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Abstract: Convolutional neural networks utilize a hierarchy of neural network layers. The statistical
aspects of information concentration in successive layers can bring an insight into the feature abstraction
process. We analyze the saliency maps of these layers from the perspective of semiotics, also known
as the study of signs and sign-using behavior. In computational semiotics, this aggregation operation
(known as superization) is accompanied by a decrease of spatial entropy: signs are aggregated into
supersign. Using spatial entropy, we compute the information content of the saliency maps and study the
superization processes which take place between successive layers of the network. In our experiments,
we visualize the superization process and show how the obtained knowledge can be used to explain
the neural decision model. In addition, we attempt to optimize the architecture of the neural model
employing a semiotic greedy technique. To the extent of our knowledge, this is the first application of
computational semiotics in the analysis and interpretation of deep neural networks.

Keywords: deep learning; spatial entropy; saliency maps; semiotics; convolutional neural networks

1. Introduction

Convolutional neural networks (CNNs) were first made popular by Lecun et al. [1] with their
seminal work on handwritten character recognition, where they introduced the currently popular LeNet-5
architecture. At that time, computational power constraints and lack of data prohibited those CNNs from
achieving their true potential in terms of computer vision capabilities. Years later, Krizhevsky et al. [2]
marked the start of the current deep learning revolution, when, during the ILSVRC 2012 competition,
their CNN, entitled AlexNet, overrun its competitor from the previous year by a margin of almost 10%.
Since then, research on novel CNN architectures became very popular producing candidates like VGG [3],
GoogleNet [4], ResNet [5], and more recently EfficientNet [6].

Despite the ability of generating human-alike predictions, CNNs still lack a major component:
interpretability. Neural networks in general are known for their black-box type of behavior, being capable
of capturing semantic information using numerical computations and gradient-based learning, but hiding
the inner working mechanisms of reasoning. However, reasoning is of crucial importance for areas like
medicine, law, and finance, where most decisions need to come along with good explanations for taking
one particular action in favor of another. Usually, there is a trade-off between accuracy and interpretability.
For instance, extracted IF-THEN rules from a neural network are highly interpretable but less accurate.

Since the emergence of deep learning, there have been efforts to analyze the interpretability issue
and come up with potential solutions that might equip neural networks with a sense of causality [7–13].

Entropy 2020, 22, 1365; doi:10.3390/e22121365 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-6015-3151
http://dx.doi.org/10.3390/e22121365
http://www.mdpi.com/journal/entropy


Entropy 2020, 22, 1365 2 of 18

The high complexity of deep models makes these models hard to interpret. It is not feasible to extract (and
interpret) classical IF-THEN rules from a ResNet with over 200 layers.

We need different interpretation methods for deep models and an idea comes from image
processing/understanding. A common technique for understanding the decisions of image classification
systems is to find regions of an input image that were particularly influential to the final classification.
This technique is known under various names: sensitivity map, saliency map, or pixel attribution map.
We will use the term saliency map. Saliency maps have long been present and used in image recognition.
Essentially, a saliency map is a 2D topological map that indicates visual attention priorities. Applications of
saliency maps include image segmentation, object detection, image re-targeting, image/video compression,
and advertising design [13].

Recently, saliency maps became a popular tool for gaining insight into deep learning. In this case,
saliency maps are typically rendered as heatmaps of neural layers, where “hotness” corresponds to
regions that have a big impact on the model’s final decision. We illustrate with an intuitive gradient-based
approach, the Vanilla Gradient algorithm [8], which proceeds as follows: forward pass with data, backward
pass to the input layer to get the gradient, and render the gradient as a normalized heatmap.

Certainly, saliency maps are not the universal tool for interpreting neural models. They focus on the
input and may neglect to explain how the model makes decisions. It is possible that saliency maps are
extremely similar for very different output predictions of the neural model. An example was provided by
Alvin Wan (https://bair.berkeley.edu/blog/2020/04/23/decisions/#fn:saliency) using the Grad-CAM
(Gradient-weighted Class Activation Mapping) saliency map generator [7]. In addition, some widely
deployed saliency methods are incapable of supporting tasks that require explanations that are faithful
to the model or the data generating process. Relying only on visual assessment of the saliency maps can
be misleading and two tests for assessing the scope and quality of explanation methods were introduced
in [14].

A good visual interpretation should be class-discriminative (i.e., localize the category in the image)
and high-resolution (i.e., capture fine-grained details) [7]. Guided Grad-CAM [7] is an example of a
visualization which is both high-resolution and class-discriminative: important regions of the image which
correspond to any decision of interest are visualized in high-resolution detail even if the image contains
evidence for multiple possible concepts.

In our approach, we focus on the statistical aspects of the information concentration processes which
appear in the saliency maps of successive CNN layers. We analyze the saliency maps of these layers
from the perspective of semiotics. In computational semiotics, this aggregation operation (known as
superization) is accompanied by a decrease of spatial entropy: signs are aggregated into supersigns.
A saliency map aggregates information from the previous layer of the network. In computational semiotics,
this aggregation operation is known as superization, and it can be measured by a decrease of spatial entropy.
In this case, signs are synthesized into supersigns.

Our contribution is an original, and to our knowledge, the first application application of
computational semiotics in the analysis and interpretation of deep neural networks. Semiotics is known as
the study of signs and sign-using behavior. According to [15], computational semiotics is an interdisciplinary
field which proposes a new kind of approach to intelligent systems, where an explicit account for the
notion of sign is prominent. In our work, the definition of computational semiotics refers to the application
of semiotics to artificial intelligence. We put the notion of sign from semiotics into service to give a new
interpretation of deep learning, and this is new. We use computational semiotics’ concepts to explain
decision processes in CNN models. We also study the possibility of applying semiotic tools to optimize the
architecture of deep learning neural networks. Currently, model architecture optimization is a hot research
topic in machine learning.

https://bair.berkeley.edu/blog/2020/04/23/decisions/#fn:saliency
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The inputs for our model are saliency maps, generated for each CNN layer by Grad-CAM, which
currently is a state-of-the-art method. We compute the entropy of the saliency maps, meaning that we
quantify the information content of these maps. This allows us to study the superization processes which
take place between successive layers of the network. In our experiments, we show how the obtained
knowledge can be used to explain the neural decision model. In addition, we attempt to optimize the
architecture of the neural model employing a semiotic greedy technique.

The paper proceeds as follows: Section 2 describes the visualization of CNN networks through
saliency maps, with a focus on the Grad-CAM method used in our approach. Image spatial entropy and
its connection to saliency maps are presented in Section 3. Section 4 introduces semiotic aggregation in
the context of deep learning. Section 5 concentrates the conceptual core of or contribution—the links
between semiotic aggregation and CNN saliency maps. The experimental results are described in Section 6.
Section 7 discusses how semiotic aggregation could be used to optimize the architecture of a CNN. Section 8
contains final remarks and open problems.

2. Saliency Maps in CNNs

This section describes the most recent techniques used for the visualization of CNN layers. Overviews
of saliency models applied to deep learning networks can be found in [7,13].

One of the earliest works belong to Zeiler et al. [9]. They used a Deconvolutional Network (deconvnet)
to visualize the relevant parts from an input image that excite the top nine most activated neurons from
a feature map (i.e., the output of a convolutional layer, a maxpool layer, a nonlinear activation function)
resulted at a particular layer. A deconvnet represents a map from the hidden neuron activities back to the
input pixel space by means of inverting the operations done in a CNN: unpooling, rectifying (using ReLU),
and convolutional filtering. Their visualization technique strengthened the intuition that convolutional
filters do indeed learn hierarchical features, starting from simple strokes and edges to object parts and in the
end composing whole objects, as the depth of the network increases. Springenberg et al. [10] demonstrated
that by slightly changing the way the gradient through the ReLU nonlinearity is computed—by discarding
negative values (guided backpropagation)—they can visualize convolutional filters for a CNN with strided
convolution instead of pooling.

Figure 1. A saliency map (generated using the Grad-CAM method) which highlights the most important
pixels that contribute to the prediction of the class “boxer” (dog). Red denotes important regions.

In visual recognition, a saliency map (e.g., Figure 1) can capture the most important or salient features
(pixels) of an input image which are responsible for a particular decision. In the case of a CNN classifier,
this decision translates into finding the class with the maximum likelihood score. As can be seen in
Figure 1, the saliency map can be represented as a heatmap, where the intensity represents the importance
of the features.
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The notion of saliency map is not novel and has been used even before the emergence of CNNs [16].
In the context of CNNs, the work of Simonyan et al. [8] was among the first ones to explore saliency maps by
using as a signal the backpropagated gradients with respect to the input image. Higher magnitudes of the
gradient tensor corresponded to higher importance of the respective pixels. In deep CNNs, the class-aware
gradient signal is mostly lost while moving backwards to the input of the network. Thus, for a lot of
images, the resulted saliency maps in [16] were noisy and difficult to interpret. The same paper introduced
a method for generating class specific images: apply gradient descent on a random input noise image until
convergence, in order to maximize the likelihood of a class. The resulting images managed to capture
some of the semantics of a real image belonging to that class.

A related approach is SmoothGrad, proposed by Smilkov et al. [11], where the gradient corresponding
to an input image is computed as the average of the gradients of multiple samples obtained by adding
Gaussian noise to the original input image. This has the effect of smoothing the resulted gradient with a
Gaussian kernel by means of a stochastic approximation, resulting in a less noisy saliency map.

Grad-CAM, a recent popular technique for saliency map visualization [7], uses the gradient
information obtained from backpropagating the error signal from the loss function with respect to a
specific feature map A(l) ∈ Rw×h×c, at any layer l of the network, where w, h and c represent the width,
height, and number of channels of that feature map, respectively. The gradient signal is averaged over
the spatial dimensions w× h to obtain a c-dimensional vector of importance weights αk. The importance
weights are used to perform a weighted channel-wise combination with the feature maps A(l)

k and
ultimately passed through a ReLU activation function:

O(l)
Grad−CAM = ReLU

( c

∑
k=0

αk A(l)
k

)
(1)

O(l)
Grad−CAM in Formula (1) is the output resulted by applying the Grad-CAM technique on a particular

layer l. By normalizing the values between [0, 1] using the min-max normalization scheme and then,
multiplying by 255, it will result in a map of pixel intensities g ∈ [0, 255], where 255 denotes maximum
importance and 0 denotes no importance.

The ReLU activation function is applied because only features that have a positive influence on the
class of interest usually matter. Negative values are features likely to belong to other categories in the
image. In [7], the authors justify that, without the ReLU function, the saliency maps could sometimes
highlight more than just the desired class of interest.

Grad-CAM can be used to explain activations in any layer of a deep network. In [7], it was applied
only to the final layer, in order to interpret the output layer decisions. In our experiments, we use
Grad-CAM to generate the saliency maps of all CNN layers.

3. Image Spatial Entropy

Our work analyzes the entropy variations of 2D saliency maps. For this, we need to compute the
entropy of 2D structures. This is very different than the approach in [16], where saliency maps are obtained
from local entropy calculation. Rather than generating maps using an entropy measure, we compute the
entropy of saliency maps generated by the gradient method in Grad-CAM.

The most trivial solution is to use the univariate entropy, which assumes all pixels as being
independent and does not take into consideration the contextual aspect information.

A more accurate model is the Spatial Disorder Entropy (SDE) [17], which considers an entropy
measure for each possible spatial distance in an image. Let us define the joint probability of pixels at
spatial locations (i, j) and (i + k, j + l) to take the value g, respectively g′:
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pgg′(k, l) = P(Xi, j = g, Xi+k, j+l = g′) (2)

where g and g′ are pixel intensity values (0− 255). If we assume that pgg′ is independent of (i, j) (the
homogeneity assumption [17]), we define for each pair (k, l) the entropy

H(k, l) = −∑
g

∑
g′

pgg′(k, l) log pgg′(k, l) (3)

where the summations are over the number of outcome values (256 in our case). A standardized relative
measure of bivariate entropy is [17]:

HR(k, l) =
H(k, l)− H(0)

H(0)
∈ [0, 1] (4)

The maximum entropy HR(k, l) = 1 corresponds to the case of two independent variables. H(0) is
the univariate entropy, which assumes all pixels as being independent, and we have H(k, l) ≥ H(0).

Based on the relative entropy for (k, l), the SDE for an m× n image X was defined in [17] as:

HSDE(X) ≈
1

mn

m

∑
i=1

n

∑
j=1

m

∑
k=1

n

∑
l=1

HR(i− k, j− l) (5)

For k, l >> 1, HR(k, l) is always equal or very close to one. Consequently, HSDE is usually very
close to one (the max value) for most images, which is not convenient for our purposes. In addition,
the complexity of SDE computation is high.

For these reasons, we decided to use a simplified version—the Aura Matrix Entropy (AME, see [18]),
which only considers the second order neighbors from the SDE computation:

HAME(X) ≈
1
4

(
HR(−1, 0) + HR(0, −1) + HR(1, 0) + HR(0, 1)

)
(6)

The additional assumption is that the image is isotropic, which causes different orientations of the
neighboring pixels to have the same entropy. In other words, the joint pdf of the vertical and horizontal
neighboring process is averaged to obtain a global joint pdf of the image. This averaging makes the
resulting pdf smoother and more equally distributed throughout the entire sample space. In a comparison
study [19], the AME measure provided the most effective outcome among several other image spatial
entropy definitions, even if it overestimates the image information.

Putting it all together, starting from a map obtained by Formula (1), we compute the probabilities pgg′

in Formula (2), and finally the AME in Formula (6).

4. Semiotic Aggregation in Deep Learning

We aim to introduce in this section the semiotic framework used to analyze visual representations
(saliency maps) of multi-layered neural networks. Our main operation is aggregation, applied layer-wise
in such networks. The basic computational tool is information theory, but the aggregation operation is
applied in a semiotic framework and this makes our contribution interdisciplinary.

In semiotics (or semiosis), a sign is anything that communicates a meaning that is not the sign itself,
to the interpreter of the sign. This definition is very general. Alternative in-depth definitions can be found
in [20–22]. We consider the triadic model of semiosis, as stated by Charles Sanders Peirce. Peirce defined
semiosis as an irreducible triadic relation between Sign–Object–Interpretant [23].

Charles Morris [24] defined semiotics as grouped into three branches:
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• Syntactics: relations among or between signs in formal structures without regard to meaning.
• Semantics: relation between signs and the things to which they refer: their signified denotata,

or meaning.
• Pragmatics: relations between the sign system and its human (or animal) user.

In a simplistic manner, semiotics already played some role in computer science during the sixties.
The distinction of syntactics, semantics, and pragmatics by Charles Morris was at that time imported into
programming language theory [25]. More recent results can be found in [26].

Computational semiotics is built upon a mathematical description of concepts from classic semiotics.
In [27], it was stated that semantic networks can implement computational intelligence models: fuzzy
systems, neural networks, and evolutionary computation algorithms. Later, some computational model of
Peirce’s triadic notion of meaning processes were proposed [15,28,29].

Taking advantage of Peircean semiotics and recent results in cognitive science, Baxter et al. proposed a
unified framework for the interpretation of medical image segmentation as a sign exchange in which each
sign acts as an interface metaphor [30]. This framework provides a unified approach to the understanding
and development of medical image segmentation interfaces. A complete computational model of Peirce’s
semiosis is very complex and still not available.

According to Mihai Nadin, almost all inference engines deployed today in machine learning encode
semiotic elements, although, at times, those who designed them are rather driven by semiotic intuition
than by semiotic knowledge [31,32].

Recently, there is a huge interest in self-explaining machine learning models. This can be regarded as
exposure of the self-interpretation and semiotic awareness mechanism. The concept of sign and semiotics
offers a very promising and tempting conceptual basis to machine learning.

In this work, we focus on computational aspects of semiotics in deep learning. Our semiotic
infrastructure is at the intersection of Peirce’s theory and information theory, a theory developed by
Max Bense [33] and Helmar Frank [34].

The usual signs designate material entities which are unconsciously perceived. These so-called first
level signs may be agglomerated into signs at the next hierarchical level, called second level supersigns.
Iterating the process, we obtain more abstract k-th level supersigns. The transition from k-th level to
(k + 1)-th level supersigns is called superization. Frank [34] identified two types of superization:

1. Type I “Durch Klassesbildung” (by class formation, in German): building equivalence classes
and thus reducing the number of signs. The letters of a text may be considered first level signs.
The equivalence class of all types of letter “a” (handwritten, capital, and so on) is a second level
supersign.

2. Type II “Durch Komplexbildung” (by compound formation, in German): building compound
supersigns from simpler component supersigns. Reconsidering the previous example, we may
obtain this way words from letters, sentences from words, and more and more complex and abstract
syntactic-semantic structures afterward.

Superization is a semiotic aggregation process characterized at each perception level by a specific
repertory of supersigns. Hierarchical computer vision data structures (e.g., quadtrees, multi-resolution
pyramids) may be considered simplistic superizations [35,36]. The basic idea is to treat each component as
a pixel at the given hierarchical level. In this case, there is a similarity between hierarchical aggregative
representation and superization processes. However, there are also differences: superizations are not
simple combinatorial processes, but subtle syntactic-semantic perception frames related to Peirce’s triadic
model of semiosis.

A multi-resolution image representation can be characterized at each level by an information measure.
The resolution-dependent Shannon entropy can be derived from the probability distribution of grey-level
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events observed at that level [37]. Using the newspaper’s reading analogy, at the magnified level, where
only white and black patches are visible, the entropy H will be low. As the picture is brought to normal
focusing distance, a great variety of grey levels become apparent, and, consequently, the entropy increases.
As the picture is moved further away from the eyes, the entropy decreases. Finally, it may become nearly
uniformly grey in appearance, with H ≈ 0. The observation that associates with the peak value of the
entropy is one of the most meaningful observations of the picture. However, because of other factors, the
maximum entropy is not always associated with the “optimal” resolution [36].

From an informational psychology view, the entropy increases until it reaches its peak value.
In our opinion [35,36], this phase may be associated with the informational adaptation of the perceiver.
The subsequent entropy decrease is related to the processing of structural information [37]. The rate of
decrease depends largely upon the amount of structural information in the picture. The entropy falls
quickly when little structural information is available, whereas, when major structural information is
present, the entropy will remain high over most of its range. The variation of entropy can indicate the type
and quantity of structural information in the picture in terms of size and relationships to detailed features.
In the current study, we focus only on the entropy decrease phase, since the analyzed CNNs do not adapt
to the inputs by changing dynamically the input image resolution.

The idea of considering the CNN layers as multi-resolution representations of the input images is
interesting, but not very new [38–40]. For instance, in [38] a spatial pyramid pooling layer is introduced
between convolutional layers and fully connected layers to avoid the need for cropping or warping of
the input images. In [40], the incoming convolution layers at multiple sampling rates are applied to the
convolutional layers to capture objects as well as image context at multiple scales.

In our approach, we consider the multi-resolution image representation example in the context of
a semiotic recognition process, where the machine (or the interpretant) attempts to classify an input
image. We imagine the recognition process as a feedforward multi-layer neural classifier where each layer
performs a superization of the previous layer. We assume that the subjective information (measured by the
entropy) is made available to an interpretant (i.e., the computer or the human supervisor) who attempts to
classify the input image.

Let us consider the entropies computed at two successive layers: Hk and Hk+1. The extracted
information by the interpretant can be measured by the difference Hk − Hk+1. Details can be found in [41].
We have the following result:

Theorem 1 (from [34]). : Superization tends to concentrate information by decreasing entropy.

Proof of Theorem 1. We consider separately the two types of superization. For a set Z = (Z1, . . . , Zn)

of supersigns with the corresponding probabilities p1, . . . , pn, ∑ pi = 1, using a superization of the first
type, we may obtain supersigns of the next level Z∗ = (Z1, . . . , Zn−2, {Zn−1, Zn}) with the corresponding
probabilities p1, . . . , pn−2, pn−1 + pn. We have the following inequality: H(Z) = ∑ pi log pi ≥ H(Z∗).

For two sets of supersigns X and Y, using the second type of superization, we obtain compound
supersigns from the joint set Z = (X, Y). A well-known relation completes the proof: H(X) + H(Y) ≥
H(Z).

An intuitive application of this theorem is when we consider the neural layers of a CNN. A type
I superization appears when we reduce the spatial resolution of a layer k + 1 by subsampling layer k.
This is similar to class formation because we reduce the variation of the input values (i.e., we reduce
the number of signs). In CNNs, this is typically performed by a pooling operator. The pooling operator
can be considered as a form of nonlinear down-sampling which partitions the input image into a set of
non-overlapping rectangles and, for each such sub-region, it computes its mean (average pooling) or max
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value (max pooling). The formula for max pooling applied to a feature map F at layer k and locations (i, j)
with a kernel of 2 × 2 is:

Oi,j(F) = max(Fi,j, Fi+1,j, Fi,j+1, Fi+1,j+1) (7)

A type II superization is produced when applying a convolutional operator to a neural layer k. As an
effect, layer k + 1 will focus on more complex objects, composed of objects already detected by layer k. The
convolutional operator for a feature map F at layer k and pixel locations (i, j) with a 3 × 3 kernel W has
the following formula:

Oi,j(F) =
2

∑
x=0

2

∑
y=0

F(i + x, i + y)W(x, y) (8)

The output O of the convolutional operator is a linear combination of the input features and the
learned kernel weights. Thus, a resulting neuron will be able to detect a combination of simpler object
forming a more complex one, by a composition of supersigns.

We observe that the effect of superization is a tendency of entropy decrease at each level. This is
different than in the case of multi-resolution image representation. In [36], we explained this difference by
the following thesis: “The first level signs are perceived at a complexity level which corresponds to the
“optimal” resolution.” However, this thesis does not apply to a computer recognition model (a classifier),
but to human perception.

In a simplified form, a multi-layered classifier can be interpreted from Morris’ semiotic theory as a
transition: syntactics–semantics–pragmatics. At the end of a successful recognition process, the entropy
of the output layer becomes 0 and no further information needs to be extracted. The last layer (the fully
connected layer in a CNN network) is connected to the outer world, the world of objects. This may be
considered the pragmatic level in Morris’ semiotic theory, since it shows the relation between the input
signs and the output objects which can be related to decisions and actions.

5. Signs and Supersigns in CNN Saliency Maps

Theorem 1 is a simplification of the superization processes taking place in the successive layers of
saliency maps. We have both class formation and the compound formation superization, and the computed
entropy is spatial. We calculate superizations at the level of saliency maps. In other words, our signs and
supersigns refer to values computed in successive saliency maps computed by the Grad-CAM method.

Our hypothesis is that, at the core of a CNN, both types of superizations exist. For type I superization
(by class formation), the pooling operation combines signs (scalar values) by criteria like average value
or maximum value, resulting in a single sign, and thus reducing their number and building equivalence
classes. Another potential interpretation of the pooling operation is that it builds equivalence classes by
grouping spatially neighboring elements. In our experiments (as we will see in Section 6), this phenomenon
could be noticed after each pooling layer, where the magnitude of the spatial entropy of the saliency maps
would have a big drop. Visually, the saliency maps start to become more concentrated around connected
regions as more complex signs are formed.

For type II superization (by compound formation), it is known that CNNs compose whole objects
starting from simple object parts [9]. This phenomenon describes exactly the second type of superization,
as it builds compound supersigns from simpler component supersigns. They manage to do so by gradually
enlarging the receptive field after each convolutional layer is applied. As the receptive field grows, a single
neuron inside a hidden layer can cover a much larger region of interest from the input image and thus get
activated for more and more complex objects.

What complicates the interpretation in case of CNN networks is the fact that for some layers both
superizations operate simultaneously, and it can be difficult to separate their effects.
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Our hypothesis is that, in order to decrease the spatial entropy noticeably, the first type of superization
is more effective, while the second type is more responsible with building supersigns with semantic roles,
not affecting spatial entropy that much.

6. Experiments

The goal for the next experiments is to explore the variation of the spatial entropy of the saliency
maps computed with Grad-CAM on some representative CNN architectures. We expect the entropy to
decrease along with depth, and this can be related to type I superization processes.

We consider three standard network architectures: AlexNet [2], VGG16 [3], and ResNet50 [5].
In addition, we also study the entropy variation on a custom LeNet-5-like network (The original LeNet-5
was introduced in [1]).

We use the deep learning programming framework PyTorch [42] (version 1.4.0) and the public
implementation of Grad-CAM (https://github.com/utkuozbulak/pytorch-cnn-visualizations), modified
to our needs. Except the custom network, all CNNs are used as provided by the PyTorch repository,
with their default pretrained weights.

The experiments are performed in different contexts on the following datasets:

1. A subset of ImageNet [43] composed of the “beaver” class from the training set, to test the pretrained
and randomly initialized use-cases.

2. CIFAR-10 [44] to: (a) train the custom network without downsampling; and (b) test the newly trained
network and a randomly initialized one, with the same architecture, using this dataset as a test set.

3. “kangaroo” class from Caltech101 [45] to test a network pretrained on ImageNet. The fact that we
train and test on different (but somehow similar) datasets can have an impact on the generalization
performance of the network and expose possible overfitting on the training data. This is known as
zero-shot learning, and it can be viewed as an extreme case of domain adaptation.

4. Caltech101 [45] to test for the case where the network is pretrained on ImageNet, then trained
(fine-tuned) on Caltech101. This is the transfer learning approach.

6.1. Experiments on Standard CNN Architectures

We present the experimental results for each of the considered CNN architectures. In the next
tables, we use the following terms: (i) Pretrained—publicly available pretrained weights on ImageNet,
(ii) Random—randomly initialized weights, (iii) Fine-tuning—fine-tuned weights starting from the
pretrained ones trained on ImageNet, (iv) ImageNet—“beaver” class from the ImageNet training set,
(v) Caltech101—“kangaroo” class from the Caltech101 training set.

AlexNet [2] is composed of a sequence of convolutional, max-pooling, and ReLU layers, followed
at the end by fully connected layers which linearly project the extracted features from the convolutional
backbone to the desired number of output classes. Table 1 captures the experimental result values for each
layer of the network.

VGG16 [3] has a relatively simple and compact architecture, consisting of only 3× 3 convolutions,
max-pooling, and ReLU, followed by multiple fully connected layers. The trick behind the VGG16
architecture is to use two 3× 3 sequential convolution to replace a bigger 5× 5 one, thus obtaining the
same receptive field coverage by using less parameters. The caveat of VGG16 is that most of its parameters
reside in the fully connected layers, making the network very parameter and memory inefficient. Table 2
depicts the entropy values at different levels of the network.

https://github.com/utkuozbulak/pytorch-cnn-visualizations
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Table 1. Entropy values for saliency maps for AlexNet at different levels in the network.

AlexNet

Layer Pretrained Random Pretrained Fine-tuning

ImageNet ImageNet Caltech101 Caltech101

conv1 0.6830 0.6816 0.6786 0.6829
relu1 0.6806 0.6802 0.6746 0.6795

maxpool1 0.5252 0.5113 0.5264 0.5356
conv2 0.5311 0.5100 0.5395 0.5352
relu2 0.5231 0.5096 0.5297 0.5191

maxpool2 0.4147 0.3952 0.4241 0.4116
conv3 0.4423 0.3861 0.4508 0.4474
relu3 0.4326 0.3864 0.4437 0.4454
conv4 0.4272 0.3867 0.4375 0.4292
relu4 0.4214 0.3934 0.4222 0.4304
conv5 0.4056 0.3934 0.4019 0.3925
relu5 0.3928 0.3949 0.3878 0.3784

maxpool3 0.3114 0.3038 0.3077 0.3071

Table 2. Entropy values for saliency maps for VGG16 at different levels in the network.

VGG16

Layer Pretrained Random Pretrained Fine-tuning
ImageNet ImageNet Caltech101 Caltech101

conv1 0.8516 0.785 0.8418 0.8369
conv3 0.8017 0.7322 0.7883 0.7731
conv5 0.6742 0.6308 0.6681 0.648

conv10 0.5491 0.5155 0.5556 0.5429
conv12 0.5112 0.5155 0.5127 0.4901
conv13 0.4213 0.4035 0.4281 0.4135
conv14 0.3868 0.4288 0.3994 0.3599

maxpool5 0.3131 0.3443 0.3238 0.3086

The novelty of ResNet [5] stands in the residual connections which alleviate the vanishing gradient
problem, an issue that followed deep neural networks since their early days. During backpropagation,
gradients would start to gradually decrease in magnitude because of the chain rule applied to very small
values, until they become 0, and, consequently, many layers would lack any gradient signal on which
basis to update their respective weights. ResNet solves this problem by creating residual branches from
an input block to an output block in the form of y = x + f (x), where x is the block’s input and f (x) is
a sequence of multiple layers. Instead of learning a function, as in earlier architectures like AlexNet or
VGG16, ResNets are trying to learn a residual for the input x, hence the name of the architecture. Entropy
values for various layers are shown in Table 3.

For all three networks, we observe a tendency of the spatial entropy to decrease, especially after
max-pooling layers, which in our hypothesis are layers responsible for type I superization. Type II
superization can be noticed by applying multiple consecutive convolutional layers. In this case, the spatial
entropy does not necessarily decrease, but the general purpose is to enlarge the receptive field of the
network, such that neurons activate for more complex objects while progressing through the layers.

Considering our above experiments and the well known fact that CNNs compose complex objects
starting from simpler ones, this supports our hypothesis that type I superization is more effective for the
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entropy decrease. We did not notice a systematic entropy decrease for type II superization, and conclude
that it is more responsible for building supersigns with semantic roles.

Table 3. Entropy values for saliency maps for ResNet50 at different levels in the network.

ResNet50

Layer Pretrained Random Pretrained Fine-Tuning
ImageNet ImageNet Caltech101 Caltech101

conv1 0.7854 0.6574 0.7705 0.7633
block1 0.6849 0.5108 0.6807 0.6794
block2 0.5912 0.4193 0.5901 0.582
block3 0.4574 0.3398 0.4588 0.4607
block4 0.2847 0.3019 0.2754 0.2862

To prove the benefic effects of transfer learning when fine-tuning, we also train starting from a random
initialization. We use the Caltech101 dataset [45], since it consists of real images like the ones in ImageNet.
The results for fine-tuning and training from scratch are available in Table 4. For both experiments, we use
a learning rate of 0.001 and train the networks for 100 epochs. The training set consists of the full dataset,
apart from five random samples for each class, which are held for testing. The results when training from
scratch are clearly worse than when fine-tuning from a strong baseline. Since the new training dataset is
very small (≈9000 samples) compared to the size of ImagetNet (≈1.3 M samples), the network overfits on
the training samples. This explains the weak performance when training from scratch.

Table 4. Experimental results for accuracy on the Caltech101 dataset when fine-tuning from the available
ImageNet pretrained weights versus starting from scratch.

Network Fine-Tuning from ImageNet Training from Scratch

AlexNet 83.168% 42.376%
VGG16 87.327% 61.584%

ResNet50 92.673% 43.168%

6.2. Experiments on a Custom Network

Since all standard CNNs use a form of downsampling, either through strided convolutions or pooling,
we notice that type I superization is always present. In these standard CNNs, both superization types are
simultaneously present. The question is how to isolate the type II superization from the type I superization.

For this, we create a custom network by removing all spatial subsampling operations (strided
convolutions and max-poolings) from original LeNet-5. This way, we remove the type I superization (class
formation) and analyze entropy variation with respect to type II superization (compound formation) only.

We add two more convolutional layers to increase the receptive field of the network such that it
can build more complex type II supersigns and simply have more layers to study the spatial entropy.
The architectural details are depicted in Table 5.

We train this network on CIFAR-10 for 20 epochs, with the Stochastic Gradient Descent (SGD)
optimizer and a learning rate of 0.01, until it reaches ≈72% accuracy on the test set, and then use it to
generate the saliency maps. The accuracy performance is less relevant, since in this experiment we focus
on the variation of the entropy. In Table 6, we can observe that the entropy does not vary too much for
both the pretrained and random versions, but the random one exhibits much larger values.
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Table 5. Custom network architecture for the CIFAR-10 use-case.

Custom Network

Layer Kernel Size Input Channels Output Channels

Conv1 + ReLU 3× 3 3 6
Conv2 + ReLU 3× 3 6 16
Conv3 + ReLU 3× 3 16 24
Conv4 + ReLU 3× 3 24 32

Fc1 + ReLU - 32× 32× 32 120
Fc2 + ReLU - 120 84

Fc3 - 84 10

Table 6. Entropy values for saliency maps for the custom network at different levels in the network.

Custom Network with No Spatial Downsampling

Layer Pretrained Random

conv1 0.4273 0.5948
relu1 0.4454 0.6062
conv2 0.4505 0.5802
relu2 0.5025 0.6189
conv3 0.4354 0.6101
relu3 0.4661 0.6123
conv4 0.4187 0.5674
relu4 0.4415 0.5798

7. CNN Architecture Optimization

It is known that modern neural network architectures are overparametrized [46], and so, an important
emerging trend in deep learning is the optimization of such deep neural networks to satisfy various
hardware constraints. An overview of such optimization techniques can be found in [47,48]. Among them,
pruning is regarded as a fundamental method which has been studied since the late 1980s [49], and consists
of reducing redundant operations by means of removing unnecessary or weak connections at the level
of weights or layers. In the last couple of years, the state-of-the-art pruning methods have advanced
considerably and are now capable of reducing the computational overhead of a deep neural network by a
few times without incurring any loss in accuracy [50].

The experiments described in Section 6 showed that the spatial entropy of the CNN saliency
maps generally decreases layer by layer, and we can relate this to semiotic superization. We aim to
show how this interpretation could also help to optimize (or simplify) the architecture of the network.
We perform an ablation study to see if we can determine redundant layers for pruning based on the
spatial entropy information of the saliency maps. It is beyond the scope of this paper to systematically
compare our approach with other CNN architecture optimization techniques. We only explore this
area as a proof-of-concept, since it is the first time that such a semiotic method is used for neural
architecture optimization.

On the VGG16 network, we iteratively apply the following greedy algorithm: (i) train the network on
CIFAR-10 using the SGD optimizer with a learning rate of 0.01; (ii) compute the spatial entropy for each
saliency map; (iii) remove a layer for which the entropy does not decrease; and (iv) repeat steps (i)–(iii)
until the performance does not degrade too much.

From the results (see Figure 2), we notice that up to eight convolutional layers can be completely
removed from the network, and this affects the performance by less than 1%. When removing the 9th
layer, the accuracy decreases significantly; therefore, we stop the iterative process at this stage.
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An interesting finding is that the order in which we remove layers matters significantly. If small
layers with few parameters from the beginning of the network are removed first, the accuracy goes down
by 2% after the 3rd removal. When removing from the big (over-parametrized) layers starting from the
mid-end level of the network, the accuracy is maintained. The accuracy degrades especially fast after the
2nd convolutional layer with 64 output channels being removed.

Figure 2. Accuracy measurements of VGG16 on CIFAR-10 as more layers are removed.

Our explanation is that the first two convolutional layers are crucial for the downstream performance
of the network. This first part of a network, before a subsampling operation is applied, is known in the
literature as stem [51]. Some variants of ResNets implement this stem as three 3× 3 convolutional layers
or a big 7× 7 layer. These early layers are responsible with detecting low level features like edge detectors.
Having only a 3× 3 convolutional layer, instead of two or three, means that the receptive field before the
first max-pooling operation is 3× 3, which might be too small to properly detect basic strokes and edges.

The resulted network has the following configuration: 64, 64, M, 128, M, 256, M, 512, M, M, where
“M” stands for max-pooling and the integers represent a convolutional layer with the respective number
of output channels, followed by a ReLU nonlinearity. The fully connected layers do not change from the
original architecture. We compare our resulted network with VGG11, which is the smallest architecture
from the VGG family. The results are displayed in Table 7. It can be noticed that, even when reducing the
network capacity by a factor of approximately 7.5×, the accuracy is still maintained, meaning that the
network is too over-parametrized for this task.

To check that the configuration translates to other tasks as well, we also trained the network on
CIFAR-100 and compared it with the full VGG16’s performance. For the full VGG16 network, we obtain
an accuracy of 62.61%, whereas for the optimized VGG architecture we get 63.78%. As can be seen, the
small network even slightly improves the performance of the full network, while being much smaller.

We can visualize (Figure 3) this iterative removal experiment by plotting the saliency maps for a
CIFAR-10 image from the “truck” class at different key layers, where the spatial entropy value saw a
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large drop from the previous layer, starting from the full VGG16 network and removing one layer at a
time. The rows in Figure 3 represent layers at a particular depth, while the columns different architecture
configurations found by the iterative method described above. In compliance with the theory of semiotic
superization, it is visible how supersigns are gradually formed, layer by layer, from simpler supersigns.
We observe this phenomenon from the fact that yellow regions (which denote pixel importance) become
more structured and connected as we traverse through the layers. If we compare the saliency maps from
the first column (corresponding to the full network) to the ones preceding them, we notice that the overall
structure is maintained across all architecture configurations. This suggests that semiotic superization
takes place inside a deep neural network regardless of the architecture of the network.

Table 7. Comparisons on CIFAR-10—top 1 accuracy between VGG16, VGG11 (the smallest configuration from
the VGG family), VGG16 after four layers removed (which has roughly the same number of parameters as
VGG11) and VGG16 after eight layers removed (which is the smallest configuration which maintains the
accuracy within a 1% difference).

Network Number of Parameters Accuracy

VGG16 15,245,130 89.55%

VGG11 9,750,922 87.83%

VGG16
after 4 layers 9,345,354 89.57%

removed

VGG16
after 8 layers 2,118,346 89.49%

removed

Figure 3. Saliency maps of a truck image from the CIFAR-10 dataset. Each row represents a layer within the
CNN. Each column represents a new network configuration from which we removed one layer from the
previous structure, as detailed above. We used the “plasma” effect to indicate the hotness of the saliency
map, where the transition from purple to yellow denotes more important regions.
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8. Conclusions

We introduced a novel computational semiotics interpretation of CNN architectures based on the
statistical aspects of the information concentration processes (semiotic superizations) which appear in the
saliency maps of successive CNN layers. At the core of a CNN, the two types of superization co-exist.
According to our results, the first type of superization is effective at decreasing the spatial entropy. Type II
superization is more responsible for building supersigns with semantic roles.

Beyond the exploratory aspect of our work, our main insights are twofold. On the knowledge
extraction side, the obtained interpretation can be used to visualize and explain decision processes within
CNN models. On the neural model optimization side, the question is how to use the semiotic information
extracted from saliency maps to optimize the architecture of the CNN. We were able to significantly
simplify the architecture of a CNN employing a semiotic greedy technique. While this optimization
process can be slow, our work tries to use the notion of computational semiotics to prune an existing
state-of-the-art network in a top-down approach instead of constructing one using a bottom-up approach
like neural architecture search. Thorough analysis has to be done in future work to consider other network
architectures and robustness of the method.

Some computational improvements for calculating the spatial entropy were proposed by
Razlighi et al. [52,53]. The computational overhead can be significantly reduced if we accept a reduction of
the approximation accuracy. We plan to use this trick in the future.

In this work, we considered only one type of neural network topology: CNNs. Since CNNs are mostly
suited for images, those became the subject of our study. In the future, we intend to study the connection
with other fields (audio, text) and architecture types (recurrent neural networks). The semiotic approach
can be extended to other deep learning models, since semiotic superization appears to be present in many
architectures. The computational semiotics approach is very promising especially for the explanation and
optimization of deep networks, where multiple levels of superization are implied.
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