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Abstract

Measurements of inclusive two-particle angular correlations in proton-proton

collisions at centre-of-mass energies
√

s = 900 GeV and 7 TeV are presented.

The events were collected with the ATLAS detector at the LHC, using a single-

arm minimum-bias trigger, during 2009 and 2010. Correlations are measured

for charged particles in the kinematic range defined by a transverse momentum

pT > 100 MeV and pseudorapidity |η| < 2.5. In total, integrated luminosities

of 7 µb−1 and 190 µb−1 are analysed for 900 GeV and 7 TeV data, respectively.

At 900 GeV only events with a charged particle multiplicity nch ≥ 2 are

analysed whereas at 7 TeV, a second phase-space region of nch ≥ 20, with a

suppressed contribution from diffractive events, is also explored.

Data are corrected using a novel approach in which the detector effects are

applied repeatedly to the observable distribution and then extrapolated to a

detector effect of zero.

A complex structure in pseudorapidity and azimuth is observed for the cor-

relation function at both collision energies. Projections of the two-dimensional

correlation distributions are compared to the Monte Carlo generators pythia8

and herwig++, as well as the AMBT2B, DW and Perugia 2011 tunes of

pythia6. The strength of the correlations seen in the data is not reproduced

by any of the models.
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Preface

The ATLAS experiment at the Large Hadron Collider has been recording

collisions since November 2009 and thus far has collected around 5.3 fb−1

of proton-proton data in two years of operation. The majority of the in-

teractions are of a soft nature, producing a large number of low-momentum

particles. Unfortunately, soft interactions are one of the least understood

processes in Quantum Chromodynamics. The lack of applicability of pertur-

bative calculation methods means that these processes need to be approached

via phenomenological models that must be tuned to experimental data. How-

ever, these models do not have any predictive power of how the dynamics of

soft interactions change with collision energy. Measurements of the proper-

ties of these interactions at the LHC contribute greatly to the development

and understanding of the underlying soft processes. A powerful observable to

discriminate between models and reveal information about the mechanisms of

particle production is the two-particle angular correlation function, which is

the subject of this dissertation.

This thesis is divided in three parts. In part I, the theory relevant to the

correlation measurement is presented. Chapter 1 describes the physics behind

soft processes. It starts by introducing the Standard Model of particle physics

and its gauge theories. It then focuses on Quantum Chromodynamics and the

properties which give rise to non-perturbative approaches. After defining the

term minimum bias, the chapter finishes with an overview of two of the main

1
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Monte Carlo models for soft interactions and the tunes used throughout this

analysis. The motivation for the study of correlations in multi-hadron final

states and a review of some results from previous experiments are provided in

chapter 2. In the final section of this chapter, the definition of the two-particle

correlation function used in this thesis is given.

Part II includes a description of the experimental apparatus and the anal-

ysis software. After a brief introduction to the LHC and its experiments,

chapter 3 gives a general overview of the ATLAS detector with particular

emphasis on the Inner Detector, the component relevant to the correlations

measurement. Chapter 4 begins with an introduction to the ATLAS offline

software and the simulation infrastructure. The core of the chapter is a de-

scription of the track and vertex reconstruction algorithms. Work carried out

between 2008 and 2009 evaluating the performance of the Semi-Conductor

Tracker of the ATLAS Inner Detector, using cosmic-ray data, is presented

in chapter 5. The concept of depletion in silicon sensors is first introduced.

Two methods for calculating the depletion depth of the SCT sensors are then

described followed by some concluding remarks.

In part III the complete correlations analysis procedure is detailed. Chap-

ter 6 lists the event and track selection requirements. A summary of the track,

vertex and trigger reconstruction efficiencies resulting from such a selection is

presented. A detailed description of the correction method applied to unfold

the detector effects from the true physics processes is given in chapter 7. Tests

performed in Monte Carlo samples to validate the method are also included.

The identified sources of uncertainty for this measurement, both statistical

and systematic, are summarised in chapter 8, while in chapter 9 the final data

distributions and a comparison with Monte Carlo predictions are presented.

An interpretation of the correlation function in terms of an independent clus-
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ter emission model is shown. Finally, chapter 10 contains the conclusions of

the two-particle correlations analysis.

The work presented in chapters 7, 8 and 9 was carried out with the guid-

ance and help of Dr James Monk and Dr Craig Buttar. In particular, the novel

probabilistic track removal method presented in chapter 7 was developed in

conjunction with Dr James Monk, who came up with the original idea.
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Chapter 1

The Physics of Soft Interactions

1.1 The Standard Model of Particle Physics

The current understanding of the particle world is encompassed in a gauge field

theory1 called the Standard Model (SM). Completed around 1970, this theory

defines the fundamental components of matter and describes their interactions

[1, 2]. It has been tested over and over again and its predictions have been

verified to great accuracy. As an example, the existence of the W± and Z gauge

bosons (section 1.1.1) and of the top quark (section 1.1.2) was predicted by

the SM years before they were experimentally observed.

1.1.1 Fundamental Forces

Every interaction in nature can be attributed to one of four fundamental forces

(table 1.1): electromagnetism, gravitation, strong force and weak force. In the

SM, interactions are mediated by the exchange of gauge bosons between the

particles. A boson is a particle that has an integer spin and is described by

1A gauge theory is one in which the Lagrangian is invariant under local transformations.

5
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Bose-Einstein statistics. Table 1.2 summarises the properties of the known

gauge bosons.

Force Boson Strength (coupling) Range [m]

Electromagnetism photon (γ) 1/137 ∞
Strong Force gluon (g) 1 10−15

Weak Force W±, Z 10−5 10−18

Gravitation graviton (postulated) 10−38 ∞

Table 1.1: The fundamental forces and their properties [1].

Boson Charge [e] Spin Mass [GeV]

γ 0 1 0
g 0 1 0

W± ±1 1 80.399± 0.023
Z 0 1 91.1876± 0.0021

Table 1.2: Properties of the gauge bosons [3].

Electromagnetism describes the interactions between electric charges

and is responsible for binding electrons and nuclei into atoms, and atoms into

more complex compounds. It is the result of the combination of electrostatics

and magnetism put forward by Maxwell in the 1860s. Its strength is inversely

proportional to the distance squared r2 so it weakens as particles move apart

from each other. The mediating gauge boson is the photon, a chargeless and

massless particle of light.

Gravitation is the most familiar force in the macroscopic world. De-

scribed by Einstein’s Theory of General Relativity, this force governs the in-

teractions between masses. On large scales, it describes the motion of galaxies,

stars and planets, and in a more familiar way is what pulls objects “towards

the ground”, with a strength proportional to 1/r2. In the microscopic world

however, it is the weakest force and there is still no quantum field theory that

successfully describes and incorporates it into the SM. A mediating spin-2
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gauge boson called the graviton has been postulated but no direct experimen-

tal evidence of its existence has been found.

The Strong Force describes the interactions between “coloured” particles

(section 1.2.1) and is responsible for binding quarks (section 1.1.2) together to

form protons or neutrons, and holds nucleons together to form atomic nuclei,

surpassing the electromagnetic repulsion due to same sign electric charge. Un-

like gravitation or electromagnetism, the strong force has the peculiar property

of increasing in strength as particles move apart from each other. The force

carriers are called gluons. The gauge theory describing strong interactions

will be described in more detail in section 1.2.

The Weak Force is associated to particle decays and radioactivity (chang-

ing a particle from one type or “flavour” to another). In the previously de-

scribed interactions, the mediating bosons are massless but in the case of the

weak force the three carriers, W± and Z, are relatively heavy. As a conse-

quence, the weak force is a very short-range interaction.

1.1.2 Fundamental Particles

Twelve particles constitute the building blocks of all forms of matter in the

known Universe2. These particles are categorised into two distinct groups:

quarks and leptons. Both types of particles have half-integer spin and obey the

Pauli Exclusion Principle. Described by Fermi-Dirac statistics, these particles

are called fermions.

Quarks come in six different flavours, grouped in three families or gener-

ations (table 1.3). The first generation quarks are the lightest and the most

abundant in nature since they are the basic constituents of protons and neu-

2Less than 5% of the energy of the Universe is associated to the known visible matter.
Dark matter and dark energy are the most abundant, and yet not understood, components.
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trons. The heavier quarks in the second and third generations can only be

produced with high-energies such as those reached in particle accelerators or

cosmic-rays. A unique property of quarks is that they have a fractional electric

charge. Apart from the usual intrinsic properties of electric charge, mass and

spin, quarks have colour which means that they can interact via the strong

force, making them the only fundamental particles to experience all the funda-

mental interactions. This property is also responsible for the fact that quarks

cluster together to form colourless hadrons3. A more detailed description of

quarks and the strong interaction is given in section 1.2.

Fermion Charge [e] Spin Mass [GeV]

1st Generation
up (u) +2/3 1/2 ∼ 2.5× 10−3

down (d) −1/3 1/2 ∼ 5.0× 10−3

2nd Generation
charm (c) +2/3 1/2 ∼ 1.29
strange (s) −1/3 1/2 ∼ 0.1

3rd Generation
top (t) +2/3 1/2 ∼ 173

bottom (b) −1/3 1/2 ∼ 4.2

Table 1.3: Classification and properties of the quarks [3].

Leptons are also organised in three generations, each containing one

charged and one neutral particle called neutrino (table 1.4). As with quarks,

the first generation leptons are the most abundant and, at least in the charged

lepton case, the ones with the smallest mass. Muons and taus are heavier and

unstable and quickly decay into lighter particles. Charged leptons interact

electromagnetically and weakly. Neutrinos have a very small mass and in-

teract only via the short-range weak force which allows them to travel long

distances without being affected. Unlike quarks, leptons do not possess colour

charge and hence are observed as isolated particles.

3Hadrons containing three (anti)quarks are called baryons and if they are made of a
quark-antiquark pair they are called mesons.
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Fermion Charge [e] Spin Mass [GeV]

1st Generation
electron (e) −1 1/2 ∼ 0.52× 10−3

electron neutrino (νe) 0 1/2 < 2× 10−9

2nd Generation
muon (µ) −1 1/2 ∼ 0.105

muon neutrino (νµ) 0 1/2 < 2× 10−9

3rd Generation
tau (τ) −1 1/2 ∼ 1.78

tau neutrino (ντ ) 0 1/2 < 2× 10−9

Table 1.4: Classification and properties of the leptons [3].

For each matter particle, there exists its corresponding anti-particle with

the same mass but opposite electric charge and inverted quantum numbers

(such as baryon number, lepton number and strangeness).

1.1.3 Present and Future of the Standard Model

The SM currently encompasses two non-Abelian4 gauge field theories: Elec-

troweak theory (EW) and Quantum Chromodynamics (QCD). The gauge

symmetry group of local transformations is SU(3)× SU(2)× U(1).

The EW theory was developed by Glashow [4], Salam [5] and Weinberg

[6] in the 1960s and unifies the electromagnetic and weak interactions into a

single symmetry group SU(2)×U(1). The concept of spontaneous symmetry

breaking is introduced via the Higgs mechanism [7, 8, 9] by which the W± and

Z bosons acquire mass while the photon remains massless. The Higgs boson

produced by this symmetry breaking is postulated as the particle responsible

for giving mass to leptons and quarks, however no value of its own mass is

provided by the theory. Experimental searches for the Higgs boson in several

particle accelerators have narrowed the mass region in which it could exist

[10, 11, 12], but no discovery has yet been made.

QCD is the gauge theory of strong interactions. It describes how quarks

4Local transformations do not commute with each other.
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and gluons interact with each other and how they bind into hadrons. The

symmetry group is SU(3) and as a result, eight gauge bosons are introduced

to preserve local gauge invariance. QCD has been very successful in describing

experimental data from a range of particle colliders. In the following section,

a more comprehensive description of this theory is presented.

Despite its many successes, the SM is not a complete theory. In addition

to the lack of a quantum theory for gravitation and to the undiscovered Higgs

boson, there are a number of unanswered questions that suggest that there

is new physics yet to be discovered. Just to name a few, there is the mass

hierarchy of the fermions, the predominance of matter over antimatter, the

mass of the neutrinos, and the fact that more than 95% of the Universe is made

of dark matter and dark energy. Several theories have been put forward to try

to address these issues, the most popular being Supersymmetry (SUSY). This

model, which postulates that each fermion will have a boson as a superpartner

and vice versa, solves the hierarchy problem encountered in the SM in which

to stop the mass of the Higgs boson from becoming very large, the theory

relies on fine-tuning. However, there is currently no experimental evidence to

support any of the Beyond the Standard Model (BSM) theories.

1.2 Quantum Chromodynamics

By 1964 a large number of hadrons had been experimentally observed which

raised the suspicion that they were not elementary particles. This led Gell-

Mann [13] and Zweig [14] to formulate the quark model in which hadrons are

integrated by smaller components called quarks. The quark model provided a

classification scheme for hadrons based on three quark flavours (only the up,

down and strange quarks were known at the time). Deep inelastic scatter-

ing (DIS) experiments at the SLAC National Accelerator Laboratory in 1968
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gave solid evidence that protons were not fundamental particles. After years

of experimental discoveries and extensions to the theory, the quark model be-

came the parton model in which hadrons are composed of quarks and gluons,

collectively known as partons.

The discussion in the following sections is based on material from [15] and

[16].

1.2.1 QCD Lagrangian

The Need for Colour

The existence of spin-3
2

baryons with three same flavour quarks, like ∆++

(uuu) and Ω− (sss), challenged the Pauli Exclusion Principle which states

that two fermions with identical quantum numbers cannot occupy the same

energy level. This dilemma was solved by introducing a new degree of freedom,

colour, which can take three possible values, commonly called red, green and

blue. From observations it was determined that only colour neutral states can

exist in nature.

Lagrangian Density

QCD is a non-Abelian gauge theory. The group of colour transformations

is SU(3) which gives rise to 8 gauge bosons (gluons)5, one for each gener-

ator Ti of the group. The Lagrangian density LQCD, invariant under local

transformations, is given by

LQCD = Lfermion + Lboson + Lgauge + Lghost. (1.1)

5An SU(N) group has N2 − 1 degrees of freedom.
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Interactions between fermion fields qa are described by the first term in

equation (1.1), the Dirac Lagrangian density Lfermion, with

Lfermion =
∑
flav.

q̄a(iγ
µDµ −m)abqb, (1.2)

where a, b = 1, 2, 3 are colour indices and the summation is over all quark

flavours. The covariant derivative Dµ allows the quarks to interact with the

gauge bosons and is of the form

Dµ = ∂µI + igsT
iAi

µ, (1.3)

with Ai
µ the gauge boson fields (i = 1, ..., 8). The role of gs is discussed below.

The kinetic term for the gauge bosons Lboson is

Lboson = −1

4
F i

µνF
iµν , (1.4)

where F i
µν is the field strength tensor derived from the gluon field Ai

µ as

F i
µν = ∂µAi

ν − ∂νAi
µ − gsf

ijkAj
µAk

ν . (1.5)

From equation (1.5) it can be seen that F i
µν is not gauge invariant due to

the third term gsf
ijkAj

µAk
ν . This term introduces gauge boson self interactions

which implies that, unlike photons which are chargeless, gluons are coloured

and can interact with each other via the strong force.

The parameter gs, appearing in equations (1.3) and (1.5), corresponds to

the QCD gauge coupling constant which determines the strength of the strong

interaction between coloured quanta. This coupling allows the introduction

of two key properties of QCD, asymptotic freedom and confinement, both of

which will be discussed in section 1.2.2.
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In order to make calculations of physical quantities from the Lagrangian

density, the gauge needs to be fixed so that the propagators for the massless

gluon fields can be defined. The computed physical quantity turns out to be

independent of the choice of gauge. Commonly used is the Feynman gauge

which results in a term for the Lagrangian density given by

Lgauge = −1

2
(∂µAi

µ). (1.6)

By fixing the gauge, the local invariance is lost. It can be restored by

introducing complex scalar fields ηi obeying Fermi statistics (called Faddeev-

Popov ghosts) that cancel any unphysical degrees of freedom introduced by

Lgauge. This extra term takes the form

Lghost = ∂µη̄
i(Dµ

ijη
j). (1.7)

With all these ingredients, the Feynman rules for strong interactions can

be derived from the Lagrangian density in equation (1.1). A discussion of

Feynman rules in QCD goes beyond the scope of this thesis, so the reader is

referred to textbooks such as [15] for more detailed information.

1.2.2 Asymptotic Freedom and Confinement

The QCD coupling constant gs, introduced in the previous section, is usually

expressed in terms of the effective coupling αs as

αs =
gs

4π
. (1.8)

When performing high order perturbative calculations, loop diagrams emerge

that introduce ultraviolet (UV) divergences. These divergences can be removed
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by applying a renormalisation at a certain scale µ. This gives rise to a cor-

rection factor to the effective coupling in terms of the squared momenta Q2

(where Q � µ) of all particles forming a vertex

αs(Q
2) = αs(µ

2)− αs(µ
2)2β0 ln

(
Q2

µ2

)
+ ... (1.9)

The β0 coefficient is

β0 =
11Nc − 2nf

12π
(1.10)

where Nc corresponds to the number of colours and nf to the number of quark

flavours with masses below the momentum scale Q. Since β0 is positive, the

coefficient in front of the logarithm term in equation (1.9) is negative. As

a result, the effective coupling decreases as the momentum scale increases, a

phenomenon known as the running of the coupling constant.

αs (Q2)

Q2

����	��
���

���

���	��������


������������
�
���	���

��������
�
���	���

ΛQCD

Figure 1.1: The running of αs(Q
2).

Figure 1.1 illustrates the behaviour of αs as a function of Q2. At low mo-

mentum scales (or, equivalently, at low energies or large distances) the effective

coupling is very large and so perturbative calculations cannot be performed
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given that higher order terms cannot be ignored. This is the regime of non-

perturbative QCD in which phenomenological models are needed to describe

the underlying soft (low momentum transfer) physics processes. At these

momentum scales, the interaction between quarks is very strong and grows

even stronger when the quarks are pulled apart, until the colour string breaks

forming new colourless hadrons. In summary, at macroscopic distances no iso-

lated quarks can be observed, a property known as confinement. On the other

hand, asymptotic freedom occurs at large momentum/energy scales (at short

distances) when the quarks and gluons behave as quasi-free partons. In this

case since αs, the expansion parameter in the perturbative series calculations,

is small the Feynman rules of perturbative QCD are applicable.

1.3 Minimum Bias

The total proton-proton cross-section σtot at the LHC, shown in figure 1.2, is

a combination of elastic σel and inelastic σinel components [17].

In elastic events, the two protons interact from long distances and don’t

break apart, continuing their travel down the beam pipe. The inelastic cross-

section has contributions from non-diffractive (ND) and single- (SD) and

double-diffractive (DD) elements:

σinel = σND + σSD + σDD (1.11)

Diffractive events are characterised by the excitation of one (SD) or both

(DD) of the protons into a high-mass colour singlet state that then decays

into a shower of particles in the high rapidity direction. The non-diffractive

part of the inelastic cross-section is the dominant one, and here, the two pro-

tons collide “head-on”. The partons are travelling so close that they interact
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Figure 1.2: Cross-section for various processes in proton-proton collisions at
the LHC. From [18].

by exchanging gluons. Most of the times, this exchange will be soft (low mo-

mentum transfer), which results in the production of low-momentum particles

spread uniformly across the detector (typically soft interactions lead to low

multiplicity events). On rare occasions, there could be a “hard-scatter” in

which high-momentum particles and jets are produced. Figure 1.3 illustrates

the different contributions to the inelastic cross-section.

The term minimum bias is defined experimentally and it refers to events

that are selected with very loose trigger requirements, accepting a very large

fraction of the inelastic cross-section. Minimum bias events are dominated

by soft interactions. As such, the measurement of inclusive charged-particle

distributions in minimum bias events can be used to constrain the phenomeno-

logical models of soft processes and their energy dependence. Furthermore, at

high-luminosity, there will be multiple proton-proton interactions per beam

crossing which means that any “interesting” hard event will most likely be
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Figure 1.3: Components of the inelastic cross-section. Diagrams for each pro-
cess are shown at the top and in the bottom, their corresponding signature in
the η − φ plane of detector. For a definition of the variables η and φ, refer to
section 2.1.

accompanied by several minimum bias events; this suggests that the charac-

terisation and modelling of such events is key to disentangle the rare process

from the very particle-dense environment.

1.4 Monte Carlo Models for Soft Interactions

As discussed in previous sections, soft parton-parton interactions are not well

described by QCD because perturbative calculations are not applicable. To

simulate high-energy physics events, Monte Carlo (MC) event generators im-

plement a combination of perturbative calculations for high-pT
6 processes and

phenomenological models, tuned to experimental data, for low-pT processes.

The pythia [19] and herwig [20] generators are used for comparisons to ex-

perimental data in the analysis presented in this thesis. A description of how

these generators treat and model soft interactions within hadron collisions are

6pT corresponds to the component of the charged-particle’s momentum transverse to
the direction of the incoming particles.



1.4. Monte Carlo Models for Soft Interactions 18

discussed in sections 1.4.1 and 1.4.2.

Apart from the two generators described here, there are others that im-

plement different phenomenological models to describe soft interactions. One

of them is phojet [21] which implements the ideas of the Dual Parton Model

(DPM) to describe soft processes via Pomeron exchange [22], and perturbative

QCD to generate the hard interactions.

1.4.1 The pythia Approach

pythia is an event generator that simulates a wide range of particle physics

processes, both within and beyond the SM, with particular emphasis on those

producing multi-hadron final states. pythia is the most widely used generator

in the field.

The event generation starts with the simulation of the “hard scatter”, i.e.

of the selected physics process. Once the parton scatter is sorted, pythia

adds in initial (ISR) and final state radiation (FSR) corrections by means

of parton showers. Due to the composite nature of hadrons, the interaction

between two partons leaves a remnant that is colour-connected to the hard

scatter, integrating a single fragmenting system with correlated flavour, colour

and kinematic properties (longitudinal and transverse momentum).

The modelling of soft interactions in pythia is based on the concept of

multiple parton interactions (MPI). The apparent unitarity violation intro-

duced by the fact that the inclusive cross-section for QCD 2 → 2 perturbative

parton scattering, σint, is greater than the total cross-section, σtot, even at a

few GeV above ΛQCD, is solved by allowing a hadron-hadron collision to have

more than one parton interaction (sequentially ordered as a function of the

transverse momentum). However, the cross-section for QCD 2 → 2 processes,
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as a function of the p2
T scale, given by

dσ̂

dp2
T

∝ α2
s(p

2
T)

p4
T

, (1.12)

diverges as pT → 0. Inspired by perturbative QCD, pythia regularises these

divergences in the cross-section calculations by introducing a phenomenolog-

ical correction factor in order to be able to describe to low-pT parton-parton

interactions. This factor can be implemented in one of two ways: a sharp cut-

off or a smooth turn-off. For the former, a lower value pTmin below which no

further interactions are allowed is imposed. This ensures that the cross-section

vanishes completely for pT < pTmin as

dσ̂

dp2
T

∝ α2
s(p

2
T)

p4
T

→ α2
s(p

2
T)

p4
T

θ(pT − pTmin), (1.13)

where θ(pT − pTmin) is a step function given by

θ(pT − pTmin) =


0, for pT < pTmin,

1, for pT ≥ pTmin.

(1.14)

In the second approach, an energy-dependent parameter pT0 is introduced

to smoothly regularise the divergences of the matrix elements by also modi-

fying the dependence of the effective coupling

dσ̂

dp2
T

∝ α2
s(p

2
T)

p4
T

→ α2
s(p

2
T + p2

T0)

(p2
T + p2

T0)
2

. (1.15)

With these changes, a continuous pT spectrum is obtained. The values

of pT0 and pTmin are two of the main free parameters of the pythia model

for soft processes and multiple parton interactions and need to be tuned to
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experimental minimum bias and underlying event7 data.

Given that hadrons are extended objects, pythia introduces a dependence

on the impact parameter (or centrality) of the interactions and on the matter

distribution inside the hadrons. A small impact parameter, i.e. a large overlap

of the two incoming hadrons, translates into an enhancement of the probability

of having multiple interactions.

The last stage of the event generation is hadronisation in which partons

are fragmented into final state hadrons. pythia is based on the Lund string

fragmentation model [23]. In this model, the colour energy between particles is

confined in a tube-like region or string. As the distance between the particles

increases, so does the potential energy of the string connecting them until

it breaks into a new quark-antiquark pair that re-connects with the original

partons to form colour-singlet systems. Further string breaks occur until only

on-shell hadrons remain.

1.4.2 Soft MPI in herwig++

herwig++ is a general-purpose MC event generator of high energy collisions

(lepton-lepton, lepton-hadron, hadron-hadron) that gives particular emphasis

to the simulation of QCD radiation.

The event generation in herwig++ follows the same sequence as described

in the previous section for pythia. The hard process is simulated first and

its energy scale and colour flow set the initial conditions for the subsequent

addition of ISR and FSR. A model for multiple parton interactions allows, just

as in pythia, the introduction of soft interactions [24]. Including additional

7A complete description of a collision event requires knowledge not only of the hard-
scatter process but also of contributions from multiple parton interactions, beam remnants
and radiation. The underlying event is then defined as all the activity in the event but the
hard process. It is an unavoidable background to most observables.
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semi-hard and soft partonic scatters in herwig++ results in the modelling

of both minimum bias and underlying event activity.

herwig++ uses an eikonal approximation to model semi-hard multiple

interactions where pT ≥ pmin
T

8. This approach assumes that the multiple

scatters are independent from each other and that the matter distribution in

the hadron, as a function of the impact parameter b, is given in terms of the

inverse proton radius (one of the free parameters of the model).

In principle, an eikonal approximation works for processes in which rela-

tively high-momentum particles scatter or when the scattering angle is small.

herwig++ extends the concept of independent scatters into the infrared re-

gion where 0 ≤ pT < pmin
T . The number of soft and semi-hard interactions

per event is determined probabilistically. Once the evolution of the main hard

scatter is completed, the remnants of the interaction are taken as the incoming

hadrons for the simulation of the secondary semi-hard processes in the first

place, followed by the soft interactions.

The value of pmin
T , a free parameter of the model, can be thought of as

a scale at which the model makes a smooth transition from the soft non-

perturbative regime to the semi-hard perturbative one.

herwig++ uses a cluster hadronisation model [25]. In this approach,

left over gluons from the parton scatter are split into quark-antiquark pairs.

Colour singlet states formed by these pairs are grouped together into clusters,

which decay isotropically into the observed hadrons. Clusters are indepen-

dent from each other. If the cluster is integrated by a quark-antiquark pair

of flavours (q1, q̄2), a quark-antiquark (or diquark-antidiquark) pair (q, q̄) is

8Here pmin
T has the same role as pT0 in the pythia case, i.e. to stop the differential

cross-section from diverging as pT → 0. The difference is that in herwig++ this parameter
does not have an energy-dependent evolution.
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extracted from the vacuum to produce a pair of hadrons of flavours (q1, q̄)

and (q, q̄2). This is a simple and clean model for hadronisation.

1.4.3 Minimum Bias MC Tunes

Each MC generator provides a set of steerable parameters whose values can

be altered to allow for different MC tunes. For comparisons with minimum

bias data, three MC event generators are considered: herwig++ 2.5.1 (her-

wig++) [26], pythia 6.4 (pythia6) [19] and, its C++ updated version,

pythia 8.150 (pythia8) [27].

The model for soft interactions used by pythia6 has evolved through-

out the years. Several pythia6 tunes, covering the different available ap-

proaches to the description of soft processes, are used in the comparisons to

the data. The original version, referred to as the old model [19], uses virtuality-

ordered ISR and FSR showers for only the first (hardest) interaction and a

non-interleaved MPI model. The DW tune [28] is used as a representative of

this old model. It was tuned to underlying event and Drell-Yan data from the

Tevatron and uses the CTEQ5L parton distribution functions (PDFs) [29].

The new model [19, 30] uses pT-ordered ISR and FSR showers and a model

in which MPI are interleaved with the ISR and where each parton interaction

is associated with its own set of ISR and FSR. Representing this new model

are the tunes: Perugia 2011 [31], MC09 [32] and AMBT2B [33]. Perugia 2011

is tuned to a wide range of Tevatron data and early LHC measurements and

uses the CTEQ5L PDFs. The MC099 and AMBT2B tunes were produced by

the ATLAS Collaboration. MC09 was tuned to minimum bias and underlying

9The MC09 tune is not only used for data-MC comparisons but also for systematic
studies, along with the older ATLAS AMBT1 [34] and Perugia0 [35] tunes of pythia6,
tune 1 of pythia 8.130 and the phojet generator.
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event data from the Tevatron and uses the MRSTLO* PDFs [36]. AMBT2B,

on the other hand, uses the CTEQ6L1 PDFs [37] and was developed in order

to describe the ATLAS minimum bias data.

pythia8 adds to the new MPI model of pythia6 by interleaving not only

the ISR, but also the FSR. In addition, the multiple parton interactions are no

longer considered independent but are allowed to interfere. An updated model

for diffraction is included in pythia8 that allows for harder pT and particle

multiplicity distributions from the single- and double-diffractive components,

compared to pythia6. The pythia8 4C [38] tune emerges as a result of

comparisons to early LHC data10 and uses the CTEQ6L1 PDFs.

The current version of the herwig++ generator does not have a model

for diffraction, so it has been tuned to diffraction-suppressed LHC data. Dif-

ferent tunes are provided for the two centre-of-mass energies, both of them

using the MRST2007LO* PDFs. At 7 TeV the underlying event tune UE7-2

is used while at 900 GeV the minimum bias tune MU900-2 is implemented

[39]. As discussed in the previous section, herwig++ has a model for hadro-

nisation based on cluster decay, rather than the string fragmentation used

by pythia. It is therefore interesting to test herwig++ against the present

measurement in order to compare the two hadronisation models and to ascer-

tain the importance of a diffractive component in describing minimum bias

observables.

The main characteristics of the chosen tunes are summarised in table

1.5. Where applicable, the MC samples used for analysis are a mix of non-

diffractive and diffractive components according to the generator cross-sections.

10pythia8 had previously been tuned to give reasonable agreement with data from the
Tevatron.
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Chapter 2

Correlations in Multi-Hadron

Final States

2.1 Introduction and Motivation

The non-perturbative nature of soft QCD processes requires the development

and use of heuristic models. Monte Carlo generators implement these models

and tune them to experimental data1 (section 1.4). Single-particle distribu-

tions, such as charged-particle multiplicity distributions, are commonly used

for tuning, however, these are not exhaustive descriptions of soft processes.

This is the reason why the identification of new observables that are sensitive

to the differences between the tunes is of particular importance. Particle cor-

relation measurements provide useful input for discriminating between MC

models and for tuning their parameters. For example, parameters control-

ling the modelling of multiple parton interactions, such as the minimum pT

or the colour flow between the hadron remnants, and the description of the

1Monte Carlo models were extensively tuned to data from LEP, the Large Electron-
Positron collider at CERN, which operated between 1989 and 2000.

25
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diffractive components, among others.

The study of correlations between final-state particles is also a powerful

method for investigating the underlying mechanisms of particle production.

Correlated activity implies that the emitted particles interacted during the

course of their production.

There are a large number of ways to explore correlations in multi-hadron

final state environments including, but not limited to: angular correlations,

forward-backward multiplicity correlations, mass correlations, momentum cor-

relations, Bose-Einstein correlations (between identical bosons) and charge

correlations. The analysis presented in this thesis focuses on the shape and

structure of angular correlations between two particles in pseudorapidity, η,

and azimuthal angle, φ, and explores its different components using proton-

proton (pp) collision data. The precise definition of the observable used in

this measurement is given in section 2.3. For this analysis, φ is defined as the

angle measured in the transverse plane around the beam axis, and η is derived

from the polar angle θ (which is measured from the beam axis) as2

η = − ln tan
θ

2
. (2.1)

The two-particle correlation function is a complex observable that pro-

vides information about different dynamical components of particle interac-

tions. The existence of correlated activity in the angular phase-space can

arise in many ways. For example, a fragmenting parton will radiate particles

at small η values with respect to it. If the momentum of the initiating parton

is large enough, when fragmenting it can produce a shower of partons (e.g.

2The pseudorapidity is a very useful quantity in particle physics, and is often used
instead of θ due to the fact that the particle multiplicity is more or less constant as a
function of η. In the massless limit, η is equal to the rapidity y = 1

2 ln |E+pz|
|E−pz| .
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a quark radiates a gluon which in turn liberates a qq̄ pair, and so on) that

will then hadronise into final state particles. These hadrons will be confined

in a cone-shaped region or jet and they will be correlated in both η and φ.

A further source of correlations is the recoil of one particle against another,

i.e. travelling in opposite directions in φ, due to energy/momentum conserva-

tion. In the presence of back-to-back jets these correlation effects would be

more pronounced. Finally, an enhancement of correlations between particles

close together in η can also arise from the decay of resonances (short-lived,

unstable particles) and from Bose-Einstein interference effects in which an at-

traction between two identical bosons (with same-sign electric charge) in the

pseudorapidity space emerges.

In addition to being an interesting observable on its own, the two-particle

angular correlation distribution in pp collisions can be used as a baseline for

measurements in heavy-ion collisions. In pp interactions, the partons are able

to escape the collision system and hadronise, whereas in nuclei collisions, the

partons experience additional interactions with the hot and dense medium and

the final correlation structure is modified. These measurements can then be

compared to different heavy-ion scenarios such as jet quenching3 and act as a

key tool in characterising the dynamical evolution of the strongly interacting

medium.

The study of two-particle correlations is an active field, in particular within

the heavy-ion community. With the beginning of operations of the LHC, the

interest on measurements in pp collisions has grown. In the following section, a

review of some experimental correlation results from pp collisions is presented.

3Jet quenching is a phenomenon that occurs in heavy-ion collisions in which, due to
the interactions of the particles with the dense medium, the measured energy of the jet is
notably reduced.
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This review is not, by any means, exhaustive but merely gives the flavour of

the level of activity on the field and of the lessons learnt throughout the years.

A compilation of correlations results is given in [40].

2.2 Review of Experimental Results

In 1975, Eggert et al. [41] published a measurement of two-particle angular

correlations from pp collision data from the Intersecting Storage Rings (ISR) at

CERN. The analysis was done at two centre-of-mass energies (23 and 53 GeV)

in a sample of non-diffractive events in a narrow multiplicity range n. The

pseudorapidity correlation function Cn was defined as

Cn(η1, η2) = ρn(η1, η2)− ρn(η1)ρn(η2), (2.2)

where ρn(η1, η2) represents the charged-pair density and ρn(η) the charged-

particle density. In the absence of correlation, Cn is zero everywhere by defi-

nition.

One of the key pieces of information coming out from this paper is that

(n − 1)Cn is independent of the particle multiplicity and of η1 + η2, and

depends only on the separation between the particles ∆η = η1 − η2. This is

illustrated in figure 2.1, where in (a) the integral of Cn(η1, η2), over the range

|η1− η2| < 0.5, is calculated for different values of n and plotted as a function

of 1/(n − 1), while in (b) Cn(η1, η2) is averaged over all multiplicities and

plotted as a function of 1/2(η1 + η2). Extending these ideas to the azimuthal

angle φ, a multiplicity independent correlation function in η and φ can then

be written as

C(∆η, ∆φ) = 〈(n− 1)Cn(η1, φ1, η2, φ2)〉. (2.3)
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(a) (b)

Figure 2.1: Dependence of Cn(η1, η2) on (a) 1/(n-1) (b) 1/2(η1 + η2) for 23
GeV and 53 GeV data. From [41].

The relation between pseudorapidity and azimuthal correlations at these

ISR energies is shown in figure 2.2. From this complex structure, three features

stand out: first, a short-range (small ∆η) peak that extends over the full ∆φ

range, second, a long-range pseudorapidity correlation around ∆φ = π, and

third, a suppression of the correlation for large ∆η and small ∆φ, which

decreases with energy. This means that the correlation between particles is

strongest when the pair is produced in the same or opposite directions in

transverse momentum.
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Figure 2.2: Angular correlation function C(∆η, ∆φ) for (a) 23 GeV and (b)
53 GeV. From [41].

The UA5 Collaboration from the CERN proton-antiproton (pp̄) collider

performed an inclusive measurement (averaging over all multiplicities) of the

two-particle pseudorapidity correlation function at
√

s = 200, 546 and 900 GeV

[42]. Following the same definition for the correlation function as in equation

(2.2), this collaboration found that two components contribute to the shape

of the correlation function C(η1, η2): the intrinsic correlations inside events of

a given multiplicity, CS, and the correlations arising from mixing events with

different multiplicities, CL, such that

C(η1, η2) = CS(η1, η2) + CL(η1, η2). (2.4)
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particles are grouped into clusters that are randomly 
distributed in rapidity. The decays of clusters are iso- 
tropic which leads to an approximately Gaussian 
shape with a dispersion of 0.77 in pseudorapidity. The 
average cluster decay multiplicity, of about two 
charged particles, is chosen to roughly fit the correla- 
tion data, as we shall see below. These features of 
the cluster algorithm are independent of energy. 

2.3 Inclusive and semi-inclusive two-particle 
pseudorapidity correlations 

The inclusive correlation function C(t/~, t/z ) at fixed 
?/2 = 0 for 200, 546 and 900 GeV, presented in Fig. 1 a, 
shows a striking increase in height and width com- 
pared to results obtained at lower energies (]/~ 
= 63 GeV) [-1, 8]. This is to be expected since DZ/<n) 
and therefore the f2 moment  have increased signifi- 
cantly from lower energies [23]. The errors shown 
are only statistical. They take into account the fact 
that the single and two-particle rapidity distributions 
are not statistically independent quantities. 

Mixing events with different charged multiplici- 
ties, which have different single-particle densities [-20] 
can cause strong correlations. In analogy to the case 
of two-component models [-10, 24] the inclusive corre- 
lation function can be expressed in terms of the intrin- 
sic correlations inside each component  (events with 
a given multiplicity n), Cs, and a cross term arising 
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from the mixing of components (events with different 
multiplicities n), CL. The inclusive correlation func- 
tion is related to the semi-inclusive function C, at 
fixed charged multiplicity n as [10] : 

C ( t / a ,  q 2 ) =  C s ( q l ,  t / 2 )  - t-  C L ( t / 1 ,  t / 2 ) ,  ( 2 . 7 )  

where 

Cs(th, r/z)= Z ~" C.(t/,, r/2) (2.8) 
o /I 

and 

CL(rh, t / z )=E  a;(pt(t/,)--pZ.(rh))(pZ(t/z)--pZ,(t/z) ). (2.9) 
n 

Figure l b  shows the contribution of CL(t/1, t/z) and 
Fig. 1 c the contribution of Cs(t/1, t/z) t o  the inclusive 
correlation function. 

The first term in (2.7) is the semi-inclusive correla- 
tion function averaged over all multiplicities. As 
shown in Fig. ! c it is sharply peaked with a full width 
of about  2 units in pseudorapidity and is therefore 
called "short-range" correlation. The second term in 
(2.7) is present even in the absence of true dynamical 
correlations. It broadens the correlation function and 
is therefore somewhat misleadingly often called a 
"long-range" correlation. The comparison of different 
energies shown in Fig. i b illustrates how this term 
is responsible for the apparent increase of the correla- 
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of η1 = 0 versus η2 at different c.o.m. energies and its (b) “short-range” and
(c) “long-range” components. From [42].

The inclusive C(η1, η2) is plotted in figure 2.3a for a fixed value of η1 = 0

as a function of η2. The first term in equation (2.4), the semi-inclusive corre-

lation CS (figure 2.3c), peaks at η1 = η2 = 0 and has a width of approximately

2 units in pseudorapidity, which is why it is often called “short-range” cor-

relation. CS does not vary much with the centre-of-mass energy. On the

other hand, CL (figure 2.3b) is present even in the absence of true dynamical

correlations broadening the correlation function, so it is called “long-range”

correlation. This term is responsible for the increase of the inclusive correla-

tion with energy.

Moving forward to the present day to more up-to-date results, the CMS

experiment at the LHC (section 3.1.3) has published results on two-particle

correlations in pp collisions at
√

s = 0.9, 2.36 and 7 TeV [43]. A normalised4

4The advantage of using a normalised correlation function, compared to equation (2.2),
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version of the correlation function is used, given by

R(∆η, ∆φ) =

〈
(〈N〉 − 1)

(
SN(∆η, ∆φ)

BN(∆η, ∆φ)
− 1

)〉
bins

, (2.5)

where the signal SN(∆η, ∆φ) is defined as the pair density function, the back-

ground BN(∆η, ∆φ) corresponds to the distribution of uncorrelated pairs,

represented as a product of two single particle distributions, and 〈N〉 denotes

the average particle multiplicity. The data samples are divided in bins of par-

ticle multiplicity and the correlation function is calculated for each bin and

then averaged over all bins.

In addition to an inclusive analysis of the data, CMS also explored the

structure of the correlation function in high-multiplicity events (N > 110) for

low and intermediate pT at 7 TeV. As shown in figure 2.4d, when the particles

have an intermediate pT between 1 and 3 GeV, a ridge-like structure emerges

in the kinematic region 2.0 < |∆η| < 4.8 around ∆φ = 0 in high-multiplicity

events that is clearly absent from the inclusive distributions (figures 2.4a and

2.4b) and from the low-pT high-multiplicity distribution (figure 2.4c). These

long-range (|∆η| < 5) near-side (∆φ = 0) correlations, normally observed only

in heavy-ion collisions, came as a surprise and have created a lot of interest

from the community as there is as yet no model that can explain them. More

recently, the CMS collaboration studied the dependence of the ridge effect on

the particle multiplicity and transverse momentum using their full 2010 pp

data sample [44]. As illustrated in figure 2.5, for multiplicities above 90, the

effect is zero at low-pT, reaches a maximum at ∼2-3 GeV and then drops at

high-pT. In the pT range where the effect is maximum, the ridge effect turns

on around N ∼ 50 and, with the current statistics, reaches a saturation point

is a reduced sensitivity to problems related to the acceptance of the detector.
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at N ∼ 120 as shown in figure 2.6. In the ATLAS collaboration, a search for

this ridge structure in the 2010 minimum bias data was attempted, however

the total number of high-multiplicity events was very low because, unlike

CMS, a specialised high-multiplicity trigger was not in place when the data

was collected. The high luminosity at which the LHC is currently operating

makes it extremely hard for ATLAS to do a measurement of this kind. Low-

luminosity runs at
√

s = 8 TeV are being proposed for 2012-2013 which could

provide ATLAS with a window of opportunity to try to find this ridge.
12 7 Long-Range Correlations in 7 TeV Data
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Figure 7: 2-D two-particle correlation functions for 7 TeV pp (a) minimum bias events with

pT > 0.1 GeV/c, (b) minimum bias events with 1 < pT < 3 GeV/c, (c) high multiplicity

(Noffline

trk
≥ 110) events with pT > 0.1 GeV/c and (d) high multiplicity (Noffline

trk
≥ 110) events

with 1 < pT < 3 GeV/c. The sharp near-side peak from jet correlations is cut off in order to

better illustrate the structure outside that region.

of particles and, therefore, has a qualitatively similar effect on the shape as the particle pT cut

on minimum bias events (compare Fig. 7b and Fig. 7c). However, it is interesting to note that

a closer inspection of the shallow minimum at ∆φ ≈ 0 and |∆η| > 2 in high multiplicity pT-

integrated events reveals it to be slightly less pronounced than that in minimum bias collisions.

Moving to the intermediate pT range in high multiplicity events shown in Fig. 7d, an unex-

pected effect is observed in the data. A clear and significant “ridge”-like structure emerges

at ∆φ ≈ 0 extending to |∆η| of at least 4 units. This is a novel feature of the data which has

never been seen in two-particle correlation functions in pp or pp̄ collisions. Simulations using

MC models do not predict such an effect. An identical analysis of high multiplicity events in

PYTHIA8 [34] results in correlation functions which do not exhibit the extended ridge at ∆φ ≈0

seen in Fig. 7d, while all other structures of the correlation function are qualitatively repro-

duced. PYTHIA8 was used to compare to these data since it produces more high multiplicity

events than PYTHIA6 in the D6T tune . Several other PYTHIA tunes, as well as HERWIG++ [30]

and Madgraph [35] events were also investigated. No evidence for near-side correlations cor-

responding to those seen in data was found.

The novel structure in the high multiplicity pp data is reminiscent of correlations seen in rel-

ativistic heavy ion data. In the latter case, the observed long-range correlations are generally

Figure 2.4: Two-particle correlation function in ∆η and ∆φ for 7 TeV pp
(a) minimum bias events with pT > 100 MeV, (b) minimum bias events with
1 < pT < 3 GeV, (c) high-multiplicity events with pT > 100 MeV, and (d)
high-multiplicity events with 1 < pT < 3 GeV. The peak at (0,0) is cut off in
order to reveal the underlying structure. From [43].
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Figure 3. Integrated near-side (|!φ| <!φZYAM) associated yields for the long-range ridge region
(2 < |!η| < 4) with 1 <passoc

T < 2GeV/c, above the minimum level found by the ZYAM procedure,
as a function of p

trig
T for five multiplicity bins (2 ! N < 35, 35 ! N < 90, N " 90, N " 110,

N " 130) of pp collisions at
√

s = 7 TeV. The statistical uncertainties are shown as bars, while
the brackets denote the systematic uncertainties.
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Figure 4. Integrated near-side (|!φ| <!φZYAM) associated yields for the short-range jet region
(0 < |!η| < 1) and the long-range ridge region (2 < |!η| < 4), with 2 < p

trig
T < 3 GeV/c and

1 <passoc
T < 2 GeV/c, above the minimum level found by the ZYAM procedure, as a function of

event multiplicity from pp collisions at
√

s = 7 TeV. The statistical uncertainties are shown as bars,
while the brackets denote the systematic uncertainties.

In order to fully explore the detailed properties of both short-range jet-like correlations
and long-range ridge-like structure, especially its dependence on event multiplicity, transverse
momentum and |!η|, the associated yield distributions are obtained in eight bins (2 ! N < 35,
35 ! N < 45, 45 ! N < 60, 60 ! N < 90, N " 90, N " 110, N " 130, N " 150)
of charged particle multiplicity and six bins (0.1–1, 1–2, 2–3, 3–4, 4–5 and 5–6 GeV/c) of
particle transverse momentum. The 1D !φ azimuthal correlation functions are calculated by
integrating over the 0.0 < |!η| < 1.0 and 2.0 < |!η| < 4.0 region, defined as the jet region
and ridge region, respectively.

The near-side (small !φ region) integrated associated yield is calculated for both jet and
ridge regions relative to the constant background, details in [3]. Figure 2 presents the resulting
near-side associated yield as a function of |!η| (in slices of 0.6 units) in high-multiplicity
(N " 110) pp collisions at

√
s = 7 TeV with trigger particles with 2 <p

trig
T < 3 GeV/c and

associated particles with 1 <passoc
T < 2 GeV/c. The high-multiplicity data exhibit a jet-like

correlation peak in the yield for small |!η| and show significant and roughly constant yield
out to the highest |!η| regions. This is qualitatively similar to what has been observed in

3

Figure 2.5: Integrated associated yields for the ridge region as a function of
pT for five multiplicity bins. From [44].
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(0 < |!η| < 1) and the long-range ridge region (2 < |!η| < 4), with 2 < p

trig
T < 3 GeV/c and

1 <passoc
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√
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In order to fully explore the detailed properties of both short-range jet-like correlations
and long-range ridge-like structure, especially its dependence on event multiplicity, transverse
momentum and |!η|, the associated yield distributions are obtained in eight bins (2 ! N < 35,
35 ! N < 45, 45 ! N < 60, 60 ! N < 90, N " 90, N " 110, N " 130, N " 150)
of charged particle multiplicity and six bins (0.1–1, 1–2, 2–3, 3–4, 4–5 and 5–6 GeV/c) of
particle transverse momentum. The 1D !φ azimuthal correlation functions are calculated by
integrating over the 0.0 < |!η| < 1.0 and 2.0 < |!η| < 4.0 region, defined as the jet region
and ridge region, respectively.

The near-side (small !φ region) integrated associated yield is calculated for both jet and
ridge regions relative to the constant background, details in [3]. Figure 2 presents the resulting
near-side associated yield as a function of |!η| (in slices of 0.6 units) in high-multiplicity
(N " 110) pp collisions at

√
s = 7 TeV with trigger particles with 2 <p

trig
T < 3 GeV/c and

associated particles with 1 <passoc
T < 2 GeV/c. The high-multiplicity data exhibit a jet-like

correlation peak in the yield for small |!η| and show significant and roughly constant yield
out to the highest |!η| regions. This is qualitatively similar to what has been observed in

3

Figure 2.6: Integrated associated yields for the ridge region as a function of
multiplicity for pairs where the trigger particle has a pT between 2 and 3 GeV
and the associated particle is in the range 1 < passoc

T < 2 GeV. From [44].

2.2.1 Independent Cluster Emission

The short-range nature of the pseudorapidity correlation function has often

been interpreted in terms of independent cluster emission models (ICEM).

The basic idea of these phenomenological models is that the observed final-

state hadrons are the result of the decay of clusters. Particles originating

from the same cluster will be correlated, that is, their separation in η and φ

will be peaked around zero. On the other hand, clusters themselves are not

correlated and so neither are particles from different clusters. The number
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of particles may vary from cluster to cluster and the number of clusters may

vary event-by-event.

A parameterisation of the correlation function C(∆η) in terms of the clus-

ter model, based on [45], can be written as

C(∆η) = α[Γ(∆η)− ρ(η1)ρ(η2)], (2.6)

where α denotes the strength of the correlation and represents the relative

number of pairs with both particles in the same cluster, Γ(∆η) is the pair

density for particles in the same cluster and ρ(η) corresponds to the single

particle density.

The PHOBOS experiment at the Brookhaven National Laboratory’s Rela-

tivistic Heavy Ion Collider investigated the cluster properties from two-particle

angular correlations in pp collisions at 200 and 410 GeV [46]. Using the nor-

malised version of equation (2.6), given by

R(∆η) = α

[
Γ(∆η)

B(∆η)
− 1

]
(2.7)

with B(∆η) the background distribution integrated over ∆φ (equivalent to

the product of the two single-particle distributions ρ(η1)ρ(η2)), two important

cluster parameters can be obtained. If Γ(∆η) is assumed to have a Gaussian

shape

Γ(∆η) ∝ exp

[
− (∆η)2

4δ2

]
, (2.8)

then the decay width of the clusters, i.e. the separation in η between the decay

products of the clusters, is given by the parameter δ. The effective cluster size

Keff is related to α via

Keff = α + 1 =
〈K(K − 1)〉

〈K〉
+ 1. (2.9)
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The average number of particles per cluster 〈K〉 cannot be determined

without any prior knowledge of the distribution of K. However, by fitting

equation (2.7) to the measured pseudorapidity correlation function, Keff and

δ can be estimated. These fits are shown in figure 2.7.

CLUSTER PROPERTIES FROM TWO-PARTICLE ANGULAR . . . PHYSICAL REVIEW C 75, 054913 (2007)

V. RESULTS

The final two-particle inclusive correlation functions, aver-
aged over ten vertex bins, are shown in Fig. 3 as a function
of !η and !φ at

√
s = 200 and 410 GeV. The near-side

hole corresponds to the excluded region of |!η| < 0.15 and
|!φ| < 5.625◦. The systematic uncertainties in the absolute
value of R(!η,!φ) are of the order of 0.3, relative to a peak
value of 5, with little !η or !φ dependence.

The complex two-dimensional correlation structure shown
in Fig. 3 is approximately Gaussian in !η and persists over the
full !φ range, becoming broader toward larger !φ (which will
be discussed in quantitative detail below). Similar structures
also exist in PYTHIA [Fig. 1(a)] though they do not reproduce
the strength of the short-range rapidity correlations seen in
the data. The qualitative features of the observed correlation
structure are consistent with an independent cluster approach
according to a simulation study from the CERN Intersecting
Storage Rings (ISR) experiment using a low-mass resonance
(ρ,ω, η) gas model [2]. The excess of the near-side peak
(!η ∼ 0 and !φ ∼ 0) relative to the away side could
be partially a result of the Hanbury-Brown–Twiss (HBT)
effect [11]. This possibility is investigated in the Appendix
using a simple MC model and found to be negligible for the
cluster properties investigated below.

To study the correlation structure quantitatively, the two-
dimensional correlation function is projected into a one-
dimensional pseudorapidity correlation function of !η by
integrating ρII

n (!η,!φ) and ρmixed(!η,!φ) over !φ as
follows:

R(!η) =
〈
(n − 1)

( ∫
ρII

n (!η,!φ) d!φ∫
ρmixed(!η,!φ) d!φ

− 1
)〉

. (6)

The two-particle pseudorapidity correlation function
R(!η), averaged over the !φ range from 0◦ to 180◦, is shown
in Fig. 4 at

√
s = 200 and 410 GeV. The error bars (also in

Figs. 5–8) correspond to point-to-point systematic errors with
90% C.L. The error bands (also in Figs. 5–8) denote an overall
scale error with 90% C.L. as an indication of the uncertainties
in the correction method which tends to move all the data
points up and down in a correlated fashion. The statistical
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FIG. 4. Two-particle pseudorapidity correlation function, aver-
aged over the !φ range from 0◦ to 180◦, in p+p collisions at√

s = 200 and 410 GeV. Solid curves correspond to the fits by
the cluster model using Eq. (7) over the full !η range. Error bars and
bands correspond to point-to-point systematic errors and overall scale
errors, respectively, with 90% C.L. Statistical errors are negligible.

errors are negligible because of the large p+p event sample
used in this analysis.

In the context of an independent cluster emission model,
R(!η) takes the functional form [4]

R(!η) = α

[
'(!η)

ρmixed(!η)
− 1

]
(7)

where the correlation strength α = 〈K(K−1)〉
〈K〉 is a parameter

containing information on the distribution of cluster size K .
The function '(!η) is a Gaussian function

∝ exp[ − (!η)2/(4δ2)]

characterizing the correlation of particles originating from
a single cluster, where δ indicates the decay width of the
clusters. The background distribution ρmixed(!η) is just the
distribution obtained by the event mixing introduced in
Sec. III. To correct for the holes in the PHOBOS accep-
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s measured by PHOBOS,
UA5 [1], and ISR [2,12] experiments for p+p and p + p̄ collisions.
PYTHIA and HIJING results are included. Error representations are the
same as in Fig. 4.
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Figure 2.7: R(∆η) obtained by averaging ∆φ between 0 and π in pp collisions
at (a) 200 and (b) 410 GeV. The solid curves correspond to the fits to the
cluster model using equation (2.7). From [46].

The CMS collaboration published in [43] their results on cluster properties

for minimum bias events as a function of the centre-of-mass energy (for par-

ticles with pT > 100 MeV and |η| < 2.4), as well as a comparison to previous

experiments, after extrapolating to their kinematic region, and to pythia6

(figure 2.8). The fitted distributions are shown in figure 2.9. The overall

conclusion was that the effective cluster size rises with energy, while the de-

cay width stays approximately constant. pythia6 showed the same energy

dependence but underestimated the magnitude of Keff.
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8 6 Short-Range Correlations in 0.9, 2.36, and 7 TeV Data
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Figure 5: (a) Keff and (b) δ as a function of
√

s, measured for pT > 0.1 GeV/c and |η| < 2.4 by

CMS in solid circles. Open circles show the PYTHIA results with the D6T tune.

tional to

exp [−(∆η)2
/(4δ2)]

where δ quantifies the average spread of particles originating from a single cluster, i.e. the decay

width. The background distribution, B(∆η), in Eq. (7) is the same event-mixed distribution

defined in Eq. (3) but averaged over all the multiplicity bins with all corrections applied, and

integrated over ∆φ.

Without knowing σK, the width of the distribution of K, it is impossible to calculate the average

cluster size �K� directly from the measured value of α. However, an effective cluster size can

be defined using the extracted correlation strength via the relation:

Keff = α + 1 =
�K(K − 1)�

�K� + 1 = �K�+
σ2

K
�K� . (8)

The effective cluster size Keff and decay width δ can be estimated by means of a least χ2
fit of

Eq. (7) to the measured two-particle pseudorapidity correlation function. The ICM provides a

good fit to the data over a large range in ∆η, as shown in Fig. 4.

The statistical uncertainties of the fit parameters are much smaller than the systematic ones.

The correction for event selection efficiency (see Section 5.2) has an overall systematic uncer-

tainty of less than 2.8% found by comparing the result at the generator level to that from the

reconstructed tracks after corrections. The model dependence of this procedure (i.e. the se-

lection efficiency for NSD events) was investigated by using correction factors derived from

11

|<
3

η| e
ff

K

1.5

2.0

2.5

3.0 (a)

 (GeV)s

210
3

10 410

|<
3

η|
δ

0.4

0.6

0.8

(b)

CMS, extrapolated

PHOBOS

ISR
)pSPS-UA5 (p+

PYTHIA, default
PYTHIA, D6T

Figure 6: (a) Keff and (b) δ as a function of
√

s based on a model-dependent extrapolation

of CMS data to pT ≈ 0 and |η| < 3 (solid circles), as well as data from PHOBOS [6] (solid

squares), UA5 [5] (solid triangles) and ISR [3] (solid stars) experiments for pp and pp̄ collisions.

Open circles and squares show the PYTHIA results for the D6T tune and default parameters,

respectively.

multiplicity as outlined in Table 1. In order to reach good statistics for the highest attainable

charged particle densities, only data at 7 TeV were considered.

Figure 7 compares 2-D two-particle correlation functions for minimum bias events and high

multiplicity events, for both inclusive particles and for particles in an intermediate pT bin. The

top two panels show results from minimum bias events. The correlation function for inclusive

particles with pT > 0.1 GeV/c shows the typical structure as described by the independent

cluster model. The region at ∆η ≈0 and intermediate ∆φ is dominated by particle emission

from clusters with low transverse momentum, with some contribution from jet-like particle

production near (∆η, ∆φ) ≈ (0, 0) due to near-side jet fragmentation and a broad elongated

ridge around ∆φ ≈ π due to fragmentation of back-to-back jets. Also visible is a shallow

minimum at ∆φ ≈ 0 at large |∆η| due to momentum conservation. For the intermediate pT

region of 1 GeV/c < pT < 3 GeV/c a more pronounced near-side jet peak and away-side ridge

are visible, due to the enhanced contribution of jet fragmentation to particle production for

increasing pT.

For pT-integrated two-particle correlations in high multiplicity events (Noffline

trk
≥ 110, Fig. 7c),

most correlation structures are similar to those for minimum bias events. The cut on high mul-

tiplicity enhances the relative contribution of high pT jets which fragment into a large number

Figure 2.8: Left: (a) effective cluster size and (b) decay width as a function of√
s from the CMS experiment for particles with pT > 100 MeV and |η| < 2.4.

Right: comparison of the CMS (a) effective cluster size and (b) decay width
results to the PHOBOS, UA5 and ISR experiments. Open circles show the
predictions from the D6T tune of pythia6. From [43].
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Figure 3: Two-particle correlation functions versus ∆η and ∆φ in PYTHIA D6T tune at
√

s =
(a) 0.9, (b) 2.36, and (c) 7 TeV.

the data are also consistent with an independent cluster approach according to a simulation

study from the ISR experiment using a low-mass resonance (ρ, ω, η) gas model [3] and a MC

model of isotropic cluster decays from the PHOBOS experiment [7]. Bose–Einstein Correla-

tions (BEC, also known as the Hanbury-Brown and Twiss effect [25]) have been measured in

pp collisions [26–28] but their influence on the extracted cluster parameters has been found to

be negligible [6].

To quantify one aspect of the correlation structure, the 2-D correlation functions were reduced

to one-dimensional (1-D) functions of ∆η by integrating SN(∆η, ∆φ) and BN(∆η, ∆φ) over ∆φ:

R(∆η) =

�
(�N� − 1)

��
SN(∆η, ∆φ)d∆φ�
BN(∆η, ∆φ)d∆φ

− 1

��

bins
. (6)

η∆
-4 -2 0 2 4

)
η

∆
R

(

-2

0

2

4  = 0.9TeVs(a) CMS π|<φ∆0<|

η∆
-4 -2 0 2 4

)
η

∆
R

(

-2

0

2

4  = 2.36TeVs(b) CMS π|<φ∆0<|

η∆
-4 -2 0 2 4

)
η

∆
R

(

-2

0

2

4  = 7TeVs(c) CMS π|<φ∆0<|

Figure 4: Two-particle pseudorapidity correlation function, obtained by averaging over the

entire ∆φ range from 0 to π, in pp collisions at
√

s = (a) 0.9, (b) 2.36, and (c) 7 TeV. The solid

curves correspond to the fits by the cluster model using Eq. (7). Error bars are smaller than the

symbols.

The 1-D two-particle pseudorapidity correlation functions, R(∆η), where ∆φ was averaged

over the entire range from 0 to π, are shown for all three energies in Fig. 4.

In the context of an ICM description, R(∆η) can be parametrized using the functional form [2]:

R(∆η) = α

�
Γ(∆η)
B(∆η)

− 1

�
(7)

where the correlation strength α = �K(K−1)�
�K� depends on the average numbers of particles into

which a cluster decays, the cluster size K. The function Γ(∆η) is a Gaussian function propor-

Figure 2.9: R(∆η) distributions from the CMS experiment at (a) 0.9, (b) 2.36
and (c) 7 TeV. The solid curves correspond to the fits to the cluster model
using equation (2.7). From [43].
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2.3 Observable Definition

In order to construct the two-particle angular correlation function, two dis-

tributions in ∆η and ∆φ are defined. The first distribution is the foreground

F (∆η, ∆φ), which describes the angular separation between pairs of particles

emitted in the same event. It includes correlations associated with both the

underlying physics process (“true correlations”) and detector effects such as

limited acceptance. The expression for F (∆η, ∆φ) at a given charged-particle

multiplicity nch is given by

F (nch, ∆η, ∆φ) =

〈
2

nch(nch − 1)

∑
i

∑
i6=j

δηi−ηj−∆ηδφi−φj−∆φ

〉
ch

, (2.10)

where the summation is over all charged particles in a single event and the

average 〈...〉ch is taken over the ensemble of events containing nch particles.

The delta functions, δηi−ηj−∆η and δφi−φj−∆φ, select particle pairs with the

∆η and ∆φ separation that is appropriate for F (∆η, ∆φ). The normalisa-

tion factor 2/nch(nch − 1) corresponds to the inverse of the total number of

charged-particle pairs in an event with nch particles. If the foreground was

to be calculated using events with different multiplicities, this factor would

account for the fact that a particle in a low multiplicity event would carry a

lower weight than an otherwise identical particle in a higher multiplicity event

because of fewer possible pair combinations.

The charged-particle density distribution, dnch/dη, is approximately flat

in η. However, since the detector has a limited acceptance ±ηmax, phase-

space alone dictates that values close to zero will be favoured for ∆η. As

such, ∆η is peaked at ∆η = 0 and falls approximately linearly to a maximum

possible value of ∆η = ±2ηmax. This motivates the second distribution used

in constructing the correlation function, the background correlation B, the
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∆η dependence of which, for a given charged-particle multiplicity, is given by

B(nch, ∆η) =
1

n2
ch

∫ +ηmax

−ηmax

∫ +ηmax

−ηmax

dη1dη2δ(η1 − η2 −∆η)
dnch

dη1

dnch

dη2

. (2.11)

The ∆φ dependence of B is defined in a similar way as equation (2.11)

and is flatter than the ∆η dependence.

With these two ingredients, the correlation function at fixed multiplicity

C(nch, ∆η, ∆φ) can be constructed

C(nch, ∆η, ∆φ) = F (nch, ∆η, ∆φ)−B(nch, ∆η, ∆φ). (2.12)

Equation (2.12) measures whether the independent production of two par-

ticles differs from the joint production of a pair of particles with the same (η,φ)

values. In the absence of correlation, C(nch, ∆η, ∆φ) is zero by definition.

As discussed in section 2.2, past analyses [41] have found that (nch− 1)×

C(nch, ∆η, ∆φ) is approximately independent of the particle multiplicity. Av-

eraging (nch− 1)×C(nch, ∆η, ∆φ) over all particle multiplicities and dividing

out the background contribution gives the two-particle correlation function

R(∆η, ∆φ) =
〈(nch − 1)F (nch, ∆η, ∆φ)〉

〈B(nch, ∆η, ∆φ)〉
− 〈(nch − 1)B(nch, ∆η, ∆φ)〉

〈B(nch, ∆η, ∆φ)〉
,

(2.13)

where 〈...〉 indicates an average over contributions from all events with all

particle multiplicities. Since dnch/dη, and hence the background, does not

strongly depend on the charged-particle multiplicity, the factor of B approx-

imately cancels from the second term on the right of equation (2.13). The

small multiplicity dependence of the background comes mainly from low mul-

tiplicity events where the contributions from double-diffraction tend to favour

higher ∆η values compared to the non-diffractive component. However, low
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multiplicity events are also more sensitive to track reconstruction inefficien-

cies because a small number of mis-reconstructed tracks has a proportionally

larger impact on the event. Calculating a multiplicity independent background

therefore has the advantage of diluting the effect of the experimentally more

troublesome low-multiplicity events. This approach reduces the sensitivity of

the observable to diffraction, which is not the motivation for this measure-

ment.

The final expression used for the inclusive two-particle angular correlation

function is given by

R(∆η, ∆φ) =
〈(nch − 1)F (nch, ∆η, ∆φ)〉

B(∆η, ∆φ)
− 〈nch − 1〉. (2.14)

In practice, 〈(nch − 1)F (nch, ∆η, ∆φ)〉 is constructed by taking each pair

of particles within a single event, calculating their separations in η and φ and

filling a two-dimensional distribution with those values with a weight of 2/nch.

It is normalised by dividing each bin by the number of events entering the

distribution. B(∆η, ∆φ) is determined by taking pairs from unrelated events

and, for each particle in one event, the ∆η and ∆φ values with each particle

in the other event are calculated and used to fill another two-dimensional

distribution, which is then normalised to unit integral.

Projections of the two-dimensional correlation function along both ∆η and

∆φ help reveal more details of the structure of the correlations and allow for

easier comparisons with different models. These projections are calculated by

first integrating separately the foreground and the background distributions

over the desired ranges before taking the ratio between the two and normal-

ising with the average particle multiplicity.
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Chapter 3

The ATLAS Experiment at the

LHC

3.1 The Large Hadron Collider

The European Organisation for Nuclear Research (CERN) is home to the

Large Hadron Collider (LHC) [47], the biggest, most energetic particle accel-

erator in the world. It is installed in the existing 26.7 km tunnel of its prede-

cessor, the Large Electron-Positron collider (LEP), which is located between

45 and 170 metres below ground, spanning across France and Switzerland.

The LHC is designed to collide protons and heavy ion nuclei at very high

energies and intensities in its quest to increase our understanding of nature

by revealing physics processes beyond the Standard Model.

3.1.1 CERN Accelerator Complex

Before particles are injected into the LHC they have to go through a series

of accelerators, each boosting the energy of the beams to increasingly higher

values. Figure 3.1 shows the CERN Accelerator Complex in full detail.

42
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Figure 3.1: CERN Accelerator Complex. From [48].

For proton physics, 50 MeV particles (obtained by ionising hydrogen) are

transferred from a Linear Accelerator LINAC2 to the Proton Synchrotron

Booster where they reach an energy of 1.4 GeV. They are then injected into

the Proton Synchrotron (PS), which can operate up to 25 GeV, and finally

into the Super Proton Synchrotron (SPS) where they receive their final energy

kick to 450 GeV before entering the LHC rings.

In the case of heavy-ion runs, 4.2 MeV/u lead nuclei (obtained from ionised

highly-purified lead gas) move from the Linear Accelerator LINAC3 into a Low

Energy Ion Ring (LEIR) where they are accelerated to 72 MeV/u. The beams

are then injected into the PS (5.9 GeV/u) and follow the same accelerator

chain as the protons into the SPS (177 GeV/u) and LHC, where they collide

at a centre-of-mass energy of 2.76 TeV/u.
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3.1.2 Machine Design and Current Status

The LHC is a particle-particle collider. Unlike particle-antiparticle colliders

in which the two beams can share the same physical space, the LHC needs

two separate rings for the protons to circulate. Due to space restrictions in

the tunnel, the two beam channels and two sets of coils, producing opposite

magnetic fields, are contained within a single mechanical structure of a twin-

bore super-conducting magnet, as illustrated in figure 3.2. The entire system

is cooled down to below 2 K by means of superfluid helium and placed under a

vacuum. This allows the magnets to reach a field strength above 8 T necessary

to bend the particles around the LHC circumference.

Figure 3.2: Schematic diagram of an LHC dipole magnet. From [47].

The particles are accelerated to the maximum collision energy with Radio

Frequency (RF) super-conducting cavities. Once the energy is reached, these

cavities are responsible for maintaining the intensity of the beams by keeping

the particle bunches close together.
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The total number of events per second delivered by the machine depends on

its luminosity L and the cross-section σevent of the process under investigation

as

Nevents = L · σevent. (3.1)

The machine instantaneous luminosity is given by

L =
N2

b nbfrevγr

4πεnβ∗
F, (3.2)

where Nb corresponds to the number of particles per bunch, nb to the number

of bunches per beam, frev to the revolution frequency, γr to the relativistic

factor (1 − β2)−1/2, εn to the beam emittance, β∗ to the beta function at

the collision point and F is just a reduction factor to account for the beam

crossing angle.

The integrated luminosity L, i.e. the total number of collected events over

a certain period of time, is obtained by

L =

∫
L · dt. (3.3)

The LHC began operations in November 2009 with the first 900 GeV

proton beams colliding a few days after they first circulated the rings. A

world-record energy was achieved before the 2009 winter shutdown with 2.36

TeV centre-of-mass collisions. In March 2010, activities resumed and the

energy of the proton collisions was increased to 3.5 TeV per beam. Figure

3.3 is an event display of one of the first 7 TeV collisions registered by the

ATLAS detector. Since then, the LHC has performed very well, delivering by

the end of October of 2011, ahead of schedule, around 5.61 fb−1 of proton data

to the high-luminosity experiments. The maximum instantaneous luminosity

recorded was 3.65 × 1033 cm−2s−1 with 1,854 colliding bunches. Short two-
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Figure 3.3: Event display of a 7 TeV collision in the ATLAS detector. From
[49].

week runs with lead ions took place in November of 2010 and 2011, before the

yearly winter shutdowns. The current plan is to continue running at 7 TeV

and then increase the energy to 8 TeV until 2013 (with a few weeks of heavy

ion collisions in-between) when there will be a long shutdown in preparation

for proton collisions at the design energy of 14 TeV.

3.1.3 The LHC Experiments

There are 6 experiments at the LHC, each with unique detector technologies

designed to study different aspects of high-energy particle collisions.

High-luminosity Experiments

There are two high-luminosity experiments at the LHC: ATLAS and CMS.

The aim is to record a peak luminosity of 1034 cm−2s−1. The ATLAS detector

will be described in detail in section 3.2.

The Compact Muon Solenoid (CMS) [50], just like ATLAS, is a general-
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purpose detector. It studies a wide range of processes from the production of

the Higgs boson to the discovery of new physics. The tracking and calorime-

try systems are located inside a very powerful solenoid magnet, providing

very good momentum resolution and electron/photon identification, and also

making the overall size of the detector “small” compared to its weight (12,500

tonnes). Over 3,500 scientists work for CMS, making it the largest scientific

collaboration in the world.

Low-luminosity Experiments

Operating at a lower luminosity are the LHCb, TOTEM and LHCf experi-

ments.

The Large Hadron Collider beauty experiment (LHCb) [51] is a particle de-

tector designed specifically to study the decays of B-mesons (particles which

contain the b quark) to try to shed some light on the asymmetry between mat-

ter and antimatter. It aims to register peak luminosities of 2×1032 cm−2s−1.

Despite being a collider detector, its architecture resembles that of a fixed-

target experiment focusing on the study of very forward particles. To distin-

guish the B-mesons from the rest of the produced particles, LHCb has a vertex

detector located only 8 mm away from the interaction point. It also contains

Ring Imaging Cherenkov counters (RICH) for the correct identification of the

decay products of the B-mesons.

TOTEM stands for TOTal cross-section, Elastic scattering and diffraction

dissociation Measurement at the LHC [52]. It is a small experiment dedicated

to the measurement of the proton-proton total cross-section and to probing

the proton structure in the very forward regions. Roman Pot stations are

located between ±147 and ±220 m from the CMS interaction point and can

localise the trajectory of protons within 1 mm from the beam-pipe. It will
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operate at a peak luminosity of 1029 cm−2s−1. Its results complement the rest

of the LHC experiments, particularly those from CMS.

The smallest LHC experiment is the Large Hadron Collider forward (LHCf)

[53] experiment. Neutral particles in the forward direction, produced in the col-

lisions at the centre of ATLAS, are detected by two sets of sampling calorime-

ters at ±140 m from the interaction point. The goal of this experiment is to

calibrate the models for hadron interactions used in high-energy cosmic-ray

simulations. Designed to withstand low luminosities (< 1030 cm−2s−1), due

to the radiation damage suffered by the sensors, the LHCf detectors collected

proton-collision data during a short period of time between 2009 and 2010 at

900 GeV and 7 TeV. On July 2010 the detectors were removed from the LHC

tunnel.

Heavy-ion Experiment

The LHC has one dedicated heavy-ion experiment: ALICE, A Large Ion Col-

lider Experiment [54]. It is designed to study lead ion collisions in the search

for the quark-gluon plasma, a state of matter in which the quarks and glu-

ons inside the nucleus are no longer bound due to the extreme temperatures

reached. This is believed to have been the condition of the Universe right

after the Big Bang. Aiming to register a peak luminosity of 1027 cm−2s−1, the

ALICE detector has very precise sub-systems for identifying the flavour com-

position of the ion collisions (particle identification) and a Time Projection

Chamber (TPC) for very efficient track reconstruction.

3.2 ATLAS - A Toroidal LHC ApparatuS

ATLAS [55] is the largest of the two general-purpose detectors at the LHC.

It is 44 m long and 25 m high and it weighs approximately 7,000 tonnes. Col-
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Figure 3.4: Cut-away schematic view of the ATLAS detector. From [55].

lision events are reconstructed by layers of precise tracking, calorimetry and

muon systems surrounding the interaction point (figure 3.4). These subsys-

tems will be described in more detail in the following sections with particular

emphasis on the tracking detectors since they are the most relevant for the

measurements presented in this thesis.

The physics goals of the ATLAS experiment range from stringent tests of

the Standard Model and its theories, to the discovery of the Higgs boson and

new physics such as SUSY and extra-dimensions. The operation of such a

complex detector and the wide variety of processes to analyse results in more

than 3,000 scientists being part of the ATLAS Collaboration.

Coordinate System

The ATLAS detector is forward-backward symmetric with respect to the in-

teraction point. The nominal interaction point is defined as the geometrical
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centre of the detector and is considered as the origin of the ATLAS Cartesian

coordinate system. The positive x-axis is defined as pointing from the interac-

tion point towards the centre of the LHC; the positive y-axis points upwards

from the interaction point and the positive z-axis is defined along the beam

pipe in the anti-clockwise direction.

3.2.1 Inner Detector

At the heart of ATLAS, closest to the interaction point and covering the

region |η| < 2.5, lies the Inner Detector (ID) responsible for measuring the

momentum of charged particles and reconstructing their trajectories (referred

to as tracks), and the vertices from which they came. To be able to deal

with the high density of particles produced in the collisions at the LHC, the

Inner Detector is designed to be fast and radiation-hard and to provide robust

pattern recognition and good spatial resolution.

The ID is immersed in a 2 T magnetic field from a super-conducting

solenoid that bends the trajectories of the charged-particles and allows the

determination of the momentum. It consists of three sub-systems: a silicon

pixel detector (Pixel), a silicon micro-strip detector (SCT) and a transition

radiation tracker (TRT). A schematic view of the ID is shown in figure 3.5 and

a plane view of a quarter-section with dimensions and η coverage is shown in

figure 3.6.

Pixel Detector

The Pixel sub-system is the closest to the beam pipe. Thanks to its high

granularity it is capable of resolving primary and secondary vertices.

The Pixel modules are arranged in three concentric cylinders in the barrel

and three discs perpendicular to the beam axis at each of the end-cap regions
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Figure 3.5: Cut-away schematic view of the ATLAS Inner Detector. From
[55].
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of the detector. Typically, three Pixel layers are crossed by a charged particle

as it travels through ATLAS. The innermost barrel layer, the b-layer, located

at 50.5 mm from the beam line, is the most exposed to radiation and as such

will have to be replaced after approximately three years of operation at design

luminosity.

A Pixel module consists of a silicon sensor 250 µm thick, segmented into

small rectangles, or pixels, in the R − φ and z directions. When a charged

particle goes through the sensor, it liberates electron-hole pairs that drift

under the electric potential (initially 150 V) towards the pixels. This signal

is read and, if it is above the threshold of 4,000 e−, its information stored

for later use in the track reconstruction. The Pixel sensors have intrinsic

accuracies of 10 µm (R − φ) and 115 µm (z) in the barrel layers and 10 µm

(R − φ) and 115 µm (R) in the end-cap discs. To reduce noise, the silicon

sensors in both the Pixel and SCT detectors are cooled down to between −5◦

C and −10◦ C.

Semi-Conductor Tracker (SCT)

Surrounding the Pixel detector, the Semi-Conductor Tracker contributes to

the momentum and vertex position measurements and to the calculation of

the impact parameters (see section 4.2.1). It also has a high granularity,

necessary for the pattern recognition in the track reconstruction.

The SCT is divided in four barrel layers and nine discs in each of its two

end-cap regions. An SCT module consists of two pairs of single-sided p-in-n

silicon microstrip sensors glued back-to-back with a 40 mrad stereo rotation

angle. The sensors are 285 µm thick and operate at an initial voltage of 150

V. The SCT opted for a binary readout, which means that a strip will only

“fire” if it collects enough charge above the 1 fC threshold. This threshold
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value is chosen to maximise the efficiency and minimise the noise (the noise

occupancy is required to be < 5 × 10−4). This has an effect on the intrinsic

measurement accuracies: 17 µm in the Rφ-plane and 580 µm in the z-plane

(R-plane) for barrel (end-cap) modules.

In total, there are 2,112 barrel and 1,976 end-cap modules, the latter of

different shapes depending on their location within the discs. Each side of a

module has 768 strips and in the case of the rectangular barrel sensors, they

are separated by an 80 µm pitch and run parallel to the beam axis, while for

the end-cap modules the strips run radially. On average, eight strip layers are

crossed by each track which is equivalent to four space-points (intersection of

two strips from opposite sides of the module).

Transition Radiation Tracker (TRT)

The TRT is the outermost system of the Inner Detector. It comprises layers

of straw tubes filled with a gas mixture of xenon, carbon dioxide and oxygen:

XeCO2O2. With an average of 36 hits per track, the TRT provides continuous

tracking to enhance the pattern recognition and the momentum resolution.

Electron identification complementary to that provided by the electromagnetic

calorimeter, up to |η| < 2.0, is possible due to the transition radiation material

planes interleaved between the straws.

The straw aluminium coated tubes have a diameter of 4 mm. Within 300

µm from the centre of the straws, a tungsten wire with a diameter of 30 µm

collects the charge clusters released by an incoming particle. In the barrel the

straws are 144 cm long and are parallel to the beam direction, while in the

end-caps the average length is 37 cm and the straws are arranged radially in

wheels. The intrinsic accuracy in the R− φ direction is 130 µm.

The TRT is divided into three barrel layers, each containing 32 modules,
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and two sets of wheels in each end-cap. A barrel module is an array of straws

surrounded by polypropylene fibres acting as transition radiation material.

An end-cap wheel contains 8 layers of straw tubes, each integrated by 768

straws, followed by 15 µm polypropylene radiator foils.

3.2.2 Calorimetry

The ATLAS calorimeters, illustrated in figure 3.7, are responsible for mea-

suring the energy of neutral and charged particles by alternating active and

passive materials. The choice of detector technology depends on whether the

particles interact via the electromagnetic or strong forces; this is the reason

why in ATLAS there are separate electromagnetic and hadronic calorimeters

that, together, cover the range |η| < 4.9.

The calorimeters are designed so that showers are contained inside them

(hadronic showers are longer and wider than electromagnetic ones) to accu-

rately measure the energy and to limit the flux into the muon spectrometer.

The calorimeters have a very important role to play in the search for new

phenomena due to their jet energy and Emiss
T measurements.

Electromagnetic Calorimeter

The electromagnetic calorimeter (EM) uses lead plates as an absorber and

liquid argon (LAr) as the active material. It has high granularity and hence

provides excellent energy and position resolution in the range |η| < 3.2. The

electrodes have an accordion shape which provides complete symmetry in the

φ direction without any cracks.

It is divided in two half-barrel regions (|η| < 1.475) separated by a 4mm

gap at z = 0, and two coaxial wheels, inner (1.375 < |η| < 2.5) and outer

(2.5 < |η| < 3.2), in each end-cap side. In the region where the EM calorimeter
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Figure 3.7: Cut-away schematic view of the ATLAS Calorimeters. From [55].

overlaps with the ID (|η| < 2.5), the innermost compartment, or sampling, is

finely segmented to allow for precise identification of photons and electrons.

Hadronic Calorimeters

Two different technologies are used for the hadronic calorimeters.

In the barrel, directly outside the EM, the Tile Calorimeter operates. The

active materials are scintillating tiles and the absorbers are steel plates. It

is segmented into one central barrel with an η coverage of |η| < 1.0 and two

smaller extended barrels on either side covering the 0.8 < |η| < 1.7 region.

The tiles are oriented radially, perpendicular to the beam direction.

The Hadronic End-cap Calorimeter (HEC), as the name suggests, is lo-

cated in the end-caps. LAr is again used as an active material but the inter-

leaved absorber plates are made of copper. It consists of two wheels on either

side and it extends from 1.5 to 3.2 in |η|, overlapping with both the Tile and
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Forward Calorimeters, reducing the material budget in the transition region

between the barrel and the end-caps.

Forward Calorimeter

Extending the coverage to the high pseudorapidity region 3.1 < |η| < 4.9 is

the Forward Calorimeter (FCal), located inside the same cryostat as the end-

cap calorimeters (EM+hadronic). It is split into three compartments. The

first one, dedicated to electromagnetic measurements, uses LAr and copper

as active and passive materials, respectively. The other two sections are in

charge of measuring hadronic showers and use tungsten as an absorber with

LAr filling the space between the rods.

3.2.3 Muon Spectrometer

The Muon Spectrometer (MS) is designed to both trigger and measure the

momentum of muons in the range 0.03 - 3 TeV. High transverse momentum

muons are a signature of new and interesting physics, as such, the muon

system is a fundamental element of the ATLAS detector.

The MS is integrated by four different types of detection chambers and

a magnet system (figure 3.8). For tracking and momentum measurements in

the bending (yz-) plane there are the Monitored Drift Tube chambers (MDTs)

and the Cathode-Strip Chambers (CSCs). Resistive Plate Chambers (RPCs)

and Thin Gap Chambers (TGCs) are used for bunch-crossing identification

and measurements of track coordinates in the non-bending (xy-) plane.

The magnetic field necessary to bend the trajectories of the muons is pro-

vided by three (1 barrel and 2 end-cap) super-conducting air-core toroid mag-

nets. In the pseudorapidity range 0 < |η| < 1.4, the barrel toroid provides 1.5

to 5.5 T·m of bending power, while in the 1.6 < |η| < 2.7 range, the bending
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power provided by the end-cap toroids varies between 1 and 7.5 T·m. In the

transition region, a combination of the two magnetic fields is used to bend the

tracks.

Figure 3.8: Cut-away schematic view of the ATLAS Muon Spectrometer.
From [55].

The MDTs are arranged in three layers that cover the range |η| < 2.7.

In the innermost layer, between 2.0 and 2.7 in pseudorapidity, the MDTs are

replaced by CSC multi-wire proportional chambers to manage the high rates

and backgrounds in this forward region. The trigger system covers the range

|η| < 2.4 and has a timing resolution between 1.5 and 4 ns. RPCs are used in

the barrel and TGCs in the end-caps of the detector.

3.2.4 Forward Detectors

The very forward region of ATLAS is covered by three small detectors. LUCID

(LUminosity measurement using Cerenkov Integrating Detector) and ALFA
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(Absolute Luminosity For ATLAS) determine the luminosity delivered to the

experiment at ±17 and ±240 m from the interaction point, respectively.

The third system is the Zero Degree Calorimeter (ZDC), located at ±140

m from the centre of ATLAS, and it evaluates the centrality of the heavy-ion

collisions by measuring neutral particles at |η| ≥ 8.2 with alternating layers

of quartz rods and tungsten plates.

3.2.5 Trigger and Data Acquisition

Every 25 ns1, protons collide at the centre of ATLAS. The amount of data

produced is enormous and as the luminosity increases, this will only get more

complicated due to the occurrence of more than one proton interaction per

bunch crossing. The trigger and data acquisition systems (DAQ) are designed

to select only interesting events among the initial 40 MHz rate, to optimise

the storage and analysis capabilities of the experiment.

The ATLAS trigger has three levels: Level-1 (L1), Level-2 (L2) and the

Event Filter (EF). Together, L2 and EF form the High-Level Trigger (HLT).

The L1 trigger searches for signatures from high-pT muons, jets, electrons,

photons, missing energy, among others, using only a subset of the ATLAS

detector (Muon Spectrometer and calorimeters) to define a Region of Interest

(RoI). At L1 the maximum rate that can be managed lies between 75 and 100

kHz, and the trigger decision must reach the front-end electronics 2.5 µs after

the interaction.

The L2 trigger is seeded by the RoIs and uses detailed information from

the detector elements within them. The rate is reduced to 3.5 kHz with an

average event processing time of 40 ms. Finally, the EF uses offline analysis

1During the 2010-2011 data-taking period, the LHC operated with a 50 ns clock.
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algorithms to further reduce the rate to approximately 200 Hz and, on average,

processes events in 4 seconds. The events that pass the EF selection criteria

are used for offline analysis. The HLT uses the full granularity of the muon

spectrometer and calorimeters and also information from the Inner Detector,

which results in better threshold cuts and particle identification.

The DAQ is in charge of buffering the data at the L1 rate (readout system)

and transferring it to the L2. For events going through to the last stage, the

DAQ performs event-building so that they can be analysed by the EF and, if

selected, stores them permanently. Furthermore, the DAQ is responsible for

sending configuration, controlling and monitoring the detector during data-

taking.

The interface to monitor the status of the hardware is called the Detector

Control System (DCS). Operational parameters like voltage, cooling, temper-

ature and safety can be accessed by the operator and, if necessary, allow for

intervention. In addition, the DCS and the DAQ communicate to each other

to synchronise the detector status with data-taking.

3.2.6 Current Status

The ATLAS detector has had a very good performance with nearly all of

its channels fully operational (figure 3.9). The total integrated luminosity

delivered by the LHC in 2011, as of November, is approximately 5.61 fb−1,

of which 5.25 fb−1 was recorded by the experiment. This translates into an

overall data taking efficiency of 93.5% (figure 3.10).
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Figure 3.9: Operational status of the ATLAS detector as reported in [56].
The total number of channels and the approximate operational fraction are
shown for each sub-system.
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Figure 3.10: (a) Total integrated luminosity delivered by the LHC in 2011
and (b) data-taking efficiency of the ATLAS detector as reported in [57].



Chapter 4

Data Reconstruction

4.1 The ATLAS Offline Software

The ATLAS software framework, athena [58], is adapted from the gaudi [59]

framework originally developed by the LHCb collaboration. It originates from

a component-based blackboard architecture in which the input data, services

and tools are located in a common in-memory database and loaded as libraries

at the job configuration level by a Python script (referred to as job options

file). After initialisation of an athena job, the algorithms, coded in C++, are

executed in sequential order on an event-by-event basis. Finally, algorithms

are terminated, objects are deleted and the output is written and persistified.

The modular structure of athena allows for the development of tools and

packages, separated into different projects, that can be constantly updated

and frozen into new versions, or releases, of the software.

4.1.1 Detector Geometry Description

For an accurate reconstruction of either real or simulated data, a precise

geometrical description of the ATLAS detector is needed; it relies on two

61
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software components: a relational database containing the configuration and

properties of the detector, and a set of geometrical primitives. A tag with

the detector geometry version is specified either at simulation time or at data

recording time. This tag is persistified along with the data and provides access

to the configuration parameters of the detector via the relational database.

The library of geometrical primitives is provided by the GeoModel toolkit

[60]. This software is designed to describe large and complex detectors while

optimising the memory consumption. In the ATLAS GeoModel implementa-

tion [61], the material and readout geometry of each sub-detector is modelled

independently.

4.1.2 Simulation Infrastructure

A very important part of the ATLAS programme is the evaluation of the

detector response to different physics processes and the comparison of the

experimental results to the available models. For this, athena provides the

framework for Monte Carlo (MC) production which is carried out in three

main steps [62]: generation, simulation and digitisation. The subsequent trig-

gering and reconstruction are performed using the same algorithms used for

real ATLAS data (figure 4.1).

Generation

Several event generators are supported in athena, each with different ap-

proaches to the modelling of hard processes, initial and final state radiation,

multi-parton interactions, hadronisation, etc. The output of these generators,

the event record, is converted into the HepMC format [63] which stores the

complete event history as the MC Truth information.

At this stage, no geometry description of the detector is necessary since all
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The stages in the simulation data-flow pipeline are described in more detail in the following 
sections. In addition to the full simulation framework, ATLAS has implemented a fast simula-
tion framework that reduces substantially the processing requirements in order to allow larger 
samples of events to be processed rapidly, albeit with reduced precision. Both these frameworks 
are described below.

3.8.2  Generators

Event generators are indispensable as tools for the modelling of the complex physics processes 
that lead to the production of hundreds of particles per event at LHC energies. Generators are 
used to set detector requirements, to formulate analysis strategies, or to calculate acceptance 
corrections. They also illustrate uncertainties in the physics modelling.

Generators model the physics of hard processes, initial- and final-state radiation, multiple inter-
actions and beam remnants, hadronization and decays, and how these pieces come together. 

The individual generators are run from inside Athena and their output is converted into a com-
mon format by mapping into HepMC. A container of these is placed into the transient event 
store under StoreGate and can be made persistent. The event is presented for downstream use 
by simulation, for example by G4ATLAS simulation (using Geant4) or the Atlfast simulation. 
These downstream clients are shielded thereby from the inner details of the various event gen-
erators.

Each available generator has separate documentation describing its use. Simple Filtering Algo-
rithms are provided, as well as an example of how to access the events and histogram the data.

Figure 3-5  The simulation data flow. Rectangles represent processing stages and rounded rectangles repre-
sent objects within the event data model. Pile-up and ROD emulation are optional processing stages.

Generator HepMC Particle Filter MCTruth
(Gen) Simulation

MCTruth
(Sim)

Pile-Up

HitsDigitizationROD Input 
Digits

MCTruth
(Pile-up)Merged Hits

ByteStream
ConversionSvc

ROD Emulation 
Algorithm

ROD Emulation 
(passthrough)

Raw Data 
Objects

ByteStream ATLAS

Reco

Figure 4.1: Diagrammatic representation of the simulation process in the AT-
LAS software. Once RDOs are produced, the same reconstruction algorithms
can be applied to both real and Monte Carlo simulated data. From [58].

stable particles, defined by a proper lifetime cτ > 10 mm, are handed over to

the simulation. Unstable particles are decayed by the generator and the effect

of the magnetic field and material is neglected. One additional feature that

can be done at the event generation level is filtering, in which only particles

that satisfy certain properties (e.g. decay channel, energy, momentum) are

propagated into the simulation chain.

Simulation

The simulation of the detector response and physics processes occurring inside

the detector material is carried out via the Geant4 particle simulation toolkit

[64, 65]. This is the most CPU time consuming stage of the production process.

Only particles that are within a specified η−φ range are propagated through

the geometry; very forward particles are not simulated because they increase

the simulation time by, approximately, a factor of 2.

The MC Truth record produced at event generation is copied and extended
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with information from simulation. The final output of the simulation stage is

a hit file which contains metadata (describing the configuration), the extended

MC Truth and a collection of hits for each sub-detector.

Digitisation

In this last step, hits produced by the simulation are converted into detector

responses called digits, which are the actual output format of the ATLAS

detector. These digits are fed to simulated Read-Out Drivers (ROD) that

emulate the front-end electronics in the detector cavern. The output is written

as Raw Data Objects (RDOs) over which the same trigger and reconstruction

algorithms of data can be run. As an additional feature, these RDOs, unlike

the ones from real data, contain all the MC Truth information.

At the LHC, more than one proton-proton interaction per bunch crossing

can occur. The digitisation framework has the machinery to add these extra

interactions by reading different types of events and overlaying hits from each

of them before building the digits.

Fast Simulation

The complexity and level of detail of the Geant4 full simulation makes it diffi-

cult to produce large amounts of Monte Carlo data for all analyses. Currently

there are three approaches to fast simulation in ATLAS, all of which have

been validated against the full simulation chain:

• FastG4 [66, 67] - removes low energy electromagnetic particles and

replaces them with pre-simulated showers.

• ATLFAST-I [68, 69] - truth objects are smeared by detector resolution

effects; the speed of simulation is increased by a factor of 1,000.
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• ATLFAST-II [68, 69] - the goal is to simulate events as fast as pos-

sible while still being able to use the normal ATLAS reconstruction

algorithms. It uses Fatras (Fast ATLAS Tracking Simulation) [70] for

Inner Detector and Muon Spectrometer tracks and FastCaloSim (Fast

Calorimeter Simulation) for the calorimeter responses.

4.1.3 Reconstruction and Analysis Preparation

From the RDOs, one can derive parameters that can be used for physics anal-

ysis using algorithms for tracking (section 4.2), calorimeter towers, etc. This

is called reconstruction and in ATLAS it consists of different stages that pro-

duce different output datasets. The first and most general type of data are

the ESDs, or Event Summary Data, and they contain detailed information to

allow particle identification, track re-fitting, jet calibration, etc. The AODs,

Analysis Object Data, are the second stage and are a summary of the ESDs

and contain sufficient information for most analyses. Finally, there are the

D3PDs, produced from AODs, that have a flat ntuple structure and are pro-

duced to suit the requirements of the different physics groups. Most analyses

are carried out on D3PDs.

4.2 Track Reconstruction

The efficient reconstruction of the trajectories of charged-particles is funda-

mental to all particle physics analyses, and in particular to the measurement

presented in this thesis. As discussed in section 3.2, there are two tracking sys-

tems in ATLAS: the Inner Detector (ID) and the Muon Spectrometer (MS).

Despite the different conditions these elements are subjected to, the track

reconstruction software that has been developed in ATLAS uses a common
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Event Data Model (EDM) [71] and a consistent geometrical description of the

detector [72]. It is called New Tracking, or simply, newt [73].

One of the main features of newt is its modular structure. The complex

process of track reconstruction is factorised into modules, each performing

specific and independent tasks. This results in a very flexible software that

can easily be maintained and extended.

This section focuses on the sequences for track reconstruction in the ID.

First, a brief description of the ATLAS Tracking EDM and the variables used

for track parameterisation is presented.

4.2.1 EDM and Track Parameterisation

The main feature of the tracking EDM is a common track object that describes

both ID and MS tracks and, in addition, can be used in online processing

and offline reconstruction. This track object can contain multiple parameters

describing, for example, the position of the track at different surfaces, the

trajectory it follows, which algorithm was used to create it, the quality of the

track fit, and many others.

In the ATLAS tracking EDM parameterisation, tracks can be represented

locally by a set of five parameters

τi = (l1, l2, φ, θ, q/p), (4.1)

where (l1, l2) denote two coordinates in the intrinsic frame of the surface where

the measurement is done, and (φ, θ, q/p) represent the momentum of the track

in the global frame. This representation differs slightly from the (φ, cot θ, pT)

one, commonly used for helix parameterisations in particle physics experi-

ments, simply because the local parameterisation cannot be restricted to a
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specific detector; the transition between the inner tracker and the muon sys-

tems is affected by a non-homogeneous magnetic field, which means that pT

is not a constant of motion.

Of all the different representations available in the EDM, the perigee helix

parameterisation is of particular importance. The perigee represents the point

of closest approach of the track to a specific point, that can be the nominal

interaction point or the position of the primary vertex, and it can be described

by the following parameters [74], illustrated in figure 4.2:

• d0 - transverse impact parameter; distance of closest approach in the

transverse (xy-) plane.

• z0 - longitudinal impact parameter; z coordinate of the point of closest

approach.

• φ - azimuthal angle of the momentum of the track at the perigee; mea-

sured in the xy-plane.

• θ - polar angle of the track; measured in the zd-plane, where d = ρφ

with ρ the radius of curvature of the helix.

• q/p - charge of the track divided by its momentum.

4.2.2 Inside-Out Tracking Sequence

The primary ID track reconstruction sequence starts from the silicon trackers

and moves outwards into the TRT. It exploits the high granularity of the Pixel

and SCT detectors to identify tracks close to the interaction point.

In the first step, raw information from the silicon detectors is converted

into three-dimensional representations called space-points. In the case of the

Pixel detector, a space-point is defined by a single hit in the sensors. For
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Figure 4.2: Track parameters at the perigee.

the SCT it is required to have a hit on opposite sides of a module so that,

thanks to the stereo rotated sensors, two dimensional measurements can be

constructed.

Next, with the space-points located in any of the three Pixel layers and

the first SCT layer, track seeds are formed from which paths are built. Any

silicon cluster that falls within this path is added to the track candidate by a

Kalman filter-smoother formalism [75]. This process results in a large number

of track candidates that have to be resolved, before extending them into the

TRT, by applying quality cuts and assigning track scores. Points are given

if the quality of the track fit (χ2/Ndof) is good and if there are many hits

associated to it; penalties are applied if, for example, there are holes (no hits

where expected) in the trajectory of the track. Candidates with a high score

are extended into the TRT and fitted again (several fitting techniques are

available; the default is GlobalChi2Fitter [76]), this time using the information

from the three sub-detectors, while the ones that fail to pass the quality cuts

are neglected from further processing. The score of the track is compared to
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the score of the silicon track candidate before extension and the better scoring

alternative is kept. These two stages of the track reconstruction sequence are

illustrated in figure 4.3.
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Figure 4.3: Inside-out track reconstruction sequence.

4.2.3 Outside-In Tracking Sequence

The inside-out sequence relies on the identification of seeds to do the pattern

recognition. However, it could be the case that, due to ambiguous hits, the

seeds are not able to reach the score necessary to go through to the next steps

and the track is lost. Furthermore, particles can decay inside the ID volume

and hence the tracks associated to these secondary particles will not have

enough hits to build a seed in the silicon. To address these issues, a second

pattern recognition sequence is available in newt which starts from the TRT

and back-tracks into the silicon detectors.

With the information provided by the drift tubes in the TRT, projection

planes are used to do the pattern recognition since no information about the

coordinate along the straw direction is available (i.e. no space-point forma-

tion). The Rφ- and Rz- planes are used for the barrel and end-caps, respec-
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tively. Tracks with a pT > 500 MeV will appear as straight lines in these

planes. A histogram method, known as the Hough transform [77] is used

to find straight line patterns and define track segment candidates, which are

later re-processed using a Kalman filter-smoothing formalism. Only segments

that have not been already grouped into tracks by the inside-out algorithm

are extended into the SCT and Pixel detectors and associated to space-point

seeds. Segments that are not associated to any silicon hit are called TRT

standalone tracks.

4.2.4 Low-pT Tracking Sequence

The pattern recognition sequences previously described are designed for tracks

with a minimum pT of 500 MeV. In order to be able to reconstruct tracks

with a lower transverse momentum, the low-pT sequence is implemented in

newt. It follows the same strategy as the inside-out sequence but, since low-

pT tracks bend more under the magnetic field and may not be able to reach

the outermost elements of the Inner Detector, the reconstruction requirements

are not so strict. This sequence uses only hits that have not been associated

to tracks by the previous two algorithms. The minimum pT that can be

reconstructed is 100 MeV.

4.3 Vertex Reconstruction

The correct identification and reconstruction of primary vertices in an event is

necessary for high-precision measurements. Inside athena, the vertex recon-

struction algorithms are executed as a post-processing stage of the tracking

sequences described in the previous section.

As in the track reconstruction case, the vertex reconstruction uses a com-
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mon object-oriented EDM that contains a set of interfaces and core classes

to store the basic information about a vertex object: position in the global

detector frame, quality and parameters of the vertex fit, track-to-vertex asso-

ciations, etc [78].

Two vertex reconstruction strategies are implemented in the ATLAS soft-

ware: fitting-after-finding and finding-through-fitting. An example of the for-

mer is the InDetPriVxFinder algorithm [78]. It begins by pre-selecting tracks

that originate from the bunch-crossing region and ordering them according to

their longitudinal impact parameter. Clusters of tracks are stored as primary

vertex candidates and reconstructed using a vertex fitter that runs an iter-

ative cleaning procedure to remove outlier tracks (χ2 < 8%). Once a track

is rejected, it is not used again which means that the number of vertices is

entirely determined at the cluster seeding stage.

The second strategy, finding-through-fitting, provides a better handling of

outlier tracks and is the default in ATLAS. The InDetAdaptiveMultiPriVxFinder

algorithm [78] also starts the reconstruction process with a selection of tracks

from the interaction region but with them it creates a single vertex seed. The

vertex is reconstructed using the AdaptiveMultiVertexFitter [78] and tracks that

fail to be added to the vertex are used to create a second seed. The two vertices

are re-fitted simultaneously and the process is repeated, with the number of

vertices growing after each iteration. Tracks that fail to be associated to any

vertex with a χ2 > 1% do not influence the result of the fits.

The EDM provides several vertex fitters as standalone tools that can be

used for both primary and secondary vertex reconstruction. A detailed de-

scription of these can be found in [78].



Chapter 5

Depletion Depth Studies for the

ATLAS SCT

5.1 Charge Depletion in Silicon Sensors

The microstrip sensors of the ATLAS SCT (section 3.2.1) use p-in-n silicon

technology. A p-type material is obtained by doping the silicon with atoms

from the III group of the periodic table. Elements in the III group have three

electrons in their valence shell and can attach an electron from the silicon

atoms with relative ease (these elements are called acceptors). On the other

hand, n-type materials are produced by replacing some silicon atoms with

atoms from the V group, which characterise for being good donors since to

lose one of their five valence quarks they require a small amount of energy.

The majority carriers in the p- and n-type semi-conductors are holes and

electrons, respectively.

When p-type and n-type silicon come together they create a junction [79].

Free carriers at either side of the junction start to diffuse into the opposite

region; holes diffuse into the n-side, leaving a net negative charge on the p-

side of the junction, and electrons diffuse into the p-side, leaving the n-side of

72
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the junction with a net positive charge. This migration and recombination of

electrons and holes leaves a space charge or depletion region that has no free

carriers and a small built-in potential, as illustrated in figure 5.1.
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Figure 5.1: Schematic representation of a p-n junction. The immobile acceptor
and donor ions in the depletion region generate an electric field and, hence, a
built-in potential. The dark coloured regions correspond to neutral material.

The electron-hole pairs liberated by a charged-particle traversing through

the depletion region drift under the potential towards the junction and can be

detected. In contrast, charge created in the neutral regions quickly recombines

with the free carriers and the signal is lost. For this reason, the depletion layer

can be thought of as a particle detector. An external reverse-bias potential

can be applied to increase the width of the depletion region and, therefore, the

active volume of the detector. In fact, if the concentration of acceptor dopants

is greater than the donor concentration (p+n junction) then the depletion

region can be very wide on the n-side and very shallow on the p-side. This

is the principle of silicon microstrip detectors, such as those in the SCT, in

which the bulk of the sensor is of n-type and the implanted strips have been

doped with p-type materials (figure 5.2).
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Figure 5.2: Schematic representation of a (p+, n, n+) silicon microstrip sensor.
The reverse bias voltage is applied through the p+ implanted strips. The n+

layer prevents the depletion region to reach the back plane.

The sensors in the SCT are on average 289.5 µm thick and are fully de-

pleted at around 65 V [80]. To reduce noise and provide fast readout, the

initial voltage at which the sensors operate is 150 V. After a few years of ex-

posure to radiation, the n-type silicon will gradually invert into p-type silicon,

leaving the sensors with a (p+, p, n+) structure. As a result, the p-n junction

will move to the opposite side of the sensor and higher voltages, up to 350 V,

will be required to achieve full depletion.

Throughout the lifetime of the SCT, it is very important to monitor the

depletion depth since it affects the charge collection efficiency and spatial

resolution of the sensors, and consequently, the quality of the recorded data.

5.2 Measurements using Cosmic Data

Two different techniques are explored to measure the depth of the depletion

region of the SCT silicon sensors. For these measurements, cosmic-ray data

taken between 2008 and 2009 are used and, given the angle of incidence of

the tracks, only the barrel region is considered. During this period, the SCT

operated in different configurations. Amongst them, the ones of particular

interest to the depletion depth studies are the data samples where the SCT
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modules were biased with voltages different from the nominal 150 V, since

with them the effect of under-depletion can be characterised. Table 5.1 lists

the cosmic-ray data samples used in this analysis.

Solenoid Bias Voltage [V]

OFF 150
50

ON 300, 250, 200, 150, 100
60, 50, 40, 30

Table 5.1: Bias voltage and status of the solenoid magnetic field for the cosmic-
ray data samples used in the depletion depth measurements.

5.2.1 Track Selection

Tracks are included in the analysis if they have:

• at least 8 hits in the silicon detectors or at least 30 hits in the TRT,

• a transverse impact parameter |d0| ≤ 500 mm,

• a transverse momentum pT ≥ 1 GeV,

• a TRT event phase1 between -10 and 40 ns.

5.2.2 Track Depth Approach

This first method is purely geometrical and uses information from each hit-

on-track to determine the depletion depth. A similar approach was used in

[81] for irradiated ATLAS Pixel detector sensors.

1The event phase is defined as the time within a readout window when a cosmic-ray
track passes through the TRT. In collision events, the event phase is replaced with the LHC
clock.
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Description

In figure 5.3 a simple schematic representation of the plane transverse to

the direction of the strips (xy-plane) of an SCT sensor is presented. If a

charged particle enters the detector in x0, with an incidence angle ϕ, then as

it moves through, it liberates charge that must travel a distance di towards

the silicon strips. Having a binary readout, the information of a strip will

only be transferred if it collects enough charge above the 1 fC threshold. The

group of fired strips is called a cluster and its size depends on the depth D of

the depletion layer.
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Figure 5.3: Schematic view of a particle crossing an SCT sensor from the
plane transverse to the direction of the strips.

The track depth di, the distance between the track and the i-th strip, is

given by

di =
xi − x0

tan ϕ
, (5.1)

where xi is the local position of each fired strip. The incidence angle ϕ is

measured from the normal to the sensor surface and, by definition, is positive

in the clockwise direction. The entry point x0 is measured at the surface of

the sensor and, since the local reference frame is defined in the central plane
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between the two active silicon layers [82], it is calculated as

x0 = xc +
D

2
tan ϕ. (5.2)

The first term in equation (5.2), xc, corresponds to the extrapolated cluster

position and is obtained by subtracting the track residual2 from the measured

cluster position, which basically gives the x position of the track in the middle

plane.

Since D is the quantity we want to measure, as a first approximation it

can be replaced with the sensor thickness L, so that

x′0 = xc +
L

2
tan ϕ, (5.3)

which introduces a systematic displacement of the entry point

∆x0 =
L−D

2
tan ϕ. (5.4)

The track depth is computed for every strip in every cluster and stored in

a histogram. The falling edge of the resulting distribution is fitted with an

error function given by

f(Df − x) = 1− a

2
Erfc

(Df − x

b
√

2

)
= 1− a√

π

∞∫
Df−x

b
√

2

exp(−t2)dt, (5.5)

where a, b and Df are the parameters extracted from the fit. Df denotes the

inflection point of the function and is associated to the depletion depth.

2The track residual is the shortest distance between the fitted track and the hit’s centre
of gravity.



5.2. Measurements using Cosmic Data 78

Selection

At the cluster level additional requirements are imposed. First of all, the

absolute value of the local incidence angle ϕ should be less than 60◦; at large

incidence angles, the 1 fC threshold plays a more crucial role, affecting the

cluster size by producing split clusters. To avoid the edges of the sensors, the

calculated entry point x0 is required to be within ±25 mm from the origin3

(in total, the sensors are ∼ 60 mm wide). Finally, the extrapolated cluster

position xc must lie between the first and last strip of the cluster.

Preliminary Results

Figure 5.4 shows the track depth distribution for cosmic-ray data in the ab-

sence of the solenoid magnetic field and with the sensors biased at 150 V.

Two interesting features stand out from this distribution: a slight dip close to

0 mm and a long tail reaching depths of 1 mm, even though the sensors are

only 0.285 mm thick on average.
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Figure 5.4: Track depth distribution for cosmic-ray data with 150 V bias
voltage and with the solenoid magnetic field off.

3The origin of the local reference frame is located in the geometrical centre of the SCT
sensors.
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By dividing the sample in 10◦ angle slices, as illustrated in figure 5.5, it

becomes clear that the dip is more pronounced at large incidence angles while

the tail dominates the small angle regime. Looking at equation (5.1), the track

depth is inversely proportional to the tangent of the local incidence angle, so if

the angle is small, then the tangent will be small and consequently the track

depth will be large. Large angles are affected by split clusters. Incidence

angles between 20◦ and 30◦ produce a flat distribution around 0 mm and

almost no tail extending to very large depths. All samples show the same

behaviour so this interval will be used to determine the depletion depth in all

cases.
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Figure 5.5: Track depth distribution in different incidence angle slices for
cosmic-ray data at 150 V bias voltage and with the solenoid magnetic field
off.

In figure 5.6, the fitted (using equation (9.1)) track depth distributions for
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two cosmic-ray data samples, 150 V and 50 V of bias voltage, taken with the

solenoid magnetic field off are shown along with the resulting fit parameters.

Fitting ranges with similar χ2/Ndof showed a variation of 4-5% in the measured

value of Df . For the 150 V case, the value for Df is consistent with the sensor

thickness while for the 50 V case, it suggests that the sensors are slightly

under-depleted.
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(b)

Figure 5.6: Fitted track depth distributions for cosmic-ray data with (a) 150
V and (b) 50 V bias voltage and the solenoid magnetic field off.

Figure 5.7 shows the fitted track depth distributions for the cosmic-ray

data samples taken with the presence of the solenoid magnetic field and with

the sensors biased at a voltage smaller than the depletion one.

When the bias voltage is smaller than the depletion voltage, the assump-

tion made in equation (5.3) does not hold since D 6= L and so the value of

Df has to be corrected for this effect. From equation (5.4) it can be inferred

that the difference between the measured and the true value of the depletion

depth is

Df −D =
L−D

2
, (5.6)

which means that the correction factor for the systematic displacement of the

entry point is given by

D = 2Df − L. (5.7)
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Figure 5.7: Fitted track depth distributions for cosmic-ray data with (a) 60
V, (b) 50 V, (c) 40 V and (d) 30 V bias voltage and the solenoid magnetic
field on.

The values for Df and D for the different samples are summarised in table

5.2. Figures 5.8 and 5.9 show the corrected value of the depletion depth

as a function of the square root of the bias voltage for the samples without

and with the solenoid magnetic field, respectively. In these plots, the black

markers correspond to the data measurements and the solid red line to the

expected values of the depletion depth if

D = L

√
Vb

Vd

(5.8)

with the sensor thickness L = 289.5µm, the depletion voltage Vd = 64.8 V

and with Vb the bias voltage.
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Solenoid Bias Voltage [V] Df [mm] D [mm]

OFF 150 0.2879 ± 0.0011 0.2879 ± 0.0011
50 0.2733 ± 0.0084 0.2571 ± 0.0168

ON 60 0.2878 ± 0.0025 0.2861 ± 0.0050
50 0.2745 ± 0.0039 0.2595 ± 0.0078
40 0.2732 ± 0.0067 0.2569 ± 0.0134
30 0.2833 ± 0.0081 0.2771 ± 0.0162

Table 5.2: Calculated values for the depletion depth for the different bias-
voltage cosmic-ray data samples.

For data taken in the absence of the magnetic field, this method shows rea-

sonable agreement with the expected values. This is not the case for the data

immersed in the magnetic field. Being a geometrical method, this approach

is not able to reproduce the effects of the magnetic field on the electron-hole

pairs drifting in the silicon due to the Lorentz Force.
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Figure 5.8: Comparison between the measured depletion depth and the ex-
pected values for samples without the solenoid magnetic field.
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Figure 5.9: Comparison between the measured depletion depth and the ex-
pected values for samples with the solenoid magnetic field.

5.2.3 Fit to Slope Approach

Description

The distribution of the average cluster size as a function of the local incidence

angle ϕ, is sensitive to changes in the bias voltage at which the sensors are

set. When a sensor is not fully depleted, some of the electron-hole pairs

liberated by a traversing charged particle recombine with the free carriers,

which means that, for a given incidence angle, on average there will be less

strips that collect enough charge above threshold. By monitoring the slope of

the average cluster size distribution with respect to ϕ, the depletion depth of

the SCT sensors can be indirectly estimated. A variety of functions can be

fitted to obtain the value of the slope but the simplest one, a straight line, is

chosen for this measurement between the range 0◦ < ϕ < 20◦; including the

minimum of the distributions in the fit, which is associated to the Lorentz

angle, results in large fluctuations depending on the chosen fitting range.
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Preliminary Results

Figure 5.10 shows the average cluster size vs local incidence angle distribution

for cosmic-ray data samples, collected during 2009, at different bias voltages

and with the solenoid magnetic field on. For bias voltages greater than the

depletion voltage, all distributions lie on top of each other, while for bias

voltages lower than the depletion voltage the distributions get distorted and

the average cluster size decreases.

Cosmic-ray data
Solenoid = On

ATLAS
 W

ork in Progress

Figure 5.10: Average cluster size as a function of the local incidence angle ϕ
for different bias voltages with the solenoid magnetic field on.

In figure 5.11, examples of the linear fits done to the cluster size vs ϕ dis-

tributions for different bias voltages are presented. The slope values extracted

from the linear fits, listed in table 5.3, are plotted as a function of the square

root of the bias voltage in figure 5.12. If a straight line is fitted to the plateau

region and another one to the low voltage region, it can be seen that the two

intersect at around
√

Vbias = 8.5, approximately the value of the depletion

voltage.
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Figure 5.11: Examples of linear fits to the average cluster size vs incidence
angle distributions for cosmic-ray data taken with the solenoid magnetic field
on and with bias voltages of (a) 30 V, (b) 50 V, (c) 100 V and (d) 300 V.

Bias Voltage [V] slope

300 0.0281 ± 0.0003
250 0.0278 ± 0.0003
200 0.0274 ± 0.0004
150 0.0261 ± 0.0006
100 0.0268 ± 0.0005
60 0.0203 ± 0.0003
50 0.0149 ± 0.0004
40 0.0105 ± 0.0005
30 0.0064 ± 0.0004

Table 5.3: Fitted slope values for the different bias-voltage cosmic-ray data
samples.
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Figure 5.12: Fitted value of the slope as a function of the square root of
the bias voltage. The intersection of the fitted lines is close to the depletion
voltage.

5.2.4 Conclusion

This preliminary study of the depletion depth of the SCT sensors using cosmic-

ray data shows that two approaches can be used to monitor this quantity, one

valid only in the absence of the solenoid magnetic field and the second one

which measures it indirectly. The “Fit to Slope” approach can be used with or

without the magnetic field and has the additional advantage of being relatively

simple to implement in the SCT data quality monitoring scripts. If the value

of the slope of the average cluster size vs ϕ distribution goes below a certain

value (below the plateau region), it will be an indication that the sensors

are not fully depleted and that the bias voltage needs to be increased for an

optimal performance.
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Chapter 6

Event Selection &

Reconstruction Efficiencies

6.1 Minimum Bias in ATLAS

As discussed in section 1.3, the definition of minimum bias depends on the

trigger requirements chosen by each experiment. A common way to measure

the properties of minimum bias events is to use data collected with a double-

sided trigger to suppress the contributions from single-diffraction (also known

as Non-Single Diffractive), as was done for example by [83]. This approach

introduces model dependent corrections for the diffractive components. AT-

LAS has adopted a slightly different philosophy [84]: to perform an inelastic

measurement that is easily reproducible thanks to a well defined final state

selection and which contains minimal model dependence.

In ATLAS, two complementary trigger strategies for selecting minimum

bias events are available [85, 86]. The measurement presented in this thesis

is done using data selected with the MBTS and BPTX triggers which are

described below.
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6.1.1 MBTS

The signal for this trigger is read from Minimum Bias Trigger Scintillators

which are located at ±3.56 m from the centre of ATLAS. Each MBTS wheel

is segmented into 16 plates of trapezoidal shape, called counters, arranged in

two rings in pseudorapidity, covering the range 2.1 < |η| < 3.8, and 8 sections

in azimuth (figure 6.1). The MBTS wheels are mounted on the cryostat of

the LAr calorimeter, perpendicular to the beam direction, and the scintillators

are connected to PhotoMultiplier Tubes (PMTs) of the Tile calorimeter which

results in a fast readout.

The sensitivity of the MBTS to minimal detector activity proves useful

for the early commissioning stages. After a few months of operation at high

luminosity, it will suffer from radiation damage, and a different strategy will

be needed for minimum bias measurements.

Figure 6.1: Display of a 7 TeV collision event, recorded in March 2010 by the
ATLAS detector, which triggered the MBTS counters, highlighted in orange.
From [49].
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An event is selected if the energy deposited in the counters is above a

discriminator threshold of 50 mV [87]. The counter multiplicity is measured

independently for each side. These requirements are grouped into different

trigger setups, or menus, that are loaded at Level 1. Table 6.1 summarises

the thresholds used for three of the most important trigger menus for early

data-taking.

Trigger Menu Requirements

L1 MBTS 1 ≥ 1 counter above threshold on either side of the detector
L1 MBTS 1 1 ≥ 1 counter above threshold on both sides of the detector
L1 MBTS 2 ≥ 2 counters above threshold in total

Table 6.1: MBTS trigger menus at Level 1.

6.1.2 BPTX

The ATLAS BPTX stations [88] are located at both sides of the detector, 175

m away from the interaction point. Each station has four electrostatic beam

pick-up detectors which are arranged symmetrically in the direction transverse

to the beam pipe.

The BPTX have two purposes:

• Monitor the position and structure of the beams and provide timing

signals to allow ATLAS to synchronise its front-end electronics with the

LHC collision clock.

• Provide a trigger condition to indicate that bunches are passing through

ATLAS. The signal from the BPTX is discriminated and shaped into 25

ns long pulses that are given to the Central Trigger Processor (CTP) to

provide filled bunch triggers. The BPTX triggers are usually combined

with others as a confirmation of beam crossings.
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Figure 6.2 shows the BPTX pulses produced by a proton bunch that circu-

lated 8 times around the LHC on September 2008. The pulses are separated

by 89 µs and after each turn, the intensity of the signal degrades due to losses

and de-bunching of the beam.

duration, etc. if needed. The electrical signals are then transmitted
to the ATLAS sub-detectors via the Central Trigger Processor (CTP)
of the Level-1 trigger system and to the BPTX monitoring system.

3.1. Level-1 trigger

The ATLAS trigger system is designed in three levels, each level
sequentially refining the selection of events to be saved for further
offine analysis. The Level-1 trigger is implemented in custom
electronics and performs a first selection of events within 2:5ms,
based primarily on reduced-granularity data from the calori-
meters and the muon spectrometer. The selected events are
processed further by the High Level Trigger system which is
implemented in software. The signals from the BPTX stations are
discriminated with a constant-fraction discriminator to provide
ATLAS with an accurate and reliable timing reference in the form
of a standard NIM pulse. This pulse is fed into the Level-1 Central
Trigger Processor where it serves as a trigger condition indicating a
bunch passing through ATLAS.

3.2. Monitoring of the LHC beams and timing signals

Furthermore, the BPTX detectors are used by a stand-alone
monitoring system for the LHC bunches and timing signals. The
BPTX and LHC timing signals are digitized by a deep-memory, high
sampling rate (5GHz) oscilloscope2 and transferred to a computer
running Linux for analysis. The features of the scope enables capturing

a full LHC turn in one acquisition while retaining enough detail to get
about 5 measurement points on the sharp falling edge of each BPTX
pulse (see e.g. Fig. 3). Since most of the high-frequency content of the
BPTX signals is attenuated by the long transmission line, the
frequency spectrum of the signals arriving in ATLAS peaks around
400MHz, making an analog bandwidth of 600MHz sufficient for the
oscilloscope used for digitization. By making fits to the identified
bunch pulses and clock edges, the BPTX monitoring systemmeasures
the phase between each bunch and the clock signal with high
accuracy. Monitoring these quantities is crucial to guarantee a stable
phase relationship for optimal signal sampling in the sub-detector
front-end electronics. In addition to monitoring this phase, the
intensity and longitudinal length of the individual bunches are
measured and the structure of the beams is determined. Using the
BPTX monitoring applications, the shifter in the control room can
verify that the timing signals are synchronized to the collisions, and
also look for so-called satellite bunches, out-of-time bunches that
would cause off-center collisions in ATLAS.

The monitoring system is running independently from the ATLAS
online data acquisition infrastructure, enabling monitoring of the LHC
machine in the control room even when ATLAS is not taking data.
Summary data from the BPTX monitoring system, e.g. mean bunch
intensity and phase, are published to the ATLAS Detector Control
System [7] and ultimately saved to the conditions database.

4. Results from the first LHC beams

4.1. The first proton bunches in ATLAS

On September 10, 2008, the first LHC proton bunch reached
ATLAS. Fig. 3 shows the pulse recorded by the BPTX monitoring
system.

A few hours later, a bunch was successfully circulated 8 turns
around the accelerator and seen by ATLAS as depicted in Fig. 4.
The pulses are separated by 89ms, corresponding to the time it
takes for an LHC bunch to circulate around the 27km long ring.
The pulse amplitude, which is proportional to the bunch intensity,
is degrading from turn to turn, which is consistent with the beam
loss and debunching expected for a beam not yet captured by the
LHC RF system.

Fig. 2. Diagram showing the BPTX system and how it interacts with the related
systems in ATLAS.

Fig. 3. The first LHC bunch on its way to ATLAS.

Fig. 4. A bunch passing ATLAS in eight consecutive turns.

Fig. 1. A photograph of one of the two ATLAS BPTX stations.

2 WaveRunner 64 Xi from LeCroy [6].

C. Ohm, T. Pauly / Nuclear Instruments and Methods in Physics Research A 623 (2010) 558–560 559

Figure 6.2: BPTX signal produced by a proton bunch passing through ATLAS
eight times. From [88].

6.2 Event and Track Selection Requirements

The analysis of two-particle angular correlations is done on Minimum Bias

charged-track data collected during 2009 and 2010, at two centre-of-mass en-

ergies. It uses the full 900 GeV data sample, which corresponds approximately

to an integrated luminosity of 7 µb−1, and the first 190 µb−1 of 7 TeV data.

Early data consists of low instantaneous luminosity runs where the probabil-

ity of additional interactions in the same bunch crossing is of the order of

0.1%. The event and track selection criteria is identical to the one used in

the ATLAS charged-particle multiplicity analysis, more commonly known as

Minimum Bias analysis [84].

Only events that occurred when the ATLAS Inner Detector was fully oper-

ational and the solenoid magnetic field was at its nominal strength of 2 Tesla,
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are used. To reduce the contribution from background events (e.g. beam-

gas interactions or beam-halo) and from non-primary tracks, events are also

required

• to have been triggered by the single-arm, single-counter Level 1 MBTS

(L1 MBTS 1 trigger menu) and by a coincidence of BPTX signals be-

tween the two sides of ATLAS,

• to contain at least one primary vertex (the one with the highest
∑

p2
T)

reconstructed using the beam spot1 (BS) information and at least two

tracks with:

– pT > 100 MeV,

– |dBS
0 | < 4 mm,

– transverse and longitudinal errors of σ(dBS
0 ) < 5 mm and σ(zBS

0 ) <

10 mm, respectively,

– at least 1 hit in the Pixel detector and 4 hits in the SCT,

– at least 6 hits in the silicon detectors (Pixel + SCT)

• not to have a second interaction vertex associated to more than four

tracks in order to remove pile-up, events with more that one proton-

proton interaction in a single bunch-crossing,

• to contain a minimum number of tracks nsel, reconstructed with either

the Inside-Out or Low-pt tracking algorithms, with:

– pT > 100 MeV,

1The beam spot is defined as the luminous region produced by the pp collisions. For the
Minimum Bias analysis, the beam spot parameters (position, size and tilt) are calculated
using a maximum-likelihood fit to the distribution of reconstructed primary vertices [89].
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– |η| < 2.5 (inside the acceptance of the ID),

– at least 1 hit in the b-layer of the Pixel detector (only if the extrap-

olated track crossed an active region of a Pixel module that was

not disabled),

– at least 1 hit in any of the layers of the Pixel detector,

– at least 2 (pT > 100 MeV), 4 (pT > 200 MeV) or 6 (pT > 300 MeV)

hits in the SCT,

– |dPV
0 | < 1.5 mm (PV - measured with respect to the primary ver-

tex),

– |z0 sin θPV | < 1.5 mm,

– a track-fit χ2 probability of at least 0.01 if the track has a pT > 10

GeV (to remove tracks with mis-measured high-pT due to mis-

alignment or interactions with the detector material)

The impact parameter cuts and the requirement of at least one hit in the

Pixel detector help discriminate between non-primary and primary tracks.

The different number of SCT hits as a function of pT helps to reduce the frac-

tion of badly reconstructed tracks; a short track length translates into worse

momentum resolution and migration effects in which low-pT tracks are recon-

structed as having very high momentum. Studies showed that a fraction of

tracks with mis-measured pT survived after applying the silicon hit require-

ments [84]. Most of these tracks (pT > 20 GeV), however, do not have a good

quality fit so they can be rejected by applying a cut on the χ2 probability.

At 7 TeV, two different phase-space regions with varying contributions

from diffractive events are explored: nch ≥ 2 and nch ≥ 20, where nch is

the charged-particle multiplicity. For the measurement at 900 GeV, only the

multiplicity cut of nch ≥ 2 is used due to limited statistics at high multiplicity.
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The total number of events and tracks satisfying the above requirements for

each phase-space region are shown in table 6.2.

Track Multiplicity Cut
√

s [TeV] Selected Events Selected Tracks

nsel ≥ 2
0.9 357,523 4,532,663
7 10,066,072 209,809,430

nsel ≥ 20 7 4,029,565 153,553,766

Table 6.2: Total number of selected events and tracks in 900 GeV and 7 TeV
data. All the different phase-space regions are defined for a pT > 100 MeV
and |η| < 2.5.

6.3 Reconstruction Efficiencies

The event selection and reconstruction is affected by the resolution of the de-

tector and the performance of the reconstruction algorithms. In order to cor-

rect for these effects, knowledge of the reconstruction efficiencies is necessary.

This section describes how the efficiencies associated to tracking, vertexing

and triggering relevant for this analysis were determined. These distributions

were derived by the Minimum Bias analysis in [84, 90].

6.3.1 Tracking

The track reconstruction efficiency, εtrk, is determined from Monte Carlo. The

same event and track selection criteria as in data are applied (section 6.2).

The first step in the determination of the efficiency consisted in making sure

that the distributions of track properties reconstructed in data were correctly

reproduced by the simulation [84, 91].

The efficiency, parameterised in bins of pT and η, is defined as

εtrk(pT, η) =
Nmatched

rec (pT, η)

Ngen(pT, η)
(6.1)
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where Nmatched
rec (pT, η) corresponds to the total number of reconstructed tracks

that are matched to a generated charged particle and Ngen(pT, η) is the total

number of generated charged particles in the given (pT, η) bin.

The matching of reconstructed tracks to generated particles is carried out

using a cone+hit strategy. Only primary particles, defined at the generator

level as either having a lifetime greater than 3 × 10−11 seconds or being the

decay products of a particle with a lifetime less than 3× 10−11 seconds, enter

the matching algorithm.

The cone-matching, done in the ηφ-plane, associates a charged particle

with the track that has the smallest ∆R =
√

(∆φ)2 + (∆η)2 with respect to

it, within a cone radius of 0.15. In some cases, the track will be matched

to a charged particle that happened to be nearby but did not produce such

track. The contribution from these fake tracks can be reduced by requiring

that the trajectory of the charged particle and the track share a hit in the

Pixel detector. The remaining un-matched tracks are considered secondaries.

Figures 6.3 and 6.4 show the pT and η projections of the track recon-

struction efficiencies at 900 GeV and 7 TeV, respectively. The error bands

correspond to the total uncertainty in each bin (a discussion of the uncertain-

ties on this measurement is deferred to section 8.2.2). The small differences

between the two energies arise from the different configuration and number

of disabled modules in the silicon detectors between the two periods of data-

taking. In both cases, however, the tracking efficiency drops for values of

|η| > 1.0, because of the larger amount of material that particles have to go

through in this region (end-cap), and there is a turn-on as a function of pT

related to the constraints on the number of silicon hits.
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Figure 6.3: Track reconstruction efficiency at 900 GeV as a function of (a) pT

and (b) η for tracks with pT > 100 MeV and |η| < 2.5. From [90].
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Figure 6.4: Track reconstruction efficiency at 7 TeV as a function of (a) pT

and (b) η for tracks with pT > 100 MeV and |η| < 2.5. From [84].

6.3.2 Vertexing

The vertex reconstruction efficiency, εvtx, is derived from data. The event and

track selection described in section 6.2 is applied with the exception of the

requirements on the presence of a primary vertex, and hence, the transverse

and longitudinal impact parameter cuts with respect to it. Instead, tracks are

selected if they have a |dBS
0 | < 1.8 mm. The efficiency, as a function of the

beam spot track multiplicity nBS
sel , is given by:

εvtx(n
BS
sel ) =

Nvtx(n
BS
sel )

N(nBS
sel )

(6.2)
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where N(nBS
sel ) is the total number of triggered events satisfying these modi-

fied selection criteria and Nvtx(n
BS
sel ) the fraction of these events containing a

reconstructed vertex. The efficiencies for both energies are shown in figure 6.5.

The error bands correspond to the total uncertainty in each bin (see section

8.2.2). At both energies, the efficiency rapidly reaches 100% after a 90-92%

value in the first multiplicity bin. For events with nBS
sel = 2, the efficiency

shows a dependence on the separation in zBS
0 between the tracks; at low nBS

sel ,

it is more likely to reconstruct a primary vertex if the tracks are close together.

In figures 6.6 and 6.7, the vertex efficiency distributions as a function of ∆zBS
0

for events containing at least one track with a 100 < pmin
T < 200 MeV and

pmin
T > 200 MeV are shown for 900 GeV and 7 TeV, respectively.
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Figure 6.5: Vertex reconstruction efficiency, as a function of nBS
sel , at (a) 900

GeV [90] and (b) 7 TeV [84].

6.3.3 Triggering

The trigger reconstruction efficiency, εtrig, is also calculated from data. A

control trigger is used to select events from random filled bunch crossings,

filtered at the HLT. For the 900 GeV case, the L2 requires at least 7 clusters

in the Pixel detector plus a minimum of 7 SCT hits and 1 track with pT > 200

MeV at the EF level. For 7 TeV, only 4 Pixel clusters and 4 SCT hits are
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Figure 6.6: ∆zBS
0 dependence of εvtx at 900 GeV for events with at least one

track with (a) 100 < pmin
T < 200 MeV and (b) pmin

T > 200 MeV. From [90].
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Figure 6.7: ∆zBS
0 dependence of εvtx at 7 TeV for events with at least one

track with (a) 100 < pmin
T < 200 MeV and (b) pmin

T > 200 MeV. From [90].

required, with no additional input from the EF.

The modified selection criteria described in section 6.3.2 are applied; the

vertex requirement is dropped in this case due to possible correlations between

the trigger and vertex efficiencies.

The trigger efficiency, as a function of nBS
sel , is calculated as:

εtrig(n
BS
sel ) =

Nrand+MBTS(nBS
sel )

Nrand(nBS
sel )

(6.3)

with Nrand(n
BS
sel ) the total number of selected events in the control sample and

Nrand+MBTS(nBS
sel ) the fraction of these events that were also triggered by the
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L1 MBTS 1. The efficiencies for both energies are presented in figure 6.8. The

error bands correspond to the total uncertainty in each bin (see section 8.2.2).

A 97% efficiency is observed for events with nBS
sel = 2 and, as the multiplicity

increases, it reaches 100%.
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Figure 6.8: Trigger reconstruction efficiency, as a function of nBS
sel , at (a) 900

GeV [90] and (b) 7 TeV [84].



Chapter 7

Correction Procedure &

Closure Tests

7.1 Method

In order to disentangle the effects caused by the apparatus and the reconstruc-

tion algorithms from the true physics processes, the corrections described in

the following sections are applied to the reconstructed data. The same pro-

cedure is followed for all distributions, both one- and two-dimensional, in all

the regions of phase-space explored in this analysis.

7.1.1 Trigger and Vertex Selection

To account for the loss of events due to inefficiencies in the trigger and vertex

requirements (section 6.2), an event-by-event weight, wev, given by

wev =
1

εvtx(nBS
sel )

1

εtrig(nBS
sel )

(7.1)

is applied to both the foreground and multiplicity distributions, with εvtx(n
BS
sel )

and εtrig(n
BS
sel ) the vertex and trigger reconstruction efficiencies, respectively,

100
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as described in sections 6.3.2 and 6.3.3.

7.1.2 Probabilistic Track Removal

Due to inefficiencies in the track reconstruction, some tracks in the event can

be lost. The effect that these missing tracks have on the correlations measure-

ment is corrected for using the Hit Backspace Once More (HBOM) method

[92]. The correction in this method is derived by repeatedly applying the

(parameterisation of the) detector effects to the data and then extrapolating

back to a detector effect of zero. This is a model-independent method that

only requires as input the single track reconstruction efficiency as a function

of the track pT and η (section 6.3.1). The diagram in figure 7.1 illustrates the

different steps of this correction procedure.
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Figure 7.1: Probabilistic track removal method to correct for track reconstruc-
tion inefficiencies.

As a first step, the track-based observable, the correlation function, is

computed using all the reconstructed tracks that satisfy the selection require-

ments described in section 6.2. Then, for each track, the track reconstruction

efficiency εi(pT, η) is compared to a (unique) random number ri, generated
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uniformly between 0 and 1. If the random number is greater than the track

reconstruction efficiency then the track is thrown away and removed from the

sample.

Using a subset of the original tracks, defined by all those tracks for which

εi(pT, η) > ri, (7.2)

the observable is computed again. This constitutes one iteration of the track

removal procedure; the observable calculated using the full set of uncorrected

tracks is defined as the 0th iteration.

A second iteration takes the subset of tracks produced in the first iter-

ation and uses a new set of random numbers to remove some of them ac-

cording to their track reconstruction efficiency, and with the remaining tracks

re-calculates the observable. Additional iterations are carried out in the same

way. The choice of the number of track removal iterations is limited by statis-

tics; there must be a sufficient number of events with sufficient tracks that

some remain after all iterations. For the sample size used in this measure-

ment, six iterations provide enough points to define a trend, and are not so

many that the last iteration still contains enough tracks.

Figure 7.2 illustrates the effect of the track removal iterations on the pseu-

dorapidity correlation function at 7 TeV for the track multiplicity cut nsel ≥ 2.

The solid black circles correspond to R(∆η) in the 0th iteration, using all se-

lected tracks, and the different markers correspond to that same distribution

after each iteration. It can be seen that by repeatedly applying the detector

effects to the data, the correlation function is flattened out. This is related

to the dependence of the correlation function on the track multiplicity, not

only as a normalisation factor but also as a weight for each foreground pair

(section 2.3).
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Figure 7.2: Two-particle pseudorapidity correlation function, R(∆η), after
each iteration of the probabilistic track removal correction method.

Finally, in order to obtain an estimate of the value of the correlation func-

tion at the particle level, without any detector effects, for each bin of the

observable the values are plotted as a function of the iteration number (0, 1,

2, ..., 6) and the fit to the resulting distribution is extrapolated to −1. For this

analysis, the fit and subsequent extrapolation use a third-degree polynomial

as it is the simplest type of function that can fit all the bins of the observable.

Figure 7.3 illustrates the polynomial fit for an inner and an outer ∆η bin of

R(∆η) at 7 TeV in the nch ≥ 2 phase-space. The fits for all the bins in this

distribution are shown in Appendix A.

Studies of the possible uncertainties introduced by the choice of the fitting

function and the number of iterations used as input are described in section

8.2.3.

This probabilistic track removal correction method allows us to quantify

the effect that detector inefficiencies have on an observable; in each iteration

the detector effects are being re-applied to the data, which means that every

time tracks are lost in exactly the same way as they are lost by the ATLAS
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Figure 7.3: Example of third-degree polynomial fits to the values of R(∆η) in
(a) a central and (b) an outer bin.

detector. In other words, the 0th iteration corresponds to the effect of ATLAS,

the first iteration to the effect of ATLAS squared, and so on. By extrapolating

to the −1 iteration, the effect of ATLAS is removed and the true observable

can be measured.

7.2 Monte Carlo Studies

7.2.1 Closure Tests

To test the effectiveness of the correction method, studies were done in Monte

Carlo to check whether the generated, or truth, distributions were recovered
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from the fully detector-simulated and reconstructed ones after applying the

methodology described in the previous section (a procedure usually referred

to as closure tests).

In order to eventually compare to data, an additional correction had to

be applied to the Monte Carlo distributions to account for the fact that the

beam spot position and width in the z-direction differed significantly between

data and simulation. Not including this factor would imply a different vertex

acceptance and slightly different kinematic distributions. For this reason, the

simulation was re-weighted to reproduce the position of the primary vertex in

the z-axis as seen in data (figure 7.4). Every MC distribution includes this

event weight.
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Figure 7.4: Distribution of the position of the primary vertex in the z-direction
for data (blue markers) and the reconstructed pythia6 MC09 Monte Carlo
tune, before (black markers) and after (yellow histogram) re-weighting.

The pseudorapidity correlation function, R(∆η), obtained by integrating

the two-dimensional distribution over the range 0 < ∆φ < π, will be used as an

example to illustrate the closure of the correction method. For these tests, the

ATLAS MC09 pythia6 tune (described in section 1.4.3) is used. Different

models and tunes were also studied with similar results (see discussion in

section 8.2.1). Table 7.1 lists the total number of selected events and tracks
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at both energies and regions of phase-space used for these Monte Carlo studies.

Track Multiplicity Cut
√

s [TeV] Selected Events Selected Tracks

nsel ≥ 2
0.9 790,877 8,746,908
7 21,551,438 379,934,146

nsel ≥ 20 7 7,418,245 254,264,501

Table 7.1: Total number of selected events and tracks in 900 GeV and 7 TeV
Monte Carlo MC09 pythia6 tune. All the different phase-space regions are
defined for a pT > 100 MeV and |η| < 2.5.
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Figure 7.5: Comparison between the generated and corrected Monte Carlo
pseudorapidity distributions, R(∆η), for the pythia6 MC09 tune at (a) 900
GeV and 7 TeV, for the phase-space regions (b) nch ≥ 2 and (c) nch ≥ 20.
The absolute difference between the two distributions as a function of ∆η is
shown in the bottom panels.
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A comparison between the corrected and generated pseudorapidity distri-

butions is shown in figure 7.5 for the two centre-of-mass energies and the dif-

ferent phase-space regions explored at 7 TeV. In all cases, the red histogram

corresponds to the true observable and the black markers to the corrected

distribution after applying the procedure described in section 7.1. At the

bottom of each plot, the absolute difference between the two distributions,

(truth− corrected), in each ∆η bin is presented.

At both 900 GeV and 7 TeV with nch ≥ 2 (figures 7.5a and 7.5b) there is

a very good agreement between the corrected and truth distributions, with an

absolute difference in most of the bins of ±0.05. This is not the case, however,

for the high multiplicity phase-space (figure 7.5c), where there is good closure,

of the order of 0.05, in the region of the tails (|∆η| > 1.0), but more significant

discrepancies around the central peak, with a maximum absolute difference in

the two central bins of 0.2. The origin of this non-closure is described below,

in section 7.2.2.

As the method does not provide a perfect closure, the remaining differences

are considered as a systematic uncertainty; this will be discussed in section

8.2.1 in more detail.

7.2.2 Effect of Secondary Particles

The success of the probabilistic track removal correction method is limited by

how well randomly removing tracks according to their track reconstruction

efficiency approximates the true effects of the detector. A simple way to test

this statement is by applying a single “track” removal iteration to the truth

level distribution and compare this reduced-truth to the full simulation. If the

correction method is a good approximation to the effects of the apparatus,

then these two distributions should be very similar.
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Figure 7.6: Comparison between the R(∆η) obtained from full simulation
(black circles) and reduced truth (open red circles) at 7 TeV, for (a) nch ≥ 2
and (b) nch ≥ 20. The absolute difference between reconstructed and reduced
truth is shown in the bottom panels.

Figure 7.6 shows a comparison between the R(∆η) obtained using the full

simulation (solid black circles) and the one obtained from the reduced-truth

sample, after one iteration of track removal (open red circles); the solid red
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circles correspond to the original hadron-level truth distribution. As shown in

the bottom panels of the plots, the reduced-truth distribution agrees reason-

ably well with the reconstructed one; the absolute difference is flat across the

tails and reaches a maximum around the central peak (a similar behaviour to

the non-closure, and, in fact, of similar magnitude), which is more pronounced

in the high multiplicity case.

In both cases, the reconstructed distribution is slightly higher than the

reduced-truth in the central region around the peak. This indicates that

there are particles at the detector-level that are not present at the hadron-

level. This is really not surprising because the probabilistic track removal

method accounts for particles that are present in the truth-level but, due to

inefficiencies in the reconstruction, are not observed by the detector; it does

not account for particles that are reconstructed but do not appear in the

hadron-level event definitions1.

Secondary tracks are a source for extra particles at the detector-level, and

they can be classified in two categories: physics secondaries and material

secondaries. Physics secondaries arise from the decay of long-lived particles,

such as neutral kaons. As previously discussed, a generator-level cut on the

average lifetime of particles is implemented so that particles with a decay

length cτ > 10 mm are set stable. This means that their decay products

are absent from the hadron-level event records. However, these particles are

handed over to Geant4 (section 4.1.2) and are decayed by the simulation, so

that if they have impact parameters of less than 1.5 mm, they will be present

in the detector-level and used for analysis.

Correcting for, or removing, physics secondaries would require the ability

1The contribution from fake tracks was shown to be negligible in [84].
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to identify the different particle species involved and would introduce model

dependent factors. An estimate of the size of the effect can be made, however,

using truth-level Monte Carlo. Instead of applying the cτ cut at the generator-

level, a cut on the transverse and longitudinal impact parameters of 1.5 mm is

used to generate a new sample where physics secondaries are retained. Using

different tunes of pythia6 (DW, MC09 and AMBT1), the pseudorapidity

correlation function is calculated with and without the cτ cut. A comparison

between these two distributions at 7 TeV, for nch ≥ 2 and nch ≥ 20, is

presented in figure 7.7. For the different tunes, the open squares correspond

to the observable calculated using the cτ cut sample, while the solid markers

represent the distributions from the impact parameter cuts sample.

The absolute difference between the cτ and “raw” distributions has a sim-

ilar shape to both the non-closure and the difference between reduced-truth

and full simulation. However, the effect is smaller accounting for only 10% of

the total non-closure in the nch ≥ 20 case.
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Figure 7.7: Estimate of the effect of physics secondaries on R(∆η). Differ-
ent Monte Carlo samples were re-generated without the cτ cut and using a
cut of 1.5 mm on the impact parameters. The differences between the two
distributions are shown in the bottom panels. From [93].
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Material secondaries are the result of showers induced by the interaction

of a primary particle with the detector material. These particles are more

likely to contribute to the central peak since they are emitted close to the

particle that caused the shower.

The ratio of physics secondaries to material secondaries can be determined

indirectly if the total fraction of secondary particles per event is known. The

Minimum Bias analysis [84] measured this total fraction as a function of pT

and η. Using the raw hadron-level event samples, without the cτ cut, the

fraction of physics secondaries per event as a function of pT and η can be

estimated, using the decays of Ks, since, by far, they are the most abundant

long-lived particles in the sample.

By comparing the two distributions, one can infer the fraction of material

secondaries. This is illustrated in figure 7.8 for the 7 TeV, nch ≥ 2 case. At the

bottom of each distribution, the ratio of physics secondaries to all secondaries

is shown; apart from at high-pT, the physics secondaries account for between

20% and 50% of the total number of secondary tracks, which implies that

most of the secondary particles come from material interactions.

From these studies, it is reasonable to conclude that the majority of the

observed non-closure of the correction method is due to the effect of secondary

particles.
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Figure 7.8: Fraction of secondaries as a function of (a) pT and (b) η. The
bottom panel shows the ratio of physics secondaries to the total. From [93].



Chapter 8

Uncertainties

8.1 Extrapolation to N= −1

The parameters ai of the third degree polynomial fits in the probabilistic track

removal correction method (section 7.1.2) are used to construct an equation

f(N), for each bin in the correlation distributions, of the form

f(N) =
3∑

i=0

aiN
i (8.1)

where N corresponds to the iteration number. The corrected value of the

bin is the result of evaluating this equation in N= −1. Given that the pa-

rameters of the fit are correlated, the statistical uncertainty associated to the

extrapolation, σ−1, is determined as [94]

σ2
−1 = nMnT =

3∑
i=0

3∑
j=0

niMijnj (8.2)

where the coefficient vectors, n, and the fit’s covariance matrix, M, are given

113
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by

n =



1

N

N2

N3


, M =



σ2
0 cov01 cov02 cov03

cov10 σ2
1 cov12 cov13

cov20 cov21 σ2
2 cov23

cov30 cov31 cov32 σ2
3


(8.3)

with σi the variance of the i-th parameter, and covij the covariance between

the i-th and j-th parameters.

8.2 Systematics

In this section, the sources of systematic uncertainty identified for this anal-

ysis are presented. To illustrate the procedures followed to estimate these

uncertainties, the pseudorapidity correlation function R(∆η), obtained by in-

tegrating ∆φ between 0 and π, is used. The same techniques presented here

are applied to all the projections of the correlation function, as well as to the

two-dimensional distributions at all energies and regions of phase-space.

8.2.1 Non-Closure of the Correction Method

The small discrepancies between the generator-level and the full simulation

distributions after applying the corrections described in section 7.1, are con-

sidered as a systematic uncertainty to express the level of confidence on the

correction method.

The absolute difference between the truth and corrected distributions is

used to estimate the amount of non-closure. The reason why the difference

is used, instead of a fractional uncertainty, is that for some ∆η bins R(∆η)

is very close to zero, which would result in a spuriously large non-closure

for that bin. The issue is that data and Monte Carlo do not agree on the
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values of ∆η for which R(∆η) is close to zero. This means that estimating

the data uncertainty from Monte Carlo from figure 7.5 in section 7.2.1 would

not be adequate. Instead, the difference as a function of the corrected values

of R is used. Then, for a given value of R(∆η)corrected in data, the systematic

uncertainty associated to the non-closure, i.e. the magnitude of the difference

between truth and corrected MC, can be read from this distribution.

For this particular ∆η projection it is observed that for the nch ≥ 2 phase-

space, at both 900 GeV (figure 8.1a) and 7 TeV (figure 8.1b), the absolute

amount of non-closure is not strongly dependent on the value of R(∆η)corrected

and generally is in the region of or less than 0.05, thus, a flat systematic

uncertainty of 0.05 is assigned to all bins in data. In the case of nch ≥ 20

(figure 8.1c) a flat uncertainty of 0.05 can be used for R(∆η)corrected < 0, but

as R(∆η)corrected becomes positive there is a dependence of the non-closure

that can be parameterised with a linear equation. The complete set of plots

for all ∆η and ∆φ projections of the correlation function at 7 TeV and nch ≥ 2

is given in Appendix B.

Model Dependence

To explore any possible model dependence on the amount of non-closure, the

difference as a function of R(∆η)corrected was determined for different Monte

Carlo models and tunes. As shown in figure 8.2 for nch ≥ 2 at 7 TeV, all of

the models exhibit the same behaviour and, for this particular example, lie

within the band of 0.05 derived with the MC09 tune.
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Figure 8.1: Difference between the truth and corrected pseudorapidity distri-
butions as a function of R(∆η)corr, for the pythia6 MC09 tune at (a) 900
GeV and 7 TeV for (b) nch ≥ 2 and (c) nch ≥ 20.
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Figure 8.2: Difference between the truth and corrected pseudorapidity distri-
butions as a function of R(∆η)corr for different Monte Carlo tunes at 7 TeV
for nch ≥ 2. Bins with similar values of R(∆η)corr have been merged to reduce
the statistical fluctuations and better illustrate the behaviour of the models.
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8.2.2 Uncertainties on the Efficiencies

To evaluate the systematic uncertainty associated to uncertainties in the trig-

ger, vertex and track reconstruction efficiencies from data, the two-particle

correlation function is computed varying each of these quantities, one at a

time, according to their uncertainties. These uncertainties are considered to

be the same for both energies. A detailed description can be found in [84].

The systematic uncertainties associated to the track reconstruction effi-

ciency, summarised in table 8.1, come from different sources. To obtain the

total tracking uncertainty in each (pT, η) bin, all of these uncertainties are

added in quadrature. In the case of the trigger and vertex reconstruction ef-

ficiencies, the systematic uncertainties are of the order of 1% for events with

a track multiplicity of 2 and rapidly decrease as the multiplicity increases.

Source Uncertainty

Material description in MC increases at high-η and decreases at high-pT

max. 15% in the range 2.3 < |η| < 2.5
and 100 < pT < 150 MeV

Track Selection 1% in all (pT, η) bins
pT resolution in MC 5% in the first pT bin: 100 < pT < 150 MeV
High-pT tracks 10% due to the track-fit χ2 probability cut;
(pT > 10 GeV) η and pT dependent uncertainties due to

mis-measured tracks

Table 8.1: Uncertainties on the track reconstruction efficiency.

The upper panel of figure 8.3 shows a comparison between the nominal 7

TeV R(∆η) distribution (when nch ≥ 2) and the ones obtained by increasing

and decreasing the track reconstruction efficiency, used in the track removal

iterations, by its systematic uncertainty. The differences between the distri-

butions, shown in the bottom panel, constitute the systematic uncertainty

associated to tracking. For the majority of the bins, the tracking systematic

is the dominant uncertainty of the two-particle correlations measurement.
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Figure 8.3: Pseudorapidity correlation functions, at 7 TeV (nch ≥ 2), obtained
by varying the tracking efficiency by its systematic uncertainty.

For the calculation of the systematic uncertainty associated to the track

reconstruction in figure 8.3, the tracking uncertainties were assumed to be

correlated across all η regions, which implies that the track reconstruction

efficiency was shifted in the same direction in each pseudorapidity bin. How-

ever, it could be the case that due to, for example, differences in the amount

of material or mis-alignment, different regions of the detector could behave

distinctly. In figure 8.4, the track reconstruction efficiency was shifted in op-

posite directions for the barrel (|η| < 2.0) and end-caps (2.0 < |η| < 2.5) and

compared to the nominal R(∆η) distribution. The observed differences are

smaller than those in figure 8.3 so this effect can be considered to be covered

by the existing systematic uncertainty.

The distributions obtained by varying the vertex and trigger reconstruction

efficiencies are shown in figures 8.5 and 8.6, respectively. As with the tracking

systematics, the total uncertainty in each bin corresponds to the differences

between the nominal and systematically shifted pseudorapidity distributions.
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Figure 8.4: Pseudorapidity correlation functions, at 7 TeV (nch ≥ 2), obtained
by varying the tracking efficiency by its systematic uncertainty in opposite
directions for the barrel and end-cap regions of the detector.

The size of these uncertainties is quite small, becoming negligible for the

nch ≥ 20 phase-space.
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Figure 8.5: Pseudorapidity correlation functions, at 7 TeV (nch ≥ 2), obtained
by varying the vertex reconstruction efficiency by its systematic uncertainty.
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Figure 8.6: Pseudorapidity correlation functions, at 7 TeV (nch ≥ 2), obtained
by varying the trigger reconstruction efficiency by its systematic uncertainty.

8.2.3 Additional Checks

Studies on other possible sources of uncertainty are described in this section.

First, the effect of the choice of the number of iterations and fitting function

used in the probabilistic track removal correction method is explored. Then,

different random number generators are used to remove tracks to test if there

is any dependence due to the large number of tracks in the samples. Finally,

the effect of possible correlated track reconstruction efficiencies is discussed.

Figure 8.7 illustrates the closure obtained, using the MC09 at 7 TeV sam-

ple, when applying five and four track-removal iterations to correct the pseu-

dorapidity distributions (the nominal analysis uses six iterations in total). In

both cases, there is good agreement and the difference between the truth and

corrected distributions lies within the 0.05 uncertainty band previously ob-

tained (section 8.2.1). This suggests that this effect can be considered to be

already covered by the systematic uncertainty associated to the non-closure.
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Figure 8.7: Closure tests for the R(∆η) distribution when using (a) five and
(b) four track-removal iterations. In both cases, the difference between truth
and corrected is of or less than 0.05.

As shown in figure 8.8, when using four or five iterations to correct the

data, the resulting distributions are within the uncertainties in each bin (the

green bands correspond to the total uncertainty in each bin of the nominal

analysis, obtained by adding in quadrature the contributions from the statistic

- section 8.1 - and systematic - sections 8.2.1 and 8.2.2 - uncertainties).
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Figure 8.8: 7 TeV data R(∆η) distribution corrected using four, five and six
iterations of the track removal procedure.

A similar conclusion is reached for the choice of the fitting function. Poly-

nomials of a degree smaller than three cannot describe the behaviour of the

different bins in the distributions, so only the performance of higher degree

polynomials is evaluated. In figure 8.9, the effect of using a fourth degree

polynomial to extrapolate to the corrected values is shown for 7 TeV Monte

Carlo and data. The observed closure in MC is of the order of 0.05 and the

data distributions agree, within uncertainties, with each other. This effect is

also considered to be covered by the non-closure systematic uncertainty.

The choice of the random number generator used for removing tracks in

the correction method is studied to determine whether or not it introduces

any bias on the measurement. The nominal analysis is done with the function

Rndm inside the TRandom class in ROOT [95]. Two different classes are used to

calculate the correlation function: TRandom2 and TRandom3. The former is

based on the Tausworthe random number generator [96] and the latter on the

Mersenne Twister generator [97].

Figure 8.10 shows the shape of the R(∆η) distribution when using these

different random number generators for data and Monte Carlo MC09 at 7
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Figure 8.9: Effect of using fourth degree polynomial fits in the extrapolation
to the corrected value of R(∆η) at 7 TeV in (a) MC09 and (b) data.

TeV. The small variations, of the order of 0.01-0.02, are present in both the

data and the simulation. If the choice of the random number generator, or

even the random number seed, makes a contribution to the small non-closure

in Monte Carlo, it will make the same contribution to the data. As such,

any systematic effect due to the randomness of the correction method must

be already accounted for in the non-closure systematic uncertainty; if the

correction method closed perfectly, then there could not be any contribution

from the random number generator.

As an additional check of the independence of the measurement on the
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random number generator, figure 8.11 illustrates the closure tests for R(∆η)

using the TRandom2 and TRandom3 classes to remove tracks according to their

tracking efficiency. Regardless of the choice of the generator, there is good

agreement between the distributions and, furthermore, the amount of non-

closure is consistent with what is obtained in the nominal analysis.
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Figure 8.10: Pseudorapidity correlation functions, at 7 TeV (nch ≥ 2), ob-
tained by varying the random number generator used in the probabilistic
track removal iterations in (a) data and (b) the Monte Carlo tune MC09.
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Figure 8.11: Generated pseudorapidity correlation function compared to the
ones corrected using the (a) TRandom2 and (b) TRandom3 random number
generators to throw away tracks.
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Figure 8.12: Fraction of nearest neighbour tracks with a hit on the Pixel b-
layer as a function of the ∆R separation (∆R2 = ∆η2 + ∆φ2) for 7 TeV,
nch ≥ 2 data and non-diffractive Monte Carlo MC09 in different pT bins.
From [93].

Finally, the possibility of having correlated track reconstruction inefficien-

cies is explored. The track removal correction method assumes that the track

losses are uncorrelated, which raises the question: if, for example, two tracks

are very close together in (η, φ), does the probability of both of them get-

ting lost increase? To study this, the correlation in the Pixel b-layer hit

requirement between nearest tracks is investigated. The same event and track

selection criteria as in section 6.2 are applied, with the exception of requiring

a b-layer hit. Then, if a track expected a b-layer hit, the nearest neighbour

track, i.e. the track with the smallest ∆R (where ∆R2 = ∆η2 +∆φ2), is iden-

tified from the remaining tracks. A histogram is filled with these ∆R values.

A second histogram is created with only the ∆R for the track pairs in which

the neighbour did have a b-layer hit. The ratio of these two histograms is

plotted in figure 8.12 for 7 TeV data and non-diffractive MC09. It represents

the fraction of nearest neighbour tracks with a b-layer hit as a function of
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∆R, in different pT bins. It can be seen that, if a particle expected a b-layer

hit (no matter if it actually had it or not), above 90% of the times the nearest

neighbour track did have it, and this fraction does not vary much with ∆R.

This suggests that losses of nearby tracks are not correlated. Furthermore,

data and Monte Carlo exhibit the same behaviour and the small differences

between them, of the order of 0.1%, are the same across all ∆R, which rules

out any issues with the detector simulation, but rather implies that they arise

from different pT distributions.

From these studies, it is concluded that the only systematic contributions

to the total uncertainty, considered in the two-particle correlations measure-

ment, are the non-closure of the correction method and the uncertainties on

the reconstruction efficiencies.



Chapter 9

Results

9.1 Two-Dimensional Correlation Functions

The corrected pT inclusive two-particle angular correlation functions for data

and the pythia6 MC09 Monte Carlo tune are shown in figure 9.1 for
√

s = 900

GeV and 7 TeV. The total uncertainties in each bin of these two-dimensional

distributions are calculated following the procedures described in chapter 8

and are presented, for reference, in appendix C.

To construct these two-dimensional distributions, the absolute values of

the ∆η (0 < |∆η| < 5) and ∆φ (0 < |∆φ| < π) separations between the

particle pairs are used to fill one quadrant of the foreground and background

(∆η,∆φ) histograms, while the other three quadrants are filled by reflection.

As a consequence, the correlation function is symmetric around (0,0) by con-

struction. To be able to properly see the complete structure in the ∆φ axis,

instead of it being split at ±π, the distributions are shifted and plotted in the

range −π
2

< ∆φ < 3π
2

.

At both energies a complex structure is observed across the full ∆η and ∆φ

range, although, due to limited statistics, the 900 GeV distributions look much

more noisy. Several components can be identified that reflect the contributions

127
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from different underlying processes to the correlation structure. The feature

that immediately stands out is a sharp peak around (0,0). These near-side

correlations can be attributed to particles originating from the same high-

pT process. Such closely correlated particles indicate the emergence of jet-

like structures within the minimum bias events. A second component are

the away-side correlations, seen as a ridge extending across the whole ∆η

range near ∆φ ∼ π. This activity arises from the recoil of one parton against

another. Finally, a broad Gaussian-like structure spanning the whole ∆φ axis,

centred at ∆η = 0 with a width of approximately two units in ∆η, is observed.

These are called short-range correlations in ∆η that can be related to low-pT

processes such as the decay of resonances, clusters or string fragmentation.

In figure 9.1, the data distributions are shown on the left-hand side and

the simulation distributions on the right. These plots are symmetric around

∆η = 0 by construction.

As the centre-of-mass energy increases so does the height of the central

peak and it becomes even more pronounced for the sample with events with a

higher charged particle multiplicity (figure 9.1e). Conversely, the height of the

away-side ridge is constant regardless of the collision energy or multiplicity.

The MC09 tune exhibits similar structures as those observed in data, however,

for the 900 GeV and 7 TeV nch ≥ 2 samples, it does not reproduce the

strength of the correlations. For the higher multiplicity sample, the simulation

reproduces the height of the central peak but, as in the other two cases, differs

in the shape and strength of the away-side ridge.
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(a) (b)

(c) (d)

(e) (f)

Figure 9.1: Corrected R(∆η, ∆φ) distributions for 900 GeV and 7 TeV data
(left column) and the MC09 tune (right column). These plots are symmetric
around ∆η = 0 by construction.
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9.2 Projections in ∆η and ∆φ

In this section, different projections of the measured two-dimensional correla-

tion function are explored and compared to the Monte Carlo tunes introduced

in section 1.4.3. A comparison of the corrected data to older tunes was doc-

umented in the ATLAS note [98], written in collaboration with Dr James

Monk.

Figure 9.2 illustrates the different regions into which the ∆η∆φ-space is

divided in order to examine in detail the structure of the correlation function.

(a) (b) (c)

(d) (e)

Figure 9.2: Regions used for the one-dimensional projections of the correlation
function. For projections into ∆η, ∆φ is integrated between (a) 0 and π, (b)
0 and π/2, and (c) π/2 and π. For projections into ∆φ, ∆η is integrated
between (d) 0 and 2, and (e) 2 and 5.

In all of the following figures, the solid black markers correspond to the

corrected data values, the black error bars are statistical only (coming from

the extrapolation to N= −1) and the solid green bands correspond to the total
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uncertainty in the bin, which is obtained by adding in quadrature the statis-

tical and systematic uncertainties described in chapter 8. The MC curves are

overlaid as differently coloured histograms, each with different line styles. To

quantify the discrepancies between data and the models, the absolute differ-

ence, (Data − MC), is presented underneath each distribution. In general,

none of the models reproduce the strength of the correlations seen in the data.

Some approximate the shape of the distributions more closely than others, but

for all cases herwig++ is the most discrepant tune with the data.

R(∆η) with 0 < ∆φ < π (figure 9.2a)

Figures 9.3 to 9.5 show the pseudorapidity correlation function R(∆η), ob-

tained by integrating over the full ∆φ range, for the different energies and

charged-particle multiplicities. This “∆φ-inclusive” projection has been used

by other experiments to explore the structure of two-particle correlations and

interpret it in terms of cluster emission models (figures 2.7 and 2.9 in section

2.2). A discussion of the validity of these models in our data is deferred to

section 9.3.

As illustrated here, the peak at ∆η = 0 becomes more pronounced as both

the energy and particle multiplicity of the events increase, and it is precisely

in this region where the MC models differ more from data. At 900 GeV (figure

9.3) and 7 TeV when nch ≥ 2 (figure 9.4), the AMBT2B and Perugia 2011

tunes of pythia6, together with tune 4C of pythia8, are the closest to the

data distributions in the central peak, while the tails are better described by

tune 4C. For the high-multiplicity sample at 7 TeV (figure 9.5), tune AMBT2B

exhibits a better agreement with data over the entire ∆η range. Of course,

these “agreements” cannot be considered good on an absolute scale.
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Figure 9.3: Corrected R(∆η) distribution, obtained by integrating the fore-
ground and background distributions over ∆φ between 0 and π, for data and
the different Monte Carlo tunes at

√
s = 900 GeV.
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Figure 9.4: Corrected R(∆η) distribution, obtained by integrating the fore-
ground and background distributions over ∆φ between 0 and π, for data and
the different Monte Carlo tunes at

√
s = 7 TeV with nch ≥ 2.
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Figure 9.5: Corrected R(∆η) distribution, obtained by integrating the fore-
ground and background distributions over ∆φ between 0 and π, for data and
the different Monte Carlo tunes at

√
s = 7 TeV with nch ≥ 20.

R(∆η) with 0 < ∆φ < π
2

(figure 9.2b)

The ∆η projections presented in figures 9.6 to 9.8 are obtained by integrating

∆φ between 0 and π
2

(near-side). By focusing on the central peak, the distri-

butions are narrower, higher and more pronounced, which indicates a stronger

correlation between nearby particles. The amount of activity is energy depen-

dent.

For nch ≥ 2 (figures 9.6 and 9.7), the 4C pythia8 tune does a better

approximation to the data. The pythia6 tunes are the ones that do a better

job in the nch ≥ 20 case (figure 9.8): DW and AMBT2B in the central peak

and AMBT2B and Perugia 2011 in the tails. Also for this high-multiplicity

region, herwig++ closes in to the data around ∆η = 0 but the tails continue

to fall.
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Figure 9.6: Corrected R(∆η) distribution, obtained by integrating the fore-
ground and background distributions over ∆φ between 0 and π

2
, for data and

the different Monte Carlo tunes at
√

s = 900 GeV.
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Figure 9.7: Corrected R(∆η) distribution, obtained by integrating the fore-
ground and background distributions over ∆φ between 0 and π

2
, for data and

the different Monte Carlo tunes at
√

s = 7 TeV with nch ≥ 2.
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Figure 9.8: Corrected R(∆η) distribution, obtained by integrating the fore-
ground and background distributions over ∆φ between 0 and π

2
, for data and

the different Monte Carlo tunes at
√

s = 7 TeV with nch ≥ 20.

R(∆η) with π
2

< ∆φ < π (figure 9.2c)

Contributions to the pseudorapidity correlation function from the away-side,

calculated by integrating ∆φ between π
2

and π, are shown in figures 9.9 to

9.11. The height and width of the distributions stay constant with energy

and charged-particle multiplicity.

Most of the tunes, with the exception of herwig++, display a better

agreement with data in this projection. The Perugia 2011 tune in particular

does a reasonable description across the complete ∆η range for the nch ≥ 20

7 TeV sample (figure 9.11) and in the central peak region of events for which

nch ≥ 2 (figures 9.9 and 9.10). The DW tune predicts very little activity in

this away-side region.
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Figure 9.9: Corrected R(∆η) distribution, obtained by integrating the fore-
ground and background distributions over ∆φ between π

2
and π, for data and

the different Monte Carlo tunes at
√

s = 900 GeV.
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Figure 9.10: Corrected R(∆η) distribution, obtained by integrating the fore-
ground and background distributions over ∆φ between π

2
and π, for data and

the different Monte Carlo tunes at
√

s = 7 TeV with nch ≥ 2.
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Figure 9.11: Corrected R(∆η) distribution, obtained by integrating the fore-
ground and background distributions over ∆φ between π

2
and π, for data and

the different Monte Carlo tunes at
√

s = 7 TeV with nch ≥ 20.

R(∆φ) with 0 < ∆η < 2 (figure 9.2d)

The short-range correlation function, obtained by integrating ∆η between 0

and 2, is shown in figures 9.12 to 9.14 for the different phase-space regions.

These distributions contain two peaks, one at ∆φ = 0 which becomes more

pronounced if either the collision energy or the particle multiplicity is in-

creased, and the second one at ∆φ = π that is approximately constant.

At 900 GeV (figure 9.12) the difference between data and most of the

tunes is flat in the region −π
2

< ∆φ < π
2
, and there is good agreement (within

uncertainties) with data on the near-side. At 7 TeV with nch ≥ 2 (figure 9.13),

the pythia8 tune 4C does a better description of the regions near the two

peaks but diverges from data between them. For nch ≥ 20 (figure 9.14), the

Perugia 2011 and AMBT2B tunes agree quite well with data above ∆φ ≈ 1.
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Figure 9.12: Corrected R(∆φ) distribution, obtained by integrating the fore-
ground and background distributions over ∆η between 0 and 2, for data and
the different Monte Carlo tunes at

√
s = 900 GeV.
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Figure 9.13: Corrected R(∆φ) distribution, obtained by integrating the fore-
ground and background distributions over ∆η between 0 and 2, for data and
the different Monte Carlo tunes at

√
s = 7 TeV with nch ≥ 2.
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Figure 9.14: Corrected R(∆φ) distribution, obtained by integrating the fore-
ground and background distributions over ∆η between 0 and 2, for data and
the different Monte Carlo tunes at

√
s = 7 TeV with nch ≥ 20.

R(∆φ) with 2 < ∆η < 5 (figure 9.2e)

The long-range azimuthal dependence of the correlation function is determined

by integrating ∆η between 2 and 5. The distributions in figures 9.15 to 9.17

show a trough at ∆φ = 0 while the away-side peak is still present.

For events with nch ≥ 2 at both energies (figures 9.15 and 9.16) the dif-

ferences between data and all the MC tunes are flat across the full ∆φ range

which indicates that the models are describing the shape of the correlation

function correctly but not its strength. When the requirement on the particle

multiplicity of the events is increased (figure 9.17), the AMBT2B and Perugia

2011 tunes of pythia6 are in good agreement with data (within uncertainties)

in the range −π
2

< ∆φ < π
2

and the DW tune shows the largest discrepancies

around the away-side peak.
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Figure 9.15: Corrected R(∆φ) distribution, obtained by integrating the fore-
ground and background distributions over ∆η between 2 and 5, for data and
the different Monte Carlo tunes at

√
s = 900 GeV.

)
φ

∆
R

(

­5

­4

­3

­2

­1

0

1

2

Data 2010
Pythia8 4C

Pythia6 DW

Pythia6 AMBT2B

Pythia6 Perugia2011

Herwig++

ATLAS

 2≥ 
ch

 = 7 TeV , ns

 < 5η∆2 < 

φ∆
­1 0 1 2 3 4

M
C

)
φ

∆
 ­

 R
(

D
a
ta

)
φ

∆
R

(

­2

­1

0

1

2

Figure 9.16: Corrected R(∆φ) distribution, obtained by integrating the fore-
ground and background distributions over ∆η between 2 and 5, for data and
the different Monte Carlo tunes at

√
s = 7 TeV with nch ≥ 2.
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Figure 9.17: Corrected R(∆φ) distribution, obtained by integrating the fore-
ground and background distributions over ∆η between 2 and 5, for data and
the different Monte Carlo tunes at

√
s = 7 TeV with nch ≥ 20.

9.3 Cluster Model Fits

The best way to compare a given model to correlations data is to provide cor-

rected distributions and overlay Monte Carlo truth predictions for the model,

as done in sections 9.1 and 9.2. However, as discussed in section 2.2, this

was not always possible in the past and previous experiments opted to fit

their results to phenomenological predictions. As such, the pseudorapidity

two-particle correlation functions R(∆η) obtained by integrating ∆φ between

0 and π, presented in the previous section, are fitted to the cluster model

to allow an easier comparison to other measurements that provide cluster fit

parameters.

Following the same approach as the PHOBOS and CMS Collaborations,

described in section 2.2.1, the pseudorapidity correlation function is inter-
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preted in the context of an independent cluster emission model using equation

(2.7).

In order to extract the cluster properties from each of the data and MC

R(∆η) distributions presented in section 9.2, the following steps are carried

out:

• First, the background distribution B as a function of ∆η (integrated

over the full ∆φ range) is corrected following the iteration procedure

described in section 7.1.2.

• Second, the slope of B(∆η) is parameterised with a straight line fit:

p[0]B + p[1]B ∆η.

• Third, the pseudorapidity correlation function R(∆η) is fitted with equa-

tion (2.7), where B(∆η) is given by the polynomial obtained in the sec-

ond step and Γ(∆η) is shown in equation (2.8). The exact functional

form used to fit the curves is

p[0]

[
p[1] exp

(
−(∆η−p[2])2

2 p[3]2

)
p[0]B + p[1]B ∆η

− 1

]
, (9.1)

where p[0] = α, p[1] is just a proportionality constant, p[2] and p[3] are

the mean and standard deviation of the gaussian, respectively, and p[0]B

and p[1]B are the fixed values of the background linear fit.

• Finally, from the parameters in equation (9.1), the effective cluster size

Keff (equation (2.9)) can be calculated as

Keff = p[0] + 1, (9.2)
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and the decay width as

δ =
p[3]√

2
. (9.3)

Figure 9.18 shows the corrected background distribution B(∆η) at 7 TeV

for events with nch ≥ 2. The behaviour of the distribution can be parame-

terised as a straight line in ∆η. This is also the case for distributions at 900

GeV and with nch ≥ 20.
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Figure 9.18: Corrected background distribution in ∆η, obtained by integrating
∆φ between 0 and π, for events with nch ≥ 2 at 7 TeV. The behaviour of the
background can be described by the parameters of a linear equation.

The data R(∆η) distributions fitted with equation (9.1), similar to those

from CMS in figure 2.9, are shown in figure 9.19. The distributions between

the two experiments are in agreement with each other. As can be seen from

these figures, the cluster model does not provide a good fit to the data. The

most central ∆η bins are always above the fit curve, the width of the central

peak is not correctly reproduced and the tail region is predicted to be flat.

Even though the values for χ2/Nndof of the fits are not (so) bad, it is difficult

to believe that something can be concluded from these fits. However, previous

experiments have argued that equation (9.1) is just a simple way to quanti-
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Figure 9.19: Cluster fits to the corrected data pseudorapidity correlation func-
tions at (a) 900 GeV and 7 TeV for events with (b) nch ≥ 2 and (c) nch ≥ 20.
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Figure 9.20: Cluster fits to the pseudorapidity correlation functions of tune
4C of pythia8 at (a) 900 GeV and 7 TeV for events with (b) nch ≥ 2 and (c)
nch ≥ 20.
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tatively parameterise the correlation function as opposed to a precise test of

a particular model [99]. For the sake of argument, the cluster properties are

extracted from these fits and are summarised in table 9.1.

The cluster model does not fit any of the MC distributions either and

in fact, the χ2/Nndof of the fits is much worse. Figure 9.20 shows as an

example the fitted distributions for the tune 4C of pythia8 at both energies

and particle multiplicities. The complete list of cluster properties from all MC

samples is given in table 9.2.

For an easier visualisation of the results, in figures 9.21 and 9.22 the effec-

tive cluster size and the decay width, respectively, are plotted as a function

of the centre-of-mass energy for data and MC. The solid markers correspond

to measurements from the nch ≥ 2 phase-space, while the higher-multiplicity

results at 7 TeV are shown as open markers. In data (circles), the effective

cluster size increases with both energy and multiplicity, while the decay width

stays constant with energy and decreases slightly for events with nch ≥ 20.

The same trends for the cluster size are also seen in all the MC tunes, with

the exception of herwig++ which predicts a smaller cluster size for high-

multiplicities. Also in MC, the decay width decreases more pronouncedly.

The conclusion reached from the data-MC comparisons in the previous sec-

tion still holds: the MC tunes do not reproduce the values observed in data

and herwig++ is the most discrepant tune.

Phase-Space Keff δ χ2/Nndof

900 GeV 2.2540 ± 0.0203 0.6224 ± 0.0086 2.1676
7 TeV ; nch ≥ 2 2.5610 ± 0.0151 0.6288 ± 0.0066 5.6174
7 TeV ; nch ≥ 20 2.8530 ± 0.0153 0.6121 ± 0.0062 4.4630

Table 9.1: Cluster properties for data in all phase-space regions.
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MC Tune Phase-Space Keff Decay width δ χ2/Nndof

AMBT2B
900 GeV 1.8703 ± 0.0013 0.6885 ± 0.0011 65.9348
7 TeV (nch ≥ 2) 2.1430 ± 0.0010 0.6193 ± 0.0008 117.8479
7 TeV (nch ≥ 20) 2.6330 ± 0.0030 0.5818 ± 0.0011 72.6522

4C
900 GeV 2.0150 ± 0.0020 0.7700 ± 0.0021 34.0869
7 TeV (nch ≥ 2) 2.2620 ± 0.0030 0.6626 ± 0.0021 36.1957
7 TeV (nch ≥ 20) 2.2630 ± 0.0050 0.5482 ± 0.0026 14.9413

DW
900 GeV 1.6715 ± 0.0012 0.6718 ± 0.0013 25.6304
7 TeV (nch ≥ 2) 1.6746 ± 0.1467 0.5076 ± 0.0762 0.0146
7 TeV (nch ≥ 20) 1.8668 ± 0.1589 0.4371 ± 0.0535 0.0733

Perugia 2011
900 GeV 1.9723 ± 0.0015 0.7347 ± 0.0014 42.8696
7 TeV (nch ≥ 2) 2.1510 ± 0.0020 0.6265 ± 0.0014 46.1304
7 TeV (nch ≥ 20) 2.5150 ± 0.0040 0.5718 ± 0.0017 28.2826

herwig++
900 GeV 4.1960 ± 0.0030 0.8952 ± 0.0007 410.2174
7 TeV (nch ≥ 2) 4.5140 ± 0.0040 0.8202 ± 0.0011 518.6957
7 TeV (nch ≥ 20) 4.3240 ± 0.0070 0.8096 ± 0.0021 199.6304

Table 9.2: Cluster properties for the different MC tunes in all phase-space
regions.
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Figure 9.21: Effective cluster size for data and the different MC tunes as a
function of the centre-of-mass energy. Solid (open) markers correspond to the
nch ≥ 2 (nch ≥ 20)) phase-space.
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Chapter 10

Conclusions

In little over two years of operation, the ATLAS experiment at the LHC has

collected around 5.3 fb−1 of proton-proton collision data. From this sample,

data collected during the early LHC runs is ideal to perform minimum bias

measurements due to the low luminosity and, consequently, low number of

multiple interactions per bunch crossing.

The inclusive two-particle angular correlation function was measured on a

sample of minimum bias events collected with the ATLAS detector at
√

s =

900 GeV and 7 TeV. The approximate integrated luminosities analysed were

7 µb−1 and 190 µb−1 for 900 GeV and 7 TeV, respectively. Correlations

were measured for charged particles in the kinematic range pT > 100 MeV

and |η| < 2.5 in events with a particle multiplicity nch ≥ 2. At 7 TeV, a

second particle multiplicity event selection requirement was explored, namely

nch ≥ 20 in which the contribution from diffractive events is suppressed.

These phase-space regions match the ones studied by the ATLAS Minimum

Bias analysis [84] and as such, provide a nice complement for tuning purposes.

In order to unfold the detector effects from the true physics in this mea-

surement, a novel model-independent correction method, the Hit Backspace

Once More (HBOM) Method [92], was developed. This data-driven proce-
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dure1 was tested in Monte Carlo and good agreement was found between the

generated and corrected distributions. The remaining differences were found

to be associated to the presence of secondary particles. This, however, does

not constitute a limitation of the correction method but rather of the detector

model. The non-closure and the track reconstruction efficiency were found to

be the dominant sources of systematic uncertainty.

The corrected two-particle correlation function exhibited a complex struc-

ture in ∆η and ∆φ at both energies. This structure was dominated by a sharp

peak around (0,0), attributed to particles originating from the same high-pT

process. This peak became more pronounced as both the energy and the par-

ticle multiplicity of the events increased, indicating the emergence of jet-like

structures within the minimum bias event selection.

To explore in more detail the contributions from different underlying pro-

cesses, the two-dimensional distributions were projected along both ∆η and

∆φ. These one-dimensional distributions allow for an easier comparison to

the different Monte Carlo models and tunes. None of the MC models repro-

duced the strength of the correlations seen in the data and only in some of

the projections they were able to correctly model the shape of the distribu-

tions. For the nch ≥ 2 phase-space, the tune that performed better overall

was 4C of pythia8, while for the higher particle multiplicity events, the tunes

of pythia6, AMBT2B and Perugia 2011, were the closest to the data. In all

distributions, herwig++ was the most discrepant tune. One possible expla-

nation for the behaviour of herwig++ is its lack of diffractive components.

However, the nch ≥ 20 distributions contain little or no diffractive contribution

1The method is not entirely data-driven since the track reconstruction efficiency used
to throw away tracks was determined from Monte Carlo. But this is the only place where
simulation enters the correction method.



152

and herwig++ is still not able to describe them, which could mean that the

other differences between pythia and herwig++ (e.g. hadronisation model,

approach to multiple parton interactions) could also be a contributing factor

to the observed discrepancies.

Finally, the strength of the pseudorapidity correlation function R(∆η),

obtained by integrating ∆φ between 0 and π, was interpreted in terms of a

cluster emission model. It was found that this model does not provide a good

fit to the data, neither around the central peak nor in the tail regions. To

provide numbers that can be compared to measurements from previous exper-

iments, the cluster fits were done to the data to extract cluster parameters. It

was found that the effective cluster size increases with centre-of-mass energy

and that the decay width is approximately constant, decreasing only slightly

with energy. A direct comparison of the calculated cluster properties to the

results from previous experiments cannot be done since the results presented

in this thesis would need to be extrapolated to the same kinematic region.

However, a qualitative comparison shows that, as illustrated in figure 2.8 in

chapter 2, the same trends have been observed by previous experiments. In

fact, in the case of the CMS experiment, with which the kinematic cuts are

not that different, the values for cluster size and decay width are consistent.

Angular correlations between charged particles provide useful information

and are sensitive to a wide range of parameters in the Monte Carlo simula-

tions. They can give useful input for tuning purposes and for characterising the

dynamics of soft interactions that could help discriminate between the avail-

able models. These results show that, despite many successes and qualitative

agreement with experimental data, the phenomenology of soft interactions still

requires some improvement, which may well extend beyond simply re-tuning

experimental models.
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Appendix A

Third-degree Polynomial Fits

The complete set of polynomial fits to obtain the corrected pseudorapidity

correlation distribution1 for 7 TeV data, for events with nch ≥ 2, are shown in

figure A.1. The distribution itself has 50 bins but given that it is symmetric

around ∆η = 0, only 25 bins are given.

In addition, for illustration purposes, 10 bins of the two-dimensional cor-

relation function R(∆η, ∆φ), which are mainly bins with low-statistics, are

shown in figure A.2 for the same data sample.

In all cases, a third degree polynomial is a good description of the be-

haviour of the observable in the track removal correction method.

1Obtained by integrating ∆φ between 0 and π.
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Figure A.1: Third-degree polynomial fits to all bins of the R(∆η) distribution
for data at 7 TeV (nch ≥ 2). In total, R(∆η) has 50 bins but, since it is
symmetric by construction around ∆η = 0, only 25 bins are shown.
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Figure A.1: Third-degree polynomial fits to all bins of the R(∆η) distribution
for data at 7 TeV (nch ≥ 2). In total, R(∆η) has 50 bins but, since it is
symmetric by construction around ∆η = 0, only 25 bins are shown.
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Figure A.2: Example of third-degree polynomial fits done to 10 bins of the
R(∆η, ∆φ) distribution for data at 7 TeV (nch ≥ 2).

AT
LA
S W

or
k i

n P
ro

gre
ss

Figure A.2: Example of third-degree polynomial fits done to 10 bins of the
R(∆η, ∆φ) distribution for data at 7 TeV (nch ≥ 2).



Appendix B

Non-Closure Uncertainties for

1D Projections

The size of the non-closure systematic uncertainty depends on the projection

under study. Each distribution exhibits different behaviours; in some cases

a flat uncertainty provides a reasonable description, while in some others

linear parameterisations are needed. To illustrate this, the complete set of

distributions used to extract the uncertainties for each projection in the nch ≥

2 phase-space at 7 TeV are presented in figures B.1 to B.5. The calculated

values are summarised in table B.1.

Projection Non-Closure Systematic Uncertainty

R(∆η)
0 < ∆φ < π flat 0.05 for all R(∆η)

0 < ∆φ < π/2 flat 0.05 for all R(∆η)
π/2 < ∆φ < π 0.0029 + 0.0865 R(∆η)

R(∆φ)
0 < ∆η < 2 0.0804− 0.0680 R(∆φ)
2 < ∆η < 5 −0.0863− 0.0510 R(∆φ)

Table B.1: Non-closure systematic uncertainties for the different 1D projec-
tions at 7 TeV (nch ≥ 2).
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Figure B.1: Estimation of the non-closure systematic uncertainty for R(∆η)
where ∆φ is integrated between 0 and π for 7 TeV with nch ≥ 2.
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Figure B.2: Estimation of the non-closure systematic uncertainty for R(∆η)
where ∆φ is integrated between 0 and π

2
for 7 TeV with nch ≥ 2.
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Figure B.3: Estimation of the non-closure systematic uncertainty for R(∆η)
where ∆φ is integrated between π

2
and π for 7 TeV with nch ≥ 2.
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Figure B.4: Estimation of the non-closure systematic uncertainty for R(∆φ)
where ∆η is integrated between 0 and 2 for 7 TeV with nch ≥ 2.
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Figure B.5: Estimation of the non-closure systematic uncertainty for R(∆φ)
where ∆η is integrated between 2 and 5 for 7 TeV with nch ≥ 2.



Appendix C

Uncertainties for the 2D

Distributions

C.1 Non-Closure Systematics

The estimation of the systematic uncertainties associated to the non-closure of

the correction method for the two-dimensional distributions follows the same

procedure applied, in section 8.2.1 and appendix B, to the ∆η and ∆φ projec-

tions. The difference between the truth and corrected distributions is plotted

as a function of R(∆η, ∆φ)corr. As shown in figure C.1, for the measurement

at 900 GeV a flat uncertainty of 0.2 is assigned to all bins. For the 7 TeV

cases, for low values of R(∆η, ∆φ)corr the non-closure has an approximately

flat behaviour. However, above a certain R value, the systematic uncertainty

can be parameterised by means of a linear fit to the MC points. For the sam-

ple with nch ≥ 2 events (figure C.2), a flat uncertainty of 0.1 is assigned to all

values of R(∆η, ∆φ)corr smaller than 3; values greater than 3 are given by

0.2107− 0.0925 R(∆η, ∆φ).
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Figure C.3 shows that for nch ≥ 20, values of R smaller than 2 are better

described by a flat uncertainty of 0.2, and everywhere else by

0.1712− 0.0912 R(∆η, ∆φ).
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Figure C.1: Difference between the generated and corrected 2D correlation
distributions as a function of R(∆η, ∆φ)corr in 900 GeV Monte Carlo (MC09).
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Figure C.2: Difference between the generated and corrected 2D correlation
distributions as a function of R(∆η, ∆φ)corr in 7 TeV Monte Carlo (MC09)
for events with nch ≥ 2.
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Figure C.3: Difference between the generated and corrected 2D correlation
distributions as a function of R(∆η, ∆φ)corr in 7 TeV Monte Carlo (MC09)
for events with nch ≥ 20.

C.2 Total Uncertainties

Figures C.4 to C.6 show the total uncertainty in each bin of the two-dimensional

correlation distributions for data at both energies and regions of phase-space.

This total uncertainty is calculated by adding in quadrature the statistical

and systematic uncertainties obtained following the methodology described

in chapter 8. The largest contributions come from the non-closure of the

correction method and the track reconstruction efficiency.
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(a)

(b)

Figure C.4: Total uncertainty for each bin in R(∆η, ∆φ) at 900 GeV. Since
the correlation function is symmetric around ∆η = 0 by construction, only
the ∆η range between -5 and 0 is shown.
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(a)

(b)

Figure C.5: Total uncertainty for each bin in R(∆η, ∆φ) at 7 TeV for events
with nch ≥ 2. Since the correlation function is symmetric around ∆η = 0 by
construction, only the ∆η range between -5 and 0 is shown.
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(a)

(b)

Figure C.6: Total uncertainty for each bin in R(∆η, ∆φ) at 7 TeV for events
with nch ≥ 20. Since the correlation function is symmetric around ∆η = 0 by
construction, only the ∆η range between -5 and 0 is shown.
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