation Time. XACML Policy: demo2; Platform:

Configuration 3.. 52

4.21 Synthetically Generated Policies Evaluation Time. XACML Policy: Synthet-

icPolicy.400; Platform: Configuration 1..52

4.22 Synthetically Generated Policies Evaluation Time. XACML Policy: Synthet-

icPolicy.800; Platform: Configuration 1..53

4.23 Synthetically Generated Policies Evaluation Time. XACML Policy: Synthet-

icPolicy. 1600; Platform: Configuration 1..53

4.24 Synthetically Generated Policies Evaluation Time. XACML Policy: Synthet-

icPolicy.4000; Platform: Configuration 1..53

x

List of Tables

4.1 Memory Usage (Kilobytes)

List of Appendices

Appendix AXACML Policy Examples 63

Xll

Glossary

CPU - Central Processing Unit

ITU - International Telecommunication Union

LDAP - Lightweight Directory Access Protocol

OASIS - Organization for the Advancement of Structured Information Standards

PAP - Policy Access Point

PDP - Policy Decision Point

PEP - Policy Enforcement Point

PIP - Policy Information Point

RAM - Random Access Memory

SAML - Security Assertion Markup Language

SOA - Service-Oriented Architecture

XACML - extensible Access Control Markup Language

XML - extensible Markup Language

ISO/IEC - International Organization for Standardization/Intemational Electrotechnical

Commission

Xlll

Chapter 1

Introduction

1.1 Setting

Currently, security is one of the most important requirements that should be considered in

distributed systems. Security and authorization systems must provide not only strong protec

tion, but should be flexible enough as well. On the other hand, flexibility may increase the

complexity of such systems significantly. Hence, the access control components of a security

system must be able to work together in heterogeneous environments, but at the same time they

must be flexible enough to be integrated with various applications [22].

Some the access control systems, which are implemented in a proprietary way, are lim

ited to certain applications and hardly can be used in a networked environment that often im

plies interaction among isolated administrative domains. In other words, there is a need for

additional management for sharing authorization information between autonomous domains,

extensible Access Control Markup Language (XACML) was ratified by the Organization for

the Advancement of Structured Information Standards (OASIS) in order to address the above-

mentioned problems [19]. XACML is a standard and very flexible general purpose language

for modeling access rights defined using XML. The OASIS XACML Technical Committee

includes members from the main vendors such as Oracle, Cisco, IBM, RedHat, Boeing, U.S.

1

D.H.S., etc. Besides a policy language, XACML defines a syntax for managing access con

trol to resources. Even though XACML does not provide an entire authentication solution, it

specifies how components of such a solution should interact among each other [22].

One of the features of the XACML standard is that it provides a way to separate policy

definition from its implementation in the applications. Thus, it implies the existence of many

available engines for the management and evaluation of XACML policies. The first official

XACML implementation was Sun’s XACML library [9], which has become the industrial

standard. Afterwards, a number of other XACML engines were created, such as XEngine

[16], XACMLight [10], Enterprise Java XACML [2], and others. Such XACML libraries are

supposed to provide functionalities that understand the XACML language. They also process

XACML requests and manage attributes and other related data. Most of them are written in the

Java programming language [7], although a .Net-based implementation, XACML .NET [11],

is known as well. These engines in general were intended for the correct evaluation of policies

and compliance with the standards. That is why most of them may lack optimizations in case

of a large number of policies and/or a large amount of content. However, there is no known

comprehensive analysis of such limitations for most of them.

1.2 Our Contribution

With the growth of web applications using XACML, the performance of XACML engines

becomes a crucial issue. Namely, if a web server has to handle a great number of XACML

requests and enforce an XACML policy with a large number of rules, the performance of

the whole online application may totally depend on the XACML implementation used, which

eventually might become the performance bottleneck at peak demand. Because of the fact

that in modem enterprises the number of clients using web technologies as well as resources

increases dramatically, the size of XACML policies rises respectively, making them larger

and more complex. Undoubtedly, a scalable and fast XACML library which can cope with

unbalanced workloads along with analysis of its limitations is necessary.

2

At the same time, little work has been done to evaluate and compare various XACML

engines. Analysis of applicability of such implementations for certain policy size or workload

is needed. The framework for automatic XACML libraries performance analysis is of special

interest. Prior research work on the performance of XACML policy evaluation engines does

not provide unified software which could be used for any XACML libraries.

The previously discussed problem can be stated as the need for a framework for XACML

engines analysis which allows importing various libraries written in Java with open API and

running unified tests. Available open-source Java-based XACML libraries that are not obsolete

are proposed to be used as objects of research.

This thesis mainly focuses on the performance analysis of Java-based XACML libraries,

which is a critical issue, by means of a specially implemented framework. In order to research

the performance of XACML engines, we propose to run a number of experiments which in

clude XACML policies of different size, various workloads of XACML requests as well as

synthetically generated and real-life policies from numerous sources.

An additional task exists that is testing with the above mentioned framework should be

conducted on varying platforms (including different CPUs, RAM, and operating system types).

Overall, our research goal is to determine the efficiency of existing XACML engines under

different conditions.

The rest of the thesis is organized as follows:

In Chapter 2, we give a description of the XACML standard, along with details of core fea

tures of XACML, including its architecture, policy language and the interactions of its entities.

We look at software libraries which support XACML that were chosen for our experiments,

and illustrate some APIs and corresponding functionalities. We show some industry practices

for using XACML as well. Details of previous work that has been done are presented at the

end of the Chapter.

In Chapter 3, we present our approach to implement the framework for analysis of Java-

based XACML engines. We outline details of the technical design and the hierarchy of classes

3

created.

In Chapter 4 we describe a number of experiments that were conducted using the previously

implemented framework. The policies for our tests were collected from a few sources that are

described as well.

In Chapter 5 we draw the final conclusions regarding the practical use of selected XACML

engines. We also present a number of ideas for future work in this area as well as possible

enhancements of our framework.

4

Chapter 2

Background and Previous Work

2.1 The extensible Access Control Markup Language -

XACML

XACML defines an XML-based syntax that describes a policy language as well as request

and response languages.

According to [15], XACML provides:

• a way to base access control decisions on attributes of both a subject and a resource;

• a mechanism for supporting multiple subjects with multiple roles (addressed by the

XACML profile for RBAC [12]);

• a method to share policies in a distributed environment;

• a way to separate policy definition from its implementation (hence, there can be an arbi

trary number of different implementations).

There is also an architecture for the decision-making process which is described in the

XACML standard; it is based on the ITU Recommendation X.812 [6] and on the standard

ISO/IEC 10181-7 [25, 29]. At the same time, the usage of this architecture is optional and can

vary in different implementations. What follows is its description in more detail.

5

2.1.1 The XACML Architecture

XACML consists of many components depicted in Figure 2.1. The authorization process

is described as follows [28]:

A subject which wants to take certain action on a certain resource has to submit its query

to the entity protecting that resource. In the XACML architecture, this entity is called a Policy

Enforcement Point (PEP). The PEP forms an XACML request using the XACML request lan

guage based on the attribute values of the subject, the resource, the action, and the environment.

Afterwards, the created request is sent to the Policy Decision Point (PDP). The PDP receives

and examines the request. When the access decision is made, the PDP forms an XACML

response using the XACML response language and sends it back to the PEP. The response in

forms whether access should be permitted or denied, with the appropriate obligations. Finally,

the PEP performs the obligations using an optional obligation service and, depending on the

decision made by the PDP, either permits or denies access.

The PDP retrieves the available policies written in the XACML policy language by means

of the Policy Access Point (PAP), which is basically an interface for writing policy sets. De

pending on the situation, the PDP may submit a query to the Policy Information Point (PIP) in

order to receive attributes related to the subject, the resource, or the environment.

Evaluating the applicable policies and the rules constitutes the decision making process.

If there are many policies, the PDP selects only those which are relevant, based on the policy

target, containing information about the subject, the action, and other environmental properties.

2.1.2 The XACML Policy Language

The XACML policy language model consists of several hierarchical objects. XACML has

three mandatory components: a policy, a PEP, and a PDP. Figure 2.2 illustrates how they are

linked to each other.

The main components of the XACML policy language are described as follows [15]:

XACML policies are represented by XML documents rooted in a Policy or PolicySet ele-

6

Figure 2.1: XACML Main Components [28].

1 Access Request

CMptteséAÉse

7

Figure 2.2: Policy Language Model [28].

ment. A PolicySet is a container with other Policy or PolicySet elements.

A policy consists of rules, rule-combining algorithms, obligations, and a target. In fact,

XACML policies are the most essential aspect of the whole XACML infrastructure.

It is worth considering subcomponents of XACML policies in detail:

Target: There is only one target per policy. The target aims to find the relevant policy for

the certain request. Usually, the target has attribute values of subject, resource, and

action, even though they are optional. The comparison of these values with the values

of the same attributes in the request allows the PDP to determine whether the policy is

8

considered relevant to the request or not.

Rules: Multiple rules can be associated with a policy. Each rule consists of a condition, an

effect, and a target.

• Conditions are represented by statements about attributes that upon evaluation return

either True, False, or Indeterminate.

• Effect is the intended consequence of the rule which was satisfied. It either returns the

value Permit or Deny.

• Target, as in the case of a policy, aims to find a relevant rule for a certain request. This

is achieved by means of the analogous mechanism, similar to the one for the target for a

policy.

The final result of the rule depends on the condition evaluation. If the condition returns Inde

terminate, the rule also returns Indeterminate. If the condition returns False, the rule returns

NotApplicable. Finally, if the condition returns True, the value of the Effect element is re

turned.

Rule-combining algorithm: Providing that a policy can have multiple rules, conflicting re

sults may be produced. Rule-combining algorithms help to resolve such conflicts to

achieve one result per policy per request. Only one rule-combining algorithm is appli

cable per policy. XACML defines five standard rule-combining algorithms (users can

define their own algorithms too):

• Deny-overrides: If any rule evaluates to Deny, then the final outcome is also Deny.

9

Figure 2.3: XACML Request Syntax.

• Ordered-deny-overrides: Same as the previous one, except the order in which relevant

rules are evaluated is the same as the order in which they are added in the policy.

• Permit-overrides: If any rule evaluates to Permit, then the final outcome is also Permit.

• Ordered-permit-overrides: Same as the previous one, except the order in which relevant

rules are evaluated is the same as the order in which they are added in the policy.

• First-applicable: The final outcome is the result of the first relevant rule encountered.

Obligations: Obligations help to achieve a much finer-level of access control than simple

permit/deny values. They indicate the actions that must be fulfilled by the PEP along

with the enforcement of an authorization decision.

2.1.3 General Syntax of XACML Request and Response

XACML also defines the format for expressing authorization requests/responses [15]. This

format is called the XACML Context and is described in a XML Schema (Figures 2.3, 2.4

10

Figure 2.4: XACML Response Syntax.

< R «S pO tlS €>

<R<*ult>

1 < S ta tu s> |

I ' O b lig a tio n [

V : :

i

show the structure of a request and a response respectively).

Attributes of the requesting subjects, the resource, the action, and the environment consti

tute a Request Context.

The Subject element is the entity submitting the access request (e.g., human user, worksta

tion, etc.). The Resource element represents the protected resource (e.g., file, email service,

etc.). The Action element defines the action that the Subject wants to perform on the resource

(e.g., open, update or delete).

The Environment element contains information about the resource environment (e.g., date,

time or place).

It is possible that Subject, Resource, Action and Environment contain multivalued at

tributes.

A Response Context contains one or more Results which represent the decision that the

PDP made. The Decision values can be Permit, Deny, Not Applicable (if no applicable policies

or rules were found), or Indeterminate (if some error occurred or data missed). The Status

returns optional information which may help to determine the errors if there were any. A

Response Context may also include Obligations.

11

2.1.4 Policy Evaluation

According to Figure 2.1, the PDP receives the request from the PEP containing the XACML

Context with information about Subject, Resource, Action and Environment [15]. In order to

make a decision, the PDP retrieves all the Policies through the PAP and picks up those which

match the Target. Afterwards, the comparison of attributes in the Request Context against

attributes in the policy takes place.

XACML defines four standard policy-combining algorithms (users can define their own al

gorithms as well): Deny-overrides, Permit-overrides, First-applicable and Only-one-applicable

[12].

2.2 XACML Entities Interaction

As mentioned above, there are several entities such as PDP, PEP, PAP and PIP that interact

in the XACML workflow. Even though those entities are defined fully in the XACML standard,

their collaboration is not standardized; this can be beneficial for users who get an opportunity

to implement their own systems and adjust the interaction of these entities according to the

system’s needs.

In the following sections these entity interactions will be discussed more in detail, following

[15].

2.2.1 PDP-PEP

There is not any mechanism in the XACML specification for transmitting requests and

responses between the PDP and the PEP except the situation when they both are on the same

system.

Usage of all other configurations is described in SAML (Security Assertion Markup Lan

guage), another OASIS standard [26]. There is also a specially implemented SAML profile

for XACML [14]. It defines two general elements that manage transmitting requests and re

sponses: a Query (an extension of the SAML Request element) and a Statement (the response

12

to the Query giving one or more results). For PEP-PDP interaction, the profile defines both

of them. XACMLAuthzDecisionQuery is a query used in a Request and XACMLAuthzDeci-

sionStatement is a statement used in a Response. Respectively, XACMLAuthzDecisionQuery

transmits the XACML request from the PEP to the PDP, while XACMLAuthzDecisionState-

ment transmits the XACML Response that the PDP sends back to the PEP [15].

Technically, SAML does not provide message confidentiality; it gives message integrity

only. If data need to be protected, such protocols as SSL or TLS1 must be used over a net

work. Alternatively, when data encryption is not necessary and SAML is being used without

SSL/TLS, all requests and responses may be signed appropriately in order to authenticate both

points - the PEP and the PDP.

2.2.2 PDP-PAP

The XACML 2.0 Core Specification does not provide any information about making poli

cies available to the PDP [12]. However, a XACML 2.0 entity, referred to as a PAP, is described

as “a system entity that creates a Policy or PolicySet”. Overall, it can be treated as an interface

for writing policies and policy sets.

At the same time, there is an explanation of two methods that can be used for interaction

between the PAP and the PDP. One is a SAML-based request-response protocol, and another

one is a simple SAML Assertion-based storage format [15].

The first protocol describes a method which allows the PDP to retrieve policies from

the PAP [14]. This method defines XACMLPolicyQuery - a format to query a policy, and

XACMLPolicyStatement - a format to carry the requested policy. Namely, XACMLPolicy

Query is used when the PDP queries policies from the PAP. This element is an extension of

the SAML Request element. Respectively, XACMLPolicyStatement is used when the PAP

sends a response containing applicable policies (if there are any) to the PDP. This element is

an extension of the SAML Statement element.

’Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are cryptographic protocols
that provide communication security over the Internet

13

As mentioned above, the PAP also may use a simple SAML Assertion-based storage for

mat. In this case, it just stores policies in a generic repository which may be accessed directly

by the PDP.

2.2.3 PDP-PIP

In order to make a decision about access, the PDP compares attributes in a request against

attributes in the applicable policies where the request’s Target matches. Sometimes the request

may miss such attributes. In this case the PDP queries the PIP.

There is an explanation of two methods that can be used for obtaining attributes from the

PIP: the Attribute Designator and the Attribute Selector. The first one allows the PDP to obtain

attributes from a request, while the other one helps the PDP to search for them in some external

source such as a database or over a network, for instance, using an XPath [17] query.

There are four kinds of Attribute Designator according to types of attributes in a request:

Subject, Resource, Action, and Environment. Attributes can also be divided into different

categories, which can be defined arbitrarily by users. In this case, Attribute Designators can

also point out a category to look in.

The Attribute Designator and the Attribute Selector can return multiple values. In order to

help the PDP serve such situations, a special attribute type called a Bag is defined. It represents

an unsorted collection which allows duplicate values. Empty collection is allowed as well.

Besides the above discussed methods, interaction between the PDP and the PIP can also be

organized using SAML Query and Statement extensions: AttributeQuery and AttributeState-

ment [14].

2.3 XACML Engines

As XACML provides a way to separate policy definition from its implementation in the

applications, this naturally implies the existence of many available engines for the management

and evaluation of XACML policies. The first official XACML implementation was Sun’s

14

XACML library, presented in 2004 [9]. Afterwards, a number of other XACML engines were

created, such as XEngine, XACMLLight, Enterprise Java XACML, and others.

Overall, XACML libraries are supposed to provide a set of Java classes that understand

the XACML language, as well as the rules about how to process requests and how to manage

attributes and other related data. Using such libraries, software developers can write applica

tions that use XACML to manage their own policy or that hook into existing infrastructure

components like LDAP or SAML.

At the same time, with the growth of web applications using XACML, the performance of

XACML engines becomes a crucial issue. Namely, if a web server has to handle a great number

of XACML requests and enforce an XACML policy with a large number of rules, the perfor

mance of the whole online application may totally depend on the XACML implementation

used, which eventually might become the performance bottleneck at peak demand. Because

of the fact that in modem enterprises the number of clients using web technologies as well as

resources increases dramatically, the size of XACML policies rises respectively, making them

larger and more complex.

Several groups have worked on XACML libraries analysis, although most of this work

limited the experiments to test the correctness of policy evaluation and investigated specific

engines only. Martin et al. developed a tool for automated test generation for access control

policies [24]. Hu et al. introduced a policy-based segmentation technique to identify policy

anomalies and derive effective anomaly resolutions; they developed a tool implementing their

method as well [20]. Liu et al., while developing their XACML library XEngine, presented

experiments comparing the performance of XEngine and Sun PDP [21]. Their results show

that in some cases XEngine is orders of magnitude faster than Sun PDP. This library will be

examined in more detail in this section. At last, Turkmen and Crispo tested evaluation time

of Sun’s XACML, XACMLight, and Enterprise Java XACML with various policy and request

parameters, even though they did not conduct experiments with different workloads; they did

not provide any details of the software used for analysis of XACML engines either [27]. For

15

the libraries they tested, Enterprise Java XACML demonstrated the best results in terms of

evaluation time.

Overall, this section will describe core APIs of the first and the most popular Sun’s XACML

engine as well as give a description of two other XACML libraries which were created in order

to outperform Sun’s implementation. Finally, some industry practices will be presented.

2.3.1 Sun’s XACML

Sun’s XACML implementation is developed by the Internet Security Research Group

(ISRG) within Sun Microsystems Laboratories. It is the first and the most widely deployed

XACML evaluation engine. This implementation has become the industrial standard. The

APIs are broken into several packages [9]:

com.sun.xacml is the core package. It contains the logic for target matching, rule evaluation,

policy and policy set handling, and other related features. The main class of this package

is the PDP class, which can be considered the entry point for most code.

com.sun.xacml.attr is the package that supports all the standard XACML attribute data types,

as well as designators, selectors, and the factories used to create new attribute values.

Standard interfaces and abstract classes are provided to define new attributes types.

com.sun.xacml.combine is the package that defines all the standard XACML combining al

gorithms as well as the factory for accessing those algorithms. There are also standard

interfaces which can be used to define new combining algorithms.

com.sun.xacml.ctx is the package that supports all the types defined in the XACML context

schema, i.e. the request and response formats. All of the classes in this package can be

encoded and parsed in order to simplify creating a PEP.

com.sun.xacml.cond is the package that supports all of the condition and function logic.

There are also standard interfaces and classes which can be used to define new func-

16

tions.

com.sun.xacml.finder is the package that supports retrieving information that the PDP may

need. Classes for searching policies, obtaining attributes outside of the request, resolving

resource identifiers are contained in this package.

com.sun.xacml.finder.impl is the package that provides basic implementations of mecha

nisms that are described in the previous package. Even though they provide enough

functions for basic needs, any of these classes can be replaced with alternative imple

mentations.

2.3.2 XEngine

Even though Sun’s XACML implementation seems to be the most popular one, there are

situations when it may lack optimizations [21].

First of all, real-life XACML policies often have complex structures and can be specified

recursively. The next common situation is that real-life XACML policies often have conflicting

rules, which can be reconciled by the four algorithms which were discussed before. Some

XACML engines may simply examine all the rules in an XACML policy before making the

final decision, even though it is quite time-consuming. Finally, XACML requests and XACML

rules can contain multiple values; this may dramatically increase the complexity of searching

and comparing that the PDP needs to perform.

XEngine has three key ideas [21]. First of all, XEngine converts all strings in an XACML

policy to numerical values. XACML requests are also converted in the same manner. Obvi

ously, storing and comparing integers is more efficient and less time and memory consuming

than operations with strings. Liu et al. call this technique XACML policy numericalization.

The second technique is normalization. Namely, a numericalized XACML policy with a hier

archical structure and several potentially complex conflict resolution mechanisms is converted

17

Figure 2.5: XEngine System Architecture [21].

to an equivalent policy with a flat structure and only one conflict resolution mechanism, which

is First-Applicable. This reduces the time that the PDP needs to determine applicable policies,

because Sun’s PDP, for instance, just tries each policy against the request. Finally, in order to

provide fast search, XEngine further converts a numericalized and normalized policy to a tree

structure. Figure 2.5 [21] shows the system architecture of XEngine.

However, XEngine has some features that can be considered as shortcomings. Namely,

even though it is an open source project so far, it does not provide a well-documented usual

API in terms of Java standards; most of the classes and methods seem to be developed for pur

poses of testing only. It also misses appropriate functional documentation. The next important

issue is that XEngine relies on Sun’s XACML implementation, and as a result there may be

dependence on its potential changes in the future. Finally, it has a pre-processing step when

XACML policies are encoded offline using above mentioned techniques.

2.3.3 Enterprise Java XACML

Enterprise Java XACML was created while working on some SOA [23] projects. It fully

implements OASIS XACML 2.0, and provides a high performance and good usability in an

18

enterprise environment. It is worth noting that this is a totally independent implementation. It

does not rely on Sun’s XACML implementation or any other implementations.

As stated before, Sun’s PDP has many shortcomings. Besides those mentioned above, it

does not have any cache mechanism for the retrieved policies or the evaluation result. The next

point to be mentioned is that Sun’s implementation does not define the situation when multiple

policies match a single request. Even though the XACML standard does not describe this

situation either, it often occurs in real-life enterprises. What comes next is that Sun’s engine

reads policies from a local file only; in order to use another policy store, the implementation

needs to be modified. Finally, there are no extension mechanisms, such as attribute retriever,

in Sun’s implementation.

Enterprise Java XACML engine is implemented, considering the above mentioned draw

backs of Sun’s XACML library. In a nutshell, it does not introduce sophisticated mathematical

methods as XEngine does, but uses several available optimizing techniques from the software

development area. Its main point is to provide an extensible and scalable architecture, which

could be easily integrated with various applications and thus be used in complex heterogeneous

environments. It also addresses the problem of conflicting versions of third party libraries: in

fact, Enterprise Java XACML uses log4j only [8]. Moreover, the log4j library can be easily

excluded altogether.

The diagram in Figure 2.6 illustrates Enterprise Java XACML implementation’s architec

ture [2]. All components with italics can be customized by users.

The API of the Enterprise Java XACML engine provides:

• classes representing a PDP;

• classes representing a simple PAP;

• an effective target indexing mechanism;

• a cache for decisions and policies;

19

Figure 2.6: Enterprise Java XACML Architecture [2].
Application Specific Request

20

• pluggable mechanisms for data store, context factory and logging (users can implement

their own versions and easily replace existing ones);

• extensible mechanisms for attribute retrieving and policy resolving.

2.3.4 Industry Practices

These days the XACML standard is extensively used in many real-life applications and

enterprises. In order to adapt it to business requirements, special profiles are introduced (for

instance, RBAC Profile, Web Services Profile, Privacy Profile). Also XACML is often used

together with an Identity Management System (for instance, LDAP, OpenID) and in various

authorization services. Integration of XACML to products was made by Oracle, JBoss, IBM,

Cisco, and other main vendors.

Examples of well known real-life applications using XACML include following:

• a general purpose repository system FedoraCommons [3];

• a national Swedish health-Care system (Axiomatics startup) [1];

• Geospatial XACML protecting access to distributed geographic information [4].

21

Chapter 3

Implementation of the Framework for

Analysis of Java-Based XACML Engines

This chapter presents the challenges in implementing the framework for analysis of

XACML engines and introduces our approach and details of our implementation.

As was discussed earlier, there is no known system that runs performance tests of different

workloads for all possible open-source XACML engines. We introduce the notion of a special

framework which allows importing various XACML engines through the implementation of a

defined specification via so called middleware. In other words it can be extended to support an

arbitrary number of XACML libraries.

The framework should provide the means for quick and easy testing, specification for im

porting new XACML libraries, extendable testing information, and the ability to work in dif

ferent heterogeneous environments, i.e., to be platform-independent. The ultimate goal of our

framework is to provide users and researchers with a tool which tests all the engines in the

same way, while developers will get a single specification for extendable middleware.

3.1 Choosing a Language

In order to create a platform-independent tool, we have chosen the Java programming lan-

22

guage (JDK 1.6.25) [7]. Moreover, most of the currently available XACML libraries are written

in Java as well. Thus, our framework can work under any operating system having the Java

Runtime Environment. Furthermore, it is the most convenient way to test engines written in

the same language and in the specific environment where they are supposed to be used in a

real-life application.

The Java programming language is pure object-oriented, open-source and provides a great

number of standard APIs. We will use its notions and terms to describe the architecture of the

framework and its components hereinafter.

The language choice in a natural way implies the main limitation of the framework, as it

supports Java-based XACML engines only.

3.2 The Framework Architecture

The framework architecture is depicted in Figure 3.1.

In this work we gather XACML policies (we will discuss them in Chapter 4) and write

the middleware that represents imported XACML engines and allows us to generate XACML

requests for each policy. The framework general workflow is as follows. We first choose an

XACML policy and generate a number of XACML requests for it. Then we select an XACML

engine we would like to test and pass it along with an XACML policy/requests as parameters to

our middleware which performs testing. Technically, the middleware invokes public methods

of an XACML engine’s API and measures the performance characteristics. Finally, results of

experiments are collected by the middleware and stored for further analysis.

3.3 The Software Structure

All the implemented Java classes are contained in the package (in terms of the Java language)

called com.rakhmatulin.uwo.jfxt. The software is implemented as a standalone application.

23

Figure 3.1 : The Framework Architecture

24

The main class is called Main and it contains the entry point of the application - the main()

method. There is a parsing of the configuration file (we will discuss this later in this chapter),

an instantiation and initialization of the selected XACML engine, and an invocation of the

high-level methods for testing in the Main.main() method.

In order to implement the framework, a few subtasks were tackled:

• Introduction of the object-oriented hierarchy of classes, presenting XACML PDPs;

• Implementation of the classes supporting performance measurements and storing their

results;

• Importing the PDPs which were chosen for our testing (Sun PDP, XEngine PDP, and

Enterprise Java XACML PDP) as well as implementation of the necessary middleware.

There are several ways of providing XACML requests for evaluation. Basically, it can be any

storage of data such as a file system, network, or a database. At the same time, storing requests

in files allows us to expect the best loading time, whereas all XACML engines provide public

methods for evaluating with parameters where files can be indicated as a source of XACML

requests. Taking these facts into consideration, in our implementation we use the selected

directories for storing XACML requests as regular XML files. This gives an opportunity to

vary the number of requests when emulating different workloads.

What comes next is the discussion of how importing of XACML libraries is implemented.

Full details of the middleware will be given as well.

25

3.4 The Hierarchy of Classes

We have applied basic principles of object-oriented programming in order to construct a

conceptual architecture of the framework. First of all, we will discuss the PDP importing

implementation focusing on creation of its object-oriented model.

In order to maintain the abilty to import arbitrary Java-based XACML libraries (of course,

it is supposed that they are open-source), the hierarchy of classes in terms of object-oriented

programming is built. Namely, the abstract class AbstractPDP was implemented which is on

the top of the hierarchy and it is the superclass for any other classes, presenting concrete PDP

implementations of the engines. Correspondingly, all other PDPs which are being imported

must extend the AbstractPDP class. It has a single constructor:

p u b l i c A b s t r a c t P D P (Conf i gPDP c o n f i g) ;

where ConfigPDP is a class presenting the configuration of the current PDP. While Abstract

PDP itself is an abstract class, it has a non-abstract constructor which saves a reference of the

ConfigPDP object in its private field.

In order to provide access to the saved configuration, AbstractPDP has the corresponding

getter method:

p u b l i c Conf igPDP g e tC o n f i g P D P () ;

Each subclass of AbstractPDP should override the following abstract methods of their su

perclass:

p u b l i c a b s t r a c t vo i d i n i t ()

t h r o w s J F X T E x c e p t i o n ;

which performs initialization of a PDP, and

p u b l i c a b s t r a c t E x p e r i m e n t a l R e s u l t e v a l u a t e (S t r i n g r e q u e s t D i r)

t h r o w s J F X T E x c e p t i o n ;

26

which loads all the XACML requests located in the folder requestDir, evaluates them, and

returns performance measurements in the special object - ExperimentalResult. It is worth

noting that both methods may throw a JFXTException which extends the Exception class and

represents all the exceptions in the package com.rakhmatulin.uwo.jfxt. Classes ConfigPDP and

ExperimentalResult will be discussed in the next section.

3.5 The PDP Importing Implementation

The following classes present implementations of XACML engines and all of them are

subclasses of AbstractPDP, overriding its abstract methods: SunPDP, XEnginePDP, and Enter-

priseJavaXacmlPDP. We will describe these classes in more detail next.

SunPDP uses Sun APIs, including such packages as:

• com.sun.xacml;

• com.sun.xacml.cond;

• com.sun.xacml.ctx;

• com.sun.xacml.finder;

• com.sun.xacml.finder.impl.

First of all, a few objects, representing different modules, are created in the overridden init()

method. There are such objects as FilePolicyModule, PolicyFinder, CurrentEnvModule, and

SelectorModule. Then Sun’s PDP object is instantiated, using AttributeFinder and PDPConfig

objects. In the overridden evaluate() method, an instance of the RequestCtx class is used to

deal with files containing generated XACML requests. Finally, evaluation itself is done in the

evaluate() public method of the PDP object.

What comes next is XEnginePDP. This class uses the APIs of such packages as:

27

• ncsu.util;

• xEngineConverter;

• xEngine Verifier;

• commonlmpelmentation.

Due to the fact that XEngine is partially based on the Sun API, it also includes some

classes from Sun’s packages: com.sun.xacml and com.sun.xacml.finder. The overridden init()

method creates an instance of PolicyFinder and through conversionTree objects converts given

XACML policies to special XEngine format using numericalization and normalization tech

niques. Eventually, it saves the converted numercalized and normalized policies as regular text

files. As to the overridden evaluate() method, XEnginePDP uses the xxAclQuery class and its

main method.

Finally, we will take a look at EnterpriseJavaXacmlPDP. This class uses APIs of such

packages as:

• an.config;

• an.log;

• an.xacml.adapter.file;

• an.xacml.context;

• an.xacml.engine;

• an.xacml.policy.

28

Due to the fact that a PDP object of the Enterprise Java XACML engine requires a special

configuration file, we first create instances of Configuration and ConfigurationElement objects

in the overridden init() method. They aim to load and parse the above mentioned configuration

file. Then the LogFactory object is initialized, providing an opportunity to get a reference to an

instance of the Logger object. Finally, an instance of a PDP object is created using its singleton

method. In the overridden evaluate() method, a static method of the XACMLParser object is

used in order to deal with files containing generated XACML requests, which are stored as

Request objects. Evaluation itself is done in the handleRequest() method of a PDP object.

3.6 Configuration

The configuration is stored in an XML file, and there are a few classes intended to work

with configuration parameters, including loading and parsing XML files. ConfigPDP is the

class consisting of public static fields only, which represent the main configuration parameters

of any PDP. Some of the fields are used by all the XACML engines, while some may be used

by specific ones only. Moreover, not all the fields are used in the current implementation, but

they were created considering future extensions of the framework in order to accommodate

most of the possible useful parameters. We give a brief description of these fields along with

their Java definition.

p u b l i c s t a t i c S t r i n g c o n f i g F i l e ;

/ / c o n f i g u r a t i o n f i l e o f t he c e r t a i n PDP

p u b l i c s t a t i c S t r i n g [] p o l i c y ;

/ / p a t h to XACML p o l i c y

p u b l i c s t a t i c S t r i n g [] c o n v e r t e d P o l i c y ;

/ / p a t h to c o n v e r t e d p o l i c y

p u b l i c s t a t i c S t r i n g [] p o l i c y R e f e r e n c e ;

29

/ / p a t h to p o l i c y r e f e r e n c e

p u b l i c s t a t i c S t r i n g [] r e q u e s t D i r ;

/ / p a t h to d i r e c t o r y wi t h XACML r e q u e s t s

p u b l i c s t a t i c i n t [] r e q u e s t N u m b e r ;

/ / number o f XACML r e q u e s t s

p u b l i c s t a t i c S t r i n g r e s p o n s e D i r ;

/ / p a t h to d i r e c t o r y w i t h XACML r e s p o n s e s

p u b l i c s t a t i c S t r i n g l o g D i r ;

/ / p a t h to d i r e c t o r y f o r l o g g i n g

p u b l i c s t a t i c S t r i n g l o g W r i t e r ;

/ / p a t h to f i l e f o r l o g g i n g

The instance of ConfigPDP is created through the helper class called ConfigPDPLoader.

The main assignment of this class is to load and parse an XML file with the configuration. Its

public method aims to do that:

p u b l i c Conf igPDP g e t C o n f i g P D P (S t r i n g c o n f i g F i l e)

t h r o w s J F X T E x c e p t i o n ;

where configFile indicates a path to the configuration file in a local file system. If there is an

error during parsing of the XML file, a corresponding exception will be thrown by this method,

which is presented as an instance of JFXTException. It is worth mentioning that the low-level

parsing is located inside of the private method using the DOM API:

p r i v a t e v o i d parseX M L(S t r i n g xml)

t h r o w s P a r s e r C o n f i g u r a t i o n E x c e p t i o n , SA X E xception ,

I O E x c e p t i o n ;

All the possibly thrown exceptions (ParserConfigurationException, SAXException, IOExcep

tion) are wrapped then into an instance of JFXTException in the public method, described

above.

30

Here is an example of the configuration file.

<?xml v e r s i o n = ’ 1.0 ’ e n c o d i n g = ’w i n d o w s - 1 2 5 1 ’?>

< c o n f i g >

<PDP>

<nam e>XEnginePDP </name>

< v e r s i o n > 1.0 < / v e r s i o n >

< p d p C o n f i g F i l e x / p d p C o n f i g F i l e >

</PDP>

< p o l i c i e s >

< p o l i c y >

< x a c m l P o l i c y >E : /UWO/XACML/ t e s t s / X E n g i n e /

p o l i c i e s / c o n t i n u e - a . xml

< / x a c m l P o l i c y >

< c o n v e r t e d P o l i c y > E : /UWO/XACML/ t e s t s /

X E n g i n e / p o l i c i e s / c o n t i n u e - a . t x t

< / c o n v e r t e d P o l i c y >

< p o l i c y R e f e r e n c e >E : /UWO/XACML/ t e s t s /

XEngine / p o l i c i e s / c o n t i n u e - a . x m l . fwr . l o g

< / p o l i c y R e f e r e n c e >

< / p o l i c y >

< / p o l i c i e s >

< r e q u e s t >

<reques tDi r>E: /UWO/XACML/ t e s t s / r e q u e s t s /

p o l i c i e s / c o n t i n u e - a / 1 0 0 0 0 /

< / r e q u e s t D i r >

< r e q u e s t N u m b e r > 1 0 0 0 0 < / r e q u e s t N u m b e r >

< / r e q u e s t >

31

< r e s p o n s e >

c r e s p o n s e D i r >E : /UWO/XACML/ t e s t s / X E n g i n e /

r e s p o n s e s / c o n t i n u e - a /

< / r e s p o n s e D i r >

< / r e s p o n s e >

< l o g >

< l o g D i r >E : /UWO/XACML/ t e s t s / X E n g i n e / log /

< / l o g D i r >

c l o g W r i t e r > l o g . t x t < / l o g W r i t e r >

< l o g R e s u l t s > r e s u l t s . t x t < / l o g R e s u l t s >

< / l o g >

< / c o n f i g >

It is worth mentioning that the only required parameters for all engines are the PDP’s name, an

original XACML policy, and a directory with XACML requests. All other parameters are either

optional, or they are required by specific engines only, or some default values may be used

instead if they are empty. So for example if log files are not specified, then the corresponding

information from a logger will be displayed on the screen.

3.7 Storing results of experiments

As mentioned in the previous sections, performance measurements are stored in the Exper-

imentalResult object in the runtime period. Here we suppose that one experiment is the process

of evaluating a number of XACML requests contained in one directory against XACML poli

cies by one XACML engine. Consequently, each ExperimentalResult object presents infor

mation of one experiment. The ExperimentalResult class contains private fields representing

different measurement parameters as well as a description of an engine:

p r i v a t e S t r i n g e n g i n e ;

32

/ / name o f an e n g i n e

p r i v a t e l o n g i n i t T i m e ;

/ / t i m e o f i n i t i a l i z a t i o n

p r i v a t e l o ng r e q u e s t L o a d i n g T i m e ;

/ / t i me o f XACML r e q u e s t s l o a d i n g

p r i v a t e l o n g e v a l T i m e ;

/ / t i m e o f XACML r e q u e s t s e v a l u a t i o n

p r i v a t e l o n g mem ory;

/ / s i z e o f t h e J a v a v i r t u a l memory used

p r i v a t e i n t r e q u e s t s N u m b e r ;

/ / number o f XACML r e q u e s t s p r o c e s s e d

There are also public setter methods for all of the fields in the class:

p u b l i c v o i d s e t l n i t T i m e (l o n g i n i t T i m e) ;

p u b l i c v o i d s e t R e q u e s t L o a d i n g T i m e (l ong r e q u e s t L o a d i n g T i m e) ;

p u b l i c v o i d s e t E v a l T i m e (l o n g e v a l T i m e) ;

p u b l i c v o i d se tMemory (l o n g memory) ;

p u b l i c v o i d s e t R e q u e s t s N u m b e r (i n t r e q u e s t s N u m b e r) ;

It is worth noting that as in the case of configuration parameters in the ConfigPDP class,

not all the fields of ExperimentalResult are used in the current implementation, but they were

created considering future extensions of the framework in order to accommodate most of the

possible useful parameters of experiments.

The ExperimentalResult class has three overloaded constructors, giving an opportunity to

pass different parameters during the construction phase:

p u b l i c E x p e r i m e n t a l R e s u l t (S t r i n g e n g i n e , i n t r e q u e s t s N u m b e r) ;

p u b l i c E x p e r i m e n t a l R e s u l t (S t r i n g e n g i n e , l ong e v a l T i m e) ;

p u b l i c E x p e r i m e n t a l R e s u l t (S t r i n g e n g i n e , l ong r e q u e s t L o a d i n g T i m e ,

33

l o ng e v a l T i m e) ;

Additionally, the toStringO method is overridden in order to present overall information

about the current experiment. The return values of this method are used in the logging subsys

tem, providing an easy and efficient way of printing all necessary information as one string.

34

Chapter 4

Performance Evaluation and

Experimental Results

4.1 Performance Benchmarks and Tools

The main goal of the framework discussed in the previous chapter is to evaluate the per

formance of XACML libraries. Here, we define performance by several characteristics of

XACML engines which can be measured during the whole runtime process of XACML policy

evaluation, from the engine initialization until the decision is made upon evaluation. While

one may reckon the great number of such characteristics, it is natural to select the main ones

which affect the performance dramatically. In the current implementation, we measure the time

it takes an engine to load XACML requests from the hard disk, the time it takes an engine to

evaluate XACML requests against the given XACML policy, and the memory consumed dur

ing the engine’s work. In this thesis we evaluate performance characteristics of Sun’s PDP,

XEngine, and Java Enterprise XACML, when they accomplish identical tasks, i.e., when they

evaluate identical XACML requests against identical policies under identical workload. After

wards, we compare the results of these engines.

35

There is a great variety of test cases used. First of all, XACML policies range from simple

ones with a few rules to policies with a large number of rules, both real-life and syntheti

cally generated ones. Additionally, the experiments were executed with a varying number of

XACML requests, which ranged from 10 to 10000 in order to simulate different workloads.

Worth noting is the fact that all kinds of experiments were conducted enough times until the

average outcomes stabilized, providing that following runs did not produce essential variation

in the data.

Analysis of XACML engines has been conducted on various platforms (including different

CPUs, RAM, and operating system types). The platform which was used for a particular exper

iment is mentioned in each figure presenting the results. The main reason for choosing various

platforms is that there is a well-known fact that the Java virtual machines have different imple

mentations for different platforms, which is why it is necessary to run experiments on a few of

them. The sequence of choosing particular platforms depended on the different availability of

testbeds during the phase of conducting the experiments.

It is worth mentioning that all performance characteristics in the current implementation

were measured using Java methods for determining system time, and methods for determin

ing the amount of memory currently used by the Java virtual machine. Namely, the current-

TimeMillis() method of the System object as well as methods of the Runtime object called

totalMemoryO and freeMemoryO were used. During our tests, essential system services only

were allowed to run, and all experiments were developed to avoid involuntary garbage collec

tion.

In order to conduct experiments, a few subtasks were tackled: •

• Gathering experimental data, i.e., real-life and synthetically generated XACML policies

from different sources;

• Generating XACML requests for the gathered XACML policies;

36

• Writing XML-configurations used by our framework for each test case;

• Running experiments and collecting results.

The following section will describe the general settings of our experiments, such as the exper

imental data and its sources, the configuration of our testbeds, and parameters of experiments.

4.2 General Settings of Experiments

We have used eight real-life XACML policies from different sources. Among these poli

cies, codeA, codeB, codeC, continue-a, and continue-b are XACML policies used in [18] and

[21]; demol and demo2 are used in [20]. Policies continue-a and continue-b are designed for

a real-life web application that supports a conference management, while pluto is used in the

ARCHON system *. We present codeA, codeB, and codeC in Appendix A.

Also, we have used four synthetically generated XACML policies which are used in [21].

The main reason for usage of synthetically generated policies is that they can contain an arbi

trarily large number of rules. In our experiments we have used policies that contain 400, 800,

1600, and 4000 rules.

We have conventionally divided all of these XACML policies into two groups. The first

group contains policies which have fewer than 30 rules. Policies with 200 and more rules be

long to the second group. In the following sections we refer to these groups as the small poli

cies group and the large policies group, respectively. Finally, synthetically generated XACML

policies constitute the third group.

All the experiments were conducted on three different platforms. We give a brief descrip

tion of their configuration, specifically, an operating system run, CPU, memory size, and a hard

1 http://archon.cs.odu.edu/

37

http://archon.cs.odu.edu/

disk drive model:

• Configuration 1: Intel Core i5 660 @ 3.33GHz, 4.00 GB RAM, Windows 7 Enterprise

N 64-bit, Western Digital WDC 500GB Serial ATA III HDD (7200 rpm);

• Configuration 2: AMD Athlon X2 Dual Core Processor L310 @ 1.20 GHz, 4.00 GB

RAM, Windows 7 Home Premium 64-bit, Western Digital WDC 250GB Serial ATA III

HDD (7200 rpm);

• Configuration 3: Intel Core i3 2100 @ 3.10GHz, 2.00 GB RAM, Ubuntu Linux 10.04

64-bit, Seagate Barracuda ST3 1000GB Serial ATA III HDD (7200 rpm).

In the next section, request generation will be discussed.

4.3 XACML Requests Generation

The next task after gathering XACML policies for our experiments was to generate certain

numbers of XACML requests for each policy. For this purpose the RequestGenerator class

has been implemented. Technically, it is not a part of the framework discussed in the previous

chapter; however, it is worth discussing briefly.

The RequestGenerator class is based on the part of the XEngine API which uses methods

of mutations in order to generate a certain number of random XACML requests for the given

XACML policy, combining in different ways the attributes of a Subject, an Object, and an

Action requested. Most of the API used is part of the reqGen.ncsu package.

Here is the most interesting method of the RequestGenerator class:

p u b l i c s t a t i c v o i d g e n e r a t e R e q u e s t s (S t r i n g x a c m l P o l i c y ,

S t r i n g r e q u e s t s D i r , i n t r e q u e s t s N u m b e r)

38

where xacmlPolicy is the path to our XACML policy; requestsDir is the path to the direc

tory where generated XACML requests will be saved; and requestsNumber is the number of

XACML requests to be generated.

As it was found, Enterprise Java XACML uses a strict XML schema not only for XACML

policies, but for XACML requests as well. That is why we have had to make a few modifica

tions in the XEngine API, also fixing a few minor bugs.

For each of the twelve XACML policies in our experiments 4 sets of XACML requests have

been generated: 10, 100, 1000, and 10000 requests in sets. These numbers are chosen due to

the fact that the logarithmic scale provides better visualization of time-related benchmarks.

Among the generated policies there are both single-valued and multi-valued policies. We

will present one example of a generated XACML request for each group of XACML policies

we used for our experiments.

Below there is one of the XACML requests generated for the continue-a policy:

< R e q u e s t xmlns = ’ urn : o a s i s : nam es : tc : xacml : 2 . 0 : c o n t e x t : schema : os ’ >

< S u b j e c t S u b j e c t C a t e g o r y = "urn : o a s i s : nam es : tc : x a c m l : 1 . 0 :

s u b j e c t - c a t e g o r y : a c c e s s - s u b j e c t ">

< A t t r i b u t e A t t r i b u t e l d =" r o l e " Da taType = " h t t p : / /www. w3 . org /

2001 /XMLSchema# s t r i n g ">

< A t t r i b u t e V a l u e > p c - m e m b e r < / A t t r i b u t e V a l u e >

< / A t t r i b u t e >

< / S u b j e c t >

< R e s o u r c e >

< A t t r i b u t e A t t r i b u t e l d = " urn : o a s i s : nam es : tc : x a c m l : 1 . 0 :

r e s o u r c e : r e s o u r c e - i d "

D a t aT yp e = " h t t p : / /www. w 3 . o r g / 2 0 0 1 /XMLSchema#s t r i ng ">

< A t t r i b u t e V a l u e >DEFAULT RESOURCE</ At t r ibu t eVa l ue >

< / A t t r i b u t e >

39

D a t a T yp e = " h t t p : / /www. w3 . o r g / 2 0 0 1 /XMLSchema#s t r i ng ">

< A t t r i b u t e V a l u e > t r u e < / A t t r i b u t e V a l u e >

< / A t t r i b u t e >

< / R e s o u r c e >

< A c t i o n >

< A t t r i b u t e A t t r i b u t e l d =" a c t i o n - t y p e "

D a t a T y p e = " h t t p : / /www. w 3 . o r g / 2 0 0 1 / XMLSchema#s t r i ng ">

< A t t r i b u t e V a l u e > r e a d < / A t t r i b u t e V a l u e >

< / A t t r i b u t e >

< / A c t i o n >

E n v i r o n m e n t > < / E n v i r o n m e n t >

< / R e q u e s t >

This request can be explained as follows: a Subject with a pc-member role requests to read

a meeting paper.

Next we will look at one of the XACML requests generated for the codeA policy, where a

Subject with a faculty role requests to assign external grades:

< R e q u e s t xmlns = ’ urn : o a s i s : nam es : tc : xacml : 2 . 0 : c o n t e x t : s c h e m a : os ’ >

< S u b j e c t S u b j e c t C a t e g o r y = "urn : o a s i s : nam es : tc : x a c m l : 1 . 0 :

s u b j e c t - c a t e g o r y : a c c e s s - s u b j e c t ">

< A t t r i b u t e A t t r i b u t e l d = " r o l e "

D a t a T y p e = " h t t p : / /www. w 3 . o r g / 2 0 0 1 / XMLSchema#s t r i ng ">

< A t t r i b u t e V a l u e > F a c u l t y < / A t t r i b u t e V a l u e >

< / A t t r i b u t e >

< / S u b j e c t >

< R e s o u r c e >

< A t t r i b u t e A t t r i b u t e l d = " r e s o u r c e - c l a s s "

< A t t r i b u t e A t t r i b u t e l d = " i s E q - m e e t i n g P a p e r - r e s I d "

40

D a t aT yp e = " h t t p : / /www. w3 . org / 2 0 0 1 /XMLSchema# s t r i ng ">

< A t t r i b u t e V a l u e > E x t er na l G r a d e s < / A t t r i b u t e V a l u e >

< / A t t r i b u t e >

< A t t r i b u t e A t t r i b u t e i d =" urn : o a s i s : nam es : tc : xacml : 1 . 0 : r e s o u r c e :

r e s o u r c e - i d " Da t aType = " h t t p : / /www. w 3 . org / 2 0 0 1 /XMLSchema# s t r i n g ">

< A t t r i b u t e V a l u e >DEFAULT RESOURCE</ A t t r i b u t e V a l u e >

</ A t t r i b u t e >

< / R e s o u r c e >

< A c t i o n >

< A t t r i b u t e A t t r i b u t e i d ="command"

D a t aT yp e = " h t t p : / /www. w 3 . o r g / 2 001 / XMLSchema#s t r i ng ">

< A t t r i b u t e V a l u e > Ass i gn < / A t t r i b u t e V a l u e >

</ A t t r i b u t e >

< / A c t i o n >

< E n v i r o n m e n t > < / E n v i r o n m e n t >

< / R e q u e s t >

Finally, here is an exapmle of XACML requests generated for the SyntheticPolicy.4000.0

policy:

< R e q u e s t xml ns = ’ urn : o a s i s : nam es : tc : xacml : 2 . 0 : c o n t e x t : schema : os ’ >

< S u b j e c t S u b j e c t C a t e g o r y = "urn : o a s i s : nam es : tc : x a c m l : 1 . 0 :

s u b j e c t - c a t e g o r y : a c c e s s - s u b j e c t ">

< A t t r i b u t e A t t r i b u t e l d = " r o l e "

D a t aT y p e =" h t t p : / /www. w 3 . o r g / 2 001 /XMLSchema#s t r i n g ">

< A t t r i b u t e V a l u e > s u b j e c t _ 1 0 < / A t t r i b u t e V a l u e >

< / A t t r i b u t e >

< / S u b j e c t >

< R e s o u r c e >

41

D a t a T y p e = " h t t p : / /www. w 3 . o r g / 2 0 0 1 /XMLSchema# s t r i n g ">

< A t t r i b u t e V a l u e > r e s o u r c e _ l l < / A t t r i b u t e V a l u e >

< / A t t r i b u t e >

< A t t r i b u t e A t t r i b u t e l d = " u r n : o a s i s : nam es : tc : xacml : 1 . 0 : r e s o u r c e :

r e s o u r c e - id " Da t aType = " h t t p : / /www. w3 . o r g / 2 0 0 1 /XMLSchema# s t r i ng ">

< A t t r i b u t e V a l u e >DEFAULT RESOURCE</At t r ibute V a l u e >

< / A t t r i b u t e >

< / R e s o u r c e >

< A c t i o n >

< A t t r i b u t e A t t r i b u t e l d =" a c t i o n - t y p e "

D a t a T y p e = " h t t p : / /www. w 3 . o r g / 2 0 0 1 / XMLSchema#s t r i ng ">

< A t t r i b u t e V a l u e > a c t i o n _ 0 < / A t t r i b u t e V a l u e >

</ A t t r i b u t e >

< / A c t i o n >

< E n v i r o n m e n t > < / E n v i r o n m e n t >

< / R e q u e s t >

This request can be read as follows: subject_10 requests to perform action_0 on re-

source_l1.

4.4 Testing XACML Requests Loading Time

In this section we look at the XACML requests loading time, which in general does not

depend on the policy size. Of course, the main parameter that influences the time is the number

of requests. As it was mentioned above, we have used 4 sets of requests for each policy: 10,

100, 1000, and 10000 requests.

For each of the twelve XACML policies we present a figure which depicts the XACML re

quests loading time for Sun PDP, XEngine, and Enterprise Java XACML engines (see Figures

< A t t r i b u t e A t t r i b u t e l d = " r e s o u r c e - c l a s s "

42

Figure 4.1: XACML Requests Loading Time. XACML Policy: continue-a; Platform: Config
uration 1. ___________________

Request loading time: continue-a

Sun PDP

— * XEngine

Enterprise Java XACML

Figure 4.2: XACML Requests Loading Time. XACML Policy: continue-b; Platform: Config
uration 2.

100000 -,

P 1 nnno ..

—

Re JC
2 n>

...
...
...
...
...
...
1

i
l
l

«Vo+-»■ A iding¡ t h r u r . contim

.......................................Ê♦«? lArtn .
25#

5* ‘

1.......... Sun PDP

| —— • XEngine

i - « - - Enterprise Java XACML j

06c
13 inn -

“ ■” "***> «Ô.
...

IB J.UU
£ > *

10 H---------------------î—
10 100

Number o

---------------------1-------------------- !
1.000 10,000

f requests

4.1-4.12). It is worth noting that the horizontal axes are discrete and present the number of

XACML requests loaded, while the vertical axes present the loading time and are in logarith

mic scales in terms of milliseconds. We indicate the platform configurations described in the

“General settings” section which were used in each experiment.

There are a few evaluations that we can make from the results obtained in the above exper

iments. First of all, there is a prominent part from 10 to 100 requests loaded where XEngine

has the best results, whereas Enterprise Java XACML is an outsider. For instance, loading of

10 XACML requests for SyntheticPolicy.4000 policy took Enterprise Java XACML 294 ms,

while Sun PDP did it in 33 ms, and XEngine - in only 14 ms. The main reason for that is

43

Figure 4.3: XACML Requests Loading Time. XACML Policy: demol; Platform: Configura
tion 2.

Figure 4.4: XACML Requests Loading Time. XACML Policy: demo2; Platform: Configura
tion 1.

Request loading time: demo2

.......... Sun POP

— * XEngine

------- Enterprise Java XACML

Figure 4.5: XACML Requests Loading Time. XACML Policy: pluto; Platform: Configuration
3 .___

Request loading time: pluto

•Sun POP

XEngine

* Enterprise Java XACML

44

Figure 4.6: XACML Requests Loading Time. XACML Policy: codeA; Platform: Configura-

Figure 4.7: XACML Requests Loading Time. XACML Policy: codeB; Platform: Configura
tion 1.

Request loading time: codeB

......—» Sun PDP

— • XEngine

Enterprise Java XACML

Figure 4.8: XACML Requests Loading Time. XACML Policy: codeC; Platform: Configura
tion 2.

45

Figure 4.9: XACML Requests Loading Time. XACML Policy: SyntheticPolicy.400; Platform:
Configuration 2.

Figure 4.10: XACML Requests Loading Time. XACML Policy: SyntheticPolicy.800; Plat
form: Configuration 2.

Request loading time: SyntheticPolicy.800

— Sun POP

— > XEngine

^-Enterprise Java XACML

Figure 4.11: XACML Requests Loading Time. XACML Policy: SyntheticPolicy.1600; Plat
form: Configuration 3.

Request loading time: SyntheticPolicy.1600

....... ...Sun POP

» XEngine

——«-» Enterprise Java XACML

46

Figure 4.12: XACML Requests Loading Time. XACML Policy: SyntheticPolicy.4000; Plat
form: Configuration 3. _____________________________ ________________

Request loading time: SyntheticPolicy.4000

Sun PDP

— * XEngine

™ ~ - « Enterprise Java XACML

that Enterprise Java XACML does special indexing and applies a caching mechanism, which

consumes certain time at the beginning. Our diagrams show that this time is similar whether

loading 10 or 100 requests. For this reason we see almost horizontal lines in that interval. Be

yond the first interval, all the engines tend to show approximately the same results, increasing

almost linearly, even though XEngine performs slightly better.

The next point to be mentioned is that it is obvious that most of the parameters of our

platforms do not influence the outcome at all. Indeed, the hard disk drive is the part used most

intensively in the requests loading phase, and all the configurations have had hard disk drives

with approximately the same efficiency.

In the following sections we will look at the time taken to evaluate XACML requests against

XACML policies, which in general depends on both the policy size and the number of requests.

4.5 Testing Performance on Small Real-Life XACML Poli

cies

All the general settings of the experiments are the same as above mentioned. Figures 4.13-

4.16 illustrate the evaluation time for Sun PDP, XEngine, and Enterprise Java XACML engines

for each of the four XACML policies contained in our small policies group. It is worth noting

Figure 4.13: Small Real-Life Policies Evaluation Time. XACML Policy: codeA; Platform:
Configuration 3.

Policy evaluation time: codeA

...........SunPDP

— * XEngine

------- Enterprise Java XACML

Figure 4.14: Small Real-Life Policies Evaluation Time. XACML Policy: codeB; Platform:
Configuration 3.

that the horizontal axes are discrete and present the number of XACML requests evaluated,

while the vertical axes present the evaluation time and are in logarithmic scales in terms of

milliseconds. We indicate the platform configurations described in the “General settings” sec

tion which were used in each experiment. Worth noting is the fact that figures are presented in

order of ascending number of rules in policies.

There are a few observations that we can make from the results obtained in the above exper

iments. First of all, as in the previous set of experiments concerning the request loading time,

we can see that in the interval from 10 to 100 requests, Enterprise Java XACML shows approx

imately horizontal lines. Again, it is due to the fact that Enterprise Java XACML uses a few

Figure 4.15: Small Real-Life Policies Evaluation Time. XACML Policy: codeC; Platform:
Configuration 2.

Policy evaluation time: codeC

----- Sun PDP

— ■ XEngine

Enterprise Java XACML

Figure 4.16: Small Real-Life Policies Evaluation Time. XACML Policy: pluto; Platform:
Configuration 1.

Policy evaluation time: pluto

Sun PDP

— * XEngine

Enterprise Java XACML

49

caching mechanisms, such as decision cache and policy cache, which slow down performance

at the beginning.

The next observation is that regardless of which small XACML policy is used and the

testbed configuration selected, diagrams of XEngine and Enterprise Java XACML remain al

most the same in all experiments. Meanwhile, the performance of Sun PDP decreases corre

spondingly to the policy size. Namely, it took this engine 239 ms to evaluate 10,000 requests

against the codeA policy (2 rules), 258 ms to evaluate 10,000 requests against the codeB policy

(3 rules), 326 ms to evaluate 10,000 requests against the codeC policy (4 rules), and finally, 885

ms to evaluate 10,000 requests against the pluto policy (21 rules). For this reason, while for

codeA and codeB Enterprise Java XACML has the worst results, for codeC and the workload

of 10,000 requests it reaches the performance of Sun PDP, then for pluto and workloads of 100

requests and more, Sun PDP performs worst. Again, the leader is XEngine, even though it is

quite close to Sun PDP for the two smallest policies.

4.6 Testing Performance on Large Real-Life XACML Poli

cies

In this section we present the figures which depict the evaluation time for Sun PDP,

XEngine, and Enterprise Java XACML engines for each of the four XACML policies con

tained in our large policies group. These result are plotted on Figures 4.17-4.20.

We still can see that in the interval from 10 to 100 requests Enterprise Java XACML shows

approximately horizontal lines due to a few indexing and caching mechanisms. For 100 re

quests and more, Sun PDP performs worst almost in all cases, even though Enterprise Java

XACML gives close results: for instance, for the demol policy it took 14 milliseconds to eval

uate 100 requests with Enterprise Java XACML and 19 milliseconds with Sun PDP, for 1000

requests the results are 55 milliseconds with Enterprise Java XACML and 78 milliseconds

with Sun PDP, and for 10000 requests the results are 351 and 623 milliseconds, correspond

ingly (see Figure 4.19). XEngine performs best in all cases. Worth noting is the fact that all

50

Figure 4.17: Large Real-Life Policies Evaluation Time. XACML Policy: continue-a; Platform:

Figure 4.18: Large Real-Life Policies Evaluation Time. XACML Policy: continue-b; Platform:
Configuration 3.

Policy evaluation time: continue-b

—— Sun PDP

— • XErtgine

------- Enterprise Java XACML

Figure 4.19: Large Real-Life Policies Evaluation Time. XACML Policy: demol; Platform:
Configuration 3.

51

Figure 4.20: Large Real-Life Policies Evaluation Time. XACML Policy: demo2; Platform:
Configuration 3. __

Policy evaluation time: demo2

......... -SunPDP

— • XEngine

--<»» Enterprise Java XACML

Figure 4.21: Synthetically Generated Policies Evaluation Time. XACML Policy: Synthet-
icPolicy.400; Platform: Configuration 1.

Policy evaluation time: SyntheticPolicy.400

...— Sun PDP

— * XEngine

~ ~ - Enterp rise J ava XACML

the experiments in this section were conducted on the platform with configuration 3.

4.7 Testing Performance on Synthetically Generated

XACML Policies

In this section we present the figures which depict the evaluation time for Sun PDP,

XEngine, and Enterprise Java XACML engines for each of the four synthetically generated

XACML policies. We used policies with 400, 800, 1600, and 4000 rules. These results are

52

Figure 4.22: Synthetically Generated Policies Evaluation Time. XACML Policy: Synthet-
icPolicy.800; Platform: Configuration 1. _________________________________ _

Policy evaluation time: SyntheticPolicy.800

___ -***1ÜUUU ~
«
.5 1UUU •■M
co n n .. <s* ** f ' 2 #

\ — -----SunPDP

I —— * XEngine

I « ~ ~ Enterprise Java XACML j

.g lU v ^

to
•3 10 •
S>

 ̂^ <*■> ** ̂

, *****... 4 * »"****
1 '

10 100
Number o

1,000 10,000
f requests

Figure 4.23: Synthetically Generated Policies Evaluation Time. XACML Policy: Synthet-
icPolicy.1600; Platform: Configuration 1.

Policy evaluation time: SyntheticPolicy.1600

— SunPDP

— • XEngine

■------- Enterprise Java XACML

Figure 4.24: Synthetically Generated Policies Evaluation Time. XACML Policy: Synthet-
icPolicy.4000; Platform: Configuration 1.

Policy evaluation time: SyntheticPoiicy.4000

— — SunPDP

— • XEngine

« Enterprise Java XACML

53

shown on Figures 4.21-4.24.

Results of the last experiments are very impressive. They demonstrate that Sun PDP uses

brute force searching through all the rules, so the time of evaluation increases proportionally

to the number of rules. Another interesting observation is that the time of evaluation with

Enterprise Java XACML grows more slowly than that of XEngine. This happens because the

advantages of caching and indexing mechanisms eventually come into action for a really great

number of rules. For our largest synthetic policy (SyntheticPolicy.4000) it took 141 millisec

onds to evaluate 10000 requests with XEngine, 285 milliseconds with Enterprise Java XACML,

and 83,033 milliseconds with Sun PDP. Even though in these experiments XEngine is a leader

again, it would not be surprising if, for 100000 requests or more, Enterprise Java XACML

could beat XEngine due to the effective data structures and caching algorithm, designed for

workloads of enterprise scale. Worth noting is the fact that all the experiments in this sections

were conducted on the platform with configuration 1.

4.8 Testing Memory Usage

One of the challenging tasks in the Java runtime process is to assess memory intensively

used in the external libraries. The main reason is that Java uses the garbage collection mech

anism which is quite useful and convenient. However, a programmer cannot force garbage

collection in Java; it will only trigger if the Java Virtual Machine evaluates it needs a garbage

collection based on the Java heap size. In other words, it is impossible to predict with 100%

accuracy when it happens. Even though all our measurements were implemented to avoid

involuntary garbage collection, such methods as System.gc () and Runtime.gc () which are

used to send request for garbage collection to the Java Virtual Machine do not guarantee that

garbage collection will happen. For this reason, all the results in this section are approxi

mate and can be different for other implementations of the Java Virtual Machine and/or other

hardware. Moreover, some figures may vary for the same configurations because of the above

mentioned methods. The final results are summarized in Table 4.1.

54

Table 4.1: Memory Usage (Kilobytes).
Policy/Engine Sun XACML XEngine Enterprise Java XACML

codeA 2,528 5,927 1,734
codeB 2,871 5,898 3,003
codeC 2,886 5,906 3,062
pluto 3,869 6,445 3,405

continue-a 4,369 8,078 2,302
continue-b 3,787 7,855 2,238

demol 4,101 8,058 2,786
demo2 3,803 8,383 2,756

SyntheticPolicy.400 2,309 9,031 2,495
SyntheticPolicy. 800 4,076 9,698 3,990

SyntheticPolicy. 1600 6,124 15,022 3,989
SyntheticPolicy.4000 20,717 36,309 5,839

Our experiments show that there is no significant difference between the workloads, i.e.

the number of XACML requests, mainly because each request is processed sequentially while

others are simply located in the cache. For this reason we present the average results from all

three platforms for each XACML policy for an engine.

Table 4.1 shows that XEngine has the most memory consumption. While for small and

large real-life XACML policies Sun XACML and Enterprise Java XACML have approximately

the same results, for synthetically generated policies Sun XACML uses much more memory.

Consequently, overall, Enterprise Java XACML performs best, demonstrating low memory

consumption and great scalability.

55

Chapter 5

Conclusions and Future Work

5.1 Conclusions

It is a well-known fact that performance is vital in software, especially in security systems

performing access control. Thus, it is crucial to have benchmarking tools that help to evalu

ate all the subcomponents of a security system. The framework implemented in this work is

intended to be an easy-to-use tool that allows testing performance characteristics of arbitrary

Java-based XACML engines. It provides a few extendable features that make it possible to add

new performance measurements and alternative measuring methods.

We used the framework described in this thesis to evaluate the performance of the three

most recently developed and widely used XACML libraries: Sun XACML, XEngine, and En

terprise Java XACML. In our experiments we evaluated the run time of two interconnected

procedures: loading XACML requests from disk to memory and then the actual evaluation of

the given requests against the XACML policies. The memory consumption of XACML en

gines was evaluated as well. Our empirical study demonstrated that each XACML engine we

tested has its own strengths and weaknesses.

The first characteristic investigated was the XACML requests loading time. Overall, re

quest loading is more expensive with Enterprise Java XACML due to the auxiliary caching and

56

indexing mechanisms. XEngine performed best of all, while Sun PDP was in the middle.

The next phase was the actual request evaluation time. In our study we selected test cases

consisting of three groups of XACML policies: small real-life policies, large real-life policies,

and synthetically generated policies. XEngine was a leader in all experiments again. Sun PDP

and Enterprise Java XACML showed close results for both the real-life policy groups. How

ever, there was an apparent observation: Sun PDP started with evaluation time values better

than Enterprise Java XACML for the smallest policies, and those values began increasing pro

portionally to the policy sizes, so for the large policy group, Enterprise Java XACML slightly

outperformed Sun PDP. The most impressive results were obtained for synthetically generated

policies, which contained a great number of rules. Even though XEngine performed best of

all again, its evaluation time was increasing faster than that of Enterprise Java XACML, so

that they demonstrated close results for a workload of 10000 XACML requests. Sun PDP

performed far behind other engines. For instance, evaluation of requests against the largest

synthetically generated policy that was used (SyntheticPolicy.4000) with Sun PDP was orders

of magnitude slower. The main reason for such a dramatic increasing of evaluation time is that

Sun PDP uses brute force to search through all the rules.

The final characteristic we investigated in our empirical study is memory used by the en

gines during the evaluation phase. XEngine performed much worse than the other two, con

suming much more memory. For the small and large real-life policies Sun PDP and Enterprise

Java XACML demonstrated approximately the same results. However, for the synthetically

generated policies with a great number of rules, Enterprise Java XACML performed better,

showing low memory consumption and great potential for scalability.

Overall, summarizing our results, we can make a conclusion that currently XEngine demon

strates the best performance in terms of request loading and evaluation time for these three

engines. Memory consumption is the only shortcoming of XEngine revealed in our experi

ments. Enterprise Java XACML performs quite well for large policies under heavy workloads,

demonstrating good scalability and effectiveness. It is also a leader for memory usage. As to

57

Sun PDP, it performs reasonably well for small policies. When the number of rules grows, its

evaluation time increases proportionally. For this reason, Sun PDP is not useful for large poli

cies. Worth noting is the fact that, in general, our findings correspond to the results obtained in

[21] and [27],

5.2 Future work

5.2.1 Benchmarking

As discussed earlier, our framework is extendable in a few directions. First of all, it can

be extended with importing of new Java-based XACML engines, such as XACMLight [10]

and Herasaf [5], for example. Our test cases can be enriched with more complicated real-life

policies as well as synthetically generated ones with an even greater number of rules.

The next point to be mentioned is that in this work we focused on measurement of requests

loading and evaluation time as well as memory consumption. Apparently, there are many other

performance characteristics that could be included in our framework. For instance, it would

be interesting to measure such parameters as initialization time and policy loading time. Also,

there are many ways of extending the test suite. Additionally to just larger policies, it would

be interesting to investigate policies with anomalies and policies with similarity of content.

Finally, in order to evaluate real potential of scalability for those engines which have per

formed well for workloads up to 10000 XACML requests, experiments with heavier workloads

are of special interest.

5.2.2 Software Implementation

Even though the current version of our framework can be considered as a totally functional

and easy-to-use tool, there are a few directions for future work. First of all, the current imple

mentation uses a console. That is why a graphical user interface would be beneficial. It should

be simple yet to provide full control over the conducting of the experiments as well as to give

an opportunity to easily configure all the settings.

58

Another point for improvement is providing more formats for experimental results.

Namely, additionally to a simple text file format, such formats as XML, HTML, and Excel

would be useful. Storing the results in a database is a valuable asset as well. Moreover, for

some of the parameters investigated, automatic drawing of diagrams with the help of visual

aids would significantly improve visualization of data and simplify the results processing.

Finally, our framework is developed as a standalone application. While it has certain bene

fits, the feature of working in distributed environments can be considered as a great advantage.

For this reason, a web version of the framework is needed. It would allow a group of researchers

to work together within one project as well as provide an ability to conduct experiments on a

cluster or a powerful server. Furthermore, it does not require a lot of modifications in the cur

rent software code, as all the crucial methods are isolated well, so they can be transferred easily

into an SOA architecture. A simplified web version as an applet or a servlet can be done as

well.

59

Bibliography

[1] Axiomatics. http://www.axiomatics.com/, accessed November 25, 2011.

[2] Enterprise Java XACML Implementation, http://sourceforge.net/projects/java-xacml/, ac

cessed November 25, 2011.

[3] Fedora Commons Repository Software, http://fedora-commons.org/, accessed November

25, 2011.

[4] GeoXACML. http://www.geoxacml.org/, accessed November 25, 2011.

[5] HERASAF. http://herasaf.org/xacmlimpl/index.html, accessed November 25,2011.

[6] ITU-T Rec X.812 (1995) | ISO/IEC 10181-3:1996 "Security Frameworks for open sys

tems: Access control framework". . http://www.itu.int/rec/T-REC-X.812/, accessed

November 25, 2011.

[7] Java SE 6 Documentation, http://download.oracle.eom/javase/6/docs/, accessed Novem

ber 25, 2011.

[8] Log4J Apache Project, http://logging.apache.org/log4j/, accessed November 25, 2011.

[9] Sun’s XACML Implementation, http://sunxacml.sourceforge.net, accessed November 25,

2011.

[10] XACMLight. http://sourceforge.net/projects/xacmllight/, accessed November 25, 2011.

[11] XACML.NET. http://mvpos.sourceforge.net/, accessed November 25, 2011.

60

http://www.axiomatics.com/
http://sourceforge.net/projects/java-xacml/
http://fedora-commons.org/
http://www.geoxacml.org/
http://herasaf.org/xacmlimpl/index.html
http://www.itu.int/rec/T-REC-X.812/
http://download.oracle.eom/javase/6/docs/
http://logging.apache.org/log4j/
http://sunxacml.sourceforge.net
http://sourceforge.net/projects/xacmllight/
http://mvpos.sourceforge.net/

[12] Anne Anderson. Core and Hierarchical Role Based Access Control (RBAC) profile of

XACML. Technical report, OASIS, 2004.

[13] Anne Anderson. XACML Profile for Role Based Access Control (RBAC). Technical

Report Draft 1, OASIS, February 2004.

[14] Anne Anderson and Hal Lockhart. SAML 2.0 profile of XACML v2.0. Technical report,

OASIS, February 2005.

[15] Cataldo Basile, Antonio Lioy, and Piervito Giovanni Scaglioso. Modem standard-based

access control in network services: XACML in action. IN T E R N A T IO N A L J O U R N A L O F

C O M P U T E R S C IE N C E A N D N E T W O R K S E C U R IT Y , 8, no. 12:296-305, 2008.

[16] Fei Chen and Alex X. Liu. XEngine project, http://xacmlpdp.sourceforge.net/, accessed

November 25, 2011.

[17] James Clark and Steve DeRose. XML Path Language (XPath). Recommendation, W3C,

1999. http://www.w3.org/TR/xpath, accessed November 25, 2011.

[18] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and Michael Carl Tschantz.

Verification and change-impact analysis of access-control policies. In IC S E , pages 196—

205,2005.

[19] Simon Godik and Tim Moses, extensible Access Control Markup Language (XACML)

Version 1.1. OASIS Standard, August 2003.

[20] Hongxin Hu, Gail-Joon Ahn, and Ketan Kulkami. Anomaly discovery and resolution in

web access control policies. In S A C M A T , pages 165-174, 2011.

[21] Alex X. Liu, Fei Chen, JeeHyun Hwang, and Tao Xie. XEngine: A fast and scalable

XACML policy evaluation engine. In P ro c . I n te rn a tio n a l C o n fe re n c e o n M e a s u r e m e n t

a n d M o d e lin g o f C o m p u te r S y s te m s (S IG M E T R IC S 2 0 0 8) , pages 265-276, June 2008.

61

http://xacmlpdp.sourceforge.net/
http://www.w3.org/TR/xpath

[22] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis G. Kafura, and Sumit Shah. First

experiences using XACML for access control in distributed systems. In X M L S e c u r ity ,

pages 25-37, 2003.

[23] Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter Brown, and Rebekah Metz.

Reference Model for Service Oriented Architecture 1.0. Technical Report wd-soa-rm-

cdl, OASIS, October 2006.

[24] Evan Martin and Tao Xie. Automated Test Generation for Access Control Policies via

Change-Impact Analysis. In P ro c . 3 r d In te rn a tio n a l W o rk sh o p o n S o ftw a re E n g in e e r in g

f o r S e c u re S y s te m s (S E S S 2 0 0 7) , pages 5-11, May 2007.

[25] E. F. Michiels, editor. IS O /IE C 1 0 1 8 1 -7 : 1 9 9 6 In fo rm a tio n te c h n o lo g y O p e n S y s te m s In

te r c o n n e c tio n S e c u r i ty f r a m e w o r k s f o r o p e n sy s te m s : S e c u r ity a u d it a la r m s f r a m e w o r k .

ISO/IEC, Geneva, int. standard edition, 1996.

[26] Nick Ragouzis, John Hughes, Rob Philpott, and Eve Maler. Security Assertion Markup

Language (SAML) V2.0 Technical Overview. Technical report, OASIS, 2006.

[27] Fatih Turkmen and Bruno Crispo. Performance evaluation of XACML PDP implementa

tions. In S W S , pages 37-44, 2008.

[28] Manish Verma. XML Security: Control information access with XACML. Technical

report, IBM, October 2004. https://www.ibm.com/developerworks/xml/library/x-xacml/,

accessed November 25, 2011.

[29] R. Yavatkar, D. Pendarakis, and R. Guerin. A Framework for Policy-based Admis

sion Control. RFC 2753, January 2000. http://www.faqs.org/rfcs/rfc2753.html, accessed

November 25, 2011.

62

https://www.ibm.com/developerworks/xml/library/x-xacml/
http://www.faqs.org/rfcs/rfc2753.html

Appendix A

XACML Policy Examples

A . l code A

< P o lic y S e t P o l ic y S e t Id = " R P S l is t " P o lic y C o m b in in g A lg Id = " u rn : o a s is : names: t c : x a c m l:
1 .Q :p o l ic y -c o m b in in g -a lg o r i t h m :p e r m it -o v e r r id e s " >

< T a rg e t/ >
< P o lic y S e t P o l ic y S e t Id = " R P S l is t . Q" P o lic y C o m b in in g A lg Id = " u rn :o a s is : names: t c :

x a c m l: 1 .8 :p o l ic y -c o m b in in g -a lg o r i t h m : p e rm it -o v e r r id e s " >
< T a rg e t>

< S u b je c ts>
< S u b je c t>

< S ub je ctM atch M a tc h ld = "u m : o a s is : names: t c : xa c m l: 1 . ®: f u n c t io n :
s t r in g -e q u a l" >

< A tt r ib u te V a lu e D ataType= "h ttp ://w w w .w 3 .o rg/2 Q ® l/
X M L S c h e m a # s trin g "> F a c u lty< / A ttrib u te V a lu e >

< S u b je c tA t t r ib u te D e s ig n a to r S u b je c tC a te g o ry = " u m : o a s is : names: t c : xacm l
l .Q :s u b je c t -c a t e g o r y :a c c e s s -s u b je c t " A t t r ib u t e Id = " r o le "
D a ta Type = "http ://w w w .w 3 .o rg/2 Q ® l/XM LS chem a# string"/>

</Subj ectM atch>
< / S u b je c t>

< / S u b je c ts>
< / T a rg e t>
< P o lic y S e t P o l ic y S e t Id = " R P S l is t . Q . Q" P o lic y C o m b in in g A lg Id = " u rn :o a s is : names:

t c : xa c m l: 1 . Q :p o l ic y -c o m b in in g -a lg o r it h m :p e r m it -o v e r r id e s " >
< T a rg e t/ >
< P o lic y P o l ic y Id = " R P S l is t . Q . ®. Q" R u le C o m b in in g A lg Id = " u rn :o a s is : names: t c :

x a c m l: 1 . 8 : ru le -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >
< Ta rg e t/>
<R ule R u le Id = " R P S lis t . ®. ®. Q . r .1 ” E f fe c t= " P e rm it">

< T a rg e t>
<Resources>

<Resource>

63

http://www.w3.org/2Q%c2%ael/
http://www.w3.org/2Q%c2%ael/XMLSchema%23string%22/

<ResourceM atch M a tc h ld = " u rn :o a s is :n a m e s :tc :x a c m l:1 .8 : fu n c t io n
s t r in g -e q u a l" >

< A tt r ib u te V a lu e D ataType="http ://w w w .w 3 .o rg/2 8 8 1 /
X M L S c h e m a # s trin g "> E xte rn a lG ra d e s< / A ttrib u te V a lu e >

< R e s o u rc e A ttr ib u te D e s ig n a to r A t t r ib u t e Id = " r e s o u r c e -c la s s "
D a ta T y p e = "h ttp : //www. w3. org/2881/XM LSchem a#string"/>

</ResourceM atch>
</Resource>
<Resource>

<ResourceM atch M a tc h Id = " u rn :o a s is :n a m e s :tc :x a c m l:1 .8 :fu n c t io n
s t r in g -e q u a l" >

< A tt r ib u te V a lu e D ataType= "h t t p : //www. w3. org/2881/
X M L S c h e m a # s trin g "> In te m a lG ra d e s < / A ttr ib u te V a lu e >

< R e s o u rc e A ttr ib u te D e s ig n a to r A t t r ib u t e Id = " r e s o u r c e -c la s s "
D a ta Typ e = "h t t p : //www.w3. org/2881/XM LScheraa#string"/>

</Re sourceM atch>
</R esource>

</R esources>
< A ctio n s>

< A ctio n >
< A ctio n M a tch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 8 : f u n c t io n :

s t r in g -e q u a l ">
< A tt r ib u te V a lu e D ataType="http ://w w w .w 3 .o rg/2 8 8 1 /

X M L S c h e m a # s trin g "> A s s ig n < / A ttr ib u te V a lu e >
< A c t io n A t t r ib u te D e s ig n a to r A ttrib u te ld = "co m m a n d "

D a ta Typ e = "http ://w w w .w 3 .org/2 881/XM LS chem a#string"/>
</A ctionM atch>

< / A ctio n >
< A ctio n >

< A ctio nM atch M a tc h ld = "u m : o a s is : names: t c : xa c m l: 1 . 8 : f u n c t io n :
s t r in g -e q u a l" >

< A tt r ib u te V a lu e D ataType= "http ://w w w .w 3 .o rg/2 8 8 1 /
X M L S c h e m a # strin g "> V ie w < / A ttrib u te V a lu e >

< A c t io n A t t r ib u te D e s ig n a to r A ttrib u te Id = "co m m a n d "
D a ta Typ e = "h t t p : //www. w3. org/2881/XM LSchem a#string"/>

</A ctionM atch>
< /A ctio n >

< / A ctio n s>
< /Ta rg e t>

</Rule>
< / P o lic y >

< / P o lic y S e t>
< / P o lic y S e t>
< P o lic y S e t P o l ic y S e t Id = " R P S l is t .1" P o lic y C o m b in in g A lg Id = " u rn :o a s is :n a m e s :tc

x a c m l: 1 .8 :p o l ic y -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >

64

http://www.w3.org/2881/
http://www.w3.org/2881/
http://www.w3.org/2881/XMLScheraa%23string%22/
http://www.w3.org/2881/
http://www.w3.org/2881/XMLSchema%23string%22/
http://www.w3.org/2881/
http://www.w3.org/2881/XMLSchema%23string%22/

< T a rg e t>
< S u b je c ts>

<Subj e ct>
< S ub je ctM a tch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 8 : f u n c t io n :

s t r in g -e q u a l" >
< A tt r ib u te V a lu e D ataType= "h t t p : //www. w3. org/2881/

X M L S c h e m a # strin g "> S tu d e n t< / A ttr ib u te V a lu e >
< S u b je c tA t t r ib u te D e s ig n a to r S u b je c tC a te g o ry = " u rn : o a s is : names: t c :

x a c m l:1 .8 :s u b je c t -c a t e g o r y ¡a c c e s s -s u b je c t " A t t r ib u t e Id = " r o le "
D a ta Typ e = "h t t p : //www. w3. org/2 88 l/XM LSchem a#string" / >

</Subj ectM atch>
< / S u b je c t>

< / S u b je c ts>
< / T a rg e t>
< P o lic y S e t P o l ic y S e t Id = " R P S l is t .1 .8 " P o lic y C o m b in in g A lg Id =

" u r n : o a s is :n a m e s : t c :x a c m l :1 . 8 :p o l ic y -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >
< T a rg e t/ >
< P o lic y P o l ic y Id = " R P S l is t .1 .8 .8 " R u le C o m b in in g A lg Id = "u rn :o a s is :n a m e s :tc

x a c m l:1 .8 : r u le -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >
< T a rg e t/ >
<R ule R u le Id = " R P S l is t .1 .8 .8 . r . 1" E f fe c t= " P e rm it">

< Ta rg e t>
<Resources>

<Resource>
<ResourceM atch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 8 : fu n c t io n

s t r in g -e q u a l" >
< A tt r ib u te V a lu e D ataType= "h t t p : //www. w3. org/2881/

X M L S c h e m a # s trin g "> E xte rn a lG ra d e s< / A ttrib u te V a lu e >
< R e s o u rc e A ttr ib u te D e s ig n a to r A t t r ib u t e Id = " r e s o u r c e -c la s s "

D a ta Type = "http ://w w w .w 3 .org/2 881/XM LS chem a#string"/>
</ResourceM atch>

</Resource>
</R esources>
< A ctio n s>

< A ctio n >
< A ctio n M a tch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 8 : f u n c t io n :

s t r in g -e q u a l" >
< A tt r ib u te V a lu e D ataType= "h t t p : //www. w3. org/2881/

X M L S c h e m a # strin g "> R e ce ive < / A ttr ib u te V a lu e >
< A c t io n A t t r ib u te D e s ig n a to r A ttrib u te ld = "co m m a n d "

D a ta Typ e = "h t t p : //www. w3. org/2 88 l/XM LSchem a#string"/>
</A ctionM atch>

< /A ctio n >
< / A ctio n s>

< / T a rg e t>

65

http://www.w3.org/2881/
http://www.w3.org/288l/XMLSchema%23string%22/
http://www.w3.org/2881/
http://www.w3.org/2881/XMLSchema%23string%22/
http://www.w3.org/2881/
http://www.w3.org/288l/XMLSchema%23string%22/

</Rule>
< / P o lic y >

< / P o lic y S e t>
< / P o lic y S e t>

< / P o lic y S e t>

A.2 codeB
< P o lic y S e t P o l ic y S e t Id = " R P S l is t " P o lic y C o m b in in g A lg Id = "u rn :o a s is :n a m e s :
t c : xa c m l: 1 .0 : p o l ic y -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >

< T a rg e t/ >
< P o lic y S e t P o l ic y S e t Id = " R P S l is t .8 " P o lic y C o m b in in g A lg Id = "u rn :o a s is :n a m e s :

t c : xa c m l: 1 .8 : p o l ic y -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >
< T a rg e t>

< S u b je c ts>
< S u b je c t>

< S ub je ctM a tch M a tc h ld = "u rn : o a s is : names : t c : xa c m l: 1.8 : f u n c t io n :
s t r in g -e q u a l ">

< A t t r ib u te V a lu e D ataType= "http ://w w w .w 3 .o rg/2 8 8 1 /
X M L S c h e m a # s trin g "> F a c u lty< / A ttr ib u te V a lu e >

<Subj e c t A t t r ib u te D e s ig n a to r Subj e c tC a te g o ry = " u rn : o a s is : names :
t c : xa c m l: 1 .8 : su b j e c t -c a t e g o r y : a c c e s s -s u b je c t" A t t r ib u t e Id = " r o le "
D a ta T y p e = "h ttp : //www. w3. org/288 l/XM LSchem a#string"/>

</Subj ectM atch>
< / S u b je c t>

< / S u b je c ts >
< / T a rg e t>
< P o lic y S e t P o l ic y S e t Id = " R P S l is t .8 .8 " P o lic y C o m b in in g A lg Id = " u rn :o a s is :

names: t c :x a c m l : 1 .8 :p o l ic y -c o m b in in g -a lg o r i t h m :p e r m it -o v e r r id e s " >
< T a rg e t/ >
< P o lic y P o l ic y Id = " R P S l is t .8 .8 .8 " R u le C o m b in in g A lg Id = "u rn : o a s is : names :

t c : x a c m l: 1 .8 : r u le -c o m b in in g -a lg o r i t h m :p e r m it -o v e r r id e s " >
< T a rg e t/ >
<R ule R u le I d = " R P S l is t .8 .8 .8 . r .1" E f fe c t= " P e rm it">

< Ta rg e t>
<R esources>

<Resource>
<ResourceM atch M a tc h ld = "u rn : o a s is : names : t c : xa c m l: 1 .8 : fu n c t io n

s t r in g -e q u a l" >
< A tt r ib u te V a lu e D ataType="h t t p : //www. w3. o rg/2 881/

X M L S c h e m a # s trin g "> E xte rn a lG ra d e s< / A ttrib u te V a lu e >
< R e s o u rc e A ttr ib u te D e s ig n a to r A t t r ib u t e Id = " r e s o u r c e -c la s s "

D a ta Typ e = "http ://w w w .w 3 .org/2 881/XM LS chem a#string"/>
</ResourceM atch>

66

http://www.w3.org/2881/
http://www.w3.org/2881/
http://www.w3.org/2881/XMLSchema%23string%22/

</R esource>
<Resource>

<ResourceM atch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 .8 : fu n c t io n
s t r in g -e q u a l" >

< A tt r ib u te V a lu e D ataType= "h ttp :/ / w w w .w3.org/2801/
X M L S c h e m a # s trin g "> In te rn a lG ra d e s < / A ttr ib u te V a lu e >

< R e s o u rc e A ttr ib u te D e s ig n a to r A t t r ib u t e Id = " r e s o u r c e -c la s s "
D a ta Typ e = "h t t p : //www. w3. org/2881/XM LSchem a#string"/>

</ResourceM atch>
</Resource>

</R esources>
< A ctio n s>

< A ctio n >
< A ctio n M a tch M a tc h ld = "u rn : o a s is : names: t c : xa c m l:1 . 8 : f u n c t io n :

s t r in g -e q u a l ” >
< A tt r ib u te V a lu e D ataType= "h t t p : //www. w3. org/2881/

X M L S c h e m a # strin g "> A ss ig n < / A ttr ib u te V a lu e >
< A c t io n A t t r ib u te D e s ig n a to r A ttrib u te ld = "co m m a n d "

D a ta Typ e = "http ://w w w .w 3 .org/2 8 8 1 /XM LS chem a# string"/>
</A ctionM atch>

< /A ctio n >
< A ctio n >

< A ctio n M a tch M a tc h ld = "u rn : o a s is : names: t c : xa c m l:1 .8 :
f u n c t io n :s t r in g -e q u a l ">

< A tt r ib u te V a lu e D ataType="h t t p : //www. w3. org/2881/
X M L S ch e m a # strin g "> V ie w < / A ttrib u te V a lu e >

< A c t io n A t t r ib u te D e s ig n a to r A ttrib u te Id = "co m m a n d "
D a ta Typ e = "h t t p : //www.w3. org/2881/XM LSchem a#string"/>

</A ctionM atch>
< /A ctio n >

< / A ctio n s>
< / T a rg e t>

</Rule>
< / P o lic y >

< / P o lic y S e t>
< / P o lic y S e t>
< P o lic y S e t P o l ic y S e t Id = " R P S l is t .1" P o lic y C o m b in in g A lg Id = "u m : o a s is : names:

t c : x a c m l:1 . 8 :p o l ic y -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >
< T a rg e t>

<Subj e c ts>
< S u b je ct>

< S ub je ctM a tch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 8 : f u n c t io n :
s t r in g -e q u a l" >

< A tt r ib u te V a lu e D ataType= "h t t p : //www. w3. o rg/2 881/
X M L S c h e m a # strin g "> S tu d e n t< / A ttr ib u te V a lu e >

67

http://www.w3.org/2801/
http://www.w3.org/2881/XMLSchema%23string%22/
http://www.w3.org/2881/
http://www.w3.org/2881/XMLSchema%23string%22/
http://www.w3.org/2881/
http://www.w3.org/2881/XMLSchema%23string%22/
http://www.w3.org/2881/

< S u b je c tA t t r ib u te D e s ig n a to r S u b je c tC a te g o ry = "u rn : o a s is : names:
t c : xa c m l: 1 . 0 : s u b je c t -c a t e g o r y : a c c e s s -s u b je c t" A t t r ib u t e Id = " r o le "
D a ta Typ e = "h t t p : //www. w3. org/2Q® l/XM LSchem a#string"/>

</Subj ectM atch>
< / S u b je c t>

< / S u b je c ts>
< / T a rg e t>
< P o lic y S e t P o l ic y S e t Id = " R P S l is t .1 .0 " P o lic y C o m b in in g A lg Id = "u rn :o a s is :n a m e s

t c : xa c m l: 1 . 8 : p o l ic y -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >
< T a rg e t/ >
< P o lic y P o l ic y Id = " R P S l is t .1 .8 .8 " R u le C o m b in in g A lg Id = "u rn :o a s is :n a m e s :tc :

x a c m l: 1 . 8 : r u le -c o m b in in g -a lg o r ith m : p e rm it -o v e r r id e s " >
< T a rg e t/ >
<R ule R u le Id = " R P S lis t .1 . 8 .8 . r .1 " E f fe c t= " P e rm it">

< Ta rg e t>
<R esources>

<Resource>
<R esourceM atch M a tch ld = "u m : o a s is : names: t c : xa c m l: 1 . 8 : f u n c t io n :

s t r in g -e q u a l ">
< A t t r ib u te V a lu e D ataType="http ://w w w .w 3 .o rg/2 8 8 1 /

X M L S c h e m a # s trin g "> E xte rn a lG ra d e s< / A ttrib u te V a lu e >
< R e s o u rc e A ttr ib u te D e s ig n a to r A t t r ib u t e Id = " r e s o u r c e -c la s s "

D a ta Typ e = "h t t p : //www.w3. org/2881/XM LSchem a#string"/>
</ResourceM atch>

</Resource>
</R esources>
< A ctio n s>

< A ctio n >
< A ctio n M a tch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 8 : f u n c t io n :

s t r in g -e q u a l" >
< A tt r ib u te V a lu e D ataType= "h t t p : //www. w3. org/2881/

X M L S c h e m a # strin g "> R e ce ive < / A ttr ib u te V a lu e >
< A c t io n A t t r ib u te D e s ig n a to r A ttrib u te Id = "co m m a n d "

D a ta Typ e = "h t t p : //www.w3. org/2881/XM LSchem a#string"/>
</A ctionM atch>

< / A ctio n >
< / A ctio n s>

< / T a rg e t>
</Rule>

< / P o lic y >
< / P o lic y S e t>

< / P o lic y S e t>
< P o lic y S e t P o l ic y S e t Id = " R P S l is t .2 " P o lic y C o m b in in g A lg Id = " u rn : o a s is : names:

t c : xa c m l: 1 .8 :p o l ic y -c o m b in in g -a lg o r i t h m :p e r m it -o v e r r id e s " >
< T a rg e t>

68

http://www.w3.org/2Q%c2%ael/XMLSchema%23string%22/
http://www.w3.org/2881/
http://www.w3.org/2881/XMLSchema%23string%22/
http://www.w3.org/2881/
http://www.w3.org/2881/XMLSchema%23string%22/

< S u b je c ts>
< S u b je c t>

< S ub je ctM a tch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 .8 : f u n c t io n :
s t r in g -e q u a l" >

< A tt r ib u te V a lu e D ataType= "h ttp ://w w w .w 3 . org/2881/
X M L S ch e m a # strin g "> TA < /A ttrib u te V a lu e >

< S u b je c tA t t r ib u te D e s ig n a to r S u b je c tC a te g o ry = " u rn : o a s is : names:
t c :x a c m l : 1 . 8 : s u b je c t -c a t e g o r y :a c c e s s -s u b je c t " A t t r ib u t e Id = " r o le "
D a ta Typ e = "h t t p : //www. w3. org/2 88l/XM LSchem a#string" / >

</Subj ectM atch>
< / S u b je c t>

< / S u b je c ts>
< / T a rg e t>
< P o lic y S e t P o l ic y S e t Id = " R P S l is t .2 .8 " P o lic y C o m b in in g A lg Id = " u rn :o a s is :

nam es: t c : xa c m l: 1 . 8 : p o l ic y -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >
< T a rg e t/ >
< P o lic y P o l ic y Id = " R P S l is t .2 .8 .8 " R u le C o m b in in g A lg Id = "u rn :o a s is :

names: t c : xa c m l: 1 . 8 : ru le -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >
< T a rg e t/ >
<R ule R u le I d = " R P S l is t .2 .8 .8 . r .1" E f fe c t= " P e rm it">

< Ta rg e t>
<Resources>

<Resource>
<ResourceM atch M a tc h ld = "u m : o a s is : names: t c : xa c m l: 1 . 8 : fu n c t io n

s t r in g -e q u a l" >
< A tt r ib u te V a lu e D ataType="h t t p : //www. w3. org/2881/

X M L S c h e m a # s trin g "> E xte rn a lG ra d e s< / A ttrib u te V a lu e >
< R e s o u rc e A ttr ib u te D e s ig n a to r A t t r ib u t e Id = " r e s o u r c e -c la s s "

D a ta Typ e = "h t t p : //www. w3. org/288l/XM LSchem a#string"/ >
</ResourceM atch>

</Resource>
<Resource>

<ResourceM atch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 8 : fu n c t io n
s t r in g -e q u a l ">

< A tt r ib u te V a lu e D ataType= "h t t p : //www. w3. org/2881/
X M L S c h e m a # s trin g "> In te rn a lG ra d e s < / A ttr ib u te V a lu e >

< R e s o u rc e A ttr ib u te D e s ig n a to r A t t r ib u t e Id = " r e s o u r c e -c la s s "
D a ta Typ e = "h t t p :/ /www. w3. org/2881/XM LSchem a#string"/>

</ResourceM atch>
</Resource>

</R esources>
< A ctio n s>

< A ctio n >
< A ctio n M a tch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 8 : f u n c t io n :

s t r in g -e q u a l" >

69

http://www.w3.org/2881/
http://www.w3.org/288l/XMLSchema%23string%22/
http://www.w3.org/2881/
http://www.w3.org/288l/XMLSchema%23string%22/
http://www.w3.org/2881/
http://www.w3.org/2881/XMLSchema%23string%22/

< A t t r ib u te V a lu e D ataType= "h t t p : //www.w3.org/2881/
X M L S c h e m a # s trin g "> A s s ig n < / A ttr ib u te V a lu e >

< A c t io n A t t r ib u te D e s ig n a to r A ttrib u te Id = "co m m a n d "
D a ta Typ e = "http ://w w w .w 3 .org/2 8 8 1 /XM LS chem a# string"/>

</A ctionM atch>
< / A ctio n >
< A ctio n >

< A ctio n M a tch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 8 : fu n c t io n
s t r in g -e q u a l" >

< A tt r ib u te V a lu e D ataType= "h t t p : //www. w3. org/2881/
X M L S ch e m a # strin g "> V ie w < / A ttrib u te V a lu e >

< A c t io n A t t r ib u te D e s ig n a to r A ttrib u te Id = "co m m a n d "
D a ta Typ e = "h t t p : //www. w3. org/2 8 8 l/XM LSchem a# string"/>

</A ctionM atch>
< / A ctio n >

< / A ctio n s>
< / T a rg e t>

</R ule>
< /P o X icy>

< / P o lic y S e t>
< / P o lic y S e t>

< / P o lic y S e t>

A.3 codeC
< P o lic y S e t P o l ic y S e t Id = " R P S l is t " P o lic y C o m b in in g A lg Id = " u rn :o a s is : names: t c :
x a c m l:1 .8 :p o l ic y -c o m b in in g -a lg o r i t h m :p e r m it -o v e r r id e s " >

< T a rg e t/ >
< P o lic y S e t P o l ic y S e t Id = " R P S l is t .8 " P o lic y C o m b in in g A lg Id = " u rn :o a s is : names:

t c : xa c m l: 1 . 8 : p o l ic y -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >
< T a rg e t>

< S u b je c ts>
< S u b je c t>

< S ub je ctM atch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 8 : f u n c t io n :
s t r in g -e q u a l" >

< A tt r ib u te V a lu e D ataType= "h t t p : //www.w3.org/2881/
X M L S c h e m a # s trin g "> F a c u lty< / A ttr ib u te V a lu e >

< S u b je c tA t t r ib u te D e s ig n a to r S u b je c tC a te g o ry = " u m :o a s is :n a m e s :tc
x a c m l: 1 .8 :s u b je c t -c a t e g o r y ¡a c c e s s -s u b je c t " A t t r ib u t e Id = " r o le "
D a ta Typ e = "http ://w w w .w 3 .org/2 881/XM LS chem a#string"/>

</Subj ectM atch>
< / S u b je c t>

< / S u b je c ts >
< / T a rg e t>

70

http://www.w3.org/2881/
http://www.w3.org/2881/XMLSchema%23string%22/
http://www.w3.org/2881/
http://www.w3.org/288l/XMLSchema%23string%22/
http://www.w3.org/2881/
http://www.w3.org/2881/XMLSchema%23string%22/

< P o lic y S e t P o l ic y S e t Id = " R P S l is t .8 .8 " P o lic y C o m b in in g A lg Id = " u rn :o a s is :
names : t c : xa c m l: 1 .8 : p o l ic y -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >

< T a rg e t/ >
< P o lic y P o l ic y Id = " R P S l is t .0 .8 .8 " R u le C o m b in in g A lg Id = "u rn : o a s is :

names : t c : xa c m l: 1 .8 : ru le -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >
< T a rg e t/ >
<R ule R u le I d = " R P S l is t .8 .8 .8 . r .1" E f fe c t= " P e rm it">

< T a rg e t>
<Resources>

<Resource>
<ResourceM atch M a tc h ld = "u rn : o a s is : names : t c : xa c m l: 1 .8 : fu n c t io n

s t r in g -e q u a l ">
< A tt r ib u te V a lu e D ataType= "http ://w w w .w 3 .o rg/2 8 8 1 /

X M L S c h e m a # s trin g "> E xte rn a lG ra d e s< / A ttrib u te V a lu e >
< R e s o u rc e A ttr ib u te D e s ig n a to r A t t r ib u t e Id = " r e s o u r c e -c la s s "

D a ta Typ e = "h t t p : //www.w3. org/2881/XM LSchem a#string"/>
</ResourceM atch>

</Resource>
</R esources>
< A ctio n s>

< A ctio n >
< A ctio n M a tch M a tc h ld = "u rn : o a s is mames : t c : xa c m l: 1 .8 : fu n c t io n :

s t r in g -e q u a l" >
< A tt r ib u te V a lu e D ataType= "h t t p : //www. w3. o rg/2 8 8 1/

X M L S c h e m a # strin g "> A ss ig n < / A ttr ib u te V a lu e >
< A c t io n A t t r ib u te D e s ig n a to r A ttrib u te ld = "co m m a n d "

D a ta Typ e = "http ://w w w .w 3 .org/2 881/XM LS chem a#string"/>
< /A ctionM atch>

< / A ctio n >
< A ctio n >

< A ctio n M a tch M a tc h ld = "u rn : o a s i s : names : t c : xa c m l: 1 .8 : f u n c t io n :
s t r in g -e q u a l" >

< A tt r ib u te V a lu e D ataType= "h t t p : //www. w3. org/2881/
X M L S ch e m a # strin g "> V ie w < / A ttrib u te V a lu e >

< A c t io n A t t r ib u te D e s ig n a to r A ttrib u te ld = "co m m a n d "
D a ta Typ e = "h t t p : //www. w3. org/2 88 l/XM LSchem a#string"/>

</A c t i onMat ch>
< /A ctio n >

< / A ctio n s>
< / T a rg e t>

</Rule>
< / P o lic y >
< P o lic y S e t P o l ic y S e t Id = " R P S l is t .8 .8 .1" P o lic y C o m b in in g A lg Id = " u rn :o a s is :

names : t c : xa c m l: 1 .8 : p o l ic y -c o m b in in g -a lg o r ith m : p e rm it -o v e r r id e s " >
< Ta rg e t/>

71

http://www.w3.org/2881/
http://www.w3.org/2881/XMLSchema%23string%22/
http://www.w3.org/2881/
http://www.w3.org/2881/XMLSchema%23string%22/
http://www.w3.org/2881/
http://www.w3.org/288l/XMLSchema%23string%22/

< P o lic y P o l ic y Id = " R P S l is t .0 .0 .1 .0 " R u le C o ra b in in g A lg Id = " u rn :o a s is :
nam es: t c : xa c m l: 1 .8 : ru le -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >

< Ta rg e t/>
<R ule R u le I d = " R P S l i s t .8 . 8 . l .Q . r .1" E f fe c t= " P e rm it">

< Ta rg e t>
<R esources>

<Resource>
<ResourceM atch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 8 : fu n c t io n

s t r in g -e q u a l" >
< A tt r ib u te V a lu e D ataType= "h t t p : //www. w3. org/2881/

X M L S c h e m a # s trin g "> In te rn a lG ra d e s < / A ttr ib u te V a lu e >
< R e s o u rc e A ttr ib u te D e s ig n a to r A t t r ib u t e Id = " r e s o u r c e -c la s s "

D a ta Typ e = "http ://w w w .w 3 .org/2 8 8 1 /XM LS chem a# string"/>
</ResourceM atch>

</Resource>
</R esources>
< A ctio n s>

< A ctio n >
< A ctio n M a tch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 8 : f u n c t io n :

s t r in g -e q u a l" >
< A tt r ib u te V a lu e D ataType= "h t t p : //www. w3. org/2881/

X M L S c h e m a # strin g "> A ss ig n < / A ttr ib u te V a lu e >
< A c t io n A t t r ib u te D e s ig n a to r A ttrib u te Id = "co m m a n d "

D a ta T y p e = "h ttp : //www. w3. org/288 l/XM LSchem a#string"/>
</A ctionM atch>

< /A ctio n >
< A ctio n >

< A ctio n M a tch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 8 : f u n c t io n :
s t r in g -e q u a l" >

< A tt r ib u te V a lu e D ataType= "h t t p : //www. w3. org/2 8 8 1/
X M L S ch e m a # strin g "> V ie w < / A ttrib u te V a lu e >

< A c t io n A t t r ib u te D e s ig n a to r A ttrib u te ld = "co m m a n d "
D a ta Typ e = "h t t p : //www. w3. org/2881/XM LSchem a#string"/>

</A ctionM atch>
< /A ctio n >

< / A ctio n s>
< /Ta rg e t>

</Rule>
< / P o lic y >

< / P o lic y S e t>
< / P o lic y S e t>

< / P o lic y S e t>
< P o lic y S e t P o l ic y S e t Id = " R P S l is t .1" P o lic y C o m b in in g A lg Id = "u m :o a s is :n a m e s :

t c :x a c m l : 1 .8 :p o l ic y -c o m b in in g -a lg o r i t h m :p e r m it -o v e r r id e s " >
< T a rg e t>

72

http://www.w3.org/2881/
http://www.w3.org/2881/XMLSchema%23string%22/
http://www.w3.org/2881/
http://www.w3.org/2881/
http://www.w3.org/2881/XMLSchema%23string%22/

<Subj e c ts>
< S u b je ct>

< S ub je ctM a tch M a tc h ld = "u rn : o a s is : names: t c : xa cm l: 1 . 0 : f u n c t io n :
s t r in g -e q u a l" >

< A t t r ib u te V a lu e D ataType= "h t t p : //wwvj.wB . org/2001/
X M L S c h e m a # strin g "> S tu d e n t< / A ttr ib u te V a lu e >

< S u b je c tA t t r ib u te D e s ig n a to r S u b je c tC a te g o ry = "u rn : o a s is : names: t c :
xacm l : 1 . 0 : s u b je c t -c a t e g o ry - .a c c e s s -s u b je c t " A t t r ib u t e Id = " r o le "
D a ta Typ e = "h t t p : //www. w3. org/2 00 l/XM LSchem a#string"/>

</Subj ectM atch>
< / S u b je c t>

< / S u b je c ts>
< / T a rg e t>
< P o lic y S e t P o l ic y S e t Id = " R P S l is t .1 .0 " P o lic y C o m b in in g A lg Id = "u rn :o a s is :n a m e s

t c : x a c m l: 1 . 0 : p o l ic y -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >
< T a rg e t/ >
< P o lic y P o l ic y Id = " R P S l is t . 1 . 0 . 0 " R u le C o m b in in g A lg Id = "u rn -.o a s is : names : t c :

x a c m l:1 .O :r u le -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >
< T a rg e t/ >
< R u le R u le Id = " R P S l is t .1 .0 .0 . r . 1" E f fe c t= " P e rm it">

< T a rg e t>
<Resources>

<Resource>
<ResourceM atch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 0 : f u n c t io n :

s t r in g -e q u a l ">
< A tt r ib u te V a lu e D ataType="h t t p : //www.wB. o rg/2 0 0 1/

X M L S c h e m a # s trin g "> E xte rn a lG ra d e s< / A ttrib u te V a lu e >
< R e s o u rc e A ttr ib u te D e s ig n a to r A t t r ib u t e Id = " r e s o u r c e -c la s s "

D a ta Typ e = "http ://w w w .w 3 .org/2 001/XM LS chem a#string"/>
</ResourceM atch>

</Resource>
</R esources>
< A ctio n s>

< A ctio n >
< A ctio n M a tch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 0 : f u n c t io n :

s t r in g -e q u a l ">
< A tt r ib u te V a lu e D ataType= "h t t p : //www. w3. o rg/2 0 0 1/

X M L S c h e m a # strin g "> R e ce ive < / A ttrib u te V a lu e >
< A c t io n A t t r ib u te D e s ig n a to r A ttrib u te Id = "co m m a n d "

D a ta Typ e = "h t t p : //www.w3. org/2001/XM LSchem a#string"/>
< /A ctionM atch>

< / A ctio n >
< / A ctio n s>

< / T a rg e t>
</Rule>

73

http://wwvj.wB.org/2001/
http://www.w3.org/200l/XMLSchema%23string%22/
http://www.wB.org/2001/
http://www.w3.org/2001/XMLSchema%23string%22/
http://www.w3.org/2001/
http://www.w3.org/2001/XMLSchema%23string%22/

< / P o lic y >
< / P o lic y S e t>

< / P o lic y S e t>
< P o lic y S e t P o l ic y S e t Id = " R P S l is t .2 " P o lic y C o m b in in g A lg Id = " u rn :o a s is : names: t c :

x a c m l: 1 .8 :p o l ic y -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >
< T a rg e t>

< S u b je c ts>
< S u b je c t>

< S ub je ctM a tch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 8 : f u n c t io n :
s t r in g -e q u a l ">

< A tt r ib u te V a lu e D ataType= "http ://w w w .w 3 .o rg/2 8 8 1 /
X M L S ch e m a # strin g "> TA < / A ttrib u te V a lu e >

< S u b je c tA t t r ib u te D e s ig n a to r S u b je c tC a te g o ry = "u rn : o a s is : names: t c :
x a c m l: 1 . 8 : sub j e c t -c a t e g o r y : a c c e s s -s u b j e c t" A t t r ib u t e Id = " r o le "
D a ta T y p e = "h ttp : //www. w3. org/288 l/XM LSchem a#string"/>

< /Sub jectM atch>
< / S u b je c t>

< / S u b je c ts >
< / T a rg e t>
< P o lic y S e t P o l ic y S e t Id = " R P S l is t .2 .8 " P o lic y C o m b in in g A lg Id = " u rn :o a s is :

nam es: t c : xa c m l:1 . 8 :p o l ic y -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >
< T a rg e t/ >
< P o lic y P o l ic y Id = " R P S l is t .2 .8 .8 " R u le C o m b in in g A lg Id = "u rn : o a s is : names:

t c : xa c m l: 1 . 8 : r u le -c o m b in in g -a lg o r ith m :p e r m it -o v e r r id e s " >
< T a rg e t/ >
< R ule R u le I d = " R P S l is t .2 .Q .Q . r .1" E f fe c t= " P e rm it">

< T a rg e t>
<R esources>

<Resource>
<ResourceM atch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 8 : f u n c t io n :

s t r in g -e q u a l ">
< A tt r ib u te V a lu e D ataType= "h t t p : //www.w3.org/2881/

X M L S c h e m a # s trin g "> In te m a lG ra d e s < / A ttr ib u te V a lu e >
< R e s o u rc e A ttr ib u te D e s ig n a to r A t t r ib u t e Id = " r e s o u r c e -c la s s "

D a ta T y p e = "h ttp : //www. w3. org/288 l/XM LSchem a#string"/>
</ResourceM atch>

</Resource>
</R esources>
< A ctio n s>

< A ctio n >
< A ctio nM atch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . 8 : f u n c t io n :

s t r in g -e q u a l" >
< A tt r ib u te V a lu e D ataType= "h t t p : //www. w3. org/2881/

X M L S c h e m a # strin g "> A ss ig n < / A ttr ib u te V a lu e >
< A c t io n A t t r ib u te D e s ig n a to r A ttrib u te Id = "co m m a n d "

74

http://www.w3.org/2881/
http://www.w3.org/2881/
http://www.w3.org/2881/

D a ta Typ e = "h t t p : //www. w3. org/2 8Q l/XM LSchem a# string"/>
</A ctionM atch>

< / A ctio n >
< A ctio n >

< A ctio n M a tch M a tc h ld = "u rn : o a s is : names: t c : xa c m l: 1 . Q : fu n c t io n
s t r in g -e q u a l ">

< A tt r ib u te V a lu e D ataType="h t t p : //www. w3. org/2801/
X M L S ch e m a # strin g "> V ie w < / A ttrib u te V a lu e >

< A c t io n A t t r ib u te D e s ig n a to r A ttrib u te Id = "co m m a n d "
D a ta Typ e = "h ttp ://w w w .w 3 .o rg/2 Q Q l/X M LS ch em a# strin g"/>

< /A ctionM atch>
< /A ctio n >

< / A ctio n s>
< /Ta rg e t>

</Rule>
< / P o lic y >

< / P o lic y S e t>
< / P o lic y S e t>

< / P o lic y S e t>

75

http://www.w3.org/28Ql/XMLSchema%23string%22/
http://www.w3.org/2801/
http://www.w3.org/2QQl/XMLSchema%23string%22/

	A Framework for Analysis of Java-Based XACML Engines
	Recommended Citation

	tmp.1610484908.pdf.0gItH

