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Abstract

This thesis investigates heating and thermal and non-thermal X-ray emission

from magnetic loops in active regions of the solar atmosphere using numerical

simulations. The simulations also allow investigation of Type III radio emission.

In our model we vary a number of physical parameters such as magnetic field

configuration and density models, investigating the effect they have on emission

and loop heating as a result of the propagation of a beam of fast electrons moving

through the ambient coronal plasma.

Chapter 1 presents an overview of the Sun and the magnetic processes at

work in the solar atmosphere. It also contains a summary of observations and

current work corresponding to the phenomena discussed in later chapters, as well

as current theories of particle acceleration and transport in an active region loop.

Chapter 2 describes the theory behind, and implementation of, the numerical

simulations used, and initial tests of the accuracy of the simulations by com-

paring results with analytical results for simplified models. The simulations are

built on a core which models the evolution of the electron distribution function

through stochastic processes. We derive the Fokker-Plank equation from which

we obtain the expressions describing the progress along a magnetic field of an

electron undergoing Coulomb collisions with particles of a background plasma.

We describe the field and density models used, and consider the effects of gradient

and curvature drifts on particles.

In Chapter 3 we present results showing the non-thermal X-ray emission from

magnetic loops with various density models and field configurations. We show re-

sults from a straightforward field model with no curvature as described in MacK-

innon & Brown (1990), and then results from a more complex (and more realistic)

X-point field model as described in Priest & Forbes (2000). These results illus-

trate the significant effects the field model and density of the background coronal

plasma have on the loop emission, both in intensity and position (i.e. at which

part of the loop the emission originates from). We also investigate the correlation
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between loop footpoint size and X-ray intensity, theoretically verifying work done

by Schmahl et al. (2006) in which they present observations showing that X-ray

intensity increases with footpoint size.

In Chapter 4 we present results showing the evolution of the loop temper-

ature profile over time. As the fast electrons collide with the particles of the

ambient background plasma they lose energy, which is transferred to the plasma,

increasing it’s temperature. We include in these calculations the effects of radia-

tive and conductive cooling of the loop, but we do not consider chromospheric

evaporation (whereby heated plasma from the photosphere rises into the loop

at the footpoints as a result of bombardment by the beam of fast electrons) or

other bulk plasma effects. This would require a combination of stochastic and

hydrodynamic simulations, which we do not cover in this work. Again, we show

the effects of changing density and field models on the temperature profile.

In Chapter 5 we investigate the thermal X-ray emission from the particles of

the background plasma in the heated loop. We then combine the thermal and

non-thermal emission to produce X-ray spectra from photon energies 6 - 100 keV,

similar to those observed by satellites such as the Reuven-Ramaty High Energy

Solar Spectroscopic Imager (RHESSI), thus verifying that our simulations suc-

cessfully model some of the processes present in active regions. We also consider

the limitations of our simulations and models and discuss what parameters and

changes would produce results close to observational data.

Chapter 6 is separate from the preceding chapters and is a brief study of

the production of Reverse-Drift Type III radio bursts in a loop, specifically the

position in the loop at which the condition for their development originates, given

various plasma densities and particle injection profiles. In a beam of injected

electrons, the faster (higher energy) electrons propagate along the loop more

quickly than the slower particles, causing an instability to develop in the beam

distribution. This instability leads to the growth of Langmuir waves, which in

turn result in emission at radio wavelengths. We show the development of the

condition leading to this emission from a loop as a function of time and position,

with various field and density models and particle injection profiles.

Chapter 7 summarises the main body of work in this thesis and discusses pos-

sible further development of these methods in investigating the physical processes

and parameters at work in active region magnetic loops.
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Chapter 1

Introduction

1.1 Overview

Our star, the Sun, is a main sequence star of spectral type G2V. It has a radius of

∼ 7×108 m, a mass of ∼ 2×1030 kg and a total luminosity of ∼ 3.8×1026 W. The

Sun generates energy through nuclear fusion (primarily hydrogen to helium via

the proton-proton chain) in the core which is at a temperature of approximately

1.55×107 K . This energy is transferred outwards via radiation until the temper-

ature gradient becomes too steep to support the plasma in static equilibrium and

convection becomes the dominant transfer mechanism. Radiative heat transfer

is far slower than convection in transferring energy from the core because of the

“random-walk” nature of the movement of an emitted photon. A photon created

at the core undergoes many absorptions and re-emissions and on average takes

10,000 years to reach the surface (Zirin (1988)). However, convection dominates

after approximately 0.7 Rsun (Christensen-Dalsgaard et al. (1991)). In this re-

gion, the hot plasma of the interior is convected to the surface in many small,

hot up-wellings, visible on the photosphere as a granulation pattern, in a process

similar to that in boiling water. The bright centres of the granules (which are of

the order 1000 km in width on average (Schwarzschild (1959))) contain upward

flowing hot material from below the surface and the darker edges are material

that has cooled and is flowing back down into the interior.

The photosphere is the visible surface of the Sun, below which the optical

depth of the plasma is greater than one. It has a depth of approximately 100 km

and a plasma number density of approximately 1016 - 1017 cm−3. The temperature

of the photosphere is approximately 5800 K, and is near black-body in form

(Schmelz & Brown (1992), Zirin (1988)).
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Figure 1.1: White light image of the Sun from the MDI instrument on the
SOHO satellite, 28th Oct 2003. [SOHO (ESA & NASA)]

The solar magnetic field is believed to be caused by the differential rotation

of the Sun and becomes highly distorted by this rotation, the rotation rate being

faster at the equator than at the poles. This causes the field to become distorted

around the equatorial regions, where it emerges in complex regions of loops and

twisted field. These field lines and loops are anchored in the photosphere, and the

field strength at the photosphere varies from ∼ 100 G in quiet regions, to ∼ 3000

G in active regions (Dulk & McLean (1978), Mathew et al. (2003)). Immediately

above this is the chromosphere, which is ∼ 3000 km in depth. The density

decreases across the chromosphere as a function of height, and the temperature

increases gradually (after a slight dip) to reach ∼ 20,000 K at the base of the

transition region (Fontenla et al. (1990)). The transition region is a very narrow

region ( ∼ 100 km wide) over which the temperature increases rapidly to several

million Kelvin. Above this is the corona, the tenuous but extremely hot outer

region of the solar atmosphere, visible in white light during solar eclipses as a halo

of streamers and loops extending far beyond the surface of the Sun. The corona

stretches as far as three solar radii from the Sun, and has temperatures of several
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million Kelvin, and a number density of the order 109 cm−3 at a height of 5×108

cm above the photosphere (Gabriel (1976)). The mechanism of heat transfer to

the corona which maintains these extreme temperatures is not yet understood,

and is one of the most active areas of solar research.

The plasma beta (the ratio of the thermal to magnetic pressure) in the solar

atmosphere is generally less than one (Gary (2001)), meaning the plasma must

follow the path of the magnetic field. This allows us to observe the magnetic

structure as the plasma contained by the magnetic loops is denser than the back-

ground plasma and emits radiation at various wavelengths, most prominently in

extreme ultraviolet (Figure 1.2). This emission can been seen by orbiting tele-

scopes, which provide excellent images of the magnetic structure in the solar

atmosphere. Conversely, in the photosphere, the plasma beta is much greater

than one and thus the magnetic field is constrained to follow the movement of

the plasma (a situation known as “frozen-in field”). This means that the mag-

netic field, significantly the anchor points of magnetic loops, is distorted and

pulled around by large- and small-scale motions of the plasma, causing the field

to become twisted and distorted. This creates an increase in the magnetic ten-

sion, and if this becomes large enough, the field lines can reconfigure, releasing

large amounts of matter and energy in the process. These events range from the

smallest transient, short lived micro-flares, to the largest solar flare.

1.2 Observational Overview

Until relatively recently in history, it was only possible to observe the Sun in

visible light, wavelengths detectable by the human eye. At these wavelengths,

the disc of the Sun is relatively smooth, showing only sunspots as darker patches,

and, when viewed through a telescope, much smaller scale granulation, likened to

the speckled surface of an orange (Figure 1.1). Sunspots have been known and

observed for millennia, the first systematic observations being made by Chinese

astronomers as many as 4000 years ago. In more recent times, sunspots were

regularly observed and studied by Galileo in the 1600s and daily observations

were instigated in the mid 1700s at the Zurich Observatory. Observations of

these continue today, and provide information on the long term evolution of the

large scale solar magnetic field. Through sunspot observations it is known that

the overall magnetic activity on the Sun waxes and wanes over an 11 year cycle

in total, with the most recent maximum of activity occurring in the year 2000.
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Figure 1.2: Hot coronal loop arcade as observed by the TRACE satellite
at 171A on the 8th Nov 2000. [NASA / Stanford-Lockheed Institute for Space
Research]

With the advance of time and technology, we are now able to observe emission

from the Sun in other wavelengths across the electromagnetic spectrum. One of

the first non-visible wavelengths to be detected was radio, when it was discovered

that particularly strong solar flares (which had been first observed by Carring-

ton, and independently by Hodgson (Carrington (1859))) caused interference in

the early military radars of the mid-1940s (Hey et al. (1948)). Following this

discovery, radio observations were regularly made and continue to this day, ob-

serving both the ambient radio emission from the quiet Sun and the large bursts

produced during flare activity.

The advent of space-borne telescopes opened the window to new observational

capabilities - without the absorption of our atmosphere to contend with, new

wavelength ranges became detectable, including ultraviolet, X-ray and gamma

ray wavelengths. Higher resolution optical images also became possible without

the need to compensate for the distortion caused by the turbulent atmosphere.

Early X-ray emission had only been observable from high altitude balloons,

with limited observation time, but with satellites such as the Japanese Yohkoh,
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now inactive, (Ogawara et al. (1991), Masuda (2002)) and Hinode (Ichimoto &

Solar-B Team (2005)), and the NASA satellite RHESSI (Reuven-Ramaty High

Energy Solar Spectroscopic Imager) (Lin et al. (2002)), we are able to obtain de-

tailed time and space resolved X-ray observations. The magnetic field strength on

the surface of the Sun is measurable using the Zeeman splitting effect of absorp-

tion and emission lines, using instruments such as the Michaelson Doppler Imager

on NASAs Solar and Heliospheric Observatory (SOHO) satellite (Domingo et al.

(1995)). We are also able to infer the magnetic field structure in the solar atmo-

sphere by examining extreme ultraviolet (EUV) emission with satellite such as

Hinode and NASAs Transition Region and Coronal Explorer (TRACE) (Handy

et al. (1999)), which provide us with high resolution images of magnetic loops as

the heated plasma contained within them emits extreme ultraviolet radiation.

1.3 Solar Flares

Solar flares have been studied since they were first discovered by Carrington

in 1859, both to further our understanding of the physics of the Sun, and to

investigate the possible effects they may have on Earth. A solar flare is generally

defined as a brightening across the full electromagnetic spectrum from an event

on the Sun, and is often (but not always) accompanied by a coronal mass ejection

(CME) whereby large quantities of matter are ejected from the Sun in a rapid

expulsion.

Solar flares are labelled using the GOES (Geostationary Operational Environ-

mental Satellites) classification system: A,B,C,M and X type, each class being 10

times stronger than the previous, from A to X. These are based on the peak soft

X-ray flux as measured at Earth by NASAs GOES program. Each class is sub-

divided into further numerical classes, indicating multiples of that strength. For

example, an X6 flare would have a peak soft X-ray flux of 6 × 10−4 Wm−2. The

largest flare yet observed (4th November 2003) was an X28 flare, which saturated

the detectors, but it is believed it’s true strength may have been as large as X40

(Brodrick et al. (2005)). Flares can release up to ∼ 1032 ergs of energy in the

largest observed events (Emslie et al. (2005)). Different wavelengths of emission

peak at different times, and originate from different areas of the flaring region

(Figure 1.3). In the pre-flare phase, we may see a gradual increase in EUV and

soft X-ray emission as the loops begin to heat. This is followed by the short-lived

impulsive phase where we see sharp spikes in hard X-ray and microwave emission
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Figure 1.3: Evolution of flare emission at various
wavelengths. [Benz (2002), Figure 1.5]

as fast particles are accelerated onto the loops and propagate into the denser pho-

tosphere, the beginning of radio and Hα emission, and continued increase in EUV

and soft X-rays and the loops continue to increase in temperature. There is then

the main phase, where we see a peak in EUV and soft X-rays, and a continuing

increase in Hα and metric radio, but there is no longer hard X-ray or microwave

emission. The soft X-ray emission lags behind the hard X-ray emission because

of the Neupert effect: as hard X-rays propagate into the denser chromosphere

and photosphere, they heat plasma which moves up into the loop and emits soft

X-ray radiation. The soft X-ray emission time integral has been observed to be

closely related to the hard X-ray time integral but delayed. Once the Hα emission

peaks, we reach the decay phase of the flare, where only EUV emission continues

to increase for a time.

1.3.1 Particle Acceleration & Transport Theories

It is thought that magnetic reconnection allows the release of energy stored in

the pre-flare magnetic field. A simple field configuration thought to result in this
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Figure 1.4: 2-D representation of
an X-type neutral point where mag-
netic reconnection is believed to occur.

Figure 1.5: 3-D representation of a magnetic reconnec-
tion region [Priest & Forbes (2002), Figure 23b]

phenomena is the X-type neutral point, which can be simplified to two dimen-

sions (Figure 1.4), although a complete treatment would consider the full three

dimensions (Figure 1.5). The theory of magnetic reconnection and the underly-

ing field configuration is an ongoing area of research. One of the earliest models

was developed by Sweet & Parker in the late 1950s and early ‘60s (Sweet (1958),

Parker (1963)), a basic two-dimensional reconnection model where magnetic field

merges at a current sheet of defined size, unlike the null point postulated for

X-point reconnection. A variation on this was proposed by Petschek (1964),

where the current sheet is reduced in size, enabling faster reconnection. Theories

continue to be studied in detail - see Priest & Forbes (2002), Aschwanden (2002).

Field lines on either side of the X-point push toward each other due to mag-

netic forces and eventually break open from their current configuration and re-

combine to make a new loop, which rapidly contracts downward. When the field

reconfigures in this way, large amounts of energy are released and particles present

in the ambient plasma and reconnecting field lines (both electrons and ions) are

believed to be accelerated onto the newly formed loop with very high energies,

from 50 - 100 keV in an average flare (Fletcher & Petkaki (1997)), to as much as

70 MeV (for electrons, 2 GeV for ions) in large (but brief) γ-ray emitting flares

(Sakai (1992)). These accelerated particles are thought to propagate along the

new loop in both directions from the looptop, and as they do so they undergo

Coulomb collisions with the ambient background plasma particles in the loop. It

is thought that these collisions result in non-thermal hard X-ray emission and an

increase in the temperature of the background plasma in the loop, which in turn

emits thermal X-rays.

Exactly how these particles are accelerated onto the newly formed loops re-



10 1: Introduction

mains a hotly debated topic. Possible theories include stochastic acceleration

as a result of magnetohydrodynamic turbulence in the plasma (e.g. Hamilton

& Petrosian (1992), Miller & Ramaty (1992)), direct acceleration from electric

fields formed in the reconnection region (e.g. Litvinenko (1996), Holman (1995)),

and secondary acceleration from shock waves formed in the plasma during the

reconnection event (e.g. Tsuneta & Naito (1998), Cargill et al. (1988)). However,

the work presented in this thesis does not concern the mechanism of acceleration,

only the propagation of the accelerated particles, and effects of that propagation,

along the loop.

1.3.2 Loop Heating

It has been observed that during a flare, the plasma in the newly formed mag-

netic loops is heated to high temperatures as energy is released when the field

reconfigures (e.g. Warren & Reeves (2001)). In the early stages of the flare, loops

are heated to 10 - 30 MK, at which point emission is dominated by soft X-rays,

and at later stages they cool to a few million Kelvin, where the primary emission

is in the extreme ultraviolet range.

Several heating mechanisms are proposed to explain the temperature increase

in magnetic loops during flares. There is the theory of resistive heating, whereby

electric fields created during reconnection are dissipated by Joule heating of the

plasma (e.g. Holman et al. (1989)); the theory of shock heating, whereby the

shock waves generated in the plasma at the reconnection point heat the plasma

as they propagate (e.g. Cargill & Priest (1983)); the theory of inductive current

heating, whereby a loop with a specific resistivity and voltage dissipates current

according to Ohm’s Law (P = RI2) which is converted to heat (e.g. Melrose

(1995)); and the theories of electron and proton beam heating, where electrons

and protons accelerated at the reconnection point propagate down the loop and

cause the temperature of the background plasma to increase through Coulomb

collisions (e.g. Brown (1973), Fletcher & Martens (1998), Voitenko (1996)). No

single theory has proven sufficient in itself to account for the observed tempera-

tures in loops and thus finding out what exact physical processes are at work is

an ongoing topic of investigation. In this thesis, we investigate the propagating

electron beam model.

Electrons that are accelerated onto the newly formed loops propagate along

the magnetic field and undergo Coulomb collisions with the ambient background
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particles - the energy lost by the propagating particles through these collisions

is deposited into the background plasma, increasing its temperature. When the

propagating particles reach the photosphere, they impact with the denser plasma

there and cause it also to increase in temperature. This hotter plasma then ex-

pands up into the loop in a process known as “chromospheric evaporation” (or

more correctly, “chromospheric ablation”), which in turn increases the temper-

ature of the loop further (Bornmann (1999), Fisher et al. (1985)). In the work

presented here, we do not consider the process of chromospheric evaporation,

only the temperature increase as a result of the interaction of the propagating

accelerated particles with the background plasma through stochastic processes.

1.3.3 X-Ray Emission

X-ray emission is produced by the collisions between the accelerated fast electrons

and the effectively stationary (by comparison) ions of the background plasma

through which they propagate, and also between particles within a heated plasma.

These two types of X-ray emission are described as “non-thermal” and “thermal”

emission respectively. Non-thermal emission is generally in the range ∼ 10 -

100 keV (hard X-rays) and thermal emission in the range ∼ 1 - 10 keV (soft

X-rays). By observing the X-ray radiation incident at Earth, we are able to

work backwards to infer the particle populations that resulted in the emission

(e.g. Brown (1971), Brown et al. (2003)), and hence learn more of the particle

acceleration and propagation processes present in flaring loops.

The earliest X-ray observations of the Sun were taken by NASAs Orbiting

Solar Observatory (OSO) satellites in the late 1960s and early 70s, although there

was not a dedicated X-ray telescope, and there was no spatial resolution at X-ray

wavelengths. These satellites were succeeded over the years by missions such as

the Solar Maximum Mission (SMM) which was operational throughout the 80s,

and was specifically dedicated to observing solar flares. It was capable of imaging

X-ray emission and had a maximum spatial resolutions of 8” depending on the

energy band. The Japanese mission Yohkoh succeeded SMM, and provided higher

resolution images up to 5” throughout the 90s, but was unfortunately lost due to

a technical error. It has been replaced with the joint JAXA (Japanese Aerospace

Exploration Agency) / ESA / NASA mission, Hinode, which was launched in

September 2006, and which is now running concurrently with the NASA satellite

RHESSI which has already been in operation for 5 years. Hinode carries a grazing
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Figure 1.6: First X-class flare detected by RHESSI, 21st April 2002, shown
in the energy band 12-25 keV. [Sato (2002) / NASA]

incidence X-ray telescope with a maximum spatial resolution of 2”, as well as

high resolution optical and EUV telescopes. RHESSI on the other hand, uses

a rotation-modulated collimator - different Fourier components of the incident

X-ray flux are measured as the telescope rotates, and these are then combined

and an image reconstructed using various algorithms (see Hurford et al. (2002)).

This provides a spatial resolution of up to 2.3”, and the energy resolution of the

telescope is 3 keV to 17 MeV, allowing observations of γ-ray emission as well as

X-ray. Current observational capabilities do not provide highly detailed spatial

resolution, but they do provide high energy resolution and temporal resolution

down to 2 seconds for the most detailed images (both Hinode and RHESSI).

RHESSI images X-rays in several energy bands - in the hard X-ray range,

these are 6-12 keV, 12-25 keV, 25-50 keV and 50-100 keV. Figure 1.6 shows the

first X-class flare detected by RHESSI. This image shows the emission in the

energy band 12-25 keV and is summed over 20 seconds. RHESSI also produces

X-ray photon flux spectra (c.f. Figure 1.7), a plot of the number of photons

incident on the detector per cm2 per second per unit photon energy. From these
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Figure 1.7: RHESSI X-ray photon flux, residuals and mean
electron flux, F (E) (= f(E)nV ), for the July 23rd 2002 flare,
using forward fitting techniques. Holman et al. (2003), repro-
duced by permission of the AAS.

spectra, it is possible to work backwards to determine the effective mean electron

flux spectrum, F (E) (which is f(E), the electron energy distribution function,

integrated over volume and weighted with respect to the density) (Brown (1971),

Brown et al. (2003), Piana et al. (2003)).

One of the key discoveries from X-ray observations in the past decade has

been that of looptop hard X-ray sources (Masuda (1994)), which supports the

theory that electrons are accelerated at the point of magnetic reconnection. Since

non-thermal X-ray bremsstrahlung emission is linearly dependent on density, it

would be expected that most of this type of emission would originate at loop

footpoints, since the density increases sharply across the chromosphere and into

the photosphere. However, high energy sources have also been observed on and

above the loop apex in several flares (Figure 1.8). Some of this emission is at the

lower energy range of hard X-rays, and is consistant with thermal emission from

a hot plasma of temperatures up to 30 MK, but there is also a higher energy

component which it is proposed results from non-thermal electrons accelerated
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Figure 1.8: Yohkoh hard X-ray (top) and soft X-ray (bottom)
images of the flare on the 13th of January 1992, showing a hard X-
ray source located above the looptop of the soft X-ray emitting loop.
[Masuda (1994)), Figure 1]

onto the loop at the reconnection point. Furthermore, these looptop sources

appear concurrently with the footpoints sources and last for roughly the same

length of time.

Possible explanations for this hard X-ray looptop source are a high loop den-

sity, up to 1011 cm−3 (Holman (1996)) (as opposed to the more usual accepted

value of ∼ 109 cm−3, Fletcher & Martens (1998)), particle trapping in the loop

as a result of the converging field at the footpoints (the “magnetic bottle” effect)

(e.g. Fletcher & Martens (1998)) and very high loop temperature at the apex

(Masuda (1994)). Particles trapped by the field will mirror back and forth across

the loop apex, producing non-thermal X-ray emission until they are scattered into

the loss cone, or until they run out of energy - this will increase the looptop hard

X-ray intensity with respect to the foopoint intensity depending on how long the

particles remain trapped, which in turn is a property of the field configuration,

initial particle energy and loop density. If the density is higher, the particles will

emit more non-thermal bremsstrahlung X-rays, but they will also be scattered

into the loss cone more quickly, meaning they remain trapped in the loop for less

time. Thermal X-rays would require a very high temperature to be significant in

this process - for X-rays of energy 20 keV, the plasma temperature would have

to reach approximately 100 MK, for which there is no observational evidence so
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far.

The work presented in this thesis includes simulations of non-thermal electron

populations injected into various magnetic loop configurations and shows the

resultant hard X-ray emission as a function of both time and position in various

energy bands. We also present X-ray spectra from these simulations similar in

form to that seen in the top panel of Figure 1.7, by combing thermal and non-

thermal X-ray emission from the heated plasma in the loop and the interactions

of the injected non-thermal electron population.

1.3.4 Radio Emission

Radio emission from the Sun was first detected as interference in World War II

radar detectors (Hey et al. (1948)), and has been observed extensively ever since.

Since radio passes easily through the Earth’s atmosphere in the range 1 cm

to 10 m ( 30 GHz to 10 MHz), it is one of the most studied wavelength ranges

along with visible light. Early observations were not able to produce images, only

spectra, from metric to millimetre wavelengths, but with the development of radio

interferometers, imaging became possible using Fourier transforms to construct

images from the received signal. Current radio telescopes include the Very Large

Array (VLA) in New Mexico, which uses synthesised aperture techniques to create

high resolution images, the Nancay Radioheliograph in France, and the Phoenix

2 radio spectrometer at ETH Zurich.

There are two main types of radio emission observed from the Sun - coherent

emission and incoherent emission. Incoherent emission arises from continuum

processes such as bremsstrahlung emission from thermal plasma and gyrosyn-

chrotron emission from fast electrons. Coherent emission occurs when a particle

distribution becomes unstable and develops a positive slope (i.e. ∂f
∂v

> 0) in ei-

ther the parallel (plasma emission) or perpendicular (electron-cyclotron maser

emission) direction to the magnetic field.

Electron beams propagating along a magnetic field line produce coherent

plasma radio emission known as Type III emission - upward propagating beams

produce regular (normal-drift) Type III bursts and downward propagating beams

produce reverse-drift Type III bursts, so named because their frequency decreases

with time (Figure 1.9). Emission can also be described as U-bursts, caused by

an electron beam crossing the apex of a loop and changing direction (frequency

increases then decreases over time) and J-type bursts (a partial U-type burst),
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Figure 1.9: Reverse-drift Type-III radio bursts for an event
on 22nd Sept 1989, from the Phoenix radio spectrometer of ETH
Zurich. [ETH Zurich]

both named from their shape in a dynamic spectrum plot. In this thesis, we

consider only reverse-drift Type III emission in the radio band.

The fastest electrons in an injected distribution propagate more quickly along

the loop, reaching a given position before the lower energy electrons. Pitch angle

distribution also plays a part in that angles with smaller initial pitch angles with

respect to the direction of the field undergo a smaller number of collisions and

are slowed less quickly, and hence propagate along the loop faster. This creates

a “bump” in plots of the combined velocity distribution of the thermal (back-

ground) and non-thermal (beam) electrons, which has a positive slope for a small

range of positions. This creates an unstable electron distribution (the “bump-in-

tail instability”), which causes Langmuir waves to develop in the plasma. These

undergo non-linear wave interactions which in turn produce electromagnetic emis-

sion at the electron plasma frequency, which is dependent on the plasma density,

and for coronal densities of ∼ 108 - 1010 cm−3 this corresponds to radio wave-

lengths.

The unstable electron distribution resulting in Type III bursts has been mea-

sured by the International Sun Earth Explorer 3 (ISEE-3) satellite located at the

Sun-Earth Lagrange point, for example during the flare of Feb 17th 1979 (Lin
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et al. (1981), Lin et al. (1986)), showing clearly the positive slope in the electron

velocity distribution of a beam propagating outwards from the Sun along an open

field line. Other observations show a correlation between both normal-drift and

reverse-drift Type III bursts and hard X-ray emission in a magnetic loop topol-

ogy, indicating that the beams that cause both phenomenon are one and the

same, although the radio emission is observed to be delayed by ∆t = 270 ± 150

ms with respect to the hard X-ray emission as a result of the growth time of

Langmuir waves in the plasma and the different energies of the particles resulting

in hard X-ray and radio emission (Aschwanden et al. (1993)). Our results appear

to confirm this observation, as discussed in Chapter 6.
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Chapter 2

Methods & Testing

2.1 Stochastic Simulations

2.1.1 Introduction

A stochastic simulation is a form of numerical simulation which models the move-

ment of test particles which are influenced by random effects. It involves step-wise

modelling of random physical processes, such as diffusion and scattering of par-

ticles via Coulomb collisions, without having to explicitly solve the equations of

motion of the test particles under the influence of surrounding particles. Instead,

we treat the effects of surrounding particles in a statistical manner by looking at

the evolution of the distribution function as a whole. The accuracy of this method

depends on the process being modelled, the degree of complexity of the equations

describing said process, and the way in which the equations are implemented

within the simulation.

We use stochastic simulations to model the evolution of the electron distribu-

tion function. The equation describing this distribution function can be written

in the form of a set of stochastic partial differential equations (see Section 2.1.2

below). These equations can be used to numerically calculate the movement of

electrons along a magnetic field line over time in a step-wise fashion and hence

model the resultant effects associated with this process, such as X-ray emission,

radio emission, and heating of the background plasma through particle collisions.
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2.1.2 Theory

The distribution of a beam of fast electrons (the electron distribution function,

f) can be described by the conservation equation[Parks (2004)]:

df

dt
=

∂f

∂t
+ v · ∂f

∂r
+ a · ∂f

∂v
(2.1)

(where f = f(r,v, t). In the absence of collisions, the distribution function obeys

the continuity (Liouville) equation:

∂f

∂t
+ ∇r,v · [ (ṙ, v̇)f ] = 0 (2.2)

where the second term represents a divergence in phase space of the function f ,

and the particles move in continuous curves. In Cartesian co-ordinates, this is

written:
∂f

∂t
+

∂

∂xi
(fẋi) +

∂

∂vi
(f v̇i) = 0

i.e.
∂f

∂t
+

(

∂ẋi

∂xi

+
∂v̇i

∂vi

)

+
∂f

∂xi

ẋi +
∂f

∂vi

v̇i = 0 (2.3)

It can be shown that ∂v̇i

∂vi
= 0 and ∂ẋi

∂xi
= 0, since vi and v̇i are independent

variables, xi and ẋi are also independent variables. Thus Eq. 2.3 can be written:

∂f

∂t
+

∂f

∂xi
ẋi +

∂f

∂vi
v̇i = 0 (2.4)

This is the Boltzmann Equation and is the same as Eq. 2.2 if df
dt

= 0, which is true

for a collisionless plasma. Thus the Boltzmann equation is a continuity equation

in this situation. When electromagnetic forces are introduced, the Boltzmann

Equation becomes:

∂f

∂t
+ v · ∂f

∂r
+

q

m
(E + v ∧B) · ∂f

∂v
= 0 (2.5)

which is the Vlasov Equation. The Vlasov equation, when collisions are intro-

duced and the magnetic field is zero, provides the basis of the evolution of the

electron distribution function. This is described by the following where the first

two terms describe the temporal and spatial variations respectively, and the last

two terms describe the effects of collisions[ MacKinnon & Craig (1991)]:

∂f

∂t
+ µv

∂f

∂s
− D

∂

∂v

(

f

v2

)

− D

v3

∂

∂µ

(

(1 − µ2)
∂f

∂µ

)

= 0 (2.6)

where s is the distance along the field line, µ = cos θ, the angle of the particle with

respect to the magnetic field (B) (i.e. the particles pitch angle), and D = 4πe4Λn
m2

e
,
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the diffusion coefficient in pitch angle for an electron. In using this equation,

we assume that the gradient and curvature drifts are insignificant (see Section

2.2.3) and that no electric fields are generated by the movement of the particles.

n ≃ 109 cm−3 is the coronal number density and Λ is the Coulomb logarithm.

The Coulomb logarithm is the logarithm of the ratio of the upper and lower

cut-offs of the impact parameter of the particle undergoing collisions, and, for

electron-electron collisions, can be approximated by[Baumjohann & Treumann (1996)]:

Λ = 4πnλ3
D (2.7)

where the Debye length is given by λD =
√

kBT
4πne2 cm. We consider a back-

ground plasma of ambient temperature 106 K (∼ 86 eV), which yields a value

of Λ ≃ 20. Now, with the inclusion of a variable magnetic field, Equation 2.6

becomes[Fletcher (1995)]:

∂f

∂t
+ µv

∂f

∂s
− D

∂

∂v

(

f

v2

)

− v

2

∂

∂µ

(

(1 − µ2)
dlnB

ds
f

)

− D

v3

∂

∂µ

(

(1 − µ2)
∂f

∂µ

)

= 0

(2.8)

This is a Fokker-Plank type equation, and a Fokker-Plank equation can

be shown to be equivalent to a set of stochastic differential equations (Gardiner,

1985). The equations in this particular case are:

ds = µv dt

dv = −D

v2
dt

dµ =

[

−2Dµ

v3

]

dt +

[

−v

2
(1 − µ2)

∂lnB

∂s

]

dt +

[

2D

v3
(1 − µ2)

]1/2

dW (t)(2.9)

where dW (t) is a Gaussian random noise process of mean 0 and variance 2 (es-

sentially a number chosen at random from a Gaussian distribution, since the

random walk nature of the pitch angle scatterings is described by a Gaussian of

variance 2
√

∆t), and includes a scaling factor of
√

dt. We note here that the use

of a Gaussian function does not represent the physical process of scattering com-

pletely accurately, since it has limits of ±∞, whereas the cosine of the pitch angle

has limits of ±1. However, it does effectively represent small angle scattering,

which is the most common scattering interaction.

These last three equations describe the behaviour of a test particle (in our

case, an electron) moving along a magnetic field and undergoing random collisions

with the background particles. These equations can be incremented over time to
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simulate the movement of the test particle. Repeating this process for many

particles allows us to track the movements of electrons along magnetic field lines

over time and build up a picture of the electron distribution function. In this

work, we consider only non-relativistic electrons - this is suitable for particles

in the energy ranges we are considering. Our upper cut-off for particle energy

gives a ratio of v
c
≃ 0.6 (the highest energy particles are ∼ 113 keV), however,

the majority of particles are at a much lower energy, since the injection profile

is a power law distribution. Particles below ≃ 150 keV are considered to be

non-relativistic [Bai & Ramaty (1976)].

2.1.3 Basic Simulations

We use stochastic simulations to model the movement of fast electrons propagat-

ing along magnetic field lines in the solar atmosphere. These electrons (our test

particles) are injected onto the apex of a magnetic loop and propagate along it in

both directions, emitting bremsstrahlung radiation as they lose energy, and heat-

ing the background coronal plasma through Coulomb collisions. By simulating

the distribution function of this population of electrons we are able to investigate

the hard X-ray emission produced in loops with various physical characteristics.

The simulations also allow us to calculate the energy deposited by the electrons

through collisions with the ambient particles of the coronal background plasma

(see Chapter 4).

Our simulations are written using the Java programming language (with the

results output using the IDL language), and are based on earlier work by MacK-

innon & Craig (1991). In these simulations we take Equations 2.9 and use these

to calculate the movements of test particles (electrons) along magnetic field lines

with various geometries (see Section 2.2) and physical parameters (see Section

2.1.5). These test particles are injected onto the apex of the loop (i.e. at s = 0

cm) with specified initial pitch angles and velocities. The programs increment

step by step over small time intervals, calculating the small changes in s, v and

µ for a particle over each timestep using Equations 2.9. By binning the velocity

of each particle at each position along a magnetic loop at frequent time intervals

we are able to build up histograms of the electron distribution function evolving

over time.

This is the core of our simulations, to which we add routines to calculate X-

ray emission (see Section 3.1) and to calculate heating (as well as cooling through
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Figure 2.1: Simulated histograms of the electron pitch angle distribution over time (coloured
histogram plots) overplotted with the analytical solution (solid black curves), for uniform magnetic
field and density. Run for 0.24 sec, with 107 particles and 100 bins in pitch angle. The match
is excellent at each time, showing the reliability of the simulations in modeling the evolution of
the pitch angle scattering of the electrons over time, and hence the evolution of the distribution
function.

radiation and conduction) of the background plasma as a result of collisions (see

Section 4.1).

The distribution function histograms need to be scaled up to represent realistic

loop parameters - limitations in processing power and data storage prevent us

from running simulations to scale because of the large timescales and numbers

of particles involved. Thus, we simulate a smaller number of particles than is

expected in a real loop and apply a scaling factor when using the histograms to

calculate X-ray emission, and when calculating temperatures - see Sections 3.1.1

and 4.2 for details of this scaling.

2.1.4 Testing Basic Simulations

We initially tested the accuracy of the most basic implementation of the sim-

ulations - one that calculates and records the movements of a number of test

particles over time in a uniform magnetic field and uniform density, and does
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Figure 2.2: Plot of a selection of particles’ energies as a function of position, with initial
angles of injection µ = 0.1 (∼ 84◦) and initial velocity 1.5 × 1010cms−1 (∼64keV). The expected
theoretical energy (neglecting scattering) as a function of position for particles with these initial
parameters is plotted as a dotted line.

not include any calculations of heating, cooling and emissions. It does, however,

include the effects of diffusion through Coulomb collisions with the ambient back-

ground particles (which we assume to be protons in a fully ionised plasma) which

are implicitly included in Equation 2.6. The first simulation here uses a simplified

form of Equations 2.9 in which the magnetic field is constant (meaning it has no

effect on the movements of the test particles) and hence the term containing the

derivative of the magnetic field (
[

−v
2
(1 − µ2)∂lnB

∂s

]

dt) disappears.

By plotting spatially integrated histograms of the pitch angle distribution over

time, with the expected analytical distribution plotted on top, we can check the

accuracy of our simulations.

To calculate the analytical solution, we cannot solve the equation for the

electron distribution function (Eq. 2.1) directly, but a spatially integrated solu-

tion can be arrived at (see MacKinnon & Craig (1991), Lu & Petrosian (1988)

and Kel’ner & Skrynnikov (1985) for details) which can be described in terms of
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Figure 2.3: Plot of a selection of particles’ energies as a function of position, with initial angles
of injection µ = 0.5 (60◦) and initial velocity 1.5×1010cms−1 (∼64keV). The expected theoretical
energy (neglecting scattering) as a function of position for particles with these initial parameters
is plotted as a dotted line.

Legendre polynomials:

F (v, µ, t) = δ(v − (1 − 3t)
1
3 )

∞
∑

n=0

(1 − 3t)n(n+1)/3anPn(µ) (2.10)

where n is an integer, t is time and Pn(µ) is a Legendre polynomial (a solution

of the Legendre differential equation, which is calculated using existing functions

in the programming language).

The analytical solution (dimensionless) for the velocity of a particle is given

by v(t) = (1 − 3t)
1
3 , from integrating the dimensionless form of the differential

equation for v, dv = − 1
v2 dt (MacKinnon & Craig (1991)), therefore:

F (v, µ, t) =

∞
∑

n=0

(1 − 3t)n(n+1)/3anPn(µ) (2.11)

where

an = (n +
1

2
)

∫ 1

−1

M(µ)Pn(µ)dµ (2.12)
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Figure 2.4: Plot of a selection of particles’ energies as a function of position, with initial angles
of injection µ = 1.0 (0◦, i.e. parallel) and initial velocity 1.5×1010cms−1 (∼64keV). The expected
theoretical energy (neglecting scattering) as a function of position for particles with these initial
parameters is plotted as a dotted line.

The initial condition is such that M(µ) = δ(µ − µ0), i.e all particles are injected

with initial pitch angle µ = µ0. The integral of a delta function is zero everywhere

except at its condition, therefore:

an = (n +
1

2
)Pn(µ0) (2.13)

Thus the analytical solution (describing the evolution of the pitch angle distribu-

tion over time) is given by:

F (µ, t) =
∞
∑

n=0

(1 − 3t)n(n+1)/3(n +
1

2
)Pn(µ0)Pn(µ) (2.14)

where µ0 is the initial angle of injection of a particle.

Plotting this analytical solution for the electron pitch angle distribution over

time on top of the simulated pitch angle histograms (Figure 2.1) we can see that

the output from the simulations is in excellent agreement with that predicted

by the analytical solution. The number of counts in the simulated pitch angle
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Figure 2.5: Plot of pitch angle of four test
particles over time, with various initial angles of
injection.

Figure 2.6: Plot of position of four test par-
ticles over time, with various initial angles of in-
jection.

Figure 2.7: Plot of velocity of four test par-
ticles over time, with various initial angles of in-
jection. This is the same for each, since overall
velocity decreases steadily with time.

histograms have been normalised in order to compare with the analytical solution,

which is dimensionless.

The process described above tests the accuracy of the simulations directly, by

comparing the pitch angle distribution over time with the analytical solution. We

can also compare the rate of energy lost by a particle in the simulation with the

expected energy loss predicted by theory.

The energy a particle would be expected to have after a given distance, using

a mean scattering treatment (which describes the behaviour of a particle with a

scattering angle that is the average of the distribution), is described by[Emslie (1978)]:

E = E0

[

1 − 3ΛKN

µ0E2
0

]
1
3

(2.15)

where E is the energy of the particle at a given position, E0 is the initial energy

of the particle and µ0 is the initial pitch angle of the particle. K = 2πe4, and
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N is the column density, which is
∫ s

−∞ n(s)ds, which in this case equals ns since

we are considering a constant magnetic field (loop) with only one dimension (the

direction along the field line, s), and where n is the density of the background

plasma in the loop and is also constant. Λ is the Coulomb Logarithm, for which

we use the value ∼ 20 (see Section 2.1.2).

In Figures 2.2, 2.3 and 2.4 we plot the energies of a number of test particles,

each with the same initial energy but with various pitch angles, as a function

of position along with the analytical values for each pitch angle. We can see

from these Figures that the larger the angle of injection to the field line, the

less the particles’ energy loss over position follows the predicted values. This is

because particles that are injected at larger angles to the field line (i.e. more

perpendicular), take longer to travel the same distance along the field line as

ones injected closer to parallel, and as a result have undergone more scattering in

the intervening time. This results in larger discrepancies between the analytical

and simulated results, since the equation for the analytical solution (Eq. 2.15)

does not take dispersion into account, only the average scattering, whereas the

equations on which the simulations are based, do include dispersion. In Figure 2.4,

where particles were injected parallel to the field, we can see that the resultant

energy as a function of position matches the predicted values closely at early

times, but begins to diverge as the test particles undergo more and more scattering

with the background particles. This result is as we expect, and verifies that the

energy loss as calculated by the simulation is physically valid.

Finally, as a further test of the simulations, we can plot the various parameters

of a number of test particles (such as pitch angle, velocity and position over time)

to check that they behave as we would expect. In Figure 2.5 we plot the changes

in pitch angle of four particles with different initial angles of injection over time.

We can see that the particles undergo random scattering in pitch angle over

time as expected, through collisions with ambient particles. We can also see

that after approximately 0.64 sec the particles run out of energy and stop. This

is particularly clearly illustrated in Figure 2.7, which plots the same particles’

velocities over time. We can calculate the expected time for the particles to run

out of energy using the following equation for the energy loss rate of a particle

with initial energy . 160 keV[Bai & Ramaty (1979)]:

−dE

dt
= 4.9 × 10−9nE−1/2 (2.16)

where energy is measured in keV and density in cm−3. For a particle of initial
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Figure 2.8: Plot of density as a function of position along a magnetic loop
of length 1.3 × 109cm from looptop to the photosphere. Vertical dotted lines
indicate the start of the chromosphere, at which point the density increases
rapidly towards the photosphere. The base level throughout the corona is
1 × 109cm−3 in this graph (not resolved due to scaling). The form of the
density model is described by Equation 2.17.

energy 2.56 keV (3 × 109 cms−1, as in Figure 2.7) this gives a stopping time of

approximately 0.56 sec. Given that particles also lose energy via other mech-

anisms (for example gyrosynchrotron radiation) and thus would be expected to

stop slightly more quickly than predicted by our simulations (which only consider

collisional energy losses), we believe this to be acceptably close to the simulated

value. The absolute velocity of the particles decreases steadily with time, and is

the same for each particle when the initial velocities are the same (as they are

here). The velocity along the field line (which is not plotted here) varies with

pitch angle. In Figure 2.6 we plot the position of these four particles over time,

which increases as expected, with scattering resulting in non-uniform curves.

Taking all the above tests into account, we are confident that the simulations

are acceptably accurate given the underlying equations, their limitations and the

assumptions we have made in simplifying the physical model. The tests produce

results in accordance with physical expectations.

2.1.5 Model Parameters

Our simulations are designed such that certain parameters can be easily modi-

fied in order to investigate their effect. The closest of our simulations to realis-
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tic parameters have initial angles of injection chosen randomly from a uniform

distribution of pitch angles between 0◦ and 180◦, with 0◦ < θ < 90◦ correspond-

ing to particles travelling forward (the positive direction along the loop) and

90◦ < θ < 180◦ corresponding to particles travelling backwards (the negative di-

rection along the loop). 50% of the particles are injected in the positive direction

and 50% in the negative direction from the point of origin at the looptop. Other

injection profiles could be used in future work, but are not considered here due

to time limitations.

The initial velocities of particles are chosen randomly from a power law distri-

bution, for example, between 1×1010cms−1 and 2×1010cms−1. We treat particles

as non-relativistic throughout, an assumption which is adequate for our purposes,

provided we do not increase the upper limit on initial velocity.

The magnetic loop length used in our simulations is 10,000 km long as mea-

sured from the looptop to the start of the chromosphere, and the chromosphere

has a depth of 3000 km. We also include a variable background density model

- the density is assumed to be constant throughout the corona (109 cm−3 unless

stated otherwise), and increases rapidly across the chromosphere to a value of 1016

cm−3 at the photosphere (see Figure 2.8). The increase across the chromosphere

is described by:

n = n1e
−(s1−abs(s))

h0 (2.17)

where n1 is the photospheric density (1016 cm−3), s1 is the photospheric boundary

(end of the chromosphere), s is position and h0 is the scale height (≃ 1.86 × 107

cm). See Section 2.2 for discussion of the magnetic field models used.

2.1.6 Limitations

Our simulations are test particle simulations, and therefore do not directly model

large scale effects as can be done using hydrodynamic simulations, which treat

the plasma as a whole, rather than looking at the cumulative effects of single

particles. As a result, we are not able to include effects such as chromospheric

evaporation, where photospheric and chromospheric plasma ablates and moves

back up the loop as it is hit by fast electrons; nor can we model the propagation

of waves in the plasma and their effects. Teriaca et al. (2003) observe the velocities

of upward moving plasma as a result of chromospheric evaporation to be between

100 kms−1 and 160 kms−1 in chromospheric and coronal parts of a small pre-flare

loop. Taking an average velocity of 130 kms−1 gives an evaporation timescale of
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∼ 100 sec for a loop of length 1.3×109 cm from footpoint to apex. This timescale

is large enough that we are justified in not considering chromospheric evaporation

- our test particles are all injected at time t = 0 sec, and all but a tiny fraction

run out of energy well before 100 sec (from ∼78 sec for particles of initial velocity

1 × 1010 cms−1 to ∼ 0.64 sec for low energy particles of initial velocity 1 × 109

cms−1).

Due to limitations in computational power and storage space, we cannot run

the simulations with as many particles for as long timescales as we would like, and

running with smaller numbers can introduce statistical noise. We run simulations

with as many particles and timesteps as is feasible, and we believe distortion from

such statistical noise to be within acceptable limits. We must then, as a result,

scale certain values up to represent realistic loop parameters (see Sections 3.1.1

and 4.1.1).

This limitation in the number of particles can also cause problems when it

comes to increasing the background density. In certain situations, we wish to see

the effect of higher background densities in order to test various physical scenarios,

but increasing the density generally results in all the test particles running out

of energy very quickly due to increased collisions. Using a continuous injection

model where particles are injected steadily over time, as opposed to all at once

(at t = 0), counteracts this problem.

2.2 Magnetic Field Models

In our simulations we have used two distinct types of magnetic field models. The

first is a static field which converges across the chromosphere at either end, and

a variation on this in which the field strength varies across the entire loop length.

The second is an X-point magnetic field configuration, a more realistic model.

2.2.1 Basic Field Model

We consider a static magnetic field where the field strength is constant across the

corona and increasing across the chromosphere to a maximum at the photosphere.

The form of this field is as given in MacKinnon & Brown (1990):

Bs(s) = B0 +
(B1 − B0)

(p2 − p1)
· [p2x

p1 − p1x
p2 ] (2.18)
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Figure 2.9: Basic magnetic field configuration.
We assume symmetry in θ (particles can travel in both
directions).

where x = (|s|−s0)
(s1−s0)

, B is the magnetic

field strength in gauss, s is the dis-

tance along the field line from the origin

(the looptop), s0 is the position where

the field strength begins to increase, s1

is the position where the field strength

reaches a maximum, and p1 and p2 de-

termine the position at which the major-

ity of the field strengthening occurs and how suddenly this happens, respectively.

For this work, we consider the field to be constant in r (across the radius of the

loop), so the magnetic field strength depends only on s. When dependence on

both s and r are considered, this field satisfies the condition that ∇B = 0.

We choose as our basic default configuration a constant coronal field strength

of 100 G and a photospheric strength of 1000 G, with the increase occurring across

the chromosphere (see Figure 2.10). A more realistic variation on this, created

by varying the parameters s0 and s1, has a field strength which varies across the

entire loop length (see Figure 2.11). This field model is a compromise between

the simplicity of implementation that the basic model with constant coronal field

strength provides, with the more physically accurate but also more difficult to

implement X-point field model (see below).

The field convergence at either end creates a magnetic bottle, causing particles

to be reflected and trapped in the loop. Magnetic mirroring occurs as a result of

conservation of the magnetic moment:

µm =
1
2
mv2

⊥(s)

B(s)
= const. (2.19)

where v⊥ is the component of the particle velocity perpendicular to the magnetic

field. As the field strength increases, the perpendicular velocity increases, and

correspondingly the parallel velocity decreases. When the field strength reaches

a critical value, the parallel velocity is reversed and the particle is reflected.

Whether a particle escapes or is trapped by the magnetic mirror depends on

its pitch angle. A particle will be trapped by the magnetic bottle if its pitch angle

(µ) is greater than the loss-cone angle (α0). The loss-cone angle is defined by the

magnetic mirror ratio, R:

α0 = sin−1

√

1

R
(2.20)
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Figure 2.10: Magnetic field strength along the
length of a loop with constant field in the corona
(100G) increasing across the chromosphere to the
a maximum at the photosphere (1000G), according
to Equation 2.18 where s0 = 1 × 109 cm (the start
of the chromosphere) and s1 = 1.3 × 109cm (the
photosphere).

Figure 2.11: Magnetic field strength through-
out the length of a loop, varying across the loop ac-
cording to Equation 2.18 where s0 = 0 cm (i.e. the
looptop) and s1 = 1.3 × 109cm (the photosphere).

Figure 2.12: Magnetic field strength throughout the
length of a loop, varying across the loop according to
Equation 2.18 where s0 = 0 cm (i.e. the looptop) and
s1 = 1.3×109cm (the photosphere), and the photospheric
field strength is different at each end (in this case, 500 G
at the left 1000 G at the right).

where R = BM

B0
, BM being the maximum field strength (i.e. at the footpoint) and

B0 the field strength at the point of origin of the particle.

Thus, depending on the pitch angle of a particle at a given time, it can be

trapped by the magnetic bottle, or it can escape and propagate down towards

the photosphere. The ratio of trapped and precipitating particles has an effect on

the resultant X-ray emission and loop heating, since trapped particles generally

do not reach the chromosphere where significant hard X-ray emission can occur

due to the increasing density.
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2.2.2 X-Point Field

An X-point is a neutral point in a 2D magnetic field produced by two positive and

two negative sources, symmetrical such that the field cancels in the middle cre-

ating a null point, i.e. a point of zero magnetic field. It is believed that magnetic

reconnection can occur at an X-point. Considered in the field line description,

this means that separate field lines of opposing polarity join and reform to create

a new field line in a different configuration (see Figure 2.13). An X-point region

can be taken as a simple model for the pre-flare field configuration. The magnetic

field in an X-type neutral point region is described by[Priest & Forbes (2000)]:

Bx =
B0

L0
y

By =
B0

L0
ᾱ2x (2.21)

and the field lines are hyperbolic, described by

y2 − ᾱ2x2 =
2L0

B0
C (2.22)

where B0 is the magnetic field at the photosphere (the base of the loop), L0 is

the length scale over which the field is varying (i.e. the loop length), and C is

a constant which determines the curvature of the line (we choose a default value

of 2.25 × 1017). ᾱ2 determines the shape of the field: for ᾱ2 < 0 the field lines

are elliptical and the configuration is an O-type neutral point, for ᾱ2 > 0 the

field lines are hyperbolic and the configuration is that of an X-type neutral point,

an X-point. For this work we consider only the case where ᾱ2 = 1, which is an

equilibrium, current-free X-point (since j = 1
4π

(∇∧ B)).

In our simulations we need to calculate the magnetic field strength at a given

position along the magnetic loop. Figure 2.14 shows the field strength along the

loop using this field model. Compare this to Figure 2.11 where the field strength

also varies throughout the loop - the X-point field model produces a similar but

slightly different field geometry. Note that the loop apex is no longer at the

specified coronal field strength of 100G.

Within our simulations, the term for the calculation of µ (see Equations 2.9)

includes the derivative of the magnetic field with respect to s, however for the

X-point field configuration the equations describing the magnetic field strength

(Equations 2.21) are in two dimensional Cartesian co-ordinates. The algebraic
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Figure 2.13: A simplified diagram of a basic
X-point magnetic field configuration.

Figure 2.14: Magnetic field strength along a magnetic loop in an X-point
configuration, as described by Equations 2.21. The x-axis of the graph is s,
the axis of the field line, not x or y.

conversion from s to x, y is described by:

s = −
∫ b

a

(

(

2
C

)2
+ t2

(

1
C

)2
+ t2

)
1
2

dt

t2
(2.23)
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where t = 1
x

and C is constant, as in Equation 2.22. This has the solution:

s = − 1
(
√

2
C

)G(β, q) +

√

2
C

1
C

H(β, q)−
2
C

(

1
C

)

a

√

1
C

+ a2

2
C

+ a2
(2.24)

where β = arctan

(√
2
C

a

)

, q =

q

( 2
C )−( 1

C )
q

( 2
C )

and
√

(

2
C

)

>
√

(

1
C

)

, a > 0. H is

an elliptical integral of the second kind and G is a generalised hypergeometric

series. This is a complex solution which would be difficult to implement within

our programs, and would also significantly increase the run time required for

calculations, therefore we decided it would be more feasible to calculate ∂B
∂s

nu-

merically throughout the program. To do this however, we require to first convert

s (which is calculated by the program) into x, y and then numerically calculate

the magnetic field derivative.

To calculate x, y from s we approximate the curved field line as many small

straight segments. This approximation is acceptable as long as the segments are

suitably small. We can then calculate ∆x from ∆s using the gradient,
(

∂x
∂y

= x
y

)

,

at some point x, y with the following trigonometrical relation:

∆x1 = ∆s1 cos

[

tan−1

(

x1

y1

)]

(2.25)

This method requires a suitable choice of initial x and y since the gradient at

the top of the loop is zero. Once x is determined, the corresponding y value can

be calculated via the hyperbolic field line equation (Equation 2.22). Using these

transformations and the fact that

∂B

∂s
≃ B(s + a) − B(s)

a
(for a very small) (2.26)

∂B
∂s

can be calculated using the following formula:

∂B

∂s
≃
√

(y − ay)2 + (x + ax)2 −
√

y2 + x2

a
(2.27)

where ax = a cos
[

tan−1
(

x
y

)]

and ay = −a sin
[

tan−1
(

x
y

)]

.

2.2.3 Gradient and Curvature Drift

Charged particles in a magnetic field can be considered to be following a circular

orbit around a point known as the ‘guiding centre’ of the particle. This guiding
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centre drifts as the particle experiences forces from the magnetic field and other

influences. If this drift is significant, it is possible for the particle to move away

from the magnetic field line which we consider test particles to be moving along

in our simulations, thus we must determine whether the effect is significant under

the conditions we are considering.

Curvature drift results from the centrifugal force on a particle due to the

curvature of the field line along which it is travelling, and is given by[Chen (1984)]:

vR =
1

q

(

Fcf ∧B

B2

)

=
mv2

//

q

Rc ∧ B

R2
cB

2
(2.28)

in SI units, where q is the charge on the test particle, v// is the component of

velocity of the test particle parallel to the magnetic field, and Rc is the radius of

curvature of the field line. Curvature drift is always accompanied by a gradient

drift, since the field strength decreases with radius (as the field lines get further

apart). The gradient drift is the result of changing magnetic field strength and

is given by[Chen (1984)]:

v∇B =
1

2

mv2
⊥

q

Rc ∧ B

R2
cB

2
(2.29)

in SI units, where v⊥ is the component of the particle’s velocity perpendicular to

the magnetic field. Combining these, we get a combined expression for gradient

and curvature drifts:

vR + v∇B =
m

q

Rc ∧B

R2
cB

2
(v2

// +
1

2
v2
⊥) (2.30)

We would consider these effects to be significant if |vR + v∇B| & 0.1vp (vp

being the velocity of the test particle).

Let us consider an average particle of velocity 1× 1010 cms−1 (1× 108 ms−1).

Let us also consider it to have a pitch angle of 30◦. This gives v// = 5×107 ms−1

and v⊥ = 8.66 × 107 ms−1. Setting |vR + v∇B| = 0.1vp, we then have:

Rc ∧B

R2
cB

2
≃ 281.3 m−1T−1 (2.31)

In the basic situation we consider, B has only a θ component in cylindrical coor-

dinates, and Rc has only an r component. Therefore, Rc ∧B = 1
r
[rRcrBθ � ẑ] and

hence we can write the condition for which curvature and gradient drift become

significant as:
1

RcB
& 281.3 m−1T−1 (2.32)
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Figure 2.15: Plot of pitch angle against po-
sition for a 0.5 sec run for four test particles, all
injected with initial velocity 2 × 1010cms−1. Two
have an injection of 60o (positive direction) and
the other two 120o (negative direction). The field
model is a basic field converging at each end as
shown in Figure 2.10, and the density is constant
throughout at 1 × 109cm−3.

Figure 2.16: Plot of pitch angle against po-
sition for a 0.5 sec run for four test particles, all
injected with initial velocity 2 × 1010cms−1. Two
have an injection of 60o (positive direction) and
the other two 120o (negative direction). The field
model is a field varying throughout the length of
the loop as shown in Figure 2.11, and the density
is constant throughout at 1 × 109cm−3.

Figure 2.17: Plot of pitch angle against po-
sition for a 0.5 sec run for four test particles, all
injected with initial velocity 2 × 1010cms−1. Two
have an injection of 60o (positive direction) and
the other two 120o (negative direction). The field
model is an X-point configuration, as shown in Fig-
ure 2.14, and the density is constant throughout at
1 × 109cm−3.

(in SI units). For a radius of curvature of 1 × 109 cm (1 × 107 m) a magnetic

field of . 3.6 × 10−6 G (. 3.6 × 10−10 T) would be required. This is far smaller

than any fields we consider, therefore we can safely disregard the gradient and

curvature drifts of the particles.

2.2.4 Testing and the Effects of Field Models

We can show the effects of the different field configurations on the test particles
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by plotting graphs of pitch angle as a function of position along the field for a

number of test particles. Each of the fields described above includes a magnetic

mirror effect, whereby the increasing magnetic field strength causes the test par-

ticles’ parallel velocities to decrease and perpendicular velocity to increase, until

the parallel velocity is reversed and the particle moves back along the loop. In

Figures 2.15, 2.16 and 2.17, we plot the pitch angle of four test particles using our

three standard field models as a function of position over a 0.5 sec run, keeping

the density constant along the length of the loop in order to illustrate only the

effect of the magnetic field in reflecting particles back along the loop. In normal

situations, the density also increases across the chromosphere at the ends of the

loop, resulting in further slowing and stopping of the particles.

We can see that in each case the four test particles are reflected at each end

of the loop as a result of magnetic mirroring. The geometry of the magnetic field

strength along the loop determines at what point a particle is reflected. In these

graphs, all particles were injected at a cosine angle of ±0.5 (60o (forward direc-

tion) or 120o (backward direction)) to the field line. Where the field strength is

constant throughout the coronal section of the loop (Figure 2.15), the particles’

pitch angles are only affected by random scattering (Coulomb collisions) with the

background plasma until they reach the chromosphere, at which point the field

strength increases rapidly, resulting in mirroring. In the two models where the

field strength increases in throughout the loop (Figures 2.16 and 2.17) the par-

ticles are reflected before reaching the chromosphere. This means that particles

with parameters the same as the ones shown in these tests are reflected before

the density begins to increase, resulting in less pronounced emission and heating

at the footpoints, and a lower particle loss rate from collisions (note, however,

that other particles with different angles of injection will still reach the chromo-

sphere). The position at which a particle is reflected depends on its initial pitch

angle and velocity, and indirectly, Coulomb collisions, which alter the pitch angle

and velocity.
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Chapter 3

Hard X-Ray Emission

In this chapter we investigate the non-thermal hard X-ray emission produced by

a beam of fast electrons moving along a magnetic loop and interacting with the

background plasma. We look at the positions on the loop at which the strongest

emission is produced for various physical parameters, and we also investigate the

correlation between footpoint area and hard X-ray intensity.

3.1 Theory

Non-thermal hard X-ray emission is produced when fast electrons undergo colli-

sions with ambient particles in the background plasma and are accelerated. The

primary emission mechanism is large angle deflections between beam electrons

and the lower energy electrons of the ionised background plasma. The energy

lost by the fast electron in the collision is emitted as an X-ray photon of energy

∼ 20-100 keV. We note that there is also a component of the non-thermal emission

produced by free-bound interactions between the beam electrons and ions such

as iron in the background plasma (more so in the corona than the chromosphere,

since the iron abundance in particular is higher in the corona), but in this work

we treat the background plasma as fully ionised and do not consider free-bound

emission. If it were included, we would expect to see higher photon emission

levels at higher energies, above 10keV, for a given initial electron distribution.

See Brown & Mallik (2007) for more work on this subject.

The X-ray intensity produced via non-thermal bremsstrahlung from a beam

of fast electrons passing through a cold background plasma of constant density is

given by[Brown (1971)]:

I(ǫ) = np

∫ ∞

ǫ

σǫ(E)v(E)f(E)dE (3.1)
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in photons/sec/cm2/unit ǫ, where np is the background plasma number density,

σǫ(E) is the electron-proton bremsstrahlung cross-section, v(E) is the electron

velocity corresponding to energy E, f(E) is the electron distribution function,

and ǫ is the X-ray photon energy. We use the Bethe-Heitler cross-section, given

(in cgs units) by:

σǫ(E) =
8

3

r2
0

137

mc2

ǫE
log

[

1 +
√

1 − ǫ
E

1 −
√

1 − ǫ
E

]

(3.2)

where r0 is the classical electron radius, m is the mass of the electron and c is

the speed of light. We also divide this by 4πR2 (where R is the distance from the

Earth to the Sun) in order to get the intensity per square centimetre at Earth.

Thus, in our simulations (given also that for non-relativistic electrons, v =
√

2E
m

,

and we consider only the non-relativistic regime), the X-ray intensity (Equation

3.1) can be approximated by the sum:

I(ǫ) ≃ β
1

ǫ

∞
∑

i=ǫ

f(Ei)√
Ei

log

[

1 +
√

1 − ǫ
E

1 −
√

1 − ǫ
E

]

∆E (3.3)

where β = np

137
2
3

r2
0

R2

√
2m
π

c2. Units are photons s−1 cm−2 (at Earth) erg−1.

Our simulations record the electron distribution function (an energy his-

togram) at a number of positions over time along a magnetic field line, therefore

we can calculate the intensity, I(ǫ), for a given ǫ throughout the length of a loop,

and its evolution over time.

3.1.1 Scaling

Our programs are unable to run realistic numbers of particles due to computing

power and storage limitations, therefore we must scale up results from the pro-

grams to represent realistic loop parameters. Specifically, we must apply a scaling

factor to the number of counts in each histogram bin in the electron distribution,

f(Ei), as we sum over energy in Equation 3.3.

We assume an average realistic loop to have a flux of 1036 electrons per second

(Holman et al. (2003)), which is a typical value found in a large flare, as calculated

from observed chromospheric hard X-rays in the collisional thick-target model,

and a maximum cross-sectional area, A0, of 1018 cm2 (Fletcher (2007)) at the

apex. Thus we assume a value of 1018 electrons injected per second per square

centimetre in an average loop. Thus the actual loop flux, F , can be written as:

F = 1018A0 electrons s−1 (3.4)
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Let the number of particles (electrons) in the simulation be denoted by P , and

the length of time between counts be τ . Thus the simulated flux is P
τ
. Let the

scaling factor be denoted by f . Then:

1018A0 =
fP

τ

i.e. f =
1018A0τ

P
(3.5)

However, we must also multiply by an additional factor As

A0
(where As is the area

at position s), which arises because, as the field strength increases along the loop,

the area decreases (since we assume B has no radial dependence - see Section 2.2.1

and also below). This factor compensates for the difference in area between the

loop apex and position s. Thus the final scaling factor applied to each histogram

bin is:

f =
1018τA0(

As

A0
)

P
(3.6)

The area As is calculated within the simulations by assuming the magnetic

field strength is dependant only on s, the position along the field line, and has

no radial dependence. This means that AiBi = constant and thus:

As =
AlooptopBlooptop

Bs
(3.7)

Bs is calculated as described in Section 2.2. The assumption that B has no radial

dependence is not physically correct but is adequate for our purposes, since our

simulations effectively model a particle moving along a single field line, then

artificially scale this up to represent a loop of a specific cross-sectional area.

3.2 X-Ray Emission Throughout The Loop

Calculating the non-thermal X-ray emission as described above, we are able to

investigate the emission over time from loops with various field and density con-

figurations. We can plot the emission as a function of position along the loop or

we can sum over a section of the loop as required. Thus we can investigate the

emission from both looptop and footpoint sources as a function of time. By con-

sidering asymmetric loops, we can also investigate foopoint emission as a function

of footpoint area, since field strength corresponds to loop area in our model.
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Figure 3.1: Non-thermal X-ray emission from
a loop with a constant coronal magnetic field as
depicted in Figure 2.10 over a time of 5 seconds
(dark to light plots). Emission is from the loop
cross-sectional area at each position, as seen by a
detector at Earth, assuming a loop apex area of
1 × 1018cm2. The density model is that described
by Equation 2.17, with a coronal density of 109

cm−3. All particles are injected at t = 0, with pitch
angles chosen from a uniform distribution between
0◦ and 90◦ to the field line in both directions, and
initial velocities chosen from a power law distribu-
tion between 1 × 1010 cms−1 and 2 × 1010 cms−1.

Figure 3.2: As Figure 3.1 but showing emission
summed over 5 sec.

3.2.1 Basic Magnetic Loop Results

Uniform Coronal Magnetic Field

In Figures 3.1 and 3.2 we plot the hard X-ray intensity produced along a basic

loop with magnetic field strength and density increasing only across the chro-

mosphere at each end. We can clearly see that in this situation, the majority

of emission occurs at the footpoints because there is no field convergence in the

corona and hence almost all particles propagate at least as far as the chromo-

sphere where higher densities result in higher emission. At these positions, the

combination of increasing density (more Coulomb collisions) and, to a lesser ex-

tent, increasing magnetic field (slower parallel velocities) results in an increase in

the instantaneous numbers of particles at the footpoints compared to the coro-

nal regions of the loop and hence higher X-ray emission, since the intensity is

strongly dependant on the electron distribution function. The intensity decreases

over time as particles are scattered into the loss cone and lost, or run out of

energy. The central peak seen at the earliest time in Figure 3.1 appears because

at that early time the majority of the particles are still near the point of injection

- they haven’t had time to propagate to the footpoints.
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Figure 3.3: As Figure 3.1 but with a varying
coronal magnetic field as depicted in Figure 2.11.

Figure 3.4: As Figure 3.3 but showing emission
summed over 5 sec.

Figure 3.5: As Figure 3.3 but with an asym-
metric magnetic field with minimum coronal field
strength 100 G, left hand photospheric strength of
500 G and a right hand photospheric strength of
1000 G.

Figure 3.6: As Figure 3.5 but showing emission
summed over 5 sec.

Variable Magnetic Field

In Figures 3.3 and 3.4, the magnetic field varies throughout the loop length. In

this configuration, the peak position for X-ray emission is the looptop, in contrast

to Figures 3.1 and 3.2. This is because the gradually increasing magnetic field

results in particles being reflected over a wide range of positions in the corona

as well as in the chromosphere. The position at which particles are reflected

depends on their initial energy and pitch angle, and scattering. This magnetic

bottle effect also traps particles for a longer period of time than the previous

field model because large numbers do not reach the high density chromosphere

as quickly. Although particles remain in the loop for longer, the peak intensities

are smaller than in Figures 3.1 and 3.2 because in these, the majority of particles

emit energy at the footpoints, where the density (and hence emitted intensity) is

higher.
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Figure 3.7: As Figure 3.3 but with a higher
coronal density of 1010 cm−3.

Figure 3.8: As Figure 3.7 but showing emission
summed over 5 sec.

In Figures 3.5 and 3.6 we see the X-ray emission resulting from an asymmetric

magnetic loop. This loop has a photospheric field strength of 500 G at the weak-

field footpoint and 1000 G at the strong-field footpoint, with a minimum coronal

strength of 100 G. This results in stronger emission at the weak-field footpoint

as particles are able to propagate further in that direction before being reflected

by the increasing field.

Increased Coronal Density

In Figures 3.7 and 3.8 we return to a symmetric loop with the field strength

varying across the full loop length (shown in Figure 2.11) but with a higher

coronal density of 1010 cm−3. This increased density results in higher peak coronal

intensity, but also changes the distribution of the emission slightly compared to

the lower density case in Figures 3.3 and 3.4. The footpoint emission is less,

relative to the central peak, because particles undergo more collisions in the

increased density with the result that fewer particles reach the footpoints while

at the same time increasing the intensity of the emission at other points thoughout

the loop. Intensity decreases over time as particles are lost from the loop (see

also Figures 3.19 and 3.20).

Continuous Particle Injection

In each case with all particles injected at t = 0 sec, particles are gradually lost

from the loop as they run out of energy or are scattered into the loss cone. To

compensate for this, we can simulate continuous particle injection, which we show

in Figures 3.9 and 3.10 with parameters equivalent to those in Figures 3.7 and

3.8. In contrast to that case, the intensity continuous to increase with time as



3.2: X-Ray Emission Throughout The Loop 47

Figure 3.9: As Figure 3.7 but with continuous
particle injection. Particle injection rate is 2000
particles per second.

Figure 3.10: As Figure 3.9 but showing emis-
sion summed over 5 sec.

Figure 3.11: As Figure 3.9 but with a higher
coronal density of 1011 cm−3.

Figure 3.12: As Figure 3.11 but showing emis-
sion summed over 5 sec.

the number of particles in the loop increases.

If we increase the coronal density further to 1011 cm−3 (Figures 3.11 and 3.12),

a steady-state solution is reached after approximately 1.5 seconds, at which point

the particle injection rate equals the particle loss rate, as shown in Figure 3.14

where we plot the number of particles in the simulation over time. Once this

steady-state is reached, the rate of hard X-ray intensity emission remains constant

over time (Figure 3.13).

Intensity at Loop Apex and Footpoints As A Function of Time

In two of the simulations where particles are all injected at once, we see an

early peak in intensity at one or both footpoints (depending on whether the loop

is asymmetric or symmetric respectively), which rapidly decays. This is most

pronounced in the basic model where the field and density increase only across

the chromosphere (Figure 3.1). In this model, the footpoint intensity dominates
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Figure 3.13: Plot of the intensities from the
loop apex and chromosphere at each end as a func-
tion of time corresponding to Figure 3.11 showing
the steady-state situation reached after approxi-
mately 1.5 sec.

Figure 3.14: Plot of the number of particles in
the loop over time corresponding to Figure 3.11.

the apex intensity at all times - we show the evolution of the intensities at the

apex and footpoints in Figure 3.15, where the apex intensity is summed over

3000 km of loop centred on the apex, for a direct intensity comparison with the

3000 km width of the chromospheric regions. The other simulation where we see

this effect is that with the asymmetric loop model where the field strength varies

across the loop length, with a weaker photospheric value at the left footpoint. In

this case, the early peak at the left (weaker field) footpoint initially dominates

the central peak (and right footpoint), but it quickly decays and the central peak

becomes the dominant source (see Figure 3.17). We do not see early foopoint

peaks in any simulations with continuous injection, because the particles which

cause the peaks are injected gradually over time in these simulations, rather than

all at once. This footpoint peak effect is a result of all particles being injected

at the same time. Initially we see “packets” of electrons moving back and forth

along the loop but after a short time diffusion and Coulomb collisions spread the

particles out along the loop.

These early bursts of footpoint intensity are caused by those particles whose

initial pitch angles are within the loss cone, causing them to precipitate directly to

the footpoints, where they are stopped by the increasing density. These particles

still have high energies when they reach the footpoints, and release most of this

energy as hard X-rays. We also see a secondary peak at the footpoints shortly

after this which is caused by those particles which were initially reflected at the

opposite footpoint and had pitch angles just outwith the loss cone. If we look at

the number of particles left in the simulations over time (Figures 3.16 and 3.18),

we see a sudden drop over approximately the first 0.15 seconds, which corresponds
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Figure 3.15: Plot of the intensities from the
loop apex and chromosphere at each end as a func-
tion of time corresponding to Figure 3.1, showing
an early peak at the footpoints.

Figure 3.16: Plot of the number of particles
in the loop as a function of time corresponding to
Figure 3.1.

Figure 3.17: Plot of the intensities from the
loop apex and chromosphere at each end as a func-
tion of time corresponding to Figure 3.5, showing
an early peak at the left footpoint.

Figure 3.18: Plot of the number of particles
in the loop as a function of time corresponding to
Figure 3.5.

with the intensity peak at the footpoints and supports the theory that a small

number of particles being lost very early in the simulations cause these peaks.

With increased coronal density, the early footpoint peak is lower than the

intensity at the apex - the small number of particles still reach the footpoint

early on, but the apex dominates as a result of the increased density (Figures

3.19 and 3.20).

In Figure 3.20 we are seeing three distinct phases of particles loss - the first

0.15 seconds shows a sudden loss as particles with initial pitch angles within the

loss cone escape from the loop; up to approximately 1.8 seconds we are seeing

only losses of particles which are scattered into the loss cone through Coulomb

collisions; after this point, particles are also lost because they run out of energy.

The energy loss time for particles in this increased density of 1010 cm−3 is within

the timescale of the simulation - approximately 1.8 seconds corresponds to the
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Figure 3.19: Plot of the intensities from the
loop apex and chromosphere at each end as a func-
tion of time corresponding to Figure 3.7, showing
the decrease in looptop intensity as particles are
lost.

Figure 3.20: Plot of the number of particles
in the loop as a function of time corresponding to
Figure 3.7.

Figure 3.21: Non-thermal X-ray emission from
a loop with an X-point field configuration as de-
picted in Figure 2.13 over a time of 5 seconds
(darkest to lightest plots). Emission is from the
loop cross-sectional area, as seen by a detector at
Earth at each position, assuming a loop apex area
of 1×1018 cm2. The density model is that described
by Equation 2.17, with coronal density 109 cm−3.
All particles are injected at t = 0, with pitch an-
gles chosen from a uniform distribution between 0◦

and 90◦ to the field line in both directions, and ini-
tial velocities chosen from a power law distribution
between 1 × 1010 cms−1 and 2 × 1010 cms−1.

Figure 3.22: As Figure 3.21 but showing emis-
sion summed over 5 sec.

energy loss time for the particles with the lowest initial energies (1×1010 cms−1).

3.2.2 X-Point Magnetic Loop Results

In Figures 3.21 and 3.22 we see the hard X-ray emission from a loop with an

X-point magnetic field configuration (see Section 2.2.2). It has a density profile

as described by Equation 2.17. We see a roughly similar X-ray distribution to

that produced by the more basic magnetic field used in the previous section with
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Figure 3.23: Plot of the intensities from the
loop apex and chromosphere at each end as a func-
tion of time corresponding to Figure 3.21, showing
an initial peak at the footpoints.

Figure 3.24: Plot of the number of particles in
the loop corresponding to Figures 3.21 and 3.22 as
a function of time.

Figure 3.25: As Figure 3.21 but with a higher
coronal density of 1011 cm−3.

Figure 3.26: As Figure 3.25 but showing emis-
sion summed over 5 sec.

similar parameters (see Figures 3.3 and 3.4), because the magnetic field strength

along the loop is similar (compare Figures 2.11 and 2.14) and all other parameters

the same.

With this field configuration we see a maximum peak in the X-ray emission

from the footpoints at the early time of approximately 0.15 seconds (see Figure

3.23), similar to those seen in the field models in the previous section. Again,

this corresponds to those particles with initial pitch angles suitably parallel to the

field to allow them to reach the footpoints early on, which we can see in Figure

3.24.

Increased Coronal Density

In Figures 3.25 and 3.26 we see the same model but with an increased coronal

density of 1011 cm−3. This increase in density leads to an increases the intensity

and width of the central peak compared to the footpoints as well as a higher
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Figure 3.27: Plot of the intensities from the
loop apex and chromosphere at each end as a func-
tion of time corresponding to Figure 3.25, showing
the decay in emission as all particles are lost from
the loop due to the high density.

Figure 3.28: As Figure 3.25 but with contin-
uous particle injection. Particle injection rate is
2000 particles per second.

Figure 3.29: As Figure 3.28 but showing emis-
sion summed over 5 sec.

overall intensity. This is because the higher density causes the test particles to

undergo more collisions throughout the loop than previously, resulting in higher

coronal emission and fewer particles reaching the footpoints, and those that do

having lower energies. In this situation, the early peak at the footpoints is dwarfed

by the apex peak, which is consistently larger due to the higher density. In this

model, all particles are lost from the loop by approximately 1.5 seconds because

of the high density, causing the emission to drop to zero (see Figure 3.27).

Continuous Particle Injection

In Figures 3.28 and 3.29 we see the same X-point field configuration (with the

high coronal density of 1011 cm−3) but with continuous particle injection. Now

the intensity does not decrease as much over time since injected particles replace
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Figure 3.30: Plot of the intensities from the
loop apex and chromosphere at each end as a func-
tion of time corresponding to Figure 3.28.

Figure 3.31: Plot of the number of particles in
the loop corresponding to Figures 3.28 and 3.29 as
a function of time.

Figure 3.32: As Figure 3.28 but for a longer
time interval of 100 sec and with a lower coronal
density of 1010 cm−3.

Figure 3.33: Plot of the non-thermal X-ray
intensities from the loop apex and chromosphere
at each end as a function of time corresponding to
Figure 3.32.

those lost (Figure 3.30). This model reaches an almost steady-state situation after

approximately 0.8 seconds (Figure 3.31), but with the X-point field configuration,

the particle loss rate is very slightly higher than the injection rate compared to

the equivalent basic field model (Figure 3.14), resulting in a very slight decrease

in the number of particles (and hence overall intensity) after ∼0.8 sec.

Longer Time Interval Results

We now show results from a continuous injection model with coronal density

1 × 1010 cm−3, run for a longer time of 100 sec. In Figure 3.32 we show the

evolution of non-thermal X-ray emission from this simulation, and in Figure 3.33

we show the emission from the peak and footpoints as a function of time. We

can see that in this situation, the emission peaks at the looptop at approximately

5 sec then decreases, whereas in the chromosphere the intensity continues to
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Figure 3.34: As Figure 3.32 but with a higher
electron flux of 1037 electrons s−1 cm−2.

Figure 3.35: Plot of the non-thermal X-ray
intensities from the loop apex and chromosphere
at each end as a function of time corresponding to
Figure 3.34.

increase steadily. This increase continues because as particles lose energy, they

are scattered into the loss cone and propagate out of the magnetic bottle and

into the high density regions of the chromosphere where they are stopped. As

this loss progresses, there are fewer and fewer particles trapped in the loop and

hence the looptop emission decreases (see Figure 4.29 for a plot of the number of

particles in this simulation as a function of time).

If we increase the electron flux from 1036 to 1037 electrons s−1, we see higher

non-thermal X-ray emission, as would be expected - see Figures 3.34 and 3.35.

Increasing the flux to represent a loop with a higher flux of particles alters the

scaling factors we use (see Section 3.1.1).

3.2.3 Conclusions

Our results indicate that a strong looptop hard X-ray source is obtained when the

injected electrons are high energy (non-relativistic) with uniformly distributed

initial pitch angles, the electron flux is high (approaching the upper limits of

calculated values) and the density is high, but not excessively so. The parameters

in this situation are at the upper bounds of observed active region loops, and

without these values, the footpoint emission will dominate. This concurs with

observations, which indicate that strong looptop sources are not the norm, and

are only observed in some flares. We would therefore conclude that these are

flares with more extreme parameters such as described here.
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3.3 Footpoint Emission

In this section we investigate the hard X-ray emission at loop footpoints as a

function of footpoint area. We use these results to look for a correlation between

hard X-ray intensity and footpoint size, which is complementary to work done by

Schmahl et al. (2006) in which they investigate the relationship between footpoint

area and emission intensity from RHESSI hard X-ray observations.

In these simulations we use a field model of the type shown in Figure 2.12. In

this model, the field strength varies throughout the loop length and the density

is as described in Equation 2.17 unless stated otherwise. We calculate the X-ray

emission from the footpoints in asymmetric fields, holding the photospheric field

strength constant at 1000 G at the stronger (right) footpoint and varying it at the

weaker footpoint from 1000 G to 200 G. Varying the field in this way effectively

creates different footpoint areas, since AlooptopBlooptop = AsBs (see Section 3.1.1).

Thus we are able to investigate the hard X-ray intensity as a function of footpoint

area.

We define the footpoint intensity to be the intensity emitted by the chromo-

sphere as a whole, a distance of 3000 km, since current observational capabilities

in the X-ray regime are not able to resolve more detail than this. The following

data are not time resolved.

In Figure 3.36 we show the emission from the whole loop for various weaker

(left-hand) photospheric field strengths, assuming an apex loop area of 1018 cm2,

and in Figure 3.37 we show only the emission from the footpoints of the same loop.

The colour coding indicates the changing field strength at the weaker footpoint.

In this model, the coronal density is 109 cm−3.

In Figure 3.38 we plot the chromospheric intensity overall all photon energies

as a function of loop area. This graph uses data from the weaker field footpoint

only - emission at the stronger field footpoint remains almost constant because

the field strength is fixed there. The small amount of variation in intensity at

the stronger footpoint is a result of the change in the weaker footpoint strength

affecting the number of particles in the simulation over time by changing the

trapping and precipitation rates, and hence affecting the number of particles that

reach the stronger footpoint.

We can also plot the intensity in specific X-ray photon energy bands. We

choose the bands 6-12 keV, 12-25 keV, 25-50 keV and 50-100 keV, to correspond

with some of the bands frequently used in analysis of data from the RHESSI satel-
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Figure 3.36: Non-thermal X-ray emission from
a loop with field increasing across the loop length
and density increasing across the chromosphere
from a coronal value of 109 cm−3. The magnetic
field is as shown in Figure 2.11 but the right foot-
point field strength is held constant at 1000 G and
the left is varied from 200 G to 1000 G. The density
model is that described by Equation 2.17, with a
coronal density of 109 cm−3. All particles are in-
jected at t = 0, with pitch angles chosen from a uni-
form distribution between 0◦ and 90◦ to the field
line in both directions, and initial velocities cho-
sen from a power law distribution between 1×1010

cms−1 and 2 × 1010 cms−1.

Figure 3.37: Emission from the chromospheric
regions only for the loop shown in Figure 3.36.

Figure 3.38: Overall emission (from all pho-
ton energies) from the weaker field chromospheric
region of the loop depicted in Figure 3.36 as a func-
tion of area. Intensity is summed across the chro-
mosphere (3000 km), and area refers to the foot-
point area at the photosphere.

Figure 3.39: Emission from the weaker field
chromospheric region of the loop depicted in Figure
3.36 in specific energy bands as a function of area.
Intensity is summed across the chromosphere (3000
km), and area refers to the footpoint area at the
photosphere.

lite. In Figure 3.39 we show the intensity across the weaker field chromosphere in

each of these bands as a function of footpoint area. We can see from this plot that

the highest intensities are always in the lower photon energy bands, indicating

that emission from the much more abundant lower energy electrons dominates,

although high energy electrons also produce a large amount of emission at low

photon energies since the intensity is proportional to the inverse of the photon



3.3: Footpoint Emission 57

Figure 3.40: Log-log plot of the ratios between
counts in photon energy bins corresponding to Figure
3.39.

Figure 3.41: Emission from the weaker field
chromospheric region in specific energy bands as
a function of area of a loop equivalent to that
shown in Figure 3.36 but with increased coronal
density of 1010 cm−3. Intensity is summed across
the chromosphere (3000 km), and area refers to
the footpoint area at the photosphere.

Figure 3.42: Log-log plot of the ratios be-
tween counts in photon energy bins corresponding
to Figure 3.41.

energy (see Equation 3.3). If we plot the ratios between these energy bands in

a log-log plot (Figure 3.40), we see that the relationship between intensity and

footpoint area is consistant for each band - there is no change in the dominant

emission band (and hence dominant emitting electrons) as foopoint area changes,

indicating that at these energies, the energy-dependant effect of collisional scat-

tering of electrons into the loss-cone is negligible.

In Figure 3.41 we show the chromospheric intensities as a function of loop

area as above but with an increased coronal density of 1010 cm−3. In Figure 3.42

we see the corresponding ratios between the energy bands in a log-log plot. With

increased density, emission at the footpoints decreases - particles undergo more

collisions higher in the loop, with fewer reaching the footpoints, and those that
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Figure 3.43: Figure of footpoint width and in-
tensity asymmetries with scattering timescales ≫
mirroring timescales (no scattering effects) from
Schmahl et al. (2006). Solid lines are theoretical
lines of constant loss cone angle, square data points
are observations.

Figure 3.44: Figure of footpoint width and
intensity asymmetries with scattering timescales
≪ mirroring timescales (strong scattering) from
Schmahl et al. (2006). Solid lines are theoretical
lines of constant loss cone angle, square data points
are observations.

do have lower energies since it has taken them longer to get that far along the

loop. This is reflected in the lower intensities seen from the chromosphere as a

function of area, but despite the lower overall intensities, the same relationships

hold true - the dominant emission is seen in lower energy bands, and the ratio

between each energy band is largely independent of area.

Schmahl et al. (2006) found from observations that larger footpoints produce

brighter X-ray emission. They modelled the relationship between footpoint pair

widths and hard X-ray intensities, and found that their analytical model without

scattering did not match observations, but when strong scattering was included

the relationship between footpoint pair widths and intensities corroborated the

observed data (Figures 3.43 and 3.44). Our simulations confirm that larger foot-

points produce higher hard X-ray intensities (e.g. Figures 3.39 and 3.41), and we

can also plot the footpoint width and intensity asymmetries in the same way as

Schmahl et al. (2006) - Figure 3.45. The quantity“flux” in Schmahl et al. (2006)

corresponds to our quantity “intensity”, both being measured in photons sec−1

cm−2 (when summed over photon energy).

Schmahl et al. (2006) used analytical models to create the theoretical curves

shown in Figures 3.43 and 3.44. In Figure 3.43 they show the observed asymme-

tries (square data points), and their theoretical asymmetries (solid curves) where

the scattering timescale is much larger than the mirroring timescale, which effec-

tively represents the case where pitch angle scattering is insignificant. In Figure
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Figure 3.45: Plot of the asymmetries of footpoint widths
and intensities in loops with varying coronal densities.

3.44 they include strong pitch angle scattering, where the scattering timescale is

much less than the mirroring timescale and scattering plays a key role. Our sim-

ulations are midway between these two regimes, in that they include scattering,

but not to the same degree as the strong scattering model in Figure 3.44. Further-

more, our simulations also include energy loss (which of course must accompany

the pitch angle) with the scattering, which their models do not.

In Figure 3.45 we show results from our simulations using the field model as

described previously in this section, with four different coronal densities. We can

see that with the lowest coronal density our data more closely matches the model

from Schmahl et al. (2006) with insignificant scattering and does not approach

the observational data, but as the coronal density increases, it approaches the

observed data, and begins to move into the regime of strong pitch angle scatter-

ing. Our highest density model (1012 cm−3) is the closest match to the observed

footpoint-intensity values as depicted by square data points in Figures 3.43 and

3.44, and shows a noisier distribution of points than the analytical results pro-

duced by Schmahl et al. (2006). This is because our data includes particle energy

loss through pitch angle scattering, which the analytical model does not.

3.3.1 Conclusions

As our data begins to approach the observational data, we can conclude that the

model we are using is a reasonable representation of non-thermal X-ray emission

from a magnetic loop. It also shows that the higher coronal density of 1012
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cm−3 better describes the observed data used by Schmahl et al. (2006), however,

choosing a density this high means the particles are more rapidly stopped through

collisions and very few reach the chromosphere to produce footpoint emission (see,

for example, Figures 3.7 and 3.8, and 3.11 and 3.12). This would indicate that

a large amount of pitch angle scattering is required to match the observed data,

but that some mechanism other than Coulomb collisions must be required, since

with Coulomb collisions alone, very little footpoint emission would be seen at

such high coronal densities.



Chapter 4

Collisional Heating of Magnetic

Loops

In this chapter, we consider the heating of a loop by electrons accelerated in a

flare, calculating the temperature evolution as a function of time and position,

and it’s dependence on the parameters of the beam and the ambient plasma. This

study is motivated by observations of magnetic loops heated to high temperatures

in active regions which show temperatures as high as 10 to 20 MK in the corona in

the early stages of flares, cooling to several MK, as observed in extreme ultraviolet

by the TRACE and Hinode satellites, which in turn results in thermal X-ray

emission from the heated plasma.

4.1 Theory

As a beam of fast electrons passes through a cold background plasma, the elec-

trons undergo Coulomb collisions with the particles in the plasma. In doing so,

they lose energy, which is transferred to the volume of background plasma though

which the electron passed. These small gains in energy accumulate and lead to an

overall increase in the temperature of the background plasma. At the same time,

the background plasma loses energy through radiative and conductive cooling.

In terms of losses, there is also line emission from ionised iron at a peak of

approximately 6.7 keV, which becomes stronger as temperature increases. We do

not directly simulate line emission here, but the relative abundancies of impu-

rities in the ionised hydrogen plasma are included in the radiative loss function

(Equation 4.4).
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4.1.1 Heating and Radiative Cooling

Heating Through Collisional Energy Deposition

We consider the background plasma to be fully ionised hydrogen and treat the

particles in it as stationary compared to the beam electrons (a cold plasma ap-

proximation). In each collision the test particle (electron) transfers energy to the

background plasma - given that E = 3
2
nkT , we assume that this is immediately

redistributed amongst the plasma, leading to a temperature increase, since the

thermal collisional timescales are short under coronal conditions. We do not cal-

culate the energy deposited during every collision because of the nature of our

simulations (it would take too long), instead we calculate the energy lost by the

test particle over a short time interval, which is approximately equivalent to the

energy deposited into the background plasma through collisions over this time (a

small percentage is also lost in other forms of emission such as radio waves).

The energy deposited by one particle must be scaled up to represent the energy

deposited by the number of particles in a realistic loop. To do this, we multiply

the energy deposited by one particle, ∆E, by a scaling factor, f .

We assume a realistic loop to have a flux of 1036 electrons per second (Holman

et al. (2003)) and a maximum cross-sectional area, A0, of 1018 cm2 (Fletcher

(2007), private communication) at the apex, thus the actual loop flux, F , can be

written as:

F = 1018A0 electrons s−1 (4.1)

Let the number of electrons in the simulation be denoted by P , and the length

of time between calculations of energy deposition be τ . Thus the simulated flux

is P
τ
. Then:

1018A0 =
fP

τ

i.e. f =
1018A0τ

P
(4.2)

However, we must also multiply by an additional factor As

A0
, which arises because,

as the field strength increases along the loop, the area decreases (since we assume

B has no radial dependence - see Section 2.2.1). This factor compensates for the

difference in area between the loop apex and position s. Thus the scaling factor

applied to the energy deposited is:

f =
1018τA0(

As

A0
)

P
(4.3)
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The energy deposited is spread out over the number of position bins through

which the particle depositing the energy has passed in the time interval elapsed

between calculations of temperature deposition.

Radiative Losses

At the same time as it is being heated, the plasma is also losing heat via radiation.

The radiative loss rate is described by[Aschwanden (2004)]:

ER = nenp αFIP Ψ(T )

≃ n2
eΨ(T ) ergs cm−3 s−1 (4.4)

for optically thin plasmas, where T is the current temperature, Ψ(T ) is the ra-

diative loss function and αFIP is a correction factor for abundance enhancements

in the corona compared to the chromosphere due to the FIP (First Ionisation

Potential) effect.

The energy lost by the plasma, ER, must be scaled so that it is in the same

units as the energy deposited in order to calculate the net change in energy. To

do this, we first multiply ER by the volume of one position bin, V (the bin width

multiplied by the area of the loop at that point), and the time elapsed between

calculations, τ , to get the energy lost per bin per calculation timestep. This is

an approximation required by the nature of the simulations, whereas in reality

the energy loss is a collective effect determined by the temperature. Since we

are making this energy loss calculation for each particle that runs through the

simulation, we must divide by the number of particles in the simulation in order

to compare with the energy deposited by one particle. Hence the scaling factor

applied to the energy radiatively lost during the passage of one particle through

the volume V is:
1018τV

P
(4.5)

We use approximations for the radiative loss function from Rosner et al.

(1978). For the most common temperature ranges we expect to see, these are:

Ψ(T ) ≃ 10−21.94 (105.75 < T < 106.3K)

Ψ(T ) ≃ 10−17.73 T−2/3 (106.3 < T < 107K) (4.6)

We note that there is a small discontinuity at the intersection of these two ap-

proximations (see Figure 4.1) but this has no significant effect on the results. We

also continue to use the latter approximation for temperatures greater than 107
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Figure 4.1: Plot of the radiative loss function approximations as described
by Equations 4.6, showing the discontinuity between the two temperature
regimes.

K, which is an acceptable approximation since we see very little increase beyond

this level in any of our simulations.

Combining the energy deposited with the radiative losses, we can calculate

the net change in energy of the plasma in volume V , which can be expressed as

a change in temperature:

∆T =
2∆E(TOT )

3nkV
(4.7)

where ∆E is the net change in energy in one position bin of volume V . k is

the Boltzmann constant, and n is the number density of the background plasma.

This change is added to each position bin through which the particle passed in

the time interval τ .

4.1.2 Conductive Cooling

Heat conduction results in the flow of heat along the temperature gradient, i.e.

the transfer of heat from hotter to cooler regions, which results in a smoothing

out of the temperature distribution. The conductive flux is essentially a transfer

of energy along the direction of the magnetic field (flow perpendicular to the di-

rection of the magnetic field is negligible, since thermal conduction is via electrons

which are constrained to move along the magnetic field, and is thus discounted
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here) and is described by[Rosner et al. (1978)]:

Fc(s, T ) = −κT 5/2 dT

ds
ergs cm−2 s−1 (4.8)

where κ is the Spitzer conductivity (≃ 10−6 ergs s−1 cm−1 K− 7
2 ). The energy

balance equation states that:

∂ū

∂t
+ divFc = 0 (4.9)

where ū = 3
2
nkT (the energy density). Since we are treating this as essentially a

1D problem, divFc becomes ∂Fc

∂s
and thus the 1D flux conservation equation is:

∂ū

∂t
= −∂F (ū)

∂s
(4.10)

where F (ū) = −D ∂ū
∂s

(D, the diffusion coefficient, is dependant on ū (the tem-

perature) in our model), and κ (the Spitzer conductivity) is the diffusivity. Thus,

combining Equations 4.8 and 4.10 we can write:

∂T

∂t
=

∂2[D(T ) T ]

∂2s
(4.11)

where D(T ) = κT 5/2

nk
. Differencing this, we obtain a formula for the new temper-

ature as a result of conductive cooling:

T t+1
s = T t

s +
∆t

(∆s)2
×

([

1

2
D(T t

s+1) +
1

2
D(T t

s)

]

[T t
s+1 − T t

s ] −
[

1

2
D(T t

s) +
1

2
D(T t

s−1)

]

[T t
s − T t

s−1]

)

(4.12)

where the index t indicates time and the index s indicates position.

This is an explicit finite differencing scheme, where the new temperature is

calculated using only the temperatures at the current time, as opposed to an

implicit scheme where temperatures at the new times are used in a backwards-

time method. The explicit scheme is numerically much more straightforward than

an implicit method, but less stable in certain situations. We were not able to

implement an implicit scheme because of the difficulty of translating the method

into code with a variable diffusion coefficient (one dependent on temperature, as

ours is).

The stability criterion for the explicit method is:

∆t ≤ (∆s)2

2Ds+1/2

(4.13)
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where Ds+1/2 = 1
2
[D(T t

s+1) + D(T t
s)]. To maintain stability we must choose a

suitably small ∆t within the conduction routine - this can occasionally cause a

problem by resulting in very long run-times for the simulations (see Section 4.1.4).

4.1.3 Saturated Heat Flux

Conductive cooling depends on the temperature gradient, with faster cooling oc-

curring in areas of steeper temperature gradient. However, when the gradient and

temperature reach a critical point, the the conditions for classical heat transfer

break down and the plasma becomes “flux saturated”. Under classical conditions,

heat conduction occurs through electron-electron Coulomb collisions, where the

mean free path for collisions is significantly less that the temperature scale height.

However, at suitably high temperatures with large temperature gradients, the

temperature scale height can become significantly smaller than the mean free

path, at which point heat is no longer transferred diffusively via Coulomb col-

lisions, but convectively by free streaming electrons. In this situation, the heat

flux approaches a value which is determined by the electron thermal velocity.

The expression for saturated heat flux is[Brown et al. (1979)]:

FS(s) =
3

2
nkTvs

=
1

2
nmev

2
evs (4.14)

where vs is the maximum streaming velocity of the plasma, ve is the electron

velocity and other symbols are as before. According to numerical simulations by

Manheimer & Klein (1975), vs = 1
6
ve. Inserting this and substituting ve =

√

3kT
me

,

we have:

FS(s) =
1

12

n(3kT )3/2

√
me

(4.15)

Saturated heat flux occurs when the mean free path for electron-electron col-

lisions is larger than the temperature scale height, i.e.:

λee >
T

▽T
(4.16)

where T is the temperature at a specific postion, and ▽T = dT
ds

. The mean free

path is given by[Spitzer (1962)]:

λee ≃ 104T 2

n
(4.17)
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(in cgs units), therefore for saturated heat flux to apply we have the condition:

n∆s

t∆T
. 104 (4.18)

To apply saturated heat flux in place of classical heat conduction, we combine

the equation for saturated heat flux with the flux conservation equation, giving:

∂T

∂t
= − 1

12

n(3k)
3
2

√
m

∂

∂s
(T

3
2 ) (4.19)

Approximating the partial derivatives we get an expression for the change in

temperature at a given position where saturated heat flux applies:

Tt+1 ≃
(

− 1

12

n(3k)
3
2

√
m

∆t

∆s

)

T
3
2

t + Tt (4.20)

With our method of simulations and the models we are implementing, we find

that the resultant temperature gradients are generally not large enough to result

in saturated heat flux, with the exception of simulations with long timescales and

increased electron flux.

4.1.4 Computational Restrictions & Limitations

General Limitations

Our simulations are limited by both the spatial resolution of the temperature

arrays, and the temporal resolution of calculations of both heat deposition /

radiative losses, and conductive losses calculations. The spatial resolution of

the temperature distribution is determined by computer memory capacity, and

results in a certain amount of artificial structure to the temperature distribution.

Our programs record the loop temperature in bins of width 5 × 106 cm, the full

loop length being divided into 800 segments for recording purposes. The energy

deposited by a particle is calculated every 10 timesteps (0.0005 sec) to reduce

the program runtime. If the particle travels less than one bin in the interval

0.0005 sec, the energy is assumed to be deposited over one whole bin. If the

particle travels through several bins, the energy change per bin is calculated and

the resulting temperature change is recorded into each of the bins through which

it passed.

The conductive flux routine is applied to the current temperature distribution

every 250 to 1000 timesteps (every 0.0125 to 0.5 sec) depending on the simula-

tion, partly because it is a very time consuming process and would dramatically
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slow the simulations were it to be calculated every timestep, and partly because

this time interval allows a temperature distribution with less statistical noise to

develop (noise produced by the artificial way we deposit temperature increases

into a discreet number of bins in position).

Stability Problems With Finite Differencing

The stability criterion for the explicit finite differencing method in the conductive

flux routine (Equation 4.13) places limits on the sizes of our timesteps (∆t) and

position bins (∆s) within the cooling routine when very large temperature gra-

dients are encountered. We maintain stability by choosing a suitably small ∆t,

while still ensuring the conduction routine runs for the correct length of time (the

time between calculations of conduction - see above). The inclusion of saturated

heat flux removes the need for a stability criterion when it applies, since it is the

primary heat transfer mechanism for very large temperature gradients.

The explicit finite differencing method of applying conduction is also very

sensitive to large gradients in temperature, and there are rare occasions where

the gradient is sufficient to prevent the use of the classical conduction routine

because of the small timestep required for stability, while at the same time not

being large enough to result in saturated heat flux. To prevent this situation

arising, we artificially reduce large and sudden spikes in temperature within the

main simulation to twice the average surrounding loop temperature. These large

spikes (several times larger than the average loop temperature at that position

and time) are generally caused by large angle particle deflections, which in turn

result in a large temperature increase over a small volume. These temperature

spikes happen very infrequently (since large angle deflections are uncommon) but

removing them will introduce a small artificial decrease in the overall temperature.

This is not a significant problem, however, because in a real situation without

stability limitations, conduction would remove these spikes very rapidly and their

effect would be small. These spikes occur only a handful of times out of hundreds

of thousands of iterations, and are therefore statistically insignificant in the final

results.
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Figure 4.2: Plot of a comparison of the analytical (red) and simulated
(black) solutions to the explicit conductive cooling routine, with a basic di-
mensionless sinusoidal initial distribution, run for 1 sec of cooling time.

Figure 4.3: Plot of the maximum difference
between the analytical and simulated solution as a
function of time.

Figure 4.4: Plot of maximum analytical and
simulated temperatures, and temperature differ-
ence (analytical-simulated).

4.2 Testing The Conductive Cooling Routine

4.2.1 Testing Against Theory

In Figure 4.2 we apply the conductive cooling routine with explicit finite differ-

encing, as described in Section 4.1.2 above, to a basic sinusoidal distribution over

a time of 1 sec. In this particular situation we use a constant diffusion coefficient,

D, to allow comparison with the analytical solution (which does not include dif-

fusion). The analytical solution is calculated (for a sinusoidal initial distribution)
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Figure 4.5: Test of the conductive cooling routine applied to a square
initial temperature distribution over 700 sec. Lighter line colour indicates later
times. Note that this test model is not designed to represent a loop (i.e. there
are no field or density variations) and hence has no restriction on the flow of
temperature at the edges.

using the following equation[Cheney & Kincaid (2004)]:

T = e−π2tsin(πs) (4.21)

where T is temperature, t is the time elapsed and s is position. We can see from

Figure 4.2 that the simulated and analytical solutions are a close match, although

the simulated results, using an explicit finite differencing routine, initially show

a faster rate of cooling than predicated by the analytical solution, since it is not

an exact solution, merely an approximation. However, if we plot the difference

between the analytical and simulated solutions as a function of time (Figure 4.3)

we can see that they converge after approximately 1 sec. Figure 4.4 shows that

this convergence does not simply correspond to decreasing temperature, and in

fact the point of maximum difference is located at a time of approximately 0.1

sec.

4.2.2 Sample Results

In Figure 4.5 we apply the cooling routine to a square temperature distribution

over 700 sec, which demonstrates how effectively conduction smooths out steep

temperature gradients (the edges of the square distribution). In Figure 4.6 we

apply the routine to a basic gaussian temperature distribution, which cools as
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Figure 4.6: Test of the conductive cooling routine applied to a basic gaus-
sian temperature distribution over 210 sec. Lighter colour indicates later time.

Figure 4.7: Plot of the temperature distribution from a simulation with an
X-point field model after 0.5 seconds, showing the effect of conductive cooling
on the distribution.

we would expect, since conduction has the largest effect on steep temperature

gradients - the peak is smoothed out, the side temperature gradients are decreased

and the areas of lowest temperature gradient (i.e. the edges) remain largely

unchanged.

In Figure 4.7 we show a temperature distribution from one of our simulations
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Figure 4.8: Initial quadratic temperature profile of the chromosphere. The
profile at the opposite end is equivalent but mirrored.

using an X-point magnetic field model (Figure 2.13). The density is as described

by Equation 2.17, with a coronal value of 109 cm−3. We show the temperature

distribution along the loop after 0.5 seconds. The yellow line shows the distribu-

tion with no conductive cooling applied, whereas the darker red line shows the

distribution which results when conduction is applied every 0.05 seconds, as is

the case in most of our simulations. The black dotted line indicates the initial

temperature distribution of the loop. The effect of conduction is most noticeable

in the chromosphere and at the looptop where temperature gradients are largest.

The temperature gradients produced by our simulations are not high enough to

result in saturated heat flux except in certain models with increased electron flux

(Figures 4.19 and 4.30).

4.3 Basic Magnetic Loop Results

We initialise our loop models with a temperature distribution that is constant

(106 K) throughout the loop length in the corona, decreasing quadratically across

the chromosphere at either end, and constant (5300 K) outside this (to represent

the photosphere). In the event that cooling causes the loop temperature to drop

below background levels, we force the temperature to remain at the background

photospheric level at that point indefinitely, or until it undergoes further heating,

since in a real loop the temperature would not drop below the background level
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but reach equilibrium. In reality, it is unlikely that chromospheric and coronal

sections of a loop would drop to such low temperatures, since other heating

mechanisms are present besides Coulomb collisions (e.g. plasma shockwaves).

The full initial temperature distribution can be seen in Figure 4.7 (the black

dotted line) and the quadratic profile of the chromosphere can be seen in Figure

4.8. The quadratic temperature profile we use for the chromosphere is of the form

in Goodman (1998) and is described by:

T (z) = T (0) + [T (H) − T (0)]

[

2
( z

H

)

−
( z

H

)2
]

(4.22)

where z is height (within the chromosphere), H is the maximum height (the top)

of the chromosphere, T (H) is the temperature at the top (the coronal tempera-

ture), T (0) is the temperature at the base (the photospheric temperature) and

T (z) is the temperature at a given height within the chromosphere. In our 1D

loop model, z is equivalent to s, the distance along the loop.

The maximum temperatures we see in the following results are lower than

observations for reasons discussed in Section 4.1.4.

Constant Coronal Magnetic Field

In Figure 4.9 we see the temperature distribution along a loop where the magnetic

field converges only across the chromosphere at each end. The test particles are

injected all at t = 0 sec with a power law velocity distribution between 1 × 1010

cms−1 and 2 × 1010 cms−1 (approximately 28.4 keV to 113.7 keV) and with a

uniform distribution of pitch angles between 0◦ and 90◦ to the field line, in both

directions. At early times we see a central peak in temperature, but as time

progresses the energy is distributed along the loop by conduction, and the tem-

perature continues to increase as trapped particles deposit energy. Conduction

effectively prevents peaks in temperature in the higher density chromospheric re-

gions because of the large temperature gradients there. In the five seconds which

the simulation covers, approximately 45% of the test particles escaped the mag-

netic bottle and were stopped primarily in the chromosphere due to the increased

density - the majority remain trapped in the loop.

Variable Magnetic Field

In Figure 4.10 we use a symmetric magnetic field which varies across the entire

length of the loop (as opposed to only across the chromosphere as previously),
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Figure 4.9: Temperature evolution over 5 sec for a loop of length 1.3 ×
109 cm from apex to footpoint, with a magnetic field as shown in Figure
2.10. Includes heat loss through radiation, conduction and saturated heat
flux. Density is as described by Equation 2.17 with a coronal density of 109

cm−3. All test particles injected at t = 0 sec, with a power law distribution
between 1 × 1010 and 2 × 1010 cms−1, and uniform pitch angle distribution
between 0◦ and 90◦ to the field line in both directions.

Figure 4.10: As Figure 4.9 but with a magnetic field which varies along
the loop length from 100 G at the apex to 1000 G at the footpoints, as shown
in Figure 2.11.
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Figure 4.11: As Figure 4.9 but with an asymmetric magnetic field which
varies along the loop length, as shown in Figure 2.12. Field strength is 500 G
at the left footpoint, 1000 G at the right footpoint and 100 G at the apex).

with all other parameters as before. In this situation, there is a more pronounced

magnetic bottle, and fewer particles are able to reach the chromosphere. Con-

ductive cooling smooths out any temperature increases we would otherwise see at

the footpoints, due to the large temperature gradient across the chromosphere.

In this model approximately 13% of particles were lost over the 5 sec in total as a

results of scattering pushing particles into the loss cone and hence allowing them

to escape the magnetic bottle.

In both this model and that shown in Figure 4.9, the heat loss rate through

radiation and conduction (primarily the latter) is large enough to prevent any sig-

nificant increase in temperature. A higher temperature may arise from increasing

the density of the loop (but consequently causing particles to quickly be scattered

out of the loss cone or run out of energy), increasing the energies of the particles

(which would then be relativistic), or by continuous injection of particles (rather

than all at t = 0 sec) with longer simulations, allowing the temperature to build

up over a longer period of time.

In Figure 4.11 we use an asymmetric magnetic field which varies throughout

the loop length. The coronal density at the loop apex is 100 G, the left footpoint

is 500 G and the right footpoint is 1000 G. This results in an asymmetric magnetic

bottle, with electrons able to propagate further towards the footpoint on the left

hand side where the field is weaker. We can see the effect of this in the peak being
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Figure 4.12: As Figure 4.11 but with a more pronounced asymmetric
field, with a strength of 100 G at the apex, 100 G at the left footpoint (i.e. no
convergence) and 1000 G at the right footpoint.

Figure 4.13: Plot of the number of particles left in
the simulation which produced Figure 4.12 as a function of
time. (See Section 3.2.1 and Figure 3.20 for explanation of
the pattern seen here.)

offset to the left slightly. In Figure 4.12 we have a more pronounced asymmetric

loop - in this case, the left hand footpoint is at 100 G, the same as the corona,

meaning there is no field convergence at all at that end. The right footpoint is at

1000 G as before. In this situation, those particles that are injected in the positive

direction are mirrored near the right hand chromosphere whereupon they move

back along the loop and escape at the left hand side, where no mirroring occurs.

Particles injected in the negative direction pass straight out of the loop into the

photosphere where they are immediately stopped by the high density there. As
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Figure 4.14: As Figure 4.10 but with an increased coronal density of 1010

cm−3.

a result, in this model we see higher energy deposition along the left leg of the

loop. However, although the density increases markedly across the chromosphere

and the majority of particles deposit most of their energy there, we still find that

conduction is able to remove any peaks in temperature we would otherwise expect

to see there. In this model, 98% of particles are stopped within 5 sec - in Figure

4.13 we can see the number of particles left in the simulation over time.

Increased Coronal Density

In Figure 4.14 we return to a symmetric loop, as in Figure 4.10, but with an

increased coronal density of 1010 cm−3. This results in slightly higher tempera-

tures, however the higher particle loss rate (after 5 seconds, approximately 82% of

particles have been lost) means that the rate of temperature increase slows, and

would eventually stop if we were to run the simulation for a longer time period.

Conduction and radiation would then gradually cool the loop in the absence of

any mechanism to increase the temperature.

Continuous Particle Injection

To compensate for the loss of particles over time, we can inject particles con-

tinuously rather than all at t = 0 sec - we show results from simulations with

continuous particle injection in Figures 4.15 and 4.16. In Figure 4.15 particles are
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Figure 4.15: As Figure 4.14 but with continuous particle injection. Par-
ticles were injected at a rate of 2000 particles per second.

injected over the full 5 seconds with an injection rate of 2000 particles per sec-

ond and all other parameters as in Figure 4.14. This results in fewer particles in

the simulation at early times, but at later times the number of particles remains

high, since more are continuously being injected to replace those lost. Figure 4.17

shows the number of particles in the simulation over time. Although we do not

see higher overall temperature here with continuous injection, the temperature

would eventually become higher than in the instantaneous injection model if we

simulated a longer period of time - as we can see, the temperature continues to

increase steadily over time for the 5 sec length of this simulation as new particles

replace those that are lost, although we would expect a steady-state situation to

be reached eventually between energy deposition and energy losses.

In Figure 4.16 we see the same continuous injection model but with an even

higher coronal density of 1011 cm−3. Figure 4.18 shows the corresponding plot of

the number of particles in the loop over time. The overall temperature is lower

than in the lower density model. There are several explanations for this: one is

that even with continuous injection the majority of particles are lost very quickly

as a result of the high coronal density (we can see the relatively low level of

particles in the loop at a given time in Figure 4.18) so there are fewer particles

in the loop at any one time. Another aspect is that an increased density means

that energy deposited is spread out through a larger number of background parti-
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Figure 4.16: As Figure 4.15 but with an increased coronal density of 1011

cm−3.

Figure 4.17: Plot of the number of particles
in the simulation which produced Figure 4.15 as a
function of time.

Figure 4.18: Plot of the number of particles
in the simulation which produced Figure 4.16 as a
function of time.

cles,resulting in a lower thermal energy per particle. In addition, radiative losses,

which are proportional to the density squared, are much higher in comparison to

the energy deposited.

Figure 4.18 also shows that at this higher density, the number of particles

in the simulation reaches a steady-state situation after approximately 1.5 sec,

something we did not see occur within the 5 second run with a coronal density

of 1010 cm−3. Again, if this simulation was run for a much longer time, we

would expect the temperature change to reach a steady-state, but for the length

of time shown, conduction is not sufficient to completely overwhelm the rate of

temperature increase in this model.
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Figure 4.19: As Figure 4.15 but simulating a longer time period of 100
sec and with an increased flux of 1037 electrons s−1.

Figure 4.20: Maximum temperature in the
simulation (i.e. the looptop temperature) as a func-
tion of time for the loop shown in Figure 4.19.

Figure 4.21: Plot of the number of particles
in the simulation which produced Figure 4.19) as a
function of time.

Longer Time Interval Results

The temperatures observed in all the previous models do not rise much higher

than 2×106 K. However, if we increase the length of time which we are simulating

and the assumed flux of electrons which we use to scale up to represent a realistic

loop (see Section 4.1.1) we achieve much higher temperatures, over 107 K (a

reasonable minimum temperature for thermal X-ray emission; Chapter 5). In

Figure 4.19 we show the temperature evolution over 100 sec from a continuous

injection model with coronal density 1 × 1010 cm−3 and an increased assumed

electron flux of 1037 electrons s−1 (as opposed to 1036 as before). In this situation,
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unlike previously, saturated heat flux does occur, but approximately 60 times less

frequently than conductive heat flux, and does not produce any visible effects in

the final temperature distribution. This is only one of two simulations where we

see saturated heat flux (see also Figure 4.30). Figure 4.20 shows the evolution

of the maximum temperature of the loop (located at the apex) as a function of

time. After approximately 15 sec the number of particles present in the simulation

(Figure 4.21) and hence the temperature reaches a steady-state, where the rate of

increase is matched by the losses (radiative, conductive heat flux and saturated

heat flux).

4.4 X-Point Magnetic Loop Results

In Figure 4.22 we see the temperature distribution along a loop with a symmetric

X-point magnetic field configuration (see Section 2.2.2). This has a density profile

as described by Equation 2.17 with a coronal density of 109 cm−3 and an initial

temperature profile as described at the beginning of Section 4.3. Particles are all

injected at t = 0 sec, with a power law distribution between 1×1010 and 2×1010

cms−1, and uniform pitch angle distribution between 0◦ and 90◦ to the field line

in both directions.

The temperature profile we see here is comparable to that seen in the equiva-

lent basic loop model as seen in Figure 4.10, since the parameters are similar in

both models, the only difference being the form of the magnetic field (to compare

the fields, see Figures 2.11 and 2.14).

Increased Coronal Density

In Figure 4.23 we have the same situation as in Figure 4.22 but with an increased

coronal density of 1010 cm−3. This higher density results in higher temperatures,

but it also means that particles are scattered out of the magnetic bottle and

stopped more quickly. Over this 5 second run, approximately 88% of particles

were lost, compared to only approximately 27% in the model with a coronal

density of 109 cm−3. In this situation, we see the rate of temperature increase

slow as particles are lost. We also note that the chromospheric regions do not

cool below the initial temperature level as they do in the lower density model,

because the higher density here allows for a temperature increase large enough

to counteract conduction to an extent, although not enough to allow peaks of

temperature to develop at the footpoints.



82 4: Collisional Heating of Magnetic Loops

Figure 4.22: Temperature evolution over 5 sec for a loop with a symmet-
ric X-point magnetic field configuration (as shown in Figure 2.14) and length
1.3 × 109 cm from apex to footpoint. Includes heat loss through radiation,
conduction and saturated heat flux. Density is of the form described in Equa-
tion 2.17 with coronal density 109 cm−3. All test particles injected at t = 0
sec, with a power law distribution between 1 × 1010 and 2 × 1010 cms−1, and
uniform pitch angle distribution between 0 and 90◦ to the field line in both
directions.

Figure 4.23: As Figure 4.22 but with an increased coronal density of 1010

cm−3.
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Figure 4.24: As Figure 4.23 but with continuous particle injection. Par-
ticles are injected at a rate of 2000 particles per second.

Figure 4.25: Plot of the number of particles
in the simulation which produced Figure 4.24 as a
function of time.

Figure 4.26: Plot of the number of particles
as a function of time in a simulation equivalent to
that shown in Figure 4.24 but with an increased
coronal density 1011 cm−3.

Continuous Particle Injection

Figure 4.24 has the same parameters as Figure 4.23 but with continuous particle

injection, with an injection rate of 2000 particles per second. We see a slower

increase in temperature initially because there are fewer particles in the simulation

at any given time than when all are injected at t = 0 and the overall temperature

is also lower because of this. The particle loss rate in the X-point model is higher

than in the basic field models - compare Figure 4.17 (basic field) and Figure 4.25

(X-point field). The latter has a much lower peak number of particles at any

given time.
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Figure 4.27: As Figure 4.24 but showing the temperature evolution over
a longer time interval of 100 sec.

Figure 4.28: Maximum temperature in the
loop (i.e. the looptop temperature) as a function
of time for the loop shown in Figure 4.27.

Figure 4.29: Plot of the number of particles
in the simulation which produced Figure 4.27 as a
function of time.

If we increase the density further (to 1011 cm−3 in the corona) the rate of

particle loss in this X-point field geometry is slightly larger than the injection

rate (see Figure 4.26). With higher density, energy deposited must be distributed

between more background particles and radiative losses are also much higher, and

this, combined with a lower number of particles in the loop at a given time, will

eventually allow cooling to exceed the heating rate in this model.
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Longer Time Interval Results

If we use a continuous injection model to simulate a longer time interval, we see

higher loop temperatures as expected, since energy continues to be deposited as

long as particles are present in the loop. In Figure 4.27 we show the temperature

evolution over 100 sec for a loop with all parameters as previously (i.e. Figure

4.24), except the length of time simulated. We can see that the temperature does

reach a higher level, but it does not increase above 107 K, a reasonable minimum

temperature for thermal X-ray emission (see Chapter 5). In Figure 4.28, we plot

the maximum temperature in the loop (which is located at the apex) as a function

of time - the rate of temperature increase slows as the number of particles present

in the simulation decreases (particle loss rates are higher than injection rates in

this model, Figure 4.29) and conduction gradually cools the loop.

We increase the flux of particles in the loop to 1037 electrons s−1 (from 1036

previously) than in previous simulations. We show results with this increased flux

in Figure 4.30. Here, we see a higher maximum temperature, but it is not high

enough to produce thermal X-ray emission (see Chapter 5). Figure 4.31 shows the

maximum temperature (the loop apex temperature) as a function of time. With

this higher flux, we see that the temperature increases more quickly initially, but

after reaching a looptop peak at approximately 20 sec it begins to decrease slowly

as conductive cooling dominates over temperature deposition, in contrast to the

basic field model equivalent where a steady-state is reached (Figure 4.19). This

is because the particle loss rate in the X-point field configuration is larger than in

the basic field model (compare Figures 4.32 and 4.21) and hence the temperature

decreases as the number of particles drops and conduction and radiation cool the

loop.

In this model saturated heat flux also has an effect, although it is small in

comparison to conductive heat flux - the condition for conductive heat flux occurs

approximately 160 times more frequently than that for saturated heat flux. This

is one of only two simulations we have run where saturated heat flux occurs, the

other being a similar simulation using our more basic field model (see Figure

4.19).
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Figure 4.30: As Figure 4.27 but with an increased flux of 1037 electrons
s−1.

Figure 4.31: Maximum temperature in the
simulation (i.e. the looptop temperature) as a func-
tion of time for the loop shown in Figure 4.30.

Figure 4.32: Plot of the number of particles
in the simulation which produced Figure 4.30 as a
function of time.

4.5 Conclusion

In conclusion, it would appear that to achieve temperatures approaching and

exceeding 107 K using our models, several conditions must be met: the electron

flux must be high; the coronal density must not be too large (approximately

1010 cm−3); there must be continuous particle injection; and the length of time

simulated must be large, of the order 20 sec or more. However, even when all

these conditions are met, the maximum temperatures produced do not exceed

∼ 1.1×107 K. It is apparent that there must be more phenomena contributing to

loop temperature increase than Coulomb collisions between background particles
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and fast moving beam particles alone. For future work, it would be beneficial to

combine these test particle simulations with hydrodynamic simulations in order

to incorporate effects such as plasma shocks (which would increase temperature)

and chromospheric evaporation (which would decrease temperature), which both

contribute to changes in loop temperature. In particular, hydrodynamic sim-

ulations would allow us to model bulk plasma flows which occur over tens of

seconds, timescales which we have considered with our test particle simulations.

These bulk flows would change the temperature distributions we see in Figures

4.19, 4.27 and 4.30.
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Chapter 5

Thermal & Non-Thermal X-Ray

Spectra

In Chapter 3, we looked at hard X-ray emission (∼ 20 - 100 keV) which is pro-

duced via non-thermal bremsstrahlung emission from fast (non-relativistic) elec-

trons moving along the magnetic field lines. Soft X-ray emission has also been

observed (∼ 1 - 20 keV) and has a more thermal spectrum consistant with emis-

sion from a hot plasma. In this chapter, we look at the thermal bremsstrahlung

X-ray emission produced by the beam-heated plasma (see Chapter 4), and at-

tempt to combine this with hard X-ray emission (see Chapter 3) from the same

beam to produce X-ray spectra similar to those seen with the RHESSI satellite.

5.1 Theory

5.1.1 Thermal X-Ray Emission

Thermal bremsstrahlung X-ray emission is produced as thermal electrons in a

hot gas lose energy, primarily through Coulomb collisions with other electrons.

Since the interaction is primarily a mutual exchange of energy between elec-

trons of similar energies, these electrons do not lose energy through collisions as

fast as the non-thermal electrons do in collisions with the much colder ambient

plasma, therefore thermal emission is more efficient than non-thermal in terms

of bremsstrahlung yield per electron. Soft X-rays are generally accepted as be-

ing in the energy range 1 - 20 keV, emitted from hot plasmas with Maxwellian

temperatures from approximately 1 × 107 K to 3 × 107 K.

Electrons in a hot plasma have a Maxwellian velocity distribution described
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by(Tandberg-Hanssen & Emslie (1988)):

f(v) = 4π
( m

2πnkT

)3/2

nv2e(−mv2

2kT
) (5.1)

where m is the mass of an electron, n is the number density of the hot plasma,

T is the temperature of the plasma, and v is the velocity of an electron in the

plasma. This corresponds to an energy distribution of:

f(E) = f(v)
dv

dE

=
2ne√

π(kT )
3
2

√
E e(− E

kT
) (5.2)

(in electrons per cubic centimetre per erg) where E is the energy of an electron

corresponding to v. The bremsstrahlung emission from a volume V resulting

from the electrons’ interactions with ambient protons (also of number density n)

is given by[Tandberg-Hanssen & Emslie (1988)]:

I(ǫ) = nV

∫ ∞

ǫ

f(E)v(E)σB(ǫ, E) dE (5.3)

where σB(ǫ, E) is the electron-proton cross-section - we use the Bethe-Heilter

cross-section (Equation 3.2). Other cross sections could be used in further work,

but due to time limitations we restrict ourselves to this one only, as used in

Brown (1971). In order to calculate the intensity as seen by a detector at Earth,

we must also divide by 4πR2 where R is 1AU. Inserting these and approximating

the integral with a sum gives:

I(ǫ) =
4

3

√
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)2 1

137
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1

ǫ

∞
∑
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√
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√

1 − ǫ
E

]

∆E

(5.4)

(photons per second per square centimetre of detector at Earth per unit ǫ) where

r0 is the classical electron radius.

5.1.2 X-Ray Spectra

We create X-ray spectra by summing over time the intensity observed for each

photon energy, resulting in a plot of intensity against photon energy. In observed

spectrum there are two distinct emission regimes - the power law non-thermal

emission and the steeper thermal emission curve. In Figure 5.1 we see the spec-

tra observed by RHESSI from the August 20th 2002 flare, a flare with a weak
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Figure 5.1: RHESSI X-ray photon spectrum from the August 20th 2002 flare. The solid line
indicates the albedo corrected photon spectrum and the crosses indicate the observed photon spectrum.
The horizontal widths of the crosses represent energy bands and the vertical widths represent show
±1σ statistical plus systematic uncertainties. The dotted and dashed line shows the best fit to the non-
thermal component (a thin-target fit) and the dotted line shows the best fit to the thermal component
(an isothermal fit). This event shows a relatively low energy thermal component. [Kašparová et al.
(2005), Figure 2]

thermal component, over a period of 2 seconds. In it, we can see the steep thermal

emission curve from approximately 8-20 keV, and then the shallower power law

non-thermal emission from approximately 20 - 100 keV. A similar spectrum ob-

served from the July 23rd 2002 flare, a flare with a stronger thermal component,

can be seen in the top panel of Figure 1.7.

5.2 Results

Given that soft bremsstrahlung X-rays in the range ∼ 1 - 20 keV originate from

plasmas of temperatures of the order 1× 107 to 3× 107 K, almost all loop config-

urations we show in Chapter 4 will not give rise to significant thermal emission in

the RHESSI energy range, since with the parameters we have used, and given our

model, most simulations do not produce peak temperature much over 2× 106 K.

However, when we run simulations with continuous particle injection for 100 sec,

we do see temperature increases approaching and exceeding 1× 107 K. However,

only the simulation with a basic field model and increased electron flux produces
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Figure 5.2: Temperature evolution over 100 sec in a loop with a flux of
1037 electrons s−1. The density profile is described by Equation 2.17 with a
coronal density of 1010 cm−3 and the magnetic field as shown in Figure 2.11.
All particles were injected at t = 0 sec in a power law distribution between
1× 1010 cms−1 and 2× 1010 cms−1, with initial pitch angles from 0 to 90◦ to
the field line in both directions.

temperatures high enough, therefore this is the one we shall consider here.

This model uses a symmetric magnetic field as shown in Figure 2.11, which

varies throughout the loop length, with a minimum (coronal) value at the loop

apex of 100 G and maximum (photospheric) values at the footpoints of 1000 G.

The density of the loop is described by Equation 2.17, varying across the chromo-

sphere from 1010 cm−3 in the corona to 1016 cm−3 in the photosphere. The change

in volume (as a result of changing loop area) along the loop is incorporated into

the scaling factor (see Section 3.1.1). When scaling up values in our simulations

to produce dimensional results and represent realistic loop parameters, we as-

sume a flux of 1037 electrons s−1 (as opposed to the lower value of 1036 used in

the majority of our simulations) (see Sections 3.1.1 and 4.1.1). This higher flux

results in temperatures large enough to produce thermal X-ray emission at a low

level. Particles are injected continuously at a rate of 2000 particles per second,

with initial pitch angles chosen randomly from a uniform distribution between 0◦

and 90◦ to the field line in both directions, and with a power-law initial energy

distribution between 1 × 1010 cms−1 and 2 × 1010 cms−1.

In Figure 5.2 we show the evolution of the temperature distribution from

this model over 100 sec. In Figures 5.3 and 5.4 we show the non-thermal and
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Figure 5.3: Non-thermal X-ray emission
(summed over photon energy) over 100 sec from a
loop with a symmetric magnetic field varying from
100 G (coronal) to 1000 G (photospheric), a coro-
nal density of 1010 cm−3 and an increased electron
flux of 1037 electrons s−1 cm−2.

Figure 5.4: Thermal X-ray emission (summed
over photon energy) over 100 sec corresponding to
the temperature distributions shown in Figure 5.2.

thermal X-ray emission from this model over the same time interval. The overall

thermal emission is located primarily at the footpoints where the density is higher,

despite the lower temperatures there. However, if we plot the thermal emission as

a function of photon energy rather than time (Figure 5.5), we see that footpoint

emission only dominates at low photon energies. From 17 keV and above, the

thermal emission from the looptop dominates over the footpoints. However the

overall thermal emission drops very quickly with increasing photon energy, so

the intensities we see at these relatively higher photon energies is very small in

comparison with the footpoint emission seen at lower photon energies.

In Figure 5.6 we show the evolution of the total thermal emission over all

photon energies at the footpoints and looptop as a function of time. The looptop

emission is very small compared to the footpoint emission (of the order 3300

times smaller) and therefore is not visible in this plot, and we can also see that the

thermal emission is negligible for about the first 8 seconds, while the temperature

is still too low to produce it, and then increases sharply to a steady-state as the

temperature increases correspondingly (see Figure 4.20).

The reason for the asymmetry in thermal emission between the footpoints is

that it is strongly dependent on density, loop cross-sectional area and temper-

ature - this difference in thermal emission is produced by a small difference in

temperature (at an equivalent point in the chromosphere, the percentage differ-

ence in temperature between the left and right chromosphere is only 1.2%) across

each chromospheric region, which is amplified in the calculation of intensity using

Equation 5.4 as the density increases and loop area decreases across the chromo-
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Figure 5.5: Thermal emission (averaged over 100 sec) for various photon
energies resulting from the temperature distribution shown in Figure 5.2.

sphere. Furthermore, because temperature increase is cumulative, this difference

in temperature between the two chromospheric regions propagates through all

the later distributions from the point at which it first appears. The small tem-

perature asymmetry develops because in this model, the temperature increases

before losses are calculated are very high, resulting in frequent occurrences of

saturated heat flux. In sections of the loop where saturated heat flux applies, the

temperature decrease is small, but in adjacent areas where conduction applies,

the change is large, and the distribution also becomes smoothed out. We show

this in Figure 5.7 for a distribution after 1 sec created with the current simulation

parameters - it shows the distribution before conduction / saturated heat flux is

calculated, and the distribution after. We can see the rough areas with very little

temperature change where saturated heat flux applies, and the smoothed areas

with lower temperature gradients where conduction is able to smooth out the

distribution. These two very different sections of the distribution then result in a

skewed distribution for the next calculations of cooling, and hence an asymmetric

final temperature distribution. This pronounced peak where saturated heat flux

applies is not seen in later distributions (see Figure 4.19) because over time, the

temperature across the rest of the loop (away from the apex) continues to in-

crease and the temperature gradients gradually become less, allowing conduction

to dominate and smooth the peak.
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Figure 5.6: Plot of the thermal X-ray intensity at the loop apex and
footpoints as a function of time corresponding to Figure 5.4. The emission
from the apex is sufficiently small in comparison to the footpoints that it is
not visible at this scale.

Figure 5.7: Plot of a temperature distribution after 1 sec, before and after
the calculation of conduction and saturated heat flux.

In Figures 5.8 and 5.9 we show the non-thermal and thermal X-ray spectra

respectively, summed over time, and in Figure 5.10 we show the combined thermal

and non-thermal spectrum produced, in a form suitable for comparison with

observed spectra (e.g. Figures 1.7 and 5.1).



96 5: Thermal & Non-Thermal X-Ray Spectra

Figure 5.8: Non-thermal X-ray spectrum
(summed over time) from a loop with a symmet-
ric magnetic field varying from 100 G (coronal) to
1000 G (photospheric), a coronal density of 1010

cm−3 and an increased electron flux of 1037 elec-
trons s−1 cm−2.

Figure 5.9: Thermal X-ray spectrum (summed
over time) corresponding to the temperature distri-
butions shown in Figure 5.2.

Figure 5.10: Combined thermal and non-thermal X-ray spec-
trum (over 100 sec) from a loop with a symmetric magnetic field
varying from 100 G (coronal) to 1000 G (photospheric), a coronal
density of 1010 cm−3 and an electron flux of 1037 electrons s−1 cm−2.

We can see that in the observed data (Figures 1.7 and 5.1), the point where

the thermal and non-thermal curves intersect is at approximately 20-30 keV in

the former and 10-12 keV in the latter - in our results, this point of interception
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is at approximately 10 keV, corresponding to Figure 5.1, the weak thermal com-

ponent event. We can see from Figures 1.7 and 5.1, that the non-thermal part of

the spectrum in observations, when extrapolated back, intercepts the y-axis at an

intensity of a little over over 100 photons s−1 cm−2 keV−1, which corresponds with

our simulated results, showing that the non-thermal emission produced by our

model is representative of a real loop situation. We can also see that the thermal

emission from our simulations is of a similar intensity (only slightly lower) to the

thermal emission seen in Figure 5.1, an event with a weak thermal component.

This is because of the relatively low temperatures produced by our simulations.

The thermal X-ray emission we obtain is primarily at low photon energies and

originates from the upper chromosphere where the density is high and the tem-

perature is of the order 6 - 7 MK. However, temperatures of this magnitude have

been observed at loop footpoints (in the chromospheric regions) (e.g Fletcher &

Hudson (2001)). Higher coronal temperatures would result in more emission at

higher photon energies and would, if suitably large, allow the looptop source to

dominate.

Our results, from the simulations that produced the highest temperatures,

appear to concur with observations of events with weak thermal components. It is

more common for events to show a higher thermal component (loop temperatures

observed are generally higher than we have been able to produce), and thus we

must conclude that there are more physical mechanisms contributing to loop

heating than those which we include in our model (which considers only collisions

between the non-thermal beam electrons and the background particles). Other

possible heating mechanisms include chromospheric ablation, resistive heating,

inductive heating and shock heating (see Section 1.3.2), all of which would require

further development of our existing simulations, including the incorporation of

hydrodynamic modelling techniques.
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Chapter 6

Radio Emission - Type III Radio

Bursts

Radio bursts from the Sun have been observed by various radio observatories from

as far back as the 1950s. Type III radio emission is generated when beams of

fast electrons propagate through a background plasma and develop a “bump-in-

tail” instability (see below), producing Langmuir waves which in turn convert to

electromagnetic radiation at radio frequencies. This radio emission is produced

in sudden bursts and is often associated with flares and hard X-ray emission.

Reverse-drift Type III bursts are so named because of the distinct pattern they

produce in radio emission maps (such as Figure 6.1 - steep negative gradient lines)

where the frequency of the radio emission increases as time progresses, a reverse

of the more commonly observed emission where frequency decreases with time.

6.1 Theory

6.1.1 Production of Radio Bursts

During a solar flare, charged particles (e.g. fast electrons) are accelerated onto

magnetic field lines in the solar atmosphere, along which they propagate through

the ambient coronal plasma. As they pass through the plasma, they lose en-

ergy via Coulomb collisions. The particle energy loss rate is higher for small v

(dE
dt

∝ 1
v
) and this fact, combined with the velocity dispersion effect, results in a

positive slope in the beam velocity space. If the particle distribution initially has

a negative slope in velocity space, higher energy (faster) particles propagate along

the loop faster than the lower energy particles and result in a “bump” in a plot of

the distribution of the electrons which will have a positive slope - this is known
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Figure 6.1: Reverse-drift Type-III radio bursts - lines with
steep negative gradient and hence increasing frequency with
time - for an event on 22nd Sept 1989, from the Phoenix radio
spectrometer of ETH Zurich. [ETH Zurich]

as the “bump-in-tail” instability, and makes the electron beam unstable. The

unstable beam undergoes Landau resonance, which generates Langmuir waves.

These waves can undergo various non-linear wave-wave interactions such as cou-

pling with ion-acoustic waves to produce secondary Langmuir waves, which also

interact to provide electromagnetic transverse waves. These interactions produce

emission at the electron plasma frequency.

The drift velocity of a Type III burst is related to the initial velocity of the

electron beam which produced the bump-in-tail instability. The drift velocity,

measured in GHz s−1, is given by:

dωp

dt
=

d

dt

√

4πe2n(s)

me
(6.1)

where ωp is the plasma frequency and n(s) is the density function. For s = v0t

(with v0 the initial velocity of a beam electron) and density function n(s) =

n0e
(−s

L ) (n0 being the coronal density and L the density scale height), Equation

6.1 can be written as:

dωp

dt
=

√

4πe2

me

1

2
√

n(s)

−n0

L
e(

−s
L )v0 (6.2)
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which relates the drift rate, dωp

dt
to the initial beam velocity, v0.

In the following simulations, we use a beam with initial electron velocities

ranging from 1×1010 cms−1 to 1.5×1010 cms−1, which can produce Type III bursts

with drift rates matching observations (Kontar (2001)). In order to investigate

the development of radio emission from such a beam, we choose a point in velocity

space at which to look for the first development of a positive slope (the bump-

in-tail instability). This positive slope is caused by the beam particles slowing

down through collisions and velocity dispersion, and hence the velocity at which

this slope appears will be low compared to the particles’ initial velocities. In this

work, we choose a parallel velocity of vs = 2.839× 109 cms−1 - other velocities of

a similar magnitude would also be suitable.

6.1.2 Simulations

Our simulations allow us to record the energy (i.e. velocity), distribution function

of a beam of fast electrons by modelling their movements along a magnetic field

line in a step-wise manner, including scattering from the ambient plasma, as

described in Chapter 2. The distribution function is effectively a histogram of the

velocity distribution of the electron beam, which we can plot at various positions

along the loop. Such graphs allow us to see where a positive slope in velocity

space develops in relation to the required minimum velocity for Type III radio

emission (see Section 6.1.1) and hence at what distance along the field line (i.e.

at what position in the corona) this emission can first be generated.

We record the velocity distribution of the electrons at a number of positions

along the field line. In order to record velocity distributions at specific positions,

we approximate each position with a bin of width 105 cm, which is small in

comparison to the loop length. Use of larger bin widths would mean we were not

looking at a velocity distribution at a specific position, however, too small a bin

width and there are not enough particles present to make a velocity histogram.

We find 105 cm to be a suitable compromise between the two extremes.

6.2 Results

In the following results, we show the development of the electron velocity dis-

tribution as a function of time and position. We inject the beam electrons in a

single burst at t = 0 sec at the looptop, with velocities chosen randomly from a
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power law distribution between 1 × 1010 cms−1 and 1.5 × 1010 cms−1, and pitch

angles chosen from a uniform distribution between 0◦ and 90◦ to the field in both

directions. We look only at the right hand side of the loop, from the apex to the

footpoint. For generation of plasma waves and hence Type III radio bursts, we

consider the component of velocity of the electrons in the direction of the field

line, vs (= vcosθ, where θ is the pitch angle).

In Figures 6.2 and 6.3, we use a variable density model as described by Equa-

tion 2.17, with a coronal value of 1010 cm−3 and a photospheric value of 1016

cm−3, and a field model as shown in Figure 2.11, which varies from 100 G at the

loop apex to 1000 G at the photosphere.

Figure 6.2 shows the electron velocity distribution at various positions (indi-

cated by colour) at time t = 0.05 sec. Numerical noise produces the oscillations

at higher velocities, since fewer particles are at those energies. The vertical dot-

ted line indicates the velocity (energy) corresponding to a wavelength of 10 cm,

which is the lower limit on wavelength for Type III radio bursts. We are looking

for the time at which a positive slope in the velocity distribution first appears at

this energy - this shows us at which position and time the conditions resulting in

the production of Type III radio bursts develop. The distributions at a number

of positions at 0.05 sec are shown - we can how the distribution differs at different

positions. We see higher energy particles at positions further along the loop since

faster particles have propagated further in the time elapsed.

Figure 6.3 shows the velocity distribution of electrons at one position at a

number of times (indicated by colour). Here, we can easily see where the positive

slope first appears at that position - at ∼ t = 0.3 sec. This shows the development

of the distribution over time as the higher energy particles slow down and low

energy particles are lost. The pattern of the distribution moves left in velocity

space as the particles collectively lose energy, and a positive slope develops at low

energies as slower particles are lost.

Using the above data, we can find when the positive slope in velocity space

first develops at each position along the loop, and thus show the progression along

the loop of the point at which Type III bursts can develop.

Figure 6.4 has a constant magnetic field (100 G) and a constant density (109

cm−3) throughout the loop. In this situation, all particles flow directly to the end

of the loop with no impediment other than Coulomb collisions with the ambient

plasma. We can see that in this case, the development of the positive slope in

velocity space (and hence the production of Type III radio bursts) progresses
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Figure 6.2: Log-log plot of electron velocity
distributions for various positions at time t = 0.05
sec. The vertical dotted line indicates the veloc-
ity at which we look for a positive slope in velocity
space such that Type III radio emission can de-
velop. Density is as described in Equation 2.17,
with a coronal density of 1010 cm−3), and the field
model is as shown in Figure 2.11, varying from 100
G in the corona to 1000 G at the footpoints. All
particles are injected at t = 0 sec, with initial pitch
angles chosen randomly from a uniform distribu-
tion between 0◦ and 180◦ to the field line, and a
power law velocity distribution between 1 × 1010

cms−1 and 1.5 × 1010 cms−1.

Figure 6.3: Log-log plot of electron velocity
distributions for various times at position s = 5 ×
107 cm. All parameters as in Figure 6.2.

linearly along the length of the loop with time.

In Figure 6.5 we keep a constant magnetic field (100 G) but introduce a vari-

able density model, which is described by Equation 2.17 and increases across the

chromosphere from 109 - 1016 cm−3. In this situation, particles are stopped in the

chromosphere by the increasing density. This changes the energy distribution of

electrons in the chromosphere. With increased density, there are more collisions

and hence more particles are stopped, particularly those at lower energies. Fur-

thermore, a larger number of particles undergo large angle scatterings as a result

of the increasing density, causing them to propagate back along the loop - this

causes the development of the positive slope in the velocity distribution to propa-

gate more slowly in both the lower corona and chromosphere (compare to Figure

6.6 where we show the same simulation but considering only particles travelling in

the positive direction, which shows no slowing of the development of the positive

slope in the corona). This results is two points where a positive slope develops

concurrently - in the high corona and in the chromosphere. It is the particles with

the fastest initial energies that are causing this secondary point of development in

the chromopshere - at 0.1 sec, for example, where we see a positive slope at both

∼ 3.7 × 108 cm and ∼ 1.14 × 109 cm, the lowest energy particles (vi = 1 × 1010

cms−1) will have just reached the start of the chromosphere at 1 × 109 cm, and
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Figure 6.4: Plot of the development of a posi-
tive slope in velocity space along a loop as a func-
tion of time. Magnetic field and density are both
constant everywhere, at 100 G and 109 cm−3 re-
spectively. All particles are injected at t = 0 sec,
with initial pitch angles chosen randomly from a
uniform distribution between 0◦ and 180◦ to the
field line, and a power law velocity distribution be-
tween 1 × 1010 cms−1 and 1.5 × 1010 cms−1.

Figure 6.5: As Figure 6.4 but with density
varying across the chromosphere (1 × 109 cm to
1.3 × 109 cm) from 109 - 1016 cm−3 according to
Equation 2.17.

Figure 6.6: As Figure 6.5 but considering only
particles travelling in the positive direction.

the highest energy particles (vi = 1.5 × 1010 cms−1) will have reached well into

the chromosphere. In higher regions of the chromosphere, the density is only a

few times larger than in the corona, and Type III emission could still originate

in this medium - a coronal density of 1 × 109 cm−3 results in a wave frequency

of ∼ 1783 MHz, and a coronal density of 3 × 109 cm−3 results in a frequency of

∼ 3089 MHz, from the equation for the plasma frequency (ωp =
√

4πnee2

me
), which

is at the upper limits of Type III emission frequencies.

In Figure 6.7, we introduce a magnetic field which varies from 100 G at the

loop apex to 1000 G at the footpoint, as shown in Figure 2.11, and we keep the

density model as previously. Now, the majority of particles are reflected by the

increasing magnetic field before reaching the chromosphere. In this situation, the
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Figure 6.7: As Figure 6.5 but with a magnetic
field varying across the loop from 100 G at the apex
to 1000 G at the footpoint, as shown in Figure 2.11.

Figure 6.8: As Figure 6.7 but with an increased
coronal density of 1010 cm−3.

Figure 6.9: As Figure 6.2 but with a velocity
distribution between 5 × 109 cms−1 and 2 × 1010

cms−1.

Figure 6.10: As Figure 6.3 but with a velocity
distribution between 5 × 109 cms−1 and 2 × 1010

cms−1.

condition for production of Type III bursts occurs earlier at each position along

the loop than with a constant magnetic field.

Figure 6.8 has the same field and density configuration as previously, but

with an increased coronal density of 1010 cm−3. This increase in density results

in an increase in the number of particles lost, and it causes some particles to

be mirrored nearer the looptop than previously. These effects are quite small

however, and have little effect on the production of Type III bursts, as we can

see from the similarity of Figures 6.7 and 6.8.

In all the above results, the initial velocity (i.e. energy) distribution of the

injected particles is a power law ranging from 1×1010 cms−1 to 1.5×1010 cms−1.

This is quite a small range of initial energies (approximately 28.4 keV to 64.0

keV). In Figures 6.9, 6.10 and 6.11 we show results with an increased range of

initial velocities - 5× 109 cms−1 to 2× 1010 cms−1 (∼ 7.1 keV to 113.7 keV) and

other parameters as in Figures 6.2, 6.3 and 6.8.
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Figure 6.11: As Figure6.8 but with a velocity
distribution between 5 × 109 cms−1 and 2 × 1010

cms−1.

Figure 6.12: As Figure 6.2 but with a higher
velocity distribution between 1.5×1010 cms−1 and
2 × 1010 cms−1.

Figure 6.13: As Figure 6.3 but with a higher
velocity distribution between 1.5×1010 cms−1 and
2 × 1010 cms−1.

We can see the difference the larger range of initial velocities has in the veloc-

ity distributions as functions of position and time (compare Figures 6.2 and 6.9,

and Figures 6.3 and 6.10), however we see little difference between Figure 6.8 and

Figure 6.11 other than increased noise because of the wider range of velocities.

This shows that this wider range of injected particle velocities does not signifi-

cantly effect the propagation along the loop of the point where the positive slope

(and hence Type III bursts) first develops. This is because the smaller range is

centred exactly in the middle of this larger range.

We now show results with an initial velocity distribution shifted upwards in

range, so the average particle velocity is higher. We choose the range 1.5 × 1010

cms−1 to 2×1010 cms−1 (∼ 64.0 keV to 113.7 keV). In Figures 6.12, 6.13 and 6.14

we show results with this shifted initial velocity range. In Figure 6.14 we see the

propagation of the point where a positive slope in velocity space first develops.
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Figure 6.14: As Figure 6.8 but with a higher
velocity distribution between 1.5×1010 cms−1 and
2 × 1010 cms−1.

Because all the particles are at higher energies, the loss rate is lower, and there

are less low energy particles to contribute to the positive slope. The converging

field and density also have less effect on high energy particles - we can see that

in the chromospheric region, where the density increases exponentially, there is

little effect on the development of the positive slope as a function of time and

position, unlike in earlier models with lower initial particle velocities.

In coronal regions of a loop with constant magnetic field, the location where

the beam velocity distribution first becomes positive moves along the loop at

a velocity of approximately 4.3 × 109 cms−1. With the addition of a converging

magnetic field, this increases to approximately 1×1010 cms−1 as particles’ parallel

velocities decrease and some are reflected by the field. In chromospheric regions

however, the increasing density causes the point of development of the positive

slope to progress more and more slowly along the loop until there are too few

particles reaching each position to allow any further development. Shifting the

initial velocity distribution such that particles are at higher overall energies to

begin with slightly increases the speed along the loop of this point to 1.25× 1010

cms−1.

In models with a low-energy cut-off of in particle energy of ∼ 25 keV or larger

(i.e. the models with initial particle energies between 1×1010 cms−1 and 1.5×1010

cms−1, and between 1.5×1010 cms−1 and 2×1010 cms−1), the speed of propagation

along the loop of the point where a positive slope first develops is slower than

the slowest initial particle velocity, which means that the speed of the point of

development of reverse-drift Type III bursts can be used to place a lower limit

on the initial beam velocity distribution and hence the injected particle energies.
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It also indicates that we would expect reverse-drift Type III radio emission to be

delayed with respect to hard X-ray emission, since the beam is propagating faster

than the point where a positive slope in velocity space develops. This, however, is

not an absolute conclusion, since the development of Type III emission depends

strongly on the density of the background plasma, which in our simulations is

assumed to be constant in the corona.

In the model with with the widest range of initial particle velocities, 5 × 109

cms−1 to 2×1010 cms−1 (∼ 7.1 keV to 113.0 keV), the point of development of the

positive slope travels at approximately 1 × 1010 cms−1, which is this time within

the range of initial particle velocities. This is because a large number of the

particles in this distribution have very low initial energies (approaching thermal

energy levels) and hence are stopped or scattered out of the loop very quickly,

leaving mostly high energy particles as in previous higher energy distributions

with a low-energy cut-off.

The results we present show the significance of scattering in the development

of the positive slope, as well as the effect of velocity dispersion. For example, in

Figure 6.10 and similar figures, the broadening of the particle velocity distribution

is primarily a result of scattering. Particles undergoing Coulomb collisions lose

energy with each collision, and this creates more low energy particles (and hence

a positive slope in the velocity distribution) more quickly than velocity dispersion

alone would.



Chapter 7

Conclusions & Further Work

In the preceding work, we have examined the effects of a non-relativistic beam of

fast electrons propagating along a magnetic field and interacting with the back-

ground plasma. The magnetic field represents a magnetic loop in the solar atmo-

sphere. Using stochastic test particle simulations we have modelled the evolution

of the electron distribution function over time. Simulations include Coulomb col-

lisions between the beam electrons and the background plasma particles, and use

various magnetic field and density models. We have looked at the non-thermal

X-ray emission produced by the beam electrons as a function of time, position

and X-ray photon energy, investigating the positions in the loop at which non-

thermal X-ray emission is produced to find out if these locations concur with

observations. We have looked at the heating of the background plasma as a re-

sult of collisions between the beam electrons and background particles, including

radiative losses, conductive losses and saturated heat flux, showing the evolution

of the loop temperature over time. We have investigated thermal X-ray emission

produced by this hot plasma, but in most cases the temperatures produced by

our simulations have not been high enough to result in this type of emission at

RHESSI wavelengths. We then combined the non-thermal and thermal X-ray

emission (where high enough) to show the resultant X-ray spectrum in a form

comparable to observations produced by the RHESSI satellite in order to compare

results from our simulations with the observed data. As an addendum, we have

also used our simulations to investigate the production of reverse-drift Type III

radio bursts by looking at the development of a positive slope in velocity space of

the electrons’ energy distribution, which shows us the position and time at which

conditions for the generation of reverse-drift Type III bursts first develop.

Our simulations use various field and density model combinations, starting
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with basic fields with constant field strength and density in the corona and in-

creasing across the chromosphere to the photosphere, then moving on to models

where the field converges gradually throughout the length of the loop (both sym-

metrically and asymmetrically), a class of field model which includes an X-point

field configuration, a topology believed to be representative of magnetic recon-

nection regions where it is thought particle acceleration occurs. Results from

simulations with magnetic fields which converge throughout the loop length, par-

ticularly the X-point field model, are most representative of realistic loop pa-

rameters. Our density model has constant density throughout the corona and

increases exponentially across the chromosphere to reach photospheric values -

we use coronal densities from 109 cm−3 to 1012 cm−2 and a photospheric density

of 1016 cm−3.

We consider two types of particle injection onto the loop - instantaneous

injection, where all particles are injected at t = 0 sec, and continuous injection,

where particles are injected at a steady rate of 2000 particles per second for the

length of the simulation. We always inject particles at the same position (at the

loop apex). Particles are injected with a range of pitch angles with respect to the

magnetic field, from 0◦ to 90◦, in both the positive and negative directions. The

initial energy (i.e. velocity) distribution of the particles is of a power-law form,

ranging from 1 × 1010 cms−1 to 2 × 1010 cms−1 (non-relativistic).

Our results show non-thermal X-ray emission ranging from approximately

10 to 100 photons sec−1 cm−2 keV−1 depending on the loop model used and,

more significantly, the coronal density (Chapter 3). When summed over time

and postion to produce X-ray spectra (Chapter 5), these values are of the same

order of magnitude as observed by the RHESSI satellite for various flares such as

those on the 20th and 23rd July 2002, showing a few hundred to a few thousand

photons sec−1 cm−2 keV−1 at the lowest energies, to a few photons sec−1 cm−2

keV−1 at the highest energies. Our results with the more realistic magnetic

field models where field strength increases across the loop length show that non-

thermal hard X-ray emission is seen at the looptop as well as the footpoints. For

higher coronal density models, the looptop peak is larger than the footpoints,

and for lower coronal densities, the reverse is generally true. From simulations of

a longer time period (100 sec) and with continuous particle injection, we see that

the emission from the looptop peaks early then gradually decreases over time,

whereas the footpoint emission continues to increase gradually as particles lose

energy and precipitate to the footpoints where they are stopped by the increasing
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density. We have only presented one simulation covering this larger time period

in our study of non-thermal X-ray emission - given more time, it would be useful

to study more long timescale simulations with various parameters.

In investigating the temperature increase of the background plasma resulting

from Coulomb collisions between the beam electrons and ambient particles, we

see lower temperatures than expected from observations. The majority of our

results show temperatures not much higher than 2× 106 K, many less than that.

Increasing the density does not result in higher temperatures because particles are

lost from the loop more quickly, the energy deposited must be distributed between

more particles and the radiative losses are much higher, being proportional to

the density squared. Our results show that, when considering only temperature

increases from Coulomb collisions, conductive cooling is very efficient at keeping

the loop temperature relatively low. When we run longer simulations, for 100

sec, and increase the electron flux in the loop we do see higher temperatures,

approaching and slightly exceeding 107 K when the coronal density is set to 1010

cm−3, but they do not increase any higher than this, even with continuous particle

injection. In these situations, the number of particles in the loop reaches a steady-

state for a non-X-point field configuration, and actually starts to decrease in the

X-point model where particle loss rate is slightly higher. In such situations, the

rate of conductive cooling is equivalent (or higher in the case of an X-point field) to

the rate of temperature increase, resulting in an unchanging or slightly decreasing

temperature profile over time respectively. To increase the temperature further

we would need to increase the electron flux further, which pushes us into what

would be fairly extreme loop conditions. These results indicate that there are

more mechanisms acting to heat the plasma in the loop then Coulomb collisions

alone, for example chromospheric evaporation and plasma shocks. To simulate

these we would need to combine out simulations with hydrodynamic techniques

which allow modelling of bulk plasma motions.

Because the temperature results from our simulations are very low, we do not

see thermal X-ray emission from the majority of models we present - this requires

temperatures in the range ∼ 1 × 107 K to 2 × 108 K. The one model which does

exceed 107 K is the non-X-point field model with a simulation length of 100 sec

and an increased electron flux of 1037 electrons s−1 through the same loop area

of 1018 cm2. In this model, we see temperatures approaching 1.06× 107 K, which

results in thermal emission of approximately 2×105 photons sec−1 cm−2 keV−1 at

6 keV to 1×10−8 photons sec−1 cm−2 keV−1 at about 22 keV. These values are not
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as high as observations - they are at the low end of thermal emission. Data from

observations shows that our results appear to model the emission from events

with weak thermal components, however the majority of events show stronger

thermal emission as a result of higher loop temperatures.

In our work on radio emission, we have shown that the evolution of the energy

distribution of a beam of fast electrons develops a positive slope in velocity space

as the electrons propagate along the magnetic loop. This is produced by a combi-

nation of velocity dispersion and the difference in energy loss rates for particles of

different energies (the loss rate is higher for lower energy particles). The positions

along the loop at which this positive slope appears as time progresses indicates

at what point in the loop conditions for the production of reverse-drift Type III

radio bursts develop as a function of time, and hence we can gain an insight into

the first point of origin of this emission in a loop. As we would expect, increased

density slows the propagation of the point where a positive slope develops, since

it slows the propagation of the particles though the collisional medium of the

background plasma. This can result in two concurrent points in a loop where

the slope becomes positive and Type III emission could occur, since the density

increases across the chromosphere but is constant in the corona in our models.

Results also show that the electron beam propagates faster along the loop than

the point of development of the positive slope in velocity space, indicating that

the progression of the point of origin of Type III bursts could be used to place a

lower limit on the energy of the distribution of electrons which caused them to

develop.

In all the work presented here, we use variations on the same model to produce

results. To develop this work further, it would be beneficial to first run more sim-

ulations with a wider variety of parameters using the existing model, for example

with different injection profiles, injection locations, densities and magnetic field

configurations. It would be particularly beneficial to run simulations for longer

periods of time, since this gives a more complete picture of the processes at work

by allowing steady-state situations to develop, and with increased electron flux

per unit area, which results in higher temperatures more in line with observations.

We also propose developing time evolving magnetic field models, and extend-

ing the simulations to 2D and 3D configurations. When magnetic field lines

reform in an X-point configuration, the resultant field line contracts downwards

due to magnetic tension, and the particles which were accelerated onto that field

line move with it. It would be interesting to model continuous particle injec-
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tion onto a series of contracting field lines to observe the emission and heating

in two dimensions over time, in particular the effect the contracting field line

has on the trapped particles. 3D field configurations could be developed, using

information on the field configuration in flaring regions extrapolated from, for

example, magnetogram observations by the SOHO satellite. However, field con-

figurations would have to be approximated by a suitably simple mathematical

description to allow the simulations to model the movements of particles along

them - complex models would result in unfeasibly long computational timescales

for the simulations, since the derivative of the field must be calculated numeri-

cally for the majority of cases (such as in our X-point field model), and this is a

time consuming process.

Moving on to more complex developments, we would recommend extending

the model whilst still considering only test particle stochastic simulations, for ex-

ample by developing particle-in-cell simulations, allowing approximation of bulk

plasma effects while still using a test particle model. It would also be useful to

investigate the effect of including another diffusion co-efficient, for example, one

which would approximate the effects of wave-particle scattering in addition to

particle-particle Coulomb scattering. Beyond this, it would be be a more signifi-

cant project to combine these test particle stochastic simulations with hydrody-

namic simulations, which would allow us to model both single particle interaction

effects and large scale wave and plasma effects, such as chromospheric ablation

and the formation and development of shock waves in the plasma which would,

for example, lead to a more complete model of loop heating, an area where our

model falls short. It would also allow more detailed study of the development of

wave instabilities and Langmuir waves, and hence radio emission.
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