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Abstract 

This research presents a more complete flexible model for the Motorised Momentum 

Exchange Tether (MMET) concept. In order to analyse the vibration aspect of the problem 

the tether is modelled as a string governed by partial differential equations of motion, with 

specific static and dynamic boundary conditions and the tether sub-span is flexible and 

elastic, thereby allowing three dimensional displacements of the motorised tether. The 

boundary conditions lead to a specific frequency equation and the Eigenvalues from this 

provide the natural frequencies of the orbiting flexible motorised tether when static, 

accelerating in spin, and at terminal angular velocity. The rotation matrix is utilized to get 

the position vectors of the system’s components in an inertial frame. The spatio-temporal 

coordinates u(x,t), v(x,t) and w(x,t) are transformed to modal coordinates before applying 

Lagrange’s equations and the pre-selected linear modes are included in generating the 

equations of motion. The equations of motion contain inertial nonlinearities of cubic order, 

and these show the potential for intricate intermodal coupling effects. 

The study of planar and non-planar motions has been carried out and the differences in the 

modal responses in both motions between the rigid body and flexible model are 

highlighted and discussed. The dynamics and stability of the flexible MMET is 

investigated using the dynamical analysis tools for representing the behaviour of the tether 

system. The study is also includes the engineering side of the MMET by investigating the 

power requirements of an electric motor located in the central facility of the Motorised 

Momentum Exchange Tether (MMET). A simulation was run using a specially written 

computer program to obtain the required minimum power for a typical duty cycle, and also 

to study the responses for three different operating conditions; before payload release, 

torque-off and reverse torques conditions for both the propulsion and outrigger system on 

both circular and elliptical orbits. The differences in the responses when using rigid body 

and flexible models of MMET are highlighted and discussed in order to look at the 

sensitivity of the model to the power budget calculations. The study then continues with a 

comparative study between the MMET and conventional propulsion systems in terms of 

the energy used specifically for an Earth-Moon return mission for circular and elliptical 

orbits. 
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Chapter 1 

Introduction 

1.1 Motivations 

The evolution of space transportation has created more ideas and advances concepts for 

space exploration and the rapid development of space exploration activities accentuates the 

general needs for efficient space transportation. The evolution based on two main 

objectives; first is to obtain huge saving in the operational cost and the second is to 

increase mission reliability and crew safety (Hammond, 1999).  The achievement of low 

operating cost is dependent on large scale changes in the way vehicles are designed, 

developed, managed, contracted, and operated. The space tether is one of the concepts that 

have real potential to fulfil the objective of efficient space transportation.  

 

Figure 1.1 : Symmetrical Motorised Momentum Exchang e Tethers after Cartmell (1998), 

Ziegler & Cartmell (2001) 

 
A space tether is defined as a high strength, low density cable that connects satellites, 

probes or the space station to each other in space. The cables are typically very long 

structures ranging from a few hundred meters to several kilometres, and they have 

relatively small diameters, possibly being only a few millimetres thick. Space Tethers are 

mainly found in two categories; the electrodynamic tether and the momentum exchange 

tether. There have been extensive studies conducted for different models of momentum 

exchange space tethers, and so this thesis will study the dynamics for the Motorised 
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Momentum Exchange Tether (MMET) as proposed by Cartmell in 1996. The MMET is 

symmetrical system that has tether connected the payload to the central facility and power 

up by motor to spin up the tether to generate additional ∆V. Figure 1.1 shows the schematic 

for a double ended motorized tether concept, suggested by Cartmell (1998) and Ziegler and 

Cartmell (2001).  

1.2 Research Aims and Objectives 

The previous study by Ziegler (2003) modelled the MMET as a rigid body and Chen 

(2009) added axial flexibility to study the control and performance of the MMET.  The 

rigid body model provided a good basis for the study of tether dynamics. The objective of 

this research is to study the MMET with more realistic model in order to have a precise 

motion for the tether’s operation in space. This study aims to develop the tether’s model to 

include flexibility and investigates the flexural effect to the global motion of the tether that 

significantly affects the tether’s performance. Based on the objective of this study, this 

thesis will focus on: 

I. Develop the mathematical model of the MMET that incorporating the flexibility in 

two and three dimension by using Langrage Equation. 

II.  Explores the global and local dynamics of the flexible tethers and the relationship 

between them. 

III.  Compares the performance of the flexible tether to the rigid body tether. 

IV.  Study the influence of boundary conditions applied to the tether in deriving the 

equation of motion. 

V. Investigates the flexible tether libration motion, link to the onset spin and the routes 

to the chaos and relation of tether’s flexibility to the unstable motion. 

VI.  Calculate the power requirement for MMET’s Earth-Moon mission and compares the 

energy requirement of flexible model to the rigid body model of the tether. The 

comparative study is also conducted between conventional systems to the tether 

system. 



  Chapter 1  

  3 

All the flexible models of MMET in this thesis were originally developed by the author in 

order to study the dynamics and performance of the MMET. The studies of this flexible 

model are summarised in Ismail and Cartmell (2009), Ismail and Cartmell (2010a), and 

Ismail and Cartmell (2010b). 

1.3 Thesis Overview 

Chapter 2 presents the critical review of literatures of space tether concept, the history, the 

mission and the dynamics of the space tether. 

Chapter 3 derives the equations of motions and analyse of the dynamics of two 

dimensional flexible tether model. The differences between the rigid body and flexible 

models are compared, and the impact of tether’s flexibility to the global motion of the 

tether is investigated.  

Chapter 4 investigates the three dimensional dynamics of the MMET for both rigid body 

and flexible models. The main objective is to uncover the relationships between planar and 

non planar motions, and the effect of the coupling between these two parameters on the 

circular and elliptical orbits. 

Chapter 5 presents a more complete continuum model that includes appropriate dynamic 

boundary conditions, which provides further fidelity in the representation of the dynamics 

which may not otherwise be seen. This chapter investigates the MMET responses for two 

different dynamic boundary conditions: the fixed-attached mass condition, and when both 

ends are attached to masses. The differences in the modal responses when applying the 

dynamic and static boundary conditions are highlighted and discussed, providing more 

insight into the subtleties of the dynamics of motorised orbiting space tethers.  

Chapter 6 presents the dynamical analysis of the tether which includes the libration/spin 

and regular/chaos motion using the dynamical analysis tools.  

Chapter 7 explores the minimum torque and power requirement for the MMET in various 

operation conditions for the rigid body and flexible body model. This study will proceed 

with the reassessment of the system equations for Earth-Moon transfers and will study of 

the behaviour of the flexible tether for both applications. 

Chapter 8 concludes this PhD research and suggests the potential future works. 
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Chapter 2  

Literature Review of Space Tethers 

2.1 Background History 

Konstantin Tsiolkovsky, the father of rocketry as described by Beletsky and Levin (1993), 

was the first to come up with the idea of having a structure reaching all the way into space, 

this having been inspired by his visit to the Eiffel Tower. In his book, entitled “Dream of 

Earth and Sky” published in 1885, he described a massive tower built on the surface of the 

Earth, extending up to geostationary orbit at a height of 36,000 km, on the top of which is a 

celestial castle that could be reached by elevator. The centrifugal force acting on the 

system would counteract the pull of gravity; therefore, the tower would be supported in 

tension.  

Building a free-standing tower that is more than ten thousand kilometres high would be 

impossible. However, in 1960 Yuri Artsutanov proposed a more practical concept, making 

it possible to build the space elevator. The idea was to use a satellite, placed at 

geosynchronous orbit. A cable would be lowered down from the satellite towards the 

surface of the Earth, and a counterweight would be extended away from the Earth, to the 

satellite, simultaneously, keeping the centre of mass remaining at stationary point. 

However, Artsutanov pointed out that a material strong enough to realise this idea was 

unlikely to exist in the 1960s. Earlier than that, in the 1950s, John McCarthy in the United 

States was also thinking of building a space elevator, but had to abandon the idea, due to 

the same problem of the material requirement. Later, he invented the rotating skyhook. The 

arm of the skyhook was long enough to collect the payloads at the Earth’s surface to be 

transported into space. McCarthy’s contributions made Van Pelt (2009) consider him the 

father of the momentum exchange tether. According to Clarke (1981), Isaac et al. (1966) 

had discovered the same concept, but were unaware that the idea was the same as 

Artsutanov’s and McCarthy’s. This concept was further studied for its feasibility, and Isaac 

et al. (1966) duly found that the strength needed by the tether was twice what was then 

available.  

As the forces on the cable are not the same everywhere, Artsutanov considered using a 

tapered cross section cable. The parts of the cable that require higher strength are thicker, 
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and the parts where the forces are applied are lower and therefore require a thinner and 

lighter cable. The idea of this concept can be illustrated, as in Figure 2.1: 

Earth

Countermass

GEO 
orbit

Tapered tether
satellite

 

Figure 2.1: The tapered cable for the skyhook conce pt by Arsutanov (1960) and Pearson 

(1975) 

The use of a tapered cable was studied in detail by Pearson (1975), who discovered that the 

concept of an orbital tower can be realised by overcoming the problems of buckling, 

strength, and dynamic stability. The buckling can be overcome by having a tower extended 

from geostationary orbit, and make it experience an upward force which balances the 

downward force due to the compressive stress at the base. Theoretically, the calculated 

altitude needed to obtain a balanced tower was shown to be 144,000 km. Pearson (1975) 

introduced the ratio between the thickest and the thinnest part of the tapered cable, and 

showed that this taper ratio should be more than three in order to provide a stable tower for 

the inclusion of the perturbation force of lunar tides in the calculation. For the required 

strength to weight ratio, the material that was available at that time was the perfect crystal 

whiskers of graphite. The tower could also be used in principle for a linear induction 

propulsion system, as suggested by Thornton (1973), therefore launching the payload from 

geostationary orbit to a higher orbit by utilising the energy from the Earth’s rotation. It 

could also be used as a radioactive waste disposal system, where the payload containing 

the waste could be fired to a higher orbit nearer the Sun, and then released into the sun. A 

number of applications have been proposed by Pearson, and he extended the skyhook 

concept to the lunar application in work reported in Pearson (1979).  

Colombo et al. (1974) proposed a “Shuttle Borne Skyhook” for low orbital altitude 

research, which was claimed by Kumar (2006) and Van Pelt (2009) to have marked the 
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beginning of the Tethered Satellite System (TSS). The skyhook system was composed of a 

subsatellite attached to a long wire on a reel, and used the gravity gradient and atmospheric 

drag to keep the tether almost vertical and in tension, and to unreel the tether. This tether 

could be lowered down, reaching a lower altitude at which all the experiments with regards 

to this region could be conducted continuously. A new concept for the orbital skyhook was 

proposed by Moravec (1977). This was in the front of a rotating tether with the central 

facility as the centre of the mass, and attached with symmetrical arms. This orbital skyhook 

would rotate with a tether velocity equal to the orbital velocity so that the tether tip might 

periodically touch down on the planet’s surface.  

Colombo et al. (1982), Bekey (1983), and Bekey and Penzo (1986) studied the use of 

momentum exchange tethers for payload orbital transfer. Bekey (1983) summarised the 

principal of momentum exchange and electrodynamics tethers, and discussed the 

application of cryogenic propellant storage and transfer, two dimensional tethered 

constellations, passive stable platform connected by tethers, payload orbit lowering and 

raising, and a two-piece-tether elevator that transfers a payload from LEO to GEO. Caroll 

(1986) has also given a general overview of tether history and applications, and discussed 

shuttle payload boosting and electrodynamics boosting. Furthermore, he remarked of his 

concern about the low number of practical, as opposed to the theoretical studies that have 

been conducted and the requirement for advanced studies mainly in tether control in order 

to make applications possible.  

It can be seen here that research on space tethers has a very long history, and is truly 

international. These previous studies on tethers have laid the theoretical basis for more 

advanced studies of tethers in the future. Some practical experiments have been carried 

out, and various applications for tethers have been introduced, and more advanced 

concepts, such as the tether elevator, space web, and many more, are beginning to receive 

serious attention. 

2.2 Space Tethers: Concepts and Applications 

Generally, modern tethers are categorised into conductive and non-conductive 

applications.  The conductive tether permits interaction with the Earth’s magnetic field, 

and is known as an electrodynamic tether; whilst the non-conductive tether category refers 

to gravity gradient stabilised tethers and liberating and spinning momentum exchange 

tethers. McKenzie (2010) described rotating tethers as those that have logical progression, 
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which he referred to as Momentum Exchange Tether; whilst non-rotating tethers tend to 

denote gravity gradient and electrodynamic tethers.  

2.2.1 Gravity Gradient Stabilisation 

The basic principle of gravity gradient stabilisation is to use the balance of the Earth’s 

gravity and the centrifugal force to keep spacecraft aligned in the desired orientation. For 

two masses connected by a tether, the mass that is closer to the Earth experiences a larger 

gravitational force than centrifugal force; whilst the mass at the other tether tip, which is 

further from the Earth, has a higher centrifugal force than gravitational force. The lower 

end mass experiences a net force pointing to the Earth, and the net force of the upper mass, 

which is directed away from the Earth, puts the tether into tension, establishing an 

equilibrium to the system, which then gives a stable vertical configuration for the tether. 

According to Cosmo and Lorenzini (1997), the gravitational and centrifugal forces are 

equal and balanced at the system’s centre of gravity only, and the system is constrained to 

the Earth orbit with the same angular velocity as the centre of gravity, and the masses 

experience the tension of the tether as artificial gravity. Without the other forces that 

perturb the tether, it will remain aligned to the gravity vector, and this configuration is also 

called a ‘hanging tether’ (Ziegler, 2003). In (McInnes and Cartmell, 2006), Cartmell has 

given a formal treatment to the hanging tether where the altitude of gain and loss has been 

derived for the payload raising and lowering application.  

This concept was first successfully demonstrated during the Gemini 12 mission in 1966. 

The many potential applications for gravity gradient stabilisation and artificial gravity have 

been discussed by Beletsky and Levin (1993), Cosmo and Lorenzini (1997), and Van Pelt 

(2009). According to Beletsky and Levin (1993), Tsiolkovky was the first to introduce 

artificial gravity based on a tethered pair, and this was first experimented with during the 

Gemini 11 mission in September 1966. Van Pelt (2009) outlined the applications of 

artificial gravity, which enables astronauts to live more normally, and protects them from 

the effects of psychological change, especially on the ISS. He also mentioned that 

microgravity is useful for combustion experiments and, according to Beletsky and Levin 

(1993), Bekey (1983) proposed the use of microgravity from gravity gradient stabilisation 

for refuelling a spacecraft in orbit. The technique of supplying the propellant using a 

gravity gradient stabilised tether was discussed in depth by Kroll (1985), where he 

remarked that for the case of tether swinging in orbit, the length of the tether increases 

gradually with the increasing swing angle. 
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2.2.2 Electrodynamic Tether 

An electrodynamic tether is a long conducting wire which can be used for producing low 

thrust and generating electrical power, and is even useful for aerobraking. The wire or 

cable is made from conductive material, and the preferable design is to have a high 

electrical conductivity and low mass. The electrodynamic tether operates on a similar 

principle to a generator or motor where it converts kinetic energy to electrical energy, or 

vice versa. The motion of a deployed conductive tether across the Earth’s magnetic field 

induces voltages along the length of the tether. The voltage along the tether will attract the 

free, negatively charged electrons at its positively charged end, this being the anode. The 

electrons then will moves to the other end, namely the plasma contactor or cathode, and 

generate a closed loop electrical circuit, enabling the flow of electrical current. According 

to Van Pelt (2009), an uninsulated tether can be used instead of using the large, spherical 

and metallic anode to collect the electrons. This concept is called the ‘bare tether’ and can 

prevent the electrons from piling up in the small area, thus increasing the efficiency of the 

tether. He also mentioned that a 20-km-long wire in a low Earth orbit can potentially 

produce up to 40 kW of power. Samantha Roy et al. (1992) have shown in their study that 

the combination of bare tethers with a contractor can significantly improve the 

performance of the tether.  

The interaction of the induced current flow with the Earth’s magnetic field causes a 

Lorentz Force that is always in the opposite direction to the motion of the wire in a 

magnetic field, thus causing the tether to decelerate. This ‘electromagnetic drag’ can be 

utilised to lower the orbit of the satellite, or even de-orbit it into the atmosphere. In 

addition, reversing the operation will cause the Lorentz Force to work in the other 

direction, and boost the spacecraft instead of slowing it down. In this case, electrical power 

supplied by the solar panels will be used to drive the current through the tether. Making the 

current flow in the opposite direction from the previous electromagnetic drag’s 

configuration causes the Lorentz Force to work in the other direction, thus pushing the 

spacecraft. The configurations of both the electrodynamics drag and the propulsion tether 

are shown in Figure 2.2. 

The study by Estes et al. (2000) shows that a conceptual design of bare tethers for 

electrodynamic spacecraft propulsion is capable of delivering 0.5-0.8 N of thrust to the ISS 

using a 10-km-long aluminium tether, by utilizing 10 kW of space station power, and could 

save propellant requirements for station reboost over a 10-year lifetime. An experiment 
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testing this bare electrodynamic tether was conducted in 2000 for the ProSeds mission. 

Furthermore, the study by Vas et al. (2000) has shown that using an electrodynamic tether 

instead of using flights to deliver propellant to the station, with a tether force of 0.43N 

(5kW) to reboost the ISS, could give a saving of more than one billion dollars over the 

ISS’s lifetime; and for a higher reboost value of up to 0.7N (10kW), would give twice the 

saving.   

 

Figure 2.2 : Configuration of Electrodynamic drag t ether and Electrodynamic propulsion 

tether (Van Pelt, 2009) 

 
The other interesting application for an electrodynamic tether is to use it to remove charged 

particles from the Earth’s orbit. The idea is to bring an electrodynamic tether into the Van 

Allen belts, and charge it to a very high voltage level, in order to generate an 

electromagnetic field that can scatter the radiation particles, and, over time, send them out 

from the radiation belt, thus lowering the overall radiation levels. 

The use of an electrodynamic tether for space debris removal has also been discussed by 

Ishige et al. (2004). In that study they proposed an operation to remove space debris in six 

phases, as shown in Figure 2.3. The sequence of operations is: I) The service satellite tether 

approaches the debris by transferring its orbit; II) The service satellite tether retrieves the 

tether and uses thrusters for rendezvous; III) As the target is attached to the end of the 

service satellite, it re-deploys the tether at the descent (using electromagnetic drag tether 

concept); IV) When it reaches an orbit with a lifetime of less than 25 years, the debris is 

released, and the tether is fully deployed; V) The debris descends, and will eventually burn 
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out in the atmosphere, and the service satellite will operate as an electrodynamic 

propulsive tether and will gain its altitude; VI) The service satellite will precisely control 

its orbit to head for the next target debris. 

 

Figure 2.3 : Debris removal process by electrodynam ic tether, by Ishige et al.  (2004) 

 

2.2.3 Momentum Exchange Tether 

A momentum exchange tether is a long thin line used to connect two bodies in space. This 

enables momentum and energy to be transferred between them. The two tethered bodies 

usually orbit a source of gravity in space at their common centre of mass and orbital 

angular velocity, and align themselves along a local vertical due to gravity gradient 

stabilisation, with the upper end mass having the same angular velocity but greater linear 

velocity, and lower end also having the same angular velocity with lower tangential 

translational velocity. Due to the difference in gravity at different orbital altitudes on both 

bodies, the velocity along the tangent to the orbit required for the lower mass to stay at the 

same orbit is greater than its current linear velocity if it released at this point, whilst the 

upper payload requires less than its current linear velocity.  

Figure 2.4 shows that the upper mass is released from the tether into an elliptical orbit, 

because the payload carries more velocity than is required to stay in that orbit but not 

enough to escape the influence of the Earth. The payload release point is at the perigee of 

that elliptical orbit. On the release of the upper mass, the lower mass does not have enough 

velocity to stay in the orbit, so it goes into an elliptical orbit, with the release point at the 

apogee. Half an orbit later, the upper mass reaches its apogee, furthest from the Earth, and 
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the lower mass reaches its perigee, closer to the Earth. By adding prograde swing or spin, 

one can increase the velocity to the upper mass and also subtract it from the lower mass. 

Conversely, a retrograde swing will act on the upper mass and the lower mass in an 

opposite manner to the prograde swing. 

 

Figure 2.4: Orbital path of a payload released abov e the tether's COM on circular orbit 

(Ziegler, 2003) 

 
According to Ziegler (2003), this format payload raising and lowering was first proposed 

by Colombo et al. (1982). Later on, a single stage payload transfer from a Low Earth Orbit 

(LEO) into a Geostationary Orbit (GEO) was suggested by Bekey and Penzo (1986). This 

utilized a spinning tether for picking up the payloads and tossing them into the desired 

orbit. Earlier than that, Bekey (1983) introduced this form of payload raising and lowering 

for delivering a Shuttle External Tank (ET). He also remarked that the separation half an 

orbit after release will be 7 times the tether length for a hanging release, up to 14 times for 

a librating release and more than 14 times in the case of a spinning release. These estimates 

were also mentioned by Caroll (1986), Cosmo and Lorenzini (1997), and Lorenzini et al. 

(2000) but Bekey (1983) also stated that the separation after half orbit could be more than 

25 times the tethers length for a spinning release. 
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A rotovator is a rotating orbiting momentum exchange tether, with a retrograde motion of 

the tip, and is designed in such a way that the tether’s tip touches the planet’s surface to 

capture a payload and release it to a new trajectory. This concept was first introduced by 

Artsutanov (1967), and reinvented by Moravec (1977). During the contact between the 

tether’s tip and the planet’s surface, the tether’s rotation is selected so that the tether tip’s 

velocity cancels the orbital velocity thus permitting the payload to be transferred, or 

‘grabbed’ by a capture mechanism from the tether to the planet, or vice versa. Moravec 

(1997) proposed a tapered and orbiting rotavator which he called a skyhook. This skyhook 

could be used on a lunar orbit, so it is also known as a Lunavator. Moravec (1997) found 

that the mass can be minimised by having an arm length equal to one-sixth of the diameter 

of the moon so that each of the two arms can touch the surface three times per orbit. This 

Lunavator concept was studied in detail by Hoyt and Uphoff (2000) for their Cislunar 

Tether Transport System which they devised to transport payloads between LEO to the 

surface of the moon. Their study shows that the cislunar tether transport system would 

require less than 28 times of on-orbit mass to transport many payloads, as compared with a 

conventional rocket system which would consume a propellant mass equal to 16 times the 

mass of the payload for each mission. Therefore, the cislunar tether transport system could 

greatly reduce the round-trip travel time between LEO and the surface of the moon. 

Momentum exchange tethers can also be used as slings for throwing payloads into another 

orbit. This concept was mentioned by Caroll (1986), for catapulting rocks from the moon’s 

surface. Puig-Suari et al. (1995) also proposed a tapered tether sling for lunar and 

interplanetary payload transfer, and they were the first to introduce the application of 

external torque to spin up a tether. The torque was generated by a solar-powered electric 

motor, and a detailed calculation of the power requirement was presented in that paper. An 

additional counter rotating tether has been proposed by Puig-Suari et al. (1995) to 

overcome the problem with the higher spin rate by the motor’s stator due to the application 

of a resistive torque for the motor stator to contra-rotate. 

The advanced concept of using a tether sling to transport humans between the Earth and 

Mars was presented by Jokic and Longuski (2002), and they focused on the study of 

trajectory design and tether material. The study shows that the mass required for the tether 

sling is 10 times more than the propellant mass requirement. But, the capability of multiple 

launches by the tether sling gives an enormous reduction in the operational cost.  
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Cartmell (1998) also proposed a Motorised Momentum Exchange Tether, which became 

known as the MMET based on work presented to ESA in 1996. The MMET is a 

symmetrical momentum exchange system with a motorised spin up and a counter inertia. 

The inclusion of a motor, powered by electricity from a solar panel or a fuel cell, gives the 

opportunity for generating additional ∆V. Later on, Cartmell and Ziegler (1999) proposed 

a symmetrically laden momentum exchange tether model for the application of a 

continuous two-way interplanetary payload exchange. The tether system consists of a 

central facility for locating the motor and power supply, two symmetrical propulsion 

tethers with payloads at the end of the tether’s spans, and two outrigger tethers with 

dummy payloads at those tether tips to provide counter-inertia to the motor torque. 

McKenzie and Cartmell (2004) demonstrated a mission to transfer a payload from LEO to 

Lunar Capture using the MMET. The study shows that the payload can be launched at a 

rate of once per month throughout the life of the mission by using the Weak Stability 

Boundary method.  

2.2.4 Other applications 

A space tether could also be used for probe towing, especially for upper atmosphere 

exploration, where the altitude cannot be reached by an aircraft, and to which a sounding 

rocket could only travel for a very short period. A large satellite or a space shuttle in higher 

orbit could deploy a long tether that connects with the probe through the upper atmosphere. 

The aerodynamic drag on the probe and tether would slow down the satellite, which could 

then be compensated by means of a rocket engine. Lorenzini et al. (1990) studied the 

configuration and dynamics of a tethered probe in the dense atmosphere of Mars. This 

study shows that the tethered probe can operate for a long operational time at a 90 km 

altitude. Control of a tethered probe has been studied by Biswell and Puig-Suari (1998), 

and they have shown that the use of a hypersonic lifting body could give effective control 

of the probe’s altitude.  

A constellation of satellites that are physically interconnected by tethers could in principle 

be built in order to replace a very large spacecraft. Van Pelt (2009) gives an example of 

replacing a large antenna with a series of smaller antennas on smaller spacecrafts in a 

constellation. The spacecrafts are connected to the tether to keep the position of each 

spacecraft accurate.  
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More advanced concepts have been developed recently, widening the applications of 

tethers in space. The concepts of tethered satellite constellations and formation flying have 

expanded, resulting in a new concept in which a large structure called a space-web is 

deployed. The idea of the space-web was originated by Nakasuka et al. (2001), and was 

applied to the Furoshiki satellite. An experiment to deploy a space-web was successfully 

achieved and the results were discussed in Nakasuka et al. (2006). Cartmell and McKenzie 

(2006) have also proposed a space-web structure in which robots move over the surface of 

the web. McKenzie (2010) studied the dynamics and stability of the space web and the 

robots crawler in considerable depth. 

A new concept of a Tethered Solar Power Satellite (Tethered-SPS) was proposed by Sasaki 

et al. (2007). The Tethered-SPS is potentially composed of a 100m x 95m sub-panel, 

tethered by four wires connected to a bus system, with the capability of generating power 

up to a maximum of 490 Watts. This concept, however, needs further studies to confirm its 

technical feasibility.  

Most the tether applications are dependent on the strength of the selected material for the 

tether. Advanced studies in materials for space applications are required in order to put all 

the tether application concepts into reality. The next section will discuss principal tether 

missions/experiments up to this year.  

2.3 The Tether Missions 

Bekey (1983), Beletsky and Levin (1993), and Van Pelt (2009) all state that Gemini 11 

which consisted of two spacecrafts: Agena and Gemini, was the first real tether mission to 

be flown in space, and this was launched on 12 September 1966.  This manned spaceflight 

mission carried out two experiments: the first was a gravity-gradient test; and the second 

was to induce rotation, making the two spacecraft rotate around the common centre of 

mass. In the first experiment, Gemini 11 encountered a problem in deploying the tether, 

where both spacecrafts experienced a jerk and moved towards each other, making it 

difficult to align Gemini and Agena vertically with the Earth. Due to complicated motions 

of the tether which affected the stability of the spacecraft, this experiment was then 

abandoned. In the second experiment the tether underwent skip-rope motion during the 

transient phase, but continued to be stable when the centripetal force pulled the tether 

straight, and finally rotated at 38 degrees per minute in this station-keeping mode. When 

the spin rate was increased the tether experienced a so-called “big sling-shot effect”, and 
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the crew switched on the control thrusters to stop the oscillation, and managed to achieve 

nearly 1 deg per second. This experiment produced a low level of artificial gravity, but this 

could not be felt by the crew. Due to the failure of the first experiment, Gemini 12, which 

was launched on November 11, 1966, conducted another gravity-gradient experiment. 

During that experiment the tether deployed smoothly but only tautened occasionally. The 

Gemini managed to stabilise with a small difference of gravity between both spacecrafts 

which stayed at slightly different orbital attitudes. According to Van Pelt (2009), both 

missions managed to demonstrate tether rotation for artificial gravity, and have shown 

some level of gravity gradient affects, but more test were needed to understand completely 

the complex dynamics involved. 

Fourteen years after the first tether mission in space, a joint project at the Institute of Space 

and Astronautical Sciences (ISAS) in Japan and the Centre for Atmospheric and Space 

Science at Utah State University, named the Tethered Payload Experiment (TPE), was 

launched in a series of five missions, as shown in Table 2.1. The TPE was launched, not to 

orbit, but to very high altitude using a sounding rocket. The mission was to deploy a 

daughter payload from the main mother payload, to measure inside and outside the charged 

gasses after the ejection of electrons from the rocket into the atmosphere.  

Missions Launch date 
Tether 

length (km) 

Length of 

deployment (km) 

TPE-1 16 January 1980 0.4 0.038 

TPE-2 29 January 1981 0.4 0.065 

TPE-3 /CHARGES-1 8 August 1983 0.418 0.418 

CHARGES-2 14 December 1985 0.426 0.426 

CHARGES-2B 1992 0.4 0.4 

 

Table 2.1 : Joint US and Japanese Mission for the T ethered Payload Experiment from 1980 

to 1992. 

TPE-1 and TPE-2 failed to deploy the tether fully, and the electron beam also didn’t work. 

The third flight, TPE-3, or CHARGES, was redesigned to minimize friction during 

deployment, and managed to deploy to its full length, but it still had problems with the 

electron beam. 

Finally, in the next mission named CHARGES-2, both the deployment of the tether and the 

ejection of the electrons successfully worked, and the experimental results were presented 
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by Kawashima et al. (1988). The experiment was continued in the next mission, 

CHARGES-2B with similar equipment, but at this time the electromagnetic wave was 

generated and measured. According to Van Pelt (2009), this mission also worked 

according to plan. On February 8, 1988, the other suborbital flight, named ECHO-7, was 

launched in order to study the artificial electron beam propagated along the magnetic field 

lines in space. Unfortunately, this experiment failed due to problems with onboard 

equipment.  

A mission using a sounding rocket in the form of OEDIPUS A (Observation of Electric-

Field Distribution in the Ionospheric Plasma), was flown on 30 January 1989 on a Black 

Brant X, a three-stage sounding rocket. OEDIPUS A’s mission was to make a passive 

observation of the aurora ionosphere, by measuring weak electric fields in the plasma of 

the aurora. The tethered payload consisted of two spinning masses connected with a 958 m 

tether, and, according to Cosmo and Lorenzini (1997) and Van Pelt (2009) it was the 

longest electrodynamic tether to have been flown at that time. The second flight of this 

experiment was OEDIPUS C, which was launched on 6 November 1995 with similar 

scientific objectives. OEDIPUS C flew up to a higher altitude than the previous mission, 

up to 843 km, and deployed a longer tether with a length of 1174 m. 

The experiment conducted at the higher altitude gave a good basis for tether deployment in 

microgravity, and after Gemini 12, there were more experiment conducted at the lower 

Earth orbit. The Tethered Satellite System (TSS) was the next mission and involved 

deploying and retrieving a payload from the Space Shuttle connected by the tether. The 

deployment of a satellite with a long gravity gradient stabilised tether provided a facility 

for space environment research. TSS-1 was launched on 31 July 1992 on the STS-46 space 

shuttle.  The TSS-1 experiments discussed by Cosmo and Lorenzini (1997) have 

demonstrated the feasibility of deploying a satellite to long distances using a tether, 

allowing for experiments to fulfil the scientific objectives of the mission, even though they 

faced difficulties at the beginning. According to Caroll and Oldson (1995) a late design 

change caused a fault in the deployment mechanism which resulted in only 250 m of the 20 

km of available tether being deployed. However, this problem led to the discovery that the 

deployment of short tethers could be more stable than expected. Another flight was 

launched in February 1996 on STS-75, named TSS-1R with the mission objective to 

conduct exploratory experiments in space plasma physics. During the mission the tether 

suddenly broke after being nearly fully deployed at 19.7 km, and an investigation showed 

that the prevailing electric current had in fact melted the tether. Although the experiment 
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failed much scientific data was collected, and an analysis was undertaken by Stone et al. 

(1999), which concluded that the results were extremely encouraging for the study of 

electrodynamics tether application, and led an improvement in understanding tether 

dynamics. 

The first orbital tether experiment was the Small Expendable Deployer Systems (SEDS-1), 

which was launched on 29 March 1993, and then SEDS-2 on 9 March 1994. The idea of 

these experiments was to send the satellite to a selected orbit using a rocket, and 

autonomously to deploy and retrieve the tether from the satellite. Caroll (1993) 

summarised that SEDS-1 had a full deployment without any problems, the received data all 

made sense, the unexpected transverse vibration caused no problem for the tether motion, 

and the pause in the deployment did not induce tether fouling. The vibrations were also 

damped very effectively, but the brake law needed feedback for a controlled stop. SEDS-2 

had an improved braking system to ensure that the satellite stopped flying out when the 

whole tether was deployed, and also to prevent bouncing. According to Van Pelt (2009) 

this mission proved that a tether might be accurately deployed to a stable position in orbit 

by feedback control and a simple frictional brake. 

On 26 June 1993 the Plasma Motor Generator (PMG) experiment was launched and 

consisted of a far-end package connected to a Delta II Second Stage by a 0.5-km-long 

tether. The PMG demonstrated the configuration of an electrodynamic tether that could be 

used to generate electric current, or for orbit boosting. As mentioned in Cosmo and 

Lorenzini (1997), the experiment lasted 7 hours until the batteries expired.  

A simple experiment named TiPS (Tether Physic and Survivability) was designed to study 

tether motion over a long time, and to show how it would survive in a region of orbital 

debris. TiPS consisted of two satellites connected by a 4-km-long tether and placed in a 

circular orbit at an altitude of 1022 km, and was launched on May 12, 1996. The tether 

system was observed using satellite laser ranging which stopped functioning in 1995 while 

the tether was still intact. After 10 years of operation, the tether was broken, and so this 

mission proved that tethers can potentially be made to be survivable. 

The Advanced Tether Experiment, or ATeX, continued the challenge of undertaking tether 

dynamics experiments. It was launched from a parent spacecraft, called STeX, on October 

3, 1998. The two end-mass satellites of ATeX were connected by a 6.2 km tether of 

polyethylene tape with three strands of Spectra Material. The upper end mass was to be 
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deployed, while the lower end mass was attached to the parent spacecraft. Unfortunately, 

the deployment of ATeX was stopped at a tether deployment length of 22 m because 

sensors had detected that the tether had moved away at an angle and this triggered the 

automatic safety system, making both spacecrafts continue to orbit on a short piece of 

tether. The analysis verified that thermal expansion had contributed to the failure of the 

deployment.  

The first Young Engineer’s Satellite (YES) mission started in 2002, and was developed by 

the space research and system engineering division of Embedded instruments and Systems 

S.L under joint sponsoring by ESA and the Dutch aerospace development agency NIVR. It 

was launched together with TORI (Tethered Orbit Insertable) which was connected to YES 

by a 35 km tether. YES’s primary objective was to investigate dumbbell dynamics, and 

tether deployment in Geostationary Transfer Orbit (GTO). Due to the change in launch 

time, YES potentially had a longer than expected orbital lifetime, and the Space Debris 

Committee determined that the collision risk was high, therefore, the tether was not 

allowed to deploy. Without deployment of the tether the main mission objective was not 

achievable. 

A tether application for formation flying was a mission involving two miniature satellites 

developed by the Aerospace Corporation, Picosat-1 and Picosat-2 launched in January 26, 

2000. The two picosats were designed to perform formation flying and were connected 

with a 30 m tether to ensure they would stay close to each other. This mission performed a 

basic test of a Micro Electro-Mechanical System (MEMS) radio frequency switch. After 

the success of this mission, the experiment was repeated by Picosat-7 and -8 in July of the 

same year. MEPSI-1A was a larger set of tethered satellites developed by the Aerospace 

Corporation which was launched on December 2, 2002 with a mass of about 1 kg for 2 

cubic masses which were connected by a 15 m tether.  

Small tethered satellites continued to be developed, and students from the Technical 

University of Denmark developed DTUsat-1 and launched it in 2003, with a mission to 

deploy a 450 m copper wire tether. Unfortunately this mission failed due to a failure in the 

communication system of the satellite. In Japan the small CUTE 1.7 (Cubical Tokyo Tech 

Engineering Satellite) was launched on February 22, 2006, based on the previous 

development of CUTE-1, the first CubeSat in the world, as documented by Ashida et al. 

(2010). In addition to the primary mission to demonstrate microsatellite technology CUTE 

1.7 was also designed to test deorbit technology using an electrodynamic tether. However, 
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the deployment of this tether was unsuccessful due to a defect in the communication 

system. 

Tethers Unlimited, Inc (TUI) and Stanford University together developed the MAST 

(Multi-Application Survivable tether) experiment and launched it in April 2007. This 

experiment consisted of three picosatellites, named “Ted”, “Ralph”, and “Gadget”. The 

experiment was to have Ted and Ralph deploy a 1000 m length of tether from the satellite, 

and then Gadget was to crawl along Ted and Ralph. This experiment used the patented 

‘Hoytether’ to increase the tether’s lifetime. Nevertheless communication was only 

established between the ground base and Gadget, but not with the other picosatellites, 

resulting in only a few metres of tether being successfully deployed.  Later, on September 

14, 2007, the 32 kg YES-2 experiment was launched by a Soyuz rocket as part of the 

Foton-M3 microgravity research capsule and as a continuation of the YES-1 mission. At 

this time Kruijff and Van der Heide (2009) stated that the tether managed to deploy in the 

downward direction of a 37.1 km long tether connected to a small capsule named Fotino on 

September 25, 2007. In the post deployment phase it was reported that the tether system 

behaved as a pendulum, and swung back towards the vertical equilibrium position, and 

then the tether was cut to release the MASS and the Fotino. The braking plan at the end of 

deployment failed, resulting in the tether experiencing a shock which made the Fotino 

unable to fly on the exact planned re-entry trajectory. The Space Surveillance Network was 

unable to detect the Fotino, and the team believed that it entered the atmosphere, or that the 

radio system may have been damaged. 

The latest tether mission was JAXA’s Tether Technology Rocket Experiment (T-REX), 

launched on August 31, 2010, from a sounding rocket type S-250-25.  This mission 

successfully conducted basic experiments on an electrodynamic tether in the ionosphere. It 

consisted of the deployment of the tether, a quick ignition test of the hollow cathode 

system, and a demonstration of the operation of the electrodynamic tether system, while 

making a sub-orbital flight for about 10 minutes to reach a maximum altitude of 300 km.  

2.4 Tether dynamics 

The vast amount of literature covering the dynamics of the space tether, and an excellent 

monograph by Beletsky and Levin (1993), offer comprehensive analyses of various aspects 

of the dynamics of space tether systems. The topics discussed cover the dynamics and 

stability of the tether of the Newtonian field, atmospheric probes, electrodynamic tethers, 
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libration and rotation, deployment and retrieval, and lunar anchored and satellite ring 

systems. Misra and Modi (1986) reviewed the dynamics and control of Shuttle-borne 

tethered satellite systems, and presented a dynamical analysis on the three body space-

station based tethered system. The review concluded that there was a requirement for more 

ground experiments to verify the efficiency of tether deployment and retrieval, and that 

further works were needed to understand the dynamics of the tethered space station. 

Furthermore, past and recent studies of the space tether have been summarised in excellent 

review articles by Kumar (2006), and Cartmell and McKenzie (2008).  

The dynamics of tethers are mainly studied in three operational phases; station keeping, 

deployment, and the retrieval phase. In the station keeping phase, the stability of the tether 

is of most concern. Liaw and Abed (1990) studied the stabilisation control of rigid and 

massless tethers during station keeping, where a stabilising controller was constructed 

using linear and quadratic feedback. No and Cochran (1995) showed in their study of 

tethered flight vehicles that aerodynamic control could be an alternative to reaction control 

for station keeping. The deployment and retrieval phases are the most critical in which the 

application of a length rate control law is demanded. Previous flown missions have shown 

that the instability of tether deployments, which have frequently contributed to mission 

failure, were due to unexpected phenomena, such as tether slackness. Misra & Modi (1982) 

remarked that the control gains for tether deployment and retrieval should be carefully 

chosen as the gains that damp out the swing could also result in large vibration 

displacements. They also mentioned that the deployment will be stable as long as the 

commanded length rate in the control law is small. The work of Kokubun & Fujii (1996) 

on tether retrieval under elastic effects showed that the use of large-deflection theory can 

avoid the incorrect assumption that tethers will be slack during deployment or retrieval.                                                   

The discovery of the so-called ‘weird phenomenon’ by the crews during the experiments of 

Gemini 11 and 12, proved that the tether dynamics were more complicated and 

problematic than the theory had predicted. This weird phenomenon was actually the ‘skip-

rope’ motion of the tether which Chapel and Flanders (1993) have studied in detail in the 

TSS-1 mission. They indicated that this skip-rope motion occurred due to the current 

flowing in the electrodynamic tether. Chapel and Flanders (1993) also examined libration, 

plunge, and pendulous motion, and the string dynamics of a tethered satellite system based 

on the dynamic data from the TSS-1 mission. The first three motions: libration, the plunge 

mode, and the pendulous mode are mentioned as the principal vibration modes that involve 

rigid body motions of the spacecraft. The plunge mode is where the tether behaves more a 



  Chapter 2  

  21 

like spring-mass system involving tether contraction and extension; and the pendulous 

mode is where the tether rotates rather than translates and the frequency depends on the 

tether’s tension. Chapel and Flanders (1993) have shown that libration motion depends 

upon the ratio of tether length rate to tether length during the deployment and retrieval 

phases. Ziegler and Cartmell (2001) investigated prograde libration performances for 

payload raising and lowering. They showed that a prograde librating tether that has a large 

maximum libration angle, and is orbiting near to the Earth, performs the best during 

payload raising; whilst a prograde librating tether with a maximum libration angle, but 

moving far from the Earth, performed the best for payload lowering. This showed the 

advantages of a librating tether for payload increment gain, as compared to the hanging 

tether, but the spinning tether is known to give the best performance. A study by Takeichi 

et al. (2001) clarified that the divergence of libration for tethered systems subjected to 

atmospheric drag was determined by the drag area, drag coefficient, orbital altitude, and 

eccentricity. The study also showed that the larger the mass of sub-satellite, the smaller the 

tether’s cross-sectional; and the longer the tether, the more it contributes to the instability 

of tether libration, and vice versa. 

The spinning motion of a tether also has a significant impact on tether dynamics and 

stability, and the Gemini 11 and 12 missions were the first to involve a tether spinning 

around the centre of mass, and to use this for station keeping and generating artifial 

gravity. The earliest study of a spinning tether was conducted by DeCou (1989). That study 

investigated the three-dimensional motion of a spinning TSS with several configurations 

including a dumbbell, a carousel and a triangle. This work showed that the rotation rate of 

a triangular tether is constant, but this is not the case for a dumbbell tether. Luo et al. 

(1996) studied a stretched tether spinning about its longitudinal axis, and presented the 

exact solution for a nonlinear damped and undamped tether. The dynamical analysis for 

this model was carried out for a linear and nonlinear model, and the results showed that the 

resonant motion for undamped vibration is always stable, whilst the damped forced 

vibration is unstable. Min, Misra, and Modi (1999) studied a nonlinear spinning tether in 

depth, and found that the model has the potential for skip-rope motion about the 

longitudinal axis. The research also found that the steady transverse vibration has a mono-

frequency characteristic. In the work done by Tyc and Han (2001) it was found that tether 

root bending could play a major role in the dynamics of a spinning tethered vehicle. The 

work of Luo et al. (1996), Min et al. (1999), and Tyc and Han (2001) all considered the 

tether spinning about a nominal axis where the spin is generated by the end body for spin 

stabilization. The tether which spins about an axis normal to the nominal axis was studied 
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by Puig-Suari et al. (1995), where the concept of a tether sling was applied for payload 

transportation. An investigation of a payload transfer system, using two stages of a 

spinning tether, was conducted by Lorenzini et al. (2000). Ziegler and Cartmell (2001) 

studied the dynamics of the Motorised Momentum Exchange Tether (MMET), which 

included the tether spinning for the application of payload transfer. The spinning tether was 

also investigated by Lorenzini (2004), who worked on the configuration of the capture 

mechanism and the rendezvous dynamics of a spinning tether for payload transfer to GTO.  

The other option on which to model a tether, other than as a rigid dumbbell, is to model it 

as a string-like flexible tether. A string-like flexible tether will experience string dynamics 

in which the elasticity of the tether contributes to the displacement in the transverse or 

longitudinal directions, and, in the three dimensional case, the tether will display motion in 

two transverse directions and a longitudinal direction. Misra et al. (1986) investigated 

three-dimensional transverse and longitudinal vibrations of tethers connecting a sub-

satellite to the shuttle. That work showed that the transverse vibration frequency is 

dependent on the orbital frequency, but that the longitudinal vibration is not. They also 

mentioned that the transverse vibrations have a small effect on the rotation. Misra (2008) 

conducted an analytical study on elastic tethers, and presented an exact solution for the 

longitudinal vibration. In studying the damping tether, He and Powell (1990) damped the 

longitudinal and transverse vibrations in the skip-rope mode by means of manipulated 

material properties. The decay time was prolonged by the damping mechanism which was 

based on longitudinal stretching, which was induced by lateral motion.         

This literature survey on the dynamics of a flexible tether is continued in the next chapter 

where it focuses more on tether modelling. The literature that has been summarised in this 

chapter laid the fundamentals for tether studies and gives a good understanding in order to 

explore more interesting dynamical phenomena. 
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Chapter 3 

Dynamics of the Two Dimensional Flexible Tether 
Model 

3.1 Introduction 

This chapter presents a more complete flexural model for the Motorised Momentum 

Exchange Tether (MMET). A continuous string-like sub-span model is taken in which the 

sub-span is flexible and elastic, thereby allowing three dimensional displacements of the 

motorised tether. The differences between the rigid body and flexible models are 

compared, and the impact of the tether’s flexibility on the global motion of the tether is 

investigated. However, this chapter focuses on the dynamics of the two dimensional 

flexible tether only, in order to give a basis for the study of planar motion of the MMET. 

3.2 Tether Modelling 

A tether should be modelled based on the objectives to be achieved, and the desired 

analysis to be conducted. A simple model will reduce the complexity but will maybe 

introduce a lack of accuracy since some important phenomena will not be taken into 

account. Generally, tether models can be categorised into three types, these being the rigid 

rod, the sequence of elements approach, and the continuum model. 

The simplest model describing rigid body motion is based on a massless rigid rod in which 

bending and stretching are negligible. This model was used by Bainum and Kumar (1980) 

to develop a control law for the operation of the Shuttle-Tethered-Sub satellite system. 

Liaw and Abed (1990) used the same model to study the stabilization of tethered satellites 

during station keeping through a nonlinear control system. Netzer and Kane (1993) also 

assumed the tether as a massless straight object to optimise a control law for deployment 

and retrieval of the tether. Studies by Modi et al. (1981), Puig-Suari and Longuski (1991), 

and Ziegler and Cartmell (2001) have all employed the assumption of the tether as a 

massive rigid rod. The benefit of including the tether’s mass is to generate accurate data for 

where quantitative analysis is required. A study by Modi et al. (1981) showed that the 

simple point mass model provided useful information for developing a control strategy for 

retrieval operation of the Space Shuttle based tethered system. Netzer and Kane (1993) 

also showed the optimal solution for tether control using a simple model may be applicable 

to a more realistic model. In order to include the effect of the first longitudinal stretch 
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mode to the system, Fujii and Ishijima (1989) enhanced the tether model to be an 

extensible, massless rod.  

The next category is represented by a sequence of elements which allows some form of 

flexibility in the model. Banerjee (1990) studied a lumped mass model connected by 

massless springs, and proposed a deployment rate control law for the system. The lumped 

mass and massless spring element model was studied by No and Cochran (1995) to 

develop aerodynamic control thought to be viable for station keeping and manoeuvrings. 

Netzer and Kane (1995) represented the tether by eight inextensible rigid massive rods in 

order to describe the analysis during the station-keeping phase. They also mentioned that 

the sequence element model is often used to simulate the behaviour of such systems, but 

not for the controller. Puig-Suari et al. (1995) extended the previous work of Puig-Suari et 

al. (1992) to study the possibility of applying tethered spacecraft to perform aerobracking 

maneuvers at any atmosphere bearing planet in the solar system. Their latter work 

enhanced the tether model where flexibility effects were included by considered the tether 

as a chain of linked rigid rods with spring dampers to model the elastic behaviour. The 

result for a Mars aerocapture maneuver demonstrated that the flexible system behaves like 

the rigid one then changes when it enters the atmosphere due to the tether’s bending which 

creates a large force, resulting in an unacceptable manoeuvre. This confirmed the previous 

assumption by Puig-Suari et al. (1993) that the requirement to minimize the normal force 

in a rigid rod model is essential to create an acceptable manoeuvre.  

Biswell et al. (1998) used a different model to demonstrate flexible behaviour for 

aerobraking tethers. The tether is modelled as hinged rigid bodies connected with massless 

springs and dampers. The strength of this model is in its ability to model precisely the 

aerodynamics and gravitational forces, and the moment, with a limited numbers of 

elements which may in turn give a reduction in the computational cost.  

Danilin et al. (1999) studied the dynamics of an elastic deploying tether in the gravitational 

field using a tether model by No and Cochran (1995) but with different variables and 

approach. The tether is modelled as a series of discrete masses connected by massless 

elements and with internal viscous damping. The equation of motion was obtained by 

using the finite element model. Danilin et al. (1999) also studied two examples of the 

motion, the swinging of a cable and the plane motion of a space vehicle with a deploying 

tether system on orbit to verify the mathematical model and computer code, and also to 

estimate the accuracy of calculation. Cartmell and McKenzie (2008) remarked on the 
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important point made by Danilin et al. (1999) that tether element forces cannot be 

compressive, so conditions within the numerical solution algorithm have to be set up to 

accommodate the consequential effect of this.  

Netzer and Kane (1995) and Kumar (2006) suggested that the more elements that are used 

the more accurate the tether model will be, and the more closely it represents a continuous 

system. In fact, Vadali and Kim (1995) showed the bead model has the advantage of 

capturing most of the phenomena of the problem in comparison with the more 

computationally expensive continuum model. 

The other category for tether modelling is the continuous massive tether. Such a model can 

be elastic or inextensible. This approach is in general considered to be a way to model the 

tether, and is found in most of the nonlinear literature. Modi and Misra (1979) studied 

three dimensional motions for a massive continuous tether during the deployment and 

retrieval phases for a tether connected to two body systems. This study showed that 

transverse vibration can increase due to the Coriolis excitation, even when there is no 

initial deformation. The initial out-of-plane motion also decays during deployment but 

builds up when the terminal phase is reached due to aerodynamic forces and small initial 

librations, and vibrations are also increased during retrieval. Misra and Modi (1986) 

revisited this continuous model of the tether but focused on the dynamics during retrieval 

by taking into account the nonlinearity in the strain-displacement relationship, where this 

particular geometric linearity was found to have a noticeable stiffening effect against 

lateral vibration. 

Beletskii and Levin (1985) treat a tether which they consider as an Orbital Cable System 

(OCS), as a heavy, extensible, and flexible string in order to study stationary and periodical 

system motions in the atmosphere. The cable shows a wave-like configuration in stationary 

motion and may produce a destabilizing effect dependent on the cable diameter and 

altitude.  

Discretisation is required to obtain the solution for the partial differential equations which 

constitute the equations of motion for a flexible and extensible tether. Min et al. (1999) 

stated that discretisation procedures can be categorized into two classes; analytical 

procedures such as Galerkin methods, and physical discretisation procedures such as the 

finite element method, and these authors chose to use an assumed-mode method to solve 

their non-linear continuum tether model. Steiner et al. (1995) used both the Galerkin and 
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finite element methods to calculate large amplitude motions for a two satellite continuous 

tether system. The result shows that the finite element approach can be applied in both the 

formulation of the equations of motion in rotating and non-rotating coordinate frames, and 

more straightforwardly in comparison with the Galerkin method which can be only used in 

a rotating coordinate frame. The Galerkin or Assumed Mode method was also used by 

Keshmiri et al. (1996) and Luo et al. (1996) to reduce the nonlinear model of a spinning 

tether to a linear and nonlinear coupled system, and this was also used by Tyc and Han 

(2001) in conjunction with Lagrange’s equations for a spinning tether. 

3.3 Modelling of the Flexible Model of the MMET 

The modelling strategy for the MMET, to date, has mainly been to use rigid body 

modelling in order to keep the resulting analytical models as tractable as possible. This was 

based on the fair and reasonable justification that centripetal stiffening eliminates some of 

the flexural response, and that much of the ensuing behaviour will therefore be similar to 

that of a rigid body. The three dimensional mathematical models by Ziegler (2003) were 

used to explain successfully many of the fundamental motions possible for an MMET. 

However, the previous model strategies by Cartmell (1998) and Ziegler (2003) both 

discount the flexural characteristics of the tether sub-spans, and so some important 

phenomena may not be captured because of this. A further development, by Chen and 

Cartmell (2007) has shown that incorporating limited flexibility, in the form of an axial 

stretch coordinate, shows that significant axial oscillations can be uncovered, with obvious 

relevance to payload release and capture scenarios.  In this thesis, a continuous flexible 

model has been chosen for modelling the MMET in order to study the dynamics of the 

tether more precisely. MathematicaTM software has been used for deriving and integrating 

the equations of motion together with the application of the equation solver NDSolve to 

find a numerical solution to these ordinary differential equations. 

3.3.1 String model 

In modelling the flexible MMET, the tether is assumed to be a string which is connected to 

the masses at both ends. Figure 3.1 shows an element of the tether associated with the three 

dimensional displacement given by u(x,t),v(x,t),and w(x,t). The position vector of a 

displaced elements, ds as shown in unpublished notes by Cartmell (1999), which were 

based on a discussion originally given by Nayfeh and Mook (1979), is given by, 



  Chapter 3  

  27 

( )( )dxkwjviur BA

vvv
'''1'' +++=                                                     (3.1) 

 

Figure 3.1 : Displaced element of a flexible tether  

 
where the prime denotes differentiation with respect to x. Therefore, the scalar length of 

the deformed element, ds, is given by, 
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The strain due to axial extension of the element is, 
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Therefore, substitution of (3.2) into (3.3) gives, 
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The strain expression can be re-stated using the Binomial series,  
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The strain expression in terms of ',',' wvu  is given by equation (3.4) for which the 

expansion for ( )21 u′+  is included, 
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The evaluation of the strain expression using the Binomial Series from equation (3.6), 

where 222 ''''2 wvuuz +++= , and using MathematicaTM, leads to, 
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Evaluation up to and including fourth order terms leads to the following approximation,   
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Simplification, and subsequent substitution of equation (3.9) into (3.7) gives,  
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Expanding to get ,2
eε again using computer algebra, with evaluation up to and including 

fourth order terms gives, 
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This strain squared expression will be used later in the derivation of the potential energy of 

the tether in equation (3.72).  
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3.3.2 Flexible Tether on Orbit 

The inertial coordinate system for the tether is given by an assumed inertial X,Y,Z 

coordinate frame, with the origin at the centre of the Earth, as shown in Figure 3.2. The Z 

axis is pointing towards the Earth’s North Pole and the X axis towards the vernal equinox 

point.  
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Figure 3.2 : Orbital elements for a geocentric iner tial co-ordinate system 

 
The orbital motion of the tether is described by the orbital elements in which R is defined 

as the distance from the central facility to the centre of the Earth. The angle from the 

direction of perigee of the orbit to the centre of mass is given by the true anomaly,θ  and 

the inclination of the orbit is denoted by i. The three dimensional system in Figure 3.2 has 

been reduced to the two dimensional system which is given by the local coordinates shown 

in Figure 3.3, in order to reduce the complexity of the system and to be a basis for the 

flexible tether motion on orbit. Furthermore, orbit inclination is not considered in this 

study. The tether’s centre of mass is at the origin of the relative rotating co-ordinate 

system, Xo-Yo. The X-Y plane and the Xo-Yo plane lie within the orbital plane. The X axis is 

aligned to the direction of the perigee of the orbit and the Xo axis aligned to the position 
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vector of length R. The angle from the direction of perigee of the orbit to the centre of 

mass is given by the true anomaly,θ . The in-plane angle ψ  is the angle from the Xo axis to 

the position of the tether on the plane. The payload masses, MP1 and MP2 are connected to 

the central facility, mM , by the tether sub-span of  length L.   
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Figure 3.3 : Local co-ordinate system for the two d imensional flexible model of the MMET 
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Figure 3.4 : Position of point P’ on the deformed tether 
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The X-Y co-ordinate system for a deformed tether is shown in Figure 3.4, and the position 

of an arbitrary point on the deformed tether is given by point P’. The longitudinal 

deformation of the arbitrary point on the tether is denoted by u(x,t) and the transverse 

deformation is given by v(x,t). The distance of the point P from the central facility in the 

undeformed configuration is given by x.  

3.3.3 Cartesian components 

As shown in Ziegler and Cartmell (2001), the Cartesian components for the payload and 

the central facility when considered for planar motion, are given by, 

)cos(cos1 θψθ ++= LRxP                           (3.12) 

)sin(sin1 θψθ ++= LRyP                          (3.13) 

)cos(cos2 θψθ +−= LRxP                          (3.14) 

)sin(sin2 θψθ +−= LRyP                          (3.15) 

 

and the coordinates of the central facility are, 

θcosRxmm =                                      (3.16) 

θsinRymm =                                     (3.17) 

 
and in this flexible model the position of point P’ along the tether with respect to the centre 

of the Earth, as in Figure 3.4, is given by the following Cartesian components, 

)sin()cos()(cos1 θψθψθ +−+++= vxuRx
Pt                     (3.18) 

)cos()sin()(sin1 θψθψθ +++++= vxuRy
Pt                     (3.19) 

)sin()cos()(cos2 θψθψθ ++++−= vxuRx
Pt                     (3.20)   

)cos()sin()(sin2 θψθψθ +−++−= vxuRy pt                     (3.21) 
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3.3.4 Separation of variables 

The elastic displacements ),( txu  and ),( txv are functions dependent both on space and 

time and can be separated in the usual manner by recourse to the Bubnov-Galerkin method, 

)()(),( 1
1

tqxtxu i

n

i
i∑

=

= φ ;   )()(),( 2
1

tqxtxv i

n

i
i∑

=

= ξ ;                                                   (3.22) 

where the )(xiφ and )(xiξ are spatial linear mode shape functions and )(1 tq i and )(2 tq i are 

time dependent modal coordinates.  

Therefore, first mode approximations are given by, 

      )()(),( 1 tqxtxu φ= ;   )()(),( 2 tqxtxv ξ= ;                                                             (3.23) 

where )(xφ and )(xξ  can be taken to represent the relevant fundamental mode shapes, and  

)(1 tq  and )(2 tq  represent the generalised coordinates associated with those modes. 

The equation for forced lateral vibration for a uniform strong is as in equation (3.24) taken 

from Rao (2007) and Meirovitch (2001), where the tension is constant, 

2

2

2

2 ),(
),(

),(

dt

txvd
txf

dx

txvd
T ρ=+                                                        (3.24) 

Considering the free vibration case, for which 0),( =txf , the equation reduces to, 

2

2

2

2 ),(),(

dt

txvd

dx

txvd
T ρ=                                    (3.25) 

or, 

2

2

2

2
2

dt

vd

dx

vd
c =                                         (3.26) 

where 
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2
1








=
ρ
T

c                                     (3.27) 

Substitution of the second member of equations (3.23) for the displacement v, gives, 

2
2

2

2
2

2

2

2 1

dt

qd

qdx

d

f

c i

i

i =
ξ

                           (3.28) 

As expected, the left hand side of the equation is dependent on x, and the right hand side is 

dependent on t, therefore each side must be a constant which can be denoted by a,  

a
dt

qd

qdx

d

f

c i

i

i ==
2
2

2

2
2

2

2

2 1ξ
                       (3.29) 

from which two ordinary differential equations can be obtained, 

0
22

2

=− i
i

c

a

dx

d ξξ
                                   (3.30) 

022
2

2

=− i
i aq

dt

qd
                                   (3.31) 

by setting set 2ω−=a , equations (3.30) and (3.31) become, 

0
2

2

2

2

=+ i
i

cdx

d ξωξ
                                   (3.32) 

02
2

2
2

2

=+ i
i q

dt

qd ω                                    (3.33) 

with the general solutions, 

x
c

Bx
c

Ax
ωωξ cossin)( 11 +=                                      (3.34) 

tDtCtq ωω sincos)( 111 +=                           (3.35) 
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Assuming initially that the payload and central facility are so massive that the tether sub-

spans experience them as being equivalent to built-in ends, then the tether motion has 

displacement boundary conditions as follows, 

 0)()0( == Lvv                              (3.36) 

Substituting (3.36) in (3.34) and (3.35) and solving the linear homogeneous equation, gives 

the mode shapes in the form of, 

l

xi
Ax

πξ sin)( 1=          i =1,2…                                                                             (3.37) 

This approach for the boundary conditions is echoed in the work of Luo et al. (1996), 

where the same assumption of fixed end boundary conditions is used to get the mode shape 

functions thereby simplifying the derivation of the equations of motion for a stretched 

spinning tether.  

The axial vibration of the string can be assumed to be treatable similarly to the axial 

vibration of a thin rod which is governed by the same boundary conditions as for the 

transverse vibration of the string. Therefore, for this case the boundary condition is, 

0)()0( == Luu                         (3.38) 

This gives a mode shape for axial vibration which is essentially the same as for transverse 

vibration,  

 
l

xi
Ax

πφ sin)( 2=  ;              i=1,2…                                                   (3.39) 

where 1A ,and 2A  are arbitrary constants dependent on the boundary and initial conditions.  

In this study, only the fundamental mode is considered. Restricting the analysis to the 

fundamental mode in each case simplifies the study and may still give a good basis for the 

dynamics of the flexible tether for future study. More simplification is applied to equation 

(3.39) in normalizing the modes by setting 1A  and 2A  to 1, to give the mode shapes as, 
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l

x
x

πφ sin)( = ;   
l

x
x

πξ sin)( =  ;                                                                     (3.40) 

Therefore, the longitudinal and transverse displacements can be written as, 

)(sin),( 1 tq
l

x
txu

π= ;  )(sin),( 2 tq
l

x
txv

π=                                                                    (3.41) 

3.3.5 Kinetic Energy  

The kinetic energy for the system takes into account translational and rotational motions, 

and for overall two dimensional translational motion is,  

)(
2

1
)(

2

1
)(

2

1 2222
2

22
1 2211 mmpppp MMmMMPMMPtrans yxMyxMyxMT &&&&&& +++++=        

( ) ( )2
2

2
2

2
1

2
1 2

1

2

1
tttt yxALyxAL &&&& ++++ ρρ                          (3.42)                                            

and the rotation kinetic energy is given by, 

2

2

1
iirot IT ω=                                                                         (3.43) 

where I i is the mass moment inertia, ω is the angular velocity, and i refers to the chosen 

rotation axis. In the case of the MMET system the angular velocities due to rotation about 

the X, Y and Z axes are given by, 

 
22 )(γω &=x                                         (3.44)    

22 )(αω &=y                                                    (3.45)                  

22 )( θψω && +=z                  (3.46) 
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Figure 3.5 : Cylindrical shape of MMET components 

 
The mass moments of inertia in equation (3.43) can be derived on the assumption that all 

components are cylindrical in shape as shown in Figure 3.5, and so the mass moment of 

inertia for rotation about the X axis is,  
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The mass moment of inertia for rotation about the Y axis is, 
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and finally the mass moment of inertia for rotation about the Z axis is, 
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Mm
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                                                 (3.49) 

Adding equations (3.42) and (3.43) and considering that MP1=MP2 = MP, the kinetic energy 

for the payloads and the central facility as given by Cartmell (1998) and Ziegler (2003) is, 

( )( ) ψθθ &&&& 






 +++++= 222222

2

1
22

2

1
PPmmPPmP rMrMMLRRMMT       

( )22222

2

1

4

1 ψθ && +






 +++ PPmmP rMrMLM                                                          (3.50) 

Furthermore, the kinetic energy associated with translation and rotation of the tether is 

given by, 

22
2

2
2

0

2
1

2
1

0

)()(
2

1
)(

2

1 θψρρ &&&&&& +++++= ∫∫ Ttt

L

tt

L

T IdxyxAdxyxAT
PPPP

                                 (3.51) 

The tether is assumed for this model to be in the form of a solid circular cross-sectional 

line of radius Tr , area A, and density ρ , for which the mass moment of inertia is given by, 

( )223
12

1
LrALI TT += ρ                        (3.52) 

Using the separated variables for displacements u and v in (3.41), the first time derivative 

of the quantities in equations (3.18) to (3.21) are given by, 
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( ) ( )ψθπψθπθθθ +−++−= sinsincossinsincos 211 q
L

x
q

L

x
RRx

Pt &&&&&            

( ) ( ) ( ) ( )ψθψθπψθψθπ ++






 +−++− sinsincossin 12 &&&&

L

x
qxq

L

x
                             (3.53) 

( ) ( )ψθπψθπθθθ +++++= cossinsinsincossin 211 q
L

x
q

L

x
RRy

Pt &&&&&

          

( ) ( ) ( ) ( )ψθψθπψθψθπ ++






 ++++− cossinsinsin 12 &&&&

L

x
qxq

L

x
                             (3.54) 

( ) ( )ψθπψθπθθθ +++−−= sinsincossinsincos 212 q
L

x
q

L

x
RRx

Pt &&&&&

         

( ) ( ) ( ) ( )ψθψθπψθψθπ ++






 +++++ sinsincossin 12 &&&&

L

x
qxq

L

x
                      (3.55) 

( ) ( )ψθπψθπθθθ +−+−+= cossinsinsincossin 212 q
L

x
q

L

x
RRy

Pt &&&&&

            

( ) ( ) ( ) ( )ψθψθπψθψθπ ++






 +−+++ cossinsinsin 12 &&&&

L

x
qxq

L

x
                             (3.56)        

Substituting equations (3.53) to (3.56) into (3.51) gives the final form of TT , 

( ) ( ) ( )ψθρ
π

ρθρρρ &&&&&&&&& +






 +−++++= 2
2

1221
2222

2
2
1

2

2

1
qALqqqqALALRRALqqALTT

        

( ) ( )ψθρρρ
π

ρ &&






 +++++ 22
2

2
11

23

2

14

6

5
TALrqqALqALAL                      

( ) ( )2222
2

2
11

23

4

1

2

12

12

5 ψθρρρ
π

ρ && +






 +++++ TALrqqALqALAL                              (3.57) 

3.3.6 Potential Energy                 

The previous work of Ziegler and Cartmell (2001) considered the potential energy for the 

system, consisting of gravitational potential energy given by, 

2121 ttmmmmG UUUUUU ++++=               (3.58) 

where 1mU , 2mU , mmU , 1tU and 2tU  are , 
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ϕ

µ

cos222

1
1

LRLR

M
U P

m
++

−=                  (3.59)                     

ϕ

µ

cos222

2
2

LRLR

M
U P

m
−+

−=                                  (3.60) 

R

M
U m

mm

µ
−=                                                                                       (3.61)           

dlRllRAU
L

t ∫
−

++−=
0

2

1
22

1 )cos2( ψµρ               

ψψ
ψµρ

cos2cos

)cos1(
ln

22 RLLRRL

R
A

++++

+=
                                                        (3.62)    

dlRllRAU
L

t ∫
−

−+−=
0

2

1
22

1 )cos2( ψµρ                  

ψψ
ψµρ

cos2cos

)cos1(
ln

22 RLLRRL

R
A

−+++

+=                     (3.63) 

It was mentioned by Ziegler (2003) and proved by Chen (2009) that equations (3.62) and 

(3.63) can generate a numerical singularity for πψ =  for any non-zero constants value. 

Therefore, when numerically integrating the equations, the following discrete 

approximations as proposed by Ziegler (2003) can be used for the two sub-span 

contributions, 

∑
= −+




 −+

−=
N

i
t

N

RLi

N

Li
RN

AL
U

1
2

2

1

cos
2

)12(2

2

)12( ψ

µρ
                               (3.64) 

∑
= −−




 −+

−=
N

i
t

N

RLi

N

Li
RN

AL
U

1
2

2

2

cos
2

)12(2

2

)12( ψ

µρ
                   (3.65) 

Ziegler (2003) showed that in general N = 10 to 15 is a sufficiently fine discretisation for 

accurate representation of the potential energy of the sub-span. 

In this flexible model, the tether has additional potential energy due to its own elastic 

effects. The elastic potential energy is, 
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dxEAU
l

T∫=
0

2

2

1 ε                         (3.66) 

where Tε  is the total strain. The tension, T for the string is given by 

eo EATT ε+=                          (3.67) 

where oT  is the tension when the string is in the nominal configuration and this would 

normally come from the centripetal load in the MMET, and eEAε  is the tension due to 

elemental stretch. oT  is defined by, 

2

0

ψρ &









+= ∫

L

po AxdxLMT                                   (3.68) 

where ψ&  is the angular velocity of the system. 

A simple stress-strain relationship is assumed for the axially loaded MMET, 

TE
A

F εσ ==                   (3.69) 

where the cross-sectional area, A, is considered to remain constant during and after axial 

extension of the element, and force F for this case is the tension, T.  

Substitution of equation (3.67) into (3.68) gives the strain function as, 

e
eo

T EA

T

EA

EAT εεε +=
+

= 0                (3.70) 

Therefore, substitution of equation (3.70) into (3.66) gives the potential energy in this 

form, 

dx
EA

T
EAU

l

e
o

EE ∫ 






 +=
0

2

2,1 2

1 ε
 



  Chapter 3  

  41 

            dxEAT
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eeo
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++=
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2

1

2

1 εε                      (3.71) 

and substitution of the strain expressions (3.10) and (3.11) into (3.71) gives the elastic 

potential energy for the tether in the following form, 

( ) ( ) ( ) ( )∫
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Substituting equation (3.41) into equation (3.72) and applying the integration from 0 to L 

gives the potential energy as, 
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3.3.7 Total Kinetic Energy and Potential Energy  

Adding equations (3.50) and (3.57) gives the total kinetic energy for the system, 
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  Chapter 3  

  42 

Substituting the various constituent part into equation (3.58), and adding equation (3.73) to 

this gives the total potential energy for the system, 
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3.4 Equations of Motion  

The equations of motions are derived using Lagrangian dynamics. Lagrange’s equation is 

given in the common undamped form as follows,  

k
kkk

Q
q

U

q

T

q

T

dt

d ~=
∂
∂+

∂
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∂
∂
&

                           (3.76) 

Previously, the damped system of MMET has been studied by Gandara (2009), where 

damping in the system due to the bearings in the motor and transmission and general 

frictional heat dissipation was included in the derivation of the equations of motion. In this 

study the flexibility of the tether has already introduced great complexity into the system, 

therefore damping was abandoned not to make this system even more complex. The 

previous model by Ziegler (2003) also did not include the damping of the system in order 

for a comparison to be made between the flexible and rigid models. 

In this current system, the generalised coordinates are given by { } { }2,1,,, qqRqk θψ=  and 

in the unmotorised case there is obviously no external force acting on the MMET system 

so the generalised force in equation (3.76) is equal to zero. This means that the MMET 

motor drive is not actuated in this instance, hence the tether dynamics are entirely 

dependent on the initial conditions. However, the generalised force terms are clearly non-

zero for the motorised case. 
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Starting with generalised coordinate ψ . Operating on equation (3.74) gives, 
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Then, we obtain, 
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From which, we get,                             
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Finally from equation (3.75) we obtain, 
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Inserting equations (3.77) to (3.80) into Lagrange’s equation, as stated in equation (3.76), 

gives, 
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Next, for generalised coordinate θ , 
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Finally, we note that, 
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∂
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θ
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Inserting equations (3.82) to (3.85) appropriately into Lagrange’s equation, leads to, 
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In the case of generalised coordinate R the following differentiations apply, 
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Substituting equations (3.87) to (3.90) as required into Lagrange’s equation, leads to, 
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Then for generalised modal coordinate1q , 
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Taking equations (3.92) to (3.95) and substituting them into Lagrange’s equation, gives the 

following,  
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Finally, for generalised modal coordinate 2q , 
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Following the same process takes us to, 
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Dividing equations (3.81), (3.86), (3.91), (3.96) and (3.101) by ALρ  gives second order 

ordinary differential equations of motion for the system in reasonably standard form, thus 
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3.5 Tether Simulation 

Four operating conditions have been considered in this study of the tether’s motion on 

orbit. The conditions are as follows, 

i. Circular orbit, unmotorised (no torque is applied to the system). Initial conditions 

only are driving this version of the model. 
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ii.  Circular orbit, motorised. The torque is applied and predominates the motion of the 

system. 

iii.  Elliptical orbit, unmotorised (no torque is applied to the system). Initial conditions 

only are driving this version of the model. 

iv. Elliptical orbit, motorised. The torque is applied and predominates the motion of 

the system. 

The angular velocity is the main parameter to determine the required ∆V in payload 

transfer. The best practice is to release the payload when the tether is aligned exactly along 

the gravity vector at perigee. However, Ziegler (2003) discussed the case when the tether is 

not released perigee, showing that the displacement of the tether from the perigee will 

reduce the tangential velocity of the released payload, and will cause a change in the 

orbital elements of the released payload due to the ∆V vector not being aligned with the 

tangential orbital velocity vector. Therefore, the payload transfer process should be 

designed so that the transfer happens only at perigee. 

Unless stated otherwise all the results were generated using the following parameters, 

largely in common with other planar studies in Ziegler and Cartmell (2001), Ziegler 

(2003), and Chen and Cartmell (2007) where the tether material data is based on the 

manufacturer’s specification for Spectra 2000. 

Parameters Value Unit 

L  10 000 m 

pM  1000 kg 

mM  5000 kg 

A
 

62.83 x 10-6 m2 

ρ  970 kg m-3   

mr  0.5 m 

pr  0.5 m 

E  113 GPa 

µ  3.9877848 x 1014 m3s-2 

pRR/  6 728 000 m 

Table 3.1 : Parameters for tether simulations 
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3.5.1 Circular orbit, unmotorised. 

The results in Figure 3.6 and 3.7 were obtained by numerically integrating equation (3.102) 

to (3.106) with no application of torque, and so the motion of the tether is based on the 

following initial conditions, 

)0(ψ = -0.9 rad, )0(ψ&  = 0 rad/s,  == )0()0( vu 0 m, 0)0()0( == vu && m/s            (3.107)      

and oT  is set to zero.  

The angular velocity of the tether centre of mass on orbit is given by, 

3R

µθ =&                                                                                                                    (3.108) 

The responses of the unmotorised tether in Figure 3.6 (a) and (b) show the steady state 

oscillations for both models which equate to libration of the tether in the circular orbit. 

A phase shift is noticeable in which the rigid body tether lags the flexible tether. The 

differences in the responses can clearly be seen after the first five orbits. These differences 

increase within the integration time and are shown in Figure 3.6 (c) and (d). Figure 3.7 

shows the longitudinal and transverse vibration of the flexible tether. The longitudinal 

displacements are periodic but non-harmonic, with a maximum displacement of 

approximately 0.005 m. The transverse displacement also shows periodicity, but with an 

amplitude of approximately +/- 45 m. 
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Figure 3.6 : Unmotorised tether responses for the f lexible model (line) and the rigid body 

(dashed) on a circular orbit, and the difference be tween the  responses of the two models 

over ten orbits. 
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Figure 3.7 : Longitudinal and transverse vibration of the unmotorised flexible tether on a 

circular orbit, with time. 
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3.5.2 Circular Orbit, motorised. 

For the condition in which the motorised tether is operating in the circular orbit, equations 

(3.102) (3.106) were again numerically integrated but an applied torque of 250 kNm used 

in equation (3.102), and the initial conditions were adopted again from equations (3.107). 
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Figure 3.8 : Angular displacement and angular veloc ity of the motorised tether on a circular 

orbit, with time. (line = flexible tether, dashed =  rigid body tether). 

 
The motor torque causes both tether models to spin up, as shown in Figure 3.8. The 

flexible model increases its angular displacement and angular velocity at a slightly slower 

rate as compared to that of the rigid body model, within the integration time. However the 

differences are small, and only appear after two orbits. The differences between the 

responses of the flexible and rigid body tether models are shown in Figure 3.9 below. 

0 10000 20000 30 000 40000 50000
0

100

200

300
400

500
600

700
0 2 4 6 8 10

timeHsL

D
iff

e
re

nc
eo

fy
@t
D
Hr

a
dL

Number of Orbits

 
0 10000 20000 30000 40000 50000

0.000

0.005

0.010

0.015

0.020

0.025

0 2 4 6 8 10

time HsL

D
iff

er
e

nc
e

of
y⋅

@t
D
Hr

ad
ês
L

Number of Orbits

 
Figure 3.9 : The difference in the angular displace ment and the angular velocity between the 

Flexible  model and the Rigid body model, with time . 

 
Unlike the unmotorised flexible tether, the application of torque and the effect of 

centripetal load both cause the longitudinal displacement of the tether to increase 
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significantly within the integration time, as shown in Figure 3.10. Conversely, the 

transverse vibration has shown a qualitatively different response, in which the vibration 

decays with time. However this is not an obviously dissipative effect and this phenomenon 

is connected to the stiffening effect due to the centripetal load experienced by the spinning 

tether. The centripetal load in the longitudinal direction increases the displacement, whilst 

the lateral stiffening effect reduces the amplitude of vibration in the transverse and lateral 

directions. 
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Figure 3.10 : Longitudinal and transverse vibration  of the motorised flexible tether, with time 

 
 

3.5.3 Elliptical orbit, unmotorised. 

Equations (3.102) to (3.106) have also been numerically integrated for the tether moving 

on an elliptical orbit with the following parameters and initial conditions:  

e = 0.25, 0)0()0( == vu m, 0)0()0( == vu && m/s, )0(ψ = 0 rad, )0(ψ& = 0.00873 rad/s, 

0=θ rad, 00146.0=θ& rad/s 

where pR  is the perigee of the ellipse and e is the orbital eccentricity. The applied torque 

and and oT  is set to zero.  

Figure 3.11 shows the angular displacement and angular velocity of the flexible and rigid 

body tethers on the chosen elliptical orbit. The initial conditions initiate the response of the 

tethers. The angular displacements have monotonically increased, but the angular 

velocities of both models are periodic. The differences between the responses of the 

flexible and rigid body tethers are too small to be significant practically, but Figure 3.12 

shows these differences. Figure 3.13 shows the position of the tether on the elliptical orbit, 
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and the true anomaly of the orbit within the integration time. The simulation starts at 

perigee and the highest peak in (a) is referring to the apogee of the elliptical orbit. 

The longitudinal and transverse displacements of the flexible tether are shown in Figure 

3.14. The maximum displacement in the longitudinal direction is approximately 0.11 m 

whilst the transverse displacement has an amplitude of approximately +/- 60 m.  
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Figure 3.11 : Angular displacement and angular velo city of the unmotorised tether  on the 

elliptical orbit, with time, at e = 0.25 (line = fl exible tether, dashed = rigid body tether). 
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Figure 3.12 : Difference in the angular displacemen t and the angular velocity between the 

flexible model and the rigid body model, with time,  at e = 0.25. 
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Figure 3.13 : The radius and true anomaly of the te ther on the elliptical orbit, with time, at e = 

0.25 
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Figure 3.14 : Longitudinal and Transverse vibration  of the flexible tether, with time, at e = 

0.25 

 

3.5.4 Elliptical orbit, motorised. 

For the condition of the motorised tether on an elliptical orbit, 250 kNm of torque is 

applied for both the flexible and the rigid body models. The results are as shown in Figure 

3.15. 

Both of the tether models are in the spin-up condition, and the flexible tether shows an 

increase in the angular displacement and angular velocity at a slower rate as compared to 

that of the rigid body model within the integration time. The differences are shown in 

Figure 3.16. 
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Figure 3.15 : Angular displacement and angular velo city of the motorised tether on the 

elliptical orbit, with time. (line = flexible tethe r, dashed = rigid body tether). 
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Figure 3.16 : Difference in the angular displacemen t and the angular velocity between the 

motorised flexible model and the rigid body model o n elliptical orbit, with time. 

 
The longitudinal displacement of the flexible tether in an elliptical orbit periodically 

increases, as shown in Figure 3.17. The displacement is at a maximum of 104.6 m when 

the tether has reached the 5th orbit. Figure 3.18 shows that the flexible tether is oscillating 

in the transverse direction with a maximum transient amplitude at –50 m. In addition, the 

tether demonstrates decaying oscillation in the transverse direction within the integration 

time. 
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Figure 3.17: Longitudinal vibration of the motorise d flexible tether on an elliptical orbit, with 

time. 
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Figure 3.18 : Transverse vibration of the motorised  flexible tether in an elliptical orbit, with 

time. 

 
 

3.5.5 Energy Consideration 

The effect of treating the tether as flexible and extensible is also shown in the energy 

expressions for the tether. The kinetic energy expression in equation (3.74) can be depicted 

as in Figure 3.19. The Figure shows that both rigid body and flexible models have almost 

the same amounts of energy when simulated in the unmotorised condition. The additional 

energy contributed by the elasticity in the potential energy is extremely small, and virtually 

insignificant against the total amount of energy of the tether. This is shown in Figure 3.20 

for the untorqued condition and Figure 3.21 for the torqued condition. In one orbital period 

the maximum elastic energy is about 120 J in the untorqued condition and has reached 80 
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KJ in the torqued condition as compared to the total potential energy which is nearly 500 

GJ. 
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Figure 3.19 : Kinetic and Potential energy of the r igid body and flexible models 
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Figure 3.20 : The elastic and gravitational potenti al energy for an unmotorised flexible tether 

on an elliptical orbit with e = 0.25 
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Figure 3.21 : The elastic and gravitational potenti al energy for an motorised flexible tether 

on an elliptical orbit with e = 0.25  

 

3.6 Conclusions 

The equations of motions have been derived for a two dimensional tether modelled as a 

string. The tether equations of motion are nonlinear differential equations with 

nonlinearities included up to cubic order, and it is clear that they show coupling terms 

between the longitudinal, transverse and lateral vibrations. A comparative study between 

the flexible model and the former rigid body models of the tether shows that the flexible 

tether has slower response in comparison with rigid body tether for all conditions reported 

in this chapter. The difference is due to the energy level in the flexible tether which is 

generally higher than that of the rigid body tether due to the inclusion of elastic potential 

energy. The existence of centripetal force in the spinning condition reduces the transverse 

displacement due to the stiffening effect. Therefore, the flexural effect of the tether has 

been seen to make a significant impact on the global motion of the tether in the long term. 

The study of the deformations of the flexible tether also provides a good estimation of the 

tether response. These deformations should necessarily be taken into account, particularly 

when precise motions predictions are needed. 
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Chapter 4  

Dynamics of Three Dimensional Rigid Body and 
Flexible Motorised Tethers 

4.1 Introduction 

This chapter considers the three dimensional dynamics of the MMET for both rigid body 

and flexible models. The main objective is to uncover the relationships between planar and 

non-planar motions, and the effect of the coupling between these two parameters on the 

circular and elliptical orbits.  

4.2 Three Dimensional Model of Rigid Body  

 
Figure 4.1 : Geometry of a Motorised Momentum Excha nge Tether (Ziegler,2003). 

 
In the previous study by Ziegler (2003) the dynamics of three dimensional rigid body 

motion of a massive tether were not examined due to the complexity of the equations of 

motions and the need for very long computation times. The simple dumbbell model has 

been used by Ziegler (2003) to allow the dynamics of the tether system to be efficiently 

explored without added complexity of the flexible tether dynamics. In this study, with 
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some advancement in computational technology since 2003, the derivation and simulation 

of this three body model is accomplishable at a somewhat lower cost and greatly 

accelerated time.  

Figure 4.1 shows the geometry of the motorised tether discussed by Ziegler (2003). The 

details of the coordinate system have been discussed in the previous chapter. The planar 

motion of the tether as mentioned in the previous chapter is described by angles q and ψ , 

whilst the non-planar motion is defined by angle a.  

4.2.1 Position Vectors 

The Cartesian components of the central facility and the payloads in the inertial reference 

frame X, Y, are shown in the previous chapter in the form of equations (3.12) to (3.17). For 

the three dimensional case based on the inertial frame X,Y,Z  the components in the Z 

direction are given below, 

αsin1 LzP =                       (4.1) 

αsin2 LzP −=                                                                                                              (4.2) 

0=mmz                          (4.3) 

From Figure 4.1 taking the centre of mass for the tether at L/2 leads to the following tether 

coordinates, 

)cos(cos
2

cos1 θψαθ ++= L
Rxt                                                 (4.4) 

)cos(cos
2

cos2 θψαθ +−= L
Rxt                    (4.5) 

)cos(cos
2

cos1 θψαθ ++= L
Ryt                    (4.6) 

)cos(cos
2

cos2 θψαθ +−= L
Ryt                    (4.7) 

αsin
21
L

zt =                       (4.8) 

αsin
22
L

zt −=                      (4.9) 
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4.2.2 Generalised Force 

By applying the theory of virtual work defined as follows, 

zFyFxFW ZYX δδδδ ++=                                                        (4.10) 

and considering the work done by all the non-conservative forces through appropriate 

virtual displacements, equations (4.11) and (4.12) are shown to apply, 

δαδ αα QW =                                                                                                   (4.11)  

δαδ ψψ QW =                             (4.12)  

The generalized forces with respect to the generalised coordinates a and ψ  are given by, 

αααα ∂
∂+

∂
∂+

∂
∂= z

F
y

F
x

FQ zyx                                  (4.13) 

ψψψψ ∂
∂+

∂
∂+

∂
∂= z

F
y

F
x

FQ zyx                                                                                       (4.14) 

 
Figure 4.2 : Components of forces, after (Ziegler, 2003). 
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The components of force in the x, y and z directions are,  

ψαγψγ cossinsinsincos FFFx −−=                                                                   (4.16) 

ψαγψγ cossinsincoscos FFFy −=                      (4.17) 

αγ cossinFFz =              (4.18) 

and so partially differentiating the Cartesian component of the end mass with respect 

toα and ,ψ  and substituting from equation (4.16), (4.17) and (4.18) into (4.13) and (4.14) 

gives the generalised forces as (Ziegler, 2003), 

αγτψ coscos=Q                                                                             (4.19)  

γτα sin=Q                                                                                                                  (4.20)         

4.3 Kinetic Energy of the  Rigid Body Model 

The Kinetic energy for translational motion of the three dimensional system is given as, 

)(
2

1
)(

2

1 222
2

222
1 222111 pppppp MMMPMMMPtrans zyxMzyxMT &&&&&& +++++=              

( ) ( )2
2

2
2

2
2

2
1

2
1

2
1

22

2

1

2

1
)(

2

1
ttttttMMMm zyxALzyxALzyxM

mmm
&&&&&&&&& +++++++++ ρρ                  (4.21)                                                                            

 and the rotational kinetic energy is given in the previous chapter by equation (3.43).  

Substitution of equations (3.44) to (3.49) into equation (3.43) gives the rotational kinetic 

energy for the system as, 

+++++++=
212121

(
2

1
))((

2

1 2
MpMpttMmMpMp YYXXXXXrot IIIIIIIT γ&               

22 ))((
2

1
))(

212121
θψα &&& ++++++++

ttMmMpMpttMm ZZZZZYYY IIIIIIII                         (4.22)          

Adding together equations (4.22) and (4.21) gives the total kinetic energy of the system for 

which the kinetic energy expression details can be found in Appendix A (i). 
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4.4 Potential Energy of the  Rigid Body Model 

In deriving the potential energy for the rigid body model of the tether only the gravitational 

potential energy is considered, as mentioned in the previous chapter. The equation is 

obtained by adding equation (3.59), (3.60), (3.61), (3.64) and (3.65) and generates the total 

potential energy as, 

R

M

LRLR

M

LRLR

M
U mPP

P

µ

ϕα

µ

ϕα

µ
−

−+
−

++
−=

coscos2coscos2 22

2

22

1           

∑
= −+




 −+

−
N

i

N

RLi

N

Li
RN

ARL

1
2

2 coscos
2

)12(

2

)12( ψα

µρ
 

∑
= −−




 −+

−
N

i

N

RLi

N

Li
RN

ARL

1
2

2 coscos
2

)12(

2

)12( ψα

µρ
                                                     (4.23)                                                               

                                                                                                           

In the case of the symmetrical MMET, 21 PP MM = . Therefore, the mass payload will be 

denoted as PM  from here on. The potential energy equation is shown in full in Appendix 

A (ii). 

4.5 Equations of Motion for the Rigid Body Model 

The equations of motions are derived using Lagrange’s equation. The generalized 

coordinates are given by { } { }γαθψ ,,,, Rqk =  and the generalized forces from equations 

(4.19) and (4.20) for the system are, 
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0

0
0

sin

coscos

γτ
αγτ

γ

θ

α

ψ

Q

Q
Q

Q

Q

R

                                   (4.24) 

The equations of motions for the rigid body model are stated in full in Appendix A (iii).  
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4.6 Simulation of the Rigid Body Model 

Unless stated otherwise all the results were generated with the default parameters for the 

MMET which can be found in Ziegler and Cartmell (2001), Ziegler (2003), and Chen and 

Cartmell (2007). 

4.6.1  Circular orbit 

Simulations are carried out with initial conditions, 9.0)0( −=ψ rad, 0)0( =ψ& rad/s, 

01.0)0( −=α rad, and 0)0(' =α rad/s for a tether on a circular orbit. The planar and non-

planar motions have been compared between the massless tether and the rigid 

body tether in Figure 4.3. The motions result from placing the tether on a circular orbit and 

without applying any torque to the tether.  

The massless tether model has been simulated for two different conditions, first with the 

equations of motion based on the study by Ziegler (2003) where only the translation 

motion of the tether’s components is considered when deriving the kinetic energy and this 

approach named here as the massless tether 1. The second condition refers to equations of 

motion of the rigid model tether which included rotational motion of the payload and the 

central facility in deriving the kinetic energy as in equation (4.21) and is named the 

massless tether 2. Table 4.1 shows the difference between the models used for this tether’s 

simulation. 

Conditions Massless 1 Massless 2 Rigid Body 

Tether  mass No No Yes 

Translational kinetic energy Yes Yes Yes 

Rotational kinetic energy No Yes Yes 

 

Table 4.1 : The difference of the conditions betwee n massless tether 1, massless tether 2 

and rigid body model.  

Figure 4.3 shows that the in-plane responses of all models are very similar but a significant 

difference is shown in the non-planar motion, defined by including angle a. The planar 

steady state motion is indistinguishable between the three models by simulating over a 

smaller range of time, as in Figure 4.4, in which the difference between the massless tether 

1 and the rigid body model, and the massless tether 2 is less than 0.000001 rad. 
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From Figure 4.3(d), it is clearly shown that the inclusion of rotational kinetic energy has 

increased the frequency of non-planar motion. The massless tether without rotational 

motion has the lowest natural frequency, but achieves a higher amplitude as compared with 

the other two models. For these two models, for which rotational motion has been 

considered, the rigid body model has a lower frequency of non-planar motion as compared 

with the massless tether.  
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Figure 4.3 : Planar and non-planar motions of Massl ess tether 1 (dashed), Massless tether 2  

(gray) and Rigid Body tether (red) on a circular or bit with zero torque. 

 
For the motorised tether an application of 2.5 MNm of torque to both models results in the 

responses of Figure 4.5. The rigid body tether in Figure 4.5 (a) and Figure 4.5 (b) shows an 

increase in the angular displacement and angular velocity at a slower rate as compared to 

that of the massless tether within the same integration time. Both types of massless tethers 

have shown an identical response for planar motion. Nevertheless, all models demonstrate 

decaying oscillations for non-planar motion. The massless tether 1 model decays the 

fastest, followed by the rigid body tether, and subsequently the massless tether 2 model. 
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Figure 4.4 : Angular displacement of Massless tethe r 1 (dashed), Massless tether 2  (gray) 

and Rigid body tether (red) on a circular orbit wit h zero torque over a smaller range of 

simulation time. 
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  Microview for out of plane displacement from (c): 
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Figure 4.5 : Planar and non-planar motions of Massl ess tether 1 (dashed), Massless tether 2 

(gray) and Rigid Body tether (red) on a circular or bit with 2.5 MNm torque. 
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4.6.2 Elliptical orbit 

Simulation was carried out for the tether on an elliptical orbit with its perigee at 6278 km 

and an orbital eccentricity of 0.25. The chosen initial conditions were: 

0)0( =ψ rad, 0873.0)0( =ψ& rad/s, 01.0)0( −=α rad, 0)0( =α& rad/s, 0)0( =θ rad and 

00146.0)0( =θ& rad/s 

The simulation was carried out for torqued conditions with an applied torque of 2.5 MNm. 

Simulation results are shown in Figure 4.6.  

On the elliptical orbit, Figures 4.6(a) and (b) show planar motion for the torqued conditions 

where the rigid body tether has a slower response as compared with the massless tether. 

There is no change in the orbital elements with simulations of different models for which 

the results depicted in Figures 4.6(e) and (f) refer to the radius and true anomaly of the 

selected orbit.In Figure 4.6 (e1) and (f1) both orbital parameters have shown small 

differences between these three condition in smaller range of simulation time. The rigid 

body tether obviously show that the radius of the orbit is different with other two models. 

This suggested that with increasing of the mass, it could alter the orbital parameters of 

tether.   Similar to tether motion on a circular orbit, the non-planar motion for a tether on 

an elliptical orbit also shows a decaying response with frequency with the massless tether 2 

model being the highest, followed by the rigid body tether, and finally the massless tether 1 

model.  

For both the circular and elliptical orbits in the applied torque case the rigid body model 

shows a slower response as compared with other model for planar motion. In comparison 

to the non-planar responses, it is shown that  fm1< fRB < fm2 where fm1 is the frequency of the 

massless tether 1, and  fRB is the frequency of the rigid body tether, and fm2 refers to the 

massless tether 2.  
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Figure 4.6 : Planar and non-planar motions of Massl ess tether 1 (dashed), Massless tether 2 

(gray) and Rigid Body tether (red) on an elliptical  orbit with 2.5 MNm torque. 
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4.6.3 Comparison between the 2D and 3D Rigid Body M odels. 

In order to validate the flexible 3D model it has been compared with the 2D model, 

simulation results are shown in Figure 4.7 and 4.8. Figure 4.7 (a) and (b) show that the in-

plane motions are visually indistinguishable for five orbits. Therefore, the difference of the 

responses between these two models are shown in Figure 4.6 (a1) and (b1) with very small 

differences shown between both models, whilst the difference increases with simulation 

time.  

0 10 000 20 000 30 000 40 000
0

2000

4000

6000

8000

0 1 2 3 4 5

timeHsL

y
@t
D
Hr

a
dL

Number of Orbits

HaL

    

0 10 000 20 000 30 000 40 000
0.0

0.1

0.2

0.3

0.4

0.5
0 1 2 3 4 5

timeHsL

D
iff

e
re

nc
eo

fy
@t
D
Hr

a
dL

Number of Orbits

Ha1L

 

0 10000 20000 30000 40000
0.0

0.1

0.2

0.3

0.4

0 1 2 3 4 5

time HsL

y⋅

@t
DH

ra
dê

sL

Number of Orbits
HbL

    

0 10000 20000 30000 40000
0

5.µ10-6

0.00001

0.000015

0.00002

0.000025
0 1 2 3 4 5

time HsL

D
iff

e
re

nc
e

of
y⋅

@t
D
Hr

ad
ês
L

Number of Orbits
Hb1L

 

Figure 4.7 : (a) & (b) - Comparison of response bet ween 2D (line)  and 3D (dashed) model in 

rigid body model. (a1) & (b1) - Difference between 2D and 3D models of rigid body MMET. 

 
Figure 4.8 (c1) and (d1) shows the difference in the orbital parameters between the two 

models and suggests that the presence of  the non-planar variable (a) in the equations of 

motion of the 3D model, for planar motion, has significant influence on the planar motion 

of the tether. The change in the orbital radius and the true anomaly may affect the payload 

transfer process whereby the wrong prediction of payload position may occur. This could 

fail the payload transfer process, or would fail to release the payload to its desired orbit. 
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Therefore, an additional system to correct the position would be required, which would 

increase the mass and the cost of the payload. 
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Figure 4.8 : Comparison of orbital parameters betwe en 2D (line) and 3D (dashed) models of 

a rigid body MMET 

 

4.7 Dynamics of a Three Dimensional Flexible MMET 

4.7.1 Initial positions 

Figure 4.9 shows the motions of a three dimensional flexible model of an MMET on orbit. 

The components of flexibility of the MMET have been described by the displacements of 

tether length in the axial and transverse directions, as explained in the previous chapter and 

given by u and v. In this three dimensional case, the additional of the displacement in the 

lateral direction is presented, and this is denoted by w. The local position of a point mass P, 

is transformed to inertial coordinates by rotating and translating the position vector. 
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Figure 4.9 : Three dimensional flexible model of an  MMET on orbit 

  

4.8 Coordinate transformation 

 

Figure 4.10 : Translation of the central facility w ithin an inertial coordinate system. 
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The position of the central facility Mm, is translated through distance R, then rotated 

through angle θ, as in Figure 4.10. The system is further rotated about the  Z0 axis through 

angle ψ  and these rotations can be stated in a rotation matrix denoted by knR , where n 

refer to the axis of rotation, and k is the rotation angle. Therefore, the rotation for planar 

movement θψ +,ZR  is given by,  

( )
( ) ( )

















++
+−+

=+

100

0cossin

0sin)cos(

, ψθψθ
ψθψθ

θψZR                                 (4.25) 

Finally, the system is rotated about the Y2 axis through angle α to give the non-planar 

motion of the MMET, as in Figure 4.11. It should be noted here that a rotation of the Z axis 

was not applied in any previous study of the rigid body model. However, McKenzie (2010) 

has derived the equations of motion for MMET on an inclined orbit using the same rotation 

system to determine the position of the tether’s component. He also studied in detail the 

rotation sequence which influences the derivations of the equations of motion. 

 
Figure 4.11 : Rotation of the MMET system. 
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The rotation matrix is given by, 
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,YR                                             (4.26) 

Therefore the complete rotation matrix from local coordinates to the inertial coordinates is 

defined as, 
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        (4.27) 

4.8.1 New Coordinate Positions 

The initial coordinates of the payloads with respect to the local origin are given by 

equations (3.12) to (3.17) in Chapter 3 and equations (4.1) to (4.3) in section 4.2.1. 

Applying equation (4.27) for the position of the arbitrary point P along the tether gives the 

new position coordinates in terms of the x,y,z components, for non-planar motion, 

( ) ( ) ( )ψθαψθψθαθ +−+−+++= cossinsincoscos)(cos1 wvxuRxmt           (4.28)                         

( ) ( ) ( )ψθαψθψθαθ +++++++= cossinsincoscos)(cos2 wvxuRxmt           (4.29) 

( ) ( ) ( )ψθαψθψθαθ +−+++++= sinsincossincos)(sin1 wvxuRymt           (4.30) 

( ) ( ) ( )ψθαψθψθαθ +++−+++= sinsincossincos)(sin2 wvxuRymt           (4.31) 

αα sin)(cos1 xuwzmt +=                           (4.32) 

αα sin)(cos2 xuwzmt +−=                 (4.33) 

4.9 Energy Expression 

The kinetic energy of the payloads and central facility are the same as in equations (4.21) 

and (4.22), and the translational kinetic energy for the tether sub-span are obtained by 

substituting equations (4.28) to (4.33) into equation (4.36) as follows and integrating  along 

the sub-span length,  
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The total kinetic energy for this flexible model of tether is given by the summation of 

equation (4.36) and equation (4.22) and is presented in full in Appendix B (i). 

In the previous study of the 2D model, the contribution of the elastic potential energy due 

to the flexibility of the tether leads to the total potential energy for the system,  
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                                                                      (4.37)  

where oT is the centripetal force as defined in the 2D model, previously. The complete 

equation for the potential energy is shown in full in Appendix B (ii).  

4.10 Mode Shape Function for the  Static Boundary  
Condition 

The displacements in the axial and transverse direction have been written as separated 

variable functions in the previous chapter in equations (3.40). Therefore, in the three 

dimensional case the additional lateral displacement is written as, 
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1
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= β                                     (4.38) 

where )(xβ are the chosen mode shape functions. The derivation conditions for these mode 

shapes have been discussed in previous studies of the flexible 2D tether model. The mode 

shape functions have been derived from the assumption that the tether has fixed-end 

boundary conditions, and is given by, 

 
L

x
xxx

πβξφ sin)()()( ===                                   (4.39) 

It has been noted that these mode shape functions were also used by Luo et al. (1996) in 

the transverse and lateral directions for their nonlinear mechanical model of a spinning 

tether in three dimensional space.  

4.11 Derivation of the Equations of Motion (EOM) 

The equations of motion have been derived by substituting and differentiating the energy 

equations for use in Lagrange’s Equation. There are eight generalized coordinates given 

by, 

 ( ) ( )T
k qqqRq 321 ,,,,,,, γθαψ=                                  (4.40) 

where the first four refer to the rotational motion and the rest define the translational 

motion of the system. The generalized forces are the same as those stated in equation 

(4.24). The derived equations of motion are presented in Appendix C. 

4.12 Simulation of Flexible Model of MMET 

Simulations were carried using the same tether parameters and initial condition as in 

section 4.6. The simulation results for the flexible model have been compared with those 

for the rigid body model for circular and elliptical orbits. 

4.12.1 Circular Orbit 

Figure 4.12 shows the responses of the flexible tether model in comparison with the rigid 

body model, both on a circular orbit. Both models show a very similar response for planar 

motion, and minor differences are only obvious within a smaller range of simulation time, 
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as in Figure 4.13. However, a significant difference between both models is shown for 

non-planar motion, in Figure 4.12, where the flexible model oscillates at a lower frequency 

and reaches higher amplitude as compared to that of the rigid body model. 
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       Microview for out of plane displacement: 
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Figure 4.12 : Planar and non-planar motions of a ri gid body tether (dashed) and a flexible 

tether (line) on a circular orbit with zero torque.  
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Figure 4.13 : Angular displacement of a rigid body tether (dashed) and a flexible tether (line) 
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With the application of 2.5MNm torque, both models reach the spin-up condition, and the 

rigid body model shows a higher rate of planar motion as compared to that of the flexible 

body, as shown in Figure 4.14. As in the untorqued condition, a significant difference is 

shown in the non-planar motion between both models, but not in the torque condition. Both 

models show decaying responses, but the rigid body model has a higher frequency and 

amplitude for the first eight orbits as compared to those of the flexible model.  

 

 

 

Figure 4.14 : Planar and non-planar motions of a ri gid body tether (red) and a flexible tether 

on a circular orbit with 2.5MNm torque. 

 
The three dimensional displacements in the longitudinal, lateral and transverse directions 

are shown in Figure 4.15. Figure 4.15 compares the displacement in the free vibration 

condition and in the torqued condition. The longitudinal, transverse and lateral 

displacements are oscillating with peak amplitudes of 0.008, 45 and 40 metres for the first 

condition. With the application of 2.5 MNm of torque, the longitudinal displacement 

increases monotonically, whilst the  transverse and lateral displacements experience 

amplitudes decaying over time.  
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        without torque 

 

with  2.5 MNm torque 
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Figure 4.15 : Displacements of the 3D Flexible mode l of an MMET on a circular orbit. 
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4.12.2 Elliptical orbit  

Simulations were carried out for an elliptical orbit with the following orbital elements, 

rp = 7 000 000m, e = 0.1                        (4.41) 

where rp is the perigee of the elliptical orbit, and e is the orbit eccentricity. The tether 

simulation starts at perigee with initial conditions , 

575.0)0( −=ψ  rad, 0)0( =ψ&  rad/s, 01.0)0( −=α  rad, 0)0( =α&  rad/s, 0)0( =θ  rad  

001131.0)0( =θ&  rad/s, 01.0)0( −=γ  rad, 0)0( =γ&  rad/s 

The result is shown in Figure 4.16, with the angular displacements of both tethers being 

almost identical for the first five orbits but then the rigid body model lags behind the 

flexible model until the 10th orbit. The difference in the angular displacement and angular 

velocity of both models are clearly shown in the smaller range of simulation time between 

0 to 1000 s, where the differences are increasing within the integration time. 
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Figure 4.16 : Planar motions of a rigid body tether  (dashed) and a flexible tether (red) on an 

elliptical orbit with zero torque. 
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The simulation has also shown that the flexibility of the tether has influenced the orbital 

parameters, where the radius and true anomaly of flexible tether shows the difference along 

the integration time, as in Figure 4.17. In the case of non-planar motion in Figure 4.18, the 

flexible tether oscillates with what appears to be a strongly random motion at lower 

frequency, but with generally higher amplitudes as compared to those of the rigid body 

model. Both models did not achieve steady state conditions in the first 10 orbits.  
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Figure 4.17 : Planar motions of a rigid body tether  (dashed) and a flexible tether (line) on an 

elliptical orbit with zero torque. 

 

  
Figure 4.18 : Non-planar motions of a rigid body te ther (dashed) and a flexible tether (line) 

on an elliptical orbit with zero torque. 
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In comparison to the responses for the tether with an applied torque, as shown in Figure 

4.19, the difference in planar motion has shown that the rigid body model moves at a 

higher rate when compared with the flexible model. But then again, the difference is 

smaller in comparison to the non-planar motions where the motions in the first orbit show 

that both models experience decaying motion, with the flexible tether motion decaying at a 

lower frequency, but with generally higher amplitude. With a longer simulation time the 

amplitude of the flexible model decreases and is lower than that of the rigid body model, as 

shown in Figure 4.19(c1).  

       

 

Figure 4.19 : Planar and non planar motions of a ri gid body tether (dashed) and a flexible 

tether (line) on an elliptical orbit with 2.5MNm to rque. 
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Figure 4.20 : Orbital parameters for 3D motion of a  rigid body tether (dashed) and a flexible 

tether (line) on an elliptical orbit with 2.5MNm to rque. 

 
The difference of the orbital elements between flexible and rigid body motion of tether in 

Figure 4.20 (d) and (e) are indistinguishable over longer period of simulation. Figure 4.20 

(d1) and (e1) shown that a very small difference occurs between these two models. This 

suggests that the flexibility of the tether will make a small alteration of tether’s orbit. 

The three dimensional displacement for a tether on an elliptical orbit is shown in Figure 

4.21.  The untorqued condition results in the flexible tether oscillating in all directions, 

with longitudinal, transverse and lateral vibration showing the highest amplitudes of 0.45 

m, 600m and 400 m for tether a length of 10 km.  

With application of torque the displacement in the longitudinal direction increases but both 

the transverse and lateral displacements reduce as shown in Figure 4.21. As mentioned in 

the previous chapter, this phenomenon is connected to the stiffening effect due to the 

centripetal load experienced by the spinning tether. The centripetal load in the longitudinal 

direction increases the axial displacement, whilst the lateral stiffening effect reduces the 

vibration in the transverse and lateral directions. 
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       without torque 

 

with 2.5 MNm torque 

 

  

 
 

Figure 4.21 : Displacements of the 3D Flexible mode l of the MMET on an elliptical orbit. 

 

4.12.3 Comparison between the 2D and 3D Flexible Mo dels. 

The responses for two dimensional (2D) and three dimensional (3D) motion of the flexible 

model are shown in Figures 4.22 to 4.24. The 2D and 3D models show an almost similar 

response in Figure 4.22 (a) and (b). However, simulating the differences in angular 

displacement and angular velocities between these two models shows that a difference 
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occurs and even though it is relatively small, it is still significant to the global motion of 

the tether.  
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Figure 4.22 : Comparison of the response between th e 2D (line) and 3D (dashed) flexible 

models of the MMET on an elliptical orbit. 

The existence of the non-planar variable (a) in the equations of motion of the 3D model  

alters  the orbit of the tether, but at a smaller scale. It is shown, in Figure 4.23 (c1) that the 

maximum difference within the simulation time is 0.0014 meter and the difference of the 

true anomaly is insignificant and within the range of 8 x 10-11 rad, as shown in 4.23 (d1).  

The local displacement of the tether, Figure 4.24, shows that both models displaying the 

same trend, where the longitudinal displacement is increasing and the transverse 

displacement is decaying, with the increase of simulation time due to the stiffening effect 

cause by centripetal force.  
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Figure 4.23 : The difference in orbital parameters between 2D and 3D flexible  model of 

MMET on an elliptical orbit. 
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Figure 4.24 : Longitudinal and transverse displacem ent of 2D (line) and 3D (dashed) flexible 

model of the MMET on an elliptical orbit. 
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The longitudinal displacement in Figure 4.24 (e) is appear to have unbounded exponential 

growth as compared to the transverse vibration in both 2D and 3D model. This phenomena 

is only occurs when torque applied to the tether. This phenomenon can be explained by 

taking the relationship between the force and strain for a uniform cross section of a string 

as given in equation below, 

xEAF ε=                                     (4.42) 

Where xε  is the axial strain and define by the axial displacement
dx

du
. In the case of 

spinning tether, the source of force comes from the centripetal force. Therefore, substitute 

the displacement in axial direction to equation (4.42) gives the relationship between the 

force to the displacement as equation below, 

dx

du
EAF =                                     (4.45) 

Therefore, when the torque is applied, the centripetal force is increased and for a constant 

Modulus Elasticity, E and tether’s cross section A, the displacement will be increased too. 

4.13 Conclusions 

The study of the 3D rigid body model of an MMET has compared the response of the rigid 

body model with a massless tether model. The derivation of the EOM for the rigid body 

model has included rotational kinetic energy, but not in the massless tether model, and this 

leads to differences in the simulation results. This comparative study between the three 

dimensional flexible model and the former rigid body models shows that flexible model 

has lower response as compared with that of the rigid body model. This study shows the 

influence of mass in tether’s motion. The application of torque has increased the 

longitudinal displacement but the transverse displacement shows the decaying phenomena 

due to the stiffening effect of rotating tether. This study also shows that relationship 

between planar and non-planar motion is found to be significant for the global motion of 

the tether. 
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Chapter 5  

Dynamic Boundary Conditions 

5.1 Introduction  

This chapter presents a more complete continuum model in which transverse flexibility is 

accommodated within the tether model; and the model includes appropriate dynamic 

boundary conditions, which provides further fidelity in the representation of the dynamics 

which may not otherwise be seen. The boundary conditions lead to a specific frequency 

equation, and the Eigenvalues from this provide the natural frequencies of the orbiting 

flexible motorised tether when static, accelerating in spin, and at terminal angular velocity. 

A parametric study of the nonlinear dynamical model, focusing on transverse vibration, 

shows the relationships between the angular velocity, the natural frequencies, and the 

predicted linear mode shapes of the system. This study investigates the MMET responses 

for two different dynamic boundary conditions: the fixed-attached mass condition, and 

when both ends are attached to masses. The definitions of these two conditions are 

explained in the section 5.2 and 5.3. The differences in the modal responses when applying 

the dynamic and static boundary conditions are highlighted and discussed, providing more 

insight into the subtleties of the dynamics of motorised orbiting space tethers.  

5.2 Fixed-Attached Mass Boundary Condition  

The study starts with the derivation of the equations of motions for a flexible tether, 

governed by a fixed-attached boundary condition (Meirovitch, 2001) and (Rao,2007). This 

boundary condition is based on the assumption that the central facility is so massive as 

compared with the payload that the tether sub-spans experiences the equivalent of built-in 

ends at the connection with the central facility. Figure 5.1 shows the configuration of 

MMET in (a) and the assumed configuration of the boundary conditions for this case taken 

from configuration of MMET is shows in Figure 5.1 (b). 
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Figure 5.1 : (a) Configuration of MMET (b) Schemati c diagram of masses connected to the 

tether sub-span with fixed-attached mass boundary c ondition. 

 
Therefore, the displacement boundary condition at the fixed end where x=0 in the 

transverse direction is given by, 

0)0( =v                                                             (5.1)         

In the case of transverse displacement, the angle of deflection in transverse direction as 

shown in Figure 5.2 is given by, 

 θsin≈
∂
∂
x

v
                      (5.2) 

 
Figure 5.2 : The deflection angle of the string 

 

where T refers to the force acting on the string. Referring to Figure 5.1, the boundary 

condition at x=L is given by,  
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The nth mode of vibration is represented by means of a separation of variables in the 

transverse direction, and is given by equation (3.23) in Chapter 3. The general solutions for 

the spatial and temporal parts are given by equations (3.34) and (3.35) leading to 

)sincos(cossin),( tDtCx
c

Bx
c

Atxv vvvv
v

v
v

v ωωωω
+







 +=                                       (5.4) 

where the subscript ‘v’ refers to the value in the transverse direction. 

Equations (5.1) and the spatial part of (5.4) as in equation (3.34) give,    

vB = 0,                                             (5.5) 

and hence equation (5.4) reduces to 

)sincos(sin),( tDtCx
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Atxv vvvv
v

v ωωω
+







=                       (5.6) 

Equation (5.6) gives, after differentiation with respect to time, 
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Substituting equation (5.7) and (5.8) into (5.3) for x=L gives, 

)sincos(

sin)sincos(cos)( 2
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c
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and equation (5.9) can be reduced to,  
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Equation (5.10) can be rewritten as a transcendental equation, given by, 

βαα =vv tan                              (5.11) 

where, 

c

Lv
v

ωα =
    

and     
2cM

TL

p

=β
                                                                          

(5.12) ,(5.13)                                                        

Knowing that from equation (3.27) ,
ρ
T

c =  and substituting this into equation (5.13), 

leads to 

pM

Lρβ =                                                                                                                          (5.14) 

Equation (5.11) is a frequency equation which has an infinite number of roots. For the nth 

root, the equation can be written as, 

L

c v
v

αω =
   

n=1,2,3…                                                                                                    (5.15) 

Taking the first mode of vibration, the mode shape corresponding to the natural frequency 

vω , is given by, 

x
c

Ax v
v

ωξ sin)( =                                                                                                          (5.16) 

Applying a simple normalisation in the form of 1=vA , the mode shape for the transverse 

vibration becomes, 

x
c

x vωξ sin)( =                                                                                                                (5.17) 
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Using the default tether’s parameters value defined in section 3.5, and a constant angular 

velocity of 0.2 rad/s, the first five roots for equation (5.11) are given as in Table 5.1 below, 

Roots Value of vα  

1st 1.571 

2nd 1.742 

3rd 4.719 

4th 7.857 

5th 11.000 

Table 5.1 : Roots of equation (5.11) 

The roots in Table 5.1 were substituted into equation (5.15) and generate the modes shape 

as shown in Figure 5.3. The plotted mode shape is highly dependent on the end mass in 

which in the tether case, the end masses refer to the payload masses. 
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Figure 5.3 : Modes shape for the transverse vibrati on governed by the fixed-attached 

boundary condition 

 

5.2.1 Equations of motion 

Substituting equation (5.17) into the kinetic and potential equations given by equations 

(3.74) and (3.75) in Chapter 3, and applying the Langrange’s equation gives the equations 

of motion derived for transverse vibration in one dimensions for two translational 

generalised coordinate Rand 2q and two rotational generalised coordinates ψ  and .θ  
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5.2.2 Tether Simulations  

The default data for the MMET have been used to simulate the motion for the tether on a 

circular and an elliptical orbit. The initial conditions used by for simulation on the circular 

orbit are as follows: 

)0(ψ = -0.9 rad, )0(ψ&  = 0.2 rad/s,  =)0(v 0 rad, 0)0( =v& rad/s                                   (5.22)    

The zero or near to zero initial condition for angular velocity has shown generation of 

infinite expression when integrating equations (5.18) to (5.21) using equation solver 

NDSolve in MathematicaTM.  Therefore, larger values have been used for the initial angular 

velocity and the initial condition for angular displacement taken from Ziegler (2003). 



  Chapter 5  

  95 

5.2.2.1  Circular Orbit, unmotorised 

The motions for the untorqued condition are shown in Figure 5.4. The non-zero initial 

condition of ]0[ψ&  contributes to the monotonic increase of the tether’s angular 

displacement, but not the angular velocity in which the response is still in the oscillation 

condition in both boundary conditions. These results for the fixed-attached boundary 

condition are compared with the results from the model using the static boundary 

condition. 
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Figure 5.4 : Responses for the tether on a circular  orbit with the fixed-attached boundary 

(red) condition and the static boundary condition ( blue) 

 
Figure 5.4 shows the comparison in the responses between these two models. The angular 

velocities for fixed-attached boundary condition model and static boundary condition are 

both oscillating, but the fixed-attached boundary condition model suggests a lower natural 

frequency but achieved a higher value for the maximum angular velocity as compared with 
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the static boundary condition. The significant difference in the transverse displacement 

shows that the amplitude achieved by the fixed-attached boundary condition is higher, with 

a maximum value of +/-30 m whilst the static boundary condition is  +/-0.03 m.   

5.2.2.2  Elliptical orbit, unmotorised  

The differences between the responses of the tether for different boundary conditions on an 

elliptical orbit have been simulated, and are shown in Figure 5.5.  
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Figure 5.5 : Responses for tether on an elliptical orbit with e=0.25 for fixed-attached 

boundary condition (red) and static boundary condit ion (blue) 
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The angular displacement shows similar responses to the tether on a circular orbit, but the 

angular velocity of the tether with fixed-attached boundary condition shows a significant 

difference. The maximum angular velocity achieved by this model is marginally higher, as 

compared to the static boundary condition model. The transverse vibration also gives a 

similar response to the tether model on a circular orbit, in which the maximum amplitude 

for fixed-attached boundary condition is +/- 40 m and the static boundary condition is 

around +/- 0.02 m. 

5.2.2.3  Circular Orbit, motorised   

For the condition in which the motorised tether is operating on the circular orbit, equations 

(5.18) to (5.21) were numerically integrated with an applied torque of 2.5 MNm, and the 

initial conditions were adopted as shown in equation (5.22). The result for the integration is 

given in Figure 5.6. The angular displacement and angular velocity for both models show 

growth within the integration time, achieving the spin-up condition, and the difference 

between both models can be captured from the Figure 5.6 in which the static boundary 

condition case reached a higher angular velocity at the end of the simulation time, 

compared with the tether with a fixed-attached mass boundary condition. This shows that 

the choice of boundary condition could influence the global motion of the tether system. 

The transverse vibrations in both models undergo decaying phenomena similar to the 

simulation results presented in Chapter 3 and Chapter 4 for the motorised condition. 

Despite having higher amplitude of the displacement, the fixed-attached boundary 

condition model decays faster than static boundary condition case.   

5.2.2.4  Elliptical orbit, motorised 

The responses of the tether with the fixed-attached boundary condition on an elliptical 

orbit are shown in Figure 5.7. The expected responses are portrayed in which the decaying 

phenomenon occurs in the transverse direction. Interesting phenomena in transverse 

displacement is discovered where the displacement is increasing (in global motion the 

trend is decreasing) every time the tether moves towards perigee. However, the differences 

between the angular displacement and angular velocity of the fixed-attached boundary 

condition case with the static boundary condition model are inconsequential, with both 

models achieving spin-up conditions with the application of the torque. The difference in 

the angular velocity is shown in Figure 5.8.  
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Figure 5.6 : Responses of motorised MMET on a circu lar orbit for the fixed-attached 

boundary condition model and the static boundary co ndition model 
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                          Fixed-attached mass BC                                                      Static BC 
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Figure 5.7 : Responses of the motorised MMET on an elliptical orbit for the fixed-attached 

boundary condition model and static boundary condit ion model 
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Figure 5.8 : Difference between the angular velocit y for the tether with a fixed-attached mass 

boundary condition and static boundary condition 

 

5.2.3 Comparative study of the natural frequency 

The different boundary condition cases give different frequency responses of the model. 

The frequency equation for the static boundary condition is given by, 

,
2L

T
nv ρ
π=Ω

   
n=1,2,3…                                                                                          (5.23) 

and for the fixed-attached mass boundary condition, the frequency vω  is given by equation 

(5.15). 

Based on these two equations, it shows that for the first mode (n=1), the value of vΩ  is 

higher than vω  in the calculation for the same parameter values of the MMET. Figure 5.9 

shows the frequency values for both models in the unmotorised condition and it shows that 

vΩ > vω .  
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Figure 5.9 : Natural frequency for the first mode s hape for the tether with a fixed-attached 

boundary condition model (red) and a static boundar y condition model (blue) 
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5.3 Boundary Conditions where Both Ends of the Sub 
span terminate in Masses.   

The derivation of this boundary condition is based on derivation of string model by 

Cartmell (1999). 

 

Figure 5.10 : Schematic Diagram of masses connected  to the tether sub-span 

 
Based on Figure 5.10, the boundary conditions for the tether in space in the transverse 

direction are given by, 
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T refers to the tension from the centripetal force acting on the tether. The central 

facility, mM  feels an outward pull due to the reaction of the centripetal load, whereas the 

tension of the tether at the connection to Mp is almost zero. From Figure 5.10, the position 

of an arbitrary point along the length of the tether is given by x, and at the connection to Mp 

the position is actually given by L – rp where rp is the radius of the payload. Therefore, the 

tether tension at x = rm and prLx −= given by, 
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Equations (5.26) and (5.27) give the boundary conditions in the transverse direction for the 

tether as, 
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The general solution for the free vibration of a string are given by equations (3.34) and 

(3.35) in Chapter 3, and the first and second derivatives of the general solution are given 

by equations (5.7) and (5.8). Substitutions of (5.7) into (5.24) and equation (5.8) into (5.25) 

give the boundary conditions at x= mr  in the transverse direction as, 
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Substituting equations (5.26) into (5.30), and (5.27) into (5.31), and rearranging the 

equations, lead to the following equations for the transverse direction, 
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Equations (5.32) and (5.33) represent a system of two pairs of homogenous algebraic 

equations in the two unknown constants Av and Bv. These equations can be rewritten in 

matrix form as; 
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Equations (5.34) have the same determinant of the coefficient matrix, and this is set equal 

to zero for a nontrivial solution of Av and Bv to obtain the frequency equation as, 
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Solving equation (5.35) by using typical data for the MMET will give the Eigenvalues, and 

hence the natural frequencies corresponding to the normal modes as represented by )(xξ . 

Equations (5.32) and (5.33) are two homogeneous linear equations that can be used to 
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determine the constants Av and Bv in equation (3.34). These equations can be rearranged as 

below: 

vv BcA 1=  and vv BcA 2=                                                                                  (5.36),(5.37) 
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Computer algebra is used to verify that 21 cc ≈  as implied in equations (5.36) and (5.37) 

under the conditions explored here. Therefore, it is sufficient to only solve one of the 

equations, either (5.38) or (5.39), in order to obtain the mode shape functions. Rearranging 

leads to an equation for the modes, this can be written as, 
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where vγ  is defined as, 
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5.3.1 Relationship between the angular tether spin velocity and 
the natural frequency 

A parametric study of the nonlinear dynamical model uncovers a relationship between the 

angular spin velocity of the tether; the natural frequencies in free, undamped vibration; and 



  Chapter 5  

  105 

the specific chosen mode shape of the system. This relationship is defined by the following 

equation,  
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where k is a constant given by 
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From equation (5.42) it can be shown that for ,0=ψ& vB  is equal to zero and consequently 

vA become infinity as zero value of ψ&  divided with zero value of vB . This also leads to a 

natural frequency equation from (5.35) which becomes, 
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for which 
ρ
T

c = and the tension T is given by, 
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For 0=ψ& , the value of c and therefore equation (5.45) are equal to zero. In order to satisfy 

equation (5.35), the frequencyvω has to be zero, as the value of c in that equation is zero. 

Therefore, equation (3.34) is satisfied when 0=ψ&  and gives 0=vB , vA is in infinity, and 

,0=vω  for which the mode shape functions )(xξ  are equal to zero. 

Unless stated otherwise, all the results were generated using the default data. The linear 

relationship between the angular velocity and the natural lateral and transverse oscillation 

frequency is plotted in Figure 5.11 using equation (5.35).  
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Figure 5.11 : Relationship between transverse oscil lation frequency and angular velocity 

 

5.3.2 Mode shapes 

The vibration frequencies of two geometrical cases (where the tether length is expressed as 

( prL − ) as defined in section 5.3 and then as L) are then compared with the vibration 

frequencies of the tether with both ends fixed. Table 5.2 shows the first to the fifth natural 

frequency for each condition, and the five mode shapes for these three conditions are 

plotted in Figure 5.12. The term “static BCs” in Table 5.2 and Figure 5.12 refers to the 

static boundary conditions. 

Parameters 
L 

(s-1) 

(L-rp) 

(s-1) 

Diff 1 

(%) 

Static BCs 

(s-1) 
Diff 2 (%) 

ω1 0.0001823 0.0002062 13.12 0.0003644 99.90 

ω2 0.0005468 0.0005558 1.64 0.0007287 33.26 

ω3 0.0009114 0.0009168 0.60 0.0010931 19.94 

ω4 0.0012759 0.0012798 0.30 0.0014574 14.23 

ω5 0.0016404 0.0016435 0.18 0.0018217 11.05 

Table 5.2 : Natural frequencies of three different conditions (Diff 1 is the percentage                       

difference between the case of L  and (L-rp) and Diff 2 between the cases of L and static 

boundary condition) 

 
The natural frequencies calculated for the tether with fixed ends are given by equation 

(5.23). In comparison, the natural frequencies for the static boundary condition are higher 

than those for the dynamic boundary condition case. In the dynamic boundary condition 

ωv (rad/s) 
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case, the use of ( prL − ) increased the natural frequency of the system, as compared to the 

calculation using the full length of the sub-span given by L. This conforms intuitively to 

the physics of the tether, where the shorter tether has a higher natural frequency than the 

longer tether with the same load applied for both. 
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Figure 5.12 : The first five mode shapes for the L (red,line), (L-rp) (blue,dashed) and fixed 

end conditions (black, dotted). 

 

5.3.3 Third order derivative of psi )(ψ&&&  

Equations (5.40) and (5.41) have been substituted into the energy equations to derive the 

equations of motion for the system. 
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The equations of motion for a circular orbit have been derived for two generalised 

coordinates: defining the angular displacement ,ψ  and the transverse displacement 

denoted by .2q  The routine differentiation of the angular velocity, denoted by ,ψ&  in the 

kinetic and potential energy equations, and then further differentiation with respect to time 

in Langrage’s equation, gives a third order derivative of ,ψ  in the equations of motions for 

the system with dynamic boundary condition, as in Figure 5.10. 

The study established that the third order derivative is just in ,ψ  and not in one of the 

actual generalised coordinates defining the vibration of the tether. This third order 

derivative of ψ  physically refers to a jerk in the system, which should clearly be spurious 

for this tether problem. Therefore, ,ψ  should in the case be considered as a constant or 

very slowly varying quantity and not as a generalised coordinate. 

5.3.3.1  Constant Value for Angular Velocity 

When ψ  is removed as a generalised coordinate, by substituting a constant value for 

angular velocity ψ& , into the Lagragian model for transverse vibration, this appropriately 

reduces the complexity of the equation of motion. The source of excitation is now from the 

angular velocity, and the response is given by the vibration modes. 

Figure 5.13 shows the responses of the tether for default values of the MMET parameters 

with ψ& = 0.01 rad/s and ω = 0.0126 rad/s for a simulation time up to t = 3000 sec. The 

results show that the tether undergoes steady state oscillation in the transverse direction 

with a maximum amplitude of 40 m. In a longer period of simulation time, the amplitude 

remains unchanged, as shown in Figure 5.14.   

The simulation results also show that the system is not sensitive to small changes 

( )0(2q <1) in initial conditions. Figure 5.15 shows the tether’s responses at the initial 

condition =)0(2q 0.01, 0.1, and 1.0 metres and the difference are insignificant. But, for the 

different value of )0(2q& as shown in Figure 5.16, the responses show a significant 

difference in each of the initial condition with Figure 5.16(c) and 5.16(d) perhaps showing 

fewer higher harmonics when compared to the first two figures, 5.16(a) and 5.16(b). This 

shows that the tether needs a larger value of the initial condition of )0(2q to have a 

significant impact on the tether response. 
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Figure 5.13 : Tether’s response for ψ& = 0.01 rad/s, ω=0.0126 rad/s over 5000 sec 
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Figure 5.14 : Tether’s response for ψ& = 0.01 rad/s, ω=0.0126 rad/s over 50000 sec 
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Figure 5.15 : Tether’s responses with initial condi tion of q2 at (a) 0.01 (b) 0.1 (c) 1.0 metre  
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Figure 5.16 : Tether’s responses with initial condi tion of 2q& = 0.01 and at (a) 0.01 (b) 0.1 (c) 

1.0 (d) 1.1 metres 

By using a constant value for the angular velocity, the complexity of the equation of 

motion has been reduced, and a simulation to get the tether’s response ran smoothly. This 
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means that the tether needs to be set to a desired velocity for the payload transfer from the 

start of the operation time and maintained at that for the duration of the simulation time (as 

compared to the normal operation of the tether, where the angular velocity will be 

increased gradually from zero to the desired velocity, and then the payload is released).  

For the default value of the MMET, with the angular velocity at 0.062 rad/s, then on 

releasing the payload to the desired orbit the tether response is as shown in Figure 5.17. 
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Figure 5.17 : Tether’s response for an angular velo city of 0.062 rad/s 

In order to get a better result, one needs to increase the working precision of the calculation 

of MathematicaTM simulation. The lower working precision is likely to have a round-off 

error in the calculations. For this study, the working precision is set to 20. 

5.4 Mode Shape Equation for Axial vibration 

The study continues with investigation of longitudinal vibration with both selected 

boundary conditions.  
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5.4.1 Case 1 : Fixed-Attached Mass Boundary conditi on 

From Figure 5.18, the forces in longitudinal direction acting on the tether is given by 

following free body diagram,  

Mp

Mp
�
�
�

��
(L,t)

T (L,t)

 
 

Figure 5.18 : Free body diagram of forces action in  longitudinal direction. 

 

Based on Figure 5.18, the boundary conditions for fixed- attached mass boundary 

condition in longitudinal direction at x=0 is given by, 

u(0,t) = 0                                               (5.46)         

and at x=L, the boundary condition is  

p
p

rlxp
rlx

p uM
x

u
EA

x

u
rlT

−=
−=

−=
∂
∂+

∂
∂− &&)(                                                (5.47)      

Noting that, 
x

u

∂
∂

 in the first equation on the right hand side refers to angle made by the 

deflected string with the x axis. From Figure 5.2 the angle of deflection in axial direction is 

given by, 

 θcos≈
∂
∂
x

u
                  (5.48) 

and for small θ, cos θ is equal to 1. Therefore, equation (5.47) becomes, 

p
p
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p uM
x

u
EArlT

−=
−=

−=
∂
∂+− &&)(           (5.49) 

Furthermore, the second equation on the right hand side in equation (5.49) represents the 

tensile force and that expression which relates to the stress, longitudinal rigidity and strain 

tensor in axial direction is given by, 
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)(xEAAP εσ ==              (5.50)  

Where )(xε is the strain tensor and defined by 
x

u

∂
∂

 (Fung ,1994).  

The nth mode of vibration presented as separation of variables in the u direction given by 

equation (3.22) and for the first mode approximation is given by equation (3.23) in Chapter 

3. Rewriting the general solution given by equations (3.34) and (3.35) and the general 

solution for axial direction is given by equations below, 

x
c
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c

Ax u
u

u
u

ωωφ cossin)( +=                                                                                  (5.51)               

tDtCtq uuuu ωω sincos)(1 +=                         (5.52)                                                   

and leading to the similar equation (5.3) but expressing in axial direction gives, 
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u ωωωω
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 +=        (5.53) 

Equation (5.46) reduces equation (5.53) to the following equation, 

)sincos(sin),( tDtCx
c
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u

u ωωω
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=                                                            (5.54) 

and derivative of equation (5.54) gives, 
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Substituting equation (5.55) and (5.56) into (5.47) at x=L-rp gives, 
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                            (5.57) 

Equation (5.57) has four unknowns which could not be solved with one equation only. 

Therefore, equation (5.52) has been simplified by reducing it into a harmonic solution 

(Rao, 2007) as the following equation, 

ttq uωsin)(1 =              (5.58) 

Rewritten equation (5.54) accordingly, gives 
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and the derivatives of equation (5.59) are,  
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Substituting equations (5.60), (5.61) and (5.26) into equation (5.49) at x = L-rp gives, 
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Rearranging equation (5.62) gives, 
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Substituting equation (5.63) into equation (5.59) presents the mode shape function as, 
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5.4.2 Case 2 : Boundary condition when both ends of  sub-span 
terminate in masses 

In this case, the free body diagram is given by the following figure: 

 
Figure 5.19 : Free body diagram of acting forces in  axial direction for mass-mass boundary 

condition  
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Substitution of equations (5.55) and (5.57) and centripetal force equation in equation (5.27) 

into equations (5.65) and (5.66) gives, 
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Rearranged equation (5.67) and (5.68) gives, 
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The arbitrary constant of uA and uB  are solved by using special function named Solve in 

MathematicaTM as given in Appendix D. Substitution of the results into mode shape 

function in equation 5.51 and applying the simplification gives, 
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where 

ρ
T

c = ,
( )

c

Lrx p −+
=

ω
α  and 

( )
c

rx m−= ωβ                                (5.72, 5.73, and 5.74) 

Both cases of boundary conditions presented here have produced a very complex mode 

shape equation inclusive with functions with regards of time term. The example of the 

mode shapes using equations (5.64) and  (5.70) are shown in Figure 5.20 below using the 

default data with constant angular velocity given by 2.0=ψ& rad/s and 0000725.0=ω rad/s 

for equation (5.64) and 1.0=ψ& rad/s  and 004.0=ω  rad/s for equation (5.70) at t=1 s.  
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Figure 5.20 : Mode shape for : (a) fixed-attach mas s boundary condition, (b) both end of 

sub-span terminate in masses boundary condition for  L = 10000 metre 

 

5.5 Discussions 

The equations of motions for the flexible tether govern by the boundary conditions in both 

conditions in equations (5.46), (5.47), (5.65) and (5.66) are long and complex. Due to the 

complexity of the mode shape function, the derivation of equations of motion need a very 

long computation time and also a powerful computer in term of its memory to execute 

integrations of the nonlinear ordinary differential equations. The equations of motions were 

integrated in MathematicaTM using a special computer server that has 20GB of RAM, but 

failed to execute after 10 hours of simulation due to reported low memory errors. 

The equation of motion for fixed-mass boundary condition is given in Appendix E. The 

mode shape function for boundary condition where both ends of the sub-span terminate in 

masses as in equation (5.70) is more complex than equation (5.63) makes the computation 

inexecutable with the current single unit computers’s specification. A test run was 

conducted and the integrations were terminated due to insufficient memory of a unit 

computer.   
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In order to overcome the problem, it is suggested to study the longitudinal vibration of the 

flexible tether by using the simplest model in example as presented by the author in 

Chapter 2. The other option is to develop a parallel computing method where a number of 

computers will work together to form a bigger memory to run these complex equations. 

But, this option is subjected to the availability of the software and hardware to set up the 

parallel system. 

A numbers of literatures up to author’s knowledge are using simple boundary conditions 

and some of them abandon the spinning phenomena in deriving the equations of motions. 

The study by Misra et al. (1986) in three dimensional vibration of tethered satellite system 

were using static boundary condition for transverse vibration, and fixed-attached mass 

boundary condition for analysis of the longitudinal vibration. However, the model was 

only including the aerodynamics force and the equations of motion derived for non-

spinning tether. The derivation of equations of motion by Misra et al. (1986)  were using 

variational formula and the results of tether’s simulation have shown that the longitudinal 

strain was dependent on the transverse displacement through the nonlinear term in the 

equations of motion. Luongo and Vestroni (1994), Kokubun and Fujii (1996) and Misra 

and Cohen (2009) all applied fixed-attached mass boundary condition in deriving the 

equations of motion for their non-spinning tether model. The study of spinning tether by 

Min et al. (1999) has different spinning axis as compared to the model used in this thesis. 

In that study, Min et al. (1999) model’s was assumed to spin about the tether axis and they 

found that the longitudinal modes have higher frequency than the transverse mode and not 

significantly affected by variation of the nominal tension. 

The study of longitudinal vibration for the rod, bar or beam that spin around the centre of 

mass are a good basis in studying the longitudinal vibration of the tether. A study by Shum 

and Entwistle (2006) on the whirling rod that has axis of rotation as in Figure 5.21, has 

proposed that the tensile force is equal to the centripetal force derived from the physical 

law similar to equation (5.50) , given by, 

dzuxAxEA
L

x
∫ Ω+= 2)()( ρε                                                                                             (5.75) 

where )(xε is the strain  tensor and Ω  is the angular velocity.  
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Figure 5.21 : Geometric configuration of a statical ly rotating about the axis of rotation, 

(Shum and Entwistle, 2006) 

In this current study, a quantitative analysis has been carried out to look for relations 

between the centripetal force and the tensile force. The calculations are made by using the 

default tether data with 1.0=ψ& rad/s. Table 5.3 shows the comparison of the calculation’s 

results for the force acting on the tether using equations (5.26), (5.27) and (5.50).  

Positions  (m) 
Centripetal Force 

(N) 
Tensile Force (N) 

,mrx =  130465 N -130454 N 

prlx −=  5.00008 N
 

-7.96144 N
 

Table 5.3 : Total Centripetal force and tensile for ce at ,mrx = and prlx −=  

The results show that both forces are having almost the same values but in different 

direction (indicated by negative sign). This suggests that the tensile force is the reaction 

force to the centripetal force which agrees with equation (5.75) given by Shum and 

Entwistle (2006). Therefore, applying the relationship between centripetal force and tensile 

force in equation (5.75) on the fixed-mass boundary condition for longitudinal vibration at 

prlx −= , gives, 
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and using the same procedure in deriving the mode shape as in section 5.5 gives, 
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The derived equations of motion that substituted the mode shape function of equation 5.77 

are also long and complex. The integration of this equation of motion using available 

computer is almost impossible as the program were terminated due to insufficient memory 

to execute the job. Therefore, this approach has been abandoned. 

5.6 Conclusions 

The selection of mode shapes and boundary conditions have significant influences on the 

global motion of the tether. This study shows measureable differences between the natural 

frequencies of the system with static boundary conditions, and dynamic boundary 

conditions. The physical parameters also contribute to the changes in the response of the 

tether. In this study, it has been found that the shorter length of the tether denoted by 

( prl − ) has a higher natural frequency as compared to the default length of the tether given 

by l. In addition, the natural frequency for the static boundary condition is higher than that 

for the dynamic boundary conditions.  

The third order time derivative of ψ  appeared due to the differentiation of the mode shape 

function in the kinetic energy equation and then operation within Lagrange’s equations, 

which contributed adversely to the complexity of the Equations of motion. The ψ&  has 

since been taken as a constant, in order to remove the third order derivative of ψ . The 

tether’s response has been studied, and the results of the simulation show potential for 

steady state oscillation in the transverse direction, and that the tether has less sensitivity to 

small changes in the initial condition of q2. The mode shape function of longitudinal 

vibration is more complex as compared to the transverse vibration. The study shows that 

the derived equations of motions were inexecutable and need higher memory to run the 

task. Therefore, it is suggested to study the longitudinal vibration with the simplest model. 
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Chapter 6 

Dynamical System Analysis 

6.1 Introduction 

In this chapter, an analysis of the non-linear behaviour of a flexible tether has been 

conducted using dynamical system tools for the calculation of bifurcations, Poincaré 

mapping, and phase space phenomena, as started previously by Ziegler (2003) for 

representing the behaviour of the dumbbell tether system, and in this thesis for the flexible 

tether model. The influence of orbital parameters and the flexibility of the tether in the 

orbital motion have been investigated by exploring the boundaries between libration and 

tumbling, and therefore also the boundaries between regular and chaotic motion. This 

chapter also includes an analysis of the capability of the tether in generating useful velocity 

increments through orbit-spin coupling. Finally, the dynamics of coupled motion between 

the out-of-plane and orbital parameters are also uncovered. All the analyses are compared 

with those for the dumbbell tether to show the significance of the flexural effect on the 

tether motion.  

6.2 Equations of Motions for Dynamical System Analy sis  

Ziegler (2003) showed an alternative method for expressing the equations of motion of 

MMET by expressing the dependent variables as a function of the orbit’s true anomaly, q 

with the assumption that the tether remain in a Keplerian orbit. The transformations from 

the time domain to the true anomaly for R, α,ψ , q1, q2, and q3, as based on the work of 

Ziegler (2003) are given by, 
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3
3

3 q
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where the prime here denotes differentiation with respect to the true anomaly and the first 

derivative of the true anomaly is, 

( )
( )3

cos1

θ
θµθ

R

e+=&                (6.6) 

Therefore, the second derivatives of equations (6.1) is derived using the product rule of 

derivatives that gives, 

( )ψθψ ′= &&&
dt

d

 

       
dt

d

dt

d θψψθ
&

& ⋅+
′

⋅= '                      (6.7)  

where, 

ψθθ
θ
ψψ ′′=⋅

′
=

′ 2&

dt

d

d

d

dt

d

     
and   ψθθθ

θ
θθ ′′=⋅= &&
&&

dt

d

d

d

dt

d

            (6.8), (6.9)
 

Substituting equation (6.8) and (6.9) into equation (6.7) gives the second derivatives of 

equation (6.1) as, 

( ) ψθθψθψθψ ′′+′′=′= &&&&&&
2

dt

d
                       (6.10) 

Applying the same procedures in deriving equation (6.10) to equations (6.2) to (6.5) give 

the second derivatives with respect to the true anomaly as, 

( ) αθθαθαθα ′′+′′=′= &&&&&&
2

dt

d
             (6.11) 

( ) 11
2

1 qq
dt

d
q ′′+′′=′= θθθαθ &&&&&&                         (6.12) 

( ) 11
2

1 qq
dt

d
q ′′+′′=′= θθθαθ &&&&&&                                                                     (6.13) 
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( ) 33
2

3 qq
dt

d
q ′′+′′=′= θθθαθ &&&&&&                                    (6.14)               

( ) θθθθ ′== &&&&&

dt

d
             (6.15) 

The prime denotes differentiation with respect to the true anomaly and ( )θR  and θ ′&  are 

given by, 

( ) ( )
θ

θ
cos1

1

e

eR
R p

+
+

=              (6.16) 

( )
( ) θθµθ sincos1

1
2'

33
e

eR
e

p

+
+

−=&            (6.17) 

Where e refers to orbit eccentricity and pR  refers to radius at perigee. Equation (6.16) is 

the trajectory equations derived from Kepler’s First Law and relates the position and true 

anomaly and equation (6.17) refers to radial rate equation from Vallado (2004). 

Substitution of equations (6.1) to (6.17), with the exception of equations (6.5) and (6.14), 

into equations (3.102), (3.105) and (3.106) gives the system of planar equations of motion 

for the in-plane angle, and the axial and transverse displacement with respect to true 

anomaly as, 
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The equations of motion with respect to the true anomaly for tethers in a three dimensional 

for five generalized coordinates given by ( ) ( )T
k qqqq 321 ,,,,, γαψ=  are lengthy and are 

shown in Appendix F.  

6.3 Numerical Methods 

The equations of motions for the flexible model are far more complicated than the 

equations of motion for the rigid body tether, and are largely responsible for the high 

computational run-time. The dynamical analysis was carried out using special code written 

in MathematicaTM. As the errors may arise during long computation times, the results were 

obtained by applying the Explicit Runge Kutta method within NDSolve, MathematicaTM’s 

differential equation package. 

6.3.1 Poincaré Map 

The Poincaré map is named after Henri Poincaré (1854-1912) who developed it as a tool to 

visualize the flows in a phase space of more than two dimensions. The Poincaré map can 

be described as a discrete dynamical system which turns a continuous dynamical system 

into a discrete one by numerically integrating the governing equations of motions and 

periodically sampling the state variable. The map is constructed by sectioning the spiral 

orbits at a regular time interval and then projecting the point of intersections of the orbits at 

the section xx &− on the plane. As such the intersected point, instead of the curves, are 

shown on the phase plane in a stroboscopic view, as illustrated in Figure 6.1, and the 
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system always has the same time span between intersections which is very useful for 

qualitative analysis. (Thomsen, 2003). 

 
Figure 6.1 : A Poincaré section with an intersectin g orbit. (Thomsen, 2003) 

 

However, the Poincaré maps in this chapter sample the angular displacements and the 

velocity of the tether model every 2π  of the true anomaly. Ziegler (2003) gave a 

justification for the selected method in which the perigee represents the point on the orbit 

in an orbital transfer application where the tether releases the payload. Therefore, the map 

gives information on the practicality of transferring a payload at the perigee of an elliptical 

orbit. The Poincaré map can easily distinguish between periodic and non-periodic motions, 

and can assist in the definition of chaotic motion. For a system that is oscillating at a single 

frequency it will periodically return to the same point in the phase space, and in the 

Poincaré map this will be as a single point. If there are two points, it is indicating period-2 

motion and therefore period-n motion generally shows up as n points in the Poincaré map. 

Quasiperiodic motion manifests itself as infinitely many points filling up a closed curve, 

and only occurs when the ratio between the frequency of the system oscillation and the 

sampling frequency is irrational. Chaotic motion reveals itself as infinite number of orderly 

distributed points as the chaotic orbits visit all parts of the phase space. 

6.3.2 Bifurcation 

Qualitative changes in system behaviour may occur when the parameters of a system are 

varied. These changes can be shown by a bifurcation diagram. In this study, the bifurcation 

diagram is produced by sampling a point of the trajectory in the same way as for producing 

the Poincaré map, and the angular velocity is plotted with respect to the orbital 

eccentricity, with the same initial conditions. All bifurcation diagrams presented in this 

section are sampling the angular displacement with regards to the orbit eccentricity and 

integrated over 60 orbits. A shorter simulation time is due to the restriction of the available 
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computer capabilities to run integrations of the complex equations of motion. In order to 

avoid sudden truncations during simulation, the integration of the equations of motion have 

been discretised into a few segments, and each segment run on a single computer. At the 

end of simulation time all the results were collected from each computer and the data 

processed and analysed. 

6.4 Transition from Libration to Spin 

The dynamics of the tether are affected by the selection of the tether’s physical properties, 

and also the orbital parameters. Ziegler (2003) has shown that the initial true anomaly has 

no significant influence on the long term stability boundary between libration and the spin 

of the dumbbell tether on an elliptical orbit. In studying the influence of eccentricity over 

the stability of the tether, Ziegler (2003) has simulated the dumbbell tether model over 30 

orbits and observed the transition from libration and spin, and found that the tether may 

continuously liberate after the 30th orbit at certain eccentricities or commence tumbling 

even after completing numerous orbits. 

In this study, the same methods are implemented to investigate the influence of eccentricity 

on the motion of a flexible tether. The result of integrating equations (6.18) over 35 orbits 

is shown in Figure 6.2, where the tether is continuously in libration with an eccentricity of 

0.1. The tether may or may not continue to librate for an indefinite period of time, and thus 

maybe dependent on the initial conditions, and also the eccentricity, as shown in Figure 7.2 

where Ziegler (2003) has also shown that the dumbbell tether starts to spin after the 10th 

orbit with an eccentricity of 0.32. However, the tether does not spin continuously and starts 

to liberate again when it reaches 25 orbits. This result is compared with the massive and 

flexible tether models in Figure 6.3 to show the influence of mass variation and tether 

flexibility in the long term stability. 

In Figure 6.3, the dumbbell tether shows it has completed approximately 10 orbits before it 

starts to spin-up and this dumbbell tether has the longest libration period as compared with 

massive rigid tether model and the flexible tether. The flexible tether is shows that it has 

completed less than five orbits before the spinning motion is taken over and the massive 

tether model is in the libration phase for approximately 5 orbits. Therefore, it is shows 

here, the flexibility and the variation of mass influenced the tether’s motion.    
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Figure 6.2 : Time history of angular displacement f or the flexible model over 35 orbits with         

e = 0.1 and 0)0( =ψ rad, and 0)0( =ψ& rad/s. 
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Figure 6.3 : Time history of angular displacement f or the flexible model (blue,thick), the 

dumbbell tether (red, dashed) and the massive tethe r model (orange,thin) over 30 orbits with 

e = 0.32 and 0)0( =ψ rad, and 0)0( =ψ&  rad/s.  

 

Ziegler (2003) was plotted the long term boundary between libration and spin, and this 

type of plot was first been shown by Modi and Brereton (1966). The same approach is 

applied in this study to find the long term boundary between libration and spin for the 

flexible model. This plot is constructed by integrating equation (6.18) for a duration of 20 

orbits for the given initial conditions and eccentricity. The tether simulation was set to start 

at perigee and Ziegler (2003) proved that the influence of the initial position on the tether 

dynamics was subsequently insignificant. When the tether reached the 20th perigee 

crossing the tether’s angular displacement could be evaluated. According to Ziegler 

(2003), if the magnitude of the displacement is between 2/π± then the tether could be 

considered to be librating, and if not then the tether is in spinning motion. This algorithm is 

implemented by starting from zero eccentricity until the boundary between libration and 

spin is found for a given initial angular displacement. The process is repeated for the value 

of )0(ψ between 2/π± . For the study of the flexible tether model the numbers of orbits 
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taken for simulation are lower than those of Ziegler (2003) due to the complexity of the 

equations and the fact that it takes a longer computation time. Therefore, the numerical 

integrations are run for 20 orbits for both the rigid and the flexible bodies. The boundary 

between libration and spin is shown in Figure 6.4 where the plot for the flexible model is 

compared with the rigid body model.     
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Figure 6.4 : Comparison of the effect of initial an gular displacement on the long term 

stability boundary between the flexible tether (blu e) and the rigid body tether (red) on an 

elliptical orbit. 300 points in the interval betwee n 2/)0(2/ πψπ ≤≤± and integrating for 20 

perigee passings.   

 
The areas below the boundary plots refer to a region where tether has long-term stable 

motion. The largest stable region for the flexible model is for eccentricities between 0.28 to 

0.29 and for the rigid body tether it is between 0.31 to 0.32, where the regions are where 

the onset of spin occurs. Once the angular displacement moves from the local vertical, the 

tether eccentricity reduced with the increase of initial angular displacement, and this makes 

the curves appear to be symmetrical about the local vertical. 

The curves also have visible physical features that Ziegler (2003) named as “horns” for 

which in both models these occur near ± 0.5 rad and “humps” near 2/π± rad. However, 

the exact location of the horns in the flexible model are different as compared with those of 

the rigid body model as shown in Figure 6.4 (a),(b),(c), and (d). Even though the curves are 

generally symmetrical, the horns in Figure 6.4(c) and (d) are not a mirror image of (a) and 

(b). The difference can clearly be seen also in the magnified image of the humps shown in 

Figure 6.5 on the left hand side, and in Figure 6.6 on the right hand side, in the libration-

spin curve for the flexible tether. The area around the left hump in Figure 6.5 uncovers the 
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discontinuous boundary points and the peaks and valleys in a complex manner, and the 

points do not form a smooth and continuous line as for 4.1)0( −>ψ rad.  
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Figure 6.5 : Effect of initial angular displacement  on the long-term stability boundary on an 

elliptical orbit for the flexible model. 500 point in the interval between 1.1)0(57.1 −≤≤− ψ  

rad and integrating for 20 perigee passings. 

The right hand side hump as magnified in Figure 6.6 evidently shows no a mirror image of 

Figure 6.5 but the same features of discrete jumps, peaks and valleys which form the 

discontinuous boundary between ,45.1)0(16.1 ≤≤ψ  as compared with smooth lines for 

6.1)0( >ψ . Hence, these two Figures show that the detail of the libration-spin boundary is 

not perfectly symmetrical. Therefore, the initial angular displacement is observed to have 

significant influence on the long term stability boundary. In addition, the difference 

between the results obtained between the flexible and rigid body tethers in Figure 6.3 

shows that the flexibility of the tether has also quantitatively influenced the long term 

stability boundary. 
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Figure 6.6 : Effect of initial angular displacement  on the long-term stability boundary on an 

elliptical orbit for the flexible model. 500 points  in the interval between 1.1)0(57.1 ≤≤ψ   

rad and integrating for 20 perigee passings. 
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The analysis continues with an investigation of the stability boundary of the flexible tether 

during first completed orbit in order to find the existence of the stability boundary for 

greater eccentricities than for those shown in Figure 6.4. The same algorithms were used in 

producing Figure 6.4 to 6.6, and were rerun with limitation to a single orbit between 

57.1)0(57.1 ≤≤ψ . The obtained results are plotted in Figure 6.7 and it is shown that the 

stability boundary is not as symmetrical as in Figure 6.4, and that the spin-libration 

boundary does exist for a higher eccentricity. The Figure shows a gradual increase of the 

boundary curve between 58.0)0(57.1 ≤≤ψ  rad indicates that the system is still in stable 

condition with the increase of initial conditions and the eccentricities. However, between 

75.0)0(32.0 ≤≤ψ  the boundary curve is showing a declined trend as compared with 

previous region and then goes to a steep peak between 1.1)0(75.0 ≤≤ψ rad. A slump 

between 57.1)0(1.1 ≤≤ψ  indicates that the single orbit motions of the flexible are more 

sensitive to the change of initial angular displacements higher than 1.0 rad. 
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Figure 6.7 : Onset tether spin for the flexible mod el during first orbit between 

2/)0(2/ πψπ ≤≤−  with a step size e of 0.001 

 

In general, the boundary curve represents the last steady-state tether libration, and the 

regions covered under the curve as mentioned by Ziegler (2003), can be either where the 

steady-state libration, or transient libration occurred. Figure 6.7 is qualitatively agrees with 

the results obtained by Ziegler (2003) shows in Figure 6.8 where both of the models shared 

the same trend of the boundary curve. In comparison, the difference is only depicted 

between 3.1)0(1.1 ≤≤ψ  in Figure 6.7 and between 57.1)0(4.1 ≤≤ψ   in Figure 6.8 where 

the sudden increase and decrease in the eccentricity occurs in difference region of both 

models.  
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Figure 6.8 : Onset tether spin for rigid body model  during first orbit between 

2/)0(2/ πψπ ≤≤−  with a step size e of 0.001 

 
The other observation that can be made to study the dynamics between stability the 

boundary and the onset spin of the tether is by considering how many orbits are completed 

by the tether before it starts to spin. This observation was first made by Crellin and Jassens 

(1996) and then carried out by Ziegler (2003) on the dumbbell model. The number of 

completed orbits by the flexible tether before the onset of spin occurred for long term 

behaviour is presented in Figure 6.9. The Figure was constructed by integrating equation 

(6.18) with 0)0( =ψ rad between 4.028.0 ≤≤ e for 30 orbits. Each of the plots was 

examined to look for the perigee where the spin has begun. The number of orbits from the 

initial simulation time until the last perigee before the spin started was recorded as the 

quantity h for each eccentricity. Therefore, h in Figure 6.9 is represents the number of 

completed orbits in which the tether in libration before the spin taken place given by the 

whole number as h =1,2,3…. 

From the same simulation procedures that produced Figure 6.2, the results show that the 

flexible tether started to spin at e = 0.282. Due to computing limitations, Figure 6.9 

produced in order to show the tether in a nearly spinning condition in order to look for the 

required numbers of orbit for the tether to start to spin. The drawback of this approach is 

the region of steady-state libration which cannot be differentiated from the transient 

librational motion. However, Figure 6.9 consists of five distinct plateaux at h = 7,5,4,3, and 

2 showing that the tether is in libration motion. The plateau for h = 2 suggests that within 

the region of e = 0.37 to 0.40, less orbit is required for the tether to spin, as compared with 

the rigid body tether where between e = 0.375 to 0.384 it is found that the tether tumbles as 

show by the scattered dots that clearly distinguish the region.  These scattered dots suggest 
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that the tether is sensitive to the variation of eccentricities between those regions. In the 

example, tether with e = 0.317 is librating until the 6th orbit before the onset spin but  when 

increasing the eccentricity to 0.318 the number of orbit for tether in libration has increased 

to 15 and increasing more to e = 0.319 the number of orbit for tether to start to spin is 

reduced to 5. Therefore, it shows that the variation of eccentricities strongly influences the 

tether motion through from libration to tumbling. The differences of the h values produced 

between the flexible model and the rigid body model for the same range of eccentricities 

suggest that the flexibility of tether also influences the motion. 
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Figure 6.9 : Number of orbit passings before the te ther begins to spin for 0)0( =ψ rad, and 

0)0( =ψ&  rad/s. 400 points between 0.28 and 0.40. Blue = fl exible model; grey = Rigid body 

model. 

6.5 Transition from Regular to Chaotic Motion 

Dynamic systems sometimes enter regions of highly unpredictable and chaotic behaviour 

resulting in impossible future behaviour predictions. When the developed standard general 

method to solve nonlinear equations of motion fails and does not generate analytical 

solutions, then one explanation is that the motion could have become chaotic. Chaotic 

motion refers to motion in a system which has a sensitive dependence to its initial 

conditions. In this study, the initial conditions may influence the motion of the tether in ψ  

and also in α for the three dimensional case, where a change in the initial conditions could 

lead to irregularities in the trajectories in those variables seen when it depicted in a 

bifurcation diagram or a Poincaré map.  This chaotic behaviour is actually exhibited not 

only in the solution of the mathematical model but also in the actual physical system and 

modification of the outrigger tether and other tether’s parameter can be used to control the 

chaos. Figure 6.10 shows the motion of the flexible tether entering the chaotic region for 
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orbit eccentricities approximately more than 0.28, indicated by the dispersed points for e > 

0.28.  
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Figure 6.10 : Bifurcation Diagram of the angular di splacement with respect to the orbit 

eccentricity with initial conditions 0)0( =ψ rad, and 0)0( =ψ&  rad/s and a step size of e = 

0.01. 

 

The region between 0 < e < 0.3 has been magnified in Figure 6.11 and shows the conical 

shape of a bifurcation diagram. The structure of the diagram shows periodic windows and 

bands of points that represent the behaviour of the system both in regular and chaotic 

motion. From Figure 6.11, the system is clearly seen to start chaotic motion at e = 0.28. 

Period three motion is also visually distinguished within the regular motion region. The 

bifurcation diagram for the flexible model is compared with the bifurcation diagram of 

rigid body model in Figure 6.12.  
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Figure 6.11 : Bifurcation Diagram of the angular di splacement of the flexible model with 

respect to the orbit eccentricity with initial cond itions 0)0( =ψ rad, and 0)0( =ψ&  rad/s and 

a step size of e = 0.0005. 
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Figure 6.12 : Bifurcation Diagram of the angular di splacement of the rigid body model with 

respect to the orbit eccentricity with initial cond itions 0)0( =ψ rad, and 0)0( =ψ&  rad/s and 

a step size of e = 0.0005. 

 
Both Figures agree with the finding by Karasopoloulos and Richardson (1992), Fujii and 

Ichiki (1996) and Ziegler (2003) where Fujii and Ichiki (1996) found that chaotic motion 

occurred approximately at e > 0.28 for elastic tether with longitudinal rigidity is 104 N/m 

and Karasopoloulos and Richardson (1992) and Ziegler (2003) showed that the rigid body 

tether should start to spin up at e > 0.314.  

The initial state of the bifurcation diagram for rigid body tether is a period one per orbit, 

but on sampling the point at e = 0 for flexible model the Poincaré map in Figure 6.13 

shows that the flexible model is not displaying the period one motion but the Figure 

suggests that the motion has crossed the zero point for  quite a number of orbits. 
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Figure 6.13 : Phase portrait and Poincaré Map for f lexible tether motion at e = 0 with initial 

conditions 0)0( =ψ rad, and 0)0( =ψ& rad/s 
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In comparison between Figures 6.11 and 6.12, period three occurs in different regions 

whereby period three motion of the flexible tether is approximately at e = 0.1654 and for 

the rigid body model it is at 0.28. Integrating equation (6.18) for 200 orbits leads to Figure 

6.14 which represents the Poincaré map for period three motion of the flexible tether. 
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Figure 6.14 : Poincaré map for the flexible tether,  sampling at each perigee crossing for 200 

orbits with e = 0.1654 

 

Sampling the points for 200 orbits of the rigid body model, the Poincaré map shows that 

the tether is displaying the period three motion but the precise position is drifting quasi-

periodically, as shown in Figure 6.15. 
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Figure 6.15 : Poincaré map for the rigid body tethe r, sampling at each perigee crossing for 

200 orbits with e = 0.2479 

 

On sampling the point at e = 0.05 for 200 orbits as in Figure 6.16, it is showed that the 

motion is stable and periodic. 
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Figure 6.16: Poincaré map for the flexible tether s ampling at each perigee crossing for 200 

orbits with e = 0.05 

 

Motion of period 5 appears at e = 0.26 for the flexible tether as shown in Figure 6.17 for 

the sample of points over 30 orbits. By integrating equation (6.18) for a longer period 

Figure 6.18 shows the same phenomenon as in Figure 6.15, in which the tether’s position is 

drifting quasi-periodically. Therefore, it is suggested here that the lower sampling period 

may mislead the prediction of the tether motion in the long term.  
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Figure 6.17: Poincaré map for the flexible tether, sampling at each perigee crossing for 30 

orbits with e = 0.26 
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Figure 6.18 : Poincaré Map for the flexible tether,  sampling at each perigee crossing for 150 

orbits with e = 0.26 
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Integrating the equations of motion for rigid body tether with similar eccentricity and 

initial condition, the rigid body tether shows the different dynamic conditions when 

integrated over 150 orbits. Quasi-periodic motion has appeared, depicted by the closed 

curve seen in the Poincaré map in Figure 6.19, and it is shown here that the flexibility of 

the tether is strongly influencing the tether’s global motion. 
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Figure 6.19 : Poincaré map for the rigid body tethe r, sampling at each perigee crossing for 

150 orbits with e = 0.26 

 

In the case of initial conditions of 5.0)0( =ψ rad and 0)0( =ψ& rad/s, the bifurcation 

diagrams for the flexible and rigid body tethers can be seen in Figures 6.20 and 6.21. 
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Figure 6.20 : Bifurcation Diagram of the angular di splacement of the flexible model with 

respect to the orbit eccentricity with initial cond itions 5.0)0( =ψ  rad, and 0)0( =ψ&  rad/s 

and a step size of e = 0.0005. 
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Figure 6.21 : Bifurcation Diagram of the angular di splacement of the rigid body model with 

respect to the orbit eccentricity with initial cond itions  5.0)0( =ψ  rad, and 0)0( =ψ&   rad/s 

and a step size of e = 0.0005. 

 
 
The points at which the tether commences to visit all regions reduce from e = 0.28 to e = 

0.11 and it seen that the initial angular velocity has a significant influence on the start of 

the chaotic motion. In comparison between the flexible and rigid body models, the region 

of chaos starts at e = 0.14 for the rigid body tether. Consequently, the flexibility of the 

tether is seen, in addition to the eccentricity and initial conditions, to have an influence on 

the onset of chaos. 

The initial conditions are then changed to 5.0)0( −=ψ rad, 0)0( −=ψ&  rad/s to observe the 

motion of the tether with negative initial conditions, and the bifurcation diagram is shown 

in Figure 6.22. In general, the bifurcation diagram in Figure 6.22 is seen to have a nearly 

similar shape to Figure 6.20. However, the difference can be seen from the region where 

the chaos just starts to begin at approximately 12.0≈e . The diagram shows the points in 

Figure 6.20 and 6.22 dispersed in different trajectories when entering the chaotic region.  



  Chapter 6  

  139 

0.10 0.12 0.14 0.16 0.18 0.20
e-1.0

-0.5

0.0

0.5

1.0
y@qD

 

Figure 6.22 : Bifurcation Diagram of the angular di splacement of the flexible model with 

respect to the orbit eccentricity between  2.01.0 ≤≤ e with initial conditions 

5.0)0( −=ψ rad, and 0)0( −=ψ  rad/s for a step size of e = 0.0005. 

Figure 6.23 sampling the points with the same eccentricity to show the difference motion 

between the different initial conditions. 
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Figure 6.23 : Poincaré map for the flexible tether with initial condition a) 5.0)0( −=ψ rad 

and b) 5.0)0( =ψ rad at e = 0.15 for 30 orbits. 

 

6.6 Comparison between the Onset of Spin and Chaos 

The route to chaos for planar motion is investigated by observing the dynamic transitions 

of the flexible tether between e = 0.28 to e = 0.28195. Figures 6.23 to 6.28 show the tether 

motion in six different orbits for e = 0.28, 0.281, 0.28189, 0.281895, 0.28191 and 0.28195, 

from zero initial conditions for 30 orbits. That range of eccentricities consists of motion 

from steady state libration through to chaos. Figures 6.24 and 6.25 show that the tether 

motion is in steady-state libration where the quasiperiodic motion has taken place, shown 

by the Poincaré map and the phase plane. When tether moves with an orbital eccentricity 

of e = 0.28189 as shown in Figure 6.26, some of the points visit the region far from the 

initial conditions as seen clearly in the Poincaré map, and the frequency spectrum shows an 

unusual curve when compared with the one in the stable region. However by increasing the 

eccentricity of the tether, the motion returns to the quasiperiodic motion of Figure 6.27. 
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The tether moves from librating to tumbling at e = 0.28191 where from the time history 

and the phase plane it is shown that the tether starts to tumble when it reaches the 22nd  

orbit, and returns to liberation before starting to tumble, and these two motions interchange 

between the 22nd orbit to the 30th orbit. The Poincaré map and the frequency spectrum in 

Figure 6.28 both suggest that the chaotic region is starting to arise. 
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Figure 6.24 : Time history, phase plane, Poincaré m ap and power spectrum for the flexible 

tether with e = 0.28 and 0)0( =ψ rad, 0)0(' =ψ rad/s 
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Figure 6.25 :Time history, phase Plane, Poincaré ma p and power spectrum for the flexible 

tether with e = 0.281 and 0)0( =ψ rad,  0)0(' =ψ rad/s  
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Figure 6.26 : Time history, phase plane, Poincaré m ap and power spectrum for the flexible 

tether with e = 0.28189 and 0)0( =ψ  rad,  0)0(' =ψ rad/s 
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Figure 6.27 : Time history, phase plane, Poincaré m ap and power spectrum for the flexible 

tether with e = 0.281895 and 0)0( =ψ rad, 0)0(' =ψ rad/s  
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Figure 6.28 : Time history, phase plane, Poincaré m ap and power spectrum for the flexible 

tether with e = 0.28191 and 0)0( =ψ rad,  0)0(' =ψ rad/s  
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Figure 6.29 : Time history, phase plane, Poincaré m ap and power spectrum for the flexible 

tether with e = 0.28195 and 0)0( =ψ rad, 0)0(' =ψ rad/s  

 
 
The non-zero initial conditions applied in Figure 6.30 and 6.31 depicted that the motion of 

flexible tether moves from tumbling to chaotic from e = 0.1495 and change to e = 0.1496. 

The additional observation made on the tethers that initially have local displacement in 
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longitudinal and transverse direction. The motions of those tethers appear to have no 

significant change as without initial displacement.  
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Figure 6.30 : Time history, phase plane, Poincaré m ap and power spectrum for the flexible 

tether with e = 0.1495 and 5.0)0( =ψ rad,  0)0(' =ψ rad/s 

 
 
 

0 5 10 15 20 25 30
0

20

40

60

80

100

q

y
@q
D

ra
d

 

0 20 40 60 80 100
-2
-1

0
1
2
3
4
5

y@qD

y
'@q
D

 

0 20 40 60 80 100

-0.5

0.0

0.5

1.0

y@qD

y
'@q
D

 

0 10 20 30 40 50 60

50

100

150

200

n

F@
nD

 

Figure 6.31 : Time history, phase plane, Poincaré m ap and power spectrum for the flexible 

tether with e = 0.1496 and 5.0)0( =ψ rad, 0)0(' =ψ rad/s 
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6.7 Route to Chaos for a Three Dimensional Flexible  
Tether  

In the previous analysis of planar motion of a flexible tether, the computing time required 

for a single bifurcation diagram was nearly one day to complete. This was by discretisation 

of the simulation period into a shorter length using 30 unit of computers with 4GB RAM 

for each unit. The non-planar motion is more computationally complex still and longer 

computing times are required. Therefore, the dynamical analysis for the three dimensional 

model of the flexible tether is limited to the route to chaos and the analysis of the transition 

between libration and tumbling has to be abandoned for the time being.  

Figure 6.32 shows the bifurcation diagram in the form of a conical shape for the nonplanar 

motion of the flexible tether with initial condition 0)0( =ψ rad, 0)0(' =ψ rad/s and 

1.0)0( =α rad for 3.01.0 ≤≤ e . From Figure 6.32, chaos is found, starting approximately 

at ,28.0≈e  in which it is similar inform to the planar motion of Figure 6.11. This agrees 

with Figure 4.19 in Chapter 4 where it is stated that the initial displacement of α does not 

significantly influence the planar motion of flexible tether with the initial condition of 

0)0( =ψ . 
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Figure 6.32 : Bifurcation Diagram of the angular di splacement of the rigid body model with 

respect to the orbit eccentricity with initial cond itions 0)0( =ψ  rad, 0)0(' =ψ rad/s, 

1.0)0( =α rad  and a step size of e = 0.00075. 
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In comparison with the three dimensional motion of rigid tether, Figure 6.33 samples the 

point at e = 0.15, 0)0( =ψ  rad and 0)0(' =ψ  rad/s for both models and the results 

evidently show the Poincaré Map of the flexible model does not display the same motion 

as the rigid body. This again shows that the flexibility of the tether has a significant impact 

on the global motion.  
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Figure 6.33 : Poincaré map of the tether with initi al conditions 0)0( =ψ  rad 0)0(' =ψ rad/s, 

1.0)0( =α rad at e = 0.15 for 230 orbits . (a) Rigid body tet her  and (b) flexible tether. 

 

The influence of non-planar motion, and the coupling between planar and nonplanar 

variables to the route to chaos are explored through Figure 6.34 to Figure 6.41. The 

observation starts with a circular orbit and zero initial conditions for the planar angle, and 

is followed by an investigation into the elliptical orbit with the paired initial conditions 

between the planar and non-planar displacement angles. The analysis includes the response 

of the local displacement in the transverse and longitudinal directions in order to observe 

the influence of the initial conditions on the tether flexibility. The influences of non-zero 

initial longitudinal and transverse displacements are also observed. 
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For the given initial conditions in Figures 6.34 to 6.36 the flexible tether experiences 

librational motion. The motion moves from periodic to quasi-periodic and in Figure 6.34 a 

drifted period eight motion is shown on the non planar displacement, and a quasi-periodic 

motion on the planar displacement. Figures 6.35 and 6.36 suggest that both the planar and 

nonplanar displacements are quasi-periodic. The frequency spectrum for those three 

Figures shows that the motion is in the stable condition. The displacements of the tether in 

the longitudinal and two transverse conditions are almost similar in those three Figures. 

Figures 6.37 and 6.38 agree with Figure 6.22, in which the same values of negative and 

non-negative initial conditions do not portray a mirror image motion. Figure 6.37 shows 

that the tether previously in libration tumbles on the 68th orbit and then returns to libration 

an orbit after that. The attitude trajectory of the tether shows it moves from one stable point 

to the next stable point after tumbling occurs. The Poincaré map for non-planar 

displacement shows a cloud of dots which represent chaotic motion, and this is supported 

by the frequency spectrum. In comparison, the motion of negative initial conditions is 

more chaotic where the tether the tumbles in three region of time, and shows in the time 

history and the 2D attitude trajectory of the tether.  The frequency spectrum of the planar 

displacement suggests that the motion is chaotic and this is supported by the Poincaré map. 

In both the motions of the negative and non-negative initial conditions, the three 

dimensional displacement of the tether is unchanged, suggesting that the influence on the 

local displacement is insignificant.   

By increasing the initial nonplanar displacement Figure 6.39 shows that chaotic motion has 

taken place in planar motion. The flexible tether experience quasi-periodic motions when 

increasing the eccentricity to 0.1 with the given initial conditions of Figure 6.40. The 

frequency spectrum shows that the motion is stable and the phase plane of the local 

displacement also shows the stable condition. The eccentricity is then increased to 0.3 in 

Figure 6.41. With the given initial conditions, the tether starts to spin up, and the 2D 

attitude trajectory shows that the planar displacement is higher than for the nonplanar case. 

The points in the Poincaré map are scattered over the phase plane of the planar 

displacement and for the nonplanar motion. A few points move away from the group of 

points, showing that the chaotic motions are taking place in both planes.  The longitudinal 

and transverse displacements of the stable tether are shown by the bounded phase plane. 
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Figure 6.34 : Time history of the tether’s pitch mo tion, tether attitude trajectory plotted in 

2D, Poincaré map, frequency spectrum, phase plane o f longitudinal, transverse and lateral 

displacement of the flexible tether with e = 0, 0)0(')0(' == αψ rad/s, 0)0( =ψ rad, 

5.0)0( =α rad  
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Figure 6.35 : Time history of the tether’s pitch mo tion, tether attitude trajectory plotted in 

2D, Poincaré map, frequency spectrum, phase plane o f longitudinal, transverse and lateral 

displacement of the flexible tether with e = 0, 0)0(')0(' == αψ rad/s,  5.0)0( =ψ rad,    

3.0)0( =α rad 
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Figure 6.36 : Time history of the tether’s pitch mo tion, tether attitude trajectory plotted in 

2D, Poincaré map, frequency spectrum, phase plane o f longitudinal, transverse and lateral 

displacement of the flexible tether with e = 0, 0)0(')0(' == αψ rad/s, 0.1)0( −=ψ rad, 

5.0)0( =α rad  
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Figure 6.37 : Time history of the tether’s pitch mo tion, tether attitude trajectory plotted in 

2D, Poincaré map, frequency spectrum, phase plane o f longitudinal, transverse and lateral 

displacement of the flexible tether with e = 0, 0)0(')0(' == αψ rad/s, 86.0)0( =ψ rad, 

86.0)0( =α rad  
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Figure 6.38 : Time history of the tether’s pitch mo tion, tether attitude trajectory plotted in 

2D, Poincaré map, frequency spectrum, phase plane o f longitudinal, transverse and lateral 

displacement of the flexible tether with e = 0, 0)0(')0(' == αψ rad/s, 86.0)0( −=ψ rad, 

86.0)0( =α rad  
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Figure 6.39 :  Time history of the tether’s pitch m otion, tether attitude trajectory plotted in 

2D, Poincaré map, frequency spectrum, phase plane o f longitudinal, transverse and lateral 

displacement of the flexible tether with e = 0,  0)0(')0(' == αψ rad/s, 1.0)0( −=ψ rad, 

2.1)0( =α  rad  
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Figure 6.40 : Time history of the tether’s pitch mo tion, tether attitude trajectory plotted in 

2D, Poincaré map, frequency spectrum, phase plane o f longitudinal, transverse and lateral 

displacement of the flexible tether with e = 0.1, 0)0(')0(' == αψ  rad/s, 0)0( =ψ rad, 

5.0)0( =α rad  
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Figure 6.41 : Time history of the tether’s pitch mo tion, tether attitude trajectory plotted in 

2D, Poincaré map, frequency spectrum, phase plane o f longitudinal, transverse and lateral 

displacement of the flexible tether with e = 0.3, 0)0(')0(' == αψ rad/s, 0)0( =ψ rad, 

5.0)0( =α rad  
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6.8 Velocity Increment Generation for the Flexible Tether. 

The main benefit of the MMET design is the generation of velocity increments by 

powering the tether to spin up using an electrical motor. However, the tether can self-

achieve spin-up by exploiting the tether and orbital parameters. Therefore, this section 

studies the generation of velocity via spinning motion of the tether that is generated due to 

the exploitation of the nonlinear dynamics of a planar tether on an elliptical orbit.  

The tether’s tip velocity is given by, 

dt

d
LV

ψ=∆                 (6.21) 

Converting from time to the true anomaly, as discussed by Ziegler (2003), gives a formula 

for tether tip velocity as, 

θ
ψµ

d

d

r

e
LV

3

)1( +=∆                         (6.22) 

Figures 6.42 to 6.45 were obtained by numerically integrated equation (6.18) and applying 

equation (6.22). A similar approach was taken by Ziegler (2003) but this recent study has 

also investigated the influence of the flexibility of the tether in generating the velocity 

increment by comparing the results for this with those of the rigid body tether. The 

numerical integrations were started at perigee, with initial conditions of 0)0(' =ψ  rad/s 

and an initial angular displacement between 2/)0(2/ πψπ ≤≤− . The angular 

displacement and V∆ were recorded at each perigee point after the tether had completed a 

full orbit. The tether was assumed to be in libration for the angular displacement between 

2/)(2/ πθψπ ≤≤− . The obtained results may not be as precise as those given by Ziegler 

(2003) due to larger step sizes for eccentricities in order to save computing time.  

Figure 6.42 and 6.43 shows the pψ in which refers to the angular displacement at perigee 

and the V∆ of the flexible tether in comparison with those for the rigid body tether, 

obtained at perigee, with respect to the orbit eccentricity. The results suggest that the 

flexible tether reaches onset of spinning at e = 0.462 as showed by the transition from a 

‘near to straight’ line to the curve that is increasing for the increasing values of the 

eccentricities. The body rigid tether shows the onset of spin at e = 0.478. Both results agree 

with the findings in Figures 6.7 and 6.8. The maximum V∆ reaches by the flexible tether 
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during the libration period is at 8.61 m/s with pψ  = -0.31 rad and the maximum V∆ during 

the spin condition is 9.046 m/s at pψ = 2.141 rad. Figures 6.29 and 6.30 suggest that the 

flexible model has reached the onset of the tumbling/spin condition earlier than the rigid 

body model. This shows that the flexural effect of the tether may lead to earlier chaotic 

motion.  
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Figure 6.42 : Comparison of pψ  obtained at perigee after a full orbit with respec t to e for  

0)0( =ψ rad with a step size in e of 0.0005. Blue = flexibl e tether, red = rigid body tether. 
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Figure 6.43 : Comparison of DV obtained at perigee after a full orbit with respe ct to e for 

0)0( =ψ rad with a step size in e of 0.0005. Blue = flexible tether, red = rigid bod y tether. 

 

Figures 6.44 and 6.45 show the effect of changing the initial conditions on the generation 

of velocity. The negative initial condition in Figure 6.44 suggest that higher V∆ is 

generated during libration as compared to Figure 6.45. Figure 6.45 also shows the 
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retrograde spinning of the flexible tether with a higher V∆ between e = 0.6 to 0.8 for 

positive values of initial conditions. 
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Figure 6.44 : DV obtained at perigee after a full orbit with respe ct to e for 3.0)0( −=ψ   rad 

with a step size in e of 0.0005. 
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Figure 6.45 : DV obtained at perigee after a full orbit with respe ct to e for 3.0)0( =ψ  rad with a 

step size in e of 0.0005. 

 

 

Interesting results have been shown by Ziegler (2003) and are reproduced here for the 

flexible model shown in Figure 6.42. That Figure suggests that with the negative initial 

conditions of angular displacement at e = 0.1, the tether can generate a higher V∆ and this 

applies for both models. However, the rigid body model is shown to develop a little bit 

higher V∆ as is given by 18.63 m/s as compared with 18.14 m/s for the V∆  of the flexible 

model. Even though the difference is seen to be small, it will still influence the incoming 

trajectory of the payload that will be transferred using the MMET, or may lead to 

unsuccessful payload capture. Therefore, the flexibility is again shown to a significant 

influence on generating the V∆ of the tether. This will be explored more in the next 

chapter. 
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Figure 6.46 : Comparison of DV obtained at perigee after a full orbit with respe ct to )0(ψ  for  

e = 0.1 with a step size in )0(ψ of 1000/π  rad . Blue = Flexible tether, Red = Rigid body 

tether  

 
 
 
 

6.9 Conclusions 

The planar and nonplanar attitude dynamics of a flexible tether on circular and elliptical 

orbits have been investigated in this chapter. The orbit eccentricity and the initial 

conditions are found have a strong influence on the tether libration, and also on the 

occurrence of tumbling motion. The tether’s flexibility is also has a significant effect on 

the tether’s motion.  The long term boundary between libration and spin is found to be 

qualitatively similar to the rigid body tether in which the symmetrical and asymmetrical 

libration/spin boundaries for the long-term orbit and the first completed orbit have been 

uncovered. The eccentricity and initial conditions are also found to influence the onset of 

chaos. However, non-zero initial conditions for the longitudinal and transverse 

displacements were not shown to have significant influence on the route to chaotic motion. 

Finally, the generation of velocity increment upon completion of a single orbit is found to 

be a function of the initial conditions and eccentricity. The flexibility of the tether was 

again found to affect the generation of velocity based on a comparative study between the 

flexible and the rigid body tether. 
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Chapter 7 

In-service Power Requirements for the Motorised 
Momentum Exchange Tether 

7.1  Introduction 

The MMET is a symmetrical momentum exchange system using motorized spin up against 

a substantial counter-inertia termed here the outrigger tether system, and is likely to be 

driven by a large electric gear-motor consuming between 100 and 500 kW of power, 

possibly a bit more, dependent on key parameters which drive the performance of the 

MMET. The performance of the tether is influence by the altitude, payload mass, length of 

tether span, area tensile strength and also the density of material of the tether. The 

definition of the power requirement of the MMET is derived from the torque required to 

spin up the tether to the required tangential velocity, and the terminal velocity achieved for 

the orbital conditions under consideration. This chapter explores the minimum torque and 

power requirement for the MMET in various operation conditions for the rigid body and 

flexible body model.  

The MMET has the potential for reducing the operational cost of space transportation. 

Therefore, there is the need to study the power profile required for the tether in order to 

optimize the cost. The use of the tether for interplanetary missions can be one of the 

options in reducing the propellant cost to the mission. Arnold and Thomson (1992) studied 

the use of a spinning tether in transporting oxygen from the Moon to LEO, in which 

application of the 100km tether was used to collect the payload from the orbital transfer 

vehicle (OTV). In 1999, Cartmell and Ziegler proposed a preliminary design for a mission 

architecture for an Earth-Moon payload exchange system using the MMET concept. The 

system was then developed further by Cartmell et al. (2004) and this work underlines the 

practical requirements for this system.  

7.2 Escape velocity 

The inclusion of an electric motor in the tether system can result in additional total 

velocity. The potential maximum escape velocity is given by the sum of the orbital and 

tangential velocities which are subsequently available at the tether tip, and defined by the 

following, 
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VVV orbitTotal ∆+=                                                                                                            (7.1) 

provided that the tether is aligned normal to the tangent to the orbit, otherwise a component 

of the tangential velocity vector is required. The orbital velocity, orbitV  considered for this 

study could emanate from orbits which are either circular or elliptical, and is given for a 

circular orbit by 

 circular
bitcircularor r

V
µ=

                                (7.2)      

 and for an elliptic orbit by,           

ar
V

elliptical
orbitelliptical

µµ −= 2

                    (7.3) 

 

where r is the radius of the orbit and a  is the semi major axis and µ  is the gravitational 

constant. The velocity of the tether relative to its centre of rotation is given by equation 

(6.21). 

7.3 Minimum Torque Analysis 

Generally, a useful tether response can be classified either as an oscillation or a pure spin 

condition, dependent on the amount of the applied torque, location, initial conditions, and 

prevailing orbital elements. For interplanetary payload injection the response should 

ideally be in the form of a monotonic spin, for some minimised value of torque so that the 

angular velocity eventually increases to the required level, in order to achieve escape for 

the payload when released.  

In this study, the initial work of Ismail (2007) on the power requirements for the MMET 

operating in practice is further developed, and a single tether system model as rigid body 

tether as shown Figure 7.1 is considered for transferring payloads to the required orbit. The 

payload is assumed to be transported from the Earth to the designated orbit using a 

conventional rocket and will be collected by the tether.  
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Figure 7.1 : Single staging tether for payload tran sfer 

 
Certain default material parameters and the density for Spectra 2000 and tether geometry 

are used for the analysis given by: 

L= 50km, pM = 1000 kg, =mM 5000 kg,  A = 62.83 x 10-6 m2, rm = rp = 0.5 m,  ρ = 970 kg 

m-3, µ = 3.9877848 x 1014 m3/s2, E = 113 GPa 

7.3.1 Circular orbit 

Using the chosen default values mentioned above, the tether is first driven with a low 

torque which is then gradually increased until the tether achieves monotonic spin. On 

increasing the torque the tether is found to reach the monotonic spin condition for default 

values for the geometrical and mass properties of the system when the torque is 2.94 

MNm. Both responses are depicted in Figure 7.2 and Figure 7.3 as follows, 
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Figure 7.2 : Oscillation conditions on a circular o rbit for untorqued tether. 
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Figure 7.3 : Pure spin conditions on a circular orb it with application of 2.94 MNm torque 

 

This minimum torque analysis is also influenced by the geometrical and physical 

properties of the tether, namely the sub-span length and material density of the tether. By 

focusing on the influence of the tether length, analysis shows that the higher the tether 

length the greater the required torque. Figure 7.4 shows the minimum torque for three 

different sub-span lengths: 50 km, 75km and 100 km and the time to release the payload. 

This is based on the value of escape velocity to Lunar Transfer Orbit, VLTO in the Earth-

Moon mission studied by Cartmell and Ziegler (1999), for which the calculated VLTO is 

10.78 km/s. It shows that the longer the sub-span the shorter the time required to release 

the payload, but the torque has to be increased sufficiently to achieve the monotonic spin 

condition. 

 

Figure 7.4 : Angular velocity for tether sub-span l engths of 50km, 75km and 100km 
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7.3.2 Elliptical orbit 

The analysis continues for the tether on an elliptical orbit using the following orbital 

parameters, 

perigeer = 7000 km, 1.0=e  

The tether position on this orbit is initially assumed to be at perigee, for which the initial 

true anomaly and radius are, 

,0)0( =θ  rad, ,001131.0)0( =θ& rad/s, 7000)0( =R km, 0)0( =R& km/s  

and the initial conditions for the angular displacement and angular velocity are as 

established in Ziegler (2003) and given by, 

,575.0)0( −=ψ rad, 0)0( =ψ& rad/s   

Figure 7.5 shows the oscillation condition for the tether on the elliptical orbit. The 

simulation shows that a minimum torque value of 2.35 MNm is required for the tether to 

reach the spin up condition with the above orbital parameters and initial conditions, and 

this is shown in Figure 7.6.  
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Figure 7.5 : Tether in an oscillation condition on an elliptical orbit 
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Figure 7.6 : Tether in the pure spin condition with  an applied torque of 2.35 MNm on an 

elliptical orbit 

 

The orbital parameters for the tether are varied throughout the integration time and are 

shown in Figure 7.7 below, 
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Figure 7.7 : Orbital parameters for an elliptical o rbit with a minimum torque of 2.35 MNm 

 

The coupling of the orbital and tether tip velocities on the elliptical orbit advantageously 

provides a number of possible payload release times, thereby providing possible windows 

for release to LTO as in Figure 7.8 and defined by ,1rt  ,2rt 3rt , and 4rt . 
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Figure 7.8 : The release payload windows on an elli ptical orbit 

 

A different tether length is used for the elliptical orbit analysis and shows the same result 

as for the circular orbit for which a longer sub-span length and torque value are both 

necessary to achieve the monotonic spin condition but in a shorter time to payload release, 

as shown in Figure 7.9 and Figure 7.10.  

 

Figure 7.9 : Angular velocity for the spin up condi tion for a tether on an elliptical orbit. 
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Figure 7.10 : Time to release the payload for L=50k m (red), 75km (blue), and 100km (green) 

 

7.4 Comparison of Orbital Performance. 

Figure 7.11 shows the differences in angular velocity and time required to release the 

payload for the tether located on circular and elliptical orbits.  

 

Figure 7.11 : Angular velocity for the tether on ci rcular and elliptical orbits with the  

application of minimum torque. 
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With the same length of tether sub-span, the tether on the circular orbit requires more 

torque to achieve the spin up condition but requires less time to get to the point where the 

payload can be released, as compared with the tether on the elliptical orbit. 

 

Figure 7.12 : Angular velocity of the tether on cir cular and elliptical orbits  with 2.94 MNm 

torque 

However, with the same amount of torque it is seen that the elliptical orbit provides a 

higher angular velocity over time than that attainable on the circular orbit, as shown in 

Figure 7.12. The circular orbit condition reaches the right velocity for payload release later 

than the elliptical orbit configuration, which suggests that placing the tether on the 

elliptical orbit can reduce the power requirement for the system on the simple basis of 

power equating to the product of applied torque and angular velocity. 

7.5 Operational conditions 

The operational conditions for an MMET over one duty cycle proposed in Ismail (2007), 

and in the further study by Gandara and Cartmell (2009) consist of spin-up, torque off and 

de-spin conditions.  

7.5.1 Spin-up 

This is the conditions in which the angular velocity monotonically increases and in which 

there is coupling with the orbital velocity to achieve escape velocity for payload release. 

The examples of tether response in this condition are shown in Figure 7.3 and Figure 7.6. 
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7.5.2 Torque off  

The condition approaches when the tether reaches its required tangential velocity and the 

payload is released. The torque is switched off for a few second before being reversed to 

slow the tether down to zero angular velocity. In this study the torque is reduced to zero for 

60 seconds. Figure 7.13 and 7.14 show the tether responses in the torque off condition over 

60 seconds for both orbits.  
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Figure 7.13 : Tether responses in the torque off co ndition for the  circular orbit 
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Figure 7.14 : Tether responses in the torque off co ndition for the elliptical orbit 

 

7.5.3 De-Spin 

A reverse torque is applied so that the tether decelerates to an angular velocity of zero 

before starting to spin up in the opposite direction. This analysis provides a better 

understanding of the dynamics, and the controllability of the MMET system, and is 

particular important if there is a tendency for instabilities to occur after payload release.  
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Figure 7.15 below shows that the tether reaches zero angular velocity for circular and 

elliptical orbits and the angular displacement is reducing which suggests that the tether is 

spinning in the opposite direction.  

 

Figure 7.15 : The angular velocity of the tether on  circular and elliptical orbits in the de-spin  

condition. 

 

7.5.4 Complete Profile 

The full profiles for one operational cycle for both the circular and elliptical orbits are 

presented in Figure 7.16 and 7.17, noting the different minimum applied torques. The time 

for payload release for the circular orbit is at t =219 901 s, and t = 252 115 s for the tether 

on the elliptical orbit.  

 

Figure 7.16 : Profile of the angular displacement f or one cycle of the operational conditions 
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Figure 7.17 : Profile of the angular velocity for o ne cycle of the operational conditions 

 

7.6 Power Consumption and Energy 

The power consumed by the tether is simply calculated from,  

 

ψτ &=tP                                                                                   (7.4) 

where τ  is the applied torque and ψ&  is the angular velocity of the tether. The total cyclical 

energy demand for the tether is calculated from,  

totaltt tPE =                                                                                                                         (7.5) 

where totalt  is the period of operation. 

The power profiles for the tether operating on both orbits are presented in Figure 7.18. The 

tether on the circular orbit consumed a maximum of 185.6 kW to spin up to the required 

angular velocity. Also, the energy of the tether is depicted by the area under the 

power/time plots for which 29.67 GJ. The tether on the elliptical orbit used a maximum 

power of 135.6 kW to spin up the tether and the total energy used by the tether was 25.29 

GJ. In comparison, the tether on the elliptical orbit generally used less than the circular 

configuration, with a nominal difference of around 4.38 GJ.  
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Figure 7.18 : Power profile for the tether on a cir cular orbit 

 

 
Figure 7.19 : Power profile for the tether on an el liptical orbit 

 

7.7 Power Profile of Rigid and Flexible Tether Mode ls 

The simple rigid body model discounts all potentially important flexural characteristics of 

the tether sub-spans, and significant phenomena may not be captured as a result of such 

simplification. However, power consumption calculations can be more tractable when 

based on rigid body models and so in this section some useful comparisons are made 

between the two modelling paradigms by Ziegler (2001) and the model proposed by Ismail 
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and Cartmell (2009), for a nominal sub-span length of 50 km. The difference of the power 

consumed between both models is due to the difference of ψ&  value. 

 
Figure 7.20 : The difference in angular velocities between the rigid body model and flexible 

model of the tether on a circular orbit 

 
 

 
Figure 7.21 : The difference in angular velocities between the rigid body model and the 

flexible model on an elliptical orbit 

Figures 7.20 and 7.21 show the differences in angular velocities predicted by both models 

when on circular and elliptical orbits. It shows that the more flexible the tether the slower 

the response. Furthermore, the power consumption for both models on the circular orbit is 

shown in Figure 7.22 where the total energy used by the rigid body model is 29.67 GJ and 
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34.66 GJ for the flexible model, the rigid body tether on the elliptical orbit is shown in 

Figure 7.23 and uses 25.41 GJ of energy, and 28.79 GJ for the flexible tether model. This 

indicates that the less tractable flexible model dynamics are actually far more useful in 

practice. 

 

 

Figure 7.22 : Power profile for the rigid body and flexible models of the tether on a circular 

orbit 

 

 

Figure 7.23  : Power profile for the rigid body and  flexible models of the tether on an 

elliptical orbit 
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7.8 Outrigger system 

The outrigger system comprises a pair of tethers attached to the gear-motor stator and 

necessarily spins up in the opposite direction to the propulsion tether hitherto discussed. In 

this study, the outrigger tether sub-span is assumed to be 25 km in length, with 

symmetrically positioned end masses, each of 500 km. Clearly each tether experiences an 

equal and opposite torque. Figure 7.24 and Figure 7.25 show a full cycle profile of the 

outrigger system on the circular orbit.   

  

Figure 7.24 : Responses of the outrigger system on a circular orbit 

 

 

Figure 7.25 : Power consumption of the outrigger sy stem on the circular orbit 

Figure 7.26 and Figure 7.27 compare the angular velocities of the outrigger and propulsion 

tethers on the circular orbits and shows a residual spin of the outrigger system when the 

propulsion system has come to absolute rest. This indicates that additional energy is 

needed to de-spin the whole system to absolute zero.  
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Figure 7.26 : Angular velocity profile for the prop ulsion and outrigger tethers on a circular 

orbit 

At payload release a very large proportion of the mass on the propulsion tether side of the 

system is removed, and so the associated angular momentum goes with that payload. This 

affects the next stage of calculation when the torque is to be switched off and then de-spin 

initiated. Clearly angular momentum is conserved across the whole system, as required and 

so additional energy is required to de-spin the remaining propulsion side as well as the 

outrigger side. It is also evident from Figure 7.26 that the outrigger tether is fully de-spun 

at the 79th orbit, and substantial energy is required to achieve this, nominally 330 GJ. 

 

Figure 7.27 :  Angular velocity profile for the pro pulsion and outrigger tethers on an 

elliptical orbit. 
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Ziegler (2003) discussed the design of the outrigger system to meet the requirements, as 

the shorter outrigger requires larger end masses than the longer propulsion tether, with 

obvious reduction in outrigger end-mass requirements as outrigger sub-spans are increased. 

Recalculating the energy consumed by the outrigger system for an MMET on a circular 

orbit until the time reached for full de-spin suggests a figure of 286.3 GJ, with a total 

cyclical energy requirement of 316 GJ. This is substantially more than 265.5 GJ calculated 

for the same system operating on an elliptical orbit, which is shown on Figure 7.27 where 

the outrigger system is fully de-spun by the 75th orbit. 

7.9 Energy Comparison  

The benefit of having a space tether to transport payload is to save on total operational 

cost. Therefore, a comparative study in term of energy consumed to transport a payload to 

desired orbit between the tethers with a conventional system has been carried out. The 

conventional system, used for in this study, refers to a rocket system. 

7.9.1 Rocket System 

The rocket performance in term of energy is given by the following equation, 

22 ).(
2

1

2

1
ogIspmmvKE ==                                                            (7.6) 

Where Isp is the specific impulse of the rocket, og  is gravity constant which is 9.81 m/s2, 

and m is the fuel mass of the rocket and v is refers to velocity of exhaust gases. 

The energy comparison between the tether system and a conventional system is based on 

earlier work of Cartmell et al. (2006). The study shows that the total V∆ for a translunar 

rocket approach is 4.5766 km/s, and that for rocket fuel alone, 8.76 GJ is required to get 

the reducing mass of fuel into translunar injection. The energy consumed is higher still 

when it includes the payload mass and the mass of rocket structure.  

The conventional rocket system is also non-reusable and it should also be noted that the 

electricity required for the gear-motor could provide by high capacity batteries, backed up 

by suitable solar photovoltaics. The energy demand could also be substantially reduced by 

employing a multi-staging tether as described by Cartmell and Ziegler (1999) where less 

power is required to operate the system. 
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7.9.2 Earth-Moon payload Exchange 

 

 

Figure 7.28 : Earth-Moon Payload exchange by Cartme ll & Ziegler (1999) 

Cartmell and Ziegler (1999) proposed an Earth-Moon system using a pair of staged 

MMETs as shown in Figure 7.28, and the data of Table 7.1 comes from that source. The 

power consumption and required mission energy can be calculated using equations (7.5) 

and (7.6) appropriately, together with the data from Table 7.1. The torques applied to the 

LEO and EEO tethers are taken as 5 MNm and 2 MNm respectively.  

In Figure 7.28, the mission starts by transferring payload 5 from SEO to the LEO tether 

and the EEO tether simultaneously hands over payload 1 to the other end of the LEO 

tether, whilst also releasing payload 3 at the same moment. Payload 5 is then ready half an 

orbit later to be handed on to the EEO tether, after 42108 s. The power consumption for 

this transfer is 21.9 kW. Meanwhile, the EEO tether undergoes one full orbit to meet the 

LEO tether again and continue the process, until all payloads have been moved in both 

directions through the system, noting that both tethers are only ever fully laden with two 

payloads or completely unladen.  
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Parameters Tether at LEO Tether at EEO 

Angular Velocity (rad/s) LEOω = 0.00437 EEOω =0.01065 

Sub-span length (km) LEOL = 200 EEOL  = 75 

Semi major axis (km) LEOa =7922.57 EEOa  = 26159.8 

Perigee (km) LEOrp  = 6728 EEOrp  = 7003 

Period (sec) LEOP = 7017.95 EEOP = 42107.7 

Velocity tether tip (km/s) LEOTipV = 0.874 EEOTipV  = 0.798 

 
Table 7.1 : Orbital and tether parameters for the E arth-Moon Payload Exchange, after 

Cartmell & Ziegler, 1999. 

 
Therefore, the total power to transfer the payload from Sub-Earth Orbit to Lunar Transfer 

orbit is 43.2 kW which equates to a total energy demand of 3.63 GJ, not including the 

energy associated with the outrigger system. Applying the default values for the system the 

calculation of power consumption and outrigger energy demand can be estimated from 

numerical integration of the system equation of motion, leading to prediction of 11.0 GJ 

for the LEO system outrigger and 4.89 GJ for the EEO tether outrigger using the outrigger 

data as in Table 7.2. On this basis the total energy demand is 19.52 GJ. 

Outrigger Tether Parameters Tether at LEO Tether at EEO 

Length (km) LEOOL , = 50  EEOOL , = 35 

Velocity tether tip (km/s) erLEOoutriggM = 0.874 erEEOoutriggM  = 0.798 

 
Table 7.2 : Parameters for the outrigger system 

 

7.9.3 Systems Comparison 

The energy usage by single and multi-staging tether systems for payload transfer to Lunar 

Transfer Orbit are compared in Table 7.3 below, 

Single Tether system Staged system 

188.00 GJ 19.52 GJ 

 
Table 7.3 : Energy usage comparison for payload tra nsfer to the moon 
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Apparently, the staged system provides a substantial ten-times reduction in the predicted 

energy requirement for the lunar transfer mission. Also, MMET energy usage may be 

reduced even more if the outrigger system properties are manipulated further.  

 

7.10 Conclusions 

The power requirements for the MMET have been investigated and a comparison has been 

made with a conventional chemical rocket propulsion system to observe the significance of 

the use of the MMET for space transportation. The analysis shows that the power 

requirement for single tether is very high when compared with a conventional system but it 

should be emphasized that the energy of conventional rocket system is for one-off use, and 

cannot be reused. The energy usage could also be reduced by implementing multi-staging 

tethers to transfer the payload. The energy resource for the tether could be generated by a 

solar power system and could be virtually continuously available dependent on the 

system’s location with respect to the sun, which makes the MMET is potentially rather 

superior to chemical propulsion.  
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Chapter 8  

Conclusions 

8.1 Summary and Conclusions  

The equations of motion for two dimensional modelled as an assumed string have been 

derived by applying Lagrange’s equation for the tether on circular and elliptical orbits. The 

tether equations of motion are nonlinear differential equations up to cubic orders of 

nonlinearity, and also show coupling terms between the longitudinal and transverse 

coordinates. This 2D study gives a good basis in understanding how the flexibility changes 

the tether’s motion in space. The comparative studies presented in this chapter have shown 

that the flexibility changes the global motion of the tether in both the torque and untorqued 

conditions. The changes, however, are small but can be significant in cases where the 

precise prediction of motion required. For the case of the MMET, this will impact on the 

vital application of payload catching and release when used as a payload exchange system. 

The relationships between planar and nonplanar motions have been explored in Chapter 4 

and the 3D local displacements have been included in the tether’s equation of motion. In 

the beginning of Chapter 4, different models for tethers have been considered and the 

different responses between them have been investigated. The results have clearly shown 

that for the tether with the inclusion of rotational kinetic energy the frequency of non-

planar motion increase. By introducing flexibility into the tether, the planar motion shows 

insignificant differences from that of the rigid body tether, for both the untorqued and 

torqued conditions in circular and elliptical orbits. But, the difference is evident in the 

nonplanar motion in both conditions. In comparison with the 2D model, the existence of 

the non-planar variable (a) in the EOM of the 3D model does not provide significant 

influence on the planar motion of the tether. In this chapter, the transverse vibration was 

again to be found to behave in terms of decaying motion with the application of torque. 

With an applied torque the displacement in the longitudinal direction increases, but both 

the transverse and lateral displacements reduce. This phenomenon is connected to the 

stiffening effect due to the centripetal load experienced by the spinning tether. The 

centripetal load in the longitudinal direction increases the axial displacement, whilst the 

lateral stiffening effect reduces the vibration in the transverse and lateral directions. The 

exponential growth of the longitudinal displacement in torqued condition suggests the 

relationship between the displacement and the force applied to the tether and in the case of 
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spinning tether, the force refers to the centripetal force. Therefore, the increase of the 

applied torque has increased the centripetal force and consequently increases the axial 

displacement. 

In Chapter 5, new boundary conditions have been introduced for developing the equations 

of motion for the flexible tether. This study has shown that the selection of mode shapes 

and boundary conditions have significant influences on the global motion of the tether. The 

natural frequencies for the static boundary conditions and dynamic boundary conditions 

have shown measureable differences. The frequency is also found to be affected by the 

physical configuration of the tether where the longer tether has a lower frequency as 

compared to that of the longer tether. The complexity of the mode shape function, derived 

by applying dynamic boundary conditions has contributed to the presence of a third order 

time derivative in the equation of motion. This chapter also suggests that the longitudinal 

mode shape function is more complex than that for the transverse direction. 

The dynamics of the flexible tether are investigated using the dynamical tools in Chapter 6 

to study the links between regular and chaotic motion. The eccentricity and the initial 

conditions have been found to have a strong influence on the libration/spin motion, and 

also the variation of those parameters we seen to contribute to the route to chaotic motion. 

The flexural effect in the tether has been proven to be significant in a faster route to motion 

in tumbling and chaos. In the flexible model, the variation of initial conditions in the local 

displacement does not alter the total global motion of the tether. The velocity increment 

has also found to be affected by the variation of orbit eccentricity and the initial conditions. 

The flexibility alters the differences in the total response, but at lower value. In the payload 

transfer application, the ∆V requirement needs to be precisely met to ensure that the tether 

is able to catch the payload and also to deliver it to the designated orbit. So, even small 

differences in ∆V may affect this transfer process. This small difference effect was 

uncovered in this chapter, when the response between the rigid body tether and the flexible 

tether are mutually compared.  

Finally, the effect of the flexibility of the tether was explored further for the payload 

transfer application by comparing the power requirement for the MMET using a flexible 

and rigid body model. This study shows that the less tractable flexible model dynamics are 

actually far more useful in practice. The analysis has shown that the power requirement for 

a single tether is very high when compared with a conventional system, but it should be 
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emphasized that the energy needed for a conventional rocket system is for one-off use, and 

it cannot be reused.  

 

8.2 Future work 

The dynamics of the flexible tether can be explored further by investigating the effect of 

flexibility on the tether deployment and retrieval. These two phases are critical to the 

tether’s dynamics. Therefore, there should be more interesting work to be done to uncover 

the connection between tether’s flexibility and the variation of tether length. 

• The simple assumption may provide a good basis for study, but it is suggested to 

include all perturbation factors in developing the flexible model of the tether.  

• The study of longitudinal vibration with dynamic boundary conditions can also be 

further investigated in the future with the availability of more advanced computing 

software and hardware.  

• The route to chaotic motion can be further explored by using other dynamical tools 

such as Lyapunov exponents and basin of attraction to provide more evidence that 

the flexibility may affect the tether’s motion to chaos.  

• Finally, further work is suggested on the analysis of tether strength and material, 

with a suggestion for the tether’s structure for engineering design so that more in-

depth analysis can be carried to understand the dynamics of the flexible tether. 
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Appendix A

i. Kinetic Energy

Tk =

1

8
II12 h2 + 18 L2 + A L3 ρ + 10 L2 Cos@2 α1@tDD − A L3 ρ Cos@2 α1@tDD + Mm rm

2 + 2 Mp

I4 L2 Sin@α1@tDD2 + rp2M + 2 L π ρ rT1
4 − 2 L π ρ rT2

4 M α1′@tD2 +
I2 Mm Irm2 + 2 rc@tD2M + L I8 L + A L2 ρ + A L2 ρ Cos@2 α1@tDD + 2 π ρ rT1

4 −

2 π ρ rT2
4 + 8 A ρ rc@tD2M + 4 Mp Irp2 + 2 IL2 Cos@α1@tDD2 + rc@tD2MMM

θ′@tD2 + 2 I2 Mm rm2 + 4 Mp I2 L2 Cos@α1@tDD2 + rp2M +

L IL H8 + A L ρ + A L ρ Cos@2 α1@tDDL + 2 π ρ rT1
4 − 2 π ρ rT2

4 MM θ′@tD ψ′@tD +

8 L2 ψ′@tD2 + A L3 ρ ψ′@tD2 + A L3 ρ Cos@2 α1@tDD ψ′@tD2 +
4 L2 Mp ψ′@tD2 + 4 L2 Cos@2 α1@tDD Mp ψ

′@tD2 + 2 Mm rm2 ψ′@tD2 +
4 Mp rp

2 ψ′@tD2 + 2 L π ρ rT1
4 ψ′@tD2 − 2 L π ρ rT2

4 ψ′@tD2 +
8 A L ρ rc

′@tD2 + 4 Mm rc′@tD2 + 8 Mp rc′@tD2M

ii.Potential Energy

Up = −‚
i=1

n A L µ ρ

n H−1+2 iL2 L2
4 n2

−
H−1+2 iL L Cos@α1@tDD Cos@ψ@tDD rc@tD

n
+ rc@tD2

−

‚
i=1

n A L µ ρ

n H−1+2 iL2 L2
4 n2

+
H−1+2 iL L Cos@α1@tDD Cos@ψ@tDD rc@tD

n
+ rc@tD2

−

µ Mm

rc@tD
−

µ Mp

L2 − 2 L Cos@α1@tDD Cos@ψ@tDD rc@tD + rc@tD2
−

µ Mp

L2 + 2 L Cos@α1@tDD Cos@ψ@tDD rc@tD + rc@tD2
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iii. EOM

For ψ@tD :

1

4
−4 τ Cos@α@tDD Cos@γ@tDD −

4 ‚
i=1

n

−IA H−1 + 2 iL L2 µ ρ Cos@α@tDD Sin@ψ@tDD rc@tDM ì

2 n2
H−1 + 2 iL2 L2

4 n2
−

H−1 + 2 iL L Cos@α@tDD Cos@ψ@tDD rc@tD
n

+ rc@tD2
3ê2

−

4 ‚
i=1

n

IA H−1 + 2 iL L2 µ ρ Cos@α@tDD Sin@ψ@tDD rc@tDM ì

2 n2
H−1 + 2 iL2 L2

4 n2
+

H−1 + 2 iL L Cos@α@tDD Cos@ψ@tDD rc@tD
n

+ rc@tD2
3ê2

+

4 L µ Cos@α@tDD Sin@ψ@tDD Mp rc@tD
IL2 − 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2M3ê2

−

4 L µ Cos@α@tDD Sin@ψ@tDD Mp rc@tD
IL2 + 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2M3ê2

−

2 A L3 ρ Sin@2 α@tDD α′@tD θ′@tD −

8 L2 Sin@2 α@tDD Mp α′@tD θ′@tD −

2 A L3 ρ Sin@2 α@tDD α′@tD ψ′@tD −

8 L2 Sin@2 α@tDD Mp α
′@tD ψ′@tD + 8 L2 θ′′@tD +

A L3 ρ θ′′@tD + A L3 ρ Cos@α@tDD2 θ′′@tD −

A L3 ρ Sin@α@tDD2 θ′′@tD + 4 L2 Mp θ′′@tD +

4 L2 Cos@α@tDD2 Mp θ′′@tD − 4 L2 Sin@α@tDD2 Mp θ′′@tD +

2 Mm rm
2 θ′′@tD + 4 Mp rp

2 θ′′@tD + 2 L π ρ rT1
4 θ′′@tD −

2 L π ρ rT2
4 θ′′@tD + 8 L2 ψ′′@tD + A L3 ρ ψ′′@tD +

A L3 ρ Cos@α@tDD2 ψ′′@tD − A L3 ρ Sin@α@tDD2 ψ′′@tD +

4 L2 Mp ψ′′@tD + 4 L2 Cos@α@tDD2 Mp ψ′′@tD −

4 L2 Sin@α@tDD2 Mp ψ′′@tD + 2 Mm rm
2 ψ′′@tD +

4 Mp rp
2 ψ′′@tD + 2 L π ρ rT1

4 ψ′′@tD − 2 L π ρ rT2
4 ψ′′@tD = 0

For θ@tD :
1

4

I−2 L2 Sin@2 α@tDD IA L ρ + 4 MpM α′@tD Hθ′@tD + ψ′@tDL + 8 IMm + 2 IA L ρ + MpMM
rc@tD θ′@tD rc′@tD + 4 IMm + 2 IA L ρ + MpMM rc@tD2 θ′′@tD +
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@ D @ D @ D I I MM @ D @ D
I2 Mm rm2 + 4 Mp I2 L2 Cos@α@tDD2 + rp2M + L IL H8 + A L ρ + A L ρ Cos@2 α@tDDL +

2 π ρ rT1
4 − 2 π ρ rT2

4 MM Hθ′′@tD + ψ′′@tDLM = 0

For R@tD :

−
1

2
L2 − 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2

L2 + 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2
I2 L4 − L2 H−2 + 2 Cos@2 α@tDD + Cos@2 Hα@tD − ψ@tDLD +

2 Cos@2 ψ@tDD + Cos@2 Hα@tD + ψ@tDLDL rc@tD2 + 2 rc@tD4M

rc@tD2 ‚
i=1

n

− A L µ ρ −
H−1 + 2 iL L Cos@α@tDD Cos@ψ@tDD

n
+ 2 rc@tD ì

2 n
H−1 + 2 iL2 L2

4 n2
−

H−1 + 2 iL L Cos@α@tDD Cos@ψ@tDD rc@tD
n

+ rc@tD2
3ê2

+

‚
i=1

n

− A L µ ρ
H−1 + 2 iL L Cos@α@tDD Cos@ψ@tDD

n
+ 2 rc@tD ì

2 n
H−1 + 2 iL2 L2

4 n2
+
H−1 + 2 iL L Cos@α@tDD Cos@ψ@tDD rc@tD

n
+

rc@tD2
3ê2

+ 2 A L ρ Irc@tD θ′@tD2 − rc′′@tDM −

Mm Iµ − rc@tD3 θ′@tD2 + rc@tD2 rc′′@tDM + Mp rc@tD2

−2 rc@tD5 L2 − 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2

L2 + 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2 θ′@tD2 +
L2 rc@tD −

1

4
µ H−2 + 2 Cos@2 α@tDD + Cos@2 Hα@tD − ψ@tDLD +

2 Cos@2 ψ@tDD + Cos@2 Hα@tD + ψ@tDLDL
L2 − 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2 +

L2 + 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2 −

2 L2 L2 − 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2

L2 + 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2 θ′@tD2 +

rc@tD3 µ L2 − 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2 +

L2 + 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2 +

L2 H−2 + 2 Cos@2 α@tDD + Cos@2 Hα@tD − ψ@tDLD +

2 Cos@2 ψ@tDD + Cos@2 Hα@tD + ψ@tDLDL
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2 Cos@2 @tDD Cos@2 H @tD @tDLDL
L2 − 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2

L2 + 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2 θ′@tD2 +

2 rc@tD4 L2 − 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2
L2 + 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2

rc
′′@tD + L3 µ Cos@α@tDD Cos@ψ@tDD

L2 − 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2 −

L2 + 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2 +

2 L L2 − 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2

L2 + 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2 rc′′@tD +

L rc@tD2 µ Cos@α@tDD Cos@ψ@tDD

− L2 − 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2 +

L2 + 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2 −

L H−2 + 2 Cos@2 α@tDD + Cos@2 Hα@tD − ψ@tDLD +

2 Cos@2 ψ@tDD + Cos@2 Hα@tD + ψ@tDLDL
L2 − 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2

L2 + 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2 rc
′′@tD ì

Jrc@tD2 IL2 − 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2M3ê2

IL2 + 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2M3ê2N = 0

For α@tD :

1

4
−4 τ Sin@γ@tDD − 4 ‚

i=1

n

−IA H−1 + 2 iL L2 µ ρ Cos@ψ@tDD Sin@α@tDD rc@tDM ì

2 n2
H−1 + 2 iL2 L2

4 n2
−

H−1 + 2 iL L Cos@α@tDD Cos@ψ@tDD rc@tD
n

+ rc@tD2
3ê2

−

4 ‚
i=1

n

IA H−1 + 2 iL L2 µ ρ Cos@ψ@tDD Sin@α@tDD rc@tDM ì

2 n2
H−1 + 2 iL2 L2

4 n2
+

H−1 + 2 iL L Cos@α@tDD Cos@ψ@tDD rc@tD
n

+ rc@tD2
3ê2

+
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4 L µ Cos@ψ@tDD Sin@α@tDD Mp rc@tD
IL2 − 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2M3ê2

−

4 L µ Cos@ψ@tDD Sin@α@tDD Mp rc@tD
IL2 + 2 L Cos@α@tDD Cos@ψ@tDD rc@tD + rc@tD2M3ê2

−

10 L2 Sin@2 α@tDD α′@tD2 +
A L3 ρ Sin@2 α@tDD α′@tD2 +
4 L2 Sin@2 α@tDD Mp α

′@tD2 +
A L3 ρ Sin@2 α@tDD θ′@tD2 +
4 L2 Sin@2 α@tDD Mp θ

′@tD2 +
2 A L3 ρ Sin@2 α@tDD θ′@tD ψ′@tD +

8 L2 Sin@2 α@tDD Mp θ
′@tD ψ′@tD +

A L3 ρ Sin@2 α@tDD ψ′@tD2 + 4 L2 Sin@2 α@tDD Mp ψ′@tD2 +
12 h2 α′′@tD + 18 L2 α′′@tD + A L3 ρ α′′@tD +

10 L2 Cos@α@tDD2 α′′@tD − A L3 ρ Cos@α@tDD2 α′′@tD −

10 L2 Sin@α@tDD2 α′′@tD + A L3 ρ Sin@α@tDD2 α′′@tD +

4 L2 Mp α′′@tD − 4 L2 Cos@α@tDD2 Mp α′′@tD +

4 L2 Sin@α@tDD2 Mp α′′@tD + Mm rm
2 α′′@tD +

2 Mp rp
2 α′′@tD + 2 L π ρ rT1

4 α′′@tD − 2 L π ρ rT2
4 α′′@tD = 0
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Appendix B

Flexible Tether H3 DL

i. Kinetic Energy

Tk =
1

4
A L ρ q1′@tD2 +

1

4
A L ρ Cos@2 α@tDD q1′@tD2 +

1

2
A L ρ Sin@α@tDD2 q1′@tD2 +

1

2
A L ρ q2′@tD2 + A L ρ Cos@α@tDD Sin@α@tDD q1′@tD q3′@tD −

1

2
A L ρ Sin@2 α@tDD q1′@tD q3′@tD +

1

4
A L ρ q3′@tD2 +

1

2
A L ρ Cos@α@tDD2 q3′@tD2 −

1

4
A L ρ Cos@2 α@tDD q3′@tD2 +

A L ρ R′@tD2 +
1

2
Cos@θ@tDD2 Mm R′@tD2 +

1

2
Sin@θ@tDD2 Mm R′@tD2 +

Cos@θ@tDD2 Mp R′@tD2 + Sin@θ@tDD2 Mp R′@tD2 −
1

2
A L ρ q3@tD q1′@tD α′@tD −

1

2
A L ρ Cos@2 α@tDD q3@tD q1′@tD α′@tD +

2 A L2 ρ Cos@α@tDD Sin@α@tDD q1′@tD α′@tD
π

+

A L ρ Cos@α@tDD q1@tD Sin@α@tDD q1′@tD α′@tD −

A L ρ q3@tD Sin@α@tDD2 q1′@tD α′@tD −
A L2 ρ Sin@2 α@tDD q1′@tD α′@tD

π
−

1

2
A L ρ q1@tD Sin@2 α@tDD q1′@tD α′@tD +

A L2 ρ q3′@tD α′@tD
π

+

2 A L2 ρ Cos@α@tDD2 q3′@tD α′@tD
π

−
A L2 ρ Cos@2 α@tDD q3′@tD α′@tD

π
+

1

2
A L ρ q1@tD q3′@tD α′@tD + A L ρ Cos@α@tDD2 q1@tD q3′@tD α′@tD −

1

2
A L ρ Cos@2 α@tDD q1@tD q3′@tD α′@tD −

A L ρ Cos@α@tDD q3@tD Sin@α@tDD q3′@tD α′@tD +

1

2
A L ρ q3@tD Sin@2 α@tDD q3′@tD α′@tD +

3

2
h2 α′@tD2 +

L2 α′@tD2 +
1

6
A L3 ρ α′@tD2 +

1

3
A L3 ρ Cos@α@tDD2 α′@tD2 −

1

6
A L3 ρ Cos@2 α@tDD α′@tD2 +

A L2 ρ q1@tD α′@tD2

π
+

2 A L2 ρ Cos@α@tDD2 q1@tD α′@tD2

π
−
A L2 ρ Cos@2 α@tDD q1@tD α′@tD2

π
+

1

4
A L ρ q1@tD2 α′@tD2 +

1

2
A L ρ Cos@α@tDD2 q1@tD2 α′@tD2 −

1

4
A L ρ Cos@2 α@tDD q1@tD2 α′@tD2 +

1

4
A L ρ q3@tD2 α′@tD2 +
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1

4
A L ρ Cos@2 α@tDD q3@tD2 α′@tD2 −

A L2 ρ Cos@α@tDD q3@tD Sin@α@tDD α′@tD2

π
−

A L ρ Cos@α@tDD q1@tD q3@tD Sin@α@tDD α′@tD2 +
1

2
A L ρ q3@tD2 Sin@α@tDD2 α′@tD2 +

A L2 ρ q3@tD Sin@2 α@tDD α′@tD2

2 π
+

1

2
A L ρ q1@tD q3@tD Sin@2 α@tDD α′@tD2 + L2 Cos@α@tDD2 Mp α′@tD2 +

L2 Cos@θ@tD + ϕ@tDD2 Sin@α@tDD2 Mp α′@tD2 +

L2 Sin@α@tDD2 Sin@θ@tD + ϕ@tDD2 Mp α′@tD2 +
1

8
Mm rm

2 α′@tD2 +
1

4
Mp rp

2 α′@tD2 +

1

4
Mp rT

2 α′@tD2 +
3

2
h2 γ′@tD2 +

1

8
Mm rm

2 γ′@tD2 +
1

4
Mp rp

2 γ′@tD2 +
1

2
A L ρ rT

2 γ′@tD2 −

A L ρ Cos@α@tDD q2@tD q1′@tD θ′@tD +
2 A L2 ρ Cos@α@tDD q2′@tD θ′@tD

π
+

A L ρ Cos@α@tDD q1@tD q2′@tD θ′@tD − A L ρ q3@tD Sin@α@tDD q2′@tD θ′@tD +

A L ρ q2@tD Sin@α@tDD q3′@tD θ′@tD + A L ρ Cos@α@tDD q2@tD q3@tD α′@tD θ′@tD +

2 A L2 ρ q2@tD Sin@α@tDD α′@tD θ′@tD
π

+

A L ρ q1@tD q2@tD Sin@α@tDD α′@tD θ′@tD + L2 θ′@tD2 +
1

6
A L3 ρ θ′@tD2 +

1

6
A L3 ρ Cos@2 α@tDD θ′@tD2 +

A L2 ρ q1@tD θ′@tD2

π
+

A L2 ρ Cos@2 α@tDD q1@tD θ′@tD2

π
+
1

4
A L ρ q1@tD2 θ′@tD2 +

1

4
A L ρ Cos@2 α@tDD q1@tD2 θ′@tD2 +

1

2
A L ρ q2@tD2 θ′@tD2 +

1

4
A L ρ q3@tD2 θ′@tD2 −

1

4
A L ρ Cos@2 α@tDD q3@tD2 θ′@tD2 + A L ρ R@tD2 θ′@tD2 −

A L2 ρ q3@tD Sin@2 α@tDD θ′@tD2

π
−
1

2
A L ρ q1@tD q3@tD Sin@2 α@tDD θ′@tD2 +

1

2
Cos@θ@tDD2 R@tD2 Mm θ′@tD2 +

1

2
R@tD2 Sin@θ@tDD2 Mm θ′@tD2 +

L2 Cos@α@tDD2 Cos@θ@tD + ϕ@tDD2 Mp θ′@tD2 + Cos@θ@tDD2 R@tD2 Mp θ′@tD2 +
R@tD2 Sin@θ@tDD2 Mp θ′@tD2 + L2 Cos@α@tDD2 Sin@θ@tD + ϕ@tDD2 Mp θ′@tD2 +
1

4
Mm rm

2 θ′@tD2 +
1

2
Mp rp

2 θ′@tD2 +
1

4
Mp rT

2 θ′@tD2 −

A L ρ Cos@α@tDD q2@tD q1′@tD ϕ′@tD +
2 A L2 ρ Cos@α@tDD q2′@tD ϕ′@tD

π
+

A L ρ Cos@α@tDD q1@tD q2′@tD ϕ′@tD − A L ρ q3@tD Sin@α@tDD q2′@tD ϕ′@tD +

A L ρ q2@tD Sin@α@tDD q3′@tD ϕ′@tD + A L ρ Cos@α@tDD q2@tD q3@tD α′@tD ϕ′@tD +

2 A L2 ρ q2@tD Sin@α@tDD α′@tD ϕ′@tD
π

+ A L ρ q1@tD q2@tD

Sin@α@tDD α′@tD ϕ′@tD + 2 L2 θ′@tD ϕ′@tD +
1

3
A L3 ρ θ′@tD ϕ′@tD +

1

3
A L3 ρ Cos@2 α@tDD θ′@tD ϕ′@tD +

2 A L2 ρ q1@tD θ′@tD ϕ′@tD
π

+

2 A L2 ρ Cos@2 α@tDD q1@tD θ′@tD ϕ′@tD
π

+
1

2
A L ρ q1@tD2 θ′@tD ϕ′@tD +

1

2
A L ρ Cos@2 α@tDD q1@tD2 θ′@tD ϕ′@tD + A L ρ q2@tD2 θ′@tD ϕ′@tD +
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1

2
A L ρ q3@tD2 θ′@tD ϕ′@tD −

1

2
A L ρ Cos@2 α@tDD q3@tD2 θ′@tD ϕ′@tD −

2 A L2 ρ q3@tD Sin@2 α@tDD θ′@tD ϕ′@tD
π

− A L ρ q1@tD q3@tD Sin@2 α@tDD

θ′@tD ϕ′@tD + 2 L2 Cos@α@tDD2 Cos@θ@tD + ϕ@tDD2 Mp θ′@tD ϕ′@tD +

2 L2 Cos@α@tDD2 Sin@θ@tD + ϕ@tDD2 Mp θ′@tD ϕ′@tD +
1

2
Mm rm

2 θ′@tD ϕ′@tD +

Mp rp
2 θ′@tD ϕ′@tD +

1

2
Mp rT

2 θ′@tD ϕ′@tD + L2 ϕ′@tD2 +
1

6
A L3 ρ ϕ′@tD2 +

1

6
A L3 ρ Cos@2 α@tDD ϕ′@tD2 +

A L2 ρ q1@tD ϕ′@tD2

π
+

A L2 ρ Cos@2 α@tDD q1@tD ϕ′@tD2

π
+
1

4
A L ρ q1@tD2 ϕ′@tD2 +

1

4
A L ρ Cos@2 α@tDD q1@tD2 ϕ′@tD2 +

1

2
A L ρ q2@tD2 ϕ′@tD2 +

1

4
A L ρ q3@tD2 ϕ′@tD2 −

1

4
A L ρ Cos@2 α@tDD q3@tD2 ϕ′@tD2 −

A L2 ρ q3@tD Sin@2 α@tDD ϕ′@tD2

π
−
1

2
A L ρ q1@tD q3@tD Sin@2 α@tDD ϕ′@tD2 +

L2 Cos@α@tDD2 Cos@θ@tD + ϕ@tDD2 Mp ϕ′@tD2 +
L2 Cos@α@tDD2 Sin@θ@tD + ϕ@tDD2 Mp ϕ′@tD2 +
1

4
Mm rm

2 ϕ′@tD2 +
1

2
Mp rp

2 ϕ′@tD2 +
1

4
Mp rT

2 ϕ′@tD2
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ii. Potential Energy

Up =
A Eo π2 q1@tD2

2 L
−
3 A Eo π4 q1@tD2 q2@tD2

8 L3
+
3 A Eo π4 q2@tD4

32 L3
−

3 A Eo π4 q1@tD2 q3@tD2

8 L3
+
3 A Eo π4 q2@tD2 q3@tD2

16 L3
+
3 A Eo π4 q3@tD4

32 L3
−

µ Mm

R@tD
−

µ Mp

L2 − 2 L Cos@α@tDD Cos@ϕ@tDD R@tD + R@tD2
−

µ Mp

L2 + 2 L Cos@α@tDD Cos@ϕ@tDD R@tD + R@tD2
+
L T0

A Eo
+
15 π4 q1@tD4 T0

32 L3
+

π2 q2@tD2 T0
2 L

+
3 π4 q1@tD2 q2@tD2 T0

8 L3
−
3 π4 q2@tD4 T0

32 L3
+
π2 q3@tD2 T0

2 L
+

3 π4 q1@tD2 q3@tD2 T0
8 L3

−
3 π4 q2@tD2 q3@tD2 T0

16 L3
−
3 π4 q3@tD4 T0

32 L3
−

‚
i=1

n A L µ ρ

n H−1+2 iL2 L2
4 n2

−
H−1+2 iL L Cos@α@tDD Cos@ϕ@tDD R@tD

n
+ R@tD2

−

‚
i=1

n A L µ ρ

n H−1+2 iL2 L2
4 n2

+
H−1+2 iL L Cos@α@tDD Cos@ϕ@tDD R@tD

n
+ R@tD2
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Appendix C

EOM Flexible Tether

i. For ϕ@tD
−τ Cos@α@tDD Cos@γ@tDD +

L µ Cos@α@tDD R@tD 1

IL2 − 2 L Cos@α@tDD Cos@ϕ@tDD R@tD + R@tD2M3ê2
−

1

IL2 + 2 L Cos@α@tDD Cos@ϕ@tDD R@tD + R@tD2M3ê2
Sin@ϕ@tDD Mp −

‚
i=1

n

−
A H−1 + 2 iL L2 µ ρ Cos@α@tDD R@tD Sin@ϕ@tDD

2 n2 J H−1+2 iL2 L2
4 n2

−
H−1+2 iL L Cos@α@tDD Cos@ϕ@tDD R@tD

n
+ R@tD2N3ê2

−

‚
i=1

n A H−1 + 2 iL L2 µ ρ Cos@α@tDD R@tD Sin@ϕ@tDD
2 n2 J H−1+2 iL2 L2

4 n2
+

H−1+2 iL L Cos@α@tDD Cos@ϕ@tDD R@tD
n

+ R@tD2N3ê2
+

1

6 π
I12 A L π ρ q2@tD q2′@tD Hθ′@tD + ϕ′@tDL −

2 L I−6 A ρ Cos@α@tDD H2 L Cos@α@tDD + π Cos@α@tDD q1@tD −

π q3@tD Sin@α@tDDL q1′@tD − 3 A π ρ q3@tD2 Sin@2 α@tDD α′@tD + 6 A

ρ q3@tD I−π Sin@α@tDD2 q3′@tD + Cos@2 α@tDD H2 L + π q1@tDL α′@tDM +

Sin@2 α@tDD I3 A ρ H2 L + π q1@tDL q3′@tD + I12 A L ρ q1@tD +

3 A π ρ q1@tD2 + 2 L π IA L ρ + 3 MpMM α′@tDMM Hθ′@tD + ϕ′@tDL +

6 A L ρ H2 L Cos@α@tDD + π Cos@α@tDD q1@tD − π q3@tD Sin@α@tDDL q2′′@tD +

6 A L ρ q2@tD I2 π Sin@α@tDD q1′@tD α′@tD + 2 π Cos@α@tDD q3′@tD α′@tD +

2 L Cos@α@tDD α′@tD2 + π Cos@α@tDD q1@tD α′@tD2 −
π q3@tD Sin@α@tDD α′@tD2 − π Cos@α@tDD q1′′@tD + π Sin@α@tDD q3′′@tD +

π Cos@α@tDD q3@tD α′′@tD + 2 L Sin@α@tDD α′′@tD +

π q1@tD Sin@α@tDD α′′@tDM + 6 A L π ρ q2@tD2 Hθ′′@tD + ϕ′′@tDL +

I6 A L π ρ Cos@α@tDD2 q1@tD2 + 6 A L π ρ q3@tD2 Sin@α@tDD2 +
12 A L ρ Cos@α@tDD q1@tD H2 L Cos@α@tDD − π q3@tD Sin@α@tDDL −

12 A L2 ρ q3@tD Sin@2 α@tDD + π I2 L2 H6 + A L ρ + A L ρ Cos@2 α@tDDL +

3 Mm rm
2 + 3 Mp I4 L2 Cos@α@tDD2 + 2 rp2 + rT2MMM Hθ′′@tD + ϕ′′@tDLM = 0
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ii. For θ@tD
1

6 π
I6 A L π ρ q3@tD q3′@tD θ′@tD − 6 A L π ρ Cos@2 α@tDD q3@tD q3′@tD θ′@tD −

12 A L2 ρ Sin@2 α@tDD q3′@tD θ′@tD − 6 A L π ρ q1@tD Sin@2 α@tDD
q3′@tD θ′@tD + 24 A L π ρ R@tD R′@tD θ′@tD + 12 π R@tD Mm R

′@tD θ′@tD +

24 π R@tD Mp R
′@tD θ′@tD − 24 A L2 ρ Cos@2 α@tDD q3@tD α′@tD θ′@tD −

12 A L π ρ Cos@2 α@tDD q1@tD q3@tD α′@tD θ′@tD −

4 A L3 π ρ Sin@2 α@tDD α′@tD θ′@tD − 24 A L2 ρ q1@tD Sin@2 α@tDD α′@tD θ′@tD −

6 A L π ρ q1@tD2 Sin@2 α@tDD α′@tD θ′@tD + 6 A L π ρ q3@tD2
Sin@2 α@tDD α′@tD θ′@tD − 12 L2 π Sin@2 α@tDD Mp α

′@tD θ′@tD +

6 A L π ρ q3@tD q3′@tD ϕ′@tD − 6 A L π ρ Cos@2 α@tDD q3@tD q3′@tD ϕ′@tD −

12 A L2 ρ Sin@2 α@tDD q3′@tD ϕ′@tD − 6 A L π ρ q1@tD Sin@2 α@tDD
q3′@tD ϕ′@tD − 24 A L2 ρ Cos@2 α@tDD q3@tD α′@tD ϕ′@tD −

12 A L π ρ Cos@2 α@tDD q1@tD q3@tD α′@tD ϕ′@tD −

4 A L3 π ρ Sin@2 α@tDD α′@tD ϕ′@tD − 24 A L2 ρ q1@tD Sin@2 α@tDD α′@tD ϕ′@tD −

6 A L π ρ q1@tD2 Sin@2 α@tDD α′@tD ϕ′@tD +

6 A L π ρ q3@tD2 Sin@2 α@tDD α′@tD ϕ′@tD −

12 L2 π Sin@2 α@tDD Mp α′@tD ϕ′@tD + 12 A L ρ Cos@α@tDD
H2 L Cos@α@tDD + π Cos@α@tDD q1@tD − π q3@tD Sin@α@tDDL
q1′@tD Hθ′@tD + ϕ′@tDL + 12 A L2 ρ Cos@α@tDD q2′′@tD +

6 A L π ρ Cos@α@tDD q1@tD q2′′@tD − 6 A L π ρ q3@tD Sin@α@tDD q2′′@tD +

6 A L ρ q2@tD I2 π Sin@α@tDD q1′@tD α′@tD + 2 π Cos@α@tDD q3′@tD α′@tD +

2 L Cos@α@tDD α′@tD2 + π Cos@α@tDD q1@tD α′@tD2 −
π q3@tD Sin@α@tDD α′@tD2 + 2 π q2′@tD θ′@tD + 2 π q2′@tD ϕ′@tD −

π Cos@α@tDD q1′′@tD + π Sin@α@tDD q3′′@tD + π Cos@α@tDD q3@tD α′′@tD +

2 L Sin@α@tDD α′′@tD + π q1@tD Sin@α@tDD α′′@tDM +

12 L2 π θ′′@tD + 2 A L3 π ρ θ′′@tD + 2 A L3 π ρ Cos@2 α@tDD θ′′@tD +

12 A L2 ρ q1@tD θ′′@tD + 12 A L2 ρ Cos@2 α@tDD q1@tD θ′′@tD +

3 A L π ρ q1@tD2 θ′′@tD + 3 A L π ρ Cos@2 α@tDD q1@tD2 θ′′@tD +

3 A L π ρ q3@tD2 θ′′@tD − 3 A L π ρ Cos@2 α@tDD q3@tD2 θ′′@tD +

12 A L π ρ R@tD2 θ′′@tD − 12 A L2 ρ q3@tD Sin@2 α@tDD θ′′@tD −

6 A L π ρ q1@tD q3@tD Sin@2 α@tDD θ′′@tD + 6 π R@tD2 Mm θ′′@tD +

6 L2 π Mp θ′′@tD + 6 L2 π Cos@2 α@tDD Mp θ
′′@tD + 12 π R@tD2 Mp θ′′@tD +

3 π Mm rm
2 θ′′@tD + 6 π Mp rp

2 θ′′@tD + 3 π Mp rT
2 θ′′@tD + 12 L2 π ϕ′′@tD +

2 A L3 π ρ ϕ′′@tD + 2 A L3 π ρ Cos@2 α@tDD ϕ′′@tD + 12 A L2 ρ q1@tD ϕ′′@tD +

12 A L2 ρ Cos@2 α@tDD q1@tD ϕ′′@tD + 3 A L π ρ q1@tD2 ϕ′′@tD +

3 A L π ρ Cos@2 α@tDD q1@tD2 ϕ′′@tD + 3 A L π ρ q3@tD2 ϕ′′@tD −

3 A L π ρ Cos@2 α@tDD q3@tD2 ϕ′′@tD − 12 A L2 ρ q3@tD Sin@2 α@tDD ϕ′′@tD −

6 A L π ρ q1@tD q3@tD Sin@2 α@tDD ϕ′′@tD + 6 L2 π Mp ϕ′′@tD +

6 L2 π Cos@2 α@tDD Mp ϕ′′@tD + 3 π Mm rm
2 ϕ′′@tD + 6 π Mp rp

2 ϕ′′@tD +

3 π Mp rT
2 ϕ′′@tD + 6 A L π ρ q2@tD2 Hθ′′@tD + ϕ′′@tDLM = 0
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iii. For q1@tD
1

8 L3 π

I15 π5 q1@tD3 T0 − 2 π q1@tD I3 π4 q2@tD2 HA Eo − T0L + 3 π4 q3@tD2 HA Eo − T0L +

2 A L2 I−2 Eo π2 + 2 L2 ρ α′@tD2 + 2 L2 ρ Cos@α@tDD2 θ′@tD2 + 4 L2 ρ
Cos@α@tDD2 θ′@tD ϕ′@tD + L2 ρ ϕ′@tD2 + L2 ρ Cos@2 α@tDD ϕ′@tD2MM −

4 A L4 ρ I4 π q3′@tD α′@tD + 4 L α′@tD2 + 4 π Cos@α@tDD q2′@tD θ′@tD +

2 L θ′@tD2 + 2 L Cos@2 α@tDD θ′@tD2 − π q3@tD Sin@2 α@tDD θ′@tD2 +
4 π Cos@α@tDD q2′@tD ϕ′@tD + 4 L θ′@tD ϕ′@tD + 4 L Cos@2 α@tDD θ′@tD ϕ′@tD −

2 π q3@tD Sin@2 α@tDD θ′@tD ϕ′@tD + 2 L ϕ′@tD2 + 2 L Cos@2 α@tDD ϕ′@tD2 −
π q3@tD Sin@2 α@tDD ϕ′@tD2 − 2 π q1′′@tD + 2 π q3@tD α′′@tD +

2 π Cos@α@tDD q2@tD θ′′@tD + 2 π Cos@α@tDD q2@tD ϕ′′@tDMM

iv. For q2@tD
1

8 L3 π
I3 π5 q2@tD3 HA Eo − T0L + 6 π5 q1@tD2 q2@tD H−A Eo + T0L +

π q2@tD I3 π4 q3@tD2 HA Eo − T0L − 8 I−L2 π2 T0 + A L4 ρ Hθ′@tD + ϕ′@tDL2MM −

8 A L4 ρ H2 π Cos@α@tDD q3@tD α′@tD θ′@tD + 4 L Sin@α@tDD α′@tD θ′@tD +

2 π Cos@α@tDD q3@tD α′@tD ϕ′@tD + 4 L Sin@α@tDD α′@tD ϕ′@tD − 2 π

Cos@α@tDD q1′@tD Hθ′@tD + ϕ′@tDL + 2 π Sin@α@tDD q3′@tD Hθ′@tD + ϕ′@tDL −

π q2′′@tD − 2 L Cos@α@tDD θ′′@tD + π q3@tD Sin@α@tDD θ′′@tD −

2 L Cos@α@tDD ϕ′′@tD + π q3@tD Sin@α@tDD ϕ′′@tDL − 8 A L4 π ρ q1@tD
H2 Sin@α@tDD α′@tD Hθ′@tD + ϕ′@tDL − Cos@α@tDD Hθ′′@tD + ϕ′′@tDLLM

v. For q3@tD
1

8 L3 π
I3 A Eo π5 q3@tD3 + 3 π5 q2@tD2 q3@tD HA Eo − T0L + 8 L2 π3 q3@tD T0 −

3 π5 q3@tD3 T0 + 6 π5 q1@tD2 q3@tD H−A Eo + T0L + 16 A L4 π ρ q1′@tD α′@tD −

8 A L4 π ρ q3@tD α′@tD2 + 16 A L4 π ρ Sin@α@tDD q2′@tD θ′@tD −

4 A L4 π ρ q3@tD θ′@tD2 + 4 A L4 π ρ Cos@2 α@tDD q3@tD θ′@tD2 +
8 A L5 ρ Sin@2 α@tDD θ′@tD2 + 16 A L4 π ρ Sin@α@tDD q2′@tD ϕ′@tD −

8 A L4 π ρ q3@tD θ′@tD ϕ′@tD + 8 A L4 π ρ Cos@2 α@tDD q3@tD θ′@tD ϕ′@tD +

16 A L5 ρ Sin@2 α@tDD θ′@tD ϕ′@tD − 4 A L4 π ρ q3@tD ϕ′@tD2 +
4 A L4 π ρ Cos@2 α@tDD q3@tD ϕ′@tD2 + 8 A L5 ρ Sin@2 α@tDD ϕ′@tD2 +
8 A L4 π ρ q3′′@tD + 16 A L5 ρ α′′@tD + 4 A L4 π ρ q1@tD ISin@2 α@tDD θ′@tD2 +

2 Sin@2 α@tDD θ′@tD ϕ′@tD + Sin@2 α@tDD ϕ′@tD2 + 2 α′′@tDM +

8 A L4 π ρ q2@tD Sin@α@tDD Hθ′′@tD + ϕ′′@tDLM = 0

vi. For α@tD
−τ Sin@γ@tDD +

L µ Cos@ϕ@tDD R@tD 1

IL2 − 2 L Cos@α@tDD Cos@ϕ@tDD R@tD + R@tD2M3ê2
−
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1

IL2 + 2 L Cos@α@tDD Cos@ϕ@tDD R@tD + R@tD2M3ê2
Sin@α@tDD Mp −

‚
i=1

n

−IA H−1 + 2 iL L2 µ ρ Cos@ϕ@tDD R@tD Sin@α@tDDM ì 2 n2

H−1 + 2 iL2 L2
4 n2

−
H−1 + 2 iL L Cos@α@tDD Cos@ϕ@tDD R@tD

n
+ R@tD2

3ê2
−

‚
i=1

n

IA H−1 + 2 iL L2 µ ρ Cos@ϕ@tDD R@tD Sin@α@tDDM ì

2 n2
H−1 + 2 iL2 L2

4 n2
+
H−1 + 2 iL L Cos@α@tDD Cos@ϕ@tDD R@tD

n
+ R@tD2

3ê2
+

4 A L2 ρ q1′@tD α′@tD
π

+ 2 A L ρ q1@tD q1′@tD α′@tD +

2 A L ρ q3@tD q3′@tD α′@tD + 2 A L ρ Cos@α@tDD q3@tD q2′@tD θ′@tD +

4 A L2 ρ Sin@α@tDD q2′@tD θ′@tD
π

+

2 A L ρ q1@tD Sin@α@tDD q2′@tD θ′@tD +

2 A L2 ρ Cos@2 α@tDD q3@tD θ′@tD2
π

+ A L ρ Cos@2 α@tDD q1@tD q3@tD θ′@tD2 +
A L ρ Cos@α@tDD q1@tD2 Sin@α@tDD θ′@tD2 −
A L ρ Cos@α@tDD q3@tD2 Sin@α@tDD θ′@tD2 + 1

3
A L3 ρ Sin@2 α@tDD θ′@tD2 +

2 A L2 ρ q1@tD Sin@2 α@tDD θ′@tD2
π

+ L2 Sin@2 α@tDD Mp θ′@tD2 +

2 A L ρ Cos@α@tDD q3@tD q2′@tD ϕ′@tD +
4 A L2 ρ Sin@α@tDD q2′@tD ϕ′@tD

π
+

2 A L ρ q1@tD Sin@α@tDD q2′@tD ϕ′@tD +
4 A L2 ρ Cos@2 α@tDD q3@tD θ′@tD ϕ′@tD

π
+

2 A L ρ Cos@2 α@tDD q1@tD q3@tD θ′@tD ϕ′@tD +
2

3
A L3 ρ Sin@2 α@tDD θ′@tD ϕ′@tD +

4 A L2 ρ q1@tD Sin@2 α@tDD θ′@tD ϕ′@tD
π

+ A L ρ q1@tD2 Sin@2 α@tDD θ′@tD ϕ′@tD −

A L ρ q3@tD2 Sin@2 α@tDD θ′@tD ϕ′@tD + 2 L2 Sin@2 α@tDD Mp θ′@tD ϕ′@tD +

2 A L2 ρ Cos@2 α@tDD q3@tD ϕ′@tD2
π

+ A L ρ Cos@2 α@tDD q1@tD q3@tD ϕ′@tD2 +
A L ρ Cos@α@tDD q1@tD2 Sin@α@tDD ϕ′@tD2 −
A L ρ Cos@α@tDD q3@tD2 Sin@α@tDD ϕ′@tD2 +
1

3
A L3 ρ Sin@2 α@tDD ϕ′@tD2 + 2 A L2 ρ q1@tD Sin@2 α@tDD ϕ′@tD2

π
+

L2 Sin@2 α@tDD Mp ϕ
′@tD2 − A L ρ q3@tD q1′′@tD +

2 A L2 ρ q3′′@tD
π

+

A L ρ q1@tD q3′′@tD + 3 h2 α′′@tD + 2 L2 α′′@tD +
2

3
A L3 ρ α′′@tD +

4 A L2 ρ q1@tD α′′@tD
π

+ A L ρ q1@tD2 α′′@tD + A L ρ q3@tD2 α′′@tD +
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2 L2 Mp α′′@tD +
1

4
Mm rm

2 α′′@tD +
1

2
Mp rp

2 α′′@tD +
1

2
Mp rT

2 α′′@tD +

A L ρ Cos@α@tDD q2@tD q3@tD θ′′@tD +
2 A L2 ρ q2@tD Sin@α@tDD θ′′@tD

π
+

A L ρ q1@tD q2@tD Sin@α@tDD θ′′@tD + A L ρ Cos@α@tDD q2@tD q3@tD ϕ′′@tD +

2 A L2 ρ q2@tD Sin@α@tDD ϕ′′@tD
π

+ A L ρ q1@tD q2@tD Sin@α@tDD ϕ′′@tD = 0

vii. For R@tD

1

2

2 µ Mm

R@tD2 +
µ H−2 L Cos@α@tDD Cos@ϕ@tDD + 2 R@tDL Mp

IL2 − 2 L Cos@α@tDD Cos@ϕ@tDD R@tD + R@tD2M3ê2
+

2 µ HL Cos@α@tDD Cos@ϕ@tDD + R@tDL Mp

IL2 + 2 L Cos@α@tDD Cos@ϕ@tDD R@tD + R@tD2M3ê2
−

2 ‚
i=1

n

− A L µ ρ −
H−1 + 2 iL L Cos@α@tDD Cos@ϕ@tDD

n
+ 2 R@tD ì

2 n
H−1 + 2 iL2 L2

4 n2
−

H−1 + 2 iL L Cos@α@tDD Cos@ϕ@tDD R@tD
n

+ R@tD2
3ê2

−

2 ‚
i=1

n

− A L µ ρ
H−1 + 2 iL L Cos@α@tDD Cos@ϕ@tDD

n
+ 2 R@tD ì

2 n
H−1 + 2 iL2 L2

4 n2
+

H−1 + 2 iL L Cos@α@tDD Cos@ϕ@tDD R@tD
n

+ R@tD2
3ê2

−

R@tD IMm + 2 IA L ρ + MpMM θ′@tD2 + IMm + 2 IA L ρ + MpMM
R′′@
tD = 0
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Appendix D

Derivation of mode shape function

u@t D = A1 ∗ Sin Bω ∗ x

c
F + B1 ∗ CosBω ∗ x

c
F ∗ Sin @ω ∗ t D;

u ' = D@u@t D, t D
u '' = D@u', t D
ux ' = D@u@t D, x D

ω Cos@t ωD B1 CosB x ω

c
F + A1 SinBx ω

c
F

−ω2 Sin@t ωD B1 CosBx ω

c
F + A1 SinB x ω

c
F

Sin@t ωD
A1 ω CosA x ω

c
E

c
−
B1 ω SinA x ω

c
E

c

H∗at x =r m, the ux' and u'' become =... ∗L

ur m = −ω2 Sin @t ωD B1 CosB r mω

c
F + A1 Sin B r mω

c
F ;

ux r m = Sin @t ωD
A1 ω CosA r m ω

c
E

c
−

B1 ω Sin A r m ω

c
E

c
;

t1 = HL − r mL ∗ HHϕ ' @t DL^2L ρ ∗ A ∗ HL − r mL
2

+ MP + Eo∗ A ∗ ux r m + Mm∗ ur m

A Eo Sin@t ωD
A1 ω CosA ω rm

c
E

c
−
B1 ω SinA ω rm

c
E

c
−

ω2 Sin@t ωD B1 CosBω rm

c
F + A1 SinB ω rm

c
F Mm +

MP +
1

2
A ρ HL − rmL HL − rmL ϕ′@tD2
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H∗at x =r m, the ux' and u'' become =... ∗L

uHL−r pL = −ω2 Sin @t ωD B1 CosBIL − r pM ω

c
F + A1 Sin BIL − r pM ω

c
F ;

ux HL−r pL = Sin @t ωD
A1 ω CosB HL−r pL ω

c
F

c
−

B1 ω Sin B HL−r pL ω

c
F

c
;

t2 = r p ∗ HHϕ ' @t DL^2L ρ ∗ A∗ r p

2
+ MP + Eo ∗ A ∗ ux HL−r pL + MP ∗ uHL−r pL

A Eo Sin@t ωD
A1 ω CosB ω HL−rpL

c
F

c
−

B1 ω SinB ω HL−rpL
c

F
c

−

ω2 Sin@t ωD B1 CosBω IL − rpM
c

F + A1 SinBω IL − rpM
c

F MP +

rp MP +
1

2
A ρ rp ϕ′@tD2

eqn = 8t1 � 0, t2 � 0<

:A Eo Sin@t ωD
A1 ω CosA ω rm

c
E

c
−
B1 ω SinA ω rm

c
E

c
−

ω2 Sin@t ωD B1 CosB ω rm

c
F + A1 SinBω rm

c
F Mm +

MP +
1

2
A ρ HL − rmL HL − rmL ϕ′@tD2 � 0,

A Eo Sin@t ωD
A1 ω CosB ω HL−rpL

c
F

c
−

B1 ω SinB ω HL−rpL
c

F
c

− ω2 Sin@t ωD

B1 CosBω IL − rpM
c

F + A1 SinBω IL − rpM
c

F MP + rp MP +
1

2
A ρ rp ϕ′@tD2 � 0>

Solve @eqn, 8A1, B1 <D

::A1 → −
rp IMP + 1

2
A ρ rpM ϕ′@tD2

A Eo ω CosA ω IL−rpM
c

E Sin@t ωD
c

− ω2 Sin@t ωD SinB ω HL−rpL
c

F MP
+

−

A Eo ω Sin@t ωD SinB ω HL−rpL
c

F
c

− ω2 CosBω IL − rpM
c

F Sin@t ωD MP

A Eo ω CosB ω HL−rpL
c

F Sin@t ωD
c

− ω2 Sin@t ωD SinB ω IL − rpM
c

F MP

MP +
1

2
A ρ HL − rmL HL − rmL ϕ′@tD2 −

A Eo ω CosA ω rm
c

E Sin@t ωD
c

−

ω2 Sin@t ωD SinBω rm

c
F Mm rp MP +

1

2
A ρ rp ϕ′@tD2 ì
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A Eo ω CosB ω HL−rpL
c

F Sin@t ωD
c

− ω2 Sin@t ωD SinBω IL − rpM
c

F MP

−
A Eo ω CosA ω rm

c
E Sin@t ωD

c
− ω2 Sin@t ωD SinB ω rm

c
F Mm

−

A Eo ω Sin@t ωD SinB ω HL−rpL
c

F
c

− ω2 CosBω IL − rpM
c

F Sin@t ωD MP +

−
A Eo ω Sin@t ωD SinA ω rm

c
E

c
− ω2 CosBω rm

c
F Sin@t ωD Mm

A Eo ω CosB ω HL−rpL
c

F Sin@t ωD
c

− ω2 Sin@t ωD SinBω IL − rpM
c

F MP ,

B1 → −

A Eo ω CosB ω HL−rpL
c

F Sin@t ωD
c

− ω2 Sin@t ωD SinBω IL − rpM
c

F MP

MP +
1

2
A ρ HL − rmL HL − rmL ϕ′@tD2 −

A Eo ω CosA ω rm
c

E Sin@t ωD
c

− ω2 Sin@t ωD SinB ω rm

c
F Mm

rp MP +
1

2
A ρ rp ϕ′@tD2 ì

−
A Eo ω CosA ω rm

c
E Sin@t ωD

c
− ω2 Sin@t ωD SinB ω rm

c
F Mm

−

A Eo ω Sin@t ωD SinB ω HL−rpL
c

F
c

− ω2 CosBω IL − rpM
c

F Sin@t ωD MP +

−
A Eo ω Sin@t ωD SinA ω rm

c
E

c
− ω2 CosB ω rm

c
F Sin@t ωD Mm

A Eo ω CosB ω HL−rpL
c

F Sin@t ωD
c

− ω2 Sin@t ωD SinB ω IL − rpM
c

F MP >>

A1 = −
r p IMP +

1

2
A ρ r pM ϕ′@t D2

A Eoω CosA ω IL−r pM
c

E Sin @t ωD
c

− ω2 Sin @t ωD Sin B ω HL−r pL
c

F MP

+

−

A Eoω Sin @t ωD Sin B ω HL−r pL
c

F
c

− ω2 CosBω IL − r pM
c

F Sin @t ωD MP

A Eoω CosB ω HL−r pL
c

F Sin @t ωD
c

− ω2 Sin @t ωD Sin Bω IL − r pM
c

F MP
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MP +
1

2
A ρ HL − r mL HL − r mL ϕ′@t D2 −

A Eoω CosA ω r m

c
E Sin @t ωD

c
−

ω2 Sin @t ωD Sin Bω r m

c
F Mm r p MP +

1

2
A ρ r p ϕ′@t D2 ì

A Eoω CosB ω HL−r pL
c

F Sin @t ωD
c

− ω2 Sin @t ωD Sin Bω IL − r pM
c

F MP

−
A Eoω CosA ω r m

c
E Sin @t ωD

c
− ω2 Sin @t ωD Sin B ω r m

c
F Mm

−

A Eoω Sin @t ωD Sin B ω HL−r pL
c

F
c

− ω2 CosBω IL − r pM
c

F Sin @t ωD MP +

−
A Eoω Sin @t ωD Sin A ω r m

c
E

c
− ω2 CosBω r m

c
F Sin @t ωD Mm

A Eoω CosB ω HL−r pL
c

F Sin @t ωD
c

− ω2 Sin @t ωD Sin B ω IL − r pM
c

F MP ;

B1 = −

A Eoω CosB ω HL−r pL
c

F Sin @t ωD
c

− ω2 Sin @t ωD Sin B ω IL − r pM
c

F MP

MP +
1

2
A ρ HL − r mL HL − r mL ϕ′@t D2 −

A Eoω CosA ω r m

c
E Sin @t ωD

c
− ω2 Sin @t ωD Sin Bω r m

c
F Mm

r p MP +
1

2
A ρ r p ϕ′@t D2 ì

−
A Eoω CosA ω r m

c
E Sin @t ωD

c
− ω2 Sin @t ωD Sin Bω r m

c
F Mm

−

A Eoω Sin @t ωD Sin B ω HL−r pL
c

F
c

− ω2 CosB ω IL − r pM
c

F Sin @t ωD MP +

−
A Eoω Sin @t ωD Sin A ω r m

c
E

c
− ω2 CosB ω r m

c
F Sin @t ωD Mm

A Eoω CosB ω HL−r pL
c

F Sin @t ωD
c

− ω2 Sin @t ωD Sin B ω IL − r pM
c

F MP ;

phi = A1 ∗ Sin B x ω

c
F + B1 ∗ CosB x ω

c
F

− CosBx ω

c
F

A Eo ω CosB ω HL−rpL
c

F Sin@t ωD
c

− ω2 Sin@t ωD SinB ω IL − rpM
c

F MP
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MP +
1

2
A ρ HL − rmL HL − rmL ϕ′@tD2 −

A Eo ω CosA ω rm
c

E Sin@t ωD
c

− ω2 Sin@t ωD SinB ω rm

c
F Mm

rp MP +
1

2
A ρ rp ϕ′@tD2 ì

−
A Eo ω CosA ω rm

c
E Sin@t ωD

c
+ ω2 Sin@t ωD SinBω rm

c
F Mm

−

A Eo ω Sin@t ωD SinB ω HL−rpL
c

F
c

− ω2 CosB ω IL − rpM
c

F Sin@t ωD MP +

−
A Eo ω Sin@t ωD SinA ω rm

c
E

c
− ω2 CosB ω rm

c
F Sin@t ωD Mm

A Eo ω CosB ω HL−rpL
c

F Sin@t ωD
c

− ω2 Sin@t ωD SinBω IL − rpM
c

F MP +

SinBx ω

c
F −

rp IMP + 1

2
A ρ rpM ϕ′@tD2

A Eo ω CosA ω IL−rpM
c

E Sin@t ωD
c

− ω2 Sin@t ωD SinB ω HL−rpL
c

F MP
+

−

A Eo ω Sin@t ωD SinB ω HL−rpL
c

F
c

− ω2 CosBω IL − rpM
c

F Sin@t ωD MP

A Eo ω CosB ω HL−rpL
c

F Sin@t ωD
c

− ω2 Sin@t ωD SinB ω IL − rpM
c

F MP

MP +
1

2
A ρ HL − rmL HL − rmL ϕ′@tD2 −

A Eo ω CosA ω rm
c

E Sin@t ωD
c

−

ω2 Sin@t ωD SinBω rm

c
F Mm rp MP +

1

2
A ρ rp ϕ′@tD2 ì

A Eo ω CosB ω HL−rpL
c

F Sin@t ωD
c

− ω2 Sin@t ωD SinBω IL − rpM
c

F MP

−
A Eo ω CosA ω rm

c
E Sin@t ωD

c
+ ω2 Sin@t ωD SinB ω rm

c
F Mm

−

A Eo ω Sin@t ωD SinB ω HL−rpL
c

F
c

− ω2 CosBω IL − rpM
c

F Sin@t ωD MP +

−
A Eo ω Sin@t ωD SinA ω rm

c
E

c
− ω2 CosBω rm

c
F Sin@t ωD Mm
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A Eo ω CosB ω HL−rpL
c

F Sin@t ωD
c

− ω2 Sin@t ωD SinBω IL − rpM
c

F MP

c Csc@t ωD 2 c ω SinB ω I−L + x + rpM
c

F MP2 HL − rmL +

MP A L 2 Eo CosBω I−L + x + rpM
c

F + c L ρ ω SinBω I−L + x + rpM
c

F −

2 A Eo CosBω I−L + x + rpM
c

F + c L ρ ω SinB ω I−L + x + rpM
c

F rm +

A c ρ ω SinBω I−L + x + rpM
c

F rm2 −

2 A Eo CosBω Hx − rmL
c

F + c ω SinBω Hx − rmL
c

F Mm rp +

A ρ A Eo L2 CosBω I−L + x + rpM
c

F − 2 A Eo L CosBω I−L + x + rpM
c

F rm +

A Eo CosBω I−L + x + rpM
c

F rm2 −

A Eo CosBω Hx − rmL
c

F + c ω SinBω Hx − rmL
c

F Mm rp
2 ϕ′@tD2 ì

2 ω A Eo A Eo SinBω I−L + rm + rpM
c

F − c ω CosB ω I−L + rm + rpM
c

F MP +

c ω Mm A Eo CosBω I−L + rm + rpM
c

F + c ω SinB ω I−L + rm + rpM
c

F MP

Mode Shape Function :

φ@xD =

Ic Csc@t ωD I2 c ω Sin @αD MP
2 HL − r mL + MP IA L H2 Eo Cos@αD + c L ρ ω Sin @αDL −

2 A HEo Cos@αD + c L ρ ω Sin @αDL r m+ A c ρ ω Sin @αD r m
2 −

2 HA Eo Cos@βD + c ω Sin @βD MmL r pM +

A ρ IA Eo L2 Cos@αD − 2 A Eo L Cos@αD r m+ A Eo Cos@αD r m
2 −

HA Eo Cos@βD + c ω Sin @βD MmL r p
2MM ϕ′@t D2M ë

H2 ω HA EoHA Eo Sin @αD − c ω Cos@αD MPL + c ω MmHA Eo Cos@αD + c ω Sin @αD MPLLL
where,

α =
ω I−L + x + r pM

c

β =
ω Hx − r mL

c
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Appendix E

EOM : fixed - mass boundary condition Haxial vibrationL

U1 =
r p ∗ HHϕ ' @t DL^2L I ρ∗A∗r p

2
+ MpM

Mp ∗ Hω^2L ∗ Sin A ω∗L

c1
E

H∗Introduce Ax,Bx,

and Cx in mode shape function for position of Mp and Mm ∗L

i.For ϕ@t D

eqns1 = Csc@t ωD3 −24 L 3 µ ω2 R@t D L2 − 2 L Cos@ϕ@t DD R@t D + R@t D2 −

L2 + 2 L Cos@ϕ@t DD R@t D + R@t D2 Sin @t ωD3 Sin @ϕ@t DD Mp −

24 L µ ω2 R@t D3 L2 − 2 L Cos@ϕ@t DD R@t D + R@t D2 −

L2 + 2 L Cos@ϕ@t DD R@t D + R@t D2 Sin @t ωD3 Sin @ϕ@t DD Mp +

L4 L2 − 2 L Cos@ϕ@t DD R@t D + R@t D2 L2 + 2 L Cos@ϕ@t DD R@t D + R@t D2

−24 ω2 Sin @t ωD3 ‚
i =1

n

−IA H−1 + 2 i L L2 µ ρ R@t D Sin @ϕ@t DDM ì 2 n2

H−1 + 2 i L2 L2

4 n2
−
H−1 + 2 i L L Cos@ϕ@t DD R@t D

n
+ R@t D2

3ê2

−

24 ω2 Sin @t ωD3 ‚
i =1

n

IA H−1 + 2 i L L2 µ ρ R@t D Sin @ϕ@t DDM ì 2 n2

H−1 + 2 i L2 L2

4 n2
+
H−1 + 2 i L L Cos@ϕ@t DD R@t D

n
+ R@t D2

3ê2

−

48 A L U12 ρ ω3 Cos@t ωD q1@t D2 θ′@t D + 24 A c1 U12 ρ ω2

Cos@t ωD q1@t D2 Sin B 2 L ω

c1
F θ′@t D +

48 A c1 L U1 ρ ω2 CosB L ω

c1
F q1@t D Sin @2 t ωD θ′@t D −

48 A c1 2 U1 ρ ω q1@t D Sin B L ω

c1
F Sin @2 t ωD θ′@t D −

48 U12 ω3 Cos@t ωD q1@t D2 Mp θ′@t D + 48 U12 ω3 CosB L ω

c1
F2

Cos@t ωD

q1@t D2 Mp θ′@t D − 48 U12 ω3 Cos@t ωD q1@t D2 Sin B L ω

c1
F2

Mp θ′@t D −

48 L U1 ω3 q1@t D Sin B L ω

c1
F Sin @2 t ωD Mp θ′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F q1 ′@t D θ′@t D + 48 A c1 L U1 ρ ω CosB L ω

c1
F
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Cos@t ωD2 q1 ′@t D θ′@t D + 48 A c1 2 U1 ρ Sin B L ω

c1
F q1 ′@t D θ′@t D −

48 A c1 2 U1 ρ Cos@t ωD2 Sin B L ω

c1
F q1 ′@t D θ′@t D +

48 A L U12 ρ ω2 q1@t D Sin @t ωD q1 ′@t D θ′@t D −

24 A c1 U12 ρ ω q1@t D Sin B 2 L ω

c1
F Sin @t ωD q1 ′@t D θ′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F Sin @t ωD2 q1 ′@t D θ′@t D +

48 A c1 2 U1 ρ Sin B L ω

c1
F Sin @t ωD2 q1 ′@t D θ′@t D +

48 L U1 ω2 Sin B L ω

c1
F Mp q1 ′@t D θ′@t D − 48 L U1 ω2 Cos@t ωD2 Sin B L ω

c1
F

Mp q1 ′@t D θ′@t D + 48 U12 ω2 q1@t D Sin @t ωD Mp q1 ′@t D θ′@t D −

48 U12 ω2 CosB L ω

c1
F2

q1@t D Sin @t ωD Mp q1 ′@t D θ′@t D +

48 U12 ω2 q1@t D Sin B L ω

c1
F2

Sin @t ωD Mp q1 ′@t D θ′@t D +

48 L U1 ω2 Sin B L ω

c1
F Sin @t ωD2 Mp q1 ′@t D θ′@t D −

48 A L U12 ρ ω3 Cos@t ωD q1@t D2 ϕ′@t D +

24 A c1 U12 ρ ω2 Cos@t ωD q1@t D2 Sin B 2 L ω

c1
F ϕ′@t D +

48 A c1 L U1 ρ ω2 CosB L ω

c1
F q1@t D Sin @2 t ωD ϕ′@t D −

48 A c1 2 U1 ρ ω q1@t D Sin B L ω

c1
F Sin @2 t ωD ϕ′@t D −

48 U12 ω3 Cos@t ωD q1@t D2 Mp ϕ′@t D + 48 U12 ω3 CosB L ω

c1
F2

Cos@t ωD

q1@t D2 Mp ϕ′@t D − 48 U12 ω3 Cos@t ωD q1@t D2 Sin B L ω

c1
F2

Mp ϕ′@t D −

48 L U1 ω3 q1@t D Sin B L ω

c1
F Sin @2 t ωD Mp ϕ′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F q1 ′@t D ϕ′@t D + 48 A c1 L U1 ρ ω CosB L ω

c1
F

Cos@t ωD2 q1 ′@t D ϕ′@t D + 48 A c1 2 U1 ρ Sin B L ω

c1
F q1 ′@t D ϕ′@t D −

48 A c1 2 U1 ρ Cos@t ωD2 Sin B L ω

c1
F q1 ′@t D ϕ′@t D +

48 A L U12 ρ ω2 q1@t D Sin @t ωD q1 ′@t D ϕ′@t D −

24 A c1 U12 ρ ω q1@t D Sin B 2 L ω

c1
F Sin @t ωD q1 ′@t D ϕ′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F Sin @t ωD2 q1 ′@t D ϕ′@t D +

48 A c1 2 U1 ρ Sin B L ω

c1
F Sin @t ωD2 q1 ′@t D ϕ′@t D +

48 L U1 ω2 Sin B L ω

c1
F Mp q1 ′@t D ϕ′@t D − 48 L U1 ω2 Cos@t ωD2 Sin B L ω

c1
F

Mp q1 ′@t D ϕ′@t D + 48 U12 ω2 q1@t D Sin @t ωD Mp q1 ′@t D ϕ′@t D −

48 U12 ω2 CosB L ω

c1
F2

q1@t D Sin @t ωD Mp q1 ′@t D ϕ′@t D +
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48 U12 ω2 q1@t D Sin B L ω

c1
F2

Sin @t ωD Mp q1 ′@t D ϕ′@t D +

48 L U1 ω2 Sin B L ω

c1
F Sin @t ωD2 Mp q1 ′@t D ϕ′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F q1@t D θ′′@t D + 48 A c1 L U1 ρ ω CosB L ω

c1
F

Cos@t ωD2 q1@t D θ′′@t D + 48 A c1 2 U1 ρ q1@t D Sin B L ω

c1
F θ′′@t D −

48 A c1 2 U1 ρ Cos@t ωD2 q1@t D Sin B L ω

c1
F θ′′@t D +

15 A L3 ρ ω2 Sin @t ωD θ′′@t D − 15 A L3 ρ ω2 Cos@t ωD2 Sin @t ωD θ′′@t D +

24 A L U12 ρ ω2 q1@t D2 Sin @t ωD θ′′@t D −

12 A c1 U12 ρ ω q1@t D2 Sin B 2 L ω

c1
F Sin @t ωD θ′′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F q1@t D Sin @t ωD2 θ′′@t D +

48 A c1 2 U1 ρ q1@t D Sin B L ω

c1
F Sin @t ωD2 θ′′@t D +

5 A L3 ρ ω2 Sin @t ωD3 θ′′@t D + 48 L U1 ω2 q1@t D Sin B L ω

c1
F Mp θ′′@t D −

48 L U1 ω2 Cos@t ωD2 q1@t D Sin B L ω

c1
F Mp θ′′@t D +

36 L 2 ω2 Sin @t ωD Mp θ′′@t D − 36 L 2 ω2 Cos@t ωD2 Sin @t ωD Mp θ′′@t D +

24 U12 ω2 q1@t D2 Sin @t ωD Mp θ′′@t D − 24 U12 ω2 CosB L ω

c1
F2

q1@t D2

Sin @t ωD Mp θ′′@t D + 24 U12 ω2 q1@t D2 Sin B L ω

c1
F2

Sin @t ωD Mp θ′′@t D +

48 L U1 ω2 q1@t D Sin B L ω

c1
F Sin @t ωD2 Mp θ′′@t D +

12 L 2 ω2 Sin @t ωD3 Mp θ′′@t D + 9 ω2 Sin @t ωD Mmmr m
2 θ′′@t D −

9 ω2 Cos@t ωD2 Sin @t ωD Mmmr m
2 θ′′@t D + 3 ω2 Sin @t ωD3 Mmmr m

2 θ′′@t D +

18 ω2 Sin @t ωD Mp r p
2 θ′′@t D − 18 ω2 Cos@t ωD2 Sin @t ωD Mp r p

2 θ′′@t D +

6 ω2 Sin @t ωD3 Mp r p
2 θ′′@t D + 9 A L ρ ω2 Sin @t ωD r T

2 θ′′@t D −

9 A L ρ ω2 Cos@t ωD2 Sin @t ωD r T
2 θ′′@t D + 3 A L ρ ω2 Sin @t ωD3

r T
2 θ′′@t D − 48 A c1 L U1 ρ ω CosB L ω

c1
F q1@t D ϕ′′@t D +

48 A c1 L U1 ρ ω CosB L ω

c1
F Cos@t ωD2 q1@t D ϕ′′@t D +

48 A c1 2 U1 ρ q1@t D Sin B L ω

c1
F ϕ′′@t D −

48 A c1 2 U1 ρ Cos@t ωD2 q1@t D Sin B L ω

c1
F ϕ′′@t D +

15 A L3 ρ ω2 Sin @t ωD ϕ′′@t D − 15 A L3 ρ ω2 Cos@t ωD2 Sin @t ωD ϕ′′@t D +

24 A L U12 ρ ω2 q1@t D2 Sin @t ωD ϕ′′@t D −

12 A c1 U12 ρ ω q1@t D2 Sin B 2 L ω

c1
F Sin @t ωD ϕ′′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F q1@t D Sin @t ωD2 ϕ′′@t D +

48 A c1 2 U1 ρ q1@t D Sin B L ω

c1
F Sin @t ωD2 ϕ′′@t D +
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5 A L3 ρ ω2 Sin @t ωD3 ϕ′′@t D + 48 L U1 ω2 q1@t D Sin B L ω

c1
F Mp ϕ′′@t D −

48 L U1 ω2 Cos@t ωD2 q1@t D Sin B L ω

c1
F Mp ϕ′′@t D +

36 L 2 ω2 Sin @t ωD Mp ϕ′′@t D − 36 L 2 ω2 Cos@t ωD2 Sin @t ωD Mp ϕ′′@t D +

24 U12 ω2 q1@t D2 Sin @t ωD Mp ϕ′′@t D − 24 U12 ω2 CosB L ω

c1
F2

q1@t D2

Sin @t ωD Mp ϕ′′@t D + 24 U12 ω2 q1@t D2 Sin B L ω

c1
F2

Sin @t ωD Mp ϕ′′@t D +

48 L U1 ω2 q1@t D Sin B L ω

c1
F Sin @t ωD2 Mp ϕ′′@t D +

12 L 2 ω2 Sin @t ωD3 Mp ϕ′′@t D + 9 ω2 Sin @t ωD Mmmr m
2 ϕ′′@t D −

9 ω2 Cos@t ωD2 Sin @t ωD Mmmr m
2 ϕ′′@t D + 3 ω2 Sin @t ωD3 Mmmr m

2 ϕ′′@t D +

18 ω2 Sin @t ωD Mp r p
2 ϕ′′@t D − 18 ω2 Cos@t ωD2 Sin @t ωD Mp r p

2 ϕ′′@t D +

6 ω2 Sin @t ωD3 Mp r p
2 ϕ′′@t D + 9 A L ρ ω2 Sin @t ωD r T

2 ϕ′′@t D − 9 A L ρ

ω2 Cos@t ωD2 Sin @t ωD r T
2 ϕ′′@t D + 3 A L ρ ω2 Sin @t ωD3 r T

2 ϕ′′@t D +

R@t D4 L2 − 2 L Cos@ϕ@t DD R@t D + R@t D2

L2 + 2 L Cos@ϕ@t DD R@t D + R@t D2

−24 ω2 Sin @t ωD3 ‚
i =1

n

−IA H−1 + 2 i L L2 µ ρ R@t D Sin @ϕ@t DDM ì 2 n2

H−1 + 2 i L2 L2

4 n2
−
H−1 + 2 i L L Cos@ϕ@t DD R@t D

n
+ R@t D2

3ê2

−

24 ω2 Sin @t ωD3 ‚
i =1

n

IA H−1 + 2 i L L2 µ ρ R@t D Sin @ϕ@t DDM ì 2 n2

H−1 + 2 i L2 L2

4 n2
+
H−1 + 2 i L L Cos@ϕ@t DD R@t D

n
+ R@t D2

3ê2

−

48 A L U12 ρ ω3 Cos@t ωD q1@t D2 θ′@t D + 24 A c1 U12 ρ ω2

Cos@t ωD q1@t D2 Sin B 2 L ω

c1
F θ′@t D +

48 A c1 L U1 ρ ω2 CosB L ω

c1
F q1@t D Sin @2 t ωD θ′@t D −

48 A c1 2 U1 ρ ω q1@t D Sin B L ω

c1
F Sin @2 t ωD θ′@t D −

48 U12 ω3 Cos@t ωD q1@t D2 Mp θ′@t D + 48 U12 ω3 CosB L ω

c1
F2

Cos@t ωD

q1@t D2 Mp θ′@t D − 48 U12 ω3 Cos@t ωD q1@t D2 Sin B L ω

c1
F2

Mp θ′@t D −

48 L U1 ω3 q1@t D Sin B L ω

c1
F Sin @2 t ωD Mp θ′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F q1 ′@t D θ′@t D + 48 A c1 L U1 ρ ω CosB L ω

c1
F

Cos@t ωD2 q1 ′@t D θ′@t D + 48 A c1 2 U1 ρ Sin B L ω

c1
F q1 ′@t D θ′@t D −

48 A c1 2 U1 ρ Cos@t ωD2 Sin B L ω

c1
F q1 ′@t D θ′@t D +
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48 A L U12 ρ ω2 q1@t D Sin @t ωD q1 ′@t D θ′@t D −

24 A c1 U12 ρ ω q1@t D Sin B 2 L ω

c1
F Sin @t ωD q1 ′@t D θ′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F Sin @t ωD2 q1 ′@t D θ′@t D +

48 A c1 2 U1 ρ Sin B L ω

c1
F Sin @t ωD2 q1 ′@t D θ′@t D +

48 L U1 ω2 Sin B L ω

c1
F Mp q1 ′@t D θ′@t D − 48 L U1 ω2 Cos@t ωD2 Sin B L ω

c1
F

Mp q1 ′@t D θ′@t D + 48 U12 ω2 q1@t D Sin @t ωD Mp q1 ′@t D θ′@t D −

48 U12 ω2 CosB L ω

c1
F2

q1@t D Sin @t ωD Mp q1 ′@t D θ′@t D +

48 U12 ω2 q1@t D Sin B L ω

c1
F2

Sin @t ωD Mp q1 ′@t D θ′@t D +

48 L U1 ω2 Sin B L ω

c1
F Sin @t ωD2 Mp q1 ′@t D θ′@t D −

48 A L U12 ρ ω3 Cos@t ωD q1@t D2 ϕ′@t D +

24 A c1 U12 ρ ω2 Cos@t ωD q1@t D2 Sin B 2 L ω

c1
F ϕ′@t D +

48 A c1 L U1 ρ ω2 CosB L ω

c1
F q1@t D Sin @2 t ωD ϕ′@t D −

48 A c1 2 U1 ρ ω q1@t D Sin B L ω

c1
F Sin @2 t ωD ϕ′@t D −

48 U12 ω3 Cos@t ωD q1@t D2 Mp ϕ′@t D + 48 U12 ω3 CosB L ω

c1
F2

Cos@t ωD

q1@t D2 Mp ϕ′@t D − 48 U12 ω3 Cos@t ωD q1@t D2 Sin B L ω

c1
F2

Mp ϕ′@t D −

48 L U1 ω3 q1@t D Sin B L ω

c1
F Sin @2 t ωD Mp ϕ′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F q1 ′@t D ϕ′@t D + 48 A c1 L U1 ρ ω CosB L ω

c1
F

Cos@t ωD2 q1 ′@t D ϕ′@t D + 48 A c1 2 U1 ρ Sin B L ω

c1
F q1 ′@t D ϕ′@t D −

48 A c1 2 U1 ρ Cos@t ωD2 Sin B L ω

c1
F q1 ′@t D ϕ′@t D +

48 A L U12 ρ ω2 q1@t D Sin @t ωD q1 ′@t D ϕ′@t D −

24 A c1 U12 ρ ω q1@t D Sin B 2 L ω

c1
F Sin @t ωD q1 ′@t D ϕ′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F Sin @t ωD2 q1 ′@t D ϕ′@t D +

48 A c1 2 U1 ρ Sin B L ω

c1
F Sin @t ωD2 q1 ′@t D ϕ′@t D +

48 L U1 ω2 Sin B L ω

c1
F Mp q1 ′@t D ϕ′@t D − 48 L U1 ω2 Cos@t ωD2 Sin B L ω

c1
F

Mp q1 ′@t D ϕ′@t D + 48 U12 ω2 q1@t D Sin @t ωD Mp q1 ′@t D ϕ′@t D −

48 U12 ω2 CosB L ω

c1
F2

q1@t D Sin @t ωD Mp q1 ′@t D ϕ′@t D +

48 U12 ω2 q1@t D Sin B L ω

c1
F2

Sin @t ωD Mp q1 ′@t D ϕ′@t D +

48 L U1 ω2 Sin B L ω

c1
F Sin @t ωD2 Mp q1 ′@t D ϕ′@t D −
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48 A c1 L U1 ρ ω CosB L ω

c1
F q1@t D θ′′@t D + 48 A c1 L U1 ρ ω CosB L ω

c1
F

Cos@t ωD2 q1@t D θ′′@t D + 48 A c1 2 U1 ρ q1@t D Sin B L ω

c1
F θ′′@t D −

48 A c1 2 U1 ρ Cos@t ωD2 q1@t D Sin B L ω

c1
F θ′′@t D +

15 A L3 ρ ω2 Sin @t ωD θ′′@t D − 15 A L3 ρ ω2 Cos@t ωD2 Sin @t ωD θ′′@t D +

24 A L U12 ρ ω2 q1@t D2 Sin @t ωD θ′′@t D −

12 A c1 U12 ρ ω q1@t D2 Sin B 2 L ω

c1
F Sin @t ωD θ′′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F q1@t D Sin @t ωD2 θ′′@t D +

48 A c1 2 U1 ρ q1@t D Sin B L ω

c1
F Sin @t ωD2 θ′′@t D +

5 A L3 ρ ω2 Sin @t ωD3 θ′′@t D + 48 L U1 ω2 q1@t D Sin B L ω

c1
F Mp θ′′@t D −

48 L U1 ω2 Cos@t ωD2 q1@t D Sin B L ω

c1
F Mp θ′′@t D +

36 L 2 ω2 Sin @t ωD Mp θ′′@t D − 36 L 2 ω2 Cos@t ωD2 Sin @t ωD Mp θ′′@t D +

24 U12 ω2 q1@t D2 Sin @t ωD Mp θ′′@t D −

24 U12 ω2 CosB L ω

c1
F2

q1@t D2 Sin @t ωD Mp θ′′@t D +

24 U12 ω2 q1@t D2 Sin B L ω

c1
F2

Sin @t ωD Mp θ′′@t D +

48 L U1 ω2 q1@t D Sin B L ω

c1
F Sin @t ωD2 Mp θ′′@t D +

12 L 2 ω2 Sin @t ωD3 Mp θ′′@t D + 9 ω2 Sin @t ωD Mmmr m
2 θ′′@t D −

9 ω2 Cos@t ωD2 Sin @t ωD Mmmr m
2 θ′′@t D + 3 ω2 Sin @t ωD3 Mmmr m

2 θ′′@t D +

18 ω2 Sin @t ωD Mp r p
2 θ′′@t D − 18 ω2 Cos@t ωD2 Sin @t ωD Mp r p

2 θ′′@t D +

6 ω2 Sin @t ωD3 Mp r p
2 θ′′@t D + 9 A L ρ ω2 Sin @t ωD r T

2 θ′′@t D −

9 A L ρ ω2 Cos@t ωD2 Sin @t ωD r T
2 θ′′@t D + 3 A L ρ ω2 Sin @t ωD3

r T
2 θ′′@t D − 48 A c1 L U1 ρ ω CosB L ω

c1
F q1@t D ϕ′′@t D +

48 A c1 L U1 ρ ω CosB L ω

c1
F Cos@t ωD2 q1@t D ϕ′′@t D +

48 A c1 2 U1 ρ q1@t D Sin B L ω

c1
F ϕ′′@t D −

48 A c1 2 U1 ρ Cos@t ωD2 q1@t D Sin B L ω

c1
F ϕ′′@t D +

15 A L3 ρ ω2 Sin @t ωD ϕ′′@t D − 15 A L3 ρ ω2 Cos@t ωD2 Sin @t ωD ϕ′′@t D +

24 A L U12 ρ ω2 q1@t D2 Sin @t ωD ϕ′′@t D −

12 A c1 U12 ρ ω q1@t D2 Sin B 2 L ω

c1
F Sin @t ωD ϕ′′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F q1@t D Sin @t ωD2 ϕ′′@t D +

48 A c1 2 U1 ρ q1@t D Sin B L ω

c1
F Sin @t ωD2 ϕ′′@t D +

5 A L3 ρ ω2 Sin @t ωD3 ϕ′′@t D + 48 L U1 ω2 q1@t D Sin B L ω

c1
F Mp ϕ′′@t D −

48 L U1 ω2 Cos@t ωD2 q1@t D Sin B L ω

c1
F Mp ϕ′′@t D +
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36 L 2 ω2 Sin @t ωD Mp ϕ′′@t D − 36 L 2 ω2 Cos@t ωD2 Sin @t ωD Mp ϕ′′@t D +

24 U12 ω2 q1@t D2 Sin @t ωD Mp ϕ′′@t D −

24 U12 ω2 CosB L ω

c1
F2

q1@t D2 Sin @t ωD Mp ϕ′′@t D +

24 U12 ω2 q1@t D2 Sin B L ω

c1
F2

Sin @t ωD Mp ϕ′′@t D +

48 L U1 ω2 q1@t D Sin B L ω

c1
F Sin @t ωD2 Mp ϕ′′@t D +

12 L 2 ω2 Sin @t ωD3 Mp ϕ′′@t D + 9 ω2 Sin @t ωD Mmmr m
2 ϕ′′@t D −

9 ω2 Cos@t ωD2 Sin @t ωD Mmmr m
2 ϕ′′@t D + 3 ω2 Sin @t ωD3 Mmmr m

2 ϕ′′@t D +

18 ω2 Sin @t ωD Mp r p
2 ϕ′′@t D − 18 ω2 Cos@t ωD2 Sin @t ωD Mp r p

2 ϕ′′@t D +

6 ω2 Sin @t ωD3 Mp r p
2 ϕ′′@t D + 9 A L ρ ω2 Sin @t ωD r T

2 ϕ′′@t D − 9 A L ρ

ω2 Cos@t ωD2 Sin @t ωD r T
2 ϕ′′@t D + 3 A L ρ ω2 Sin @t ωD3 r T

2 ϕ′′@t D −

L2 R@t D2 2 Cos@2 ϕ@t DD L2 − 2 L Cos@ϕ@t DD R@t D + R@t D2

L2 + 2 L Cos@ϕ@t DD R@t D + R@t D2 −24 ω2 Sin @t ωD3 ‚
i =1

n

−IA H−1 +

2 i L L2 µ ρ R@t D Sin @ϕ@t DDM ì 2 n2
H−1 + 2 i L2 L2

4 n2
−

H−1 + 2 i L L Cos@ϕ@t DD R@t D
n

+ R@t D2

3ê2

−

24 ω2 Sin @t ωD3 ‚
i =1

n

IA H−1 + 2 i L L2 µ ρ R@t D Sin @ϕ@t DDM ì

2 n2
H−1 + 2 i L2 L2

4 n2
+
H−1 + 2 i L L Cos@ϕ@t DD R@t D

n
+

R@t D2

3ê2

− 48 A L U12 ρ ω3 Cos@t ωD q1@t D2 θ′@t D +

24 A c1 U12 ρ ω2 Cos@t ωD q1@t D2 Sin B 2 L ω

c1
F θ′@t D +

48 A c1 L U1 ρ ω2 CosB L ω

c1
F q1@t D Sin @2 t ωD θ′@t D −

48 A c1 2 U1 ρ ω q1@t D Sin B L ω

c1
F Sin @2 t ωD θ′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F q1 ′@t D θ′@t D + 48 A c1 L U1 ρ ω CosB

L ω

c1
F Cos@t ωD2 q1 ′@t D θ′@t D + 48 A c1 2 U1 ρ Sin B L ω

c1
F q1 ′@

t D θ′@t D − 48 A c1 2 U1 ρ Cos@t ωD2 Sin B L ω

c1
F q1 ′@t D θ′@t D +

48 A L U12 ρ ω2 q1@t D Sin @t ωD q1 ′@t D θ′@t D − 24 A c1 U12

ρ ω q1@t D Sin B 2 L ω

c1
F Sin @t ωD q1 ′@t D θ′@t D − 48 A c1 L U1 ρ

ω CosB L ω

c1
F Sin @t ωD2 q1 ′@t D θ′@t D + 48 A c1 2 U1 ρ Sin B L ω

c1
F
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Sin @t ωD2 q1 ′@t D θ′@t D − 48 A L U12 ρ ω3 Cos@t ωD q1@t D2 ϕ′@t D +

24 A c1 U12 ρ ω2 Cos@t ωD q1@t D2 Sin B 2 L ω

c1
F ϕ′@t D +

48 A c1 L U1 ρ ω2 CosB L ω

c1
F q1@t D Sin @2 t ωD ϕ′@t D −

48 A c1 2 U1 ρ ω q1@t D Sin B L ω

c1
F Sin @2 t ωD ϕ′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F q1 ′@t D ϕ′@t D + 48 A c1 L U1 ρ ω CosB

L ω

c1
F Cos@t ωD2 q1 ′@t D ϕ′@t D + 48 A c1 2 U1 ρ Sin B L ω

c1
F q1 ′@

t D ϕ′@t D − 48 A c1 2 U1 ρ Cos@t ωD2 Sin B L ω

c1
F q1 ′@t D ϕ′@t D +

48 A L U12 ρ ω2 q1@t D Sin @t ωD q1 ′@t D ϕ′@t D −

24 A c1 U12 ρ ω q1@t D Sin B 2 L ω

c1
F Sin @t ωD q1 ′@t D ϕ′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F Sin @t ωD2 q1 ′@t D ϕ′@t D +

48 A c1 2 U1 ρ Sin B L ω

c1
F Sin @t ωD2 q1 ′@t D ϕ′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F q1@t D θ′′@t D + 48 A c1 L U1 ρ ω CosB

L ω

c1
F Cos@t ωD2 q1@t D θ′′@t D + 48 A c1 2 U1 ρ q1@t D Sin B

L ω

c1
F θ′′@t D − 48 A c1 2 U1 ρ Cos@t ωD2 q1@t D Sin B L ω

c1
F θ′′@t D +

15 A L3 ρ ω2 Sin @t ωD θ′′@t D − 15 A L3 ρ ω2 Cos@t ωD2 Sin @
t ωD θ′′@t D + 24 A L U12 ρ ω2 q1@t D2 Sin @t ωD θ′′@t D −

12 A c1 U12 ρ ω q1@t D2 Sin B 2 L ω

c1
F Sin @t ωD θ′′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F q1@t D Sin @t ωD2 θ′′@t D + 48 A c1 2 U1 ρ

q1@t D Sin B L ω

c1
F Sin @t ωD2 θ′′@t D + 5 A L3 ρ ω2 Sin @t ωD3 θ′′@t D +

9 ω2 Sin @t ωD Mmmr m
2 θ′′@t D − 9 ω2 Cos@t ωD2 Sin @t ωD Mmmr m

2 θ′′@
t D + 3 ω2 Sin @t ωD3 Mmmr m

2 θ′′@t D + 9 A L ρ ω2 Sin @t ωD r T
2 θ′′@t D −

9 A L ρ ω2 Cos@t ωD2 Sin @t ωD r T
2 θ′′@t D + 3 A L ρ ω2 Sin @t ωD3

r T
2 θ′′@t D − 48 A c1 L U1 ρ ω CosB L ω

c1
F q1@t D ϕ′′@t D + 48 A c1 L U1

ρ ω CosB L ω

c1
F Cos@t ωD2 q1@t D ϕ′′@t D + 48 A c1 2 U1 ρ q1@t D Sin B

L ω

c1
F ϕ′′@t D − 48 A c1 2 U1 ρ Cos@t ωD2 q1@t D Sin B L ω

c1
F ϕ′′@t D +

15 A L3 ρ ω2 Sin @t ωD ϕ′′@t D − 15 A L3 ρ ω2 Cos@t ωD2 Sin @
t ωD ϕ′′@t D + 24 A L U12 ρ ω2 q1@t D2 Sin @t ωD ϕ′′@t D −

12 A c1 U12 ρ ω q1@t D2 Sin B 2 L ω

c1
F Sin @t ωD ϕ′′@t D −

48 A c1 L U1 ρ ω CosB L ω

c1
F q1@t D Sin @t ωD2 ϕ′′@t D +

48 A c1 2 U1 ρ q1@t D Sin B L ω

c1
F Sin @t ωD2 ϕ′′@t D +
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5 A L3 ρ ω2 Sin @t ωD3 ϕ′′@t D + 9 ω2 Sin @t ωD Mmmr m
2 ϕ′′@t D −

9 ω2 Cos@t ωD2 Sin @t ωD Mmmr m
2 ϕ′′@t D + 3 ω2 Sin @t ωD3 Mmmr m

2 ϕ′′@
t D + 9 A L ρ ω2 Sin @t ωD r T

2 ϕ′′@t D − 9 A L ρ ω2 Cos@t ωD2

Sin @t ωD r T
2 ϕ′′@t D + 3 A L ρ ω2 Sin @t ωD3 r T

2 ϕ′′@t D +

24 ω2 Mp 8 U1 Cos@2 ϕ@t DD q1@t D L2 − 2 L Cos@ϕ@t DD R@t D + R@t D2

L2 + 2 L Cos@ϕ@t DD R@t D + R@t D2 Sin B L ω

c1
F Sin @

t ωD −L ω Cos@t ωD + U1 Sin B L ω

c1
F q1 ′@t D θ′@t D +

−L ω Cos@t ωD + U1 Sin B L ω

c1
F q1 ′@t D ϕ′@t D +

L Sin @t ωD Hθ′′@t D + ϕ′′@t DL +

U12 Cos@2 ϕ@t DD q1@t D2 L2 − 2 L Cos@ϕ@t DD R@t D + R@t D2

L2 + 2 L Cos@ϕ@t DD R@t D + R@t D2

2 ω −2 Cos@t ωD + CosB 2 L

c1
+ t ωF + CosB 2 L ω

c1
− t ωF θ′@t D +

2 ω −2 Cos@t ωD + CosB 2 L

c1
+ t ωF + CosB 2 L ω

c1
− t ωF

ϕ′@t D + 2 Sin @t ωD − Sin B 2 L

c1
+ t ωF + Sin B 2 L ω

c1
− t ωF

Hθ′′@t D + ϕ′′@t DL + 2 Sin @t ωD2

4 L U1 Cos@2 ϕ@t DD L2 − 2 L Cos@ϕ@t DD R@t D + R@t D2

L2 + 2 L Cos@ϕ@t DD R@t D + R@t D2

Sin B L ω

c1
F q1 ′@t D Hθ′@t D + ϕ′@t DL +

1

2
Sin @t ωD −µ L2 − 2 L Cos@ϕ@t DD R@t D + R@t D2 +

L2 + 2 L Cos@ϕ@t DD R@t D + R@t D2 Sin @2 ϕ@t DD +

2 Cos@2 ϕ@t DD L2 − 2 L Cos@ϕ@t DD R@t D + R@t D2

L2 + 2 L Cos@ϕ@t DD R@t D + R@t D2 I2 L2 + r p
2M θ′′@t D +

2 Cos@2 ϕ@t DD L2 − 2 L Cos@ϕ@t DD R@t D + R@t D2

L2 + 2 L Cos@ϕ@t DD R@t D + R@t D2

I2 L2 + r p
2M ϕ′′@t D ì

J24 ω2 IL2 − 2 L Cos@ϕ@t DD R@t D + R@t D2M3ê2 IL2 + 2 L Cos@ϕ@t DD R@t D +

R@t D2M3ê2N − τ
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ii. For q1 @t D

eqnu1 =
1

2 c1 2 ω2
U1 Csc@t ωD

U1 ω Csc@t ωD q1@t D A ω2 2 L IEo − c1 2 ρM ω + c1 IEo + c1 2 ρM Sin B 2 L ω

c1
F −

2 c1 2 ρ Csc@t ωD2 −2 L ω + c1 Sin B 2 L ω

c1
F + c1 2 ρ

−2 L ω + c1 Sin B 2 L ω

c1
F θ′@t D2 + 2 c1 2 ρ −2 L ω + c1 Sin B 2 L ω

c1
F

θ′@t D ϕ′@t D + c1 2 ρ −2 L ω + c1 Sin B 2 L ω

c1
F ϕ′@t D2 +

2 c1 2 ω Csc@t ωD2 Sin B L ω

c1
F2

Mp Iω2 H3 + Cos@2 t ωDL −

2 Sin @t ωD2 θ′@t D2 − 4 Sin @t ωD2 θ′@t D ϕ′@t D − 2 Sin @t ωD2 ϕ′@t D2M −

c1 2 −4 ω2 Sin B L ω

c1
F T0 + 2 U1 ω2 Cot @t ωD Csc@t ωD

A ρ 2 L ω − c1 Sin B 2 L ω

c1
F + 4 ω Sin B L ω

c1
F2

Mp q1 ′@t D −

2 A c1 ρ ω2 Cot @t ωD R@t D Sin @ϕ@t DD θ′@t D +

2 A c1 ρ ω2 CosB L ω

c1
F Cot @t ωD R@t D Sin @ϕ@t DD θ′@t D +

4 A c1 ρ ω2 Cot @t ωD R@t D Sin B L ω

2 c1
F2

Sin @ϕ@t DD θ′@t D −

4 A c1 L ρ ω CosB L ω

c1
F θ′@t D2 + 2 A c1 ρ ω Cos@ϕ@t DD R@t D θ′@t D2 −

2 A c1 ρ ω CosB L ω

c1
F Cos@ϕ@t DD R@t D θ′@t D2 −

4 A c1 ρ ω Cos@ϕ@t DD R@t D Sin B L ω

2 c1
F2

θ′@t D2 + 4 A c1 2 ρ Sin B L ω

c1
F θ′@t D2 +

4 L ω2 Sin B L ω

c1
F Mp θ′@t D2 − 8 A c1 L ρ ω CosB L ω

c1
F θ′@t D ϕ′@t D +

2 A c1 ρ ω Cos@ϕ@t DD R@t D θ′@t D ϕ′@t D −

2 A c1 ρ ω CosB L ω

c1
F Cos@ϕ@t DD R@t D θ′@t D ϕ′@t D −

4 A c1 ρ ω Cos@ϕ@t DD R@t D Sin B L ω

2 c1
F2

θ′@t D ϕ′@t D +

8 A c1 2 ρ Sin B L ω

c1
F θ′@t D ϕ′@t D + 8 L ω2 Sin B L ω

c1
F Mp θ′@t D ϕ′@t D −

4 A c1 L ρ ω CosB L ω

c1
F ϕ′@t D2 + 4 A c1 2 ρ Sin B L ω

c1
F ϕ′@t D2 +

4 L ω2 Sin B L ω

c1
F Mp ϕ′@t D2 − 2 A L U1 ρ ω2 Csc@t ωD q1 ′′@t D +

A c1 U1 ρ ω Csc@t ωD Sin B 2 L ω

c1
F q1 ′′@t D −

4 U1 ω2 Csc@t ωD Sin B L ω

c1
F2

Mp q1 ′′@t D

Appendix E

222



Appendix F

EOM 3 D Flexible Tether

i. For ϕ@θD
−τ Cos@α@θDD Cos@γ@θDD +

L µ Cos@α@θDD R@θD
1

IL2 − 2 L Cos@α@θDD Cos@ϕ@θDD R@θD + R@θD2M3ê2
−

1

IL2 + 2 L Cos@α@θDD Cos@ϕ@θDD R@θD + R@θD2M3ê2
Sin@ϕ@θDD Mp −

‚
i=1

n

−
A H−1 + 2 iL L2 µ ρ Cos@α@θDD R@θD Sin@ϕ@θDD

2 n2 J H−1+2 iL2 L2
4 n2

−
H−1+2 iL L Cos@α@θDD Cos@ϕ@θDD R@θD

n
+ R@θD2N3ê2

−

‚
i=1

n A H−1 + 2 iL L2 µ ρ Cos@α@θDD R@θD Sin@ϕ@θDD

2 n2 J H−1+2 iL2 L2
4 n2

+
H−1+2 iL L Cos@α@θDD Cos@ϕ@θDD R@θD

n
+ R@θD2N3ê2

+

1

6 π
I12 A L π ρ q2@θD θ′ q2′@θD Hθ′ + θ′ ϕ′@θDL − 2 L I−6 A ρ Cos@α@θDD

H2 L Cos@α@θDD + π Cos@α@θDD q1@θD − π q3@θD Sin@α@θDDL θ′ q1′@θD −

3 A π ρ q3@θD2 Sin@2 α@θDD θ′ α′@θD + 6 A ρ q3@θD
I−π Sin@α@θDD2 θ′ q3′@θD + Cos@2 α@θDD H2 L + π q1@θDL θ′ α′@θDM +

Sin@2 α@θDD I3 A ρ H2 L + π q1@θDL θ′ q3′@θD + I12 A L ρ q1@θD +

3 A π ρ q1@θD2 + 2 L π IA L ρ + 3 MpMM θ′ α′@θDMM Hθ′ + θ′ ϕ′@θDL +

6 A L ρ H2 L Cos@α@θDD + π Cos@α@θDD q1@θD − π q3@θD Sin@α@θDDL
Iθ′ θ

′
q2′@θD + Hθ′L2 q2′′@θDM + 6 A L ρ q2@θD

I2 π Sin@α@θDD Hθ′L2 q1′@θD α′@θD + 2 π Cos@α@θDD Hθ′L2 q3′@θD α′@θD +

2 L Cos@α@θDD Hθ′L2 α′@θD2 + π Cos@α@θDD q1@θD Hθ′L2 α′@θD2 − π q3@θD
Sin@α@θDD Hθ′L2 α′@θD2 − π Cos@α@θDD Iθ′ θ

′
q1′@θD + Hθ′L2 q1′′@θDM +

π Sin@α@θDD Iθ′ θ
′
q3′@θD + Hθ′L2 q3′′@θDM + π Cos@α@θDD q3@θD

Iθ′ θ
′

α′@θD + Hθ′L2 α′′@θDM + 2 L Sin@α@θDD Iθ′ θ
′

α′@θD + Hθ′L2 α′′@θDM +

π q1@θD Sin@α@θDD Iθ′ θ
′

α′@θD + Hθ′L2 α′′@θDMM +

6 A L π ρ q2@θD2 Iθ′ θ
′

+ θ′ θ
′

ϕ′@θD + Hθ′L2 ϕ′′@θDM +

I6 A L π ρ Cos@α@θDD2 q1@θD2 + 6 A L π ρ q3@θD2 Sin@α@θDD2 +
12 A L ρ Cos@α@θDD q1@θD H2 L Cos@α@θDD − π q3@θD Sin@α@θDDL −

12 A L2 ρ q3@θD Sin@2 α@θDD + π I3 Mm rm2 + 6 Mp I2 L2 Cos@α@θDD2 + rp2M +

A L ρ IL2 H3 + 2 Cos@2 α@θDDL + 3 rT
2MMM

Iθ′ θ
′

+ θ′ θ
′

ϕ′@θD + Hθ′L2 ϕ′′@θDMM = 0
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ii. For q1@θD

eqnu1 =
1

8 L3 π

I15 π5 q1@θD3 T0 − 2 π q1@θD I3 π4 q2@θD2 HA Eo − T0L + 3 π4 q3@θD2 HA Eo − T0L +

2 A L2 I−2 Eo π2 + 2 L2 ρ Cos@α@θDD2 Hθ′L2 +
2 L2 ρ Hθ′L2 α′@θD2 + 4 L2 ρ Cos@α@θDD2 Hθ′L2 ϕ′@θD +

L2 ρ Hθ′L2 ϕ′@θD2 + L2 ρ Cos@2 α@θDD Hθ′L2 ϕ′@θD2MM −

4 A L4 ρ I2 L Hθ′L2 + 2 L Cos@2 α@θDD Hθ′L2 − π q3@θD Sin@2 α@θDD Hθ′L2 +
2 π Cos@α@θDD q2@θD θ′ θ

′
+ 4 π Cos@α@θDD Hθ′L2 q2′@θD +

4 π Hθ′L2 q3′@θD α′@θD + 4 L Hθ′L2 α′@θD2 + 4 L Hθ′L2 ϕ′@θD +

4 L Cos@2 α@θDD Hθ′L2 ϕ′@θD − 2 π q3@θD Sin@2 α@θDD Hθ′L2 ϕ′@θD +

4 π Cos@α@θDD Hθ′L2 q2′@θD ϕ′@θD + 2 L Hθ′L2 ϕ′@θD2 +
2 L Cos@2 α@θDD Hθ′L2 ϕ′@θD2 − π q3@θD Sin@2 α@θDD Hθ′L2 ϕ′@θD2 −
2 π Iθ′ θ

′
q1′@θD + Hθ′L2 q1′′@θDM + 2 π q3@θD Iθ′ θ

′
α′@θD + Hθ′L2 α′′@θDM +

2 π Cos@α@θDD q2@θD Iθ′ θ
′

ϕ′@θD + Hθ′L2 ϕ′′@θDMMM

iii. For q2@θD

−
1

8 L3 π
I3 π5 q2@θD3 HA Eo − T0L + 6 π5 q1@θD2 q2@θD H−A Eo + T0L +

π q2@θD I3 π4 q3@θD2 HA Eo − T0L − 8 I−L2 π2 T0 + A L4 ρ Hθ′ + θ′ ϕ′@θDL2MM −

8 A L4 ρ I−2 L Cos@α@θDD θ′ θ
′

+ π q3@θD Sin@α@θDD θ′ θ
′

+

2 π Cos@α@θDD q3@θD Hθ′L2 α′@θD + 4 L Sin@α@θDD Hθ′L2 α′@θD +

2 π Cos@α@θDD q3@θD Hθ′L2 α′@θD ϕ′@θD +

4 L Sin@α@θDD Hθ′L2 α′@θD ϕ′@θD − 2 π Cos@α@θDD θ′ q1′@θD Hθ′ + θ′ ϕ′@θDL +

2 π Sin@α@θDD θ′ q3′@θD Hθ′ + θ′ ϕ′@θDL − π Iθ′ θ
′

q2′@θD + Hθ′L2 q2′′@θDM −

2 L Cos@α@θDD Iθ′ θ
′

ϕ′@θD + Hθ′L2 ϕ′′@θDM +

π q3@θD Sin@α@θDD Iθ′ θ
′

ϕ′@θD + Hθ′L2 ϕ′′@θDMM −

8 A L4 π ρ q1@θD I2 Sin@α@θDD θ′ α′@θD Hθ′ + θ′ ϕ′@θDL −

Cos@α@θDD Iθ′ θ
′

+ θ′ θ
′

ϕ′@θD + Hθ′L2 ϕ′′@θDMMM = 0

iv. For q3@θD

1

8 L3 π
I3 A Eo π5 q3@θD3 + 3 π5 q2@θD2 q3@θD HA Eo − T0L + 8 L2 π3 q3@θD T0 −

3 π5 q3@θD3 T0 + 6 π5 q1@θD2 q3@θD H−A Eo + T0L − 4 A L4 π ρ q3@θD Hθ′L2 +
4 A L4 π ρ Cos@2 α@θDD q3@θD Hθ′L2 + 8 A L5 ρ Sin@2 α@θDD Hθ′L2 +
16 A L4 π ρ Sin@α@θDD Hθ′L2 q2′@θD + 16 A L4 π ρ Hθ′L2 q1′@θD α′@θD −

8 A L4 π ρ q3@θD Hθ′L2 α′@θD2 − 8 A L4 π ρ q3@θD Hθ′L2 ϕ′@θD +

8 A L4 π ρ Cos@2 α@θDD q3@θD Hθ′L2 ϕ′@θD + 16 A L5 ρ Sin@2 α@θDD Hθ′L2 ϕ′@θD +

16 A L4 π ρ Sin@α@θDD Hθ′L2 q2′@θD ϕ′@θD − 4 A L4 π ρ q3@θD Hθ′L2 ϕ′@θD2 +
4 A L4 π ρ Cos@2 α@θDD q3@θD Hθ′L2 ϕ′@θD2 + 8 A L5 ρ Sin@2 α@θDD Hθ′L2 ϕ′@θD2 +
8 A L4 π ρ Iθ′ θ

′
q3′@θD + Hθ′L2 q3′′@θDM + 16 A L5 ρ Iθ′ θ

′
α′@θD + Hθ′L2 α′′@θDM +

4 A L4 π ρ q1@θD ISin@2 α@θDD Hθ′L2 + 2 Sin@2 α@θDD Hθ′L2 ϕ′@θD +

Sin@2 α@θDD Hθ′L2 ϕ′@θD2 + 2 Iθ′ θ
′

α′@θD + Hθ′L2 α′′@θDMM +

M

Appendix F

224



8 A L4 π ρ q2@θD Sin@α@θDD Iθ′ θ
′

+ θ′ θ
′

ϕ′@θD + Hθ′L2 ϕ′′@θDMM = 0

v. For α@θD
eqna1 = −τ Sin@γ@θDD +

L µ Cos@ϕ@θDD R@θD
1

IL2 − 2 L Cos@α@θDD Cos@ϕ@θDD R@θD + R@θD2M3ê2
−

1

IL2 + 2 L Cos@α@θDD Cos@ϕ@θDD R@θD + R@θD2M3ê2
Sin@α@θDD Mp −

‚
i=1

n

−
A H−1 + 2 iL L2 µ ρ Cos@ϕ@θDD R@θD Sin@α@θDD

2 n2 J H−1+2 iL2 L2
4 n2

−
H−1+2 iL L Cos@α@θDD Cos@ϕ@θDD R@θD

n
+ R@θD2N3ê2

−

‚
i=1

n A H−1 + 2 iL L2 µ ρ Cos@ϕ@θDD R@θD Sin@α@θDD

2 n2 J H−1+2 iL2 L2
4 n2

+
H−1+2 iL L Cos@α@θDD Cos@ϕ@θDD R@θD

n
+ R@θD2N3ê2

+

2 A L2 ρ Cos@2 α@θDD q3@θD Hθ′L2

π
+ A L ρ Cos@2 α@θDD q1@θD q3@θD Hθ′L2 +

A L ρ Cos@α@θDD q1@θD2 Sin@α@θDD Hθ′L2 −

A L ρ Cos@α@θDD q3@θD2 Sin@α@θDD Hθ′L2 +
1

3
A L3 ρ Sin@2 α@θDD Hθ′L2 +

2 A L2 ρ q1@θD Sin@2 α@θDD Hθ′L2
π

+ L2 Sin@2 α@θDD Mp Hθ′L2 +

A L ρ Cos@α@θDD q2@θD q3@θD θ′ θ
′

+
2 A L2 ρ q2@θD Sin@α@θDD θ′ θ

′

π
+

A L ρ q1@θD q2@θD Sin@α@θDD θ′ θ
′

+ 2 A L ρ Cos@α@θDD q3@θD Hθ′L2 q2′@θD +

4 A L2 ρ Sin@α@θDD Hθ′L2 q2′@θD
π

+ 2 A L ρ q1@θD Sin@α@θDD Hθ′L2 q2′@θD +

4 A L2 ρ Hθ′L2 q1′@θD α′@θD
π

+ 2 A L ρ q1@θD Hθ′L2 q1′@θD α′@θD +

2 A L ρ q3@θD Hθ′L2 q3′@θD α′@θD +
4 A L2 ρ Cos@2 α@θDD q3@θD Hθ′L2 ϕ′@θD

π
+

2 A L ρ Cos@2 α@θDD q1@θD q3@θD Hθ′L2 ϕ′@θD +

2

3
A L3 ρ Sin@2 α@θDD Hθ′L2 ϕ′@θD +

4 A L2 ρ q1@θD Sin@2 α@θDD Hθ′L2 ϕ′@θD
π

+

A L ρ q1@θD2 Sin@2 α@θDD Hθ′L2 ϕ′@θD − A L ρ q3@θD2 Sin@2 α@θDD Hθ′L2 ϕ′@θD +

2 L2 Sin@2 α@θDD Mp Hθ′L2 ϕ′@θD + 2 A L ρ Cos@α@θDD q3@θD Hθ′L2 q2′@θD ϕ′@θD +

4 A L2 ρ Sin@α@θDD Hθ′L2 q2′@θD ϕ′@θD
π

+ 2 A L ρ q1@θD Sin@α@θDD

Hθ′L2 q2′@θD ϕ′@θD +
2 A L2 ρ Cos@2 α@θDD q3@θD Hθ′L2 ϕ′@θD2

π
+

A L ρ Cos@2 α@θDD q1@θD q3@θD Hθ′L2 ϕ′@θD2 + A L ρ Cos@α@θDD q1@θD2
Sin@α@θDD Hθ′L2 ϕ′@θD2 − A L ρ Cos@α@θDD q3@θD2 Sin@α@θDD Hθ′L2 ϕ′@θD2 +
1

3
A L3 ρ Sin@2 α@θDD Hθ′L2 ϕ′@θD2 +

2 A L2 ρ q1@θD Sin@2 α@θDD Hθ′L2 ϕ′@θD2
π

+

L2 Sin@2 α@θDD Mp Hθ′L2 ϕ′@θD2 − A L ρ q3@θD Iθ′ θ
′
q1′@θD + Hθ′L2 q1′′@θDM +
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2 A L2 ρ Iθ′ θ
′
q3′@θD + Hθ′L2 q3′′@θDM

π
+

A L ρ q1@θD Iθ′ θ
′

q3′@θD + Hθ′L2 q3′′@θDM +
5

6
A L3 ρ Iθ′ θ

′
α′@θD + Hθ′L2 α′′@θDM +

4 A L2 ρ q1@θD Iθ′ θ
′

α′@θD + Hθ′L2 α′′@θDM
π

+ A L ρ q1@θD2

Iθ′ θ
′

α′@θD + Hθ′L2 α′′@θDM + A L ρ q3@θD2 Iθ′ θ
′

α′@θD + Hθ′L2 α′′@θDM +

1

12
h2 Mm Iθ′ θ

′
α′@θD + Hθ′L2 α′′@θDM +

1

6
h2 Mp Iθ′ θ

′
α′@θD + Hθ′L2 α′′@θDM +

2 L2 Mp Iθ′ θ
′

α′@θD + Hθ′L2 α′′@θDM +
1

4
Mm rm

2 Iθ′ θ
′

α′@θD + Hθ′L2 α′′@θDM +

1

2
Mp rp

2 Iθ′ θ
′

α′@θD + Hθ′L2 α′′@θDM +
1

2
A L ρ rT

2 Iθ′ θ
′

α′@θD + Hθ′L2 α′′@θDM +

A L ρ Cos@α@θDD q2@θD q3@θD Iθ′ θ
′

ϕ′@θD + Hθ′L2 ϕ′′@θDM +

2 A L2 ρ q2@θD Sin@α@θDD Iθ′ θ
′

ϕ′@θD + Hθ′L2 ϕ′′@θDM
π

+

A L ρ q1@θD q2@θD Sin@α@θDD Iθ′ θ
′

ϕ′@θD + Hθ′L2 ϕ′′@θDM = 0

vi. For γ@θD

1

12
IMm Ih2 + 3 rm2M + 2 Mp Ih2 + 3 rp2 + 6 rT2MM Iθ′ θ

′
γ′@θD + Hθ′L2 γ′′@θDM = 0
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