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1. INTRODUCTION

In an everyday life, people deal with different characterization tasks such

as characterization of objects, judgments of gender, identity, age or a facial

expression. For example, if we would ask a human observer to characterize

two images in Figure 1.1 according to a gender and a facial expression, he

would probably have no problem to classify the first image as a woman, with

a happy expression and a second image as a man, with a neutral expression.

That is, the observer can make judgements about gender and facial expres-

sions based on the same input information. Now, imagine that only partial

image information is revealed to the observer, as in a left panel of Figure 1.2.

Could he confidently determine a gender based on this input information?

Fig. 1.1: Faces used for judgments of gender and a face expression.
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Fig. 1.2: Partial information used for judgments of gender.

Right panel Figure 1.2 reveals additional input information which should

improve gender judgement (i.e. male). Therefore, correct characterization

tends to require different visual information from the same input. However,

there is no unique method that can isolate information used in a certain

characterization task. The Bubbles technique (Gosselin & Schyns 2001), in

the following referred to as the original Bubbles, was developed to decide,

which part of input information is used by the observer for solving a certain

categorization problem.

The experimental situation presented in the original Bubbles reveals facial

image information by a certain number of trials using random sampling of

image pixels, Figure 1.3. Each trial represents a number of randomly located

Gaussian windows, so called ’bubbles’, which displays only a small portion

of the image. After every trial the observer facing an image has to classify

the sampled information (based on this partial information) as e.g. male or

female. These trials are then repeated many times to produce one experi-
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Figure 1. Stimulus generation process2.  Original faces were decomposed into 5
spatial frequency bandwidths of one octave each (ranging from 120 to 7.5
cycles per image, see top panel).  Each bandwidth was independently sampled
with randomly positioned Gaussian windows (from .36 to 5.1 cycles per deg of
visual angle, see middle and bottom panels).  Human:  The sum of information
samples across scales (plus a constant, nonsampled and coarsest sixth scale)
produces one experimental stimulus for human observers (see the rightmost
picture) who then categorized the stimulus according to one of the seven basic
Ekman expressions (happy, surprised, fearful, angry, disgusted, sad, neutral).
The number of Gaussian windows was adjusted on-line, independently for each
expression, to maintain observers’ categorizations at 75% correct.  Model:
White noise added to the original picture was decomposed into spatial scales
and sampled with Gaussian windows to produces one experimental stimulus for
the model observer that then correlated (Pearson) this input with the database
of all possible original stimuli (5 males and 5 females each displaying the 7
basic expressions).  In a Winner-Take-All scheme, the categorization of the
model observer was the emotion category with the highest correlation.  We
varied on-line the added amount of white noise per expression to maintain the
model observer’s categorizations at 75% correct.

Figure 2. Diagnostic filtering functions2. For each
expression, we derived an independent diagnostic
filtering function by locating, independently at each
scale, the pixels leading to performance significantly (p
< .05) above 75%, and smoothed the resulting scale-
specific filters. Middle: For each expression, we
correlated (Pearson) the estimated diagnostic filtering
functions of Human and Model observers.  Higher
correlations (happy, surprised, angry and disgusted)
indicate higher adaptation to image information
statistics. All reported correlations are between the
filtering functions (not shown in Figure 2), not between
the applications of the filters to specific faces (shown in
Figure 2 for Human, top row, and Model observers,
bottom row). NB: Correlations correspond to an upper
bound, and might be lower if the filters were more
thoroughly characterized (e.g. with orientation).

Fig. 1.3: Stimulus generation process. Upper panel shows the face decomposed

into five independent scales. Middle panel: bubbles sample the infor-

mation space at random locations, allowing overlapping. Bottom panel

shows how bubbles are applied to the appropriate scales to produce a

sub-sample of the face information.

mental stimulus, i.e. the ultimately collected data after all trials, see bottom

right image in Figure 1.3. This stimulus is then used to infer which pixels are

important for the classification. In visual cognition tasks such as judging the

identity, gender or expression of a face, a human observer facing an image

has to make a discrete classification based on this partial information.

The original Bubbles suggests that the regions for sampling (used to reveal

facial image from) are chosen uniformly at random. In particular, the in-

formation gained after a certain number of trials is not used in determining
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the information presented at the next trial. Exhaustive sampling leads to

a number of trials equal to thousands per observer, which are very time-

consuming and expensive to implement. In addition, the original Bubbles

does not allow spatial information in the image to be modeled a priori. In

this context, several questions addressed towards effective sampling of input

information can be formulated: ’How can spatial dependence be incorpo-

rated in the image? How can the information gathered in previous samples

be used in the decision making procedure? How can already classified image

pixels be identified and removed from further sampling? Finally, how can

the number of sampling trials be minimized?’ Motivated by these questions,

we aim to explore several statistical challenges below:

• Place Bubbles in a Bayesian setting.

• Objectively choose a stopping rule, which determines when the sam-

pling ends and so, reduce the number of sampling trials.

• Incorporate spatial dependence in the image.

The thesis is organized as follows: the Bayesian Bubbles procedure which

places the original Bubbles in a Bayesian setting is discussed in chapter 2.

This chapter also introduces the original Bubbles with adaption, which ad-

dresses the problem of ineffective sampling in original Bubbles. Further im-
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provement can be achieved by incorporating spatial dependence in the image

using Markov Random Fields (MRFs): the adaptive Bubbles with Beta MRF

prior and the adaptive Bubbles with Ising prior are developed in chapters 3

and 4 and applied to real data in chapter 5. Finally, chapter 6 discusses infer-

ence for hyperparameters and chapter 7 summarizes the results and provides

an overview for future research.



2. PLACING BUBBLES IN A BAYESIAN SETTING

The original Bubbles (Gosselin & Schyns 2001) is not a Bayesian procedure.

This chapter aims to put it in a Bayesian setting. We consider the Bubbles

problem as a type of a latent variable problem. Imagine that we have a true

hidden or latent image p with pixels labeled as ’important’ or ’unimportant’

for classification of a facial image as e.g. GENDER: male vs. female or

EXNEX: expressive or not expressive. Our primary goal is to make posterior

inference for the latent probability values p. In this chapter, the latent image

p is assumed to have values in interval [0, 1] which will be modeled using Beta

MRF. Later (chapter 4), the latent points will take values in {−1,+1} and

thus, the Ising MRF will be applied to capture binary structure of latent

image.

For a given pixel i, we denote by pi the true proportion of correct choices

or the true probability of correct classification. Let y denote the observed

binary data (the outcome of any of the binary trials in Bubbles method), i.e.

y ∈ {0, 1}: y = 1 for a correct response and y = 0 for an incorrect response.
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In the following, we use the notation pji to define the hidden probability

value for pixel i after trial j; pj refers then to the whole lattice after trial j.

Similarly, yji and yj define a single value for pixel i or the whole observed

lattice after trial j, respectively. Then the Likelihood function for each pixel

i after the first trial can be written in the following way:

L(y1
i |pi) = p

y1i
i (1− pi)1−y1i , y1

i ∈ {0, 1}, pi ∈ [0, 1] (2.1)

that is, the Likelihood function is Bernoulli. A reasonable prior for each

pi is to assume that it follows Beta(1, 1) distribution. So, pi takes values

uniformly in interval [0, 1], which means that the a priori estimate of p is

given by its mean value 0.5. Then, using Bayes’ theorem, we can update

our knowledge about the unknown value pi given the observed value y1
i after

the first trial by multiplying the Bernoulli Likelihood (2.1) with a Beta prior

defined by (2.2):

π(pi|α, β) =
pα−1
i (1− pi)β−1

B(α, β)
, (2.2)

where B(α, β) denotes a Beta function with parameters α = β = 1. This

leads to the posterior probability

π(pi|y1
i ) ∝ L(y1

i |pi) · π(pi) = p
y1i
i (1− pi)1−y1i , (2.3)

which is a conjugate Beta posterior with parameters 1 + yi, 2− yi; i.e. pi ∼

Beta(1 + yi, 2 − yi). After the second trial, we update the estimate of the
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latent probability value pi given the observed data y1
i , y

2
i up to trial 2:

π(pi|y1
i , y

2
i ) ∝ L(y1

i , y
2
i |pi) · π(pi) = L(y2

i |pi) · π(pi|y1
i ), (2.4)

that is, the posterior at trial 1 becomes prior at trial 2. Now, we can apply the

same principal to estimate the latent probability value pi after j independent

trials. Denoting (y1, ..., yj) the observed binary lattices up to trial j, we apply

sequential Bayesian analysis to sequentially update the lattice value pi after

trial j:

π(pi|y1
i ) ∝ L(y1

i |pi) · π(pi),

π(pi|y1
i , y

2
i ) ∝ L(y1

i |pi) · L(y2
i |pi) · π(pi) = L(y2

i |pi) · π(pi|y1
i ),

...

π(pi|y1
i , ..., y

j
i ) ∝ L(y1

i |pi) · ... · L(yji |pi) · π(pi) = L(yji |pi) · π(pi|y1
i , ..., y

j−1
i ).

In other words, a prior distribution at trial j is a posterior distribution at a

previous trial j − 1. Thus, after 2 updates the posterior distribution for a

pixel i can be written as

π(pi|y1
i , y

2
i ) ∝

2∏
t=1

L(yti |pi) · π(pi) = p
y1i +y2i
i · (1− pi)2−(y1i +y2i ), (2.5)

which is a Beta distribution with parameters 1+y1
i +y2

i , 3−(y1
i +y2

i ). Writing

the posterior after j independent trials in the same way:

π(pi|y1
i , ..., y

j
i ) ∝

j∏
t=1

L(yti |pi) · π(pi) = p
∑j

t=1 y
t
i

i · (1− pi)j−
∑j

t=1 y
t
i , (2.6)
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we find that the posterior probability has a Beta(1+s, 1+ j−s) distribution

where s =
∑j

t=1 y
t
i is the number of correct responses after trial j. Hence,

the estimate of a latent probability value pi after j independent trials is

given by (1 + s)/(2 + j). Having estimated the value pi for every pixel i,

we obtain π(p|y1, ..., yj) - the posterior probability map of lattice p given the

observed data latices (y1, ..., yj) up to trial j. Now we can threshold posterior

probability map values at level e.g. 0.95 and 0.05, that is, we classify as

’important’ all pixels with posterior probability map values of 0.95 or higher

and as ’unimportant’ all pixels with posterior probability map values of 0.05

or lower.

2.1 Original Bubbles with Adaption

Currently, to achieve a correct classification with the original Bubbles (Gosselin

& Schyns 2001), a large number of trials is required (Gosselin & Schyns 2001).

The cost of each trial is prohibitive high. An adaptive technique introduced

below, in the following referred to as the original Bubbles with Bayesian

adaption, aims to address this problem by placing the sampling approach in

a more logical and statistical setting.

The original Bubbles samples pixels randomly, allowing thereby each pixel

to be included in a Bubbles sample. A simple alternative to the exhaustive
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sampling procedure would be the adaptive sampling approach which sug-

gests to classify pixels as ’important’ or ’unimportant’ by thresholding their

posterior probability values at level 0.95 and 0.05, respectively. We remove

these pixels from further sampling and apply a weighted sampling scheme to

the remaining pixels:

wi ∝ pi

n∑
i=1

wi = 1 (2.7)

i.e. pixel i will be sampled in a further trial with the weight wi proportional

to its posterior probability value and the sum of all weights is equal to 1. A

higher weight means that the pixel should have larger chance to be sampled.

2.2 Drawbacks and Further Improvement

The problem of ineffective sampling in the exhaustive Bubbles approach can

be solved by means of introducing a rule for excluding already classified pixels

from further sampling, as described in section (2.1). However, the Bayesian

Bubbles with adaption assumes that there is there no spatial dependence in

the image. This assumption is implausible, since image pixels are clearly

dependent. In the following, we aim to introduce an alternative model which

allow to incorporate spatial dependence in the image. Chapters 3 and 4 in-
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troduce the adaptive Bubbles with Beta MRF prior and the adaptive Bubbles

with Ising prior which allow spatial dependency to be modeled a priori via

Markov random fields (MRFs).



3. ADAPTIVE BUBBLES WITH BETA MRF PRIOR

This chapter introduces the adaptive Bubbles with Beta MRF prior which

allows to model spatial dependence in the image using Markov random field

(MRF) theory. MRFs allow identification of significantly informative image

regions which are used for further sampling and to exclude from sampling

those image regions which contribute the least to solving our categorization

problem. In the following, the Bubbles approach which allows spatial depen-

dency to be modeled via Beta MRF with incorporated adaptive algorithm

for excluding already revealed pixels from further sampling, will be referred

to as the adaptive Bubbles with Beta MRF prior. The essential part of the

procedure consists of designing an Markov Chain Monte Carlo (MCMC) al-

gorithm needed for identification of ’important’ sampling regions.

This chapter is organized as follows: section 3.1 provides theory on MRFs

and MCMC needed for implementation the algorithm. The adaptive Bubbles

with Beta MRF prior procedure is described in section 3.2. To start the pro-

cedure running, we have to model the joint distribution and the likelihood, as
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discussed in sections 3.3-3.6. Finally, simulated data examples are presented

in section 3.7.

3.1 Markov Random Fields and MCMC

Markov Random Fields (MRFs), first introduced in (Besag 1974) and (Geman

& Geman 1984), play an important role in spatial statistics. In particular,

they are widely used as prior distributions in Bayesian analysis. MRFs can

be regarded as an extension of Markov chains (MC) where each random vari-

able Xi of the sequence {X1, X2, ...} possesses the Markov property, namely

that for any given present state the future state of the chain does not depend

on the past, that is,

P(Xn+1 = x|Xn = xn, ..., X1 = x1) = P(Xn+1 = x|Xn = xn). (3.1)

MCMC algorithm can be regarded as a Monte Carlo integration using Markov

chains. Monte Carlo is a conditional simulation algorithm that generates

random samples from a given probability distribution. Markov Chain Monte

Carlo draws these samples by running Markov chains. The way to construct

Markov chains includes the Gibbs sampler (Geman & Geman 1984) and the

Metropolis-Hasting approach (Metropolis, Rosenbluth, Rosenbluth, Teller &

Teller 1953).
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3.1.1 The Metropolis-Hasting Algorithm

The Metropolis-Hasting algorithm was introduced by (Hastings 1970) and

generalized by (Metropolis et al. 1953). Suppose, given a partition of a state

vector into components x = (x1, ..., xn), we aim to update the ith component.

Therefore, we have to draw samples from a distribution π(x), which we refer

to as the target distribution. The Metropolis-Hasting algorithm generates a

sequence of draws from this distribution in the following way:

1. Consider the ith component xi of a configuration x = (x1, ..., xi, ...xn).

2. Propose a new value yi from some distribution q(x, y). Thereby, con-

figuration y = (x1, ..., yi, ...xn) matches configuration x on all but ith

position. Distribution q(x, y) is also referred to as a proposal distribu-

tion.

3. We accept the new configuration y = (x1, ..., yi, ...xn) with a probability

α(x, y) = min

{
1,
π(y)q(y, x)

π(x)q(x, y)

}
, (3.2)

that is, we generate a uniformly (0, 1)-distributed random variable u

and accept a configuration y if u < α(x, y). Otherwise, we keep a

configuration x. In the following, this step of algorithm is referred to

as the Metropolis update.
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The Metropolis algorithm considers only symmetric proposals of the form

q(x, y) = q(y, x) for all x and y, see (Metropolis et al. 1953) and thus, the

acceptance probability α(x, y) defined by (3.2) reduces to

α(y|x) = min

{
1,
π(y)

π(x)

}
. (3.3)

3.1.2 The Gibbs Sampler

The Gibbs update can be regarded as a special case of a Metropolis update.

Suppose, as above, that we want to update the ith element of a configuration

x. We consider a proposal distribution defined in the following way:

q(x, y) =


π(yi|x\i) y\i = x\i for i = 1, ..., n

0 otherwise

Thereby, π(y|x\i) denotes a conditional distribution of the proposed config-

uration y given all but one component of a given configuration x, that is,

x\i = (x1, ..., xi−1, xi+1, ..., xn).

With this proposal distribution, the corresponding acceptance probability is

obtained by

α(x, y) = min

{
1,
π(y)q(y, x)

π(x)q(x, y)

}
= min

{
1,
π(y)/π(yi|x\i)
π(x)/π(xi|y\i)

}
= min

{
1,
π(y)/π(yi|y\i)
π(x)/π(xi|x\i)

}
since y\i = x\i. (3.4)
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By definition of the conditional probability we have:

π(yi|y\i) =
π(yi, y\i)

π(y\i)
=

π(y)

π(y\i)

π(xi|x\i) =
π(xi, x\i)

π(x\i)
=

π(x)

π(x\i)
(3.5)

and thus, substituting (3.5) in (3.4), the acceptance probability reduces to

α(x, y) = min

{
1,
π(y\i)

π(x\i)

}
= 1 since y\i = x\i. (3.6)

Thus, (3.6) indicates that for the proposed configuration y which matches the

given configuration x on all but ith component, all proposed distributions

are automatically accepted.

3.2 Adaptive Bubbles with Beta MRF Prior: the Procedure

In this section we consider the adaptive Bubbles with Beta MRF prior, as-

suming that the latent image p consists of pixels with values in interval [0, 1]

corresponding to the probability that the pixel is important. Thus, we aim to

make inference about unknown probability values p. For modeling probabili-

ties, the Beta distribution is an obvious choice to use and here, to incorporate

spacial dependence in the image, we use a Beta Markov Random Field as a

prior distribution. Beta MRFs are simple to construct: in analogy to Gaus-

sian MRFs where a (finite-dimensional) random vector follows a multivariate

normal (or Gaussian) distribution, Beta MRFs assume a random vector to
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be Beta distributed.

Conditioned on the observed binary lattices (y1, ..., yj) up to trial j, we can

evaluate the posterior distribution for hidden probabilities p in a typical

Bayesian way:

π(p|y1, ..., yj) ∝ L(y1, ..., yj|p) · π(p), (3.7)

where L(y1, ..., yj|p) is a likelihood function and a prior distribution π(p) is

given by a Beta MRF. Thus, in order to evaluate the posterior π(p|y1, ..., yj)

from (3.7), we require knowledge of the joint distribution π(p) and the like-

lihood L(y1, ..., yj|p). The following two sections deal with its modeling.

Therefore, we first derive the result for one image pixel i and than expand it

to the whole image.

3.3 Modeling the joint distribution.

3.3.1 For one image pixel

In order to evaluate the joint distribution π(p) we will use the fact that the

full-conditional distribution π(pi|p\i) is proportional to the joint distribution,

i.e. up to a normalizing constant it holds:

π(pi|p\i) =
π(pi, p\i)

π(p\i)
∝ π(p). (3.8)
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Thus, we have to make an assumption on the form of the distribution π(pi|p\i).

In the Gaussian case (Rue & Held 2005), π(pi|p\i) is assumed to be normal:

π(pi|p\i) ∝ exp

{
−1

2
(pi)

2Qii − pi
∑
k∼i

Qikpk

}
, (3.9)

matrix Q = Σ−1 given by the inverse of a covariance matrix Σ, is a so-called

precision matrix. In (3.9) i ∼ k means that pixel i is a neighbor of pixel k. In

the case of Beta MRF we assume that π(pi|p\i) follows a Beta distribution:

π(pi|p\i) ∝ (pi)
{α−1} · (1− pi){β−1} · Γ(α)Γ(β)

Γ(α + β)
, (3.10)

where α and β are model parameters controlling the shape of the density

function of Beta distribution and Γ(·) is the gamma function. Recall, that

the density of the Beta distribution is given by

f(p, α, β) =
pα−1(1− p)β−1∫ 1

0 u
α−1(1− u)β−1du

=
Γ(α+ β)
Γ(α)Γ(β)

pα−1(1− p)β−1 =
1

B(α, β)
pα−1(1− p)β−1 (3.11)

with Γ(·) and B(·) denoting the Gamma and the Beta function, respectively.

However, the above expression (3.10) used for modeling π(pi|p\i) does not

take into account any spatial dependence among image pixels. To incorporate

spatial dependence in the image, we extend model (3.10) in a following way:

π(pi|p\i) ∝ (pi)
{α−∑

k∼i θ·log(1−pk)} · (1− pi){β−
∑

k∼i θ·log(pk)}

×Γ {α−
∑

k∼i θ · log(1− pk) + 1}Γ {β −
∑

k∼i θ · log(pk) + 1}
Γ {α + β −

∑
k∼i θ · log(1− pk)−

∑
k∼i θ · log(pk) + 2}

, (3.12)
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by introducing one additional model parameter θ. It controls the strength of

the dependence among neighboring pixels i and k by entering the summa-

tions
∑

k∼i θ · log(1− pk) and
∑

k∼i θ · log(pk). If θ = 0, these terms become

equal zero and thus, there is no dependence among image pixels. High values

of θ lead to non-zero summation terms and thus, neighboring pixels become

clearly dependent. Possible realizations of Beta MRFs obtained by running

the Metropolis algorithm with Gibbs update and different values of the pa-

rameters α, β and θ are represented in Figure 3.1. Using the notation

Ai,1 = α−
∑
k∼i

θ · log(1− pk) and

Ai,2 = β −
∑
k∼i

θ · log(pk),

(3.12) becomes:

π(pi|p\i) ∝ (pi)
{Ai,1} · (1− pi){Ai,2} · Γ(Ai,1 + 1)Γ(Ai,2 + 1)

Γ(Ai,1 + Ai,2 + 2)
. (3.13)

Taking logarithm on both sides of the equation (3.13), leads to the following

logarithmic model:

log
{
π(pi|p\i)

}
∝

{
α−

∑
k∼i

θ · log(1− pk)

}
· log(pi)

+

{
β −

∑
k∼i

θ · log(pk)

}
· log(1− pi)

+ log {Γ(Ai,1 + 1)}+ log {Γ(Ai,2 + 1)} − log {Γ(Ai,1 +Ai,2 + 2)} .

(3.14)
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Fig. 3.1: Some realizations of Beta Markov Random Field after 1000 MCMC up-

dates obtained by running the Metropolis algorithm with Gibbs update

and parameters α = 3.0, β = 3.0, θ = 3.0 (upper left), α = 2.0, β = 2.0,

θ = 2.5 (upper right), α = 1.5, β = 1.5, θ = 2.5 (lower left) and α = 1.0,

β = 1.0, θ = 2.0 (lower right).
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3.3.2 For the whole image

Since modeling of a joint distribution π(p) can only be possible up to a

normalizing constant, for its evaluation, it makes sense to define a function

which is equal to a joint probability only up to a constant as well. Choosing

a particular value p? = {p?1, ..., p?n} and assuming that π(p?) is finite, we can

define a negpotential function after trial j as follows:

Q(p) = log

{
π(p)

π(p?)

}
. (3.15)

In (Besag 1974), without loss of generality p? has been chosen to be 0 =

{0, ..., 0}. Several results for MRFs were proved by (Besag 1974) using Q(p)

with p? = 0. These results will hold for any arbitrary choice of a value p?

(Kaiser & Cressie 2000). From (3.15) we conclude that the knowledge of Q(p)

is equivalent to the knowledge of π(p), that is, up to a normalizing constant,

the joint distribution can be written as:

π(p) ∝ exp{Q(p)} (3.16)

or, taking a logarithm:

log{π(p)} ∝ Q(p). (3.17)
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In the following, we aim to write Q(p) using the log-linear models (Darroch,

Lauritzen & Speed 1980), expanding the log{π(p)} as:

log{π(p)} = uφ +
∑
i

ui(pi) + ...+ u1,...,n(p1, ..., pn). (3.18)

Then, it can be shown (Besag 1974) that the negpotential function can be

written in the following form:

Q(p) =
n∑
i=1

Hi(pi) +
∑∑

1≤i<k≤n

Hi,k(pi, pk)

+
∑∑∑

1≤i<k<m≤n

Hi,k,m(pi, pk, pm) + ...+

+ H1,2,...,n(p1, p2, ..., pn). (3.19)

Thus, to evaluate the function Q(p), we will have to define the H-functions.

(Kaiser & Cressie 2000) provide an alternative formulation of a well known

Hammersley-Clifford theorem, showing that any function Hi,k,...,r is equal to

0 unless the pixels {i, k, ..., r} form a clique. Thereby, the clique is defined

by pixels or a set of pixels such that each pixel is contained in the set of

neighbors of every other pixel in a set. For the sake of simplicity, we restrict

our expansion to the case when only first and second order H-functions enter

the summation (3.19). In other words, we use the first order Hi(pi)-function

corresponding to a single point i and the second order Hi,k(pi, pk)-function

corresponding to its nearest neighbors given by the four connections between

points i and k. We ignore those H-functions having the order 3 or higher. In
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(Kaiser & Cressie 2000) is shown that H-functions of the first and the second

order can be evaluated as

Hi(pi) = log

[
πi(pi|{p?k, k 6= i})
πi(p?i |{p?k, k 6= i})

]
(3.20)

respectively

Hi,k(pi, pk) = log

[
πi(pi|pk, {p?m,m 6= i, k})
πi(p?i |pk, {p?m,m 6= i, k})

· πi(p
?
i |{p?m,m 6= i})

πi(pi|{p?m,m 6= i})

]
. (3.21)

The full conditional p.d.f. of the Beta distribution (conditioned on the set

of neighboring points) can be expressed in terms of an exponential family

structure:

πi(pi|p\i) = exp

{
2∑

m=1

Ai,m(p\i)Tm(pi)−Bi(p\i) + Ci(pi)

}
(3.22)

where parameter functions Ai,m(p\i) are given by:

Ai,1(p\i) = α−
∑
k∼i

θ log(1− pk)

Ai,2(p\i) = β −
∑
k∼i

θ log(pk) (3.23)

with sufficient statistics defined by:

T1(pi) = log(pi) respectively T2(pi) = log(1− pi).

Further, parameter functions Bi(p\i) and Ci(pi) can be written as

Bi(p\i) = log{Γ(Ai,1(p\i) + 1)}+ log{Γ(Ai,2(p\i) + 1)}

− log{Γ(Ai,1(p\i)Ai,2(p\i) + 2)} (3.24)
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and Ci(pi) = 0.

Substitution of (3.22) in (3.20) and (3.21) leads to:

Hi(pi) =
2∑

m=1

[
Ai,m(p?\i){Tm(pi)− Tm(p?i )}

]
+ Ci(pi)− Ci(p?i ) (3.25)

respectively

Hi,k(pi, pk) =
2∑

m=1

[
{Ai,m(pk, p

?
\i\k

)− Ai,m(p?\i)} · {Tm(pi)− Tm(p?i )}
]
.

(3.26)

H-function of the first and the second order can be obtained by substituting

of (3.23) into the above expressions:

Hi(pi) = {α− θ log(1− p?k)}{log(pi)− log(p?i )}

+ {β − θ log(p?k)}{log(1− pi)− log(1− p?i )} (3.27)

respectively

Hi,k(pi, pk) = − θ[{log(1− pk)− log(1− p?k)} · {log(pi)− log(p?i )}]

− θ[{log(pk)− log(p?k)} · {log(1− pi)− log(1− p?i )}].

(3.28)
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Then, by substituting (3.27) and (3.28) into the Q(p)-expansion given by

(3.19), we come up with a following expression for the negpotential function:

Q(p) =
n∑
i=1

{α log(pi) + β log(1− pi)}

−
∑∑

1≤i<k≤n

θ{log(pi) log(1− pk) + log(1− pi) log(pk)}.

(3.29)

Thus, using (3.17), the logarithm of the prior can be written as:

log{π(p)} ∝
n∑
i=1

{α log(pi) + β log(1− pi)}

−
∑∑

1≤i<k≤n
θ{log(pi) log(1− pk) + log(1− pi) log(pk)}

=
n∑
i=1

[{
α−

∑
k∼i

θ log(1− pk)

}
log(pi) +

{
β −

∑
k∼i

θ log(pk)

}
log(1− pi)

]
(3.30)

or, using the notation (3.23), we can write:

log{π(p)} ∝
n∑
i=1

{Ai,1 · log(pi) + Ai,2 · log(1− pi)}. (3.31)

3.4 Modeling the Likelihood.

To evaluate the likelihood from (3.7), we assume that conditioned on p all

yi are independent. Thus, we can write the likelihood after trial j in the

following way:

L(y1, ..., yj|p) =
n∏
i=1

(pi)
∑j

t=1 y
t
i · (1− pi)N

j
i −

∑j
t=1 y

t
i , (3.32)
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where
∑j

t=1 y
t
i is the number of times pixel i has been classified as ’important’

after j trials and N j
i is the total number of times pixel i has been visited

(revealed to observer) after j trials. Taking the logarithm of (3.32) on both

sides, we obtain the log-likelihood for the whole image after trial j:

l(y1, ..., yj|p) =
n∑
i=1

{
j∑
t=1

yti · log(pi) + (N j
i −

j∑
t=1

yti) · log(1− pi)} (3.33)

3.5 Modeling posterior distribution.

We can evaluate the logarithm of posterior log{π(p|y1, ..., yj)} by taking the

logarithm of (3.7), that is, by substituting the expression (3.33) for the log-

likelihood and the expression (3.30) for the log-prior in the following equation:

log{π(p|y1, ..., yj)} ∝ l(y1, ..., yj|p) + log{π(p)}. (3.34)

Thus, we can evaluate a posterior distribution π(p|y1, ..., yj) as follows:

log{π(p|y1, ..., yj)} ∝
n∑
i=1

[
j∑
t=1

yti + α−
∑
k∼i

θ log(1− pk)

]
· log(pi)

+
n∑
i=1

[
(N j

i −
j∑
t=1

yti) + β −
∑
k∼i

θ log(pk)

]
· log(1− pi).

(3.35)



3. Adaptive Bubbles with Beta MRF Prior 41

or, using the notation,

Ai,1 = α−
∑
k∼i

θ log(1− pk)

Ai,2 = β −
∑
k∼i

θ log(pk),

we obtain:

log{π(p|y1, ..., yj)} ∝
n∑
i=1

[{
j∑
t=1

yti +Ai,1

}
· log(pi) +

{
(N j

i −
j∑
t=1

yti) +Ai,2

}
· log(1− pi)

]
.

(3.36)

3.6 The Metropolis-Hasting Algorithm

For a possible update of lattice p after trial j, we will iterate the MCMC

algorithm many times, applying the following Metropolis-Hasting update to

each pixel i:

α(p̃i|pi) = min

{
1,
π(p̃i|y1

i , ..., y
j
i )

π(pi|y1
i , ..., y

j
i )

}

= min

{
1,
L(y1

i , ..., y
j
i |p̃i)

L(y1
i , ..., y

j
i |pi)

·
π(p̃ji |p\i)
π(pi|p\i)

}
. (3.37)
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α(p̃i|pi) defines the probability with which the new proposed lattice p̃ will be

accepted. The logarithmic ratio is then given by:

log{L(y1
i , ..., y

j
i |p̃i)

L(y1
i , ..., y

j
i |pi)

·
π(p̃i|p\i)
π(pi|p\i)

}

+

j∑
t=1

yti · {log(p̃i)− log(pi)}+ (N j
i −

j∑
t=1

yti) · {log(1− p̃i)− log(1− pi)}

+ {α−
∑
i∼k

θ · log(1− pk)}{log(p̃i)− log(pi)}

+ {β −
∑
i∼k

θ · log(pk)}{log(1− p̃i)− log(1− pi)}. (3.38)

Thus, we run through all the lattice points in turn updating the lattice p by

p̃. If the logarithm log(u) of the uniformly [0, 1] distributed random variable

u does not exceed log{α(p̃i|pi)}, we accept the proposed lattice value p̃,

otherwise we keep the previous lattice p.

3.7 Simulated Experiments.

In this section we deal with a situation when the human observer is not

present in the experiment and thus, we have to replicate the Bubbles situa-

tion. The aim is to correctly find the true hidden values of lattice p by gener-

ating a sequence of trials. The trial consists of sampling a certain proportion

of image pixels in order to replicate the Bubbles image. We will simulate the

behavior of the observer by assigning labels ’important’ or ’unimportant’ to

image pixels. This will be done in a stochastic way for each pixel revealed in



3. Adaptive Bubbles with Beta MRF Prior 43

a trial.

3.7.1 Replicating Bubbles situation: Data generation and simulation

behavior of the observer

At this stage of the procedure we have to come up with some mechanism for

generating the observed data yji ∈ {0, 1} for each pixel i (in a trial j) and

compute values N j
i and

∑j
t=1 y

t
i required for calculating the logarithmic ratio

(3.38). This can be done by iterating the algorithm summarized below:

1. In each trial we reveal a certain portion of image pixels (e.g. 5% or

10%) and calculate the proportion of object pixels among all revealed

pixels.

2. For each pixel i we calculate the probability of correct classification

pcci, i.e. the probability to classify pixel i correctly as ’important’ or

’unimportant’. At this stage of the procedure we simulate the behavior

of the observer using the proposed classification pattern which we set

in advance. We define pcci for each pixel i using a c.d.f. pattern

of the Beta(α, β) distribution, see Figure 3.2: the x-axis represents

proportions of object pixels among all revealed pixels in a trial and the

values of the c.d.f. on the y-axis give us the required probabilities of

correct classification pcci.
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Fig. 3.2: Cumulative distribution function (c.d.f.) of Beta - distribution is used

as a classification pattern: the x-axis represents the proportion of object

pixels among all revealed and the values of the c.d.f. correspond to the

probability of correct classification.

3. Now, with probability pcci we classify every pixel i correctly, i.e. pixel

i adopts the ’right’ color: object pixel is converted to ’black’ and non-

object pixel to ’white’. We misclassify pixel i with probability (1−pcci),

i.e. pixel i adopts the ’wrong’ color: object pixel is converted to ’white’

and non-object pixel to ’black’.

Though value Ni increases by 1 every time we visit pixel i, value
∑j

t=1 y
t
i

increases by 1 only if after visiting pixel i, we classify it as an object pixel.
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The MCMC Step

The adaptive Bubbles with Beta MRF prior is an iterative procedure which

consists in iterating two following algorithm steps. The first step of the pro-

cedure consists in generating data and simulating behavior of the observer,

as described above. The second step consists of running the MCMC algo-

rithm to identify ’important’ regions from which to sample from further in

step 1 of the procedure. The number of MCMC iteration as well as tuning

parameters of the MCMC procedure will be specified in section 3.7.2 below.

3.7.2 Tuning Parameters

To start the procedure running, we have to specify tuning parameters of the

experiment which includes the following:

1. Defining the number of image pixels revealed in each trial and setting

parameters of Beta-distribution used to simulate the behavior of the

observer.

2. Setting parameters α and β and θ of the Beta MRF.

3. Specifying ’very high’ and ’very low’ values of posterior probability

map used as threshold values for converting image pixels to ’black’ or

’white’.
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Note, that the first point specifies parameters of the data generation pro-

cedure whereas the second and the third points refer to the actual tuning

parameters of the MCMC procedure.

Choosing parameters of Beta-distribution and setting the number of image

pixels revealed in each trial, the size of the object has to be taken into consid-

eration. If the number of pixels revealed in each trial is too small compared

to the total size of the image, the proportion of object pixels among all re-

vealed pixels will be small as well. Small values of the proportion will lead

to a small probability of correct classification and thus, to higher misclassi-

fication rates. In our simulated experiments, we reveal 10% of image pixels

every trial. Further, we use Beta(1, 3) - c.d.f. to simulate the behavior of

the observer in the first example, where the proportion of object pixels in the

image accounts to 24%, see Figure 3.3. In the second example, see Figure

3.6, the proportion of object pixels in the image is approximately 38% and,

thus, higher values for the proportion of object pixels among all revealed

pixels can be obtained. In this case we use Beta(1, 2) - c.d.f. for simulating

observer’s behavior.

Values 0.95 and 0.05 are used as threshold values for classification of pos-

terior expectation map values as ’very high’ or ’very low’, respectively. In

other words, those pixels which have posterior probability map values of 0.95

or higher will be classified as ’black’ and those with values of 0.05 or lower
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will be classified as ’white’. In the next step, these classified pixels will be

excluded from further sampling.

Finally, the Beta MRF with parameters α = 2, β = 2, θ = 2.5 is used as a

prior distribution. Recall that parameters α and β control the smoothness

within the image, see Figure 3.1. Choosing parameter values as above allows

us to observe the dependence within the image (clusters of black and white

pixels), without separating the image into two regions as in case α = 1, β = 1,

θ = 2. However, it would be of advantage to adjust the parameter values

on-line, i.e. to estimate parameter values after every MCMC run, in order

to obtain the best estimates for the posterior probability map, see chapter 6

for details.

Figures 3.4 and 3.7 represent possible realizations of the estimated posterior

probability maps for the ’cross’ and the ’cameraman’ example, respectively.

Estimated error rates after different numbers of trials for the adaptive Bubbles

with Beta MRF prior compared with the original Bubbles and the original

Bubbles with Bayesian adaption are represented in Figures 3.5 for the ’cross’

and 3.8 for the ’cameraman’. To calculate the error rate after each update u,

we compare the posterior expectation image (obtained by thresholding pos-

terior probability map values at 0.5 level) produced after this update with a
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True image
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Fig. 3.3: The true 50× 50 image. Proportion of object pixels in the image ≈ 24%.

We use c.d.f. of the Beta (1, 3) distribution to simulate the behavior of

the observer.

true image, that is, we define an error rate e(u) in the following way:

e(u) =
number of missclassified pixels after update u

total number of pixels in the image
.

We can observe, that the adaptive Bubbles with Beta MRF prior as well the

original Bubbles with Bayesian adaption performs significantly better than

the original Bubbles. For the adaptive Bubbles with Beta MRF prior, after

running the MCMC procedure for the first time, we observe rapid decrease in

error rates followed by the further moderate decrease, whereas error rates for

the original Bubbles remain nearly the same across trials. Rapid decrease in

error rates for the original Bubbles with Bayesian adaption is driven merely

by reweighting posterior probability map values and thus, giving pixels with

higher weights larger chance to be sampled.



3. Adaptive Bubbles with Beta MRF Prior 49

Update number 1

10 20 30 40 50

10

20

30

40

50

Update number 2

10 20 30 40 50

10

20

30

40

50

Update number 3

10 20 30 40 50

10

20

30

40

50

Update number 5

10 20 30 40 50

10

20

30

40

50

Fig. 3.4: Estimated posterior probability map after different number of updates.

Estimated using Beta MRF with parameters α = 2, β = 2, θ = 2.5.
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Fig. 3.5: Error rates after different numbers of trials for the cross example: original

Bubbles (blue line), original Bubbles with Bayesian adaption (green line)

and adaptive Bubbles with Beta MRF prior (red line).
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True image
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Fig. 3.6: The true 100 × 100 image. Proportion of object pixels in the image

≈ 38%. We use c.d.f. of Beta (1, 2) distribution to simulate behavior of

the observer.
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Fig. 3.7: Estimated posterior probability map after different number of updates.

Estimated using Beta MRF with parameters α = 2, β = 2, θ = 2.5.
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Fig. 3.8: Error rates after different numbers of trials for the cameraman example:

original Bubbles (blue line), original Bubbles with Bayesian adaption

(green line) and adaptive Bubbles with Beta MRF prior (red line).



4. ADAPTIVE BUBBLES WITH ISING PRIOR

In chapter 3 we assumed that the latent image p consist of values in interval

[0, 1] and thus, we used Beta MRF in order to make inference about latent

probabilities p. Now we assume that the latent image consists of values

x having binary {−1,+1} structure: xi = {−1} means that the pixel i is

’important’ and xi = {+1} means that the pixel i is ’unimportant’. In order

to make inference about binary values x, we will use the Ising model described

below.

This chapter is organized as follows: section 4.1 discusses the Ising model

and its generalization, the autologistic model. The adaptive Bubbles with

Ising prior procedure is described in section 4.2 and applied to the simulated

data in section 4.3.
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4.1 Ising and Autologistic Models

Here we consider binary spatial data defined on a two-dimensional lattice.

We consider a MRF on a rectangular lattice n of dimension m×m′ with the

lattice points xi taking values {−1,+1}. This is then the Binary Markov

Random Field, see (Besag 1974). Index i = 1, ..., n is defined such that the

lattice points are ordered from top to bottom in each column and columns

from left to right.

The Ising model is an example of a MRF, defined as follows:

π(x|β) =
exp{βU(x)}

z(β)
, (4.1)

where z(β) is the normalizing constant and the energy function U(x) takes

the form

U(x) =
n∑
i∼k

xixk.

Here, i ∼ k means that pixel i is a neighbor of pixel k and the clique po-

tential VC(x) = xixk is simply defined as a product of neighboring pixels

values. Using this neighborhood structure, we can write the full conditional

distribution for the pixel i in the following form:

π(xi|x\i) ∝ exp

{
β
∑
i∼k

xixk

}
. (4.2)

The equivalence between the models (4.2) and (4.1) is given by the Hammersley-

Clifford theorem. The parameter β is a smoothing parameter which measures
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the dependence within the image, i.e., the strength of the dependence be-

tween the neighboring points i and k. VC(x) is a sufficient statistic for β.

The autologistic model proposed by (Besag 1974) is an extension of the Ising

model, defined as

π(x|β) =
exp{β0V0(x) + β1V1(x)}

z(β)
. (4.3)

In (4.3), z(β) denotes the normalizing constant

z(β) =
∑
x1

...
∑
xn

{β0V0(x) + β1V1(x)} (4.4)

which is extremely difficult to compute in general. Further,

V0(x) =
n∑
i=1

xi and V1(x) =
1

2

n∑
i∼k

xixk. (4.5)

In (4.5) V0(x) is the overall sum of the variables. Parameter β0 represents the

abundance of values and β1 is a smoothing parameter. Positive values for β0

lead to more {+1} (’white’) in realizations of x whereas negative values for β0

lead to realizations of x having more {−1} (’black’) patches, see figure 4.1. If

β0 = 0, the autologistic model reduces to the Ising model. The parameter β1

controls the level of spacial aggregation in the image. If β1 = 0, then the pixel

values are independent of one another. While positive values of β1 encourage

neighboring pixels to take like values. The constant 1/2 in the expression

for V1(x) guarantees that each neighboring pair enters the summation only

once. Note that most of the lattice points have 4 neighbors:
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Fig. 4.1: Some realizations of binary Markov Random Field after 1000 MCMC

updates with β = (0, 0.4) (upper left), β = (0, 0.2) (upper right), β =

(0.02, 0.4) (lower left) and β = (−0.02, 0.4) (lower right). Simulated using

Ising model.
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•
(i, j + 1)

•(i− 1, j)

•
(i, j − 1)

• (i + 1, j)•
(i, j)

but along the edges of the lattice each point has either 2 or 3 neighbors.

The normalizing constant z(β) from (4.3) is generally unknown analytically.

Certain computationally and statistically efficient methods for the calculation

of the normalizing constant are presented in (Pettitt, Friel & Reeves 2003).

Up to a normalizing constant z(β) we will use the following notation:

π(x|β) ∝ q(x|β) = exp{β0V0(x) + β1V1(x)}. (4.6)

It is possible to define a more parameter rich model:

π(x|β) ∝ exp

{∑
i

βixi +
∑
i∼k

βikxixk

}
(4.7)

where parameters βi and βik are not constant and i ∼ k means that pixel i is a

neighbor of pixel k. But this would result in more parameters than variables.

However, for purposes of our studies we concentrate on the parametrization

case where βi and βik take constant values.
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4.2 Adaptive Bubbles with Ising prior: the Procedure

Here we consider a situation when the true hidden data x has a binary

{−1,+1} structure, corresponding to whether pixel values are ’important’ or

not. In order to fulfil the primary goal of the Bubbles experiment, that is,

to infer latent pixel values x given the observed values of lattice y ∈ {0, 1},

we have to evaluate π(x|y1, ..., yj, β) - the posterior distribution of x given all

observed lattices (y1, ..., yj) up to trial j. This is done in a typical Bayesian

way:

π(x|y1, ..., yj, β) ∝ L(y1, ..., yj|x) · π(x|β), (4.8)

where L(y1, ..., yj|x) is the likelihood function and π(x|β) is the prior distri-

bution, defined according to the autologistic model :

π(x|β) ∝ exp{β0

n∑
i=1

xi +
1

2
β1xi

∑
k∼i

xk}. (4.9)

In order to make inference for a hidden x values, we iterate the MCMC

algorithm many times applying the following Metropolis-Hasting update to

each pixel i:

α(x̃i|x) = min

{
1,
π(x̃i|y1

i , ..., y
j
i , β)

π(xi|y1
i , ..., y

j
i , β)

}
= min

{
1,
L(y1

i , ..., y
j
i |x̃i)

L(y1
i , ..., y

j
i |xi)

·
π(x̃i|β, xj\i)
π(xi|β, x\i)

}
,

(4.10)

where α(x̃i|x) defines the probability with which the new proposed lattice x̃

will be accepted after trial j. Thus, we run through all the lattice pixels in
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turn updating the lattice x by x̃. Since x take values in {−1,+1}, lattice x̃

matches the given x lattice on all but ith component:

x̃ = (x1, ..., xi−1,−xi, xi+1..., xn).

The term x\i defines a lattice where the ith component has been omitted:

x\i = (x1, ..., xi−1, xi+1, ..., xn).

In order to compute the acceptance probability defined in (4.10), we require

knowledge of the likelihood L(y1, ..., yj|x). Assuming that conditional on x

all yi are independent, we assume that the likelihood can be written in the

following way:

L(y1, ..., yj|x) =
n∏
i=1

(rji )
1{xi=−1} · (1− rji )

1{xi=+1} , (4.11)

that is, the Likelihood has a Beta structure. In (4.11) rji ∈ (0, 1) denotes the

ratio calculated for each pixel i in the following way:

rji =
nji
N j
i

(4.12)

with nji =
∑j

t=1 y
t
i denoting the number of times pixel i has been classified

as ’important’ and N j
i is the total number of times pixel i has been visited

(revealed to the observer) after j trials, see section 4.3 for details. The term

1{xi=−1} in (4.11) denotes an indicator function which becomes equal to 1 if

xi = −1 and 0 otherwise.
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proposed lattice point
L(y1i ,...,y

j
i |x̃i)

L(y1i ,...,y
j
i |xi)

π(x̃i|β,x8i)
π(xi|β,x8i)

x̃i = −1 (’black’)
rj
i

1−rj
i

exp{−2β0xi − β1xi
∑

k∼i xk}

x̃i = 1 (’white’)
1−rj

i

rj
i

exp{2β0xi + β1xi
∑

k∼i xk}

Tab. 4.1: Likelihood ratio and ratio of priors.

Using the prior distribution and the likelihood defined by (4.9) and (4.11),

we can calculate the ratio of priors and the likelihood ratio for each pixel i

based on which lattice pixel (x̃i = −1 if ’black’ or x̃i = 1 if ’white’) has been

proposed. The results are summarized in Table 4.1. Substituting these ratios

in (4.10), we obtain the following probabilities of acceptance for the case if

the proposed lattice pixel is ’black’ (4.13):

α(x̃|x) = min

{
1,

rji
1− rji

· exp(−2β0xi − β1xi
∑
k∼i

xk)

}
if x̃i = −1 (4.13)

and for the case if the proposed lattice pixel is ’white’ (4.14):

α(x̃|x) = min

{
1,

1− rji
rji

· exp(2β0xi + β1xi
∑
k∼i

xk)

}
if x̃i = +1 (4.14)

Thus, we accept the lattice x̃ with probability α(x̃|x), that is, we generate

a uniformly [0, 1]-distributed random variable u and accept x̃ if u < α(x̃|x).

Otherwise, we keep the lattice x.

Iterating the procedure many times allows us to calculate the posterior prob-

ability map value for each pixel i, given the observed data y1, ..., yj up to
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trial j. This gives the probability that pixel i is ’important’ after collecting

data y1, ..., yj. It is estimated as the number of times when pixel converts

to ’black’ to the total number of MCMC iterations after the stationarity has

been reached. The posterior expectation for a hidden value xi after trial j

can be obtained by thresholding the corresponding posterior probability map

values at 0.5-level. Further, we want to identify those image regions which

have ’very high’ or ’very low’ posterior probability map values (thresholds

for these values will be specified in section 4.3) in order to reveal and exclude

them from further sampling. Afterwards, we assign to all remaining (not

excluded) pixels, a weight: wi ∝ ri with
∑n

i=1wi = 1. Finally, we return to

the first algorithm step, sampling these pixels with weights wi.

4.3 Simulated Experiments

Here we again deal with a situation when the human observer is not present

in experiment and we have to replicate the Bubbles situation. However, in

contrast to the experiment where Beta MRF is used as a prior, here we as-

sume that the true hidden data x has a binary structure, and thus, we aim

to make inference about binary values x ∈ {−1,+1}.

As in the simulated experiment described above, we first generate the ob-

served data yji ∈ {0, 1} for each pixel i and compute corresponding values
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rji required for calculating the likelihood (4.11). For each image pixel i we

calculate this ratio in the following way:

rji =
nji
N j
i

, (4.15)

where nji =
∑j

t=1 y
t
i represents the number of visits to pixel i when i belongs

to the object and N j
i is the total number of visits to pixel i after trial j. The

iterative algorithm used to compute the values nji and N j
i is implemented in

the same way as described in section 3.7 for the adaptive Bubbles with Beta

MRF prior.

4.3.1 Tuning Parameters

As in the simulated experiments with Beta MRF prior, we reveal 10% of im-

age pixels in every trial and use Beta(1, 3) - c.d.f. to simulate the behavior of

the observer in the ’cross’ example, where the proportion of object pixels in

the image accounts to 24%. In the ’cameraman’ example, the proportion of

object pixels in the image is approximately 38% and thus, we use Beta(1, 2)

- c.d.f. for simulating observer’s behavior.

Values 0.95 and 0.05 are used as threshold values for classification of poste-

rior expectation map values as ’very high’ or ’very low’, respectively.

Finally, we use the autologistic model with parameters β0 = 0 and β1 = 0.4

(i.e. Ising model) as a prior distribution. Recall that the parameter β0 con-
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trols the relative abundance of object pixels and β1 is a smoothing parameter

which measures the strength of the dependence between neighboring points.

Using the parameters of the procedure specified above, we can calculate er-

ror rates at different stages of the procedure. The results for data generated

without noise and for the noisy data are represented in the figures below.

Thereby, noisy data is generated in a way that 10% of image pixels revealed

every trial are intentionally misclassified. Altogether, we produce for each of

the cases three figures which represent the following:

1. Estimated posterior expectation in original Bubbles after 1, 2, 3 and

5 updates (i.e. 100, 200, 300 and 500 trials) where 100 trials are used

between each update.

2. Estimated posterior expectation in adaptive Bubbles with Ising prior

after 1, 2, 3 and 5 updates. 100 iterations are used between each update

and the number of MCMC iterations accounts to 1000.

3. Error rates after different numbers of trials comparing the original Bub-

bles and the original Bubbles with Bayesian adaption (upper panel) and

comparing the original Bubbles and the adaptive Bubbles with Ising

prior (lower panel).
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Overall, we can observe that the adaptive Bubbles with Ising prior outper-

forms the original Bubbles and the original Bubbles with Bayesian adaption

in a sense of estimated error rates. While the original Bubbles with Bayesian

adaption procedure performs only slightly better than the original Bubbles,

adaptive Bubbles with Ising prior provides significantly better results. After

the first update, we observe nearly the same misclassification rate for all three

procedures. Further, error rates for original Bubbles remain nearly the same

since the procedure allows to convert classified ’black’ pixels to ’white’ and

vice versa, those for the original Bubbles with Bayesian adaption decrease

steadily due to removing already classified pixels. The adaptive Bubbles with

Ising prior performs best leading to a rapid decrease of error rates after the

second update, i.e. after the MCMC has been run at least once and ’im-

portant’ sampling regions have been identified. Updating the information a

couple of times we apparently exploit more and more pixels from ’important’

sampling regions and thus, approach towards the situation when proposed

regions for further sampling contain more ’background’ rather than ’object’

pixels. In this situation we might observe a slight increase in error rates on

later stages of the procedure.
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Data without noise: original Bubbles
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Fig. 4.2: Estimated posterior expectation in original Bubbles after 1, 2, 3 and 5

updates with 100 trials between each update. In each trial 10% of image

pixels are revealed.
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Data without noise: adaptive Bubbles with Ising prior
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Fig. 4.3: Estimated posterior expectation in adaptive Bubbles with Ising prior

after 1, 2, 3 and 5 updates with 100 trials between each update. In each

trial 10% of image pixels is revealed. Number of MCMC iterations is

1000.
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Data without noise:

original Bubbles vs. adaptive Bubbles with Ising prior
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Fig. 4.4: Error rates after different numbers of trials: original Bubbles vs. original

Bubbles with Bayesian adaption (upper panel) and original Bubbles vs.

adaptive Bubbles with Ising prior (lower panel).
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Data with noise: original Bubbles
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Fig. 4.5: Estimated posterior expectation in the original Bubbles approach after

1, 2, 3 and 5 updates with 100 trials between each update. In each trial

10% of image pixels are revealed.
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Data with noise: adaptive Bubbles with Ising prior
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Fig. 4.6: Estimated posterior expectation in adaptive Bubbles with Ising prior

after 1, 2, 3 and 5 updates with 100 trials between each update. In each

trial 10% of image pixels are revealed. Number of MCMC iterations is

1000.
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Data with noise:

original Bubbles vs. adaptive Bubbles with Ising prior
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Fig. 4.7: Error rates after different numbers of trials: original Bubbles vs. original

Bubbles with Bayesian adaption (upper panel) and original Bubbles vs.

adaptive Bubbles with Ising prior (lower panel).
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Data without noise: original Bubbles
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Fig. 4.8: Estimated posterior expectation in original Bubbles approach after 1, 2,

3 and 5 updates with 100 trials between each update. In each trial 10%

of image pixels is revealed.
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Data without noise: adaptive Bubbles with Ising prior
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Fig. 4.9: Estimated posterior expectation in adaptive Bubbles with Ising prior

after 1, 2, 3 and 5 updates with 100 trials between each update. In each

trial 10% of image pixels is revealed. Number of MCMC iterations is

1000.
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Data without noise:

original Bubbles vs. adaptive Bubbles with Ising prior
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Fig. 4.10: Error rates after different numbers of trials: original Bubbles vs. original

Bubbles with Bayesian adaption (upper panel) and original Bubbles vs.

adaptive Bubbles with Ising prior (lower panel).



5. APPLICATIONS TO REAL DATA EXAMPLES

In previous chapters we compared the performance of the adaptive Bub-

bles with Beta MRF/Ising prior and the original Bubbles with or without

Bayesian adaption using simulated data examples: we generated hidden bi-

nary data and sampled in every trial a certain portion of image pixels, repli-

cating thereby a Bubbles situation. Behavior of observer was simulated by

assigning labels ’important’ or ’unimportant’ to each of the pixels revealed

in a trial. The aim of this chapter is to apply the adaptive Bubbles with

Beta MRF/Ising prior to real data problems, where the true data is a facial

image allowing a binary response, e.g. represented face can be characterized

as neutral or happy or as male or female. In the following real data exam-

ples, a human observer is present. After revealing partial image information

in a trial, the observer has to classify this image information according to

EXNEX: neutral or happy or GENDER: male or female.
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Fig. 5.1: Faces used in experiment 1.

5.1 Experiment 1: EXNEX

In this experiment we aim to determine which regions of input information

are used by the observer to classify a facial image as neutral or happy. We

run the experiment using 20 facial images of 10 different identities (5 males

and 5 females), each displaying either a neutral or a happy expression, see

Figure 5.1. All images are of size 100× 100. In every trial, human observer

is presented with a partially revealed facial image, selected randomly from

one of the facial images in Figure 5.1. The observer is asked to classify this

partially revealed information according to its expression: neutral or happy.

For revealing faces partially, we create a so-called Bubble mask - mid-grey



5. Applications to Real Data Examples 75

Fig. 5.2: Bubble mask in original Bubbles (left panel) and adaptive Bubbles with

Beta MRF/Ising prior (right panel).

mask punctured by a number of Gaussian windows (the number of windows

is set to 10), located either randomly (original Bubbles, left panel of Fig-

ure 5.2) or concentrated at ’important’ regions (adaptive Bubbles with Beta

MRF/Ising prior, right panel of Figure 5.2). Each Gaussian window repre-

sents a circle window with a center at the Bubble and a standard deviation

(which is set equal to 7), controlling dispersion of the Gaussian. After re-

vealing image partially, observer is asked to classify presented information

as neutral or happy. If the response is correct (i.e. it coincides with an

expression observer was presented with), we add the corresponding Bubble

mask to the CorrectPlane. Thus, all Bubble masks leading to correct clas-

sification of a particular expression will be summed up to the CorrectPlane.

The TotalPlane is a sum of all Bubble masks (both, leading to correct or

incorrect classification). Then, as in simulated experiments, after every trial

we compute the observed ratio ri for every image pixel i in the following way:
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ri =
ni
Ni

, (5.1)

where ni and Ni correspond to the pixel ith value in CorrectPlane and in

TotalPlane, respectively. Estimated posterior probability maps for the origi-

nal Bubbles and the original Bubbles with Bayesian adaption after different

numbers of trials are represented in the first and the second column of Figure

5.3, respectively. From the figure we can observe that the input information

region used by the observer to classify a face as neutral or happy, is a mouth

region. In order to obtain the posterior probability map for the adaptive Bub-

bles with Beta MRF/Ising prior, we run 1000 MCMC iterations every 100

trials. A third and a fourth column of Figure 5.3 represent the results for the

adaptive Bubbles with Beta MRF prior and the adaptive Bubbles with Ising

prior, respectively. Thereby, as in experiments with a simulated data, we

exclude from further sampling those pixels which have posterior probability

values higher than 0.95 or lower than 0.05. Further, weights are assigned to

all remaining pixels, which will be sampled in the following trials. Weighting

function calculated for non-excluded pixels after the first update (i.e. after

running 1000 MCMC iterations for the first time) is represented in Figure

5.4. In order to compare the performance of the original Bubbles with or

without Bayesian adaption and the adaptive Bubbles with Beta MRF/Ising
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1000 trials 1000 trials 1000trials+1000MCMC 1000trials+1000MCMC

Fig. 5.3: Estimated posterior probability map for the original Bubbles (first col-

umn), original Bubbles with adaption (second column), adaptive Bubbles

with Beta MRF prior (third column), adaptive Bubbles with Ising prior

(fourth column) after different numbers of trials. The number of MCMC

iterations run between each update (every 100 trials) for the adaptive

Bubbles with Beta MRF/Ising prior is 1000.
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Fig. 5.4: Weighting function computed using posterior probability values after the

first update (i.e. after running 1000 MCMC iterations for the first time).

Image pixels will be sampled with this weights in the following trials.

prior, we calculate the actual performance given by the proportion of times

observer has been correct with a particular expression to the total number of

times this expression has been presented. These proportions for ’neutral’ and

’happy’ are presented in the upper and the lower panel of Figure 5.5, respec-

tively. We can observe that already after the first update (i.e. after running

1000 MCMC for the first time), proportion of correctly classified expressions

for the adaptive Bubbles with Beta MRF/Ising prior increases sharply. Af-

ter it reaches its highest value corresponding to approximately 80% for both,

neutral and happy expressions, it remains nearly constant across further tri-

als. For the original Bubbles with Bayesian adaption the increase in correct
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classified expressions can be explained by introducing a weighting scheme for

sampling pixels from ’important’ image regions (those with higher posterior

probability map values) rather than sampling pixels randomly as proposed

in original Bubbles. For the original Bubbles, the correct classification ratio

corresponds to approximately 70%.

In order to determine, how input information regions evolve across trials,

we produce posterior probability map images after performing z-scoring at

90% level, see Figure 5.6. Z-scored posterior probabilities are obtained by

standardizing (subtracting mean and dividing by a standard deviation) of

posterior probability map values from Figure 5.3 and then smoothing values

greater than 1.65 (which is a 90% quantile of Normal distribution). For all

four procedures we observe clusters of pixels with high posterior probability

values concentrated around the mouth region.

In the following, we are interested in how the information growth gained

through increasing the number of trials, affects the actual performance. If

the number of pixels revealed and excluded from further sampling (Figure

5.7) does not change significantly across trials, we can stop sampling due to

insignificant improvement in correct classification ratio. In order to find this

optimal stopping rule, we compare posterior probability maps after different

numbers of trials by measuring their closeness to each other (the distance

between two posterior probability maps). This is done by computing the
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Fig. 5.5: Actual performance: proportion of times observer has been correct with

a particular expression to the total number of times this expression has

been presented. For ’neutral’ (upper panel) and ’happy’ (lower panel).
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Fig. 5.6: Estimated posterior probability map after performing z-scoring at 90%-

level to the estimates in Figure 5.3 for the original Bubbles (first column),

original Bubbles with Bayesian adaption (second column), adaptive Bub-

bles with Beta MRF prior (third column), adaptive Bubbles with Ising

prior (fourth column).
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Fig. 5.7: Pixels with posterior probability values of 0.95 and higher for the original

Bubbles (first column), original Bubbles with Bayesian adaption (second

column), adaptive Bubbles with Beta MRF prior (third column), adap-

tive Bubbles with Ising prior (fourth column).
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Euclidean distance for two posterior probability maps xj and xj+k after the

jth or the (j + k)th trial, respectively. It is given by the Euclidean norm

‖xj − xj+k‖2:

ρ(xj, xj+k) = ‖xj − xj+k‖2 =

√√√√ n∑
i=1

(xji − x
j+k
i )2. (5.2)

The smaller ρ(xj, xj+k) is, the closer are xj and xj+k. In the following,

we run the experiment updating every 10 trials, i.e. we run 1000 MCMC

iterations after 10, 20, 30, ... trials. The upper panel of Figure 5.8 shows how

many pixels with posterior probability map values of 0.95 and higher have

been revealed after different numbers of trials. The lower panel of Figure

5.8 shows the Euclidean distance after trial t, computed as ρ(xt, x400) - a

distance between the posterior probability map after trial t and a posterior

probability map after trial 400 (we do not continue sampling further due to

insignificant changes in posterior probability map values). From the figure we

can observe that the number of revealed and excluded pixels remains nearly

constant after a certain number of trials (approx. 280 for Beta MRF prior

and 320 for Ising prior) and the distance (similarity measure) goes to zero.

Thus, implementing the adaptive Bubbles with Beta MRF prior, we can stop

sampling after 280 trials, whereas in case of the Ising prior we stop sampling

after approximately 320 trials.
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Fig. 5.8: Optimal stopping rule: how many pixels with high posterior probability

values have been revealed after different number of trials (upper panel)

and the Euclidean distance (lower panel) after different number of trials.
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Fig. 5.9: Faces used in experiment 2.

5.2 Experiment 2: GENDER

In this experiment we are interested in which regions of input information

are used by the observer to classify facial image information according to

GENDER: male or female. We run the experiment using 16 facial images of

different identities (8 males and 8 females), see Figure 5.9. All images are of

size 100× 100 pixels. In every trial we partially reveal one of the images in

Figure 5.9 and ask the observer to classify a displayed information as male

or female. Similar to the first experiment, Gaussian windows are positioned

either randomly (original Bubbles, left panel of Figure 5.10), or at ’impor-

tant’ regions (adaptive Bubbles with Beta MRF/Ising prior, right panel of
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Fig. 5.10: Bubble mask in the original Bubbles (left panel) and the adaptive Bub-

bles with Beta MRF/Ising prior (right panel).

Figure 5.10). Estimated posterior probability maps for the original Bubbles,

original Bubbles with Bayesian adaption, adaptive Bubbles with Beta MRF

prior and adaptive Bubbles with Ising prior are represented in Figure 5.11.

As in the previous experiment, the number of MCMC iterations accounts

to 1000 between every 100 trials. From the figure we can observe that the

input information region used by the observer to classify facial information

as male or female, is an eye and a mouth region. In the following, we com-

pare the actual performance of original Bubbles with or without adaption

and the adaptive Bubbles Beta MRF/Ising prior. Figure 5.12 represents the

proportion of times observer has been correct with a particular expression to

the total number of times this expression has been presented for male (upper

panel) and female (lower panel). We can observe that adaptive procedures

allow to reach values for correct classifications higher than the original Bub-

bles: there is a sharp increase in correctly classified expressions after the first
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Fig. 5.11: Estimated posterior probability map for the original Bubbles (first col-

umn), original Bubbles with Bayesian adaption (second column), adap-

tive Bubbles with Beta MRF prior (third column), adaptive Bubbles

with Ising prior (fourth column) after different numbers of trials. The

number of MCMC iterations run between each update (every 100 trials)

for the adaptive Bubbles with Beta MRF/Ising prior is 1000.
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100 trials and further minor increase across trials. Correct classification ratio

for the original Bubbles remains nearly constant across trials due to the ran-

dom sampling of image pixels. Figure 5.13 represents posterior probability

map images after performing z-scoring at 90% level. Here again, we observe

clusters of pixels with high posterior probability values, concentrated around

the eye and the mouth region.

As in he first example, we are interested in choosing a stopping rule which

determines when sampling ends. For this purposes we observe how the num-

ber of pixels with high posterior probability map values evolves across trials

and we stop sampling if it does not change significantly. Therefore, we run

the experiment updating every 10 trials, i.e. we run 1000 MCMC iterations

after 10, 20, 30, ... trials. The upper panel of Figure 5.15 shows the number of

pixels with ’high’ posterior probability values after different numbers of tri-

als. In adaptive procedures, these pixels will be revealed and excluded from

further sampling. Therefore, the value 0.9 has been chosen for the original

Bubbles and the adaptive Bubbles with Beta MRF prior. For the original

Bubbles with adaption and the adaptive Bubbles with Ising prior, we choose

the value 0.95 since lower values would reveal pixels from ’unimportant’ im-

age regions. From the figure we can observe, that the adaptive Bubbles with

Beta MRF prior provides more pronounced results without revealing pixels

from the background regions. The Euclidean distance for measuring similar-
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Fig. 5.12: Actual performance: proportion of times observer has been correct with

a particular expression to the total number of times this expression has

been presented. For ’male’ (upper panel) and ’female’ (lower panel).
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Fig. 5.13: Estimated posterior probability map after performing z-scoring at 90%-

level to the estimates in Figure 5.11 for the original Bubbles (first col-

umn), original Bubbles with adaption (second column), adaptive Bub-

bles with Beta MRF prior (third column), adaptive Bubbles with Ising

prior (fourth column).
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ity between two posterior probability maps xj and x620 is plotted in the lower

panel of Figure 5.15. While the original Bubbles does not allow to decide

on the optimal stopping rule due to random pixel sampling, we observe that

the optimal number of trials for stopping sampling in all adaptive procedures

accounts to approximately 450.
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Fig. 5.14: Pixels with high posterior probability values for the original Bubbles

(first column), original Bubbles with adaption (second column), adap-

tive Bubbles with Beta MRF prior (third column), adaptive Bubbles

with Ising prior (fourth column).
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Fig. 5.15: Optimal stopping rule: how many pixels with high posterior probability

values have been revealed after different number of trials (upper panel)

and the Euclidean distance (lower panel) after different number of trials.



6. INFERENCE FOR HYPERPARAMETERS

In this chapter we aim to make inference about all unknown model parame-

ters applied to the situation where the prior is a Beta MRF, i.e. we consider

the adaptive Bubbles with Beta MRF prior (we can clearly apply the below

consideration to the case where the prior is given by the Ising model). In

case of the Beta MRF prior, the unknown model parameters include the la-

tent probabilities p as well as the vector of parameters (α, β, θ)>. The full

posterior distribution for all unknown parameters is given by

π(p, α, β, θ|y1, ..., yj) ∝ L(y1, ..., yj|p) · π(p|α, β, θ) · π(α, β, θ). (6.1)

This posterior distribution could be sampled using a Metropolis within Gibbs

algorithm where all parameters are sampled from their full conditional dis-

tributions. Now, the full-conditional distribution for p appears as

π(p|y1, ..., yj, α, β, θ) ∝ L(y1, ..., yj|p) · π(p|α, β, θ) (6.2)

which presents no difficulties to compute and is identical to the algorithm

described in chapter 3 for fixed (α, β, θ)> values.
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However, the MH update for (α, β, θ)> would consist in sampling from

π(α, β, θ|y1, ..., yj, p) ∝ π(p|α, β, θ) · π(α, β, θ). (6.3)

Suppose we propose to move from (α, β, θ)> to (α∗, β∗, θ∗)>. Then, the ac-

ceptance probability would be

min

{
1,
π(p|α∗, β∗, θ∗) · π(α∗, β∗, θ∗)

π(p|α, β, θ) · π(α, β, θ)

}
, (6.4)

which requires computation of the joint distribution π(p|α, β, θ). However,

in practice, it is only known up to normalizing constant, which itself depends

on (α, β, θ). One approach to overcome this problem consists in approxi-

mation of π(p|α, β, θ) by the pseudo-likelihood estimator π∗(p|α, β, θ), which

represents the product of full conditional probabilities π(pi|p−i, α, β, θ) for

each lattice point i = 1, ..., n:

π∗(p|α, β, θ) ≈
n∏
i=1

π(pi|p\i, α, β, θ). (6.5)

(Ryden & Titterington 1998) applied the above algorithm in case where the

hidden process is an autologistic distribution.

In the following, we aim to explore the performance of the pseudo-likelihood

estimator in estimating parameter values from realized Beta MRF distribu-

tions .
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6.1 Parameter Inference in Beta MRFs

In this section we are moving away from applying the pseudo-likelihood esti-

mator in the scheme described above where the interest is in sampling from

π(p, α, β, θ|y1, ..., yj) to the simpler scenario of using the pseudo-likelihood

estimator to maximize π(p|α, β, θ). Using a previous Beta MRF set-up, we

will estimate the unknown parameters (α, β, θ)> from the full conditional

Beta-density

π(pi|p−i) ∝ p
{α−∑

k∼i θ·log(1−pk)}
i · (1− pi){β−

∑
k∼i θ·log(pk)} · Γ(Ai,1 + 1)Γ(Ai,2 + 1)

Γ(Ai,1 +Ai,2 + 2)

(6.6)

with

Ai,1 = α−
∑
k∼i

θ · log(1− pk) and

Ai,2 = β −
∑
k∼i

θ · log(pk),

by maximizing the likelihood L{π(p|α, β, θ)}. As before, i ∼ k means here

that pixel i is a neighbor of pixel k. Likelihood calculation requires the

knowledge of the joint distribution π(p|α, β, θ) and since it is unknown in

practice, we approximate the likelihood function by the pseudo-likelihood

function (Besag 1974), substituting (6.6) into (6.5):

L{π∗(p|α, β, θ)} =
n∏
i=1

p
{α−∑

k∼i θ·log(1−pk)}
i ·(1−pi){β−

∑
k∼i θ·log(pk)}·Γ(Ai,1 + 1)Γ(Ai,2 + 1)

Γ(Ai,1 +Ai,2 + 2)
.

(6.7)
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Alternatively to maximization of (6.7), taking the logarithm on both sides of

equation (6.7), we come up with maximization of the pseudo log-likelihood :

l{π∗(p|α, β, θ)} =

{
α−

∑
k∼i

θ · log(1− pk)

}
· log(pi) (6.8)

+

{
β −

∑
k∼i

θ · log(pk)

}
· log(1− pi)

+ log {Γ(Ai,1 + 1)}+ log {Γ(Ai,2 + 1)} − log {Γ(Ai,1 +Ai,2 + 2)} .

Thus, the estimates of a vector of unknown parameters is obtained by

(α̂, β̂, θ̂)> = argmaxα,β,θl{π∗(p|α, β, θ)}. (6.9)

This method has been employed in a wide variety of settings. In particular,

it has been used in context of MRFs for example by (Ryden & Titterington

1998) and (Descombes, Morris, Zerubia & Berthod 1999) to estimate the

vector of unknown parameters in different prior models.

6.2 Simulated Annealing Algorithm

Maximization of a pseudo log-likelihood function (6.8) requires a global op-

timization technique, such as the simulated annealing (SA) algorithm intro-

duced in (Kirkpatrick, Gelatt & Vecchi 1983). The name of the algorithm

comes from annealing of metals, glass or liquids. In the process of annealing,

a material is heated and then cooled, usually for softening and making the

material less brittle. Therefore, the algorithm exposes the initial solution
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(initial position of atoms) to heat (maximizing initial energy) and cools af-

terwards (minimizing of initial energy), providing a more optimal solution.

SA algorithm samples iteratively from

π∗m(p|α, β, θ) ∝ {π∗(p|α, β, θ)}1/Tm , (6.10)

where, as above, π∗(p|α, β, θ) =
∏n

i=1 π(pi|p−i, α, β, θ) and Tm is a tempera-

ture parameter. When Tm goes to 0 (m −→∞) slowly enough, the algorithm

generates a Markov chain which converges in distribution towards the uni-

form distribution over the set of configurations maximizing π∗(p|α, β, θ). To

implement the algorithm, we first have to define the sampling method and a

cooling schedule.

The cooling schedule of the SA algorithm consists in reducing the tempera-

ture from initially set high value T gradually in every following simulation

step towards T = 0. One possible choice of a cooling schedule is exponential,

where the temperature decreases by a fixed factor 0 < τ < 1 at each following

simulation step.

The sampling is implemented by means of the MCMC algorithm, in each step

of the SA algorithm, the current solution is replaced by a random solution

which is close to the current one. Therefore, all ’better’ solutions (leading

to the higher likelihood) are always accepted with probability 1. However, if

the solution is ’worse’ (i.e. the value of the likelihood is lower than the pre-
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vious likelihood value), it still can be accepted with a transition probability

depending on a difference between the old and the new likelihood values and

on the temperature decreasing during the process. Thus, the transition or

acceptance probability of a new state, can be defined in a following way:

pacc =


1 if l∗m > l∗m−1

exp
{
l∗m−l∗m−1

T ·τm

}
otherwise

Using the SA algorithm, we estimate parameter values for different real-

izations of Beta MRFs. Therefore, we run for every temperature value 1000

MCMC iterations, proposing new random ’nearby’ values of parameters. The

initial temperature is set to T = 100 and the decreasing factor is τ = 0.5.

Table 6.1 represent estimated parameter results. We can observe that the

closer is parameter θ to 0, the more precise are the estimation results. This

evidence is not surprising due to the assumption that lattice points are in-

dependent, which is achieved when parameter θ = 0.
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True parameter values MRF realization Estimated parameter values

α = 3.0, β = 3.0, θ = 3.0

a=3, b=3, theta=3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50 α̂ = 2.9325, β̂ = 2.9491, θ̂ = 2.9043

α = 2.0, β = 2.0, θ = 2.5

a=2, b=2, theta=2.5

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50 α̂ = 2.1057, β̂ = 2.1154, θ̂ = 2.4752

α = 1.5, β = 1.5, θ = 2.5

a=1.5, b=1.5, theta=2.5

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50 α̂ = 1.5383, β̂ = 1.5445, θ̂ = 2.5211

α = 1.0, β = 1.0, θ = 2.0

a=1, b=1, theta=2

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50 α̂ = 0.9836, β̂ = 0.9759, θ̂ = 1.9708

Tab. 6.1: Pseudo-likelihood estimation for Beta MRFs parameters α, β and θ.

Estimated using simulated annealing algorithm.
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The main objective of my thesis was to improve the original Bubbles approach

represented in (Gosselin & Schyns 2001). For this purposes, three alternative

methods have been presented: the original Bubbles with Bayesian adaption,

the adaptive Bubbles with Beta MRF prior and the adaptive Bubbles with

Ising prior. All three approaches address the problem of ineffective sampling

in original Bubbles by introducing the excluding rule for pixels with ’very

high’ (p ≥ 0.95) or ’very low’ (p ≤ 0.05) posterior probability map values

and applying a weighed sampling scheme to all remaining pixels, i.e. those

pixels which have posterior probability map values in the range (0.05, 0.95).

Clearly, the sampling scheme gives 0 weight to pixels outside this range,

and thus, behaves discontinuously at p = 0.05 and p = 0.95. As a further

improvement one could consider some alternative weighting schemes, e.g.

ones continuous in the posterior probability, that might perform even better.

Overall, the adaptive methods implemented in this way allow to reduce the

number of sampling trials making the procedure less exhaustive.
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Incorporating spacial dependence in the image is important, not necessar-

ily to reduce trials further, but to achieve better estimation results. Here

we considered two different ways of implementation: the adaptive Bubbles

with Beta MRF prior and the adaptive Bubbles with Ising prior. The adap-

tive Bubbles with Beta MRF prior assumes that the hidden values of p take

values in interval [0, 1] which correspond to the probability that the pixel

is important. Thus, Beta MRF was used as a prior distribution to make

inference for unknown probabilities p. This method can be regarded as an

extension of the original Bubbles with Bayesian adaption where Beta(1, 1)

distribution is used as a prior, but where image pixels are assumed to be

independent. An alternative approach, the adaptive Bubbles with Ising prior

uses the autologistic model as a prior distribution and thus, suggests to make

inference about the unknown binary values x ∈ {−1,+1}, which correspond

to whether pixel is ’important’ or not. Comparing these two methods in

terms of the number of sampling trials, we observed, that the Beta MRF

prior allows us to stop sampling slightly earlier than the Ising prior.

The way in which both algorithms have been implemented assumes that the

vector of parameters (α, β, θ)> for the Beta MRF prior or (α, β)> for the Ising

prior are fixed throughout our experiment. Further work can be done to in-

corporate these in our Bayesian model: instead of sampling from the fixed

parameter model π(p|y1, ...yj, α, β, θ), we can sample from the distribution
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π(p, α, β, θ|y1, ...yj) using the pseudo-likelihood method discussed in chapter

6 for its approximation. Adjusting parameter values on-line, we expect to

achieve better estimation results.
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