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Abstract

A new algorithm for the analysis of gravitational wave data from rapidly rotating

neutron stars has been developed. The work is based on the Markov Chain Monte

Carlo algorithm and features enhancements specifically targeted to this problem.

The algorithm is tested on both synthetic data and hardware injections in the

LIGO Hanford interferometer during its third science run (“S3”). By utilising

the features of this probabilistic algorithm a search is performed for a rotating

neutron star in the remnant of SN1987A within in frequency window of 4 Hz and

a spindown window of 2 × 10−10 Hz s−1. A method for setting upper limits is

described and used on this data in the absence of a detection setting an upper

limit on strain of 7.3×10−23.

A further application of MCMC methods is made in the area of data analysis

for the proposed LISA mission. An algorithm is developed to simultaneously es-

timate the number of sources and their parameters in a noisy data stream using

reversible jump MCMC. An extension is made to estimate the position in the sky

of a source and this is further improved by the implementation of a fast approxi-

mate calculation of the covariance matrix to enhance acceptance rates. This new

algorithm is also tested upon synthetic data and the results are presented here.

Conclusions are drawn from the results of this work, and comments are made
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on the development of MCMC algorithms within the field of gravitational wave

data analysis, with a view to their increasing usage.
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Chapter 1

Introduction

1.1 Background

The development of physics and astronomy has shown that conditions in the uni-

verse are often far removed from everyday experience, and by investigating these

conditions we may test competing hypotheses for their applicability to the broad-

est possible range of phenomena. Indeed, much of modern physics is devoted to

observing the most energetic events known, in the laboratory or in the night sky,

in order to probe the limitations of our understanding and thereby make progress.

The General Theory of Relativity is an example of a theory which deals with

such extremes, and explains the behaviour of matter and energy in conditions of

great density and pressure, such as those that exist in neutron stars, black holes

and in the evolution of the universe itself. It describes gravity in terms of the

geometry of spacetime, how this is affected by the presence of matter, and how

in turn the dynamics of material bodies are influenced by the geometry. The mo-

tivation for this came from the problem of reconciling Newtonian gravity, which

3
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describes gravity as acting instantaneously across space, and Special Relativity,

which forbids any physical interaction propagating faster than light, if one is to

retain causality. In the 1915 General Theory, Einstein was able to give a geomet-

ric description of gravity that did not travel instantaneously, and recognised the

implication of the existence of gravitational waves.

In spite of this early recognition, Einstein himself doubted that gravitational

waves could ever be observed in an experiment, since the gravitational interaction

with matter is so small. Today though, there are several searches for gravitational

waves under way, of which I am involved in the Laser interferometric Gravitational

Wave Observatory (LIGO) and GEO experiments.

This chapter will present a brief introduction to the theory of gravitational

waves in General Relativity. For a much more detailed explanation and discussion

of the material presented here, consult references [3] and [4] and the article by

Thorne in [5].

1.2 Introduction to Gravitational Waves

The description of spacetime in General Relativity (henceforth “GR”) follows from

Special Relativity, in that space and time are not distinct entities in themselves, but

are combined as a 4-dimensional manifold (t, x, y, z), upon which a metric tensor

gµν is defined. In flat spacetime, as in Special Relativity, this is the Minkowski

metric with gµµ = {−1, 1, 1, 1}, gµν = 0 (µ 6= ν), in units where G = c = 1.

However, in GR the manifold may possess a curvature, described by the Rie-

mann curvature tensor Rαβγδ, and contracted to form the Ricci tensor Rαβ ≡ Rµ
αµβ.

The effect of this curvature is to produce geodesic deviation, such that an inertial
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observer will experience deflection of their spacetime path. In this way, what New-

ton viewed as an instantaneous force, Einstein described as an effect of geometry,

where gravitation is determined purely by the local curvature of spacetime.

The source of the gravitational field in GR is the stress-energy tensor Tµν , which

is a co-ordinate independent object encoding the density of energy and momentum

at each point on the space-time manifold. To an observer in a particular co-

ordinate system, the components of this tensor are interpreted as the flux of energy-

momentum in each co-ordinate direction. For example, the T00 component contains

the mass density, the source of classical Newtonian gravity.

The connection between the stress-energy tensor and the curvature tensor is

given by the Einstein Field Equation

Gµν = Rµν −
1

2
gµνR = 8πTµν , (1.1)

where R = gµνR
µν is the Ricci curvature scalar.

1.2.1 Derivation of Gravitational Waves

For the derivation of gravitational waves, it is convenient to take the weak-field

approximation of the theory; since a flat spacetime results in no gravitational field,

the weak field is represented as a small perturbation to the flat Minkowski metric

ηµν :

gµν = ηµν + hµν , (1.2)

where |hµν | � 1, following the notation and procedure of [3]. It can be shown

that under a Lorentz transform Λα
β , hµν itself behaves like a tensor, although not
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under a general transformation. From this is defined the trace h = hµµ, and the

“trace-reversed form”

h̄µν = hµν − 1

2
ηµνh. (1.3)

It is then always possible to choose a gauge such that Gµν = −1
2
�h̄µν , so the

Einstein Equations can then be written

�h̄µν = −16πT µν . (1.4)

In empty space, this reduces to the familiar wave equation �h̄µν ≡ h̄αµν,α = 0, with

the simplest solution being the plane gravitational wave,

h̄µν = Aµν exp (−ikαxα). (1.5)

It is shown in Schutz [3] that this wave follows a null geodesic, travelling at the

speed of light, and in the transverse-traceless gauge that the amplitude tensor is

given by the expression

ATTµν =



0 0 0 0

0 Axx Axy 0

0 Axy −Axx 0

0 0 0 0


, (1.6)

for a wave travelling in the z direction. Gravitational waves therefore are transverse

waves, with two polarisations corresponding to Axx and Axy. To examine the effect

of a gravitational wave on matter as it passes, consider two particles separated by

a small distance ε in the x direction only, and initially at rest relative to each
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other. The proper distance δl between them is given by

δl =

∫
|gµνdxµdxν |

1
2

=

∫ ε

0

|gxx|
1
2dx

≈
(

1 +
1

2
hTTxx

)
ε

In the presence of a gravitational plane wave travelling in the z direction, with a

non-zero component in the Axx polarisation, this separation becomes

δl = ε+
ε

2
Axx exp (−ik0t) (1.7)

and so the effect of the incoming wave is to change the physical distance between

the two masses (as distinct from the co-ordinate distance which does not change

[4]). The change in distance is dependent on the amplitude of the wave, and also

the direction of separation of the two test particles. This feature is a result of the

polarisation states of a gravitational wave, which will now be illustrated.

1.2.2 Polarisation of Gravitational Waves

Like their electromagnetic counterparts, gravitational waves can be expressed as

having either linear or circular polarisation bases. For the linear case, it is tra-

ditional to depict the action of the gravitational wave as it acts on a ring of test

masses placed in the plane transverse to its direction of travel. In figure 1.1, 21

particles are placed in a stationary ring centred on the origin, parametrised by the

4-vector {0, ε cos θ, ε sin θ, 0}. The displacement from the origin is then given by



CHAPTER 1. INTRODUCTION 8

Figure 1.1: The “+” (top) and “×” (bottom) polarisations of a gravitational wave,
with increasing time towards the right of the page.

the same technique used above;

δx = ε cos θ

(
1 +

1

2
Axx exp (−ik0t)

)
+ ε sin θ

(
1

2
Axy exp (−ik0t)

)
(1.8)

δy = ε sin θ

(
1− 1

2
Axx exp (−ik0t)

)
+ ε cos θ

(
1

2
Axy exp (−ik0t)

)
(1.9)

In the upper part of figure 1.1, a wave with only Axx 6= 0 is shown, the deformation

is in a quadrupolar pattern oriented vertically and horizontally, and is therefore

known as the “+” polarisation. The second polarisation state shown in the lower

part of 1.1, and has the same form rotated by 45◦, known as the “×” polarisation.

As the wave passes through, the stress on the ring reverses sign and the contrac-

tion on one axis becomes an expansion. This 45◦ rotation between polarisations,

contrasted with the 90◦ rotation for electromagnetic waves reflects the general fact

that the inclination between polarisations of a radiation field of spin S is 90◦/S

[4].
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Having shown that gravitational waves are indeed real solutions within the

vacuum Einstein equations, it is necessary to enquire about their origins, what

systems will produce them, and what information they may carry about their

source.

1.2.3 Generation of Gravitational Waves

In this section the generation of gravitational waves will be derived, with the

quadrupole mass distribution as the source. The quadrupole moment is the second

moment of the mass distribution,

Ijk =

∫
T00xjxkdV, (1.10)

which is not conserved in a general process, and is therefore the lowest order

moment which may emit gravitational radiation. Specifically, it can be shown as in

[4] that the amplitude of the gravitational wave in the slow-motion approximation

(where v � c and h� 1) is related to the quadrupole moment by

hjk =
2G

c4r
-̈Ijk (1.11)

where r is the distance to the source, and -Ijk is the reduced quadrupole moment,

obtained by removing the trace from the quadrupole moment:

-Ijk = Ijk −
1

3
δjktrace (Ijk) =

∫
T00

(
xjxk −

1

3
δjkr

2

)
dV. (1.12)
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From the constant of proportionality G/c4 ≈ 8.26 × 10−45 m−1kg−1s2 in equation

1.11, it is clear that only very dense objects undergoing acceleration will produce

gravitational waves of significant amplitude that might be detected far from the

source. For example, consider a simple binary system of two neutron stars, each of

mass M , with a circular orbit of radius R and orbital frequency f . The co-ordinate

system is defined such that the plane of the orbit is the x− y plane, and at t = 0

the stars lie at positions x = {+R,−R}. If we approximate the stars as point

masses, equation 1.12 becomes

-Ixx = 2MR2

(
cos2 (2πft)− 1

3

)
-Iyy = 2MR2

(
sin2 (2πft)− 1

3

)
-Ixy = MR2 sin (4πft)

-Izz = -Izx = -Izy = 0

By taking the second time derivatives of these quantities and substituting in equa-

tion 1.11, we arrive at expressions for the gravitational wave strain at distance r

along the z-axis:

hxx = −A0

r
cos 4πft

hyy =
A0

r
cos 4πft

hxy = −A0

r
sin 4πft
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where A0 is the amplitude term

A0 =
32G

c4
π2f 2MR2. (1.13)

From these equations it is clear that gravitational radiation is emitted at twice

the rotation frequency of the binary system, and this is true in general for any

quadrupolar gravitational radiation.

From Kepler’s 3rd law as written for a circular binary system,

4π2f 2r3 = G(m1 +m2) (1.14)

the orbital frequency and the separation of the stars are related. For an example of

a late-stage binary inspiral of two neutron stars, each having mass equal to the sun

(M� = 1.989×1030 kg)[6] and a separation of 50 km, the orbital frequency is 232 Hz

(gravitational wave frequency 464 Hz). If the system is situated at a distance of

10 Mpc along the z-axis, the gravitational wave strain amplitude on Earth will

be approximately 2.26 × 10−21. Although this is a tiny quantity, it represents

a significant amount of power emitted by the source. Using the expression for

gravitational wave luminosity

LGW =
1

5

G

c5

〈(
∂3 -I

∂t3

)2
〉

(1.15)

with equation 1.12 gives a total power radiated of 4.183×1046 W, and a power flux

at Earth of approximately 0.34 Wm−2. The characteristics of this source would

make it a candidate for detection by the current generation of laser interferometer

gravitational wave detectors, lying in the sensitive frequency range and with suffi-
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cient amplitude and duration to have a strong signal to noise ratio. In reality, the

orbits of a binary system such as this will rapidly decay due to this emission of

energy, producing a strong burst of gravitational radiation upon the final merging

of the two stars; and for a time afterward the resulting body would lose energy in

this manner too. These are examples of some of the ways in which an astronomi-

cal system may produce gravitational waves during the most violent stages of its

lifetime.

1.3 Sources Of Gravitational Waves

I will now give a short list of astronomical systems that represent likely sources

of gravitational waves. The reason that gravitational waves generated on Earth

are not likely to be detectable is apparent in equation 1.13, where the factor

G/c4 must be countered by a very large mass M , which is not possible in the

laboratory. There are three main categories into which we can divide the sources

of gravitational waves: transient sources, continuous wave sources and stochastic

sources.

1.3.1 Transient Sources

Transient sources are those which appear once, emitting a burst of gravitational

waves, before fading rapidly. Because they are not repeated, they must produce

a high signal to noise ratio in their short lifetime in order to allow a confident

detection. Additional evidence, such as their observation in multiple detectors or

synchronicity with an observed electromagnetic event may also bolster confidence

in a detection. The cause of a gravitational wave burst must be a very powerful
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event in order to produce enough radiation to register with detectors on Earth,

some possible events of sufficient power are described below.

Supernovae

When the core of a large star undergoes gravitational collapse at the end of its

lifetime, a large amount of energy is liberated in a short interval. The detailed

process of core collapse is poorly understood due to the difficulty in modelling the

full nuclear, stellar and gravitational physics involved in the creation of a neutron

star or black hole, which are the end products of this process. Electromagnetic

radiation produced in the core is obscured from view by the outer layers of the

star, and even the neutrinos generated are scattered by the intervening matter as

they heat it. For this reason, by observing gravitational waves from the collapse we

stand to gain a great deal of information of the internals of a supernova that cannot

be obtained any other way at present. Also due to the difficulty in modelling,

the waveforms generated are unknown, and it is not clear whether significant

amounts of gravitational radiation will be produced as this depends on deviations

from spherical symmetry as the mass distribution changes. However, due to the

conservation of angular momentum, the core will be very rapidly rotating, and any

instability could potentially lead to such an asymmetry.

If the configuration of the final neutron star or black hole is not spherically

symmetric, the compact object will ring down by emitting gravitational waves

and becoming smoother.



CHAPTER 1. INTRODUCTION 14

Binary Inspirals

Compact stars, i.e. white dwarfs, neutron stars and black holes, are expected to

exist as binary systems in large numbers in the Milky Way, and these will produce

continuous gravitational radiation which causes their orbits to slowly decay in the

manner described in 1.2.3 and 1.3.2. As the orbital frequency gets higher and

the separation of the stars shrinks, the power radiated grows accordingly and the

strength of the gravitational wave grows.

Once such a binary has reached the final few minutes of its lifetime, the be-

haviour of the orbit becomes highly relativistic. In this regime the post-Newtonian

approximation is used to make calculations of parametrised waveforms, allowing

the use of matched filtering to perform a search. However, the final plunge stage is

not amenable to this treatment, and numerical relativity techniques involving com-

plex simulations must be used to model the large burst of gravitational radiation

which is emitted.

During the late-stage inspiral regime, the waveform produced by the pair of

stars gradually sweeps upward in frequency producing a “chirp” signal that has

been searched for in LIGO data from the S3 and S4 runs, and in the absence of

detection a 90% upper limit has been placed on the rate of binary neutron star

mergers at < 1.2 per year per L10, on stellar mass binary black holes of < 0.5

per year per L10 and of primoridal black holes of 4.9 per year per L10, where L10

represents 1010 times the luminosity of the sun in blue light [7].
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1.3.2 Continuous Wave Sources

Unlike transient sources, continuous wave sources persist over a long period of

time while maintaining the same frequency, or with frequency evolving slowly.

They are often generated by the rotational motion of a quadrupolar system which

is relatively isolated, leading to an approximately stationary frequency which is

twice the rotational frequency of the system, as in 1.2.1. The persistence of their

signals means that they may be observed over a long period of time, allowing

a large amount of data to be collected to improve the signal to noise ratio and

estimate the parameters of the source. The statistical methods of this type of

analysis shall be introduced in chapter 2, which are applied in this text to two

types of continuous sources, neutron stars and binary star systems.

Neutron Stars

A neutron star, being the extremely dense collapsed core of a former star, is a good

candidate for the production of gravitational waves. As the angular momentum

of the original star is conserved, a neutron star will rotate rapidly unless damped,

and many rotating neutron stars have been observed as pulsars with rotation fre-

quencies as high as 716 Hz [8]. This rotation may produce continuous gravitational

waves when combined with an asymmetric distribution of mass, or free precession

in the star. Although not a continuous source, it is also possible that a starquake,

or cracking of the crust of a neutron star, may produce a burst of gravitational

waves by excitation of the quasi-normal modes of oscillation [9].

In my work I have concentrated on the emission of gravitational waves from an

asymmetric distribution of mass under rotation about an axis; I will take a closer
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look at how this arises in section 2.3.1. The particular asymmetry required is

non-axisymmetry, where the pulsar does not possess a rotational symmetry about

its rotation axis. As the neutron star cools after formation, it is thought that it

may form a solid crystalline crust on its surface, surrounding a core of degenerate

material [10]. This crust may support a small bump or mountain, which would

lead to a triaxial mass distribution, or the magnetic field of the star may deform it

or cause accretion to be concentrated onto a small area of its surface. This latter

possibility is especially likely in low mass X-ray binary systems, where accretion

can often spin up the neutron star to periods on the order of 1 ms.

The typical size of such a deviation from spherical symmetry is uncertain,

and depends on the shear strength of the crust σ, with estimates of the allowed

maximum ellipticity given by

εmax = 5× 10−7
( σ

10−2

)
. (1.16)

Estimates of the shear strength of the crust, which is a measure of the shear which

can be withstood before breaking, can vary from model to model, with the largest

being σmax ≈ 10−2 − 10−1 for a perfect crystal, but with more recent estimates

being in the range σmax ≈ 10−4 − 5× 10−3 [10].

Binary Stars

Binary stars provide the most certain source of gravitational waves, and indeed it

was through the observation of the decaying orbit of binary pulsar PSR B1913+16

that the first indirect measurement of gravitational waves was obtained, winning

Hulse and Taylor the 1993 Nobel Prize in Physics and confirming the predictions of
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General Relativity to an accuracy which with continuing observations has reached

0.2% [11, 12].

As was described in the previous section, it is the emission of gravitational

waves that causes the orbit to decay, gradually shortening the period. It is expected

that there is a large population of binary stars in the galaxy which are emitting

gravitational waves with a range of frequencies up to 0.1 Hz. Estimates of the

number of these sources based on models of the galactic population speculate that

around 105 binaries lie in the range 1 mHz to 5 mHz alone [13].

This vast number of binaries presents a serious data analysis challenge for

the proposed LISA mission, where the superimposed signals from these binaries

produce an unresolvable background of gravitational waves below 1 mHz, swamp-

ing the instrumental noise curve. Above 1 mHz, these binaries begin to become

individually resolvable, and their location and parameters may be estimated, al-

though they are so dense at low frequencies that the signals will become confused.

In chapter 5 I present work aimed at developing a data analysis system which can

estimate these parameters where possible, and simultaneously estimate the level of

the gravitational wave noise floor. Such analysis techniques will be crucial in the

analysis of LISA data, which is why a series of mock data challenges are ongoing

to spur development of suitable algorithms [14, 15].

1.3.3 Stochastic Sources

A stochastic gravitational wave background is postulated to exist, produced by as-

trophysical and cosmological sources which are not resolvable individually. There

are two main candidate sources for such a background. The first is the superpo-
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sition of the radiation from a vast number of binary star systems in the Milky

Way which radiate at frequencies too low to be resolved in position on the sky.

These sources will contribute to the data analysis challenge of the LISA mission as

their combined amplitude is enough to swamp the instrumental noise curve below

frequencies of approximately 1 mHz. Above this frequency the sources begin to

become individually resolvable and therefore no longer constitute a true stochastic

background.

A stochastic background radiation of cosmological origin is also posited to

exist as a result of processes in the early universe. In an analogous fashion to

the production of the cosmic microwave background radiation, there is expected

to be a cosmic gravitational wave background radiation which would have been

produced when the graviton decoupled from the other fields in the very early

universe. Although the details of this process remain unknown, it is expected that

such a decoupling would have occurred at or around the Planck epoch, 5× 10−44

seconds after the initial singularity [16]. As such, the observation of such a relic

could provide a valuable insight into the state of the universe at the earliest stages

of its evolution that could be attained no other way. It has also been proposed

that the process of inflation, and other phase transitions in the early universe

could generate a cosmological background [17]. Different theories of cosmology

and unified physics produce different predictions of the specific nature of this

background, and it therefore could also be used as an observation to discriminate

between them.

Although current ground-based detectors are unlikely to to observe a stochastic

background, they have been able to place upper limits on the strength of such

radiation, and this in turn allows a limit to be placed on ΩGW, the energy density
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of gravitational waves in the universe [18, 19].

1.4 Detection of Gravitational Waves

1.4.1 The Response Function of a Laser Interferometer

The interaction of the gravitational wave with an interferometric detector is anisotropic.

Although it is impossible to “aim” the detector as if it were a telescope, it has a

response function which is more sensitive in certain directions than in others. As

the Earth rotates and orbits the Sun it carries the detector with it, sweeping the

response function across the sky and modulating the amplitude of the sinusoidal

signal emanating from a fixed sky position.

The response in the detector is the combination of the strains from each po-

larisation state, multiplied by the response to that polarisation,

h(t) = h+(t)F+(t) + h×(t)F×(t). (1.17)

The response functions or beam pattern functions F+, F× are derived in [20], and

have the form:

F+(t) = sin ζ [a(t) cos 2ψ + b(t) sin 2ψ] (1.18)

F×(t) = sin ζ [b(t) cos 2ψ − a(t) sin 2ψ] , (1.19)

where ζ is the angle between the arms of the detector, and the full expressions for

the functions a(t) and b(t) which describe the rotation of the detector relative to

a fixed point can be found in [20]. ψ is the angle between the polarisation axis
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of the incoming gravitational wave and that of the detector, and is an unknown

parameter which must be inferred during the analysis of the data (see table 2.1).



Chapter 2

Probability Theory for Data

Analysis

2.1 Bayesian Inference

When analysing gravitational wave data for a possible weak signal, it is desirable

to extract the maximum possible information from the data to gain the best sen-

sitivity. The outcome of a search for a particular type of signal is the answer to

the question, how confident am I that there is a signal present, given data {Bk}?

This is a conditional probability which we can use Bayesian Inference to express

quantitatively as a value between 0 and 1. If the model of the signal has variable

parameters, we can also then ask the probability density distribution as a func-

tion of the parameter space, which allows an inference to be made about these

parameters, for example the amplitude. This definition of probability as a degree

of reasonable confidence differs from the more common definition of a limiting

frequency in repetitions of a random experiment which occurs in orthodox or fre-

21
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quentist statistics. However, the frequentist view only gained prominence some

time after the original theory of probability was developed by Laplace, who redis-

covered a result published posthumously in 1763 by the Reverend Thomas Bayes

[21]. It is worthwhile to briefly revisit the reasoning that led Laplace to define a

probability as a degree of confidence, and a much fuller discussion of this can be

found in the literature [22, 23, 24].

Laplace started with the axioms of probability, namely the sum rule

P (A|C) + P (Ā|C) = 1, (2.1)

and the product rule

P (AB|C) = P (A|BC)P (B|C). (2.2)

In the terminology of the above equations P (A|C) represents the probability of

proposition A conditional on C, Ā is the negation of A or “not A” in the language

of logic. Since any proposition must be true or false, the sum rule is an obvious

requirement of the theory. P (AB|C) is the probability of A and B being true,

given C. Note that by exchanging A and B the product rule can equally well be

written P (AB|C) = P (B|AC)P (A|C), as the logic operation and is commutative.

From equation 2.2 and the commutativity relation, it is simple to derive Bayes’

theorem. Consider an example where a hypothesis H is being compared with

observation data d. It is also necessary to include I, representing any assumptions

or prior information that may be pertinent to the problem. By simply rearranging
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equation 2.2 we obtain Bayes’ theorem.

P (H|d, I) =
P (d|H, I)P (H|I)

P (d|I)
(2.3)

Examining equation 2.3, the meaning of each term can be distinguished. P (H|d, I)

is called the posterior probability, and is the probability of hypothesis H condi-

tional on the data. P (d|H, I) is the likelihood function, which is a measure of how

well the data fit the hypothesis, which together with the prior P (H|I) it allows

the comparison of different hypotheses or models. P (d|I) is a normalisation fac-

tor, the marginalised likelihood or evidence, which can be ignored when comparing

different models against the same dataset, giving the relation

P (H|d, I) ∝ P (d|H, I)P (H|I). (2.4)

Bayes’ theorem therefore allows one to assign a quantitative probability to a spe-

cific hypothesis, in light of the observations. This is of great use in data analysis

where competing hypotheses are tested against observational evidence, and when

comparing two competing hypotheses it is common to take the ratio of their prob-

abilities. In this case the marginalised likelihood term cancels and equation 2.4

is a sufficient quantity to calculate for each model. The proportional form of

Bayes’ theorem is used extensively in the work presented here, where we are usu-

ally concerned with the relative probability of competing propositions where the

hypothesis is parametrised by certain variables, and the task is to find how the

probability varies as a function of them.
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2.2 Parameter Estimation

Consider a measurement of a single quantity x which is parametrised to take a

value in the range x ∈ [0, 3). The measurement process is imperfect and does not

yield consistent answers, so I might make multiple measurements of x and ask for

the probability that x lies in a certain range of its parameter space. From the

axioms of probability 2.1, 2.2 we can break down the problem thus,

P (0 ≤ x < 1|d, I)+P (1 ≤ x < 2|d, I)+P (2 ≤ x < 3|d, I) =
∑
z

P (x ∈ z|d, I) = 1,

since the ranges codified z are mutually exclusive and exhaustive of the parameter

space. It is obvious that one can divide up the parameter range into any number

of such propositions, and that in the limit of an infinite number, the sum becomes

an integral ∫ 3

z=0

p(x = z|d, I)dz = 1.

It should be noted that the symbol p is used for the integrand to emphasise it is

a probability density function, as opposed to the probabilities denoted P above.

In this manner we can estimate a continuous parameter by assigning a posterior

probability density function (PDF) to it, and proceeding through the use of Bayes’

theorem. It is also usual to omit the dummy variable z, so Bayes’ theorem as

applied to estimation of a parameter µ is

p(µ|d, I) =
p(µ|I)p(d|µ, I)

p(d|I)
. (2.5)

If the model is a function of more than one variable, then the posterior density
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function simply becomes a joint probability distribution on these variables, which

may be correlated. The dimensionality of this can be reduced by the process of

marginalisation to eliminate parameters that are not of interest from the result

thus,

p(µ|d, I) =

∫ ∞
−∞

p(µ, θ|d, I)dθ, (2.6)

where θ is the parameter to be marginalised over. With these results, we are ready

to proceed to analysing data from gravitational wave antennae and searching for

parametrised signals.

2.3 Bayesian Inference and Gravitational Wave

Data Analysis

In order to use coherent integration to raise the signal-to-noise ratio of possible

signals, it is necessary to have a model of the gravitational wave signal of that

source. In this section I will derive these signal models using the quadrupole

formalism, which allows the definition of the likelihood function and the rest of

the analysis to take place.

2.3.1 Continuous Wave Signal from a Triaxial Neutron

Star

Consider a neutron star, rapidly rotating with a small equatorial ellipticity ε. The

star has moments of inertia Ixx, Iyy, Izz about three principal axes. The equatorial
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ellipticity ε is given by

ε =
Ixx − Iyy
Izz

. (2.7)

If the star is rotating about the z-axis with an angular frequency ω = 2πf , gravita-

tional waves will be emitted as the elliptical mass distribution produces a varying

quadrupole moment as it rotates. By combining equation 2.7 with the quadrupole

formalism of equation 1.12, the nature of the gravitational waveform can be de-

rived [25]. Expressed as a function of ellipticity, the dimensionless gravitational

wave amplitude at Earth of a pulsar at distance r is given by the expression

h0 =
4G

c4
ω2Izz
r

ε. (2.8)

Which can be written with fiducial values of the parameters [26],

h0 ≈ 4.22× 10−24ε

(
1 kpc

r

)(
f

1 Hz

)2(
Izz

1038 kgm2

)
. (2.9)

The sinusoidal form of the gravitational wave is modulated in both frequency

and amplitude by the relative orientation of the pulsar with respect to the detector,

and by the motion of both the source and the detector as it follows the Earth in its

path round the Sun. For continuous wave signals, the raw data can be demodulated

to correct for the Earth’s motion, with the result being the gravitational wave form

as would be seen at the Solar System barycentre (SSB). This is a function of several

parameters which describe the neutron star system (see figure 2.3.1) and gives a

gravitational waveform

h(t; a) =
h0

2
F+(t;ψ)

(
1 + cos2 ι

)
cos Φ(t)− h0F× cos ι sin Φ(t), (2.10)



CHAPTER 2. PROBABILITY THEORY FOR DATA ANALYSIS 27

Figure 2.1: Angle parameters describing the orientation of a neutron star relative
to the detector in equation 2.10. Here the Ψ parameter is defined in the opposite
sense to that used in the search (ψ), such that ψ = π

4
− Ψ. Image credit: Russell

Jones
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where ι is the inclination angle of the spin axis of the neutron star relative to the

line-of-sight vector between the SSB and the star. F+ and F× are the response

functions of the detector to the two gravitational wave polarisations, the magnitude

of each being determined by ψ the relative polarisation angle between detector and

source (see 1.4.1), and Φ(t) is the phase of the gravitational wave, which expressed

as a Taylor expansion is

Φ(t) = φ0 + 2π
∞∑
i=0

ti+1

(i+ 1)!

dif

dti
= φ0 + 2π

(
ft+

1

2
ḟ t2 +

1

6
f̈ t3 + . . .

)
. (2.11)

Here, t = 0 is the epoch of the observation at which φ0 is defined. It should be

noted that f refers to the signal frequency, and not the rotation frequency of the

pulsar. The spindown parameter ḟ is usually very small, and further derivatives

are generally unmeasurable due to timing noise [27].

When calculating the time co-ordinate used at the SSB, one must account for a

variety of effects to produce a time stamp accurate enough to keep the phase of the

model coherent with the phase of the signal over the period of observation. Since

the time co-ordinate should be defined in a frame that is as close to co-inertial

with that of the pulsar as possible, relativistic effects which are of a local cause

and correctable such as the dilation of time by the presence of the Sun (Shapiro

effect) and the time-varying gravitational redshift produced by the movement of

the Earth (Einstein delay). If the pulsar is accelerating relative to the SSB, then

this will appear as a red- or blue-shift of the source depending on whether it

is accelerating away or toward the Earth respectively. In accordance with the

Principle of Equivalence this is indistinguishable from a spindown or spinup of the

pulsar in its own inertial frame, and so must be treated as such in the analysis.
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The major contributing factor within the solar system is the Roemer delay, the

travel time of the signal between the detector and the SSB, which can be up to 499

seconds (1 A.U./c) when the source, Earth and the SSB are aligned. The correct

transformation from local time at the detector tGPS to SSB time t is given by [28]

t = tGPS + ∆Roemer + ∆Shapiro + ∆Einstein. (2.12)

With accurate tracking of these delay effects, a coherent phase model of the

pulsar is maintained over the length of the observation, and this is included when

calculating the downsampled signal during the first stage of the analysis. This

first stage involves the multiplication of the data by a sinusoidal signal with the

same frequency as the target, but with opposite phase evolution. The inclusion of

these time delays in the phase evolution means that the heterodyne frequency is

effectively not constant but is continually corrected to account for the particular

source under consideration, as these delay effects vary with the position of the

source on the sky. The process of heterodyning, which shifts a signal in frequency,

is detailed further in section 4.1.1.

As the data is heterodyned and downsampled in first stage of the analysis, the

variance of the noise from the detector is also calculated. Since the noise in the

detector is typically not stationary over the entire observation run, it is estimated

at a rate of 1/60 Hz, which is sufficient in that the noise does not vary significantly

over the timescale of 1 minute. Once heterodyned, the mean of the data in each

minute is calculated to yield Bk, which is the series of data points on which the

algorithm will operate. In the process of downsampling the data, the variance of

each sample Bk is computed from the original data points to yield σk, the level
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of noise as estimated from a 4 Hz window around the target frequency. This is

described in greater detail in section 4.1.

After the complex heterodyne, which essentially multiplies the signal by one of

the opposite phase, equation 2.10 evaluated at timestamps tk becomes [28]

y(tk; a) =

(
1

4
h0F+(tk;ψ)(1 + cos2 ι)− i

2
h0F×(tk;ψ) cos ι

)
exp(iφ(tk, δf, ˙δf)),

(2.13)

where the phase in the heterodyned signal is given by the deviation from the fre-

quency and spindown parameters used in the heterodyne (δf and ˙δf respectively)

taken at epoch T0:

φ(tk, δf, ˙δf) = φ0 + 2π

(
δf(tk − T0) +

1

2
˙δf(tk − T0)

2

)
, (2.14)

and a is a vector of the six parameters, a = (h0, cos ι, φ0, ψ, δf, δḟ).

2.3.2 Likelihood function

With all these details under consideration, we are now able to write the likelihood

function for a pulsar signal parametrised by the six unknown variables in table

2.1, and a vector in the 6-dimensional parameter space is denoted a.

With the assumption that the noise follows a stationary distribution with a

mean of 0 and a known variance σk, we may use the Gaussian distribution to

model it. The set of observational data {Bk} is therefore assumed to be composed

of a signal (whose amplitude may be zero) superimposed on uncorrelated Gaussian

noise. The likelihood function in equation 2.3 is then given by the product of the
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Parameter Description

h0 Gravitational wave strain amplitude.

ψ Polarisation angle of the source relative to the detector.

φ0 Initial phase of the gravitational wave signal.

cos ι Cosine of inclination angle of pulsar spin axis to line of sight.

f Frequency of the gravitational wave signal (f = 2frot).

ḟ First time derivative of signal frequency.

Table 2.1: List of parameters of MCMC pulsar search

individual likelihoods for each data point,

p({Bk}|a, I) =
N∏
k=1

1

2πR(σk)I (σk)
exp

[
−1

2

∣∣∣∣Bk − y(tk; a)

σk

∣∣∣∣2
]

(2.15)

= exp

[
−1

2

N∑
k=1

∣∣∣∣Bk − y(tk; a)

σk

∣∣∣∣2
]

N∏
k=1

[
1

2πR(σk)I (σk)

]
(2.16)

R(σk) and I (σk) are the real and imaginary parts of the complex number σk

respectively. When performing parameter estimation over a fixed data set of known

σk, the product term is irrelevant and we have

p({Bk}|a, I) ∝ exp

[
−1

2

N∑
k=1

∣∣∣∣Bk − y(tk; a)

σk

∣∣∣∣2
]
. (2.17)

This function, when multiplied by the prior, gives the posterior probability

density function p(a|Bk, I) of a gravitational wave of parameters a being present

in the data. This is defined on the six-dimensional parameter space of a, which

has the ranges shown in table 2.2. These ranges are a constraint on the prior

probability distribution, as any possibility outside of them is effectively assigned

a probability of zero.
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Parameter min. max.

h0 0 1× 10−19

ψ −π
4

π
4

φ0 0 2π

cos ι −1 1

δf − 1
120

Hz 1
120

Hz

˙δf −1× 10−9 Hzs−1 1× 10−9 Hz s−1

Table 2.2: The range of each parameter describing the pulsar waveform after
heterodyne 2.13.

By examining equations 2.13 and 1.18, it is clear why the range of the angle

parameter ψ covers only the interval [−π
4
, π

4
]. The factor of two produces a copy

of the function under the transformation ψ → ψ + π, rendering half the the range

[−π, π] unnecessary. The range is further reduced by one half because the trans-

formation ψ → ψ + π
2

is equivalent to φ0 → φ0 + π. By allowing φ0 to vary over

the full 2π range, we may therefore limit the range of ψ to that shown in the table.

2.3.3 Priors on Parameters

In order to define the PDF, the prior probability distribution must also be known

or assigned based on assumptions or relevant information that might be known. In

the case of the pulsar orientation parameters which are unknown, the prior should

represent an equal probability of the pulsar spin axis pointing in any direction on

the sphere surrounding it, i.e. a uniform prior on area. The element of area as

expressed in polar co-ordinates ψ, ι is dA = sin ιdιdψ = d cos ιdψ, so the prior

should be uniform on the parameters cos ι and ψ, which allows convenient use of

cos ι as a parameter rather than ι. The phase of the signal φ0 is also unknown,
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so the non-informative uniform prior over the range is used here also. The di-

mensionless amplitude parameter h0 was assigned a prior which was uniform over

the range (0, 10−19). It may be argued that it should have an “scale prior” of the

form p(h0|I) ∝ 1
h0

[22], however this would lead to a distribution which is formally

unnormalisable, as it diverges at h0 = 0. The use of this prior also presents diffi-

culties for Markov Chain Monte Carlo estimation, as introduced in 2.4, since the

chain tends to become trapped in the area close to the origin where the diverging

prior overwhelms the likelihood, rather than exploring the full parameter space. In

practice, any prior which does not assign probability zero to the likelihood mode

will return very similar results, as the product of the individual data likelihoods

overwhelm the prior when their number is large, as is in this case with typically

tens of thousands of points.

The prior distributions on frequency and spindown were adjustable, taking

two possible forms. The first and simpler of these were simply uniform priors over

the entire range of frequencies permitted by the Nyquist theorem. This was used

in the broadband search where the frequency of the signal was considered to be

essentially unknown. The alternative prior was a normal distribution that could

be centred on a target frequency to perform a more detailed search of a narrow

range of frequencies.

2.4 The Markov Chain Monte Carlo Algorithm

Having defined the posterior PDF for a pulsar signal in the data, the problem of

searching for a signal becomes one of examining this distribution. If a signal is

present, it will appear as a strong peak at some particular values of the parameters;
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the maximum value and width of the peak are determined by the signal to noise

ratio of the source. For a strong signal the probability distribution surrounding

the peak is well approximated by a multivariate normal distribution in the six

parameters, however as we shall see certain combinations of parameters are highly

correlated, and the width of the distribution in frequency is exceedingly narrow

compared to the range of the search. In previous work on targeted pulsars, where

the frequency and spindown are known from radio observations, an exhaustive

search of the 4-dimensional parameter space was possible by placing a grid over the

4 parameters and evaluating the likelihood. If no maximum was found indicating

a signal, this could then be marginalised over the ψ, φ0 and cos ι parameters to

set an upper limit, as described in [28, 27, 26].

When the frequency and spindown parameters are introduced into the search

it becomes no longer practical to search the parameter space exhaustively, based

on a grid. The reason for this can be seen if we consider the width of the posterior

mode in frequency and spindown. For a signal which is not super-resolved, i.e.

one at low SNR, the width of the main mode in frequency will be, at most, the

width of one frequency bin given by ∆f = T−1
obs, and in spindown ∆ḟ = T−2

obs.

Therefore the approximate number of grid points that would be necessary for

an exhaustive search of our range in frequency and spindown can be approximated

as the product of these two numbers, with the assumption that a rectangular grid

is used,

N ≈ (fmax − fmin)×
(
δḟmax − δḟmin

)
× T 3

obs,

which for a run of length 30 days (= 2 592 000 seconds) and parameter ranges

as specified in table 2.2 gives N ≈ 5.8 × 108. This must then be evaluated for
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each combination of the other four parameters. While there may be some savings

to be made in accounting for correlations between frequency and spindown, this

rough estimation shows that performing an exhaustive time-domain search of this

magnitude comes at a very great computational cost.

One possible way around this problem is to use a different means of sampling

the posterior PDF, such that not every combination of parameters has to be tested.

One way of doing this is the technique called Markov Chain Monte Carlo, which has

gained popularity amongst the physics and astronomy community with the advent

of powerful computers in recent years. Here I will describe how it is implemented,

and in the rest of this thesis study its application to problems of gravitational wave

data analysis.

2.4.1 Markov Chains

A Markov chain is defined as a collection of samples drawn from some range of

possibilities in sequence, such that the (n+ 1)-th sample is drawn from a distribu-

tion p(xn+1|xn) dependent only on the current sample xn and none of the previous

states of the chain. The space from which the samples are drawn is known as the

state space of the chain. The probability of moving from one state i to another j

in one step is the transition probability pij; if this is unchanging during all steps of

the chain, i.e. p(xn+1|xn) = p(x|xn+1), it is said to be time-homogeneous. Further-

more, if the chain is aperiodic, then it will not indefinitely oscillate between states

in a periodic manner, but is free to explore the full range of states. If the state

space possesses the additional property of having a non-zero transition probability

between every pair of states, it has a unique stationary distribution πi, which is
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normalised such that
∑

i πi = 1. As the number of samples in the chain tends to

infinity, it can be shown that the distribution of samples among the states con-

verges to the stationary distribution. For a good introduction to these properties

of Markov Chains and their applications in inference, see Gamerman 1997 [29].

If the conditions above are met, this process of convergence will occur regardless

of where in the state space the chain is started. Thus the stationary distribution of

the Markov chain can be efficiently estimated by examining the density distribution

of samples. The process is valid for both discrete and continuous state spaces,

where in the latter case a histogram can provide the means of displaying the

distribution.

2.4.2 The Metropolis-Hastings Algorithm

The power of MCMC as applied to a sampling problem comes from matching the

stationary distribution of the Markov chain to an arbitrary distribution which is

difficult to evaluate by other means. The method of doing this was first described

by Metropolis et al [30], and expanded upon in [31] as the Metropolis-Hastings

algorithm. In our application to sampling the probability distribution p(a|Bk, I),

the state space of the chain is the parameter space of the PDF, and each sample

an is a vector in this parameter space.

The basic Metropolis-Hastings algorithm is very simple to implement. The

chain is initialised by choosing a first sample x0. This may be done at random

or by making an informed guess, as the distribution of samples in a converged

Markov chain is independent of the initial state. The algorithm then consists of

two steps which are iterated until sufficient samples have been obtained:
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1. A proposed sample Y is drawn from a proposal distribution q(an+1|an) as

in the standard Markov process. The proposal distribution is denoted q to

distingush it from the probability distributions dependent on the data, which

are labelled p.

2. Calculate the Metropolis ratio r,

r =
p(Y|{d}, I)

p(an|{d}, I)

q(an|Y)

q(Y|an)
(2.18)

The proposal is either accepted or rejected probabilistically, with the accep-

tance probability given by

α(an,Y) = min (1, r) . (2.19)

This is done by drawing a random number from the uniform distribution

U ∼ unf(0, 1) and comparing with r:

(a) IF (U > r) Reject the proposal, and count the current state again.

an+1 = an.

(b) ELSE Accept the proposal and append it to the chain. an+1 = Y.

Return to step 1, incrementing n.

In the original Metropolis algorithm, a symmetric proposal distribution was used

with q(Y|an) = q(an|Y), and these terms cancel in the ratio. To prove that this

procedure generates samples from the target distribution p(an|{d}, I), consider the

joint PDF for two consecutive samples p(an+1, an|{d}, I) = p(an+1|an)p(an|{d}, I).
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As is shown in [32], if the conditions in section 2.4.1 are met, the chain obeys the

principle of detailed balance, p(an+1|an)p(an|{d}, I) = p(an|an+1)p(an+1|{d}, I).

Using this equation and marginalising over the range of possible states of an, one

can obtain the sampling distribution of an+1:

∫
p(an+1|an)p(an|{d}, I)dan =

∫
p(an|an+1)p(an+1|{d}, I)dan

= p(an+1|{d}, I)

∫
p(an|an+1)dan

= p(an+1|{d}, I)

Therefore, by recursion, if a0 is a sample in the stationary distribution, each sub-

sequent member of the Markov chain is also drawn from this distribution.

2.5 Optimisation of Markov Chain Monte Carlo

Having described above the basic Metropolis-Hastings algorithm, we are in a po-

sition to ask how it may be improved. Although the MCMC chain may converge

on the signal given sufficient time, it is desirable that this happens as quickly

as possible. A variety of modifications to the standard Metropolis-Hastings algo-

rithm have been developed to speed up the convergence of the chain and improve

its exploration of the parameter space. I will here describe those that have been

incorporated into the search algorithm for targeted pulsars and the reasons for

doing so.

The chief obstacle to speedy convergence of the Markov chain is the highly

intricate structure of the likelihood surface which it is sampling. It is inevitable

that in random noise there will appear features that imitate, to a greater or lesser
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Figure 2.2: A small section of a slice through the posterior PDF in the (δf, ˙δf)
plane for 63,960 s of noisy data with no signal. In order to efficiently sample this
multi-modal distribution the Markov chain must be able to step between local
modes to find the most probable. Note the correlation between the parameters δf
and ˙δf which is removed by a reparametrisation, as described in section 2.5.4.

extent, the model that one is searching for. This causes features to appear in the

joint posterior PDF; local maxima that may trap the Markov chain as it performs

its random walk through the space, as shown in figure 2.2. These features are

independent of any true signal s(t, aT ) that may be present in the data, since the

data is a linear combination of the signal and noise;

Bk = s(tk, aT) +N(0, σ2). (2.20)

In order to find the global maximum representing a signal (if any is present), the

chain must explore between these local maxima efficiently. Evaluating such multi-

modal likelihood surfaces poses a problem, as the proposal distribution must be

chosen carefully to allow jumps between modes as well as sampling within a mode.

We used an adaptive proposal distribution which took the form of a multivariate

Gaussian distribution centred on the current state.
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Three techniques were used to enhance the efficiency of the algorithm, simu-

lated annealing (burn-in), delayed rejections and reparametrisation of the posterior

PDF; which are documented below, and in [33]. Of these three, only the intro-

duction of a burn-in period affects the Markovian property of the chain, and so

samples from the burn-in period are not used to calculate the posterior.

2.5.1 Simulated Annealing

Simulated annealing, or simulated tempering, is a procedure whereby the chain’s

exploration of the state space is accelerated by modifying the Metropolis ratio

2.18. By introducing an inverse temperature β, the acceptance ratio of the chain

is increased thus

r =

(
p(Y|{d}, I)

p(an|{d}, I)

q(an|Y)

q(Y|an)

)β
. (2.21)

During the annealing schedule run, the value of β is gradually increased from

a starting value β0 on an exponential curve, until it reaches the value 1 after Nb

iterations, following the rule

β(N) =

 β0 exp
(
N
Nb

log
(

1
β0

))
N < Nb

1 N ≥ Nb

(2.22)

During this period, known as the burn-in, the resulting samples are not drawn

from the target distribution and so cannot be included in the final Markov chain.

As shown in figure 2.3, the acceptance probability is initially inflated so as to

allow the chain to make unlikely transitions and move between maxima. As the

temperature decreases, the transition probabilities converge to their normal values,

with the lower probabilities decreasing faster. The chain is therefore concentrated
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Figure 2.3: The modified acceptance probabilities for three different transitions
during a burn-in phase, with β0 = 0.01 and length Nb = 1000.

in the regions of high probability as transitions to less probable areas become

increasingly unlikely. In this manner the chain may move between local maxima

with increased odds of finding the global maximum.

The value of the burn-in parameter β0 was chosen to be 0.01 for the pulsar

search code. The length of burn-in varied at different stages in the development

of the algorithm, as a long burn-in requires proportionately more processing time

to execute. A default value of 1,000,000 iterations was decided upon based on

experience using the algorithm to search in a real datastream of length 63 960

minutes. This experience was primarily gained by performing a large number of

trial runs, and deciding on an acceptable trade-off between speed and sensitivity

(see section 4.3).
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2.5.2 Delayed Rejection

When a Markov chain is sampling from the mode of a PDF, it should take steps

which have a characteristic length scale less than the width of the distribution

being sampled. However, during the exploratory phase, the chain should make

large random jumps in order to fully explore the range of possibilities. To balance

the need to make small and large jumps, we have implemented a delayed rejection

algorithm, as originally described in [34]. The use of delayed rejection allows

information from previous iterations to be used in making the next proposal, while

maintaining the stationarity condition required for a Markov Chain.

The Delayed Rejection algorithm is initially similar to the standard Metropolis-

Hastings routine described in section 2.4.2. At stage one a proposal Y is generated

as before, by drawing a sample from a multivariate normal distribution q1(an)

centred on the current position of the chain an. However, if Y is rejected, instead

of counting the state an again as in the standard algorithm, the second stage of

the algorithm is entered. A second proposal Z is drawn from another multivariate

normal distribution q2(an) with a different covariance matrix. This allows the

algorithm to make initially bold proposals to explore the space, but if they are

rejected to sample the local distribution. The choice of proposal distributions will

be discussed later in 2.5.3. In order to preserve the principle of detailed balance, the

transition probability must be the same for a forward transition an → Y → Z as

for the reverse process Z→ Y → an. Therefore the appropriate reverse transition

probability to use in the ratio must be calculated as if a stage one proposal Z→ Y

was rejected before the stage two proposal Z→ an was selected. If the acceptance

probability of the stage one transition (given by the original Metropolis ratio) is
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denoted α1, its rejection probability is then 1 − α1 and the joint probability of

making the second stage proposal an → Y → Z is given

P (Z,Y|an) = q1(Y|an) [1− α1(Y|an)] q2(Z|an,Y) (2.23)

and the reverse transition Z→ Y → an probability is

P (an,Y|Z) = q1(Y|Z) [1− α1(Y|Z)] q2(an|Z,Y). (2.24)

These are substituted into the Metropolis ratio where before only the proposal

distribution q1 had to be included. We therefore have a second stage acceptance

ratio

α2(Z|an) = min

(
1,

p(Z|I)p({d}|Z, I)

p(an|I)p({d}|an, I)

q1(Y|Z) [1− α1(Y|Z)] q2(an|Z,Y)

q1(Y|an) [1− α1(Y|an)] q2(Z|an,Y)

)
.

(2.25)

The transition process is depicted in figure 2.4, where the initial proposal dis-

tribution has a large variance which corresponds to an attempt to move between

local maxima of the multi-modal distribution. This step is rejected, leading to a

second proposal based on a distribution which matches the scale of the local mode

in order to generate a valid sample from the mode in which the chain is situated.

Through this process the chain will explore the space while large-scale jumps are

still acceptable, but when the chain finds an area of high probability and stage one

proposals fail, the acceptance rate remains high thanks to the second stage.
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(timid)

Stage 1
(bold)

a n Z Y

fictive
Stage 2

accepted

fictive
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rejected

Figure 2.4: In black, the two-stage delayed rejection algorithm initially makes a
bold proposal, which if rejected is followed by a more conservative second stage
proposal. In grey is shown the reverse transition, as in equation 2.24, where a
fictive step Z → Y is rejected and followed by the reverse second stage Z → an.
Figure from Umstätter et al [33].

2.5.3 Proposal Distributions

As mentioned above, the choice of proposal distribution is an important factor

in ensuring the successful convergence of a Markov Chain. In the context of a

multi-modal posterior, such as we have in the case of searching for a pulsar in

noisy data, it is important that proposals are made both on the scale of the entire

parameter space and on the scale of the local modes. Failure to make large moves

means the PDF is inadequately explored, but failure to make small moves will lead

to a very low acceptance rate and poor mixing of the chain. The delayed rejection

algorithm requires proposals to be made on two scales in an attempt to provide a

mixture of the two. These two scales are specified by manually chosing numbers,

as they may need to be varied depending on the data that is being analysed. If a

datastream contains a loud signal with high signal to noise ratio (SNR) the scale

of the local mode will be smaller than that from a quiet signal. In addition to this
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flexibility, there is also a probabilistic element to the choice of the scale used for

the proposal distribution at each iteration which allows proposals to be made at

scales intermediate to the specified values. This is accomplished by calculating a

variance at random from an exponential curve between the two scales.

For each parameter, the two scale factors σlow, σhigh are combined to create

the chosen variance σ = σalow × σ1−a
high, where a is a random parameter in the range

(0, 1) which weights each possibility. The distribution from which a is drawn varies

between stages so as to favour either σlow or σhigh.

During stage one proposals, a is drawn from a beta distribution a ∼ B(2, 1),

whereas during stage two a ∼ B(1, 2). The parameters of the beta distribution

determine whether the density of a is higher toward the lower or higher end of the

range. The beta distribution probability density function on variable x is given by

the formula in terms of shape parameters α and β, and the gamma function Γ()

as,

B(x, α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (2.26)

This is a simple means of ensuring that a variety of step sizes are proposed, as

the proposal distribution has no dependence on the parameter values; instead it

is tuned by hand for the particular application. The major contributory factor to

this tuning is the signal to noise ratio in the data - as the LIGO interferometers

improved the noise level has dropped. In the absence of a signal, the width of

the h0 posterior is determined by the noise, and therefore smaller steps in the

amplitude parameter are required.
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Figure 2.5: As in fig 2.2, a small section of the posterior PDF in the (δf, ˙δf) plane
for Tobs = 63, 960 s of noisy data with a signal injected at δf = 0, ˙δf = 0 and
amplitude h0 = 1 × 10−23. This clearly shows the maximum probability at the
injected point, with probability side-lobes (of width 1/Tobs Hz when marginalised
onto the δf axis) extending in the plane. If the Markov Chain falls into one of these
side lobes it may step upwards towards the true maximum width greater speed if
the appropriate reparametrisation is made to align the proposal distribution with
the modes.

2.5.4 Reparametrisation

Correlation of Parameters

With the above optimisations in place, the MCMC search algorithm has an im-

proved efficiency in finding the global maximum of probability. However, trial runs

showed that once converged on the peak, the acceptance of proposals was impeded

by the correlation of certain parameters. In particular, as can be seen from figures

2.5 and 2.6, there is a strong correlation between the parameters δf and ˙δf and

between h0 and cos ι.

Using a multivariate normal distribution with no off-diagonal elements is a poor
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Figure 2.6: A section of the posterior PDF in the (h0,cos ι) plane for the same
signal as in figure 2.5. In this plot the structure of the PDF in these parameters
is revealed to be non-Gaussian and correlated, which necessitates the reparametri-
sation of these parameters for speedy mixing of the chain. The true signal was
injected at the point marked ×.

choice of proposal distribution for distributions which are so correlated. To solve

this problem one could insert non-diagonal elements into the covariance matrix of

the proposal distribution so that it would more closely match that of the target

distribution, or cast the likelihood function into new variables.

Changing Variables

As the correlation between the h0 and cos ι parameters is not constant throughout

the parameter space, it was decided that a reparametrisation of the correlated

variables would be the preferable solution to this problem. An overview of the

procedure is given in [33] which is explained in more detail here.

The subroutine of the program which generates proposals was therefore altered,

such that instead of drawing from a multivariate normal distribution of the six

variables in 2.1, it would change variables to the new uncorrelated parameters,
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draw the proposal and convert back into the original variables before passing it

back to the main loop of the MCMC code. In this way the alterations to the

program were localised to only one function.

Throughout the period of observation, the instantaneous signal frequency after

heterodyning varies as in the Taylor expansion 2.14 between the values

fstart = δf +
1

2
˙δftstart (2.27)

and

fend = δf +
1

2
˙δftend, (2.28)

where tstart and tend are the start and end times of the observation. These are

taken as the new parameters, and steps are then proposed which are either highly

correlated so as to vary both fstart and fend together (corresponding to a uniform

change in frequency), or vary them with no correlation so as to change ˙δf indi-

rectly. These two options are chosen between at random with equal probabilities

by drawing from the uniform distribution U ∼ Unf(0, 1). Since the scales of fstart

and fend are the same, they may have the same variances, and the correlation

sub-matrix for these parameters is given

Cf
ij =



 σ2
f 0.999σ2

f

0.999σ2
f σ2

f

 U < 0.5

 σ2
f 0

0 σ2
f

 U ≥ 0.5

(2.29)

The 0.999 values differ from unity to make the matrix invertible.
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The new values of the δf and ˙δf parameters are then recovered by performing

the inverse transformation

˙δf = 2
fend − fstart

tend − tstart

(2.30)

and

δf = fstart −
1

2
˙δf start. (2.31)

The reparametrisation of the h0 and cos ι parameters proceeds according to the

non-linear transformation

a1 =
1

4
(1 + h0 cos2 ι) (2.32)

a2 =
1

2
h0 cos ι. (2.33)

These two parameters correspond to the amplitudes of the real and imaginary

parts of equation 2.13. A similar procedure as above is applied in choosing the

covariance sub-matrix for these parameters, except that an anticorrelation applies:

Ca
ij =



 σ2
a −0.999σ2

a

−0.999σ2
a σ2

a

 U < 0.5

 σ2
a 0

0 σ2
a

 U ≥ 0.5

(2.34)

Where an uncorrelated change corresponds to an overall variation of amplitude

of the signal, and an anticorrelated change to a shifting in power between the +

and × polarisation states of the gravitational wave as would be produced by a

change in inclination angle ι.

The reverse transformation in this case is found by inverting the equations to
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find

h0 = 2

(
a1 +

√
a2

1 − a2
2

)
(2.35)

cos ι = 2
a2

h0

. (2.36)

Since the transformation of these parameters is non-linear, the probability den-

sity in a1, a2 is not equal to that in h0, cos ι. This may be thought of as a distortion

of the joint prior probability distribution which must be corrected to ensure that

samples are being drawn from the correct target with uniform priors on h0 and

cos ι. As derived in [33], the prior PDF in the original parameters may be written

p(h0, cos ι|I) =

 2h−1
max 0 ≤ h0 ≤ hmax,

0 otherwise
(2.37)

which in the new parameters is,

p(a1, a2|I) =

 2h−1
max|J |, |a2| < a1 <

4a2
2+h2

max

4hmax
≤ hmax

2

0, otherwise
(2.38)

where |J | is the Jacobian

|J | = 2√
a2

1 − a2
2

. (2.39)

In this reparametrisation the limits of the distribution, as expressed in the new

parameters, have been chosen so as to ensure that upon returning to the original

parameters, h0 and cos ι remain real.
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2.5.5 Behaviour at Edges of Parameter Space

From time to time, when the chain is close to the edge of the allowed prior range

of parameter space a proposal will be made which attempts to move beyond this

range. The model contains parameters which are both cyclical in the case of the

angle parameters ψ, φ0; and non-cyclical in the case of the frequency, spindown

and cos ι. The implementation of the algorithm distinguishes between these two

cases when a step is made beyond the boundary.

For the latter case, the proper behaviour of a Markov chain upon proposing

such a step is to treat it as any other proposal and evaluate the probability density

at this point. Since the prior here is by definition equal to zero, the step is always

rejected, causing the current sample to be repeated in the chain. It is important

that such proposals are allowed to be processed by the algorithm, otherwise there

will be a bias near the edges reducing the sample density there.

For the parameters φ0 and ψ, implementing the same range checking would be

an acceptable solution, but a cursory inspection of the model equation 2.13 makes

it obvious that the likelihood is the same at φ0 = 0 and φ0 = 2π. Therefore, when

a step is made beyond the edges of the parameter space in this variable, it has a

natural mapping back inside the allowed range, implemented in software within

the proposal routine as φ0 → φ0 (mod 2π).

Similarly, if a proposal is made beyond the limits of ψ, such that ψ > π
4
,

this may be mapped back into the parameter space with the transformation ψ →

ψ− π
2
, φ0 → φ0 +π. Likewise if ψ < π

4
, the transformation ψ → ψ+ π

2
, φ0 → φ0 +π

applies.

In the case of the dimensionless amplitude h0, the transformations h0 → −h0
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and φ0 → φ0 +π are equivalent, so an attempted jump in h0 below zero is mapped

−h0 → h0, φ0 → φ0 + π.

These mappings increase the acceptance ratio of the chain if it is close to the

edge of the parameter space, and therefore the efficiency of the sampling. For

example if there were a probability peak close to φ0 = 0 with a width such that

there was a high probability density near both φ0 = 0 and φ0 = 2π, allowing

steps across the boundary would effectively reduce this bimodal maximum to a

unimodal one and aid convergence.

2.6 Concluding Remarks

With the information presented above on the nature of the problem of searching for

gravitational radiation from an isolated pulsar of uncertain frequency, and on the

methods of Bayesian inference, I can now present an analysis pipeline implementing

a search for this radiation and setting upper limits in its absence. Having described

above the core MCMC data analysis algorithm, developed by myself and others,

in the next chapter I will examine its performance on simulated and real data from

the LIGO Hanford Interferometer, particularly in a search for a candidate pulsar

in the remnant of Supernova 1987A.



Chapter 3

Testing of the MCMC Algorithm

for Neutron Star Searches on

Artificial Data

In this chapter I shall first describe the testing of the MCMC algorithm on simu-

lated data, showing the recovery of the injected signal parameters and investigat-

ing the limits of detectability. I shall then proceed to describe the search pipeline,

which enables the algorithm to be used in the search for continuous gravitational

waves in data from LIGO Hanford interferometer. This pipeline is also designed

to allow the setting of upper limits on amplitude, in the event that no detection

is made, via a Monte Carlo injection procedure. Finally I shall use the pipeline to

set upper limits on the amplitude of gravitational radiation emanating from the

putative pulsar in the remnant of Supernova 1987A [35], searching over a frequency

range of 4 Hz and a spindown range of 2× 10−10 Hz s−1.

53
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3.1 Performance of Algorithm on Simulated Data

Having outlined the MCMC algorithm used in chapter 2, it is necessary to test the

specific implementation of this in software. The reasons for this are both to debug

the algorithm and eliminate errors in coding, and to evaluate its performance in

a realistic search for a signal. Here I shall use the algorithm to perform param-

eter estimation on data where the parameters are known in advance, which will

highlight both the capabilities and limitations of this approach.

To check the implementation of the MCMC algorithm, it was initially tested on

artificially generated white noise, so as to ensure that no spectral lines, glitches or

other artifacts were present that may otherwise interfere with the analysis. In order

to accomplish this, a program was developed to inject an arbitrary pulsar signal of

any desired parameters into the simulated data files. This was a small piece of code

which read in the data and desired signal parameters, calculated the pulsar gravita-

tional wave form at each timestamp of the data and output the sum of the data and

the signal. The waveform was calculated according to the post-heterodyne equa-

tion 2.13, where the amplitude response functions were calculated using the LIGO

Algorithm Library (LAL [36]) function LALComputeDetAMResponse(). The docu-

mentation for this software package can be found online at [37]. As this function

requires the user to specify the interferometer for which the response function is to

be generated, I chose the LIGO Hanford Observatory 4km (H1). The LAL func-

tions LALInitBarycenter, LALBarycenterEarth and LALBarycenter were also

used to compute the time delays between the reference frame of the interferometer

and the Solar System barycentre.
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Efficient Likelihood Calculation

During early trials of the software, calls to the LALComputeDetAMResponse() func-

tion were found to account for a large proportion of the computing time when

calculating the likelihood. As it was called for every datapoint in the data file on

every single proposal of the chain, there was much duplication of the calculation,

particularly when the Markov chain remained in one place. To reduce this load, I

decided to pre-calculate the values of this function at each datapoint, for a range

of values on a grid of resolution 500 points covering the parameter space of ψ.

Whenever a value of this function was required within the likelihood calculation,

linear interpolation was used to generate a value based on the nearest two points

in the lookup table. Since the response function is a smooth function of ψ and

the resolution of 500 points is ample to describe it, linear interpolation provides a

good estimate of the true value as it would be calculated.

It should also be noted that the analysis requires an estimation of the variance

σk of each sample Bk in the input data file. In a true analysis of data this is

estimated during the heterodyne and downsampling stage described in section 4.1,

but here I simply used the variance of the fake noise data which I had selected

when creating the datafiles. In order to approximate the performance of the H1

interferometer, a sample variance of 1 × 10−48 was used for these tests, although

any variance may be used if the signal strength is varied appropriately to maintain

signal to noise ratio. Indeed, within the implementation the dataset is multiplied

by a factor of 1022 (and the variances by a factor of 1044) to bring the amplitude

estimates into a range comparable with that of the cos ι parameter. The amplitude

estimates are then rescaled to their original range in the post-analysis.
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A note on precision

As the study of gravitational waves frequently employs very small numbers, when

performing computations it is important to take care that the representation for-

mat of these numbers is appropriate for them, and will not introduce errors of

approximation which would jeopardise the accuracy of the calculations. As I

have mentioned above, quantities of magnitude 10−44 and below are encountered

here which lie outwith the lower range of the IEEE-854 single precision floating

point standard. To prevent the problem of underflow, 64-bit double precision for-

mat is used throughout both the MCMC algorithm and the LAL library. The

minimum representable normalised non-zero positive number in this system is

2−1022 ≈ 2.225074 × 10−308, which will accommodate our needs at the cost of a

slight decrease in speed in comparison to single precision.

In addition to this precaution, when problems might occur related to the dy-

namic range of the floating point representation, specifically when the h0 and cos ι

parameters are reparametrised, a scaling of the h0 parameter by a factor 1022 is

performed to bring it into a similar range to cos ι.

3.1.1 Parameter Estimation

Here, I will use the MCMC code to demonstrate the successful estimation of param-

eters of an injected signal of sufficient strength. I shall also look at the behaviour

of the MCMC code when attempting to detect a signal that is of low signal to

noise ratio and discuss these results. Since this is a test of the correct recovery of

parameters, I have chosen to start the Markov chain at the very point in parameter

space where the signal was injected. This should provide the best possible chance
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for the recovery of the signal parameters, with the desired consequence that the

behaviour of the algorithm with a low signal to noise ratio in this situation will

reveal its fundamental limitations.

To investigate the performance of the algorithm at a range of signal to noise

ratio, I have injected signals with varying values of h0 and used the MCMC code

to recover the injected parameters. I shall look at how the probability distribution

of these parameters is affected by signal to noise ratio.

Recovery of 6 Parameters From an Injected Pulsar Signal with High

SNR

To confirm that the algorithm can indeed recover the parameters of an injected

signal, a signal of amplitude h0 = 1×10−24 was injected into a dataset of randomly

generated Gaussian noise (µ = 0,σ = 1 × 10−24) with N = 64 000 samples evenly

spaced 1 minute apart. The integrated signal to noise ratio in this instance was

approximately

SNR ≈ h0

σ
×
√
N = 1×

√
64 000 ≈ 252 (3.1)

The sampler was asked to generate 1 000 000 samples, which were thinned by a

factor of 50 to reduce correlation, yielding 20 000 samples in the distribution.

Figure 3.2 shows the marginalised posterior probability density functions as

estimated from sample density of the Markov chain. In each parameter, the pos-

terior PDF includes the injected value of the signal parameter, showing that the

Markov chain has followed the underlying probability distribution. The chains are

shown alongside each histogram to illustrate the random walk nature of the sam-

pling. From inspection of the chains it may be clear that there is some correlation
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between different parameters, namely ψ and φ0 and h0 and cos ι.

In figure 3.3 the correlation which may be seen in the plots of the Markov chains

is made explicit in the 2-D marginalisation of the chain over pairs of parameters.

This reveals the correlation which exists between certain pairs of parameters. Par-

ticularly evident is the correlation between ψ and φ0, which can be explained by

considering the physical meaning of these parameters with respect to the source.

The degree of correlation between these parameters is in fact dependent on cos ι;

when cos ι = −1, the rotation vector Î is parallel to the line-of-sight vector n̂ from

the detector to the source, so a rotation of the pulsar about Î, which is a change in

φ0, is equivalent to a rotation of Î with respect to the detector, which is a change

of ψ - the two parameters are degenerate in fact. In this case there is no way

to distinguish between a change in φ0 and a change in ψ and they are maximally

correlated. Likewise, in the case where cos ι = 1, Î and n̂ are antiparallel, therefore

φ0 and ψ are maximally anticorrelated. In the example shown above, cos ι = 0.6 so

the parameters are somewhat anticorrelated. Only in the case cos ι = 0 is there no

correlation between these two parameters. However, this has not posed a problem

for the algorithm as the sampling has been effective throughout the mode, with

appropriate choice of step sizes.

Recovery of 6 Parameters From an Injected Signal of Low SNR

In this case, the analysis was repeated with the same input data as above, with

identical parameters injected apart from the amplitude, which was reduced to

h0 = 2× 10−25.

At this amplitude, the inference of the parameters is much less precise, and their

distributions correspondingly more uncertain. However, the MCMC algorithm
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Figure 3.1: [Caption overleaf]
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Figure 3.2: Left: Histograms showing marginalised posterior PDF for each of the
six parameters (h0, cos ι, ψ, φ0, δf and ˙δf). The red line in each histogram repre-
sents the injected value of each parameter, the parameter vector for the injection
was ainj = (1e − 24, 0.6, 0.234, 4.2, 0, 0). As expected, each distribution contains
the injected value within its main probability mode, assigning a high probabil-
ity density to it. This shows that the algorithm has successfully sampled from
the posterior PDF for this data. Right: The Markov chain which produced the
histograms, illustrating the random walk which is taken within parameter space.
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Figure 3.3: The 2-D marginalised PDFs between each pair of parameters, revealing
correlations in the h0,cos ι and ψ,φ0 pairs. The injection points are marked with
a ×, and lie close to the area of maximum density in every case. The signal was
injected into 64 000 samples of Gaussian noise with variance σ = 10−24.
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Figure 3.4: [Caption overleaf]
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Figure 3.5: The results of an MCMC sampling of the posterior PDF for an
injected signal of amplitude h0 = 2 × 10−25, all other parameters having been
kept equal to those above. The resolution of the parameters is much poorer, with
the parameter ψ being barely localised in the marginal PDF. The reason for this
is seen in figure 3.6, where the degeneracy with φ0 is apparent. Nevertheless,
the amplitude parameter is still recovered quite well with this injection, and the
frequency estimate remains correct. In each parameters, the injected value is
assigned a high probability density in each case, showing that the distribution
based on this noisy data does not contradict the real values of the parameters.
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still correctly performs its function of sampling this distribution, which in every

case is peaked at or near the injected values of the parameters. In figure 3.5

we see the marginalised parameter estimations from this chain, but figure 3.6 is

more revealing. Even though ψ cannot be accurately determined on its own, the

marginal distribution of ψ and φ0 remains fairly well confined, with a greater

uncertainty in ψ than in φ0.

Estimation of Parameters When the Signal is Undetectable

Recovery of Amplitude

Below a certain limit of SNR, the Markov chain does not remain in the mode of

the signal, even when the the mode is the point at which the chain is started.

There will always be some small but finite probability of the chain making a jump

outside the mode of the signal, and the probability of this being accepted is given

by the Metropolis ratio, which can be expressed as

p(asig → an) = exp
(
χ2

sig − χ2
n

)
(3.2)

where asig represents the parameters of the signal injected and an is a set of pa-

rameters outside the mode.

In white noise of finite length, there is a non-zero probability that there will

be a set of parameters which fit the data better than those of the real signal. This

is an inevitable consequence of the data following a random distribution when

we do not know a priori if there is a signal present. A global maximum of the

likelihood will exist in all cases, with some set of parameters which best fit the

data, even when there is no signal present. When attempting to fit a signal to this
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Figure 3.6: As in fig 3.3, the 2-D marginalised PDFs between each pair of parame-
ters for a signal of amplitude h0 = 2×10−25 injected into the same random data as
above (N = 64 000, σ = 1× 10−24). In comparison to the high SNR injection, the
parameters are less well-defined and the modes broader. The correlation is more
evident between the parameters, and in the non-Gaussian joint marginal PDF of
h0, cos ι the curvature of the mode is clearly visible. The injected values of the
parameters are marked with a ×.
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data those parameters or perhaps some other set of locally maximal parameters

will be detected with a minimum χ2
n. If this maximum is not at the point of zero

amplitude, then there must be a lower probability at zero than at this point. In the

case of finite Gaussian white noise, the distribution of amplitudes fluctuates with

changing frequency, just as the time series amplitudes fluctuate, since the Fourier

transform of a normal distribution is also a normal distribution. Since there must

therefore be a particular frequency with a maximum power, it is evident that at

this frequency, the probability distribution with respect to amplitude h0 must peak

at h0 > 0, since a peak at h0 = 0 would be independent of frequency as all points

in the model yk(t) = 0.

Now consider if there was a very weak signal injected into this data; so weak

that the fit at its parameter vector generates a χ2
sig > χ2

n. It is clear from the above

considerations that for a data set of any non-zero noise level and finite length one

can find a signal small enough to fit this criterion. Further more, at amplitudes

decreasing below this criterion, it is obvious that an increasing proportion of the

parameter space has a χ2 greater than χ2
sig since the probability distribution on

this space is smooth and continuous. Eventually one reaches an amplitude so low

that any proposed jump outside its mode has some reasonable probability of being

accepted, and with the probabilistic nature of the MCMC algorithm it is likely

that after a number of jumps the chain will have moved away from the signal

parameters asig. Since the probability of the chain jumping back into such a small

area of parameter space is exceedingly low, and the chain cannot be run for an

infinite period of time, such a signal may be regarded as undetectable in practice1.

1If not in principle - an infinitely long chain would sample the entire search space sufficiently
to reveal its mode, although the maximum probability there would likely lie below the global
maximum probability.
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This is an unavoidable consequence of searching over frequency. Note that in the

Bayesian search for known pulsars where frequency is not a parameter, there are a

proportion of posterior PDFs which peak away from zero as the target frequency

will randomly fall on one of those frequencies at which the noise conspires to

produce a non-zero amplitude [26].

When the signal lies below this threshold, then there is no practical way of

detecting the signal with the MCMC algorithm, since if the finite chain were to

jump into the mode, it would jump out again before long, with a low probability

of finding its way back before the duration of the run had finished. If this happens,

the marginalised posterior probability distributions recovered from the chain will

no longer converge on the injected parameters of the signal. In particular the

amplitude will not follow the injections down to hinj = 0 but will reach a lower

limit corresponding to the amplitude of noise fluctuations when they are larger

than that of the signal.

To examine this tendency towards recovering a greater amplitude than injected

I have performed a series of injections and examined the trend of estimated am-

plitude against that injected. Figure 3.7 shows the results of these trials.

As I have described, there is indeed a minimum amplitude which the algo-

rithm returns, which is independent of injection level below the threshold. This is

caused by the chain no longer converging on the signal but instead on a random

fluctuation of the noise. Therefore, one cannot set upper limits by marginalising

this distribution as there is no way of telling whether a signal is present below the

threshold. There is a problem in determining whether the amplitude observed is

a result of convergence on a signal or of the excess power in the noise.
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Figure 3.7: This plot shows the results of estimating the value of the h0 parameter
for a range of input values hinj. The solid blue line indicates the mean recovered
value, with the 1 σ confidence interval above and below marked in red. The dashed
green line indicates a 1:1 correspondence between hinj and h0. At high SNR the
amplitude is recovered accurately and the distribution of h0 is narrow, but as the
SNR approaches zero, the estimated distribution of h0 no longer approximates
the injected value but instead converges on a lower limit. This happens when
the probability of the signal is no longer significant in comparison to the random
fluctuations of the noise, causing the algorithm to favour sampling the random
modes of the noise rather than that of the signal.
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3.1.2 Determining Convergence

It is a long standing problem in the field of Markov chain Monte Carlo research of

how to know when the sampling chain has converged on the target distribution.

When the details of the target distribution are not known, then a common means

of determining convergence is to run the analysis in many parallel independent

chains and examine the resulting sample distributions for a common mean, or

other statistical properties [38]. However, since in this case we know that we are

looking for a distribution from a pulsar signal, we are able to use that information

to test for convergence of the chain. The method I have chosen relies on the

nature of the posterior distribution in the frequency parameters, and will now be

developed.

Width of frequency modes

Examining the width of frequency modes is a simple way of testing whether we

have converged on a pulsar signal or not, as it has been observed that a signal

which converges on a pulsar distribution has a very limited frequency distribution.

Here we shall observe the nature of the marginal posterior PDF over δf and ˙δf as

the signal to noise ratio varies. In figure 3.8 is shown the variation of the width of

the frequency mode from the same dataset which produced figure 3.7.

The plot has a distinctive jump in both modes between h0 = 1 × 10−25 and

h0 = 2 × 10−25, corresponding to the point in figure 3.7 where the estimated

amplitude departs from that injected. This shows where the estimation of the

posterior PDF have no longer converged on a signal, and suggests a means to

test for convergence automatically. Since in the case of the converged signal,
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the frequency mode is contained within one frequency bin of width 1/Tobs and

the ˙δf mode within 1/T−2
obs, an automatic system to check for convergence can

be programmed to test for this condition. The linearly decreasing trend of the

graph with gradient -1 shows that the width of the frequency mode is inversely

proportional to the amplitude.

A theoretical basis for this observation is provided by Bretthorst in [39] and [40],

where it is shown that the accuracy to which a monochromatic sinusoid or chirped

sinusoid can be estimated is indeed inversely proportional to the amplitude,

δω ≈ σ

nA

√
48

N3
(3.3)

which is a case very similar to that we have for pulsar signals. Since this will be

less than the width of a frequency bin in the Fourier transform of the data, in the

case where we have a SNR high enough to detect, we may check for convergence

by calculating the width of this distribution in the output chain 2σδf , and testing

it to be less than 1/Tobs. This gives a simple means of checking for convergence on

a signal that can be performed automatically by computer as part of the analysis

pipeline. In the real search similar criteria were used with the thresholds tuned

for use with real data where interference lines can mimic a signal.

This is illustrated by comparing figure 3.9 and 3.10, where the two cases are

clearly distinguishable by eye and by a simple machine-applied test of this property.

The lower limits of detectability

It is evident that no search algorithm can detect a signal with vanishingly low

SNR, and it is important to characterise the sensitivity of an algorithm when
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Figure 3.8: Top and bottom: the standard deviation of the frequency and 1st
spindown modes respectively given a range of amplitude injections on a logarithmic
schedule. The width of the modes is comparable to the entire parameter space at
low SNR, showing the chain has not converged on a signal. At a certain threshold,
the situation changes suddenly and the width falls below the threshold indicated by
the green line as the reciprocal of the observing time T−1

obs, and for the ˙δf parameter
T−2

obs, which is the maximum scale of the posterior PDF for a signal. The trend
then proceeds proportional to 1

h0
, as expected from theoretical considerations [39].
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evaluating it for use. We have looked above at the absolute limits of performance

of the MCMC search algorithm, where it was started with the chain already in

the mode of the signal. This shows us the very lowest SNR that is in principle

detectable. However this answers only part of the question of the sensitivity of the

MCMC algorithm, as in a realistic situation we do not know in advance where the

maximum lies in the parameter space. When performing a search we do not have

this information, and as a probabilistic algorithm, there is of course a chance that

the algorithm will not happen upon them during the course of its finite run.

The sensitivity of the search is determined both by the nature of the signal, and

by the length of time that we are prepared to spend running the search algorithm,

or rather the number of computational iterations we are willing to devote. The

longer the run, the greater probability the chain has of finding the hyper-volume

in which the bulk of probability lies in the case of a signal. In the next section

I will quantify this probability and show how it can be used to set upper limits

on possible signal strength, despite the unreliability of results obtained when no

signal is detected.

3.1.3 A Method of Setting Upper Limits

In the situation that an analysis has been performed, and no signal was found

in the data, it is useful to be able to set an upper limit on the amplitude of any

undetected signal that may be present. This is possible in the Bayesian search

algorithm by simply marginalising the poster PDF over all parameters except h0,

then integrating the h0 distribution upward from h0 = 0 until 95% of the total

probability is under the integral. The value of h0 at this point is the 95% upper
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limit on h0.

0.95 =

∫ h95%

0

p(h0|{Bk}, I)dh0 (3.4)

In the case of our MCMC algorithm however this procedure cannot be used, since

the parameter estimation cannot be relied upon to produce an accurate marginal

distribution for the amplitude parameter. There may be a greater total probability

lying in an area of low density near the h0 = 0 axis but the Markov chain will tend

to fall into one particular non-zero maximum in the density distribution and stay

there, since its density there is much greater than that near h0 = 0. Therefore in

order to set upper limits on the amplitude of gravitational radiation being present

in the data, I have taken a different approach. From the information presented in

figures 3.7 and 3.8, we see that there is a certain sharp threshold below which no

signal is detectable even with prior information on where to look. At some point in

this transition zone, there will be a signal which is detectable in 95% of runs. This

is possible since the algorithm is not deterministic, and different random seeds will

lead to different Markov Chains. It is possible then to find the point at which we

can state with 95% confidence that, having run the algorithm for N iterations, we

believe there are no signals of this strength or greater.

Whereas before we looked at the probability of maintaining convergence on a

known signal, in this section I will investigate the probability of detecting a signal

if we do not know in advance where it lies. This is the more realistic scenario,

and knowledge of this probability allows us to set upper limits on gravitational

radiation strength in a particular dataset from a particular source. This method

was presented at the Gravitational Wave Data Analysis Workshop 9, and was

published in its proceedings [41].
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Consideration of relevant parameters

If we are to proceed by performing a Monte Carlo simulation of many injected

signals and trying to detect them, we need to know what factors are important in

determining their detectability. Returning to the likelihood function of equation

2.13,

y(tk; a) =

(
1

4
h0F+(tk;ψ)(1 + cos2 ι)− i

2
h0F×(tk;ψ) cos ι

)
exp(iφ(tk, δf, ˙δf)),

(3.5)

and the accompanying equations 1.18 and 2.14, one can see that the parameters

δf , ˙δf and φ0 are involved merely in the phase evolution of the signal, and do not

contribute to the amplitude. Therefore they do not contribute to the detectability

of the signal by raising the SNR, since any data run is likely to contain a significant

number of cycles, making the initial phase irrelevant.

In 1.18 we see the effect of polarisation on the amplitudes of the + and × parts

of the signal. This can affect the amplitude of the received signal as would be

expected. However, this effect varies sinusoidally also, on the timescales at which

the detector rotates relative to the fixed source position on the sky. This motion is

due to the rotation and orbit of the Earth, so at timescales greater than 1 day the

effect of this angle will diminish accordingly as the detector performs full rotations.

So we are left with h0 and cos ι as being parameters which contribute directly

to the amplitude and SNR of the signal as observed in a lengthy data set. This

means that the injections of the Monte Carlo must be performed at various points

on the h0, cos ι plane to examine the variation of detectability at possible relevant

points in the parameter space.
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The data format for the MCMC code provides the real and imaginary parts of

the observations as separate datastreams; the model is calculated for each part,

compared and then the two χ2s summed to provide the total mismatch. This, has

the benefit of making the sign of cos ι irrelevant in terms of SNR. Since in the real

part it is squared anyway, and in the imaginary part a negative cos ι and a positive

cos ι provide the same absolute magnitude to the signal amplitude. Therefore we

need only examine the half-range cos ι ∈ [0, 1] for setting upper limits, since the

lower range cos ι ∈ [−1, 0] will be a reflection of this.

Procedure

By repeatedly injecting signals at varying values of h0 and cos ι, then running the

search to try and detect them, we can build up an empirical detection probability

P (detection|h0, cos ι, I), calculated from the fraction of detections at each point

on the plane. By subdividing the plane into a regular grid and repeating the

procedure at each point, the variation of this probability is built up. Since we are

interested in setting an upper limit on h0, this must be marginalised numerically

over N points on the cos ι axis,

P (detection|h0, I) =

∑
cos ι P (detection|h0, cos ι, I)

N
.

Since this generates a probability function (and not a density) the correct

procedure for finding the upper limit here is to simply find the value of h0 at which

this function has the value 0.95, since the probability of there being an undetected
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gravitational wave is simply P (non− detection|h0, I) = 1− P (detection|h0, I).

P (detection|h95, I) = 0.95. (3.6)

This is effectively using a Monte Carlo approach to evaluate the performance

of the algorithm, so this combined approach is known as MCMCMC.

Test with artificial data

To test this procedure, 64 000 samples of white noise were generated with variance

σ2 = 1.0, uniform sampling rate ∆T = 60 s. The first timestamp of the data

was 751658720 GPS seconds. An artificial signal was used for the injections, with

parameters shown in table 3.1.3, and with h0 and cos ι varying.

Parameter Value

Right Ascension 1.463751648

Declination -1.208988555

ψ 0.281

φ0 4.234

δf 7× 10−3 Hz

˙δf −2.5× 10−10Hz s−1

The upper limit that is found with this method depends upon the number of

iterations that are used in the MCMC routine. This is held constant throughout

the trials to give an answer for a certain number of iterations. In this case, the

number of iterations used was 1 100 000, with 1 000 000 iterations being the length

of the burn in, and the following 100 000 used for sampling the distribution. This

ratio was arrived at after many trials, where it was found that a longer burn-in
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time helped a great deal in searching for a signal, with more of the parameter

space being explored.

A series of trial runs was performed at constant cos ι, which found the rough

scale of the transition zone. Then a rectangular grid of 10 points was laid in the

cos ι direction, and 13 in the h0 direction. The injections were performed at each

of these grid points.

Results of MCMCMC Upper Limits

Figure 3.11 shows the results of the Monte Carlo injections on the cos ι, h0 plane.

As predicted the results vary strongly with both parameters, with better sensitivity

when | cos ι| is nearer unity. These results are then marginalised over cos ι to

produce a distribution on h0 alone.

In figure 3.12 we see the distribution on h0 alone after marginalisation. This

shows the probability of a signal being detected as a function of amplitude, with

all other parameters being averaged out. This allows the upper limit to be stated

in terms of h0 alone. In this case, the false dismissal probability falls to 5% when

the injected amplitude reaches h0 = 1.44.

The sensitivity of an algorithm can be characterised by displaying it as a func-

tion of the observing time Tobs and the noise power spectral density Sh. When this

is calculated for the MCMC algorithm, the expression obtained is

h95% = 515.2

√
Sh
Tobs

, (3.7)

with the constant 515.2 being characteristic of the sensitivity of the search.

In section 4.4.1, this figure is placed into context with another set of analyses
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Figure 3.11: The results from the Monte Carlo runs over h0 and cos ι, showing
that the detection probability does indeed depend on both these parameters. The
sudden transition between detectable and undetectable takes place over a narrow
range. At larger values of cos ι, the required amplitude in h0 is smaller, as addi-
tional power is present in the imaginary part of the signal, leading to higher overall
SNR.
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Figure 3.12: Figure 3.11 marginalised over cos ι to produce an function of h0

alone. As can been seen from the diagram, the amplitude at which the detection
probability crosses the threshold defined is 1.44.

on real LIGO data, as opposed to the simulations here, and compared with the

sensitivity of an exhaustive search. The results presented here are consistent with

results seen when using real data, but these indicate that the MCMC algorithm

compares poorly in terms of sensitivity with the exhaustive search, being an order

of magnitude less sensitive. This will also be discussed further in section 4.4, along

with possible regimes in which such a search would be advantageous.



Chapter 4

MCMC Search for Gravitational

Waves From a Rotating Neutron

Star of Uncertain Frequency

In this chapter the MCMC pulsar algorithm is applied to real data from the LIGO

interferometers, with searches performed for the hardware injections in the S3 run,

and with a search and upper limit based analysis for a possible neutron star in

the remnant of Supernova 1987A. For this analysis a full pipeline was developed

to lead from the raw interferometer data to setting upper limits (or detection) and

this is documented below.

4.1 Preparation of Interferometer Data

In this section, I will describe the treatment of the LIGO data prior to the analysis

taking place. The object of this procedure is to reduce data volume and estimate

81
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the noise in the interferometer across the frequency band of interest, which is

necessary for the upper limit procedure.

4.1.1 Heterodyne and Downsampling

The first stage in processing the data is to reduce the data volume, from a sampling

frequency of 16 384 Hz to 1
60

Hz, which vastly reduces the number of points that

must be calculated in the model, and therefore the speed of the process.

The data from the interferometers are gathered into frame files, which are

distributed around the world to nodes in the LIGO Datagrid and held at these

sites for extended periods while they are used in the searches. These nodes are

large computing clusters, which typically have anywhere between 40 and 400 CPUs

available for use in the analysis of data in a Beowulf cluster arrangement. This

means that the cluster consists of many standalone computers, which are controlled

centrally from a head node, in this case with the Condor software [42].

To process the data, a code was developed based on the existing pre-processing

code for the time-domain search. However, for the MCMC analysis multiple neigh-

bouring 1
60

Hz channels of data are required, so there was significant modifications

to be made in collecting this data.

To allow the selection of good quality data when the interferometer is in lock,

and there is no substantial interference, the extent of a LIGO science run is bro-

ken into periods of good data quality and poor data quality and these times are

published in a cache file. Using this data, a short script was used to select the

appropriate frame files from the collection on disk for the periods of high data

quality. One of the advantages of the time-domain analysis is that it can easily
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cope with missing segments of data, or non-contiguous sampling periods. This

allows data from the entire science run to be used in the analysis, increasing sen-

sitivity over methods which require that a continuous data series is used by virtue

of there being more data available.

The locked data segments contain data sampled at ∼ 16 kHz, which must be

reduced to allow an analysis to take place. The segments are subdivided into

one-minute intervals from which each final sample Bk will be drawn. The exact

definition of Bk is given below.

For each of the targeted frequencies required (which range over a 4 Hz window

in the search described in section 4.3) the data is heterodyned down to a D.C.

signal, by multiplying the data by a sinusoid whose phase evolution matches that

of the target, but with opposite sign. The complex heterodyne returns real and

imaginary parts of the signal as follows:

R y(tj) = y′(tj)× cos−Φ(t′j) (4.1)

I y(tj) = y′(tj)× sin−Φ(t′j) (4.2)

with the phase evolution Φ(tj) calculated as a function of frequency f , first and

second order spindown parameters ḟ , f̈ and the position on the sky in equatorial

coordinates α, δ. The samples y(tj) are then equal to those found in equation 2.13,

when y′(tj) represents the original datastream from the interferometer at times tj.

The timestamps at 16 384 Hz are modulated according to equation 2.12 where all

delays are calculated, as before, using the LAL library barycentring routines.

This heterodyne is equivalent to a translation of the signal in the frequency do-

main, bringing the instantaneous frequency of the signal down to 0 Hz throughout
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the length of the observations. The components left are a function of the mismatch

between the target heterodyne parameters and the true parameters of the signal,

and the four parameters h0, cos ι, ψ and phi0.

The data is then filtered to remove unwanted components of the noise from

the data. The procedure used here is directly taken from the equivalent data

processing used in the time-domain targetted pulsar search documented in [26].

This is achieved with the sequential application of three third-order Butterworth

filters (equivalent to a ninth-order filter which is not available in LAL), which have

a flat frequency response in the pass-band, and a corner frequency of 0.5 Hz, which

was chosen as an acceptably low pass-band without causing ringing of the filter,

which occurs with tighter filters of this nature [43].

With the possible signal now centred at 0 Hz, the information needed to analyse

the ± 1
120

Hz around it can, by Nyquist’s Theorem, be encapsulated in a data series

with sampling interval ∆T = 1
60

Hz. With this in mind, the data is downsampled

to that frequency by simply averaging each 1 minute stretch of 16 kHz heterodyned

data to produce a point estimate for that time period.

Bk = B(tk) =
1

60× 16 384

16 384(k+1)∑
j=16 384k

y(tj) (4.3)

This procedure is repeated for each of the 1
60

Hz bands into which the frequency

window is divided. An overlap of 50% is used between each of these bands to

ensure that no power is lost to the filter at the edge of each frequency band, so

the central heterodyne frequencies of these bands are spaced 1
120

Hz apart. The

real and imaginary parts of the result are stored separately to be recorded with

the noise estimation in the output file. Note that the use of both the real and
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imaginary parts of the sample implies that frequencies up to 1
60

Hz are accurately

represented, and the Nyquist limit present with real-only samples does not apply.

In effect, we have twice the information content, and so can represent frequencies

twice as large.

Noise Estimation

In addition to the point estimate of the complex amplitudes, the variance of this

estimate at each time stamp is also required for the likelihood function

p(Bk|a, σk) ∝ exp

[
−
∑
k

1

2σk
(y(a; tk)−Bk)

2

]
. (4.4)

This noise estimate σk is produced by calculating the noise power in the 4 Hz

window from which the 1
60

Hz data streams are taken. By this method the noise

estimation is the same in each of the 1
60

Hz bands, which is a suitable approximation

when the noise power spectrum is flat in the region in question.

The filtering procedure used here is identical to that described immediately

above, with the exception that the Butterworth filters have a corner frequency of

4 Hz, instead of 1
60

Hz. This preserves the noise in only the 4 Hz band of interest.

The 60 seconds of data this time is subdivided into M segments of length 0.25

seconds. Within each segment the data is heterodyned and filtered, and the mean

real and imaginary parts of the samples in this segment are calculated. This yields

M averaged samples µj of the amplitude for each datapoint Bk. As the program

works its way through the chunks, it also computes a mean value for the entire 60
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seconds of data µk. The variance is then calculated as

σ2
k =

1

M(M − 1)

M∑
j

(µk − µj)2 (4.5)

which gives the variance of each Bk from the noise power spectral density in its

neighbouring window.

This quantity is used in the computation of upper limits, where having the

same σk for each of the Bk in all the frequency bands allows the results of the

Monte Carlo injections to be applicable to the whole 4 Hz band, provided the

noise spectrum in that 4 Hz is flat.

4.2 Test of the algorithm on hardware injections

into the LIGO Hanford interferometer dur-

ing S3

Until this point the algorithm has been tested on simulated data which has the ideal

characteristics of a Gaussian distribution, stationarity and whiteness. With the

provision of injected signals into the LIGO interferometers during the S3 science

run, we had the opportunity to test the algorithm to determine if it could detect

the signals in the presence of realistic LIGO noise.

The LIGO S3 run

The third science run (S3) of LIGO took place between the 31 October 2003 and 9

January 2004, a total observation time of 71 days. For the duration of the science
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Figure 4.1: Plot showing the strain sensitivity during the S3 science run of the 4
km interferometer at LIGO Hanford Observatory as a function of frequency.

run there were 10 artificial pulsar signals, named PSR0 to PSR9, injected into

the data at varying signal to noise ratios to allow verification of analysis codes on

interferometer data. From this time period, 25 days of data from the Hanford 4km

observatory were selected for the analysis by taking the locked data segments of

good data quality only. This did not present a continuous stretch of data, but as

the likelihood is calculated in the time domain this did not pose a problem. The

data that was used after heterodyning and calibration for injected pulsar PSR0 is

presented in figure 4.2.

In this case the data was downsampled to a rate of one complex sample per

30 minutes, instead of 60 seconds, as the frequency and spindown parameters of

the injections were known exactly and were transformed so that the signal would

lie at δf = 0, ˙δf = 0 after heterodyne. The estimation of the noise was corrected

accordingly to be calculated over the longer period. This lowers the data volume
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Figure 4.3: A normal probability profile plot of the amplitude of points in the S3
PSR 0 data, showing their distribution of probability compared to a true normal
distribution. The green diagonal line indicates a perfect fit to the distribution;
the blue and red points again represent the real and imaginary parts of the signal.
The bulk of the data points lie on or close to the line, with some outliers at the
tails of the distribution where the probability is low.
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Name Rt. Ascension α Declination δ Frequency (Hz) df
dt

(Hz/s)

PSR0 1.2488167344 -0.9811802248631 265.577105204882 -4.15E-12
PSR1 0.6526458320410 -0.514042405674 849.083296185424 -3.00E-10
PSR2 3.756928840159 0.0601089582678 575.163573003883 -1.37E-13
PSR3 3.113188712215 -0.5835788033987 108.857159430109 -1.46E-17
PSR4 4.886706853676 -0.2175836463767 1403.16333096977 -2.54E-08
PSR5 5.281831296225 -1.463269033207 52.8083243572857 -4.03E-18
PSR6 6.261385268932 -1.141840210277 148.719025725157 -6.73E-09
PSR7 3.899512715971 -0.3569308339044 1220.97958108098 -1.12E-09
PSR8 6.132905165784 -0.5832631506298 194.308318509895 -8.65E-09
PSR9 3.471208242864 1.32103253788 763.84731653774 -1.45E-17

Table 4.1: The position and frequency information for the ten injected signals in
LIGO S3 data.

and increases the speed of the MCMC routine, which must calculate the likelihood

function for every data point, so runtime scales as O(N) where N is the number

of samples. This data rate was decided upon from the time-domain search, which

used it for analysis of these injections also, based on the stationarity of the noise

over that time period.

The runs themselves were conducted using a total of 1 000 000 iterations and

a burn-in period of 160 000 iterations. The parameters of the 10 injections which

were searched over are shown in table 4.1. The epoch of all the signals was GPS

second 751680013.0. Frequency derivatives of order 2 and above were all zero.

Pulsars 0-4 were “public”, with their parameters being known in advance

whereas pulsars 5-9 were “private” and their parameters kept a secret until the

end of the science run. In every case the MCMC chain was started at a random

point in parameter space, so knowing the true values of PSR0-PSR4 did not assist

the estimation of these parameters anyway.
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4.2.1 Results from the S3 Injections

In table 4.2 the results of the MCMC runs are shown numerically. I have listed

the mean value of the PDF in each case, with a 1σ error estimate on this value if

the distribution was approximately normal.

It is clear that that MCMC algorithm performs better when the amplitude of

the signal is greatest. I would judge that in injections 3, 4, 8 and 9 the parameters

were recovered fully, despite small offsets in frequency and spindown, and these

indeed are the loudest injections. In pulsars 1, 2, 5, 6 and 7, the signal was located

by the search, as evidenced by the convergence of the frequency parameters, but

there are errors in the estimation of the other parameters, whose uncertainties

grow larger as SNR falls. In examination of the 6 marginal PDFs of PSR0 (figure

4.4) some evidence of the signal may be seen by the human eye, but it is clearly

not strong, with cos ι, ψ and φ0 filling their respective prior ranges. The criteria

outlined above in section 3.1.2 for the quantifiable detection of convergence are not

met with this result, that is T−1
obs = 4.62×10−7 < 2σf and T−2

obs = 2.14×10−13 < 2σḟ .

Therefore, these signals were not detected.

This demonstrates once more the utility of MCMC for the recovery and estima-

tion of parameters if the signal is strong enough to attract the chain as it samples

the posterior space. As expected, the results become less reliable at lower signal

strengths, but the test of convergence based on frequency mode width can identify

when there is not a reliable detection.
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Figure 4.4: Marginal posterior PDFs for the six parameters of PSR0, injected
into the Hanford interferometer during S3.
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4.3 A Search for a Remnant from Supernova 1987A

Using LIGO S3 Data

I will now proceed to describe an astronomical search for a candidate source in

the remnant of SN1987a, and why it is amenable to the application of a MCMC

search routine.

4.3.1 Review of Supernova 1987A

On February 22nd 1987, the bright-

Figure 4.5: Remnant of SN1987A from
Hubble Telescope.
Image credit: NASA, ESA, P. Challis and R. Kirshner

est supernova to be observed in 383 years

appeared in the Large Magellanic cloud

approximately 168 000 light years distant.

The progenitor star is thought to have been

the blue supergiant Sk −69◦202a, with a

stellar mass of between 16M� and 22M�.

This would make it highly likely to pro-

duce a neutron star upon core collapse,

rather than a white dwarf or black hole,

and this makes it a possibility that a pulsar was produced [44].

Searches in the electromagnetic spectrum conducted for such an object in the

remaining nebula have proven inconclusive, although some evidence did arise for

an optical pulsar with an emission modulation at a frequency of 467.5 Hz from the

use of high speed photometry [35, 45]. Since some other known optical pulsars are

also the result of relatively recent supernovae, such as the Crab and Vela pulsars,
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there are no a priori reasons to rule out the plausibility of the claim. The possible

signal was intermittently observed between 1992 and 1996 with varying visibility

in the data. Since 1996 however the candidate pulsar seems to have disappeared

altogether, and while this could be explained by the presence of the nebula and

opaque material in the neighbourhood of the remnant, the evidence is not sufficient

to conclude for definite the existence of a pulsar.

Nevertheless, the possible existence of such a young pulsar which may possess

a large quadrupole moment makes it an interesting target for gravitational wave

searches. If we were to assume that the 467.5 Hz modulations were produced by

the rotation of the neutron star, as seems likely, then triaxial gravitational wave

emission would occur at 935 Hz. The pulsar had a reported spindown rate of

−(2 − 3) ×10−10 Hz s−1 during the period of observation, however this may have

changed in the years since and so the current rotational frequency may not be

precisely known. For this reason the object is an attractive target for a search which

is targeted on a known accurate region of the sky but has a range of uncertainty

in which the frequency might lie. Such a target might be addressed by the MCMC

algorithm which has been designed to operate within these very bounds.

The searched parmeters were, therefore, the usual h0, ψ, φ0, cos ι, δf and ˙δf .

The astrophysical parameters of the source which were used in the heterodyning

of the data are shown in table 4.3. Since the current spindown and frequency

are unknown, a central frequency was chosen at the original observed modulation

frequency of the source (doubled to give gravitational wave frequency) and zero

spindown was used in the heterodyne stage.

Additionally, the LIGO spectrum at the frequency of interest is very nearly

flat, with no bias toward either end of the frequency range (see figure 4.6), and has
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RA 05:35:28.03
DEC -69:16:11.79
fs 935 Hz

ḟs 0.0 Hzs−1

Epoch T0 751680013.0

Table 4.3: The position and frequency information used in the heterodyning of
data for the SN1987a search.

no obvious interference lines from injections or harmonics of the mains electricity

frequency present in the region, so the process of noise estimation over a 4 Hz

window is expected to produce a suitable value of the noise.

For this search I have once again used data from the LIGO Hanford interfer-

ometer, as it had a higher duty cycle than the Livingston interferometer during

the S3 run. Unlike the injections, however, the data used spanned a period of

69 days, with a total of 63 960 samples with sampling period set at 1 minute,

interspersed with periods of no samples where the interferometer was out of lock

or had data quality warning flags set. There were some greatly outlying samples

produced by the ringing of the filters used when the amplitude changed suddenly,

and the greatest of these were removed. There were, however, some remaining

outlying data points which did not fit a normal probability distribution, as shown

in figure 4.8, as a typical example. It is difficult to justify removing points such as

these from the data in order to make it follow a more Gaussian distribution - any

hard cutoff imposed will tend to skew the distribution in the opposite direction

and produce uncharacteristically small tails. Selecting points to discard at random

could produce a Gaussian distribution but involves throwing away some data but

keeping others with no criterion for choosing between them. It was decided to

keep the remaining outliers and operate the search as normal. The data in the
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Figure 4.6: The published spectrum from LIGO Hanford 4km Observatory of
strain sensitivity averaged over the S3 run, showing the frequency window which
is to be searched. There are no strong lines present in this region of the spectrum,
so the approximation that the band is flat is appropriate across its width, with no
systematic bias toward either end.
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Figure 4.7: The data used in calculating upper limits for SN1987a, taken from
the LIGO H1 interferometer during the S3 run.

first search window, including the outliers, is depicted in figure 4.7 as a typical

example of that used in the search. This data was then processed using the full

search and upper limit pipeline defined below.

4.3.2 Pipeline for Searching and Setting Upper Limits

The 4 Hz window over which the search was performed was divided into 479

frequency channels, each with a width of 1
60

Hz, with an overlap of 50% between

adjacent channels and the central channel placed exactly on 935 Hz, so as to fully

cover the band. Each of these channels could then be searched independently in

parallel by using the LIGO Datagrid cluster at Caltech. Each search was performed

with a burn-in of length 1 000 000 iterations followed by a sampling period of

100 000 iterations, as was the case in the artificial search above. This was true also

for the upper limit finding stage of the pipeline where injections were made in the

data.

In the search for an astrophysical pulsar signal in the current generation of in-

terferometers, it is unlikely that a direct detection will be made. So when applying
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Figure 4.8: Normal probability plot showing the outlying datapoints in the distri-
bution of Bk for the SN1987A data band. Real and imaginary parts are shown in
blue and red respectively.

the MCMC search routine to a possible source in SN1987A I have used the upper

limit estimation procedure outlined in 3.1.3 in combination with a search similar

to that carried out on the injections to produce the results. This brings the steps

outlined above into a single combined pipeline based on the MCMC search, which

is represented schematically as a flow diagram in figure 4.9.

When the pipeline was fully processed, the posterior PDFs from each indi-

vidual frequency band was post-processed by a small script which checked the

convergence criteria against the output, so as to determine if a possible signal had

been observed.

Based on the results of trial runs of injected signals, the criteria used for detect-

ing convergence of the chain were again based on the frequency posterior width,

which must meet the criteria 2σδf < 5×10−8 Hz and 2σδ̇f < 10−14 Hzs−1.
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Figure 4.9: A flow diagram showing the sequence of operations which were used
with the MCMC search and upper limit estimation codes.
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Figure 4.10: The posterior PDFs for each search window marginalised onto the
h0 axis showing an consistent level of noise across the band at around 7 ×10−24,
except at the elevated point shown in figure 4.11.

4.3.3 Results from Search for a Pulsar in SN1987A Data

Searches

Each of the 479 individual frequency bands were searched in parallel using the

Caltech computing cluster, with each Markov chain started at a point in parameter

space randomly selected from the prior range. None of these searches returned a

chain which passed the convergence criteria for the automatic detection of a signal.

From the results observed in 3.1.1 this would lead us to expect a limit that the

amplitude parameter would settle on, dependent on the noise level. Plotted in

figure 4.10 are the marginal distributions for amplitude in each of the 479 search

bands, which reveals that there is a consistent level of noise at which the chains

arrive, due to the inevitable periodicities which are found when searching over a

range of frequencies.

There is an interesting anomaly in bands 90 and 91 which are centred at f =

933.75 Hz and f = 933.75833 Hz, where the marginal amplitude distributions are
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elevated clear of the noise floor, as in figure 4.11. If we examine the posterior PDF

for the bands we see that the chains cannot be deemed to have converged by the

criteria expressed above, but there is a definite sinusoidal component in the noise

at this frequency.

Taking a closer look at the data from these frequency bands reveals the cause

of the problem. In figure 4.12 is shown the amplitude spectral density for the

longest section of uninterrupted data from bands 90 and 91 (490 minutes), with

the frequency on the x axis showing the overlapping region between the two. It

can easily be seen that there is an excitation of the noise at 933.754 Hz with a

maximum amplitude of around 1.6×10−23. This line in the spectrum is clearly the

cause of the unusually high marginal amplitude distribution seen in these bands.

This means that the probability distribution for these two bands both contain a

maximum which is further from zero than in the surrounding frequency bands,

and the algorithm has located this maximum and attempted to fit a pulsar signal

to it. The MCMC algorithm even produces a reasonably accurate estimation of

the amplitude of the line by strongly favouring the model with cos ι ≈ 0, thereby

placing all the power in the + polarisation. The cause of the line itself remains

unknown.

The outstanding feature in the spectrum of estimates having been dismissed,

the search has failed to discover a gravitational wave signal in the frequency region

of interest. In accordance with the pipeline, attention was turned to setting an

upper limit on the possible amplitude of gravitational radiation that may have

been overlooked by the search.
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Figure 4.12: The amplitude spectral densities from bands 90 and 91, both showing
the anomalous line which lies in the overlapping region.
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4.3.4 Upper Limits on Radiation Amplitude in a 4 Hz

Band

The Monte Carlo stage used to extract an upper limit from the data and algorithm

is here very similar to that used in section 3.1.3 on the artificially generated white

noise. There are minor differences which should be mentioned, however, in that

the grid used to evaluate the probability distribution was rectangular, extending

over 11 regularly spaced points in the range cos ι ∈ [0, 1], and 17 points in the h0

direction ranging from 1×10−23 to 9×10−23 so as to fully encompass the range of

values in the (h0,cos ι) plane over which the detection probability varies. At each

of these points, M = 36 injections were made into data taken from the central

band at 935 Hz, with noise as estimated from the 4 Hz band.

At each point a frequentist probability of overlooking the signal is evaluated as

P (non-detection|h0, cos ι) = Nnon-detection/M , defining a 2 dimensional probability

function shown in figure 4.13.

This matrix is marginalised onto the h0 axis, where the upper limit is shown

where the distribution falls to the threshold value 0.05 with

P (detection|h95%) = 1− P (non-detection|h95%) = 0.95,

giving an upper limit of h95% = 7.3×10−23, when using linear interpolation between

the points of the grid.

This is comparable with the limit reported by the TAMA group in [46] of

5×10−23, which was achieved with an exhaustive matched filtering technique, but

with a smaller parameter range of 0.1Hz in δf and 1 ×10−10 in ˙δf . With the
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Figure 4.13: The probability distribution shown on the (h0,cos ι) plane for Monte
Carlo injections into H1 S3 data at 935 Hz.
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Figure 4.14: The marginalisation of figure 4.13 onto the h0 axis, showing the
decreasing probability of overlooking a signal as the amplitude increases. The
95% upper limit is marked where the distribution in blue has value 0.05 shown as
the red horizontal line, at h95% = 7.3×10−23.
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more sensitive LIGO data collected since the S3 run it is likely this limit would

be exceeded by an MCMC search which could be performed in future using the

pipeline I have described.

4.4 Comments

4.4.1 Computational Cost

One of the major justifications for the MCMC technique is the advantages it offers

in terms of computational efficiency over the other search methods. To quantify

this I will attempt to estimate the cost of running the SN1987A search using the

F-statistic method and compare it with the recorded figure for the MCMC search.

A direct comparison is difficult to make as the MCMC operates with a contin-

uous parameter space whereas a search such as the F -statistic [20] uses a discrete

grid of points at which 2F values which quantify significance are computed. In

practice one would never use an F -statistic search that has less than one template

per Fourier bin of the data, but this provides a sensitivity greater than that from

the probabilistic MCMC algorithm, which is quantified with the constant k = 494

in sensitivity equation h95% = k
√
Sh/Tobs from the SN1987A upper limit.

For this F -statistic search the number of templates is calculated assuming

the use of a rectangular grid over the frequency and spindown parameters and a

minimal overlap of one template per frequency bin in the f direction. The number

of templates in the ḟ direction can be estimated with the derivation of the phase

mismatch as a function of template separation in the ḟ direction. From this one

finds the result that in order to have a template every π radians (an absolute
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minimum number) with the search information described above of 2.82×10−14∆ḟ .

These values multiplied as in a rectangular grid gives NT = 1.7026×1011 templates

that must be searched.

When executed on a 2 GHz cluster node, which is a typical specification for

clusters available at present, it takes approximately 20 milliseconds to compute

one value of 2F for a dataset of 69 days using 1800 second long SFTs, according

to [47]. This would give a total search time of 944 000 CPU-hours on a 2 GHz

machine.

To perform the equivalent search with the MCMC took an average of 12 hours

per chain on 1.8GHz compute nodes of the Caltech cluster. Over 479 chains this

sums to give 5748 CPU-hours for the search stage, and an additional 80,784 CPU-

hours to calculate the upper limit from Monte Carlo injections. If we make the

approximation that to scale the F -statistic to the same CPU speed we multiply

the time taken by (2GHz/1.8GHz), then we arrive at a figure of 1 050 000 CPU

hours to perform the search on an equivalent computing system.

From this we can see that the MCMC does indeed offer considerable benefits

over the F -statistic search in terms of reducing computation time by a factor

of 200 purely in the search regime in this particular example. When it comes

to setting upper limits, there will be a similar speedup when comparing equal

numbers of injections in each search type, although in the F -statistic search h0

and cos ι do not appear to be parameters that are varied in setting upper limits,

so a like-for-like comparison is not drawn.

It must however be clear that the sensitivity of the MCMC search is not as

great as that of the F -statistic, for the reason already discussed that in a particular

search band, the MCMC chain will home in on the frequency component that has
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maximum amplitude and neglect those with lower noise levels. The F -statistic

search on the other hand examines each frequency bin exhaustively within the

band, effectively sampling more templates that lie at lower noise levels and allowing

a distribution to be built up from the entire space of δf, ˙δf parameters. It remains

true however that when searching over a large range of frequencies the sensitivity

of the F -statistic is reduced for the same basic reasons, and the study of this effect

in [48] suggests that for a dataset with 6×106 seconds of data the value of k will

increase to between 30 and 40, degrading the sensitivity of the search accordingly.

This level is still more sensitive than the MCMC search by an order of magni-

tude, however. This suggests that a Markov chain Monte Carlo algorithm search

is less suited than the traditional F -statistic search for the current generation of

detectors, where setting upper limits is the typical application. However it may

find an ideal application as the sensitivity of detectors brings pulsar signals into

the SNR range that would make them detectable by the MCMC search. In such

a case the algorithm would provide a fast way to quickly scan for and perform

parameter estimation on loud signals, without the need for massively distributed

computing platforms such as the Einstein@home search effort which distributes

F -statistic searches to thousands of desktop computers whose CPU cycles are do-

nated by volunteers worldwide. It must still be said, however, that an F -statistic

search would still be better suited to the detection of weak signals.

4.4.2 Conclusions Drawn from This Work

Based on the results described in this chapter, I conclude that the use of this

MCMC technique is not the optimal means of searching for very weak amplitude
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continuous signals, where the noise dominates the data. The increased efficiency

in computational cost by a factor of approximately 200 has to be weighed against

the reduced sensitivity of the search. In the current regime, where an initial

detection is the goal of most search programmes, sensitivity is the key quality which

distinguishes the performance of an algorithm and in these terms this MCMC

implementation does not compare well.

The reason for this behaviour at low SNR is, as stated above, that the efficiency

gains of MCMC depends on the structure of the posterior in parameter space. In

situations where there is a gradient of probability that the MCMC can follow, it

does not need to explore the entire space to find the maximum. This is the case

when the signal is strong, and triggers raised probability in nearby frequency bins,

giving the algorithm a good chance of finding the signal. However, when the signal

is weak, the parameter space is dominated by noise, and especially in the frequency

- spindown plane there is no information about the maximum for the algorithm

to follow. In this case, there is no benefit to using a probabilistic search, as an

exhaustive search will find the signal, and will do so in less time, as MCMC will

visit the same state more than once whereas a grid-based search simply proceeds

through the space without revisiting any one point.

One may speculate, however, that when future generations of detectors come

online with vastly improved sensitivity, searches which require the exploration of

a very large parameter space will be more amenable to techniques such as the one

I have developed. In such a situation it would be far more efficient to perform a

directed MCMC search which can return a full Bayesian estimation of the param-

eters of the source without having to explore the parameter space exhaustively.

Indeed, in any situation where the signal to noise ratio makes the application of
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an MCMC or other probabilistic algorithm a possibility, the increased efficiency

of such techniques should ensure that they are favoured over exhaustive methods.

This is already apparent in certain areas of cosmology where MCMC has found

many applications, and in other statistical sciences such as biology it has long been

in use.

4.4.3 Extensions of the Algorithm and Future Applicabil-

ity

At the time of writing, Markov Chain Monte Carlo methods are increasingly being

considered as the core of gravitational wave searches in both ground- and space-

based detectors.

With the success of the MCMC algorithm in decreasing processing time for

the six parameters search, an extension to cover 8 parameters with the addition of

position of the source on the sky parametrised by ecliptic latitude and longitude has

been developed by Richard Umstätter in collaboration with Nelson Christensen.

This increases further the speed benefit given by MCMC as these extra search

parameters impose a greater penalty on an exhaustive search than on an MCMC

search.

Work is also underway by Chris Messenger to produce a frequency-domain

search for pulsars in binary systems based on MCMC which utilises the efficiency

of the Fast Fourier Transform in combination with Markov chain Monte Carlo

techniques to explore a larger parameter space where the orbital parameters of the

binary system are also estimated by the routine.

Alternatively, the MCMC method could be used as part of a pipeline, to per-
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form parameter estimation on candidate signals that are identified by another

search. In this usage the MCMC would provide a tool for extracting astrophysical

information, with the actual search being performed by an exhaustive method.

It is likely that this technique will continue to be honed by the data analysis

community for use in gravitational wave analyses of many types, and the use of a

Bayesian framework allows a natural extension to multi-detector network analyses

as collaborations are built combining data from the LIGO, GEO and VIRGO

projects.

I will now turn to another application of MCMC in the proposed space-based

detector LISA, where continuous waves from binary systems are the sources as

opposed to those of a rotating neutron star.



Chapter 5

An MCMC Approach to

Characterising Galactic Binary

Systems in LISA

In this chapter I will move on to discussing work on data analysis for the planned

Laser Interferometer Space Antenna (LISA), in which the techniques of MCMC

have again been applied to a data analysis problem of a rather different type. I will

first discuss the nature of the problem, then outline the approach to solving the

problem by gradually increasing the complexity of the signals under consideration

in sections 5.3 and 5.4.

5.1 The LISA Binary Source Confusion Problem

LISA is a mission which is under joint development by the European Space Agency

and NASA which aims to complement the already existing ground-based detectors

111
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by launching a triplet of spacecraft which will act as a 3-sided laser interferometer,

with an arm length of approximately 5 million kilometres. The advantages of

placing a gravitational wave antenna in space are twofold. Firstly, as they are in

free-fall, the end test masses of the interferometer will be completely isolated from

all seismic noise, and being in space it is far removed from the sources of gravity

gradient noise which prevent terrestrial detectors from operating at frequencies

below around 10 Hz.

Secondly, the enormous arm length of the space based interferometer means

that the passing gravitational waves will produce a proportionally greater strain on

the proper distance between the test masses, as in equation 1.7, and cause a larger

phase shift in the laser. This means that to reach an equivalent strain sensitivity

as a ground-based detector requires less precise measurement of the phase of the

incoming light at the vertices of the triangle. However, the technology required

for the construction of LISA is itself more challenging.

With an arm-length of 16.6782 light-seconds, approximately 5 Gm, LISA will

have a sensitivity to gravitational waves with wavelengths considerably longer than

those available to LIGO. Specifically, it is designed to have optimal sensitivity in

the frequency range 0.01 mHz to 100 mHz [49], which will allow the observation of a

great many astronomical sources in a completely different part of the gravitational

spectrum, as compared to ground-based detectors. These sources are mentioned in

section 1.3, and in particular LISA is expected to observe gravitational waves emit-

ted by the merging of supermassive black holes at cosmological distances, the last

orbits of compact objects around massive black holes and a possible gravitational

wave stochastic background.

In this frequency band there are also expected to be sources within the Milky
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Way, in the form of binary star systems whose quadrupole motion will emit grav-

itational waves at twice their orbital frequencies, as in section 1.2.3. The galactic

population of such systems, which are compact binaries containing white dwarf

stars or neutron stars is estimated to be up to 100 000 in the 1-5 mHz band [13].

The continuous radiation from these sources will swamp the detector to a level

above the instrumental noise curve. Those binaries with an emission frequency

less than 1 mHz will be unresolvable, forming a background noise of gravitational

waves; above this frequency there will be a great many sources which overlap in

frequency, making it a difficult problem of data analysis to separate them. Identi-

fying and characterising these binary systems is the LISA binary source confusion

problem, and here I shall describe the approach to tackling this problem that has

been developed based again on a Markov chain Monte Carlo approach.

5.2 Occam’s Razor

An important aspect of this problem that should be considered is the difficulty in

deciding on a suitable number of sources with which to fit the data. It is plain to

see that the fit to the data may be made arbitrarily good with an unlimited number

of sources being posited, and in fact in the case of sinusoidal signals, the result

is simply the Fourier series representation of the noisy data. Since the number of

sources in our problem is unknown, we must have a way of knowing when to stop

adding sources and overfitting the data. This is a classic example of the problem to

which one would apply the metaphorical Occam’s Razor, which dictates that the

simplest explanation which adequately describes the data is the most preferable,

or in Einstein’s words, “Everything should be made as simple as possible, but not
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simpler.”

To be completely accurate it is not, in fact, the complexity of the model per

se that should be discriminated against by the principle, but its predictive power,

where a more complex hypothesis generally has a broader range of measurements

which it can accommodate, whereas a simple hypothesis “risks” more by allowing

for a smaller range of possible outcomes. If the result of the experiment is indeed

allowed by the simple hypothesis we would instinctively favour it over the less

predictive one.

One very useful and appealing feature of Bayesian inference is that it auto-

matically contains this intuitive principle within its formulation in a quantitative

way; and can in fact set relative probabilities for competing hypotheses of differing

complexity or predictive power. I will illustrate this with a very simple example.

Consider two competing hypotheses H1 and H2 which are to be evaluated in

the light of some observational or experimental data {d}. The probability of H1

is P (H1|{d}, I) = P (H1|I)P ({d}|H1, I)/P ({d}|I) from Bayes’ Theorem, with a

similar expression for H2. The odds ratio O12 of these two hypotheses, which is a

factor indicating the probability of one in relation to the other, is given by dividing

the individual model probabilities, where the term P ({d}|I) cancels.

O12 =
P (H1|{d}, I)

P (H2|{d}, I)
=
P (H1|I)

P (H2|I)

P ({d}|H1, I)

P ({d}|H2, I)
. (5.1)

We will assume that we have no prior information to favour one model over the

other, therefore P (H1|I)/P (H2|I) = 1, and we are only concerned with the ratio

of likelihoods.

For the sake of argument, let the two hypotheses be dependent on a single
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parameter x, where the difference between the two is the range that x is allowed

to take: x1 ∈ (0, 1), x2 ∈ (0, 2). That is to say that H1 has greater predictive

power than H2, or that it is more precise in its predictions. Applying the product

and sum rules of probabilities we have,

P ({d}|H1|I) =

∫ 1

0

p({d}|x1,H1, I)p(x1|H1, I)dx1, (5.2)

and

P ({d}|H2|I) =

∫ 2

0

p({d}|x2,H2, I)p(x2|H2, I)dx2. (5.3)

We shall assume the case of no noise and a single, exact observation d so that

p(d|x1,H1, I) = p(d|x2,H2, I) = δ(d − x{1,2}) (where δ() is the Dirac delta func-

tion), lending equal support to either hypothesis. The priors are assumed to be

flat, and must be normalised such that p(x1|H1, I) = 1 and p(x2|H2, I) = 1
2
. We

are now ready to write down the expansion of the odds ratio when an observation

is made,

O12 =
1×

∫ 1

0
δ(d− x1)dx1

0.5×
∫ 2

0
δ(d− x2)dx2

=

 2 0 ≤ d ≤ 1

0 1 < d ≤ 2
(5.4)

This shows that as one would expect, the more predictive model is favoured if

an observation that falls into its prior range (0 ≤ d ≤ 1), but if the observation

contradicts the prediction of the hypothesis, then its probability vanishes as the

data rules it out. Although this is a simple example, it is illustrative of the

broader principle that is automatically applied when using Bayesian inference in

this way. We can see that the reason that simpler hypotheses are favoured while

the data does not rule them out, is that they spread their prior probability density
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over a smaller range. A slightly more developed example where hypotheses with

different numbers of parameters are compared is given in [2]. By following this

approach to the problem we automatically incorporate selection of the simplest

model explaining the data.

5.3 Detecting multiple sinusoids in noise

5.3.1 Description of model

The strategy that was adopted was to approach the problem using a toy model,

and add complexity to work towards simulating the full problem of the realistic

analysis. The initial iteration of the analysis was a MCMC code which was devel-

oped by Richard Umstätter to estimate the number of signals in noisy data and

their parameters, where the individual signal waveform was a simple sinusoid with

three parameters, two amplitudes A, B and a frequency ω = 2πf ,

s(tj; a) = A cos(ωtj) +B sin(ωtj), (5.5)

which can also be expressed as s(tj; a) = h cos(ωtj − φ0) where h =
√

(A2 + B2)

and φ0 = tan−1 B
A

. The combined signal from m sources is simply given as the

summation of these,

y(tj; am) =
m∑
i=1

Ai cos(ωitj) +Bi sin(ωitj). (5.6)

For a model Mm which contains m signals, we therefore have a (3m + 1)-
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dimensional parameter vector

am = [A
(m)
1 , B

(m)
1 , f

(m)
1 , A

(m)
2 , B

(m)
2 , f

(m)
2 , . . . , A(m)

m , B(m)
m , f (m)

m , σ2
m] (5.7)

where the noise level σ2 is included as a parameter and is assumed to be stationary

throughout the dataset, with likelihood function

p({d}|am, I) ∝ 1

σNm
exp

[
− 1

2σ2
m

N∑
j=1

(dj − y(tj; am))2

]
(5.8)

An alternative way of thinking about the problem of selecting between the

models would be consider m itself a parameter which will be estimated by the

code along with the individual parameters of each gravitational wave.

For simplicity, flat priors are used for the noise level σ2
m and each amplitude

parameter A and B, although it should be noted this produces a different distribu-

tion from a flat prior in polar co-ordinates h and φ0, the posterior distribution is

not significantly affected by this choice when the data contains detectable signals.

The parameter space is then explored by a MCMC sampler, as described in

[2] and [50] by Umstätter et al, which implements the Reversible Jump MCMC

algorithm first described in [1] by Peter Green to make transdimensional jumps. I

shall here briefly cover the means by which these jumps are made, a more detailed

description is given in the references. The implementation also uses a delayed

rejection stage similar to that used in the pulsar code, and which has already been

introduced in 2.5.2. This algorithm, originally implemented by Umstätter et al

was the basis for my work on approaching the full LISA problem which begins

with section 5.4.
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5.3.2 Transdimensional Jumps

If at iteration n we hold k signals in the model, parametrised by ak, and we want

to move into a state that has either k+ 1 or k− 1 signals. In order to preserve the

principle of detailed balance, the transdimensional move must match the number

of dimensions between models. This is achieved by the random generation of a

parameter triple r from a proposal distribution q(r), and the probabilities are equal

for moving up and down between dimensionalities, i.e. pk 7→k′ = pk′ 7→k.

Four types of move are available for proposal within the algorithm to move

from a model of one dimensionality to another of higher or lower dimensionality

(except when the model is in the state m = 0 from where the dimensionality can

only increase. These are proposed at random with probability P = 0.3 at any

iteration, and if this condition is met they replace a intra-dimensional move for

that iteration.

Birth and death

The birth move extends the dimensionality of the model by simply proposing the

addition of a new signal with parameters a′(i) into the model with parameters

chosen at random, independent of the existing signals in the modelMk. The prior

probability of the k-th model is denoted p(k), but these prior probabilities are

assumed to be equal in this implementation. The acceptance probability given is

by [2] as

αk 7→k+1(a
′
k+1|ak) = min

{
1,
p(k + 1)p(a(i))p(d|a′k+1, k + 1)

p(k)p(d|ak, k)q(r)

}
, (5.9)
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In the proposal distribution q(r), the frequency of the new signal is chosen by ran-

domly generating a frequency between 0 and fNyquist from a uniform distribution,

and comparing the power of this new signal as calculated from the periodogram

C(f) =
1

N

[
N∑
i=1

d2
i cos2(2πfti) +

N∑
i=1

d2
i sin2(2πfti)

]
, (5.10)

with a random number generated uniformly between 0 and the maximum power

in any frequency bin which is precomputed using a fast Fourier transform during

an initial pass over the data. Amplitude parameters are chosen from a normal

distribution N(0, σ) with mean zero and σ given by the mean amplitude of the

signals already present in the model.

The inverse death transformation chooses a signal at random from those already

present and eliminates it from the model, reducing the parameter space by 3

dimensions. The acceptance probability is

αk 7→k−1(a
′
k−1|ak) = min

{
1,

p(k)p(d|ak, k)q(a′(i))

p(k − 1)p(a′(i))p(d|a′k−1, k − 1)

}
. (5.11)

Both these transitions have a Jacobian determinant |Jk 7→k′ | = 1.

Split and merge

The split transition generates an increase in the number of signals by picking an

existing signal and splitting it into two resultant signals, each perturbed by a

small random vector r which is drawn from a 3 dimensional Gaussian distribution

with mean zero. The amplitudes are halved during the transition so the combined
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amplitude is conserved. The transition of signals is given by the equation,

tk 7→k+1(a(i), r) =



1
2
A

(k)
i + rA

1
2
B

(k)
i + rB

f
(k)
i + rf

1
2
A

(k)
i − rA

1
2
B

(k)
i − rB

f
(k)
i − rf


=



A
(k+1)
i1

B
(k+1)
i1

f
(k+1)
i1

A
(k+1)
i2

B
(k+1)
i2

f
(k+1)
i2


. (5.12)

The acceptance ratio of this transition is

αk 7→k+1(a
′
k+1|ak) = min

{
1,
p(k = 1, a′(i1), a

′
(i2))p(d|a′(i1), a

′
(i2), k + 1)

p(k, a(i))p(d|a(i), k)q(r)

}
|Jk 7→k+1|,

(5.13)

with Jacobian |Jk 7→k+1| = 2.

The inverse merge process picks two sinusoids at random and proposes that

they be combined with the transformation

tk 7→k−1(a
′
(i1), a

′
(i2)) =



A
(k)
i1

+ A
(k)
i2

B
(k)
i1

+B
(k)
i2

1
2
[f

(k)
i1

+ f
(k)
i2

]

1
2
[A

(k)
i1
− A(k)

i2
]

1
2
[B

(k)
i1
−B(k)

i2
]

1
2
[f

(k)
i1
− f (k)

i2
]


=



A
(k−1)
i

B
(k−1)
i

f
(k−1)
i

r
(k)
A

r
(k)
B

r
(k)
f


, (5.14)

where r = (rA, rB, rf ) is a vector of the half-distances between the merged param-

eters, which is then used to calculate the proposal probability q(r), which is used
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in the acceptance ratio:

αk 7→k−1(a
′
k−1|a′k) = min

{
1,
p(k − 1, a′(i1), a

′
(12))p(d|k − 1, a′(i1), a

′
(12))

p(k, a(i))p(d|k, a(i))q(r)

}
|Jk 7→k−1|.

(5.15)

The Jacobian here is the inverse of that of the split, therefore |Jk 7→k−1| = 1/2.

The proposal distribution q(r) is a multivariate normal distribution with mean

zero and diagonal covariance matrix diag(σA, σB, σf ), where σA = σB = σm, the

current estimated noise level in the model. σf is calculated based on the work in

[39], where the width of the frequency posterior mode is a function of the SNR

and the number of data points N and is given by

σf =

(
2π

√
(A2 +B2)

σ2
m

)−1√
48

N3
(5.16)

This proposal distribution for frequency is also used when proposing jumps in that

parameter without changing the dimensionality of the model.

5.3.3 Results

In tests of the code, 100 signals with random amplitudes A and B in the range [-1,1]

were injected into a dataset of length 1000 datapoints consisting of white Gaussian

noise of variance σ = 1. The results of this simulation are described in [2] in great

detail. I will simply report here that the code produced the greatest probability

for the presence of 95 signals and a noise level of σ = 1.025, the sinusoids which

were not recovered contributing their power to the noise estimate instead. This

reflects the desired behaviour for the algorithm in approaching the toy problem, as

in the real LISA data analysis there will be some binaries that are not resolvable in
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the data, and in the absence of the ability to recreate their signal, it must simply

be allocated as noise.

5.4 Extending the Algorithm With Source Loca-

tion Parameters

The work from this section onward was based on the algorithm developed by

Umstätter et al, but was undertaken by myself alone. I will now describe the

modifications I have added to the above model in order to allow sky position

to be estimated along with frequency amplitude and phase. This represents a

small step toward the full LISA problem: in reality LISA will have multiple data

streams based on time-delay interferometry, which have complicated response func-

tion themselves, and are further complicated by amplitude and frequency modu-

lation as LISA moves in its orbit [51],[52]. In the model adopted here the signal

is modulated in frequency by the orbit of LISA, but antenna itself is assumed

to be isotropic and report only one channel of the signal, so polarisation is not

considered.

The new form of the signal is now a function of 5 parameters, with the addition

of λ the ecliptic longitude and β the ecliptic latitude. The prior on the longitude

parameter is flat and constant p(λ, I) = 1
2π

and its range λ ∈ [0, 2π). The latitude

β takes on a non-uniform prior given by p(β, I) = 1
2

cos β in the range β ∈ [−π
2
, π

2
),

as the two co-ordinates together span the surface of the celestial sphere.

The phase of the sinusoidal signal as it arrives at the detector is then modulated
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in the following way, as LISA moves toward and away from the source:

s(tj; a) = A cos (ω [tj − ΦD(tj; a)]− φ0) (5.17)

where ΦD(tj; a) is the phase modulation given by

ΦD(tj; a) =
n.r

c
=
R

c
cos β cos(λ− Ωtj). (5.18)

With n being a normal vector directed from the SSB to the position of the source

on the sky, and r the vector from the SSB to the position of LISA’s centre. Here

the radius of LISA’s orbit in light seconds is R = 499.004 l.s. and Ω = 2π× (1yr)−1

is the angular frequency of the orbit, which is assumed here to be circular and

have a radius of 1 astronomical unit.

5.4.1 Implementation

With the addition of the two new parameters, suitable proposal distributions had

to be included with them, and the transdimensional steps updated also. In par-

ticular, the merge routine had to be altered such that the new signal which is

created by the fusion of the two chosen ones had a position on the sky which lay

halfway between the originating signals. Since there are two halfway points on the

sphere, the one in the middle of the shorter arc segment is chosen. The procedure

for calculating this point finds the vector average 1
2
(n1 + n2) of the two normal

vectors in three dimensions ni = (cos βi cosλi, sinλi cos βi, sin βi), (i = {1, 2}), and

extending the resulting vector to find its intersection with the unit sphere. The

new co-ordinates β
(k−1)
i and λ

(k−1)
i are given here explicitly as functions of the
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spherical co-ordinates of the originating signals labelled 1 and 2 as,

cos θ = cos β1 cos β2 [sinλ1 sinλ2 + cosλ1 cosλ2] + sin β1 sin β2 (5.19)

β
(k−1)
i = sin−1 sin β1 + sin β2

2 cos
(
θ
2

) (5.20)

λ
(k−1)
i = π + tan−1

(
cos β1 sinλ1 + cos β2 sinλ2

cos β1 cosλ1 + cos β2 cosλ2

)
. (5.21)

The initial implementation used a uniform random distribution over the whole

sky, multiplied by the prior on β to make proposals. This was also used when

proposing a new signal in the event of a birth move. A bi-variate Gaussian dis-

tribution was used in the split and merge moves for sky position to determine

the probability of the signals merging or picking the perturbation of the signal

positions if they are splitting. At first this was based on a crude formula which

approximated the orbit of LISA as an aperture, but this was improved upon with

the work described in 5.4.3. For birth moves a new sky location was chosen from

the prior distribution also.

5.4.2 Structure of the Posterior Distribution

After trial runs it became clear that the choice of uniform distributions produced

extremely low acceptance ratios in the Markov chain stages which involve steps

in sky position after the burn-in stage had passed. To investigate the reason for

this, the marginal posterior PDF for sky position was examined in detail. For the

purposes of analysing the problem, a code was developed which evaluated the two

dimensional posterior PDF slice through the parameter space at the injected values

of the amplitude and frequency parameters, when a single signal was injected
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into noisy data. This revealed a significant amount of structure present in the

distribution, as shown in figures 5.1, 5.2.

There is clearly a symmetry between the north and south hemispheres, as a

point at latitude +β will produce the same Doppler modulation as one at −β.

Therefore the distributions are symmetric upon reflection at the equator. This

degeneracy is broken for the real LISA system as the orientation of the array and

the amplitude response function cause the signal modulations to differ between

north and south in general.

There is also a ring-like structure which occurs in each case, where the maxi-

mum probability is found in a mode which shows structure encircling the accelera-

tion vector of the detector. Over the course of a year’s observations these patterns

are integrated over the entire sky, destructively interfering for all points but the

main probability mode around the true location of the source.

This structure was observed to vary with the frequency of the signal, and

with the length of observation. In LISA, the resolvability of a signal is known to

increase with its frequency. By comparing figures 5.1 and 5.2, where the frequency

of the signal is increased from 1 mHz to 6 mHz, this increased resolution is clearly

visible. The low resolvability of signals at low frequency is a contributing factor

to the confusion arising at these frequencies, as their posterior PDFs will overlap

extensively. By contrast, at high frequencies the accuracy possible becomes much

improved, and therefore the posterior PDF is much more localised in one position

on the sky.

In addition to this being an important feature of LISA’s performance, it will

also affect the behaviour of the MCMC code when proposing a change in the esti-

mated position on the sky. At low frequencies a proposal distribution with a large
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Figure 5.1: The posterior log PDF as calculated as a slice through the sky in
ecliptic coordinates, with the other parameters maximised for a signal of frequency
f = 1 mHz showing the increase in resolution with observation time from 1 day
(top), 30 days (middle) and 1 year (bottom).
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Figure 5.2: As in fig. 5.1, the probability surface for the sky position parameters,
but for a signal with frequency f = 6 mHz. This shows the significantly higher
resolvability of a signal at higher frequency, a factor not accounted for in the näıve
implementation of the proposal distribution. This plot also reveals the intricate
interference pattern centred on LISA’s acceleration vector in the observations from
1 day (top diagram) which exhibits 2fR/c rings (where R is LISA’s orbital radius).
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width is appropriate for rapid exploration of the mode, whereas at high frequen-

cies using such a proposal distribution will lead to small acceptance ratios as the

majority of proposals will fall well outside the mode in an area of low probabil-

ity density. This is a factor that should be taken into account in a replacement

proposal density to the uniform one described above.

The other factor that is important when considering the proposal distribution

is the covariance matrix of the two parameters. The orientation and width of

the mode in the sky parameter slice varies not only with frequency of the signal,

but also with the position of the source itself, meaning that there are different

sensitivities at different positions in the sky. This can be understood intuitively

- a source located directly at the ecliptic north pole will exhibit no Doppler shift

as the relative motion of LISA along the vector connecting the SSB and source is

constantly zero. As the Doppler modulation is a function of sin β, its rate of change

cos β vanishes at the poles β = ±π
2
, meaning the distinguishability of sources

in this region is low, increasing toward the equator. In addition there is a co-

ordinate singularity at the poles, where the longitude is degenerate. This produces

a very large width of mode in that direction. More generally the resolvability and

orientation of modes varies continuously over the surface of the celestial sphere.

Unlike in the previous case of the pulsar search, where a reparametrisation could

account for the correlation between parameters, this problem cannot be solved this

way; there is an inherent curvature in the parameter space here that cannot be

removed with a single transformation that applies at all points.
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5.4.3 A Fisher Matrix Based Approach to Proposal Dis-

tributions

Having outlined the problem that faces an MCMC algorithm attempting to make

suitable jumps in the posterior parameter space of a single signal, I shall now

describe the method which was used to tackle this problem. It will employ an

adaptive proposal distribution which is recalculated for each step based on an

approximation to the Fisher information matrix which allows a rapid calculation,

making the procedure efficient enough to be used at every iteration of the chain.

Instead of a multivariate distribution in 5 dimensions being used at each step,

it is simpler from an analytic point of view to divide the steps into three classes

and use a different proposal distribution for each. The third type of move is simply

added into the algorithm with an equal probability to the existing two types. The

three moves then are a change in amplitude A and B; a change in frequency f ; or

a change in sky position λ and β.

To derive a suitable proposal distribution for the new move type, I have used

an approximation based on the Fisher matrix, which will be outlined here. The

logarithm of the likelihood function log p({d}|ai, I) = L(a) can be expressed in

the form of a Taylor expansion,

L(a) = L(a0) +
∂L
∂a

∣∣∣∣
a0

(a− a0) +
1

2

∂2L
∂a2

∣∣∣∣
a0

(a− a0)
2 + . . . . (5.22)

The step size for a particular mode in the PDF should be on the same order as

the width of the mode. Therefore we are interested in knowing the width around

the peak of the posterior PDF, at which point the first derivative vanishes ∂L
∂a

= 0,
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and the width of the mode in one dimension is given by the value of the second

derivative of the log likelihood.

When considering the two-dimensional case and hold constant A, B and f at

their peak values, the relation for λ and β becomes

L(λ, β) = L(λ0, β0) +
1

2

[
∂2L
∂λ2

∣∣∣∣
λ0,β0

(λ− λ0)
2 +

∂2L
∂β2

∣∣∣∣
λ0,β0

(β − β0)
2

]
(5.23)

+
∂2L
∂λ∂β

∣∣∣∣
λ0,β0

(λ− λ0)(β − β0) + . . . (5.24)

This second order term can be expressed in the form of a matrix,

[
λ− λ0 β − β0

] ∂2L
∂λ2

∂2L
∂λ∂β

∂2L
∂λ∂β

∂2L
∂β2


 λ− λ0

β − β0

 , (5.25)

where the covariance matrix is given as

 σ2
λ σ2

λβ

σ2
λβ σ2

β

 = −

 ∂2L
∂λ2

∂2L
∂λ∂β

∂2L
∂λ∂β

∂2L
∂β2


−1

. (5.26)

The matrix of partial derivatives is known as the Fisher Information Matrix,

described by R. A. Fisher in [53]. In order to be used accurately this entity

must be calculated with the data being taken into account, however here we are

interested not in finding exact results from this method but only in using it to find

an appropriate scale for our sampler. By following a procedure of approximation,

it is possible to use this to estimate the covariance matrix at any point in the

parameter space if a signal were present at that point. This is an appropriate

quantity to calculate, since we are concerned with finding the size of mode when
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there is a signal present, in order to set the right scale.

Approximation of Fisher Matrix

The terms in the Fisher matrix were calculated in an approximate regime as fol-

lows. First the log likelihood function is written, presupposing that the data is

composed of a signal with normally distributed noise ε N(0, σ),

d(tj; bfa0) = s(tj; a0) + εj. (5.27)

This gives

L = −N log
(√

2πσ
)

+
N∑
j=1

− [d(tj; a0)− s(tj; a)]2

2σ2
(5.28)

= E − 1

2σ2

N∑
j=1

(
[s(tj; a)]2 − 2s(tj; a)dj + d2

j

)
(5.29)

= E − 1

2σ2

N∑
j=1

(
[s(tj; a)]2 − 2hdj cos [ω(tj − Φ(tj;λ, β))− φ0] + d2

j

)
.(5.30)

Where E is a constant which will be lost through differentiation, as will the d2
j

term. [s(tj; a)]2 becomes h2, minus a sinusoidal term of order h2 with mean zero.

The h2 disappears on differentiation, and the sinusoidal terms is approximated as

summing to zero over the time period and not contributing greatly to the rest of

the calculation. The relevant terms to be derived from this are ∂2L/∂λ2, ∂2L/∂β2

and ∂2L/∂β∂λ. The first derivatives under the stated assumptions, and where



CHAPTER 5. MCMC FOR LISA BINARIES 133

fj = R
c

cos β cos (λ− Ωtj), are found to be [54]

∂L
∂λ

=
hω

σ2

N∑
j=1

{
dj
R

c
cos β sin (λ− Ωtj) sin [ω (tj − fj)− φ0]

}
(5.31)

∂L
∂β

=
hω

σ2

N∑
j=1

{
dj
R

c
sin β cos (λ− Ωtj) sin [ω (tj − fj)− φ0]

}
. (5.32)

The second derivatives are

∂2L
∂λ2

= −hω
2

σ2

N∑
j=1

{
dj

[
R

c
cos β sin (λ− Ωtj)

]2

cos [ω(tj − fj)− φ0]

}

+
hω

σ2

N∑
j=1

{
dj
R

c
cos β cos (λ− Ωtj) sin [ω(tj − fj)− φ0]

}
(5.33)

∂2L
∂β2

= −hω
2

σ2

N∑
j=1

{
dj

[
R

c
sin β cos (λ− Ωtj)

]2

cos [ω(tj − fj)− φ0]

}

+
hω

σ2

N∑
j=1

{
dj
R

c
cos β cos (λ− Ωtj) sin [ω(tj − fj)− φ0]

}
(5.34)

∂2L
∂β∂λ

= −hω
2

σ2

N∑
j=1

{
dj
4

[
R

c

]2

sin 2β cos 2 (λ− Ωtj) cos [ω(tj − fj)− φ0]

}

+
N∑
j=1

hω

σ2
dj
R

c
sin β sin(λ− Ωtj) sin [ω(tk − fj)− φ0] (5.35)

If we recall that at a position of maximum likelihood, the first derivatives must

be equal to zero, we can eliminate the second line terms in equations 5.33, 5.34 and

5.35. Since the terms cos β and sin β are independent of j they can be factorised
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out of the sum, and as they are both non-zero everywhere 1 this implies that the

sum itself is equal to zero. As terms of this sort appear in the second derivatives

they may be removed there.

Substituting equation 5.27 into the three second derivatives, and continuing

the assumption that we at the true value of the parameters, i.e. a = a0, we find

∂2L
∂λ2

= −h
2ω2

σ2

R2

c2
cos2 β

×
N∑
j=1

sin2 (λ− Ωtj) cos [ω(tj − fj)− φ0] {cos [ω(tj − fj)− φ0] + εj}

∂2L
∂β2

= −h
2ω2

σ2

R2

c2
sin2 β

×
N∑
j=1

cos2 (λ− Ωtj) cos [ω(tj − fj)− φ0] {cos [ω(tj − fj)− φ0] + εj}

∂2L
∂λ∂β

= −h
2ω2

4σ2

R2

c2
sin 2β

×
N∑
j=1

sin 2 (λ− Ωtj) cos [ω(tj − fj)− φ0] {cos [ω(tj − fj)− φ0] + εj}

Finally, it is noted that any terms involving
∑

j xjεj where xj is independent of

εj will tend to zero in the limit of large j, as these εj are drawn from a distribution

with mean zero. This approximation removes the reliance on the noise term in

the calculation, and it becomes a sum of calculable values only. The evaluation

of this is accelerated by approximating the sum as in integral and performing it

analytically, removing the need to iterate over the N terms. We arrive at the

expressions,

1Except the three points β ∈ {−π
2 , 0,

π
2 }, where the approximation breaks down anyway,

giving a singular covariance matrix
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∂2L
∂λ2

≈ − h2ω2

4∆Tσ2

R2

c2
cos2 β

×
(

[Tend − T0] +
1

2Ω
{sin [2λ− 2ΩTend]− sin [2λ− 2ΩT0]}

)
(5.36)

∂2L
∂β2

≈ − h2ω2

4∆Tσ2

R2

c2
sin2 β

×
(

2 [Tend − T0]−
1

Ω
{sin [2λ− 2ΩTend]− sin [2λ− 2ΩT0]}

)
(5.37)

∂2L
∂λ∂β

≈ − h2ω2

4∆Tσ2

R2

c2
4

Ω
sin 2β (cos [2λ− 2ΩTend]− cos [2λ− 2ΩT0]) ,(5.38)

where ∆T is the sampling interval of the data.

These expressions are used with relation 5.26 to find an approximation to the

covariance matrix, itself a first order approximate description of the likelihood

at any given point. Due to the neglect of the noise in the approximation, the

covariance matrices attained this way are slightly smaller than their true values,

which is preferable to being slightly too large. The information on the covariance

between the parameters does appear successfully in the approximation, so the

covariance matrix can still increase the mixing speed of the chain, while preserving

the orientation of the mode.

Proposal distributions computed this way have proved effective in increasing

the acceptance rate of the proposed steps in sky position from nearly 0% to a level

of approximately 10%, which is comparable to the acceptance ratio for steps in

the other parameters.

The uniform random distribution is kept, but used only as a first stage proposal

function to try large steps, with the new proposal forming the timid stage in the

delayed rejection algorithm, similar to the method outlined in section 2.5.2.
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Since the proposal distribution varies greatly from location to location in pa-

rameter space, the simplification of having equal probabilities of making the for-

ward and reverse move no longer apply. To maintain the principle of detailed

balance, the ratio q2(λk, βk|λk+1, βk+1)/q2(λk+1, βk+1|λk, βk) must be included in

the second stage acceptance probability.

Since the computation of the covariance matrix involves taking the inverse of

the Fisher matrix, it is necessary that this matrix is positive definite, i.e. that its

determinant be positive. This fails to be true at the points at which β = {−π
2
, 0, π

2
},

the two poles and the equator. At these locations, the approximation breaks down

and the calculation cannot be performed as intended. This case is tested for in

the execution of the code however, and should a matrix inversion problem occur

the uniform sampler is used as an alternative.

At positions close to these points also, the covariance matrix can become very

large in one direction, reflecting the unresolvability in that parameter. When this

occurs, proposals are made outside the range of the β and λ parameters, but these

are mapped back into the correct prior range.

5.5 Results of New Search Code

In figure 5.4, a comparison is made between the explicitly calculated posterior

probability distribution function and the error ellipse drawn using the covariance

matrix as approximated. The scale and orientation of the calculated proposal

distribution, while not matching the true distribution perfectly, are sufficient to

be useful for the purpose of achieving higher acceptance ratios without incurring

significant computational overhead. Such inaccuracies are inevitable given the
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level of computational shortcuts which are taken in the approach. There is also

the issue that weak signals with short observation times do not in general follow

a Gaussian distribution, the higher derivatives in the Taylor expansion becoming

more important. However, for most signals the approximation does at least provide

an indication of the covariance between the parameters at a particular point in

the parameter space, which is an important factor in the mixing of the chain.

To produce a more accurate estimation of the mode would require that the data

itself be summed over at each proposal, which would greatly reduce the speed of

calculation of the proposal densities and therefore the efficiency of the chain. In

addition, while the chain is exploring the parameter space, it will not necessarily

be located in the peak mode, so the data itself may not produce the required

estimate of a mode at the current point if there is a strong signal located elsewhere

in parameter space.

5.5.1 Results from MCMC Runs to Estimate Sky Position

The object of this example is to demonstrate the ability of the code to determine

the location of the source on the sky. Due to constraints imposed by the compu-

tation time necessary as the length of the dataset increases, an observation time

of 30 days was used here, with sampling interval 1 minute and variances σ = 1.0.

A signal was injected with parameters h = 0.6, f = 5 mHz, φ0 = π
2
, λ = 2.0 and

β = −0.5. The chain was allowed to run for 1,000,000 iterations, with a thinning

factor of 500 and a burn-in length of 100,000 iterations.

The results of the estimation of sky position, shown in figure 5.7 and 5.8, indi-

cate that the Markov Chain has located the mode produced by the original injected
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Figure 5.4: The posterior PDF on sky position for a signal injected into 30 days
of white noise σ2 = 1 with amplitude h = 1.0, φ0 = 0 and frequency f = 6 mHz,
these parameters being fixed at their true values for the grid-based calculation of
the density on sky position. The proposal distribution is shown as a white error
ellipse centred on the maximum of the true mode. The approximated ellipse is
smaller than the true mode, however this is a desirable feature when the chain has
converged and needs to sample from a particular mode.
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signal at the initial phase. However, it has also explored the region in parame-

ter space surrounding it, where the maxima in the sky position distribution are

shifted under a change of initial signal phase φ0. This indicates a degeneracy in

these three parameters which spread the probability distribution out and make it

more difficult to localise a signal with a short observation time with this model.

The reason for this is clear in equation 5.17, where a change in phase can compen-

sate for a shift in sky position if the observation time is much less than one orbit.

Therefore the broad and uneven distribution in phase in figure 5.6 and in the sky

positions, which can be seen in figures 5.7 and 5.8.

This problem is alleviated in a full description of the LISA response function,

where both the amplitude and frequency modulation depend on sky location, and

therefore information about these parameters can be inferred from both sources,

where the amplitude modulation is independent of initial phase. Additionally,

with extended observation times approaching 1 year, when the modulation of the

signal frequency completes a full cycle, its effect cannot be emulated by a shift in

initial phase, and the parameters become separable. Unfortunately, a MCMC run

over such a lengthy dataset was not possible with the existing code, due to the

computation times required to calculate the likelihood. A solution to this problem

may be found with the use of parallel computation, as discussed in 5.6.

Despite the effects described above, the absolute amplitude h (figure 5.5) and

the frequency f are reproduced very accurately. These can be characterised with

the median values and 1σ error bars as h = 0.593± 0.010 and f = 5.00007± 2.3×

10−5 mHz.
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Figure 5.5: The recovered amplitude of the signal has converged well on the value
injected at h = 0.6.
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Figure 5.6: The recovered distribution of phase is not accurately estimated, with a
broad range of values allowed. This uncertainty in phase allows the sky position to
vary outwidth the mode depicted in 5.8, which is computed at the predetermined
injected phase. Under a full π shift in φ0, the peaks and troughs of the distribution
are exchanged, leading to correlation between the φ0, λ and β parameters. This is
shown in figure 5.7.
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Figure 5.7: The marginal distribution of the chain on the sky position parameters.
The chain deviates from the global maximum at the injected parameters λ = 2.0,
β = −0.5 as the phase changes, however the bulk of the probability is localised in
the mode around the maximum shown in figure 5.8.
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Figure 5.8: The log likelihood posterior PDF over sky position, maximised over all
other parameters. The injected value at longitude 2.0, latitude -0.5 is marked with
the symbol ×. The samples from the Markov chain are shown as white crosses,
which indicate that the chain has explored both the true maximum mode and the
alternative adjacent mode produce when the initial phase is shifted by π.
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5.5.2 Testing Sensitivity of the Algorithm

As opposed to the pulsar MCMC search, the LISA binary search has the ability

to use a model with no signal at all. This feature removes the problem of a signal

being matched to the slight sinusoidal features in the noise when there is no strong

signal present. In this test I shall examine the reversible jump behaviour of the

algorithm as the signal to noise ratio approaches zero, and the probability of a

signal being present decreases accordingly.

A series of signals were injected into white Gaussian noise files, σ = 1.0 and

duration 1000 minutes, with the usual sampling interval of 1 minute. Each MCMC

run was started at a random point in parameter space, and allowed to evolve for

10 000 000 iterations with a burn-in time of 100 000 samples and a thinning factor

of 500. The greater number of iterations here than in the pulsar search is to allow

the chain to explore the multidimensional parameter space which spans different

models.

Since transitions can be made between models with differing signal numbers,

there is a more gradual transition between a detectable signal and a non-detectable

one than in the case of the pulsar code in 3.1.2. However, in this case there is no

equivalent of the cos ι parameter to affect the signal to noise ratio, as the effects

of the source orientation are not included in the model. The variable number of

signals in this code allows us to set a direct Bayesian upper limit of 95% confidence

without the need to resort to large numbers of Monte Carlo injections. While in

practice the signals in LISA are expected to have a high signal to noise ratio, it is

interesting to perform this analysis to test the sensitivity of the algorithm.

In figure 5.9 is shown the probability assigned to each model as a function
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Figure 5.9: The decreasing probability of the null hypothesis M0 with no signal
modeled, as a function of increasing injected signal amplitude. The point at which
the model becomes only 5% probable is h = 0.346, corresponding to a signal to
noise ratio of 10.9.

of injection amplitude h. When the injection reaches a value of h = 0.346 the

probability of the model with no signals has reduced to 5%, corresponding to

the upper limit in section 3.1.2. For comparison, this amplitude is equivalent

to a signal to noise ratio of 10.9. This indicates that the more advanced LISA

algorithm is greatly superior in detecting low-level signals. Due to its ability to

evaluate the null hypothesis, it is not forced to fit a signal model to the data even

when there is no signal present as the pulsar algorithm is. This allows the Markov

chain to avoid getting stuck in the local maxima of probability, a feature that

would provide significant benefit in the case of assigning upper limits, rather than

estimating parameters.
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5.5.3 Estimating the Number of Sources

Here we will demonstrate the ability of the algorithm to infer the number of sources

present in the dataset, given sufficient signal power, and estimate the levels of noise

accordingly. This test depends on the correct behaviour of the transdimensional

jumps between the set of models Mm and requires a lengthier burn-in stage to

bring the chain into the region of the most probable models. The density of samples

in each modelMm is then proportional to the probability of each of these models.

Test data

The dataset used in this example contained 50 test signals injected into 4000

minutes of Gaussian white noise of variance σ2 = 1. The differing amplitudes of

these 50 signals were chosen to explore the limits at which the algorithm no longer

assigns any probability to the model and instead allocates its power to the noise.

To this end the fifty amplitudes were evenly spaced from h = 0.0 to h = 1.0. The

signals were also distributed evenly in frequency to allow them to be distinguished

easily, and here the range was between f = 1 mHz and f = 7.333333 mHz. The

dataset used is represented in the frequency domain in figure 5.10.

Results

The sampler was run for a total of 10 000 000 iterations, the first 1 000 000 of which

were a burn-in stage. The thinning factor was 500, leaving 18 000 samples from

which the PDF was estimated.
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Figure 5.10: The 50 injected signals, displayed in the frequency domain.
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Figure 5.11: The probabilities of each of the models Mm as estimated from the
MCMC sampler.
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Figure 5.11 shows the marginalised probability distribution over model number

Mm, and figure 5.12 shows the estimate of the noise σm for each model Mm.

The noise estimate varies with the number of signals, when higher numbers of

signals are estimated there is less power allocated to the noise estimate, and this is

therefore lower. Conversely, at lower model numbers there is a higher estimate of

the noise level accordingly. As the lowest amplitude signals were not detected by

the algorithm, the estimated number of signals include sporadic extra signals which

were not present in the injection but contribute to the posterior by increasing m,

as they can be accepted briefly and eliminated again. There is also the possibility

of two large amplitude signals with differing phase or sky position interfering to

generate a waveform which provides a close fit to the data. This can occur when

a single signal undergoes a split transition, and the two resultant signals closely

reproduce the original waveform.

5.6 Comments and Further Work

The method outlined above demonstrates the first step in developing a possible

approach to LISA data analysis which has a real chance of tackling the source

confusion problem. The successful use of reversible jump MCMC to move between

models with different numbers of parameters offers a way to algorithmically and

automatically parametrise those sources which are distinguishable in the data.

The remaining gravitational wave power from unresolvable sources is folded into

the estimate of the noise level, which is itself inferred from the data. Bayesian

inference provides a robust approach to finding the probability density of models
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Figure 5.12: The estimate of noise level σ, displayed as a function of model number
alone, with the standard deviation of the estimate indicated by the error bars. The
simulated noise variance was σ = 1. At larger values of m the noise estimate is
closer to the injected noise level, as more power is accounted for by the signal
models. Note that the estimates for model number 52 were calculated from only
3 samples with low probabilities. With some signals not providing enough power
for their presence to be detected, the models with high numbers of signals may
include those where the model number is overestimated by the inclusion of small
amplitude signals which individually may only last for a few samples as they are of
low probability, and of pairs of signals which interfere to produce a low amplitude
signal, possibly resulting from a split transition.
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with differing numbers of sources, a key requirement in the situation where the

number of sources cannot be determined from any external observations.

The simplistic nature of the model, however, is a limiting factor in the useful-

ness of this particular implementation. The shape of the multimodal distribution

on sky position arises from the symmetry between the north and south hemi-

spheres, and although the approximation I have developed is useful for exploring a

mode it is not good at moving between the concentric rings of probability as these

lie in the direction perpendicular to the alignment of the mode.

It is clear from the above examples that a more accurate modelling of the

LISA detector and response function is required to improve the performance of

the algorithm in resolving signals on the sky. This would break the degeneracies

and better localise probability on the true origin of the signal. Although still in the

early stages of development at the time of writing, the ongoing work in this area

by myself, and recently similar approaches by others in the field promise to provide

an important part of LISA data analysis. The basic details of the algorithm such

as its use of Markov Chain Monte Carlo, reversible jumps and delayed rejection

has been taken up by others in the gravitational wave data analysis community,

and similar approaches have been used in the analysis of the first round of the

Mock LISA Data Challenges (MLDC) [14].

A hierarchical approach which involves an exhaustive search, followed by a

MCMC sampler for parameter estimation has been developed for these challenges

in collaboration with Alexander Ströer et al [55] and is part of an ongoing partic-

ipation in the MLDC. This approach is based in the frequency domain, allowing

the use of the Fast Fourier Transform to improve performance and allow analysis

of the full datasets provided as part of the MLDC, which have durations greater
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than 1 year.

An independent line of work on the same problem has also been pursued by Neil

Cornish and Jeff Crowder, which tackles the problem using an MCMC algorithm

but does not freely explore the number of models in the same way, details of which

can be found in [56].

The object of this work was to demonstrate a proof of concept implementation

of Bayesian model selection in a reduced version of the LISA source confusion prob-

lem. With the increasing power of computers and the continued development of

faster algorithms I believe that in the future the full problem will become tractable

through means such as this. Statistical inference will also form an important part

of the approaches to other data analysis challenges with LISA, as it offers the best

way of extracting maximum scientific information from the observations.



Chapter 6

Concluding remarks

In recent years, the field of astronomy has increasingly made use of probabilistic

inference in the analysis of observations, particularly in the area of cosmology,

where competing models are tested against the limited available data. As the

study of gravitational waves progresses to becoming another branch of astronomy,

their extremely weak nature will necessitate the use of the most sensitive techniques

to gain the maximum scientific benefit from the noisy data. The development of

data analysis algorithms based on Bayesian inference is therefore important for the

advancement of the field, and the work which has been presented here is a small

part of that development.

The full extraction of information about a model from observations can require

the exploration of large parameter spaces as the models become more complex.

I have found that Markov chain Monte Carlo can be a powerful technique for

examining such probability distributions that have a high dimensionality, where

exhaustive methods are not possible even on modern computing hardware. It

should be emphasised however that while the basic technique of MCMC as outlined
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in section 2.4.1 is conceptually simple, its generality means that optimising it

for a particular task can be a difficult problem in its own right. As we have

seen in the approach to pulsar data analysis in chapters 3 and 4, the use of a

probabilistic algorithm comes at the cost of sensitivity in comparison to exhaustive

methods in problems where the bulk of probability is concentrated in a small

corner of parameter space. Given that this corner can occupy less than 1 part

in 1010 of the total hyper-volume, as in section 3.1, it is perhaps surprising the

technique works as well as it does. That is not to say that the potential of MCMC

has been fully explored here. Indeed, the broad field of Markov chain Monte

Carlo algorithms is still undergoing rapid development, and techniques invented in

recent years such as delayed rejection and the reversible jump method of moving

between models of variable dimensionality have further increased the power of

this approach. In chapter 5 these methods were applied to the problem of LISA

source confusion, where it is likely that some form of model selection will be

required to allow meaningful inferences to be drawn on the observations. The

success in applying these methods to the reduced problem that has been tackled

shows the promise that they hold, in addition to the requirement of tuning the

algorithm for a particular task as exemplified by the work on adaptive proposal

distributions in section 5.4.3. This has been confirmed at the time of writing by

the prominence of MCMC methods in the more recent first round of Mock LISA

Data Challenges, where the difficulty of the analysis task has forced the use of

advanced implementations of the method. It has also found a place as part of

a pipeline approach to LISA data analysis, where it can be used to improve the

parameter estimates of candidate sources found by an initial stage [55].

The analysis of data from the LIGO H1 interferometer during the S3 science
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run has produced the upper limit on gravitational wave radiation from SN1987a

in a 4 Hz by 2×10−10 Hzs−1 window around 935Hz of h95% = 7.3×10−23 in section

4.3. The search and upper limit estimation was performed in less than 87,000

hours of CPU time on a 2 GHz cluster, more than ten times faster than the

commonly used F -statistic algorithm, at the cost of decreased sensitivity. The

actual search stage took up only 6.6% of this time, the rest being used to set

the upper limit. The performance of the MCMC algorithm used in chapter 5 for

LISA data analysis suggests that use of a transdimensional jump method could be

extremely beneficial in the case of the pulsar search also, offering both an large

improvement in sensitivity and the elimination of the time-consuming Monte Carlo

injections to find upper limits.

The continued improvements in the efficiency and reliability of MCMC meth-

ods make them likely to see increased usage in the field of gravitational wave

data analysis as it develops from a search to a study. The extraordinary techni-

cal achievement of constructing instruments as sensitive as the LIGO and GEO

interferometers has for the first time delivered a real possibility of detecting a

gravitational wave. It is my hope that the data analysis community will continue

to find innovative ways to meet the challenges posed by these experiments, and by

future generations of interferometers both on Earth and in space. When we have

achieved the detection of gravitational waves, we will have begun a new way of

doing astronomy, allowing the study of the universe to proceed in directions never

before possible.
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