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Abstract:We study decompositions of length functions on integral domains as sums of length functions con-
structed from overrings. We find a standard representation when the integral domain admits a Jaffard family,
when it is Noetherian and when it is a Prüfer domains such that every ideal has only finitely many minimal
primes. We also show that there is a natural bijective correspondence between singular length functions and
localizing systems.
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1 Introduction
The concept of a (generalized) length function on the category Mod(R) of modules over a (commutative,
unitary) ring R was introduced by Northcott and Reufel [12] as a generalization of the classical length of
a module; more precisely, they defined a length function as a map from Mod(R) to the set of nonnegative real
numbers (plus infinity) that is additive on exact sequences and such that the length of a module is the supre-
mum of the length of its finitely generated submodules. In particular, they were interested in classifying all
the possible length functions on a valuation domain; their results were later deepened and expressed in a dif-
ferent form by Zanardo [21]. Shortly after [12], Vámos [20] distinguished the two properties used to define
a length functions (which he called additivity and upper continuity), showed that they were independent one
from each other and classified all length functions on Noetherian rings. Ribenboim [13] subsequently con-
sidered length functions with values in an arbitrary ordered abelian group, though he needed to restrict the
definition to a smaller class of modules (constructible modules) due to the possible non-completeness of the
group (more precisely, due to the possible lack of suprema). More recently, length functions have been linked
to the concept of algebraic entropy [2, 14, 15], the study of which also involves invariants satisfying a weaker
form of additivity [16].

The purpose of this paper is to investigate two closely related problems: the first one is the possibility of
“decomposing” a length function ℓ on an integral domain D as a sumof length functions defined on overrings
ofD (in particular, localizations ofD); the second one is the possibility of expressing the setL(D) of the length
functions on D (and/or some distinguished subset of L(D)) as a product of the set of length functions on
a family of overrings of D. Both problems can be seen, more generally, as asking for a way to find all length
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functions on D by reducing to “simpler” domains and cases.We pursue this problemfirst froma general point
of view and then for two special classes of domains, namely Noetherian domains and Prüfer domains.

Section 3 can be seen as a generalization the case of Dedekind domains treated in [12, Section 7]. In
it, we analyze the relationship between the length functions on D and the length functions on the overrings
of D or, more generally, on D-algebras. We show that any length function on D induces, by restricting its
domain, a length function on any D-algebra (Proposition 3.1) and, conversely, that a length function ℓ on
a flat D-algebra T induces a length function on D by extension of scalars, i.e., defining ℓD(M) := ℓ(M ⊗D T) for
everyD-moduleM (Proposition3.3);wealso show that the latter construction canbeadapted tousingawhole
family of flat algebras. Then we analyze how these two operations relate one to each other; in particular, we
show that if we take a Jaffard family ofD (that is, a family Θ of flat overrings of D that is complete, independent
and locally finite; see Section 2 for a precise definition), then every length function ℓ is equal to the sum∑T∈Θ ℓ ⊗ T (Theorem3.10) and that the setL∞(D) of length functions such that ℓ(D) = ∞ is order-isomorphic
to the product∏T∈Θ L∞(T).

In the next two sections, we study how to obtain similar results when we do not have Jaffard families; in
particular, we try to obtain an equality ℓ = ∑T∈Θ ℓ ⊗ T with the additional flexibility of allowing Θ to vary in
function of ℓ.

In Section 4, using Vámos’ results, we show that such a decomposition holds on Noetherian domains;
more precisely,we show that any length function ℓ on aNoetherian domainD canbewritten as∑P∈Σ(ℓ) ℓ ⊗ DP,
where Σ(ℓ) := {P ∈ Spec(D) | ℓ(D/P) > 0} (Proposition 4.5). This is accomplished by studying how length
functions acts on D/I, where I is a primary ideal or an ideal admitting a primary decomposition. In the latter
case, in particular, we show that if I is an ideal of a domain D with a primary decomposition, then ℓ(D/I) is
equal to the sum of ℓ(D/Q), as Q ranges among the primary components of I (Proposition 4.7).

In Section 5, we study length functions on Prüfer domains; in this case, the main tool is the study ofℓ(D/I), where I is an ideal whose radical is prime. We show that, if every ideal of D has only finitely many
minimal primes, then we can always write ℓ = ∑P∈Σ(ℓ) ℓ ⊗ DP, where Σ(ℓ) is defined in a manner similar but
more complicated than the Noetherian case (Theorem 5.4). Since every DP is a valuation domain and the
length functions on valuation domains are classified [21], this representation allows a much deeper analysis
on the length functions of D; we use it to partition Σ(ℓ) into four subsets (some of which can be empty), and
then to characterize a length function ℓ through these subsets (Proposition 5.10). With this characterization,
we can prove that, for this class of Prüfer domains, the set L(D) depends only on the topological structure of
Spec(D) and on which prime ideals are idempotent (Theorem 5.12).

In the final section, Section 6, we connect singular length functions (i.e., the length functions such thatℓ(M) can only be 0 or∞) to localizing systems and to stable semistar operations. More precisely, we show
that, for any domain D, there is a natural bijection between the set of singular length functions and the set
of localizing systems on D (Theorem 6.5); using the known correspondence between localizing systems and
stable semistar operations, we obtain a bijection between singular length functions and stable semistar oper-
ations. We show that, for Prüfer domains, this correspondence connects also two natural “normalizations”
of length functions and stable operations (Proposition 6.8), and we use it to give two examples of widely
different behavior in how singular length functions can be decomposed.

2 Background and notation
All rings considered in the paper are commutative and unitary.

Let ℝ≥0 denote the set of nonnegative real numbers, and let Γ := ℝ≥0 ∪ {∞}. Then Γ has a natural struc-
ture of (commutative) ordered additive semigroup, where, for every r ∈ Γ, r +∞ = ∞ + r = ∞ and r ≤ ∞.

If Λ ⊆ Γ is a (not necessarily finite) set, we define the sum of Λ as the supremum of all the finite sums
λ1 + ⋅ ⋅ ⋅ + λn, as {λ1, . . . , λn} ranges among the finite subsets of Λ. Since all elements of Λ are nonnegative,
this notion coincides with the usual sum if Λ is finite. If uncountably many elements of Λ are positive, then
the sum of Λ is infinite.
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Let R be a ring, and let Mod(R) be the category of R-modules. A map ℓ : Mod(R) → Γ is a length function
on R if∙ ℓ(0) = 0,∙ ℓ is additive: for every short exact sequence 0→ M1 → M2 → M3 → 0, we have ℓ(M2) = ℓ(M1) + ℓ(M3),∙ ℓ is upper continuous: for every R-module M,ℓ(M) = sup{ℓ(N) | N is a finitely generated submodule of M}.
The first hypothesis is adopted by Northcott and Reufel [12] and by Vámos [20], but not by Zanardo [21]. The
only function it excludes is the map ℓ∞ sending every module to∞. We call the length function ℓ0 such thatℓ0(M) = 0 for every moduleM the zero length function; in [21, Section 3.1], ℓ0 and ℓ∞ are called trivial length
functions, but we shall not use this terminology. If ℓ is different from the zero length function, then ℓ(R) > 0.

IfM1 andM2 are isomorphic modules, then ℓ(M1) = ℓ(M2); indeed, the sequence 0→M1→M2→ 0→ 0
is exact, and thus ℓ(M2) = ℓ(M1) + ℓ(0) = ℓ(M1) by additivity and since ℓ(0) = 0. Moreover, if N is a submod-
ule or a quotient of M then ℓ(N) ≤ ℓ(M).

Three examples of length functions on a ring R are∙ the “usual” length function (i.e., the Jordan-Hölder length of a module): we denote it by lengthR,∙ the function ℓ such that ℓ(M) = 0 if M is a torsion R-module, while ℓ(M) = ∞ otherwise,∙ if R is an integral domain, the rank function: rank(M) := dimK(M ⊗ K), where K is the quotient field of R.
If R is an integral domain, then the rank function is, up to multiplication by a constant, the only length
function ℓ such that ℓ(R) < ∞ (see [12, Theorem 2]).

Let Im(ℓ) denote the image of ℓ, i.e., the set of ℓ(M) asM ranges in Mod(R). We say that a length functionℓ is∙ singular if Im(ℓ) = {0,∞},∙ discrete if Im(ℓ) is discrete in Γ.
We denote by∙ L(R) the set of length functions on R,∙ L∞(R) the set of length functions such that ℓ(R) = ∞,∙ Lsing(R) the set of singular length functions,∙ Ldisc(R) the set of discrete length functions.
The setL(R)has a natural order structure,where ℓ1 ≤ ℓ2 if and only if ℓ1(M) ≤ ℓ2(M) for every R-moduleM. In
this order, L(R) has both a minimum (ℓ0) and a maximum (the function sending all nonzero modules to∞).

We shall use often the following result.

Proposition 2.1 ([21, Proposition 3.3]). Let ℓ1, ℓ2 be length functions of R. If ℓ1(R/I) = ℓ2(R/I) for every ideal
I of R, then ℓ1 = ℓ2.
Let D be an integral domain with quotient field K; an overring of D is a ring comprised between D and K.
A Jaffard family of D is a family Θ of overrings of D such that [18, Proposition 4.3]∙ every T ∈ Θ is flat,∙ K ∉ Θ,∙ I = ⋂{IT | T ∈ Θ} for every ideal I of D (i.e., Θ is complete),∙ TS = K for every T ̸= S belonging to Θ (i.e., Θ is independent),∙ for every x ∈ K, there are only finitely many T ∈ Θ such that x is not a unit in T (i.e., Θ is locally finite).
Note that this is not the original definition; see [4, beginning of Section 6.3 and Theorem 6.3.5] for two other
characterizations.

In particular, if Θ is a Jaffard family of D and P ∈ Spec(D) is nonzero, then there is exactly one T ∈ Θ such
that PT ̸= T (see [4, Theorem 6.3.1 (1)]).

A Prüfer domain is an integral domain such that the localization at every prime ideal is a valuation
domain. If V is a valuation domain and P ∈ Spec(V), we say that P is branched if P is minimal over a principal
ideal; equivalently, if the union of all the prime ideals properly contained in P is different from P. A prime
ideal that is not branched is called unbranched. If D is a Prüfer domain, we say that P ∈ Spec(D) is branched
if PDP is branched in DP.
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Unreferenced statements about Prüfer and valuation domains are standard; see, for example, [7] for
a general reference.

3 Jaffard families
The following section is a generalization of [12, Section 7], of which we follow and generalize the method.

Let D be an integral domain, and let T be a D-algebra. Then every T-module is also (in a canonical way)
a D-module; thus, given any ℓ ∈ L(D), we can define a function ℓT byℓT(M) := ℓ(M) for every M ∈ Mod(T).
Proposition 3.1. Let D, T, ℓ be as above.
(a) ℓT is a length function on T.
(b) If ℓ is singular, so is ℓT .
(c) If ℓ is discrete, so is ℓT .
Proof. (a) Let 0→ M1 → M2 → M3 → 0be an exact sequence of T-modules. Then it is also an exact sequence
ofD-modules; hence, ℓT(M2) = ℓ(M2) = ℓ(M1) + ℓ(M3) = ℓT(M1) + ℓT(M3). Thus, ℓT is additive. Suppose nowℓT(M) > x for some x ∈ ℝ. Then ℓ(M) > x, and thus there is a finitely generated D-submoduleN ofM such thatℓ(N) > x; let N := e1D + ⋅ ⋅ ⋅ + ekD. Then NT = e1T + ⋅ ⋅ ⋅ + enT is a submodule of M containing N, and thusℓT(NT) = ℓ(NT) ≥ ℓ(N) > x. Hence, ℓT(M) = sup{ℓT(N󸀠) | N󸀠 ⊆ M is finitely generated over T}, and thus ℓT is
upper continuous. Therefore, ℓT is a length function on T.

(b) and (c) are obvious.

In general, it is possible for ℓT to be the zero length function even if ℓ is not; for example, if ℓ(D/I) = 0 and
T = D/I, then ℓT(M) will be 0 for all T-modules M.

Proposition 3.2. Let D be an integral domain, and let T be a D-algebra.
(a) If T is torsion-free over D, then ℓ(T) ̸= 0 for all nonzero ℓ ∈ L(D).
(b) If T is torsion-free over D and ℓ ∈ L∞(D), then ℓT ∈ L∞(T).
(c) If T is torsion-free over D and rankD(T) < ∞, then ℓ ∈ L∞(D) if and only if ℓT ∈ L∞(T).
(d) If T is an overring of D, then ℓ ∈ L∞(D) if and only if ℓT ∈ L∞(T).
Proof. (a) If T is torsion-free, then the canonical map D → T is injective; hence, if ℓ is an arbitrary nonzero
length function, ℓT(T) = ℓ(T) ≥ ℓ(D) > 0.

(b) As above, for every ℓ ∈ L∞(D), we have ℓT(T) = ℓ(T) ≥ ℓ(D) = ∞, and thus ℓT ∈ L∞(T).
(c) Suppose T is torsion-free and rankD(T) < ∞, and let ℓ ∈ L(D). If ℓ ∈ L∞(D), then ℓT ∈ L∞(T) by (b).

On the other hand, if ℓ ∉ L∞(D), then by [12, Theorem 2], ℓ(M) = α ⋅ rankD(M) for every D-moduleM, where
α := ℓ(D); in particular, ℓT(T) = ℓ(T) = rankD(T) < ∞ by hypothesis, and thus ℓT ∉ L∞(T).

(d) follows from (c) since T ⊗D K ≃ K (where K is the quotient field of D) and so rankD(T) = 1.
Hence, if T is a torsion-free D-algebra, then by the previous proposition we have a map

Λ̂D,T : L(D) → L(T), ℓ 󳨃→ ℓT ,
that restricts to a map

ΛD,T : L∞(D) → L∞(T), ℓ 󳨃→ ℓT .
Clearly, both Λ̂D,T and ΛD,T are order-preserving.

Amore interesting question is if (andhow)we can construct a length function onD froma length function
on a D-algebra T. We shall mainly be interested in the case when T = DP is a localization of D, but there is no
harm in working more generally with a flat algebra.

Let thus T be a flat D-algebra, and let ℓ ∈ L(T). We define ℓD as the map such thatℓD(M) := ℓ(T ⊗D M) for all M ∈ Mod(D).
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This construction behaves similarly to the construction ℓT .
Proposition 3.3. Let D, T, ℓ be as above.
(a) ℓD ∈ L(D).
(b) ℓD ∈ L∞(D) if and only if ℓ ∈ L∞(T).
Proof. (a) follows in the same way of [12, Proposition 2], using the flatness of T. (b) is immediate becauseℓD(D) = ℓ(T ⊗D D) = ℓ(T).
Therefore, we can define a map Ψ̂T,D by setting

Ψ̂T,D : L(T) → L(D), ℓ 󳨃→ ℓD;
by part (b) of the previous proposition, also its restriction

ΨT,D : L∞(T) → L∞(D), ℓ 󳨃→ ℓD
is well-defined.

Proposition 3.4. Let D be an integral domain, and let T be a flat overring of D. Then Λ̂D,T ∘ Ψ̂T,D is the identity
on L(T).
Proof. Let ℓ ∈ L(T). Then, for every M ∈ Mod(T), we have(Λ̂D,T ∘ Ψ̂T,D)(ℓ)(M) = (ℓD)T(M) = ℓD(M) = ℓ(M ⊗D T).
Since T is a flat overring of D, the inclusion D 󳨅→ T is an epimorphism (being D 󳨅→ K an epimorphism; see
[9, Chapitre IV, Corollaire 3.2] or [8, Proposition 4.5]); hence, for every T-module D, we have

T ⊗D M ≃ T ⊗D (T ⊗T M) ≃ (T ⊗D T) ⊗T M ≃ T ⊗T M ≃ M
as T-modules, with the second-to-last isomorphism coming from the fact that the inclusion is an epimor-
phism (see [9, Lemma 1.0] or [8, Lemma A.1]). Thus, (ℓD)T(M) = ℓ(M); since M was arbitrary, (ℓD)T = ℓ, i.e.,
Λ̂D,T ∘ Ψ̂T,D is the identity.

Remark 3.5. Proposition 3.4 does not work for arbitrary flat D-algebras. For example, if T = M = D[x] is the
polynomial ring over D, then M ⊗D T ≃ D[x, y] = T[y] as T-modules; hence, if ℓ is the rank function of T, we
have ℓ(M) = 1, while (ℓD)T(M) = ∞.
Let now ℓ be a length function on D, and let T be a flat D-algebra. We setℓ ⊗ T := (Ψ̂T,D ∘ Λ̂D,T)(ℓ).
This notation comes from the fact that if M is a D-module, then(ℓ ⊗ T)(M) = (ℓT)D(M) = ℓT(M ⊗D T) = ℓ(M ⊗D T).
The construction ℓ ⊗ T is easily seen to satisfy an associative-like property; if T1, T2 are flat D-algebras, then(ℓ ⊗ T1) ⊗ T2 = ℓ ⊗ (T1 ⊗D T2).

In general, ℓ ⊗ T is different from ℓ; for example, if I is a proper ideal of D such that IT = T, then(ℓ ⊗ T)(D/I) = ℓ(D/I ⊗D T) = ℓ(T/IT) = ℓ(0) = 0,
but clearly there may be length functions such that ℓ(D/I) ̸= 0.

Hence, if we want to construct an isomorphism from Λ̂D,T and Ψ̂T,D, we need to consider more rings, and
to do so, we must define the sum of a family of length functions.

Definition 3.6. Let Λ := (ℓα)α∈A be a family of length functions on D. The sum of Λ, which we denote by∑α∈A ℓα, is the map ∑
α∈A
ℓα : Mod(D) → Γ, M 󳨃→ ∑

α∈A
ℓα(M).
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Recall that the sum of an arbitrary family of elements of Γ is defined as the supremum of the set of the finite
sums (see the beginning of Section 2).

Lemma 3.7. The sum of a family Λ of length functions on D is a length function and the supremum of Λ inL(D).
Proof. Just apply the definitions.

Lemma 3.8. Let {Mα}α∈A be a family of D-modules, and let ℓ be a length function on D. Thenℓ(⨁
α∈A

Mα) = ∑
α∈A
ℓ(Mα).

Proof. If the family is finite, the claim follows immediately from additivity and induction on the cardinality
of A.

If A is an arbitrary family, set N to be the direct sum of the Mα; then ℓ(N) ≥ ℓ(Mα1 ) + ⋅ ⋅ ⋅ + ℓ(Mαn )
for all finite subsets α1, . . . , αn. Furthermore, every finitely generated submodule of N is contained in
Mα1 ⊕ ⋅ ⋅ ⋅ ⊕Mαn for some α1, . . . , αn; by upper continuity, it follows that ℓ(N)must be exactly the supremum.
The claim is proved.

The following lemma is a (partial) generalization of a property of h-local domains; see [11, Theorem 22].

Lemma 3.9. Let D be an integral domain, and let Θ be a Jaffard family of D. If M is a torsion D-module, then

M ≃⨁
T∈Θ

M ⊗D T.

In particular, if I ̸= (0) is an ideal of D, then
D
I
≃⨁

T∈Θ

T
IT
≃⨁

T∈Θ
(DI ⊗D T).

Proof. We shall follow the proof of [11, Theorem 22, 3 ⇒ 4]; we start by showing that K/D ≃ ⨁T∈Θ K/T.
Indeed, consider the natural map

Φ: K →⨁
T∈Θ

K/T, d 󳨃→ (d + T)T∈Θ .
Note that Φ is well-defined since Θ is locally finite.

The kernel of Φ is⋂T∈Θ T = D. Hence, we need only to show that Φ is surjective, and to do so, it is enough
to show that every element of the form e(α, U) := (0, . . . , 0, α + U, 0, . . . , 0) is in the image of Φ; i.e., we need
to show that, for every U ∈ Θ and every α ∈ K, there is an α󸀠 ∈ K such that α󸀠 − α ∈ U, while α󸀠 ∈ T for every
T ∈ Θ \ U.

Let U󸀠 := ⋂T∈Θ\U T; by [18, Proposition 4.5 (b)], U󸀠U = K. Hence, we have
U + U󸀠 = ⋂

T∈Θ
(U + U󸀠)T = (U + UU󸀠) ∩ ⋂

T∈Θ\U
(UT + U󸀠T) = K.

In particular, α = β + α󸀠 for some β ∈ U, α󸀠 ∈ U󸀠; since α󸀠 − α = β ∈ U, we have e(α, U) = Φ(α󸀠), as required.
Hence, Φ is surjective and K/D ≃ ⨁T∈Θ K/T.

Let now M be a torsion D-module; then, since every T is flat, we have (see e.g. [11, p. 9–10])

M ≃ TorD1 (K/D,M) ≃ TorD1(⨁
T∈Θ

K/T,M) ≃⨁
T∈Θ

TorT1 (K/T,M) ≃⨁
T∈Θ

M ⊗D T,

as claimed. The final assertion follows from the fact that D/I ⊗D T ≃ T/IT.
Theorem 3.10. Let D be an integral domain, and let Θ be a Jaffard family of D. For every length functionℓ ∈ L∞(D), we have ℓ = ∑

T∈Θ
ℓ ⊗ T.
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Proof. Let ℓ♯ := ∑T∈Θ ℓ ⊗ T; by Lemma 3.7, ℓ♯ is a length function on D. To show that ℓ = ℓ♯, it is enough to
show that ℓ(D/I) = ℓ♯(D/I) for every ideal I of D.

If I = (0), then ℓ(D/I) = ∞ = ℓ♯(D/I). Suppose I ̸= (0). By Lemmas 3.8 and 3.9, we haveℓ(D/I) = ℓ(⨁
T∈Θ

D
I
⊗ T) = ∑

T∈Θ
ℓ(DI ⊗ T) = ∑T∈Θ(ℓ ⊗ T)(D/I) = ℓ♯(D/I).

The claim is proved.

Theorem 3.11. Let Θ be a Jaffard family of D, and let ΛΘ and ΨΘ be the maps

ΛΘ : L∞(D) → ∏
T∈Θ

L∞(T), ℓ 󳨃→ (ℓT)T∈Θ ,
ΨΘ : ∏

T∈Θ
L∞(T) → L∞(D), (ℓ(T))T∈Θ 󳨃→ ∑

T∈Θ
(ℓ(T))D .

Then the following hold.
(a) ΛΘ and ΨΘ are order-preserving bijections between L∞(D) and∏T∈Θ L∞(T), inverse one of each other.
(b) ΛΘ restricts to a bijection from Lsing(D) to∏T∈Θ Lsing(T).
(c) If Θ is finite, ΛΘ restricts to a bijection from Ldisc(D) to∏T∈Θ Ldisc(T).
Proof. (a) By Propositions 3.1, 3.3 and Lemma 3.7, ΛΘ and ΨΘ are well-defined.

By definition,
ΨΘ ∘ ΛΘ(ℓ) = ∑

T∈Θ
(ℓT)D = ∑

T∈Θ
ℓ ⊗ T,

which is equal to ℓ by Theorem 3.10. Hence, ΨΘ ∘ ΛΘ is the identity on L(D).
Take now (ℓ(T))T∈Θ ∈ ∏

T∈Θ
L∞(T).

Fix U ∈ Θ, and let ℓ󸀠 be the component with respect to U of (ΛΘ ∘ ΨΘ)(ℓT). As in the proof of Theorem 3.10,
we need to show that ℓ(U)(U/J) = ℓ󸀠(U/J) for every ideal J of U. If J = (0), then both sides are infinite; suppose
J ̸= (0). Then ℓ󸀠(U/J) = ℓ(U)(∑

T∈Θ
(U/J) ⊗D T) = ∑

T∈Θ
ℓ(T)((U/J) ⊗D T).

If U ̸= T, then
U
J
⊗D T ≃ D

J ∩ D ⊗D U ⊗D T ≃ T(J ∩ D)T ⊗ U = (0)
since (J ∩ D)T = T; hence, ℓ󸀠(U/J) reduces to ℓ(U)((U/J) ⊗D U) = ℓ(U)(U/J). Therefore, ℓ󸀠 = ℓ(U), and so ΛΘ ∘ ΨΘ
is the identity, as claimed.

(b) If ℓ is singular, then so is every ℓT by Proposition 3.1 (b). Conversely, if every ℓT is singular, then∑T ℓT(M ⊗ T) is always zero or infinite, and thus ℓ is singular.
(c) If ℓ is discrete, so is every ℓT by Proposition 3.1 (c). On the other hand, if Θ is finite, say

Θ := {T1, . . . , Tn},
then Im(ℓ) = {a1 + ⋅ ⋅ ⋅ + an | ai ∈ Im(ℓTi )}. Since each Im(ℓTi ) is discrete, so is Im(ℓ). The claim is proved.

The fact that every infinite length function ℓ can be “decomposed” as a sum of ℓ ⊗ T is a rather special
property, which puts some constraints on the family Θ.

Proposition 3.12. Let D be an integral domain, and let Θ be a nonempty family of flat overrings of D.
(a) If, for every ℓ ∈ L(D), we have ℓ = ∑T∈Θ ℓ ⊗ T, then Θ = {D}.
(b) If, for every ℓ ∈ L∞(D), we have ℓ = ∑T∈Θ ℓ ⊗ T, then for every nonzero prime P of D there is exactly one

T ∈ Θ such that PT ̸= T.
Proof. Given a length function ℓ on D, let ℓ♯ := ∑T∈Θ ℓ ⊗ T.

(a) Let ℓ be the rank function on D. Then ℓ(D) = ℓ(T) = 1 for every overring T of D, and in particular(ℓ ⊗ T)(D) = 1 for every flat overring T. Hence, ℓ♯(D) = ∑T∈Θ 1 = |Θ|; since by hypothesis ℓ = ℓ♯, wemust have|Θ| = 1; let Θ = {T}.
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Suppose T ̸= D; then, since T is flat, there must be a prime ideal P of D such that PT = T. Letℓ := (lengthDP )D;
then ℓ(D/P) = lengthDP (D/P ⊗D DP) = lengthDP (DP/PDP) = 1.
On the other hand, ℓ♯(D/P) = (ℓ ⊗ T)(D/P) = ℓ(D/P ⊗ T) = ℓ(T/PT) = ℓ(0) = 0,
against the hypothesis. Hence, T must be equal to D and Θ = {D}, as claimed.

(b) Fix a nonzero prime ideal P of D, and let Θ󸀠 := {P ∈ Θ | PT ̸= T}. Let ℓ := (lengthDP )D; then ℓ ∈ L∞(D),
and with the same calculation of the previous point, we see that ℓ(D/P) = 1, while ℓ♯(D/P) = |Θ󸀠|, which
means that |Θ󸀠| = 1. The claim is proved.

Remark 3.13. (i) Under the hypotheses of part (b) of the previous proposition, the only property needed to
show that Θ is a Jaffard family is the local finiteness of Θ.We shall see in Example 6.9 that, at least for singular
length functions, this is not actually necessary; on the other hand, we shall present in Example 6.10 the case
of a one-dimensional domain having a length function ℓ that cannot be written as ∑ℓ ⊗ DM (with the sum
ranging among the maximal ideals).

(ii) If Θ is an infinite Jaffard family, there could be elements in ∏T Ldisc(T) that do not come from dis-
crete length functions. For example, suppose Θ = {T1, . . . , Tn , . . .} is countable and that, for every i, there is
a discrete length function ℓi on Ti such that ℓi(Mi) ̸= {0,∞} for some torsion Ti-moduleMi. By possibly mul-
tiplying for some constant, we can suppose ℓi(Mi) = 1/2i for every i. Let ℓ := ΨΘ(ℓi). Then ℓ(Mi) = 1/2i for
every i; hence, we have ℓ(⨁i≤k Mi) = 1 − 1/2k and ℓ(⨁i∈ℕMi) = 1. In particular, Im(ℓ) is not discrete since 1
is not an isolated point of Im(ℓ).
Example 3.14. Let D be a one-dimensional locally finite domain. Then {DM | M ∈ Max(D)} is a Jaffard family
ofD. ByTheorem3.11, it follows that a length function ℓonD is completely determinedby the restrictions ℓDP .
In turn, this means that ℓ is completely determined by its values at ℓ(DP/QDP), where Q is a P-primary ideal;
as we shall see in Proposition 4.4 below, this means that ℓ is determined by the values ℓ(D/Q), as Q ranges
among the primary ideals of D.

Similarly, if D is an h-local domain (meaning that D is a locally finite domain such that every nonzero
prime ideal is contained in only one maximal ideal), then {DM | M ∈ Max(D)} is a Jaffard family, and thus
every length function ℓ is determined at the local level.

4 Primary ideals
As shown by Proposition 3.12, the possibility of decomposing every length function ℓ as a sum of ℓ ⊗ T, as
T ranges in a (fixed) family Θ, is a quite special property, since it is usually not easy to find Jaffard fami-
lies of an integral domain D. In this section, and in the next one, we shall try to see when a decompositionℓ = ∑T∈Θ ℓ ⊗ T can be reached if we allow Θ to be dependent on ℓ; to do so, we must treat length functions in
a more intrinsic way.

Lemma 4.1. Let ℓ be a length function of D, and let M be a D-module. Then we have ℓ(M) = 0 if and only ifℓ(D/Ann(x)) = 0 for all x ∈ M.

Proof. If ℓ(M) = 0, then ℓ(N) = 0 for all submodules N of M. In particular, this happens for N = xD for every
x ∈ M; however, xD ≃ D/Ann(x), and thus ℓ(D/Ann(x)) = 0.

Conversely, suppose ℓ(D/Ann(x)) = 0 for all x ∈ M. By upper continuity, it is enough to prove thatℓ(N) = 0 for all finitely generated submodules N of M. Let thus N = ⟨x1, . . . , xn⟩; then by [21, Proposi-
tion 2.2], ℓ(N) = ∑i ℓ(Ni+1/Ni), where Nk := ⟨x1, . . . , xk⟩. However, Ni+1/Ni is a cyclic D-module, gener-
ated by y := xi+1 + Ni; in particular, it is isomorphic to D/Ann(y). However, Ann(y) ⊇ Ann(xi+1), and thusℓ(D/Ann(y)) ≤ ℓ(D/Ann(xi+1)) = 0. Therefore, ℓ(N) = 0, and the claim is proved.
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The following is a slight generalization of [12, Lemma 2], of which we follow the proof.

Lemma 4.2. Let R be a ring (not necessarily an integral domain); let α, β ∈ R. Then the following hold.
(a) ℓ(R/αβR) ≤ ℓ(R/αR) + ℓ(R/βR).
(b) If β is not a zero-divisor in R, then ℓ(R/αβR) = ℓ(R/αR) + ℓ(R/βR).
(c) If ℓ(R) < ∞ and β is not a zero-divisor, then ℓ(R/βR) = 0.
Proof. Consider the exact sequence 0→ βR/αβR → R/αβR → R/βR → 0. Then, by additivity,ℓ(R/αβR) = ℓ(R/βR) + ℓ(βR/αβR);
furthermore, ℓ(βR/αβR) ≤ ℓ(R/αR) since multiplication by β induces a surjection R/αR 󴀀󴀤 βR/αβR. (a) is
proved.

If β is not a zero-divisor, then multiplication by β is an isomorphism, and thus (b) holds. In particular, if
α = 0, we have ℓ(R) = ℓ(R/βR) + ℓ(R), and if ℓ(R) is finite, then ℓ(R/βR)must be 0. Thus, (c) holds.

Lemma 4.3. Let D be an integral domain, and let ℓ be a length function on D. Let Q be a P-primary ideal such
that ℓ(D/Q) < ∞, and let I be an ideal such that Q ⊊ I ⊈ P. Then ℓ(D/I) = 0.
Proof. Let x ∈ I \ P; then (Q : x) = Q since Q is P-primary [1, Lemma 4.4 (iii)], and in particular x is not
a zero-divisor in D/Q =: R. By Lemma 4.2, it follows that ℓR(R/xR) = 0; however, by definition, we haveℓR(R/xR) = ℓ(D/(Q, x)). Since I ⊇ (Q, x), it follows that ℓ(D/I) ≤ ℓ(D/(Q, x)) = 0, as claimed.

Proposition 4.4. Let D be an integral domain, and let ℓ be a length function on D. Let P󸀠 ⊆ P be two prime
ideals, and let Q be a P󸀠-primary ideal. Then ℓ(D/Q) = ℓ(DP/QDP) = ℓDP (DP/QDP) = (ℓ ⊗ DP)(D/Q).
Proof. Since Q is P󸀠-primary and P󸀠 ⊆ P, we have Q = QDP󸀠 ∩ D = QDP ∩ D, and thus there is an exact
sequence

0→ D/Q ι→ DP/QDP
π→ N → 0

for some D-module N. If ℓ(D/Q) = ∞, then also ℓ(DP/QDP) = ∞, andwe are done. Suppose ℓ(D/Q) < ∞, and
let z = π(x) ∈ N. Consider I := Ann(z); then I contains Q since Q ⊆ Ann(x). Furthermore, if

x = x󸀠 + QDP ∈ DP/QDP ,

there is an s ∈ D \ P such that sx󸀠 ∈ D; hence, sx ∈ ι(D/Q), or equivalently 0 = π(sx) = sz. Therefore, I ⊈ P,
and thus I ⊈ P󸀠; by Lemma 4.3, we have ℓ(D/I) = 0. By Lemma 4.1, it follows that ℓ(N) = 0, and thusℓ(D/Q) = ℓ(DP/QDP), as claimed.

The second and the third equalities come from the definitions.

In particular, we can obtain a version of Vámos’ results in the vein of Theorem 3.10.

Proposition 4.5. Let D be a Noetherian domain, let ℓ be a length function on D, and let
Σ(ℓ) := {P ∈ Spec(D) | ℓ(D/P) > 0}.

Then ℓ = ∑
P∈Σ(ℓ)
ℓ ⊗ DP .

Proof. Let ℓ♯ := ∑P∈Σ(ℓ) ℓ ⊗ DP; then ℓ♯ is a length function. By [20, Corollary to Lemma 2], to show that ℓ = ℓ♯
it is enough to show that ℓ(D/Q) = ℓ♯(D/Q) for every prime ideal Q of D.

If Q ∉ Σ(ℓ), then ℓ(D/Q) = 0 (by definition of Σ(ℓ)). Furthermore, any ideal I properly containing Q sat-
isfies ℓ(D/I) = 0 (by [20, Lemma 3] or Lemma 4.3), and thus no prime ideal containing Q belongs to Σ(ℓ).
However, if Q ⊈ P, then (ℓ ⊗ DP)(D/Q) = ℓ(D/Q ⊗ DP) = ℓ(DP/QDP) = ℓ(0) = 0,
and thus also ℓ♯(D/Q) = 0.
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Suppose now that Q ∈ Σ(ℓ). Then, using the previous reasoning, we haveℓ♯(D/Q) = ∑
P∈Σ(ℓ)
P⊇Q

(ℓ ⊗ DP)(D/Q) = ∑
P∈Σ(ℓ)
P⊇Q

ℓ(DP/QDP) = ∑
P∈Σ(ℓ)
P⊇Q

ℓ(D/Q),
with the last equality coming from Proposition 4.4.

If Q is a maximal element of Σ(ℓ), then ℓ♯(D/Q) = ℓ(D/Q), as claimed. Suppose Q is not maximal in Σ(ℓ);
then ℓ(D/Q) = ∞ since ℓ(D/Q) > 0 (being Q ∈ Σ(ℓ)) and ℓ(D/Q) cannot be finite (using again [20, Lemma 3]/
Lemma 4.3). Hence, both ℓ(D/Q) and ℓ♯(D/Q) are infinite.

Therefore, ℓ(D/Q) = ℓ♯(D/Q) for every prime ideal Q, and thus ℓ = ℓ♯, as claimed.

More generally, Proposition 4.4 shows that, for a P-primary ideal Q, the value of ℓ(D/Q) depends only on ℓDP ,
which is a length function over DP. We now want to extend this result to ideals having a primary decomposi-
tion; we premise a lemma, which already appeared, without proof, in [20].

Lemma 4.6. Let I, J be ideals of a ring R (not necessarily a domain), and let ℓ be a length function on R. Thenℓ(R/I) + ℓ(R/J) = ℓ(R/(I + J)) + ℓ(R/(I ∩ J)).
Proof. To simplify the notation, let τ(A) := ℓ(R/A) for every ideal A. From the two exact sequences

0→ I
I ∩ J → D

I ∩ J → D
I
→ 0 and 0→ I + J

J
→ D

J
→ D

I + J → 0

and additivity, we have {τ(I ∩ J) = τ(I) + ℓ(I/(I ∩ J)),
τ(J) = τ(I + J) + ℓ((I + J)/J).

Hence,
τ(I) + τ(J) + ℓ(I/(I ∩ J)) = τ(I ∩ J) + τ(I + J) + ℓ((I + J)/J).

Since I/(I ∩ J) ≃ (I + J)/J, the claim follows if ℓ(I/(I ∩ J)) < ∞. If not, then τ(J) ≥ ℓ((I + J)/J) = ∞, and thus
τ(I ∩ J) ≥ τ(J) = ∞; hence, both sides are infinite, and the claim again follows.

Proposition 4.7. Let D be an integral domain, and let ℓ be a length function on D. Let I be an ideal of D having
a primary decomposition Q1 ∩ ⋅ ⋅ ⋅ ∩ Qn. Thenℓ(D/I) = n∑

i=1
ℓ(D/Qi).

Proof. Set τ(A) := ℓ(D/A) for every ideal A of D.
If τ(Qi) = ∞ for some i, then τ(I) = ∞, and we are done. Suppose τ(Qi) < ∞ for every i; we pro-

ceed by induction on the number n of components of I. If n = 1, the claim is obvious. Suppose the claim
holds up to n − 1; without loss of generality, P1 := rad(Q1) is a minimal prime of I. Then I = Q1 ∩ J, where
J := Q2 ∩ ⋅ ⋅ ⋅ ∩ Qn. By Lemma 4.6, we have

τ(I) + τ(Q1 + J) = τ(Q1) + τ(J).
The ideal Q1 + J is not contained in P1, for otherwise J ⊆ P1, which is impossible since no primary component
of J is contained in P1. By Lemma 4.3, this implies that τ(Q1 + J) = 0, and thus τ(I) = τ(Q1) + τ(J); the claim
now follows by induction.

5 Prüfer domains
In this section, we obtain a standard representation for length functions on Prüfer domains where every ideal
has only finitely many minimal primes.

The starting point for this section is the following extension of Proposition 4.4.
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Proposition 5.1. Let D be a Prüfer domain, and let ℓ be a length function on D. Let I be an ideal of D such that
P := rad(I) is prime. Then ℓ(D/I) = ℓ(DP/IDP) = (ℓ ⊗ DP)(D/I).
Proof. Let J := IDP ∩ D; then J is a P-primary ideal, and, by Proposition 4.4, ℓ(D/J) = ℓ(DP/JDP) = ℓ(DP/IDP),
with the last equality coming from the fact that JDP = IDP. Thus, we must prove that ℓ(D/I) = ℓ(D/J).

If ℓ(D/J) = ∞, then ℓ(D/I) ≥ ℓ(D/J) = ∞, and we are done. Suppose ℓ(D/J) < ∞, and consider the exact
sequence 0→ J/I → D/I → D/J → 0. Then ℓ(D/I) = ℓ(D/J) + ℓ(J/I), and thusweneed to show that ℓ(J/I) = 0.

Let x ∈ J, and letA := (I : x);we claim that P ⊊ A. Indeed, letM ∈ Max(D); if I ⊈ M (equivalently, if J ⊈ M),
then ADM = (IDM : x) = DM contains PDM = DM. Suppose I ⊆ M; then ADM = (IDM : xDM). If ADM ⊉ PDM,
then ADM ⊊ PDM; localizing further at DP, we have ADP ⊆ PDP. However, ADP = (IDP : x) = DP, a contradic-
tion. Hence, P ⊆ A; but since ADP ̸= PDP, we must also P ̸= A and so P ⊊ A.

Since ℓ(D/J) < ∞, we can nowapply Lemma4.3, obtaining ℓ(D/A) = 0; by Lemma4.1,we have ℓ(J/I) = 0
(since (I : x) is equal to the annihilator of x + I in J/I), and thus ℓ(D/I) = ℓ(D/J), as claimed.

Definition 5.2. Let D be a Prüfer domain, and let ℓ be a length function on D. The total spectrum of ℓ is
Σ(ℓ) := {P ∈ Spec(D) | ℓ(D/Q) > 0 for some P-primary ideal Q}.

Lemma 5.3. Let D beaPrüfer domain, ℓa length function on D, and let P󸀠 ⊊ P beprime ideals such that P ∈ Σ(ℓ).
Then ℓ(D/P󸀠) = ∞, and in particular P󸀠 ∈ Σ(ℓ).
Proof. Let L be a P-primary ideal. Then P󸀠 = P󸀠DP ∩ D ⊆ LDP ∩ D = L. If ℓ(D/P󸀠) < ∞, then by Lemma 4.3
(applied with Q = P󸀠), we would have ℓ(D/L) = 0. Since L was an arbitrary P-primary ideal, it would follow
that P ∉ Σ(ℓ), against the hypothesis. Hence, ℓ(D/P󸀠) = ∞.
The total spectrum of ℓ is exactly the set we are looking for.
Theorem 5.4. Let D be a Prüfer domain such that every ideal of D has only finitely many minimal primes. For
every length function ℓ on D, we have ℓ = ∑

P∈Σ(ℓ)
ℓ ⊗ DP .

Proof. Let ℓ♯ := ∑P∈Σ(ℓ) ℓ ⊗ DP; then ℓ♯ is a length function by Lemma 3.7. To show that ℓ = ℓ♯, it is enough
to show that ℓ(D/I) = ℓ♯(D/I) for every ideal I of D. Let thus I be an ideal of D, and let {P1, . . . , Pn} be the
minimal primes of I.

For each i, let Ti := ⋂{DQ | Q ∈ V(Pi)}, where V(A) := {P ∈ Spec(D) | A ⊆ P}; then Ti is a Prüfer domain
whoseprime ideals are the extensionof theprime ideals comparablewith Pi. Let Ji := ITi ∩D; then rad(Ji) = Pi,
and, since every maximal ideal containing I survives in some Ti, we have I = J1 ∩ ⋅ ⋅ ⋅ ∩ Jn. Fix i, and let
Li := ⋂k ̸=i Jk; then the minimal primes of Li are P1, . . . , Pi−1, Pi+1, . . . , Pn. In particular, since rad(Ji) = Pi
and Spec(D) is a tree, there are no prime ideals containing both Ji and Li; thus, Ji + Li = D. By Lemma 4.6,
it follows that ℓ󸀠(D/I) = ℓ󸀠(D/(Ji ∩ Li)) = ℓ󸀠(D/Ji) + ℓ󸀠(D/Li) for every length function ℓ󸀠; by induction, it fol-
lows that ℓ󸀠(D/I) = ∑i ℓ󸀠(D/Ji) for every ℓ󸀠. In particular, it holds for ℓ󸀠 = ℓ and for ℓ󸀠 = ℓ♯; hence, we need
only to prove that ℓ(D/Ji) = ℓ♯(D/Ji) for every Ji, or equivalently that ℓ(D/J) = ℓ♯(D/J) for every J such that
rad(J) = P ∈ Spec(D).

By Proposition 5.1, ℓ(D/J) = (ℓ ⊗ DP)(D/J). On the other hand,ℓ♯(D/J) = ∑
Q∈Σ(ℓ)
(ℓ ⊗ DQ)(D/J) = ∑

Q∈Σ(ℓ)
ℓ(DQ/JDQ).

If Q ⊉ P, then JDQ = DQ, and so ℓ(DQ/JDQ) = 0. Hence,ℓ♯(D/J) = ∑
Q∈Σ(ℓ)
Q⊇P

ℓ(DQ/JDQ) = ∑
Q∈Σ(ℓ)
Q⊇P

(ℓ ⊗ DQ)(D/J). (5.1)

If P is maximal in Σ(ℓ), then (5.1) reduces to ℓ♯(D/J) = (ℓ ⊗ DP)(D/J), and so is equal to ℓ(D/J). If P is not
maximal, then by Lemma 5.3 ℓ(D/P) = ∞, and so both ℓ(D/J) and ℓ♯(D/J) are infinite; in particular, they are
equal. The claim is proved.
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This theorem does not hold for general Prüfer domain. We shall see an example at the end of the paper
(Example 6.10).

Since ℓ ⊗ DP = (ℓ󸀠)D, where ℓ󸀠 is a length function on DP, the previous theorem effectively reduces the
study of the length functions on D to the local case. If V is a valuation domain, the length functions on V
have been studied in [12, 21]; they can be divided into the following four classes.∙ Torsion singular length functions: if P ∈ Spec(V), we define tP as

tP(M) := {{{0 if M is a torsion V/P-module,∞ otherwise.∙ Idempotent singular length functions: if P ∈ Spec(V) is idempotent, we define iP as

iP(M) := {{{0 if M is a V/P-module,∞ otherwise.∙ L-rank functions: if P ∈ Spec(V) is idempotent, and α ∈ ℝ+, then ℓ = α ⋅ rkP for some α ∈ ℝ+, where
rkP(M) := {{{rankV/P(M) if M is a V/P-module,∞ otherwise.∙ Valuative length functions: let P ∈ Spec(D) be a branched prime ideal. Let Q be the largest prime ideal

contained in P, and let v be a valuation on DP/Q. We define Lv as the function

Lv(M) := sup s∑
i=1

inf{v(α) | α ∈ Ann(Ei/Ei−1)},
where the supremum is taken over all finite chains of submodules (0) = E0 ⊊ E1 ⊊ ⋅ ⋅ ⋅ ⊊ Es = M.

Remark 5.5. (i) The four classes of length functions are pairwise disjoint; however, the classes of idempo-
tent singular length functions and of L-rank functions could be merged by considering the functions of type
α ⋅ rkP for α ∈ ℝ≥0, i.e., by allowing α = 0 in the definition of L-rank function (and using the convention
0 ⋅ ∞ = ∞). However, in view of the study of singular length functions (see Corollary 5.8 and Section 6 from
below Proposition 6.7 onwards), it is more useful to consider them separately.

(ii) i(0) is the zero length function.
(iii) The rank function on V is rk(0); on the other hand, if M is the maximal ideal of V, then the “usual”

length is rkM if M is idempotent, while if M = mV is principal (and thus, in particular, branched), it is equal
to Lv, where v is a rank-one valuation on V/Q normalized in such a way that v(m) = 1.
Suppose now that D is a Prüfer domain, P ∈ Spec(D), and let ℓ be a length function on the valuation domain
DP. Calculating ℓD(D/I) (where I is an ideal of D) corresponds to calculating the values of ℓ(DP/IDP), which
can be done easily by considering the various classes of length function of valuation domains; the results are
the following: (tPDP )D(D/I) = {{{0 if PDP ⊊ IDP ,∞ otherwise;(iPDP )D(D/I) = {{{0 if PDP ⊆ IDP ,∞ otherwise;(rkPDP )D(D/I) = {{{rankD/P(DP/IDP) if PDP ⊆ IDP ,∞ otherwise

= {{{{{{{
0 if PDP ⊊ IDP ,
1 if PDP = IDP ,∞ otherwise;(Lv)D(D/I) = {{{{{{{

0 if I ⊈ P,
inf v(IDP/QDP) if P is minimal over I,∞ otherwise.
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Let now ℓ be a length function on the Prüfer domain D (not necessarily satisfying the hypothesis of The-
orem 5.4). To each class of length functions on valuation domains, we can associate a subset of the spectrum
of D:∙ Σt(ℓ) := {P ∈ Spec(D) | ℓDP = tPDP },∙ Σi(ℓ) := {P ∈ Spec(D) | ℓDP = iPDP },∙ Σr(ℓ) := {P ∈ Spec(D) | ℓDP = αrkPDP for some α ∈ ℝ+},∙ Σv(ℓ) := {P ∈ Spec(D) | ℓDP = Lv for some rank-one valuation v on DP/QDP}.
Lemma 5.6. Let D be a Prüfer domain, ℓ a length function.
(a) The four sets Σt(ℓ), Σi(ℓ), Σr(ℓ) and Σv(ℓ) are pairwise disjoint.
(b) Σ(ℓ) = Σt(ℓ) ∪ Σi(ℓ) ∪ Σr(ℓ) ∪ Σv(ℓ).
(c) If P, Q ∈ Spec(D) are such that P ∈ Σ(ℓ) and Q ⊊ P, then Q ∈ Σt(ℓ).
Proof. (a) follows from the fact that the four classes of length functions on valuation domains are disjoint;
(b) follows from the calculations of ℓD(D/I). (c) is another version of Lemma 5.3 since ℓ(D/Q) = ∞ if and only
if Q ∈ Σt(ℓ).
With this terminology, we get a restatement of Theorem 5.4 and a way to characterize singular and discrete
length functions.

Corollary 5.7. Let D be a Prüfer domain such that every ideal of D has only finitely many minimal primes, and
let ℓ be a length function on D. Thenℓ = ∑

P∈Σt(ℓ)
(tPDP )D + ∑

P∈Σi(ℓ)
(iPDP )D + ∑

P∈Σr(ℓ)
ℓ(D/P)(rkPDP )D + ∑

P∈Σv(ℓ)
(LvP )D ,

where vP is a rank-one valuation on DP/QDP (and Q is the prime ideal directly below P).

Corollary 5.8. Let D be a Prüfer domain such that every ideal of D has only finitely many minimal primes, and
let ℓ be a length function on D.
(a) ℓ is singular if and only if Σr(ℓ) = Σv(ℓ) = 0.
(b) ℓ is discrete if and only if Σv(ℓ) does not contain any idempotent prime and the family{ℓ(D/P) | P ∈ Σr(ℓ) ∪ Σv(ℓ)}

is discrete.

The representation of Corollary 5.7 can also be seen as a way to define a length function: given

Σ1, Σ2, Σ3, Σ4 ⊆ Spec(D),
real numbers αP ∈ ℝ+ and valuations vP on DP/LDP, we can define a length function ℓ byℓ := ∑

P∈Σ1
(tPDP )D + ∑

P∈Σ2
(iPDP )D + ∑

P∈Σ3
αP(rkPDP )D + ∑

P∈Σ4
(LvP )D .

In general, there is no guarantee that this representation is the same as the one obtained in the corollary, i.e.,
the conditions Σ1 = Σt(ℓ), Σ2 = Σi(ℓ), etc. need not to be satisfied; indeed, being arbitrary, the sets Σj usually
do not satisfy conditions (a) and (c) of Lemma 5.6. For example, if P ⊈ Q are two prime ideals, the families
Σ1 = {Q}, Σ2 = Σ3 = Σ4 = 0 and Σ󸀠1 = {Q, P}, Σ󸀠2 = Σ󸀠3 = Σ󸀠4 = 0 give rise to the same ℓ.

However, we can obtain uniqueness just by excluding the more obvious problems. To express it in
a slightly less unwieldy way, we introduce the following definition.

Definition 5.9. Let (P, ≤) be a partially ordered set. A family {X1, . . . , Xn} of subsets of P is a layered family
with core Xk if∙ Xi ∩ Xj = 0 if i ̸= j,∙ if x ∈ ⋃i Xi and y < x, then y ∈ Xk.

Under this terminology, Lemma 5.6 (a) and (c) can be reparaphrased by saying that {Σt(ℓ), Σi(ℓ), Σr(ℓ), Σv(ℓ)}
is a layered family with core Σt(ℓ).
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Proposition 5.10. Let D be a Prüfer domain. Let {Σ1, Σ2, Σ3, Σ4} and {Σ󸀠1, Σ󸀠2, Σ󸀠3, Σ󸀠4} be layered families of
Spec(D) with core Σ1 and Σ󸀠1, respectively, and suppose that∙ each prime in Σ2, Σ3, Σ󸀠2 and Σ

󸀠
3 is idempotent,∙ each prime in Σ4 and Σ󸀠4 is branched,∙ if P is unbranched and every prime properly contained in P belongs to Σ1 (resp., Σ󸀠1), then P ∈ Σ1 ∪ Σ2 ∪ Σ3

(resp., P ∈ Σ󸀠1 ∪ Σ󸀠2 ∪ Σ󸀠3).
Furthermore, for every P ∈ Σ3 (resp., P ∈ Σ󸀠3), let αP ∈ ℝ+ (resp., α󸀠P ∈ ℝ+), and for every P ∈ Σ4 (resp., P ∈ Σ󸀠4),
let vP (resp., v󸀠P) be a valuation relative to DP/QDP, where Q is the largest prime properly contained in P. Let ℓ
and ℓ󸀠 be the length functionsℓ = ∑

P∈Σ1
(tPDP )D + ∑

P∈Σ2
(iPDP )D + ∑

P∈Σ3
αP(rkPDP )D + ∑

P∈Σ4
(LvP )D ,ℓ󸀠 = ∑

P∈Σ󸀠1(tPDP )D + ∑
P∈Σ󸀠2(iPDP )D + ∑

P∈Σ󸀠3 α
󸀠
P(rkPDP )D + ∑

P∈Σ󸀠4(Lv󸀠P )D .
Then ℓ = ℓ󸀠 if and only if the following hold:∙ Σj = Σ󸀠j for j = 1, 2, 3, 4;∙ αP = α󸀠P for all P ∈ Σ3;∙ vP = v󸀠P for all P ∈ Σ4.
Proof. If the three properties hold, then clearly ℓ = ℓ󸀠. Suppose now that ℓ = ℓ󸀠. Let Σ := ⋃j Σj and Σ󸀠 := ⋃j Σ󸀠j .

Let P be a prime ideal of D. Then a direct calculation shows that

ℓ(D/P) = {{{{{{{{{
0 if P ∈ Σ2 ∪ Σ4 or P ∉ Σ,
αP if P ∈ Σ3,∞ if P ∈ Σ1,

and analogously (mutatis mutandis) for ℓ󸀠. In particular, ℓ(D/P) = ∞ if and only if P ∈ Σ1, and ℓ󸀠(D/P) = ∞
if and only if P ∈ Σ󸀠1; since ℓ = ℓ󸀠, it follows that Σ1 = Σ󸀠1. Likewise, ℓ(D/P) ∉ {0,∞} if and only if P ∈ Σ3, and
analogously for ℓ󸀠; hence, Σ3 = Σ󸀠3 and αP = α󸀠P for all P ∈ Σ3.

Let now B and U, respectively, be the set of branched and unbranched prime ideals of D. Let P be
a branched prime ideal, and consider a P-primary ideal L with L ⊊ P. Another calculation shows that

ℓ(D/L) = {{{{{{{{{
0 if P ∉ Σ,
inf vP(LDP/QDP) if P ∈ Σ4,∞ if P ∈ Σ1 ∪ Σ2 ∪ Σ3,

where Q is the biggest prime ideal properly contained in P. In particular, P ∈ Σ if and only if ℓ(D/L) > 0
(since L ⊊ P); hence, Σ ∩B = Σ󸀠 ∩B. Furthermore, ℓ(D/L) = ∞ if and only if P ∈ Σ1 ∪ Σ2 ∪ Σ3, and similarly
for ℓ󸀠; since Σ1 = Σ󸀠1 and Σ3 = Σ󸀠3 by the previous reasoning, and the Σi and Σ󸀠i are disjoint, it follows that
Σ2 ∩B = Σ󸀠2 ∩B.

Let P be an unbranched prime ideal. If P ∉ Σ, then by hypothesis, there is a Q ⊊ P not contained in Σ;
in particular (eventually passing to the minimal prime of an x ∈ P \ Q), we can suppose that Q is branched.
By the previous reasoning, Q ∉ Σ󸀠, and thus also P ∉ Σ󸀠. By the same reasoning, if P ∉ Σ󸀠, then P ∉ Σ; hence,
Σ ∩ U = Σ󸀠 ∩ U. Furthermore, Σ4 ∩ U = 0 = Σ󸀠4 ∩ U; hence, Σ2 ∩ U = Σ󸀠2 ∩ U.

Putting together the two cases, we see that Σ = Σ󸀠 and Σ2 = Σ󸀠2; hence, Σ4 = Σ󸀠4. Moreover,
inf vP(LDP/QDP) = inf v󸀠P(LDP/QDP)

implies that vP = v󸀠P. The claim is proved.

Remark 5.11. If we drop the hypothesis on the unbranched prime ideals, the proposition above does not
hold. For example, let P be an unbranched prime ideal of D, and let ∆ be the set of prime ideals properly
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contained in P. Then (∑
Q∈∆
(tQDQ )D)(D/I) = {{{0 if QDQ ⊊ IDQ for every Q ∈ ∆,∞ otherwise.

The first condition holds if and only if PDP ⊆ IDP; hence, ∑Q∈∆(tQDQ )D = (iPDP )D. In the notation of Propo-
sition 5.10, this means the length functions induced by the families Σ1 = ∆, Σ2 = Σ3 = Σ4 = 0 and Σ󸀠1 = ∆,
Σ󸀠2 = {P}, Σ󸀠3 = Σ󸀠4 = 0 are the same, and thus uniqueness does not hold.

As a consequence, we can prove that (under the hypotheses of Theorem 5.4) the set L(D) depends only on
Spec(D) and the idempotence of the primes of D.

Theorem 5.12. Let A, B be Prüfer domains such that every ideal of A and B has only finitely many minimal
primes. Suppose that there is a homeomorphism ϕ : Spec(A) → Spec(B) such that a prime ideal P is idempotent
if and only if ϕ(P) is idempotent. Then there is an order isomorphism ϕ : L(A) → L(B) that respects the classes
of ℓ ⊗ DP, i.e., such that ϕ(Λ(ℓ)) = Λ(ϕ(ℓ)) for each Λ ∈ {Σt , Σi , Σr , Σv}.
Proof. We first note that, if P ∈ Spec(A), then P is branched if and only if ϕ(P) is branched; indeed, the
homeomorphism ϕ induces homeomorphisms ϕP : Spec(AP) → Spec(Bϕ(P)), and the maximal ideal M of
a valuation ring V is branched if and only if Spec(V) \ {M} is compact. Since Spec(AP) \ {PAP} corresponds to
Spec(Bϕ(P)) \ {ϕ(P)Bϕ(P)}, we have that P is branched if and only if ϕ(P) is branched.

For every branched prime ideal P of A, fix a valuation vP on AP/LAP (viewed as a map to ℝ), where L is
the largest prime properly contained in P; then all valuations on AP/LAP are in the form λvP for some λ ∈ ℝ+.
Similarly, if P is a branched prime ideal of B, fix a valuation wP on BP/LBP (with the same notation for L).

Let ℓ ∈ L(A). By Corollary 5.7, and with the notation as above, we can writeℓ = ∑
P∈Σt(ℓ)
(tPAP )A + ∑

P∈Σi(ℓ)
(iPAP )A + ∑

P∈Σr(ℓ)
ℓ(A/P)(rkPAP )A + ∑

P∈Σv(ℓ)
(LλPvP )A;

hence, we define

ϕ(ℓ) := ∑
Q∈ϕ(Σt(ℓ))

(tQBQ )B + ∑
Q∈ϕ(Σi(ℓ))

(iQBQ )B + ∑
Q∈ϕ(Σr(ℓ))

ℓ(A/ϕ−1(Q))(rkQBQ )B + ∑
Q∈ϕ(Σv(ℓ))

(Lλϕ−1(Q)wQ )B .
By the previous reasoning, every prime of ϕ(Σi(ℓ)) and ϕ(Σr(ℓ)) is idempotent and every prime of ϕ(Σv(ℓ))
is branched; hence, ϕ is a well-defined map from L(A) to L(B). Furthermore, since ϕ is a homeomor-
phism, it is straightforward to see that {ϕ(Σt(ℓ)), ϕ(Σi(ℓ)), ϕ(Σr(ℓ)), ϕ(Σv(ℓ))} is a layered family with core
ϕ(Σt(ℓ)), and that if every prime contained in the branched prime Q of B is in ϕ(Σt(ℓ)), then Q is in
ϕ(Σt(ℓ)) ∪ ϕ(Σi(ℓ)) ∪ ϕ(Σr(ℓ)). By Proposition 5.10, thus, ϕ is injective, and it respects the classes of ℓ ⊗ DP.

With the same reasoning, we can build an injective map ϕ−1 : L(B) → L(A), and it is an easy verification
that ϕ−1 is the inverse of ϕ. Hence, ϕ and ϕ−1 are bijections between L(A) and L(B).

Suppose now ℓ1 ≤ ℓ2 are length functions on A: we claim that ϕ(ℓ1) ≤ ϕ(ℓ2). It is enough to verify the
inequality at B/J, where J is an ideal of B; furthermore, with the same reasoning of the proof of Theorem 5.4,
we can reduce this verification to the case where rad(J) =: Q is a prime ideal, and by Proposition 5.1, we can
further suppose that J is a primary ideal. Let P := ϕ−1(Q).

If P ∉ Σ(ℓ1), then Q ∉ ϕ(Σ(ℓ1)) = Σ(ϕ(ℓ1)), and thus, by Proposition 5.1, we have ℓ1(B/J) = 0. Hence,
ϕ(ℓ1)(B/J) ≤ ϕ(ℓ2)(B/J). Suppose thus that P ∈ Σ(ℓ1), i.e., that Q ∈ Σ(ϕ(ℓ1)).

Then ϕ(ℓ1)(B/J) = (ϕ(ℓ1) ⊗ BQ)(B/J). Furthermore, if Q is a prime ideal such that Q ∉ ϕ(Σv(ℓ)) (equiva-
lently, if P ∉ Σv(ℓ)), then ℓ(A/J) = ϕ(ℓ)(B/Q) for every length function ℓ; in particular,

ϕ(ℓ1)(B/Q) = ℓ1(A/P) ≤ ℓ2(A/P) = ϕ(ℓ2)(B/Q).
Thus, if J = Q we are done; suppose now that J ⊊ Q.

If P ∉ Σv(ℓ) and L1, L2 are P-primary ideals such that L1, L2 ⊊ P, then ℓ(A/L1) = ℓ(A/L2) (equal to 0
if P ∉ Σ(ℓ) and to ∞ if P ∈ Σ(ℓ)); hence, if P ∈ Σ(ℓ1) \ Σv(ℓ), then ℓ1(A/L) = ∞ for every P-primary ideal
L ⊊ P, which means that ℓ2(A/L) = ∞; it follows that also ϕ(ℓ1)(B/J) = ∞ = ϕ(ℓ2)(B/J), and in particular
ϕ(ℓ1)(B/J) ≤ ϕ(ℓ2)(B/J).
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Hence, we only need to consider that case P ∈ Σv(ℓ1); in particular, P is branched, and so Q is as well. If
P ∉ Σv(ℓ2), then ℓ2(A/L) = ∞ for all P-primary ideals L ⊊ P; hence ϕ(ℓ1)(B/J) ≤ ϕ(ℓ2)(B/J) since the latter is
equal to∞.

Suppose thus that P ∈ Σv(ℓ1) ∩ Σv(ℓ2); let P󸀠 be the largest prime ideal of A properly contained in P,
and let Q󸀠 be the largest prime ideal of B properly contained in Q. Let πQ : BQ → BQ/Q󸀠BQ be the canon-
ical quotient map. If QBQ is principal, then JBQ = (QBQ)n for some n, and we define I := (PAP)n ∩ A. If
QBQ is not principal, then let δ := inf{wQ(πQ(x)) | x ∈ J} ∈ ℝ. If πP : AP → AP/P󸀠AP is the quotient, then
we define I := {y ∈ A | vP(πP(y)) ≥ δ}. In both cases, I is an ideal of A whose radical is P, and by con-
struction ℓ(A/I) = δ = ϕ(ℓ)(B/J) for every length function ℓ such that P ∈ Σv(ℓ); as above, it follows that
ϕ(ℓ1)(B/J) ≤ ϕ(ℓ2)(B/J).

Therefore, ϕ(ℓ1) ≤ ϕ(ℓ2), and so ϕ is order-preserving. By symmetry, the same happens for ϕ−1 = ϕ−1;
hence, ϕ is an order isomorphism, as claimed.

Remark 5.13. Adifferentway to reduce the study of length functions over Prüfer domains to valuation rings is
to apply the theory developed in Section 3 on Jaffard families, together with some results involving quotients
and a recursive algorithm, in amanner similar towhat has been done in [19] for the study of star and semistar
operations. However, this method yields results that are at the same time weaker andmore complex than the
ones obtained in this section; for the sake of completeness, we summarize here briefly the main ideas of this
alternative argument.

Let D be a Prüfer domain. Under some hypothesis on D (namely that D is semilocal or that Spec(D) is
a Noetherian topological space), it is possible to construct a canonical Jaffard family Θ of D (the “standard
decomposition”) that is thefinest possible, in the sense that each T ∈ Θdoesnot possess anynontrivial Jaffard
family (see [18, Section 6]). For example, if D is also finite-dimensional, any member of Θ is obtained by an
intersection⋂{DM | M ∈ Max(D), P ⊆ M}, where P is a prime ideal of D of height 1.

Take a T ∈ Θ. If T is semilocal, we can find a nonzero prime ideal Q ⊆ Jac(T) such that Jac(T/Q) does
not contain any nonzero prime. (Here Jac(A) denotes the Jacobson radical of A, that is, the intersection of its
maximal ideals.) Extending the results of Section 3 to quotients, it is possible to express L∞(T) as the union
ofL∞(T/Q) and a distinguished subset ofL∞(TQ); since TQ is a valuation domain, the latter is known, while
by construction T/Q admits a nontrivial standard decomposition ΘT/Q. Hence, it is possible to repeat the
construction starting from T/Q instead of D.

Suppose that, at some point, this procedure stops by reaching valuation domains; then, since the sets
L∞(V) of these rings are known, by climbing back quotients and localizations we can obtain a description of
the set L∞(D). This works, for example, if D is semilocal or if it is locally finite and finite-dimensional.

However, this algorithm involves alternating two types of procedures (finding a Jaffard family and taking
quotients), whose effect on the set of length functions is quite different. Therefore, this description becomes
extremely complex, especially when an element T of the Jaffard family Θ is quotiented more than once.
Finally, the hypotheses that are needed to be put on D for this algorithm to work are less general than the
one used in this section; indeed, if D is semilocal or if it is locally finite and finite-dimensional, then every
nonzero ideal I is contained in only finitely many maximal ideals, and thus (since Spec(D) is a tree), I has
only finitely many minimal primes.

6 Singular length functions
In this section, we characterize singular length functions through purely ideal-theoretic means, by using the
concept of localizing system (see [5] or [6, Section 5.1]). We denote by I(D) the set of ideals of D.
Definition 6.1. Let D be an integral domain. A localizing system on D is a set F ⊆ I(D) such that,∙ if I ∈ F and I ⊆ J, then J ∈ F,∙ if I ∈ F and (J : iD) ∈ F for all i ∈ I, then J ∈ F.
We denote by LocSist(D) the set of localizing systems on D.
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Our next aim is to prove that to every length function can be associated a localizing system, and conversely.

Definition 6.2. Let ℓ be a length function. The zero locus of ℓ is Z(ℓ) := {I ∈ I(D) | ℓ(D/I) = 0}.
Proposition 6.3. The zero locus of a length function ℓ is a localizing system.
Proof. If I ∈ Z(ℓ) and I ⊆ J, then ℓ(D/J) ≤ ℓ(D/I) = 0, and so J ∈ Z(ℓ). Suppose I ∈ Z(ℓ), and let J be an ideal
such that (J : iD) ∈ Z(ℓ) for every i ∈ I. From the exact sequence 0→ (I + J)/J → D/J → D/(I + J) → 0, and
from the fact that I + J ∈ Z(ℓ) (since I + J ⊇ I ∈ Z(ℓ)), we have ℓ(D/J) = ℓ((I + J)/J). For every i + J ∈ (I + J)/J,
we have Ann(i + J) = (J : iD) ∈ Z(ℓ) by hypothesis; by Lemma 4.1, it follows that ℓ((I + J)/J) = 0, and thusℓ(D/J) = 0, i.e., J ∈ Z(ℓ). Thus, Z(ℓ) is a localizing system.

Conversely, let F be a localizing system on D. The length function associated to F is

ℓF(M) := {{{0 if Ann(x) ∈ F for all x ∈ M,∞ otherwise.

Proposition 6.4. For any localizing system F on D, ℓF is a length function.

Proof. Clearly, ℓF is upper continuous. Let 0→ M1 → M2
π→ M3 → 0 be an exact sequence of D-modules. IfℓF(M2) = 0, then Ann(x) ∈ F for all x ∈ M2; in particular, Ann(y) ∈ F for all y ∈ M1 (and so ℓF(M1) = 0) and

Ann(z) = Ann(π(x)) ⊇ Ann(x) for all z = π(x) ∈ M3 (and so ℓF(M3) = 0). In particular,ℓF(M2) = ℓF(M1) + ℓF(M3).
Suppose now ℓF(M2) = ∞; then there is an x ∈ M2 such that Ann(x) ∉ F. Suppose ℓF(M1) = ℓF(M3) = 0,

let z := π(x), and consider the exact sequence 0→ xD ∩M1→ xD→ zD→ 0. Sincewe supposed ℓF(M3) = 0,
wemust have I := Ann(z) ∈ F; furthermore, for every i ∈ I, we have ix ∈ xD ∩M1, and thusAnn(ix) ∈ F. How-
ever, Ann(ix) = (Ann(x) : iD); since I ∈ F, this would mean that Ann(x) ∈ F, against the hypothesis on x.
Therefore, one between ℓF(M1) and ℓF(M3) is infinite, and thus ℓF(M2) = ℓF(M1) + ℓF(M3). Hence, ℓF is
a length function.

Theorem 6.5. Let D be an integral domain. The two maps

Lsing(D) → LocSist(D), ℓ 󳨃→ Z(ℓ),
LocSist(D) → Lsing(D), F 󳨃→ ℓF

are bijections, one inverse of the other. Furthermore, if LocSist(D) is endowed with the containment order, they
are order-reversing isomorphisms.

Proof. Since a singular length function is characterized by its zero locus, we need to show that Z(ℓF) = F and
that ℓZ(ℓ) = ℓ. Indeed,

Z(ℓF) = {I ∈ I(D) | ℓF(D/I) = 0}.
However, for every x ∈ D/I, we have Ann(x) ⊇ Ann(1 + I) = I, and thus ℓF(D/I) = 0 if and only if I ∈ Z(ℓ).
Therefore, Z(ℓF) = F.

On the other hand, ℓZ(ℓ)(M) = {{{0 if Ann(x) ∈ Z(ℓ) for all x ∈ M,∞ otherwise.

If Ann(x) ∈ Z(ℓ) for all x ∈ M, then ℓ(M) = 0 by Lemma 4.1, while if Ann(x) ∉ Z(ℓ) for some x ∈ M, then
xD ≃ D/Ann(x), and thus, since ℓ is singular, ℓ(M) ≥ ℓ(xD) = ∞. Thus, ℓZ(ℓ) = ℓ, as claimed.

The last claim follows from the fact that, for singular length functions, one has ℓ1 ≤ ℓ2 if and only if
Z(ℓ1) ⊇ Z(ℓ2).
Localizing systems are also closely related to the concept of stable semistar operations. Let F(D) be the set
of D-submodules of the quotient field K; a stable semistar operation on D is a map ⋆ : F(D) → F(D) such that,
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for every I, J ∈ F(D) and every x ∈ K,∙ I ⊆ I⋆,∙ if I ⊆ J, then I⋆ ⊆ J⋆,∙ (I⋆)⋆ = I⋆,∙ (xI)⋆ = x ⋅ I⋆,∙ (I ∩ J)⋆ = I⋆ ∩ J⋆.
(A map that satisfies the first four properties is called a semistar operation.) We denote by SStarst(D) the set
of stable semistar operations.

There is a natural bijection between stable semistar operations and localizing systems; if ⋆ is a stable
semistar operation, then the set F⋆ := {I ∈ I(D) | 1 ∈ I⋆} is a localizing system, while if F is a localizing sys-
tem, then ⋆F : I 󳨃→ ⋃{(I : E) | E ∈ F} is a stable semistar operation; these two correspondences are inverse
one of each other [5, Theorem2.10]. By composing themwith themaps considered in Theorem6.5, we obtain
two bijections

Φ: SStarst(D) → Lsing(D), ⋆ 󳨃→ ℓF⋆ ,
Φ−1 : Lsing → SStarst(D), ℓ 󳨃→ ⋆Z(ℓ)

which are order-reversing isomorphisms if SStarst(D) is endowed with the order such that ⋆1 ≤ ⋆2 if I⋆1 ⊆ I⋆2
for every I ∈ F(D). Note that, in this order, the infimum of a family ∆ is the map sending I to⋂⋆∈∆ I⋆.
Proposition 6.6. Let Λ be a nonempty set of stable semistar operations on the integral domain D. Then

Φ(inf Λ) = ∑
⋆∈Λ

Φ(⋆).
Proof. Since Φ is an order-reversing isomorphism, we have Φ(inf Λ) = supΦ(Λ); the claim now follows from
Lemma 3.7.

A special subset of stable semistar operations are spectral semistar operations, i.e., the closures in the form

s∆ : I 󳨃→ ⋂
P∈∆

IDP ,

where ∆ ⊆ Spec(D); furthermore, we can suppose that ∆ is closed by generizations, i.e., it is such that if P ∈ ∆
and Q ⊆ P, then also Q ∈ ∆. The corresponding localizing system is

F∆ := {I ∈ I(D) | I ⊈ P for every P ∈ ∆},
while the associated length function ℓ∆ is such thatℓ∆(D/I) = {{{0 if I ⊈ P for every P ∈ ∆,∞ if I ⊆ P for some P ∈ ∆,
or, more generally, ℓ∆(M) = {{{0 if Ann(x) ⊈ P for every P ∈ ∆ and x ∈ M,∞ if Ann(x) ⊆ P for some P ∈ ∆ and x ∈ M
for every D-module M. In particular, if ∆ = Spec(D), then ℓ∆(M) = 0 if and only if M = 0, while if ∆ = {(0)},
then ℓ∆(M) = 0 if and only if M is torsion.

Such length functions have a decomposition like the ones found in Theorems 3.10 and 5.4.

Proposition 6.7. Let D be an integral domain, and let ∆ ⊆ Spec(D) be closed by generizations; let ℓ := Φ(s∆),
and let Σ(ℓ) := {P ∈ Spec(D) | P ∉ Z(ℓ)}. Then
(a) ∆ = Σ(ℓ),
(b) ℓ = ∑P∈Σ(ℓ) ℓ ⊗ DP.

Proof. From the bijections between SStarst(D), LocSist(D) and Lsing(D), we see that prime P is in Z(ℓ) if and
only if 1 ∈ Ps∆ ; since ∆ is closedbygenerizations, it follows that P ∈ Z(ℓ) if andonly if P ∉ ∆, and thus ∆ = Σ(ℓ).
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The semistar operation s∆ is the infimumof the family s{P}, as P ranges in ∆; by Proposition 6.6, it follows
that ℓ = Φ(s∆) = ∑

P∈∆
Φ(s{P}),

and thus we only need to show that Φ(s{P}) = ℓ ⊗ DP; to do so, it is enough to show that their zero loci are
equal. We have

Z(Φ(s{P})) = Fs{P} = {I ∈ I(D) | I ⊈ P}.
If I ⊈ P, then DP/IDP = 0, and thus(ℓ ⊗ DP)(D/I) = ℓ(D/I ⊗D DP) = ℓ(DP/IDP) = ℓ(0) = 0,
i.e., I ∈ Z(ℓ ⊗ DP); on the other hand, if I ⊆ P then, using Proposition 4.4,(ℓ ⊗ DP)(D/I) ≥ (ℓ ⊗ DP)(D/P) = ℓ(D/P) = ∞
since Ps{P} = PDP does not contain 1. Hence, I ∉ Z(ℓ ⊗ DP), and thus Z(Φ(s{P})) = Z(ℓ ⊗ DP). The claim is
proved.

Let now D be a Prüfer domain, and let⋆ ∈ SStarst(D). The normalized stable version of⋆ is (see [17, Section 4])⋆̂ : I 󳨃→ ⋂
P∈Σ1(⋆)

IDP ∩ ⋂
P∈Σ2(⋆)
(IDP)vDP ,

where vDP is the v-operation on DP (i.e., if J is an ideal of DP, then JvDP = ⋂{yDP | J ⊆ yDP}), and
Σ1(⋆) :={P ∈ Spec(D) | 1 ∉ P⋆},
Σ2(⋆) :={P ∈ Spec(D) | 1 ∈ P⋆, 1 ∉ Q⋆ for some P-primary ideal Q}.

(In the terminology of [17], Σ1(⋆) =: QSpec⋆(D) is the quasi-spectrum of ⋆, while Σ2(⋆) =: PsSpec⋆(D) is the
pseudo-spectrum.) By [17, Proposition 3.4], and in the terminology introduced inDefinition 5.9, furthermore,{Σ1(⋆), Σ2(⋆)} is a layered family with core Σ1(⋆).

This construction is analogous to the passage from a length function ℓ toℓ♯ := ∑
P∈Σt(ℓ)
(tPDP )D + ∑

P∈Σi(ℓ)
(iPDP )D = ∑

P∈Σ(ℓ)
ℓ ⊗ DP ,

as the next proposition shows.

Proposition 6.8. Let D be a Prüfer domain. Then, for every stable semistar operation ⋆, we haveΦ(⋆̂) = Φ(⋆)♯.
Proof. Let ∆ be the set formed by the functions dP : I 󳨃→ IDP, for P ∈ Σ1(⋆), and vP := I 󳨃→ (IDP)vDP , as
P ∈ Σ2(⋆). By Proposition 6.6, it follows that

Φ(⋆̂) = ∑
P∈Σ1(⋆)

Φ(dP) + ∑
P∈Σ2(⋆)

Φ(vP).
On the other hand, by unpacking the definitions, we have Σt(Φ(⋆)) = Σ1(⋆) and Σi(Φ(⋆)) = Σ2(⋆); hence, it is
enough to show that Φ(dP) = (tPDP )D and Φ(vP) = (iPDP )D for every P ∈ Spec(D), and to do so, it is enough to
consider their zero loci.

By a direct calculation,

Z(Φ(dP)) = {I ∈ I(D) | I ⊈ P} = {I ∈ I(D) | PDP ⊊ IDP} = Z((tPDP )D);
analogously,

Z(Φ(vP)) = {I ∈ I(D) | PDP ⊆ IDP} = Z((iPDP )D)
since (IDP)vDP = DP if and only if IDP is equal to DP or to PDP. The claim is proved.
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Suppose now that every ideal of D has only finitely many minimal primes. Then Theorem 5.4 (and Corol-
lary 5.8) can be seen as a version of [17, Theorem 4.5 and Corollary 4.6]; like any singular length function
can be written as ∑P∈Σ1 ℓ ⊗ DP + ∑P∈Σ2 ℓ ⊗ DP, a stable semistar operation can be written as the infimum of
the semistar operations dP (as P ranges in some Σ1) and vP (as P ranges in Σ2).

More generally, suppose that ⋆ is a semistar operation which is equal to its normalized stable version,
i.e., suppose that there are Σ1, Σ2 ⊆ Spec(D) such that {Σ1, Σ2} is a layered family with core Σ1 and⋆ : I 󳨃→ ⋂

P∈Σ1
IDP ∩ ⋂

P∈Σ2
(IDP)vDP .

Then, by Proposition 6.8, we see that the corresponding length function ℓ = ℓ♯ can be decomposed asℓ = ∑P∈Σ(ℓ) ℓ ⊗ DP. Thus, the fact that a stable semistar operation is determined at the local level (through the
closures dP and vP) corresponds to the fact that the corresponding length function depends exclusively on
length functions on the localizations of D.

We end the paper with two examples of Prüfer domains of dimension 1 that are not locally finite and
whose behavior with respect to decomposition is very different; more precisely, in Example 6.9, we present
an example where every singular length function can be decomposed (despite the domain not satisfying
the hypothesis of Theorem 5.4), while in Example 6.10, we give a singular length function that cannot be
decomposed.

Example 6.9. Let D be an almost Dedekind domain (i.e., an integral domain such that DM is a discrete valu-
ation ring for everyM ∈ Max(D)), and suppose that there is only a finite (nonzero) number of maximal ideals
of D that are not finitely generated. (See [10] for explicit examples of domains with this property.) In particu-
lar, D is one-dimensional and Spec(D) is not Noetherian, and so there are ideals with infinitelymanyminimal
primes.

We claim that every singular length function ℓ can be written as ℓ = ∑M∈Max(D) ℓ ⊗ DM, and to do so, we
want to show that every stable semistar operation ⋆ is equal to ⋆ = s∆ for some ∆ ⊆ Spec(D). If not, then by
[5, Theorem 4.12(3)], there is a proper ideal I of D such that I = I⋆ ∩ D but P ̸= P⋆ ∩ D for every prime ideal P
containing I; since D is one-dimensional, it follows that 1 ∈ P⋆ for every P containing I, or equivalently that
P⋆ = D⋆.

Suppose that P = pD contains I and is principal; then 1 ∈ P⋆ = (pD)⋆ = pD⋆, and thus 1/p ∈ T := D⋆.
Hence, I⋆ = (ID)⋆ = (ID⋆)⋆ ⊇ ID[1/p]. The ideal ID[1/p] ∩ D is not contained in pD since(ID[1/p] ∩ D)DP = ID[1/p]DP ∩ DDP = DP;

thus, ID[1/p] ∩ D ̸= I, a contradiction. Hence, I is not contained in any principal prime ideal; however, this
means that I has a primary decomposition, namely I = ⋂i(IDMi ∩ D), where {M1, . . . ,Mn} are the maximal
ideal of D containing I. By Proposition 4.7, it follows that ℓ(D/I) = ∑i ℓ(D/(IDMi ∩ D)); however, by Proposi-
tion 4.4, ℓ(D/(IDM ∩ D)) = ℓ(DM/IDM) = ℓ(DM/(MDM)k) = 0
since DM is a DVR (and so IDM = (MDM)k for some k) and ℓ(DM/MDM) = ℓ(D/M) = 0. It follows that ℓ(D/I) = 0,
and thus that I ∈ Z(ℓ) = {I ∈ I(D) | 1 ∈ I⋆}, against the fact that I = I⋆ ∩ D. Hence, ⋆ is spectral, and so ⋆ = s∆;
by Proposition 6.7, we have ℓ = ∑

P∈Σ(ℓ)
ℓ ⊗ DP = ∑

M∈Max(D)
ℓ ⊗ DM ,

with the last equality coming from the fact that ifM ∉ Σ(ℓ), then ℓ ⊗ DM sends every proper quotient D/I to 0.
Example 6.10. Let D := 𝔸 be the ring of all algebraic integers. By [3, Example 4.5] and [17, Example 4.2],
we can build a stable semistar operation ⋆ such that Q⋆ = D for every primary ideal Q, while D⋆ = D (and
so (xD)⋆ = xD for every x ∈ D). The corresponding localizing system contains every ideal contained in only
finitelymanymaximal ideals, but it does not contain any proper principal ideal; hence, the associated length
function ℓ is such that ℓ(D/I) = 0 if I is contained in only finitely many maximal ideals, while ℓ(D/xD) = ∞
for all nonunits x ∈ D.
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By Proposition 4.4, if Q is P-primary, then ℓDP (DP/QDP) = ℓ(D/Q) = 0, while ℓDP (DP) = ∞; hence,ℓDP = t(0) for every P ∈ Max(D). It follows that Σt(ℓ) = {(0)}, while Σi(ℓ) = Σr(ℓ) = Σv(ℓ) = 0; therefore, settingℓ♯ := ∑P∈Σ(ℓ) ℓ ⊗ DP, we haveℓ♯(M) = (t(0))D(M) = {{{0 if M is a torsion D-module,∞ otherwise,

and thus ℓ♯(D/I) = 0 for every proper ideal I of D. In particular, ℓ ̸= ℓ♯.
Furthermore, (ℓ ⊗ DM)(D/I) = 0 for every nonzero ideal I and everymaximal idealM; hence, we also haveℓ ̸= ∑

P∈∆
ℓ ⊗ DP

for every family ∆ ⊆ Spec(D).
Acknowledgment: I would like to thank Luigi Salce for introducing me to length functions and for his feed-
back on an earlier version of the manuscript. I also thank the referee for his/her suggestions, which helped
in making the paper clearer.
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