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SEMIPARAMETRIC ANALYSIS OF COMPLEX

LONGITUDINAL DATA

Dayu Sun

Dr. (Tony) Jianguo Sun, Dissertation Supervisor

ABSTRACT

Event history data consist of the longitudinal records of event occurrence times.

Recurrent event data and panel count data are two common types of event history

data that occur in many areas, such as medical studies and social sciences. A great

deal of literature has been established for their analyses. Nevertheless, only limited

research exists on the variable selection for recurrent event data and panel count

data. The existing methods can be seen as direct generalizations of the available

penalized procedures for linear models, but may not perform as well as expected due

to the complex structure of event history data. The first and second parts of this

dissertation then discuss simultaneous parameter estimation and variable selection

for event history data. We present a new variable selection method with a new

penalty function, which will be referred to as the broken adaptive ridge regression

approach. In addition to the establishment of the oracle property, we also show that

the proposed variable selection method has the clustering or grouping effect when

covariates are highly correlated. Furthermore, the numerical studies are performed

and indicate that the method works well for practical situations and can outperform

the existing methods. Applications to real data are provided.
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Most of the existing studies of longitudinal data assume that covariates can be

observed at the same observation times for the response variable, and the observation

process is independent of the response variable completely or given covariates. In

practice, the response variables and covariates are sometimes observed intermittently

at different time points, leading to sparse asynchronous longitudinal data. The ob-

servation process may also be related to the response variable even given covariates

and sometimes both issues can even occur at the same time. Although each of the

two issues has been developed to address in literature, it does not seem to exist an

established approach that can deal with both together. To address both issues si-

multaneously, the third part of this dissertation proposes a flexible semiparametric

transformation conditional model and a kernel-weighted estimating equation based

approach. The proposed estimators of regression parameters are shown to be con-

sistent and asymptotically follow the normal distribution. For the assessment of the

finite sample performance of the proposed method, an extensive simulation study is

carried out and suggests that it performs well for practical situations. The approach

is applied to a prospective HIV study that motivated this investigation.
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Chapter 1

Introduction

1.1 Introduction to Event History Data

Event history data consist of the longitudinal records of event occurrence times from

a sample of individuals. Two follow-up schemes are typically used for event history

studies. One is to follow all study subjects continuously, leading to recurrent event

data. Recurrent event data comprise all occurrence times of events for each individual

during the follow-up (Andersen, 1997; Cai and Schaubel, 2004; Cook and Lawless,

2007). Recurrent event data occur in many areas such as medical studies and social

sciences, and a great deal of literature has been established for their analysis (An-

dersen, 1997; Cook and Lawless, 2007; Lawless and Nadeau, 1995; Lin et al., 2000;

Schaubel et al., 2006). In particular, Cook and Lawless (2007) gave a comprehensive

review of the literature on the analysis of such data. An example is the study of

the hospitalization rate for certain patient groups, and another example is given by
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investigating the occurrence rate of some disease symptoms or infections, as discussed

in Section 2.6.

Another scheme is to observe all study subjects only at discrete time points and

thus only incomplete data, which are often referred to as panel count data, are avail-

able for inference. In panel count data, we only know the number of event occurrences

between two consecutive observation times points. The panel count data can then be

regarded as interval-censored recurrent event data. One complicated factor for panel

count data is that both observation and follow-up times usually vary from subject to

subject. Fields in which panel count data are common include demographical studies,

epidemiological studies, medical periodic follow-up studies and tumorigenicity exper-

iments (Balakrishnan and Zhao, 2009; Hu et al., 2009). A most recent comprehensive

review for panel count data is Sun and Zhao (2013). An example is the skin cancer

study, discussed in Section 3.5, investigating if a treatment can reduce the rates of

two types of skin tumor recurrence (Li et al., 2010; Sun and Zhao, 2013). In this skin

cancer study, each patient was observed at a sequence of discrete observation times

and the numbers of occurrences of two types of skin tumors between the observation

times were recorded. However, as expected, these real observation times differed from

patient to patient and so as the follow-up times.

1.2 Variable Selection for Recurrent Event Data

and Panel Count Data

Variable selection is an important topic and has been discussed in many areas such as

linear regression and failure time data analysis (Fan and Li, 2002; Tibshirani, 1996).

2



Among the available methods, the most commonly used is perhaps the penalized

approach that maximizes or minimizes an objective function minus or plus a penalty

function. It is well known that a natural approach is the L0-penalized regression that

directly penalizes the cardinality of the variables in the model and seeks the most

parsimonious model explaining the data. However, solving an exact L0-penalized

nonconvex optimization problem involves exhaustive combinatorial best subset search,

which is NP-hard and computationally infeasible, especially for high dimensional data.

To overcome this, a popular approach is to replace the nonconvex L0-norm by the

L1-norm, which is known as the closest convex relaxation of the L0-norm. In addition,

the L1-penalized optimization problem can be solved exactly with efficient algorithms

and the method became popular since introducing the least absolute shrinkage and

selection operator (LASSO) method (Tibshirani, 1996). Nevertheless, it is known that

the LASSO does not have the oracle property as it tends to select too many small

noise features and is biased for large parameters. In addition, it cannot accommodate

the grouping effect when covariates are highly correlated.

To address these, many penalty functions have been proposed such as the smoothly

clipped absolute derivation (SCAD) (Fan and Li, 2001) and the adaptive LASSO

(ALASSO) (Zou, 2006) functions. However, none of them have both the oracle prop-

erty and grouping effect at the same. In this dissertation, we propose a broken

adaptive ridge (BAR) regression approach that approximates the L0-penalized re-

gression using an iteratively reweighted L2-penalized algorithm for variable selection.

The advantage of the BAR is that it has both the grouping effect and oracle property

However, these methods cannot be directly applied to the event history data be-

cause they have a much more complicated and different structure. To our knowledge,
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two penalized procedures have been developed in Tong et al. (2009a) and Zhang et

al. (2013), and both considered some commonly used penalty functions, namely, the

smoothly clipped absolute derivation (SCAD) and the seamless-L0 (SELO) functions

(Dicker et al., 2013). Also they both discussed the multiplicative mean model, which

assumes that covariates affect the mean function of the process in a multiplicative

way, for the underlying recurrent event process (Sun and Zhao, 2013).

As a useful alternative to the multiplicative model, the additive rate model as-

sumes that the rate function of a recurrent event process N∗(t) has the form

E{dN∗(t)|Z∗(t)} = dµ0(t) + β>Z∗(t)dt; (1.1)

see (Sun and Zhao, 2013; Zhao et al., 2013). In the above, Z∗(t) denotes a p-

dimensional vector of possibly time-dependent covariates, µ0(t) is an unspecified non-

descreasing function and β denotes a p-dimensional vector of regression parameters.

The model above provides a characterization of the regression effects different from

the multiplicative model and has some remarkable features that are not shared by

the latter. In particular, model (1.1) pertains to the risk difference or excess risk,

a measure that is especially relevant and informative in epidemiological and clinical

studies. Very limited literature has discussed the variable selection for event his-

tory data under model (1.1). To our best knowledge, only Chen and Wang (2013)

addressed this issue for recurrent event data by ALASSO and SCAD method.

To fill the research gap, we will propose a simultaneous estimation and variable

selection method for recurrent event data and panel count data under model (1.1)

by the novel BAR approach in Chapters 2 and 3, respectively. In particular, unlike

the two existing methods given in Tong et al. (2009a) and Zhang et al. (2013), the
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resulting estimator from the proposed method enjoys the oracle property and grouping

effect at the same time.

1.3 Regression Analysis of Asynchronous Longitu-

dinal Data

A great deal of literature has been established for regression analysis of longitudinal

data (Diggle et al., 1994; Hand and Crowder, 1996). For most of the existing methods,

two basic assumptions are that 1) covariates can be observed completely or at the

same observation times for the response variable, and 2) the observation process is

independent of the response variable completely or given covariates. However, as

pointed out by many authors, sometimes the response variables and covariates may

be observed intermittently at different time points, leading to sparse asynchronous

longitudinal data. The sparsity here means that only a few observations are available

at discrete time points for each subject. In addition, the observation process may

be related to the response variable even given covariates, resulting in an informative

observation process. In this case, the observation processes can be modeled and

studied as event history data.

One example of sparse asynchronous longitudinal data is given in Wohl et al.

(2005), which discussed the analysis of a prospective observational cohort study of

190 HIV-infected subjects. The subjects were followed for up to five years and dur-

ing the study, their HIV viral load and CD4 cell counts were measured repeatedly.

Figure 1.1 presents the observation times for both viral load and CD4 cell counts

for all the subjects studied by Wohl et al. (2005) and it is clear that they are not
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matched over time because the two variables were measured on different days. Some
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Figure 1.1: Observation times of CD4 cell counts and HIV viral load by each patient.

patients had additional visits because of random HIV-related infection occurrence,

implying possible informative observation times. The existence of informative ob-

servation times or processes can often occur too in other longitudinal studies. For

example, Sun et al. (2005) discussed such an example arising from a bladder cancer

follow-up study conducted by the Veterans Administration Cooperative Urological

Research Group. It followed the patients with superficial bladder tumors and some

patients had significantly more clinical visits than others. Medical cost data also give

an example of informative observation processes when some patients may make more

visits to clinics or hospitals (Sun et al., 2005). To deal with the asynchronicity be-

tween response observation times and covariates measurement times, one ad hoc but

6



commonly used method is the last value carried forward approach, which imputes the

values of covariates by their most recent observed values. However, it is easy to see

that it can yield biased estimators (Cao et al., 2016).

To properly take into account the asynchronicity between response observation

times and covariates measurement times, Cao et al. (2015b) proposed a generalized

estimation equation approach using kernel weighting under the generalized linear

model. Following them, Chen and Cao (2017) generalized the method to the partial

linear model situation. In addition, Cao et al. (2015a) considered regression analysis

of recurrent event data with sparse longitudinal covariates and developed a similar

kernel weighted method.

Some literature has been developed for regression analysis of synchronous longi-

tudinal data with informative observation processes and among others, early work

includes Lin et al. (2004) and Sun et al. (2005). The former proposed a class of

inverse intensity-of-visit process-weighted estimators under the framework of typical

marginal regression models, while the latter presented some conditional models and

developed an estimating equation-based estimation procedure. In addtion, Sun et al.

(2007), Song et al. (2012) and Qu et al. (2018) gave some joint modeling methods, and

Han et al. (2014) provided an estimating equation-based method when the follow-up

time may be informative too. In addition, among others, He et al. (2009), Li et al.

(2010), and Li et al. (2013) discussed the same problem where the longitudinal vari-

able of interest represents some counts, which can be regarded as panel count data.

However, it does not seem that there exists an established approach that can allow

both the asynchronicity and the informative observation process. As pointed out by

many authors, when they exist, the analysis that ignores either the asynchronicity

7



or the informative observation process could result in biased results and misleading

conclusions. In Chapter 4, we will present a class of general and flexible models and

an estimating equation-based approach that can deal with both issues.

1.4 Outline of the Dissertation

The remainder of this dissertation will be organized as follows. In Chapter 2, we

consider variable selection for the recurrent event data with the additive model (1.1).

We first introduce the existing estimating method for the recurrent event data with

the additive model by the estimating equation method. Then we will introduce the

motivation and details of the BAR method for variable selection. As discussed above,

most variable selection methods cannot be directly applied to the event history data.

We therefore propose a pseudo loss function method to enable variable selection for

recurrent event data by the penalized method. We rigorously established the oracle

properties and grouping effects of the proposed method. A simulation study shows

the performance of the variable selection and compares it with other popular variable

selection methods, namely, LASSO, ALASSO and SCAD. Another numerical study

also demonstrates the grouping effect of the method proposed in Chapter 2. An ap-

plication to the chronic granulomatous disease (CGD) study illustrates the proposed

method in practice.

Chapter 3 considers the BAR variable selection method for panel count data

under the additive model (1.1). Similarly to the method for the recurrent event data,

a pseudo loss function is constructed from the estimating equation for panel count

used to infer the panel count data. The oracle property and grouping effect of the

8



proposed method are proved. Besides, numerical studies are carried out to compare

the finite-sample properties of the proposed method with other methods and illustrate

its grouping effect. We then discuss the application of the proposed method to the

skin cancer trial.

Chapter 4 discusses regression analysis for asynchronous longitudinal data in the

presence of informative observation times. We will present a class of flexible semi-

parametric transformation models and a kernel-based estimating equation method

for inference. We develop the asymptotic properties of the estimators from the pro-

posed method. An extensive simulation shows the finite-sample properties of the

estimates. An application to the HIV study (Wohl et al., 2005) demonstrates the

proposed method in practice.

9



Chapter 2

Variable Selection for Recurrent
Event Data with Broken Adaptive
Ridge Regression

2.1 Introduction

As described in Section 1.2, recurrent event data are common in many areas and

many methods have been developed for analyzing recurrent event data. However,

there exists little research on the variable selection in the context of recurrent event

data except Tong et al. (2009b) and Chen and Wang (2013). The former considered

the data arising from a multiplicative rate model and proposed a penalized estimat-

ing equation-based procedure with the SCAD penalty function (Fan and Li, 2001).

In contrast, the latter considered the additive rate model and developed a penalized

least-squares loss function-based method with the use of the SCAD penalty function

and the ALASSO proposed by Zou (2006). As will be seen below, the two meth-
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ods may not perform well sometimes and do not have the grouping effect, which is

especially important when variables are highly correlated.

In this chapter, we elaborate on the BAR regression approach mentioned in Sec-

tion 1.2 for variable selection of recurrent event data. To describe the BAR re-

gression approach, we will first introduce some notation and the model to be used

throughout this chapter and also briefly describe the existing estimation procedure

in Section 2.2. The proposed method is presented in Section 2.3, and as mentioned

above, it approximates the L0-penalized regression using an iteratively reweighted

L2-penalized algorithm and takes the limit of the algorithm as the BAR estimator.

The approach has the advantages of performing simultaneous variable selection and

parameter estimation and accommodating clustering effects. Also in Section 2.3,

the asymptotic properties of the proposed BAR estimator including the oracle prop-

erty are established. Section 2.4 presents the results of extensive simulation studies

to assess the performance of the proposed methodology, and they suggest that the

proposed method works well and can outperform the existing methods for practical

situations. An application is provided in Section 2.5 and Section 2.6 contains some

discussion and concluding remarks.

2.2 Model and the Existing Estimation Procedure

Consider an event history study consisting of n independent subjects which concerns

the occurrence of a recurrent event of interest. For subject i, let N∗i (t) denote the

underlying recurrent event process indicating the total number of the occurrences of

the event over the time interval [0, t]. Let Ci denote the follow-up time on subject

11



i and let Ni(t) = N∗i (t ∧ Ci) be the observed recurrent event process. Suppose

that there exists a p-dimensional vector of external covariate process, denoted by

Z∗i (t) = (Z∗i1(t), . . . , Z
∗
ip(t))

′, and the main objective is to perform regression analysis

with the focus on parameter estimation and covariate selection.

To describe the covariate effect, we assume that given Z∗i (t), N
∗
i (t) satisfies the

model (1.1). As introduced in Section 1.2, (1.1) is usually referred to as the additive

rate model and has been studied by many authors for analyzing recurrent event data.

Cook and Lawless (2007), Lin et al. (2000) and Schaubel et al. (2006) discussed the

validity and usefulness of the model and Schaubel et al. (2006) provided an approach

to measure the validity of the model given the observed recurrent event data. But

there does not seem to exist an established method that can be used for covariate

selection except Chen and Wang (2013). As opposed to its commonly used alternative,

the proportional rate model, where the regression coefficient reflects relative effects,

model (1.1) characterizes the absolute covariate effects, which are often of direct

interest in epidemiological and clinical studies.

For the time being, we are only interested in the estimation of the regression

parameter β. For this, define

dMi(t;β) = dNi(t)− I(Ci > t){dµ0(t) + β′Z∗i (t)dt} .

One can easily show that Mi(t;β) is a zero-mean stochastic process at the true value,

say β0, of the regression parameter, and this motivates the estimating equations

n∑
i=1

∫ t

0

dMi(s;β) = 0 (2.1)
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and
n∑
i=1

∫ τ

0

Z∗i (s)dMi(s;β) = 0 (2.2)

for estimation of β0 and µ0(t), where τ is a pre-specified constant such that P (Ci ≥

τ) > 0 for i = 1, . . . , n. Solving (2.1) for µ0(t) with β fixed and plugging the solution

into the (2.2), we obtain the estimating equation

Un(β) =
n∑
i=1

∫ τ

0

{
Z∗i (s)− Z̄∗(s)

}
dMi(s;β) = 0 . (2.3)

Here Z̄∗(t) = S(1)(t)/S(0)(t) and S(k)(t) = n−1
∑n

i=1 I(Ci ≥ t)Z∗⊗ki (t) with a⊗0 = 1,

a⊗1 = a, a⊗2 = aa′ for a vector a, k = 0, 1, 2. Such equations were also given by

Schaubel et al. (2006).

Solving (2.3) gives an explicit estimator of β as

b̂ =
[ n∑
i=1

∫ τ

0

I(Ci ≥ s)
{
Z∗i (s)− Z̄

∗
(s)
}⊗2

ds
]−1[ n∑

i=1

∫ τ

0

{
Z∗i (s)− Z̄

∗
(s)
}
dNi(s)

]
.

Schaubel et al. (2006) showed that under some regularity conditions, b̂ is a consistent

estimator of β and
√
n(b̂− β) has an asymptotic normal distribution.

2.3 BAR Regression Estimation Procedure

Now we discuss the covariate selection problem and for this, let

P n =
n∑
i=1

∫ τ

0

{
Z∗i (s)− Z̄∗(s)

}
dNi(s)
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and

Ωn =
n∑
i=1

∫ τ

0

I(Ci ≥ s)
{
Z∗i (s)− Z̄

∗
(s)
}⊗2

ds ,

and define a pseudo loss function

l(β) =
1

2
β′Ωnβ − β′P n .

One can easily show that b̂ is the minimizer of l(β). Also let X denote the p × p

upper triangular matrix given by the Cholesky decomposition of Ωn in Ωn = X ′X,

and y = (X ′)−1P n. Then we can see that the minimization of l(β) is equivalent

to minimizing the least-squares loss function ‖y − Xβ‖2 up to a constant. This

suggests that by borrowing the idea behind the penalized least squares, we define the

L0-penalized least-squares estimator of β as

β̂(L0) = arg min
β
{‖y −Xβ‖2 + λn

p∑
j=1

I(βj 6= 0)} , (2.4)

where λn > 0 is a tuning parameter.

Although with some good properties, the determination of β̂(L0) is very difficult

or computationally infeasible. To deal with this, we propose to approximate (2.4) by

g(β̃) ≡ arg min
β
{‖y −Xβ‖2 + λn

p∑
j=1

β2
j

β̃2
j

} ,

which can be rewritten as g(β̃) = {X ′X + λnD(β̃)}−1X ′y, or

g(β̃) = {Ωn + λnD(β̃)}−1P n ,
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where D(β̃) = diag{β̃−21 , . . . , β̃−2p } with β̃ = (β̃1, . . . , β̃p)
′ denoting a reasonable or

consistent estimator of β0 such that there is no zero components in β̃. More discussion

on this will be given below.

To see why the proposed idea works, we note that the quadratic function is an

approximation to the L0 penalized regression defined in (2.4) and that L0 penalty is a

good tool for variable selection except for its difficult computation feature. Also note

that the approximation idea of iteratively reweighted quadratic penalization actually

has its roots in the well-known Lawsons algorithm in the classical approximation the-

ory and the sparse signal reconstruction theory (Gorodnitsky and Rao, 1997; Lawson,

1961). In the approximation above, the weighted penalty for a zero component will

iteratively become large and as a consequence, a zero coefficient estimate is expected

to decrease and converge to zero. In contrast, the weighted penalty for a non-zero

component is expected to converge to a constant.

We define the BAR estimator of β as

β̂
∗
R = lim

k→∞
β̂

(k)

R

based on the iterative formula β̂
(k)

R = g(β̂
(k−1)
R ). For the selection of the initial values

for the iteration procedure above, we suggest β̂
(0)

R = (Ωn + ξnI)−1P n, where ξn ≥ 0.

When ξn > 0, β̂
(0)

R is the ridge estimator; if ξn = 0, β̂
(0)

R reduces to the unpenalized

estimator b̂ = Ω−1n P n. The idea discussed above has been considered under different

contexts by Frommlet and Nuel (2016) and Liu and Li (2016), who demonstrated

empirically that as an automatic variable selection and parameter estimation proce-

dure, the BAR method could provide substantial improvements over some existing

methods. However, no theoretical justification was provided.
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To establish the asymptotic properties of β̂
∗
R, we write β0 = (β′01,β

′
02)
′ with β01

and β02 being the first q and remaining p − q components of β0, respectively, and

without loss of generality assume that β02 = 0. Let β̂
(k)

R = (β̂
(k)′

R1 , β̂
(k)′

R2 )′ and β̂
∗
R =

(β̂
∗′

R1, β̂
∗′

R2)
′ denote the corresponding decomposition of β̂

(k)

R and β̂
∗
R, respectively.

Let z̄∗(t) = limn→∞ Z̄
∗
(t), Ω = E[

∫ τ
0
I(Ci ≥ t){Z∗i (t) − z̄∗(t)}⊗2ds] and Σ(β) =

E[
∫ τ
0
{Z∗i (t) − z̄∗(t)}dMi(t;β)]⊗2, and let Ω(1), Σ(1), P

(1)
n and Ω(1)

n be the leading

q × q submatrix of Ω, Σ(β0), P n and Ωn, respectively.

The following are the regularity conditions needed for the asymptotic properties

of β̂
∗
R.

(C1) {N∗i (·), Ci,Z∗i }, i = 1, . . . , n, are independent and identically distributed.

(C2) P (Ci ≥ τ) > 0, for i = 1, . . . , n.

(C3) Ni(τ) is bounded by a constant.

(C4) The matrix Ω is positive definite.

(C5) The Z∗i (·)’s have bounded total variations, i.e., {‖Z∗i (0)‖ +
∫ τ
0
‖dZ∗i (t)‖} is

bounded for all i, where ‖Z∗i (·)‖ is the Euclidean metric of the vector Z∗i (·).

(C6) c−1 < λmin(Ω) ≤ λmax(Ω) < c, for all n > 0 and some large constant c > 1,

where λ(Q) stands for the eigenvalues of the matrix Q.

(C7) λn →∞ and λn/
√
n→ 0 as n→∞.

Theorem 1. Assume that the regularity conditions (C1)-(C7) given above hold. Sup-

pose that the initial estimator satisfies β̂
(0)

R = β0 + Op(n
−1/2). Then with probability

tending to 1, the BAR estimator β̂
∗
R = (β̂

∗′

R1, β̂
∗′

R2)
′ has the following properties:
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1. β̂
∗
R1 exists and is the unique fixed point of the equation β1 = (Ω(1)

n +λnD1(β1))
−1P (1)

n ,

where D1(β1) = diag{β−21 , . . . , β−2q };

2. β̂
∗
R2 = 0;

3.
√
n(β̂

∗
R1 − β01)

D→ N(0,Ω−1(1)Σ(1)Ω
−1
(1)) as n→∞.

For a variable selection procedure, in addition to the oracle property, another

property that is often desired is the grouping effect, meaning that the highly corre-

lated covariates should have similar regression coefficients and be selected or deleted

simultaneously. For the proposed BAR approach, it follows from Ωn = X ′X that

the (j, k) elements of the two matrices are equal, giving

n∑
i=1

∫ τ

0

I(Ci ≥ s){Z∗ij(s)− Z̄∗j (s)}{Z∗ik(s)− Z̄∗k(s)}ds = x′jxk ,

where xj denotes the jth p-dimensional column vector of X = (x1, . . . ,xp), j, k =

1, . . . , p. This implies that the correlation between the original covariates Z∗j and Z∗k

can be described by that between xj and xk and leads to the following grouping effect

property.

Theorem 2. Assume that X is standardized in the sense that Σn
j=1xij = 0 and

Σn
j=1x

2
ij = 1. Then with probability tending to one, the BAR estimator β̂

∗
R = (β̂∗R1, . . . , β̂

∗
Rp)
′

satisfies ∣∣∣ 1

β̂∗Ri
− 1

β̂∗Rj

∣∣∣ ≤ 1

λn
‖y‖

√
2(1− ρij)

for those nonzero components β̂∗Ri and β̂∗Rj, where ρij denotes the sample correlation

coefficient of xi and xj.
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The proofs of Theorems 1 and 2 are sketched in Appendix A.1. To implement the

procedure, one needs to choose the tuning parameter λn as well as ξn. To reduce the

computational burden, we suggest employing the K-fold cross-validation to chooose

those tuning parameters, where K is a positive integer.

2.4 A Simulation Study

An extensive simulation study was conducted to investigate the performance of the

proposed BAR regression estimation procedure. In the study, recurrent event data

were generated from the mixed Poisson processes with the rate function given in

(1.1) multiplied by the Gamma random variables with mean 1 and variance σ2. The

follow-up times Ci’s were generated from the uniform distribution over (0, 4.5). For

the covariate Z∗, we considered several settings with different p values, different

locations for non-zero components, and different types of distributions, continuous or

discrete, with the components being independent or correlated. For each scenario, we

considered the sample size n =100, 300 or 500 with 500 replications.

For comparison, we also considered the approach of Chen and Wang (2013) with

the LASSO, ALASSO and SCAD penalty functions. The LASSO and ALASSO

were implemented by using the R package glmnet and the SCAD was realized by

the R package ncvreg. For the selection of the tuning parameter, both packages use

similar methods to select 50 candidates, and the largest candidates are maxl |x′ly|,

maxl |wlx′ly|, and maxl |x′ly| for the LASSO, ALASSO, and SCAD, respectively. For

the ALASSO, the weights wi = 1/
∣∣βolsi ∣∣ and γ = 1 were used as suggested by Zou

(2006), where βols denotes the ordinary least-squares estimator of β. For the selection
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of the tuning parameter λn as well as ξn, we used the 5-fold cross-validation and

considered five candidate values for ξn chosen to be the equally spaced points over

[0.01, 10] in a logarithmic scale. For each ξn, 50 candidate values were considered for

λn that are equally spaced over [ελmax, λmax] also in a logarithmic scale, where ε was

set to be 0.001 and λmax = maxl 4 (x′ly)2 /(x′lxl) with xl being the lth column of X.

Table 2.1 presents the the covariate selection results with p = 9, where the true

value of β0 is (1, 0,−1, 0, 0, 0, 0, 0, 0)′, µ0(t) = 0.45t, and σ2 = 0.5 or 1. Here

the covariates were generated from the normal distribution and the correlation be-

tween Z∗i and Z∗j was set as ρ|j−i| with ρ = 0.1, 0.5 or 0.95. The table includes

the average of the empirical values of the mean squared error (MSE) defined as

(β̂
∗
R − β0)

′E(Z∗Z∗′) (β̂
∗
R − β0), the average percent of the numbers of correctly se-

lected zero coefficients (Corr), and the average percent of the numbers of incorrectly

selected zero coefficients (Inco). It is seen that with respect to the correctly selected

zero coefficients, the BAR always gave the best performance and the BAR and SCAD

seemed to significantly outperform LASSO and ALASSO. On the incorrectly selected

zero coefficients, no method gave overall better performance than others. With re-

spect to the MSE, the BAR yielded the least MSE and as expected, all methods gave

better performance as the sample size increased.

Tables 2.2 and 2.3 give the results for the same setup as Table 2.1 but different

values for p and β0. In Table 2.2, p = 50 and the first six components of β0 were

(1, 0,−1, 1, 0,−1)′ with the other components being zero, while in Table 2.3, p = 100

and the first thirty components of β0 were replicators of (1, 0,−1)′ with the other

components being zero. Also all components were assumed to be independent of each

other and the other setup is the same as Table 2.1 except that the recurrent event
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processes followed either the homogeneous Poisson process (σ2 = 0) or the mixed

Poisson process with the variance of the Gamma random variables being 1(σ2 = 1).

It is apparent that all tables gave similar conclusions to those given by Table 2.1 and

again suggested that the proposed BAR procedure seems to give better performance

than the other procedures on the covariate selection in general.

To assess the grouping ability of the methods discussed above, we performed a

simulation study with p = 12, β0 = (1, 1, 1, 0.5, 0.5, 0.5, 0, 0, 0, 0, 0, 0), and n = 10000;

other settings are the same as before. A large sample size was used to order to reveal

the grouping effect. For the covariate generation, we assumed that

Z∗j = x1 + εj, x1 ∼ N
(
0, 502

)
, j = 1, 2, 3;

Z∗j = x2 + εj, x2 ∼ N
(
0, 502

)
, j = 4, 5, 6;

Z∗j ∼ N(0, 502), independent with each other, j = 7, . . . , 12;

where the εj are i.i.d. N(0, 0.0252). That is, the 12 covariates were from three different

groups with the within-group correlations being nearly 1 and the between-group cor-

relations being close to 0. Figure 2.1 shows the solution paths of the estimates given

by the four methods. One can see the obvious grouping effect of the proposed BAR

estimator when the tuning parameters are in the proper range. The BAR method

clearly selected the six relevant covariates into their two separate groups with almost

the same coefficients within each group when log(λn) is roughly between -4.3 and

2.5. Although the estimate paths were unstable when λ is small, the cross-validation

criterion can successfully find the tuning parameters inducing the grouping effect. In

contrast, all three other methods showed little grouping effects as they selected only
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β1 and β4.

2.5 An Application to the Chronic Granulomatous

Disease Study

We apply the proposed BAR regression estimation procedure to the recurrent event

data arising from the chronic granulomatous disease (CGD) study discussed by Chen

and Wang (2013), Fleming and Harrington (2005) and Tong et al. (2009a), among

others. The CGD is a group of inherited rare disorders of the immune function

characterized by recurrent pyogenic infections that are usually present in early life

and may lead to death in childhood. The CGD study consists of 128 patients with

the chronic granulomatous disease between October 1988 and March 1989. For each

subject, the collected information includes the occurrence times of all recurrent serious

infections during the study period, and the study involves two treatments, placebo

(65) and gamma interferon (63). During the study period, 20 placebo patients and 7

treated patients had experienced at least one serious infection. A goal of the study is

to investigate the ability of gamma interferon to reduce the occurrence rate of serious

infections.

We use Z∗1 to denote the treatment with Z∗1 = 0 for the patients on gamma

interferon and Z∗1 = 1 otherwise. In addition to the treatment, the data set includes

information on eight other covariates. They are the pattern of inheritance (Z∗2 = 0

for X-linked patients and Z∗2 = 1 for autosomal recessive patients), the age, height

and weight of the patient (Z∗3 , Z
∗
4 , Z

∗
5), the use of corticosteroids at time of study

entry (Z∗6 = 0 if yes and Z∗6 = 1 if no), the use of prophylactics at time of study
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entry (Z∗7 = 0 if yes and Z∗7 = 1 if no), the patient’s gender (Z∗8 = 1 if female and

Z∗8 = 0 if male), and the hospital category (US-NIH, US-other, Europe-Amsterdam

and Europe-other). For the last covariate, following Tong et al. (2009a) and Chen

and Wang (2013), we describe it using three dummy variables as Z∗9 = 1 for US-NIH

and Z∗9 = 0 otherwise, Z∗10 = 1 for US-other and Z∗10 = 0 otherwise, Z∗11 = 1 for

Europe-Amsterdam and Z∗11 = 0 otherwise.

For the analysis, we consider both the selection of covariates or predictive factors

and the estimation of their effects simultaneously. The results are given in Table 2.4

and here for comparison, we also included the results given by the LASSO, ALASSO,

SCAD and ordinary least-squares procedure. Table 2.4 includes the selected covari-

ates with their estimated effects and the estimated standard errors (in parentheses)

for each method. It is seen that all procedures selected the treatment indicator, indi-

cating that gamma interferon had a significant effect on reducing the rate of serious

infections. In addition, the BAR procedure suggested that the pattern of inheritance

and the use of prophylactics at time of study entry seem to have some effects on

the rate of serious infections, and also the infection rate appears to be different be-

tween the patients in the hospitals in the US-other group and other types of hospitals.

Based on the ALASSO procedure, the patient’s age and the use of corticosteroids at

the time of study entry could affect the infection rate. It is interesting to note that

as LASSO and SCAD, the method given by Chen and Wang (2013) selected only the

treatment indicator Z∗1 , while the results obtained here are similar to those given by

Tong et al. (2009a) under the proportional rate model.

To assess the appropriateness of the selected models by each of the four methods
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given above, we performed the model checking by using the statistic

D =

{
L∑
l=1

n∑
i=1

Ii(tl < Ci)

}−1 L∑
l=1

n∑
i=1

{
M̂i(tl)

}2

based on the sum of the mean squared residuals. Here M̂i(t) is defined as Mi(t,β)

with the unknowns replaced by their estimates and the {tl}Ll=1 denote all time points

where the Ni(t) have jumps. Lin et al. (2001) employed a similar statistic for checking

transformation models with the focus on estimation. The application of this statistic

to the data yielded D = 0.4598, 0.4670, 0.4588 and 0.4662 for the models selected by

the four methods in Table 2.4, respectively, and indicates that the four models are

not significantly different.

2.6 Discussion and Concluding Remarks

This chapter discussed simultaneous covariate selection and estimation of covariate

effects for the event history study that yields recurrent event data. As mentioned

above, only limited research exists for covariate selection in Tong et al. (2009a) and

Chen and Wang (2013) due to the special data structures and the difficulties involved.

We presented a BAR regression estimation procedure that can not only allow for es-

timation and variable selection simultaneously but also accommodate the clustering

effect when covariates are highly correlated. The oracle property of the proposed ap-

proach was established, and the simulation study indicated that the proposed method

has better performance than the existing procedures.
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Table 2.1: Result on the selection of the normal covariates with p = 9.

n = 100 n = 300 n = 500
σ2 ρ Method MSE Corr Inco MSE Corr. Inco. MSE Corr. Inco.
0.5 0.1 BAR 0.586 0.829 0.084 0.136 0.922 0.000 0.082 0.919 0.000

LASSO 0.722 0.545 0.071 0.230 0.518 0.000 0.149 0.531 0.000
ALASSO 0.557 0.771 0.040 0.157 0.819 0.000 0.096 0.826 0.000
SCAD 0.723 0.563 0.072 0.124 0.667 0.000 0.072 0.789 0.000

0.5 BAR 0.493 0.823 0.098 0.125 0.913 0.001 0.070 0.909 0.000
LASSO 0.594 0.557 0.104 0.195 0.525 0.000 0.117 0.539 0.000
ALASSO 0.464 0.734 0.060 0.140 0.827 0.000 0.079 0.827 0.000
SCAD 0.600 0.617 0.117 0.111 0.750 0.000 0.060 0.830 0.000

0.9 BAR 0.196 0.759 0.179 0.051 0.869 0.012 0.030 0.881 0.000
LASSO 0.202 0.615 0.176 0.071 0.535 0.000 0.047 0.561 0.000
ALASSO 0.187 0.701 0.136 0.059 0.743 0.003 0.035 0.789 0.000
SCAD 0.225 0.722 0.236 0.049 0.804 0.010 0.027 0.870 0.001

1 0.1 BAR 0.564 0.797 0.078 0.147 0.908 0.000 0.088 0.923 0.000
LASSO 0.704 0.523 0.070 0.241 0.482 0.000 0.152 0.504 0.000
ALASSO 0.547 0.758 0.041 0.167 0.797 0.000 0.100 0.836 0.000
SCAD 0.715 0.550 0.075 0.136 0.651 0.000 0.076 0.787 0.000

0.5 BAR 0.443 0.803 0.069 0.125 0.895 0.000 0.071 0.900 0.000
LASSO 0.539 0.524 0.072 0.201 0.501 0.000 0.125 0.503 0.000
ALASSO 0.430 0.736 0.042 0.144 0.790 0.001 0.085 0.791 0.000
SCAD 0.558 0.602 0.085 0.113 0.739 0.001 0.064 0.812 0.000

0.9 BAR 0.207 0.771 0.209 0.053 0.843 0.016 0.027 0.893 0.002
LASSO 0.209 0.610 0.188 0.072 0.566 0.004 0.045 0.568 0.000
ALASSO 0.190 0.697 0.144 0.059 0.749 0.005 0.033 0.796 0.000
SCAD 0.234 0.718 0.241 0.050 0.797 0.020 0.023 0.886 0.000
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Table 2.2: Result on the selection of the normal covariates with p = 50.

n = 100 n = 300 n = 500
σ2 ρ Method MSE Corr Inco MSE Corr. Inco. MSE Corr. Inco.
0.5 0.1 BAR 3.199 0.947 0.540 0.559 0.966 0.020 0.279 0.981 0.001

LASSO 3.299 0.843 0.516 1.132 0.693 0.014 0.701 0.679 0.000
ALASSO 3.309 0.747 0.219 0.680 0.817 0.003 0.384 0.834 0.000
SCAD 3.347 0.857 0.519 0.652 0.685 0.013 0.240 0.752 0.000

0.5 BAR 2.059 0.949 0.576 0.403 0.965 0.031 0.184 0.982 0.001
LASSO 2.135 0.858 0.597 0.863 0.660 0.046 0.481 0.636 0.001
ALASSO 2.198 0.759 0.281 0.500 0.804 0.005 0.265 0.829 0.000
SCAD 2.146 0.874 0.607 0.441 0.728 0.037 0.141 0.813 0.000

0.9 BAR 0.682 0.950 0.660 0.212 0.965 0.253 0.098 0.970 0.060
LASSO 0.638 0.883 0.691 0.316 0.763 0.262 0.193 0.679 0.070
ALASSO 0.908 0.758 0.462 0.251 0.771 0.093 0.138 0.779 0.014
SCAD 0.658 0.918 0.737 0.262 0.865 0.295 0.127 0.853 0.113

1 0.1 BAR 3.119 0.945 0.501 0.575 0.967 0.017 0.285 0.980 0.001
LASSO 3.294 0.839 0.492 1.152 0.675 0.009 0.714 0.690 0.000
ALASSO 3.226 0.739 0.197 0.715 0.802 0.001 0.385 0.837 0.000
SCAD 3.305 0.850 0.493 0.653 0.677 0.010 0.250 0.758 0.000

0.5 BAR 2.025 0.942 0.522 0.379 0.964 0.017 0.201 0.981 0.002
LASSO 2.130 0.838 0.565 0.819 0.648 0.033 0.502 0.638 0.001
ALASSO 2.206 0.744 0.262 0.490 0.799 0.001 0.272 0.831 0.000
SCAD 2.134 0.860 0.572 0.390 0.719 0.020 0.153 0.806 0.000

0.9 BAR 0.691 0.950 0.687 0.216 0.961 0.253 0.100 0.965 0.056
LASSO 0.645 0.891 0.711 0.311 0.751 0.240 0.191 0.679 0.079
ALASSO 0.883 0.759 0.474 0.249 0.766 0.092 0.135 0.770 0.013
SCAD 0.664 0.926 0.766 0.270 0.864 0.300 0.126 0.851 0.118
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Table 2.3: Result on the selection of the normal covariates with p = 100.

n = 100 n = 300 n = 500
σ2 ρ Method MSE Corr Inco MSE Corr. Inco. MSE Corr. Inco.
0.5 0.1 BAR 22.903 0.970 0.931 16.480 0.954 0.713 7.110 0.889 0.182

LASSO 20.336 0.917 0.867 16.222 0.813 0.584 8.877 0.541 0.124
ALASSO 63.584 0.569 0.493 11.013 0.704 0.172 5.469 0.691 0.022
SCAD 19.821 0.936 0.887 16.626 0.847 0.610 7.493 0.606 0.131

0.5 BAR 10.771 0.979 0.957 8.305 0.960 0.755 3.307 0.900 0.153
LASSO 9.660 0.941 0.917 8.678 0.877 0.765 5.325 0.567 0.261
ALASSO 27.797 0.620 0.556 5.748 0.704 0.180 2.804 0.686 0.017
SCAD 9.518 0.947 0.922 8.609 0.893 0.754 3.509 0.666 0.175

0.9 BAR 2.566 0.973 0.946 1.848 0.971 0.850 1.307 0.934 0.551
LASSO 2.282 0.940 0.912 1.899 0.896 0.800 1.492 0.739 0.513
ALASSO 5.791 0.679 0.611 1.703 0.722 0.378 1.003 0.665 0.121
SCAD 2.205 0.957 0.934 1.929 0.935 0.851 1.616 0.876 0.652

1 0.1 BAR 23.857 0.969 0.935 16.213 0.953 0.699 7.618 0.899 0.214
LASSO 20.412 0.928 0.880 16.051 0.810 0.580 9.441 0.567 0.156
ALASSO 63.446 0.578 0.500 10.684 0.705 0.160 5.585 0.698 0.025
SCAD 19.897 0.939 0.891 16.395 0.848 0.606 8.117 0.625 0.159

0.5 BAR 10.768 0.976 0.955 8.225 0.943 0.719 3.489 0.902 0.172
LASSO 9.611 0.942 0.918 8.667 0.864 0.753 5.536 0.575 0.280
ALASSO 26.281 0.651 0.581 5.724 0.680 0.164 2.919 0.681 0.019
SCAD 9.470 0.951 0.928 8.614 0.894 0.762 3.611 0.666 0.180

0.9 BAR 2.571 0.973 0.951 1.846 0.974 0.859 1.324 0.936 0.571
LASSO 2.262 0.944 0.918 1.895 0.900 0.802 1.505 0.743 0.519
ALASSO 5.757 0.692 0.640 1.695 0.736 0.394 0.993 0.663 0.121
SCAD 2.232 0.958 0.933 1.938 0.939 0.859 1.643 0.884 0.681

Table 2.4: Results on covariate selection and their estimated effects for the CGD
study.

BAR LASSO ALASSO SCAD OLS
Z∗1 0.127(0.043) 0.080(0.038) 0.104(0.016) 0.088(0.036) 0.170(0.050)
Z∗2 0.018(0.004) 0 0 0 0.152(0.113)
Z∗3 0 0 -0.138(0.020) 0 -0.409(0.152)
Z∗4 0 0 0 0 0.081(0.397)
Z∗5 0 0 0 0 0.105(0.266)
Z∗6 0 0 -0.105(0.016) 0 -0.343(0.269)
Z∗7 0.027(0.007) 0 0 0 0.140(0.087)
Z∗8 0 0 0 0 -0.134(0.111)
Z∗9 0 0 0 0 0.059(0.065)
Z∗10 0.018(0.004) 0 0 0 0.094(0.069)
Z∗11 0 0 0 0 -0.051(0.076)
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Figure 2.1: Path plots of the four estimates with the black solid vertical lines corre-
sponding to the optimal tuning parameters based on the 5-fold cross-validation.
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Chapter 3

Simultaneous Estimation and
Variable Selection for Panel Count
Data

3.1 Introduction

In this chapter, we will discuss simultaneous estimation and variable selection for

panel count data under model (1.1) using the BAR method. In particular, unlike

the two existing methods given in Tong et al. (2009a) and Zhang et al. (2013), the

resulting estimator from the proposed method has the oracle property and grouping

effect.

To present the new approach, we first introduce some notation and assumptions

in Section 3.2; also briefly describe there is an estimation procedure if one is only

interested in estimation. We then discuss in Section 3.3 the proposed method, which

can be seen as a combination of the nonconcave penalized likelihood approach (Fan
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and Li, 2001) and the estimating equation approach (Lin and Ying, 1994). The

proposed method is similar to that described in Section 2.3 but more complicated

due to the incompleteness of the observed data. In Section 3.3, we establish the

asymptotic properties of the proposed method, including the oracle property and

grouping effect. Section 3.4 reports the results from simulation studies conducted

to assess the performance of the proposed method and they indicate that it works

well in practical situations. An application to the skin cancer study is provided in

Section 3.5. Some discussion and concluding remarks can be found in Section 3.6.

3.2 Notation, Assumptions and Estimation Proce-

dure

Consider an event history study on a recurrent event and suppose that it consists of

n independent subjects. For subject i, let N∗i (t) and Z∗i (t) be defined as above but

corresponding to the subject with N∗i (t) denoting the total number of the occurrences

of the event until time t from the subject. Also for subject i, assume that N∗i (t) can

only be observed at the discrete time points ti1 ≤ · · · ≤ timi
and define a counting

process

H∗i (t) =

mi∑
j=1

1(tij ≤ t),

where mi denotes the potential or scheduled number of observations on subject i.

That is, we only have panel count data on the N∗i (t) and N∗i (t) can be observed only at

the time points where H∗i (t) jumps. In addition, suppose that there exists a follow-up

time, denoted by Ci, on subject i and the observed recurrent event and observation

processes are Ni(t) = N∗i (t ∧ Ci) and Hi(t) = H∗i (t ∧ Ci), respectively. Then the
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observed data have the form {Ni(t)dHi(t), Hi(t), Ci,Z
∗
i (t)} for all i ∈ {1, . . . , n}. In

the following, we will focus on the situation where p can diverge to infinity but p < n.

We assume the covariate effect to be described by model (1.1). We also assume

that the covariates are external (Kalbfleisch and Prentice, 2002) and as Lin et al.

(2000) pointed out, in this case, model (1.1) is equivalent to the additive mean model

E{N∗i (t)|Zi(t)} = µ0(t) + β′Zi(t),

where Zi(t) =
∫ t
0
Z∗i (u)du. Furthermore, it will be assumed that the observation

process H∗i (t) satisfies the following marginal rate model

E{dH∗i (t)|Z∗i (t)} = dΛ0(t), (3.1)

and H∗i (t) and Ci are mutually independent and also independent of N∗i (t) and Z∗i (t),

where Λ0 is an unspecified positive nondecreasing function.

For the time being, suppose that one is only interested in the estimation of co-

variate effects. For this, define

dMi(t;β, µ,Λ) = Ni(t)dHi(t)− 1(Ci ≥ t){µ(t) + β>Zi(t)}dΛ(t),

and

Z̄(t) =
n∑
j=1

1(Cj ≥ t)Zj(t)
/ n∑
j=1

1(Cj ≥ t), Λ̂0(t) =

∫ t

0

n∑
i=1

dHi(s)
/ n∑
j=1

1(Cj ≥ s),

which is usually referred to as the Aalen–Breslow-type estimator of Λ0(t). Then under
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models (1.1) and (3.1), one can show that

E{dMi(t;β0, µ0,Λ0)} = 0.

This motivates the estimating equations

n∑
i=1

dMi(t;β, µ0, Λ̂0) = 0 (3.2)

and

Un(β) =
1

n

n∑
i=1

∫ τ

0

Zi(t)dMi(t;β, µ̂0, Λ̂0) = 0 (3.3)

for µ0(t) and β, where τ is the longest follow-up time. A similar idea was used in Lin

and Ying (1994) for the estimation of regression parameters in the additive hazards

model based on right-censored failure time data.

By solving (3.2), one can obtain

µ̂0(t) =
n∑
i=1

Ni(t)dHi(t)
/ n∑

i=1

dHi(t)− β>Z̄(t). (3.4)

Then by substituting (3.4) into (3.3) and solving (3.3), we can obtain an estimator

of β given by b̂ = Ω−1n vn, where

vn =
n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t)}Ni(t)dHi(t)

and

Ωn =
n∑
i=1

∫ τ

0

1(Ci ≥ t){Zi(t)− Z̄(t)}⊗2dΛ̂0(t).
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Note that it is easy to see that b̂ is the minimizer of the loss function

`(β) = β>Ωnβ − 2β>vn.

Also note that by applying the Cholesky decomposition to Ωn, we have Ωn = X>X,

where X is a p × p upper triangular matrix. Define y = (X>)−1vn. Then one can

easily show that the minimization of `(β) is equivalent to minimizing the least-square

loss function ‖y−Xβ‖2. In other words, b̂ can be seen as the least-squares estimator

of β in the linear model y = Xβ + ε.

3.3 Simultaneous Estimation and Variable Selec-

tion

Now suppose that we are interested in simultaneous estimation and variable selection

on covariate effects. We will first develop a general penalized estimation procedure

similar to the method in Section 2.3. The oracle property and grouping effect of the

proposed approach are then established.

3.3.1 Broken Adaptive Ridge Regression

To develop a penalized procedure for β based on the estimation procedure presented

above, it would be natural to consider and minimize the penalized function

`0(β) = `(β) + λn

p∑
j=1

1(βj 6= 0)
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based on the L0 penalty function, where λn > 0 is a tuning parameter. By contrast,

it is well known that this minimization process is usually computationally difficult.

Corresponding to this, we propose to consider the approximation

`2(β|β̃) = `(β) + λn

p∑
j=1

β2
j /β̃

2
j , (3.5)

where β̃ = (β̃1, . . . , β̃pn)> denotes a good estimator of β0 with no zero component to

be discussed below. Note that the same idea has been discussed by Frommlet and

Nuel (2016) and Liu and Li (2016) under the contexts of linear models and generalized

linear models, respectively, but they only considered the empirical properties of the

developed methods. It will be seen that the penalty function in (3.5) inherits some

appealing properties associated with both L0 and L2 penalty functions.

Let g(β̃) denote the minimizer of `2(β|β̃) given β̃. Then we have

g(β̃) = {Ωn + λnD(β̃)}−1vn, (3.6)

where D(β̃) = diag(β̃−21 , . . . , β̃−2p ). This suggests that we can estimate β by the

broken adaptive ridge estimator for panel count data defined as

β̂
∗
P = lim

k→∞
β̂

(k)

P

based the iterated formula β̂
(k)

P = g(β̂
(k−1)
P ).

For the initial value of the iteration, we suggest using β̂
(0)
P = (Ωn + ξnI)−1vn with

ξn ≥ 0. When ξn > 0, β̂
(0)

P is the ridge estimator. If ξn = 0, β̂
(0)
P reduces to the

unpenalized estimator b̂ = Ω−1n vn. In general, the update in each iteration is well
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defined since the initial β
(0)
P and its subsequent updates β

(k)
P do not yield any zero

coefficient.

As the iterated values converge to the limit, D(β̂
(k−1)
P ) will eventually involve

some divisions by very small nonzero values that can lead to an arithmetic overflow.

To avoid this, we can rewrite (3.6) as

g(β̃) = Γ(β̃){Γ(β̃)ΩnΓ(β̃) + λnIp}−1Γ(β̃)vn, (3.7)

where Γ(β̃) = diag(β̃1, . . . , β̃p). Note that the right-hand side of (3.7) only involves

multiplication by β̃j and hence avoids the computational instability.

Note that for the function `2(β|β̃) defined in (3.5), it is apparent that one can

define or consider the function with replacing the penalty function there by some

commonly used penalty functions, such as the LASSO, ALASSO and SCAD. It will

be seen that the proposed approach has good properties, namely, the oracle property

and grouping effect and gives better empirical performance as discussed below. The

idea used above is also similar to that behind the local quadratic approximation used

in Fan and Li (2001), but the resulting iterative equations are actually quite different.

3.3.2 Asymptotic Properties of β̂∗
P

Now we discuss the asymptotic properties of the proposed BAR estimate β̂
∗
P . For this,

let β0 = (β0,1, . . . , β0,pn)> denote the true value of β and without loss of generality,

assume β0 = (β>01,β
>
02)
>, where β01 consists of all qn nonzero components and β02

the remaining zero components. Correspondingly, we divide β and b̂ in the same way

and also in the following, we will denote p by pn to emphasize the dependence of p
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on n.

To establish the asymptotic properties, we need the following regularity conditions.

(D1) The observations {N∗i (t), H∗i (t), Ci,Zi(t) : 0 ≤ t ≤ τ} with i ∈ {1, . . . , n} are

independent and identically distributed.

(D2) We have Pr(Ci ≥ τ) > 0 for all i ∈ {1, . . . , n}.

(D3) For all i ∈ {1, . . . , n}, N∗i (τ) is bounded by a constant with µ0(τ) <∞.

(D4) The Zi’s have bounded total variations, i.e., ‖Zi(0)‖+
∫ τ
0
‖dZi(t)‖ is bounded

for all i, where ‖Zi‖ is the Euclidean metric of the vector Zi.

(D5) For all n > 0, we have 1/c < λmin(Ωn/n) ≤ λmax(Ωn/n) < c, where c > 1 is

some large constant and λ(Q) stands for the eigenvalues of the matrix Q.

(D6) As n → ∞, pnqn/
√
n → 0, λn/

√
n → 0, ξn/

√
n → 0, λn

√
qn/n → 0 and

λ2n/(pn
√
n)→∞ as n→∞.

(D7) There exist positive constants a0 and a1 such that a0 ≤ |β0,j| ≤ a1 for all

j ∈ {1, . . . , qn}.

(D8) The initial estimator satisfies ‖β̂
(0)

P − β0‖ = Op(
√
pn/n).

Define Ξ̂n = (Û1Û
>
1 +· · ·+ÛnÛ>n )/n, where Ûi =

∫ τ
0
{Zi(t)−Z̄(t)}dM̂i(t, b̂, µ̂0, Λ̂0).

First we will describe the oracle property.

Theorem 3. Assume that the regularity conditions (D1)–(D8) given above hold. Then

with probability tending to 1, the BAR estimator β̂
∗
P = (β̂

∗>

P1, β̂
∗>

P2)
> has the following

properties:

35



(i) β̂
∗
P1 exists and is the unique fixed point of the equation β1 = {Ω(1)

n +λnD1(β1)}−1v
(1)
n ,

where D1(β1) = diag{β−21 , . . . , β−2qn }.

(ii) β̂
∗
P2 = 0.

(iii)
√
n (β̂

∗
P1−β01) converges in distribution to a mean-zero multivariate normal dis-

tribution whose covariance matrix can be consistently estimated by {n−1Ω(1)
n }−1 Ξ̂

(1)
n

{n−1Ω(1)
n }−1, where Ω(1)

n and Ξ̂
(1)
n denote the qn × qn left-up submatrices of Ωn

and Ξ̂n, respectively.

By the grouping effect, we usually mean that when the true model or covariates

have a natural group structure, a selection approach can have all coefficients within

a group clustered or selected together. This is clearly a desirable property and one

example of this is given by the gene network relationship where some of genes are

strongly correlated and are often referred to as grouped genes. To describe the group-

ing effect of the BAR regression estimator proposed above, first note that based on

Ωn = X>X, we have that, for all j, k ∈ {1, . . . , pn},

n∑
i=1

∫ τ

0

1(Ci ≥ t){Zij(t)− Z̄j(t)}{Zik(t)− Z̄k(t)}dΛ̂0(t) = x>j xk, (3.8)

which are the (j, k) elements of the two matrices, where xj denotes the jth pn-

dimensional column vector of X = (x1, . . . ,xpn). This implies that the correlation

between the original covariates Zj and Zk can be described by that between xj and

xk and thus we have the following grouping effect property.

Theorem 4. Assume that X has been standardized. Then with probability tending
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to 1 as n→∞, the BAR estimator β̂
∗
P = (β̂∗P1, . . . , β̂

∗
Ppn

)> satisfies the inequality

|1/β̂∗Pi − 1/β̂∗Pj| ≤ ‖y‖
√

2(1− ρij)/λn,

where β̂∗Pi × β̂∗Pj 6= 0 and ρij denotes the sample correlation coefficient of xi and xj.

The proof of the asymptotic properties above is sketched in Appendix A.2. Based

on (3.8), the result given in Theorem 4 suggests that if the correlation between zi and

zj is strong, the estimators β̂∗Pi and β̂∗Pj will be very close. For the determination of

the proposed BAR estimator, we need to choose the tuning parameters ξn and λn. To

reduce the computational burden, we suggest employing the K-fold cross-validation,

where K is an integer.

More specifically, let O denote the full dataset and randomly divide O into K equal

sub-datasets O1, . . . , OK . Also let θ = (ξn, λn) and β̂
−k
P (θ) denote the proposed BAR

estimator of β based on the dataset O −Ok for given θ and k. Then one can choose

θ that minimizes the cross-validation error given by

CV (θ) =
K∑
k=1

`k{β̂
−k
P (θ)},

where `k denotes the loss function `(β) based on the sub-dataset Ok.

3.4 Simulation Studies

For the assessment or evaluation of the proposed BAR regression estimation pro-

cedure, we conducted simulation studies. In addition to the BAR estimator, we

considered and compared the BAR estimator to the estimators given by (3.5) with
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replacing the BAR penalty function by the LASSO, ALASSO and SCAD penalty

functions. In the tables below, the resulting estimators for the four methods are de-

noted by BAR, LASSO, ALASSO and SCAD, respectively. Note that although the

same penalty functions are used here as in Fan and Li (2001), Fan and Li (2002), and

Tibshirani (1996), the estimation procedures here are quite different from that given

in these papers as both models and data structures are quite different.

To generate the incomplete event history data, we first generated the observation

time points by simulating the follow-up times Cis from the uniform distribution over

(0, 8) and assuming that the observation processes H∗i s are homogeneous Poisson

processes with Λ0(t) = t. The observed panel count data were then generated by

assuming that the N∗i (t)s are either homogeneous or mixed Poisson processes with

µ0(t) = t given covariates. For the results given below, we generated the covariates

Z∗i s from standard normal distributions with correlation between the j1 and j2 com-

ponents given by ρ|j1−j2|, where ρ = 0 or 0.5. The results given below are based on

n = 100 or 500 with 500 replications.

Table 3.1 presents the results obtained by the four methods, the proposed BAR,

LASSO, ALASSO and SCAD, on the estimation and covariate selection with pn = 10,

the first qn = 3 components of β0 being 1 and the remaining pn−qn components being

zero. Here the 5-fold cross-validation was used for the determination of the tuning

parameters for all four methods. The results include the average of L1 prediction

errors (PE), the average percent of the numbers of the zero components that were

correctly identified as zero (Corr), and the average percent of the numbers of the

non-zero components that were incorrectly identified as zero (Incr).

One can clearly see from Table 3.1 that the proposed BAR method always has
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a higher or significantly higher Corr than the other methods, meaning that it has

the least probability to identify non-relevant or non-important factors to be relevant

or important. Also the proposed BAR method tends to have lower prediction errors

than the other three methods, although the differences may not be significant. On the

Incr, it seems that all methods are close to one another, especially when the sample

size is large. The same conclusions can be seen from Table 3.2, where pn = 30, the

first qn = 5 components of β0 being 1 and the remaining pn − qn components being

zero. We also considered other set-ups and obtained similar conclusions.

To assess and compare the grouping effects of the four methods above, we per-

formed a simulation study as above but with β0 = (1, 1, 1, 0.5, 0.5, 0.5, 0, 0, 0, 0, 0, 0)

and n = 10,000, meaning pn = 12 and qn = 6. Here the large sample size was used

since the grouping effect, as an asymptotic property of variable selection methods,

can only be revealed with a large sample. For the covariate generation, we assumed

that, for j ∈ {1, 2, 3},

Zj = x1 + εj, x1 ∼ N (0, 502),

and, for j ∈ {4, 5, 6},

Zj = x2 + εj, x2 ∼ N (0, 502),

where the εjs are iid N (0, 0.0252). For j ∈ {7, . . . , 12}, Zj ∼ N (0, 502) are indepen-

dent with each other. This way, the 12 covariates are from three different groups

with the within-group correlations being nearly 1 and the between-group correlations

being close to 0.

Table 3.3 gives the estimated coefficients and the corresponding optimal tuning

parameters chosen again by the 5-fold cross-validation criterion, while Figure 3.1
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shows the solution paths of the four estimators. One can see the obvious grouping

effect of the proposed BAR estimator from both Table 3.3 and Figure 3.1 when

the tuning parameters are in the proper range. In particular, the method clearly

selected the six relevant covariates into their two separate groups with almost the

same coefficients within each group when ln(λn) is roughly between 0.7 and 5.6.

Note that although the estimator paths are unstable when λn is small, the cross-

validation criterion can successfully find the tuning parameters inducing the grouping

effect and the true values for the two group parameters are 0.5 and 1, respectively.

Also note that Figure 3.1 indicates that sometimes the BAR estimator paths may be

unstable too when λn is large than the optimal tuning parameter but will go to zero

when λn increases. In contrast, all three other methods showed little grouping effects

as only β1 and β4 were estimated as nonzero or relevant by them.

3.5 An Application to the Skin Cancer Study

In this section, we apply the BAR estimation and variable selection method proposed

in the previous sections to a set of panel count data arising from a skin cancer trial

conducted by the University of Wisconsin Comprehensive Cancer Center in Madison,

Wisconsin (Sun and Zhao, 2013; Zhang et al., 2013). The study is a double-blinded

and placebo-controlled randomized Phase III clinical trial with the primary goal being

to evaluate the effectiveness of 0.5 g/m2/day PO difluoromethylornithine (DFMO)

in reducing the recurrence rate of skin cancers in a population of the patients with

a history of non-melanoma skin cancers: basal cell carcinoma and squamous cell

carcinoma. The data set consists of 290 skin cancer patients who were randomized
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into either the placebo (147) or DFMO (143) group. For each patient, in addition to

the observed numbers of occurrences of two types of skin cancers and the treatment

indicator, the data also include the information on three baseline covariates, gender,

age at the diagnosis and the number of prior skin cancers.

For the analysis, define Zi1 = 1 if patient i was in the DFMO group and 0

otherwise, Zi2 and Zi3 to represent the number of prior skin cancers and the age of

the patient, respectively, and Zi4 = 1 if patient i is male and 0 otherwise. Table

4 presents the estimation and variable selection results given by the four methods

discussed in the previous section on the squamous cell carcinoma based on the 10-

fold cross-validation and grid search for the tuning parameter selection. In addition

to the estimated effects for the selected covariates, we also obtained and included in

the table the estimated standard errors (SD) given in Theorem 3.

One can see that the results are quite similar for the proposed BAR, LASSO

and SCAD methods, which selected two covariates. In contrast, the ALASSO only

selected one covariate. All four methods indicated that the DFMO treatment had no

effect on reducing the occurrence rate of new skin cancers and the occurrence rate

did not seem to be significantly related to the gender of the patient. Instead, the

occurrence rate seems to be positively or negatively related to the number of prior

skin cancers or the age, respectively. These results are consistent with those obtained

by Zhang et al. (2013) based on the multiplicative model in general but the latter

indicated that the occurrence rate and the age did not seem to be related.
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3.6 Discussion and Concluding Remarks

In this chapter, we have discussed simultaneous estimation and variable selection for

panel count data and proposed a BAR regression approach. In the method, instead

of using the commonly used penalty functions such as LASSO, ALASSO and SCAD,

we discussed a new penalty function that iteratively approximates the L0 penalty

function by using L2 type of penalty functions. One main advantage of the proposed

method is that unlike the methods given in Tong et al. (2009a) and Zhang et al.

(2013) or based on the commonly used penalty functions, the resulting estimator has

both the oracle property and clustering effect. Also the numerical studies suggested

that it performs well in practical situations.
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Table 3.1: The simulation results with qn = 3, pn = 10 and the numbers in the
parentheses denoting the sample standard deviations.

Poisson n ρ Methods PE Corr Incr
Homogeneous 100 0 BAR 1.044 (0.635) 0.845 0.022

LASSO 1.508 (0.566) 0.406 0.019
ALASSO 1.129 (0.549) 0.741 0.007
SCAD 1.240 (0.681) 0.496 0.017

0.5 BAR 1.469 (0.893) 0.835 0.097
LASSO 1.578 (0.714) 0.560 0.017
ALASSO 1.471 (0.741) 0.750 0.045
SCAD 1.818 (0.829) 0.548 0.023

500 0 BAR 0.390 (0.240) 0.930 0.000
LASSO 0.688 (0.247) 0.396 0.000
ALASSO 0.454 (0.232) 0.815 0.000
SCAD 0.373 (0.220) 0.818 0.000

0.5 BAR 0.496 (0.316) 0.922 0.000
LASSO 0.739 (0.325) 0.536 0.000
ALASSO 0.591 (0.315) 0.793 0.000
SCAD 0.527 (0.323) 0.702 0.000

Mixed 100 0 BAR 2.353 (1.140) 0.739 0.259
LASSO 2.609 (0.859) 0.573 0.282
ALASSO 2.209 (0.884) 0.717 0.193
SCAD 2.689 (0.906) 0.592 0.269

0.5 BAR 2.918 (1.466) 0.807 0.398
LASSO 2.668 (1.072) 0.668 0.269
ALASSO 2.766 (1.308) 0.746 0.288
SCAD 2.763 (1.246) 0.677 0.257

500 0 BAR 0.811 (0.469) 0.884 0.001
LASSO 1.201 (0.430) 0.423 0.000
ALASSO 0.893 (0.422) 0.774 0.000
SCAD 0.856 (0.441) 0.580 0.000

0.5 BAR 1.209 (0.751) 0.836 0.037
LASSO 1.366 (0.598) 0.561 0.003
ALASSO 1.223 (0.609) 0.759 0.016
SCAD 1.463 (0.776) 0.523 0.006
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Table 3.2: The simulation results with qn = 5, pn = 30 and the numbers in the
parentheses representing the sample standard deviations.

Poisson n ρ Methods PE Corr Incr
Homogeneous 100 0 BAR 2.781 (1.555) 0.905 0.172

LASSO 4.053 (1.077) 0.602 0.157
ALASSO 3.090 (1.269) 0.725 0.033
SCAD 3.665 (1.319) 0.645 0.148

0.5 BAR 3.829 (1.912) 0.928 0.329
LASSO 3.812 (1.479) 0.720 0.107
ALASSO 4.606 (2.126) 0.734 0.148
SCAD 4.173 (1.413) 0.754 0.122

500 0 BAR 0.733 (0.355) 0.979 0.000
LASSO 1.729 (0.478) 0.537 0.000
ALASSO 1.051 (0.433) 0.821 0.000
SCAD 0.759 (0.308) 0.827 0.000

0.5 BAR 1.067 (0.584) 0.970 0.003
LASSO 1.676 (0.564) 0.697 0.000
ALASSO 1.473 (0.678) 0.833 0.000
SCAD 1.462 (0.615) 0.675 0.000

Mixed 100 0 BAR 5.103 (2.037) 0.923 0.663
LASSO 5.249 (1.292) 0.847 0.648
ALASSO 5.326 (2.128) 0.790 0.386
SCAD 5.255 (1.199) 0.842 0.632

0.5 BAR 5.912 (3.096) 0.945 0.685
LASSO 5.246 (1.699) 0.833 0.516
ALASSO 7.357 (3.937) 0.768 0.462
SCAD 5.018 (1.805) 0.831 0.481

500 0 BAR 1.679 (0.953) 0.942 0.020
LASSO 3.102 (0.842) 0.562 0.014
ALASSO 2.090 (0.836) 0.796 0.002
SCAD 2.243 (0.946) 0.577 0.013

0.5 BAR 2.925 (1.440) 0.939 0.197
LASSO 3.036 (0.982) 0.723 0.020
ALASSO 3.217 (1.319) 0.795 0.062
SCAD 3.711 (1.289) 0.715 0.034
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Table 3.3: Estimated coefficients by the four methods and the corresponding optimal
tuning parameters.

Parameters BAR LASSO ALASSO SCAD

β1 0.990 2.952 2.969 2.973
β2 0.990 0 3.971e-09 0
β3 0.990 0 0 0
β4 0.494 1.471 1.482 1.485
β5 0.494 0 0 0
β6 0.494 0 0 0
β7 0 −0.002 0 0
β8 0 −0.014 0 0
β9 0 0.014 0 0
β10 0 0 0 0
β11 0 −0.009 0 0
β12 0 −0.015 0 0

Tuning parameters λn = 5.777 λn = 56.049 λn = 8.555 λn = 1368.746
ξn = 0.001778

Table 3.4: The estimation and variable selection results for the skin cancer data
on squamous cell carcinoma with SD in the parentheses representing the estimated
standard errors.

Method β̂1 β̂2 (SD) β̂3 (SD) β̂4
BAR 0 (—) 1.431e-04 (6.306e-05) 1.609e-05 (8.525e-06) 0 (—)
LASSO 0 (—) 1.410e-04 (6.294e-05) 1.737e-05 (8.521e-06) 0 (—)
ALASSO 0 (—) 4.617e-05 (7.157e-05) 0 (—) 0 (—)
SCAD 0 (—) 1.433e-04 (6.289e-05) 1.782e-05 (8.552e-06) 0 (—)
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Figure 3.1: Path plots of the four estimators with the black solid vertical lines corre-
sponding to the optimal tuning parameters based on the 5-fold cross-validation.
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Chapter 4

Regression Analysis of
Asynchronous Longitudinal Data
with Informative Observation
Processes

4.1 Introduction

As introduced in Section 1.3, sparse asynchronous longitudinal data with informative

observation times are not uncommon in medical studies but, to our best knowledge,

no previous studies addressed this issue. This chapter will describe a kernel-based

generalized estimating equation method that can deal with asynchronicity and infor-

mative observation times simultaneously. Since panel count data are also a type of

longitudinal data, the proposed method can be naturally applied to panel count data

too.

In Section 4.2, we will begin with introducing some notation, assumptions and
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models that will be used throughout the chapter. In particular, we will present a

class of flexible semiparametric transformation models for the longitudinal process

of interest. Then we will first discuss the simple situation where one observes syn-

chronous longitudinal data. In Section 4.3, the estimating equation-based approach

described in Section 4.2 for the synchronous case will be generalized to asynchronous

situations with the use of the kernel weighting technique similar to that used in Cao

et al. (2015b). The asymptotic distribution of the proposed estimators will be es-

tablished in Section 4.4 and also in this section, the bandwidth selection for kernel

weighting is discussed. Results obtained from an extensive simulation study are pre-

sented in Section 4.5 and indicate that the proposed method works well in practical

situations. In Section 4.6, we apply the proposed approach to the HIV longitudinal

data described in Section 1.3 and Section 4.7 contains some discussion and concluding

remarks.

4.2 Estimation with Synchronous Longitudinal Data

Consider a longitudinal study that consists of n independent subjects. Let Y (t)

denote the longitudinal response variable of interest and suppose that there exists

a p−dimensional vector of covariates, denoted by Z(t), that are external and may

depend on time t. Also suppose that for subject i, there exist two sequences of obser-

vation times Ti1 < Ti2 < · · · < Ti,Ji and Ri1 < Ri2 < · · · < Ri,Ki
for the observation of

Yi(t) and Zi(t), respectively, and a follow-up or censoring time denoted by Ci. Here

Ji and Ki denote the potential numbers of the observations on Yi(t) and Zi(t), re-

spectively. Let N∗i (t) and O∗i (s) be the counting processes describing the observation
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processes on Yi(t) and Zi(t), respectively, i = 1, ..., n. Then it is easy to see that the

actual observations processes for them are Ni(t) = N∗i (min(t, Ci)) =
∑Ji

j=1 I(Tij ≤ t)

and Oi(s) = O∗i (min(s, Ci)) =
∑Ki

j=1 I(Rij ≤ s), respectively. In other words, Yi(t)

and Zi(t) are observed only at the jump time points of Ni(t) and Oi(t), respectively.

It is apparent that one observes synchronous longitudinal data if Ni(t) = Oi(t) for all

i, and the observed data have the form
{
Yi (Tij)

′ s, Zi (Rik)
′ s, Ci , i = 1, . . . , n

}
.

To present the regression model, define Fit = {Ni(s), 0 ≤ s < t }, the history or

filtration of the observation process Ni (t) up to time t−. In the following, we will

assume that given Zi(t) and Fit, the conditional mean function of Yi(t) has the form

E{Yi(t)|Zi(t),Fit} = g{µ(t)eβ
′Zi(t)+α

′H(Fit)} . (4.1)

Here g(·) is a known twice continuously differentiable function, µ(t) is an unspecified

smooth function of t, α and β are vectors of unknown parameters, and H(·) is a

vector of known functions of Ft. In the above, the function g(·) can take many forms

to account for various types of dependence of Yi(t) on Zi(t) and Fit, and two simple

choices are g(x) = x and g(x) = log x. Especially, the latter yields the additive mean

model

E{Yi(t)|Zi(t),Fit } = log{µ(t)}+ β′Zi(t) + α′H(Fit)

discussed in Sun et al. (2005). A more general choice is the so-called Box-Cox trans-

formation g(x) = {(x + 1)a − 1}/a with g(x) = log(x + 1) for a = 0, where a is a

constant. For H(·), also various forms can be taken and one is H(Fit) = Ni(t − t0),

meaning that Yi(t) may depend on the number of the observations during the period

from t− t0 to the current time, where t0 is a constant. It is apparent that the model
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above is a conditional model and alternatively one could consider the marginal or

joint model approach. More comments on this are given in Section 4.7.

In reality, of course, the observation process N∗i (t) may depend on covariates too.

In the following, it will be assumed that it is a nonhomogeneous Poisson process

satisfying the proportional rate model

E{dN∗i (t)|Zi(t)} = eγ
′Zi(t)dΛ(t) , (4.2)

where γ is a vector of unknown parameters and Λ(·) is an unspecified baseline mean

function. Furthermore, we will assume that E{ dO∗i (t)|Zi(t) } = ν (t) dt, meaning

that the observation process for covariates does not depend on {Ni(t), Yi(t), Ci} given

Zi (t), where ν(t) is an unspecific baseline rate function. More comments on these

will be given in Section 4.7. Also it will be assumed that conditional on Zi(t), Ci

is independent of {Ni(t), Oi(t), Yi(t)} or we have independent and non-informative

censoring times.

In the remaining of this section, it will be assumed that one observes synchronous

longitudinal data or we have Ji = Ki and Ni(t) = Oi(t) for all i. To present the

estimation procedure, let Λ0 (·), µ0 (·) , ν0 (·), β0, α0 and γ0 denote the true values of

Λ (·), µ (·), ν (·), β, α and γ, respectively, and define θ = (α′, β′)′ and θ0 = (α′0, β
′
0)
′

for convenience. Also define Xi(t, s) = (H(Fit)′, Zi(s)′)′ and ∆i(t) = I(Ci > t),

i = 1, ..., n. By following Li et al. (2013), we will first consider the estimation of γ

and Λ(t). More specifically, for the estimation of γ, we can consider the estimating

equations

Ũγ(γ) =
1

n

n∑
i=1

∫ τ

0

∆i(t)
{
Zi(t)− Z̃(t; γ)

}
dNi(t) = 0 . (4.3)
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In the above, τ is the longest follow-up time and Z̃(t; γ) = S̃(1)(t; γ)/S̃(0)(t; γ), where

S̃(k)(t; γ) = n−1
n∑
i=1

∆i(t)Zi(t)
⊗keγ

′Zi(t), k = 0, 1, 2,

with a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT for any vector a. Let γ̃ denote the solution to

the estimating equation (4.3). Then Λ(t) can be estimated by

Λ̃(t; γ̃) =
n∑
i=1

∫ t

0

∆i(u)dNi(u)

nS̃(0)(u; γ̃)
=

n∑
i=1

∑
j:Tij≤t

1

nS̃(0)(Tij; γ̃)
.

For estimating θ and µ(t), define

dM̃i(t; θ, γ,Λ, µ) = ∆i(t)
[
Yi(t)dNi(t)− g{µ(t)eθ

′Xi(t,t)}eγ′Zi(t)dΛ(t)
]
, (4.4)

and

Ũθ(θ; γ,Λ, µ) =
1

n

n∑
i=1

∫ τ

0

Xi(t)dM̃i(t; θ, γ,Λ, µ). (4.5)

Then under models (4.1) and (4.2) and the assumptions above, one can easily show

that E{M̃i(t; θ0, γ0,Λ0)} = 0. This suggests that one can estimate θ and µ(t) based

on the estimating equations

1

n

n∑
i=1

dM̃i(t; θ, γ,Λ, µ (·)) = 0 and Ũθ(θ; γ,Λ, µ (·)) = 0

with replacing γ and Λ(t) by γ̃ and Λ̃(t, γ̃), respectively. Furthermore, by following

the arguments similar to those used in Lin et al. (2001), Li et al. (2010) and Sun

et al. (2005), one can show that for large n, the estimators defined above always exist

and are unique and consistent. In the next section, we will generalize the estimation
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approach above to the case of sparse asynchronous longitudinal data.

4.3 Estimation with Asynchronous Longitudinal Data

Now we discuss estimation of models (4.1) and (4.2) or unknown parameters for

sparse asynchronous longitudinal data. For this, it is easy to see that the estimating

equations or the estimators given in the previous section are not available or cannot

be used anymore. To generalize them, we will employ the kernel weighting technique.

First as before, we will consider the estimation of model (4.2), that is, the estima-

tion of γ and Λ(t). For this, based on the estimating function Ũγ(γ) and by following

Cao et al. (2015a), we can consider the estimating function

Uγ(γ) =
1

n

n∑
i=1

Ji∑
j=1

Ki∑
k=1

Kh(Tij −Rik){Zi(Rik)− Z̄(Tij; γ)}

=
1

n

n∑
i=1

∫ τ

0

∫ ∞
0

Kh(t− r){Zi(r)− Z̄(t; γ)}∆i(t)dOi (r) dNi(t) ,

where Kh(t) = K(t/h)/h is a symmetric kernel function with the bandwidth h, and

Z̄(t; γ) = S
(1)
n (t; γ)/S

(0)
n (t; γ) with

S(l)
n (t; γ) = n−1

n∑
i=1

∫ ∞
0

Kh(t− r)∆i(t)Zi(r)
⊗l exp {γ′Zi(r)} dOi (r) , l = 0, 1, 2.

Let γ̂ denote the estimator of γ given by the solution to Uγ(γ) = 0. Then a natural
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estimator of Λ(t) is given by

Λ̂(t; γ̂) =
n∑
i=1

∫ t

0

∆i(t)
∑Ki

k=1Kh (t−Rik)

nS(0)(t; γ̂)
dNi (t) .

For estimation of θ and µ, based on the estimating functions given in (4.4) and

(4.5) and similarly as above, we can consider the following kernel weighted estimating

equations

Uθ(θ; γ̂, µ (·)) =
1

n

n∑
i=1

∫ ∞
0

∫ τ

0

Kh (t− r) ∆i(t)Xi (t, r)

×
[
Yi (t) dNi (t)− g

{
µ (t) eθ

′Xi(t,r)
}
eγ̂
′Zi(r)dΛ̂ (t)

]
dOi (r) = 0 , (4.6)

and

Uµ (µ (·) ; γ̂) =
1

n

n∑
i=1

∫ ∞
0

Kh (t− r) ∆i(t)

×
[
Yi (t) dNi (t)− g

{
µ (t) eθ

′Xi(t,r)
}
eγ̂
′Zi(r)dΛ̂ (t)

]
dOi (r) = 0 . (4.7)

It is easy to see that the key difference between the estimating equations (4.4)-(4.5)

and (4.6)-(4.7) is that Kh(Tij − Rik) is added as the weight for each pair of Tij and

Rik. If Tij and Rik are close to each other, then the weight Kh(Tij − Rik) is close to

1, while if they are distant from each other, Kh(Tij −Rik) will be nearly or exactly 0.

Let θ̂ and µ̂ denote the respective estimators of θ and µ given by the solutions

to the estimating equations (4.6) and (4.7), and t1 < t2 < . . . < tm the distinct

ordered observation times of {Tij, i = 1, . . . , n; j = 1, . . . , Ji}. It is apparent that the

function µ(t) can be estimated only at the time points tl’s. More specifically, after

some algebra and for given θ, the estimated value of µ(t) at tl based on equation
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(4.7), denoted by µ̂(tl; θ, γ̂), can be obtained by solving

1

n

n∑
i=1

Ji∑
j=1

Ki∑
k=1

I (tl = Tij)Kh (tl −Rik) ∆i(tl) [Yi (tl)− ḡ (tl;µ(tl), θ, γ̂)] = 0 , (4.8)

l = 1, . . . ,m, where

ḡ (t;µ (·) , θ, γ) =

∑n
i=1

∫ τ
0
Kh (t− r) ∆i(t)g {µ (t) exp (θ′Xi (t, r))} exp (γ′Zi (r)) dOi (r)∑n

i=1

∫ τ
0
Kh (t− r) ∆i(t) exp (γ′Zi (r)) dOi (r)

.

Also the estimating equation (4.6) can be rewritten as

Uθ(θ; γ̂, µ (·)) =
1

n

n∑
i=1

∫ τ

0

∫ ∞
0

Kh (t− r) ∆i(t) [Xi (t, r)Yi (t)

−
∑n

j=1

∫ τ
0
Kh (t− s) ∆j(t)Xj (t, s) g {µ (t) exp (θ′Xj (t, s))} exp (γ̂′Zj (s)) dOj (s)∑n

j=1

∫ τ
0
Kh (t− s) ∆j(t) exp (γ̂′Zj (s)) dOj (s)

]

× dOi (r) dNi (t) = 0 . (4.9)

It is easy to see that in general, there are no closed-forms for θ̂ and µ̂
(
·; θ̂, γ̂

)
and some iterative algorithms need to be used for their determination. However, for

some special cases, the estimators θ̂ and µ̂
(
·; θ̂, γ̂

)
can have closed-forms. One such

situation is g(x) = log(x), under which model (4.1) would reduce to the linear model

discussed in Sun et al. (2005). For the case, one can easily show that

µ̂ (t; θ, γ̂) = exp

{∑n
i=1 ∆i(t)Yi (t) dNi (t)∑n

i=1 ∆i(t)dNi (t)
− θ′X̄ (t; γ̂)

}
, (4.10)
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where

X̄ (t; γ̂) =

∑n
i=1

∑Ki

k=1Kh (t−Rik) ∆i(t)Xi (t, Rik) exp {γ̂′Zi (Rik)}∑n
i=1

∑Ki

k=1Kh (t−Rik) ∆i(t) exp {γ̂′Zi (Rik)}
.

By plugging (4.10) into (4.9), one can obtain

Uθ (θ; γ̂) =
1

n

n∑
i=1

Ji∑
j=1

Ki∑
k=1

Kh (Tij −Rik) ∆i(Tij)Yi (Tij)
[
Xi (Tij, Rik)− X̄ (Tij; γ̂)

]

−
n∑
i=1

Ji∑
j=1

Ki∑
k=1

Kh (Tij −Rik) ∆i(Tij)
{
X (Tij; γ̂)⊗2 − X̄ (Tij; γ̂)⊗2

}
θ ,

where

X (t; γ̂)⊗2 =

∑n
i=1

∑Ki

k=1Kh (t−Rik) I (Ci ≥ t)Xi (t, Rik)
⊗2 exp (γ̂′Zi (Rik))∑n

i=1

∑Ki

k=1Kh (t−Rik) I (Ci ≥ t) exp (γ̂′Zi (Rik))
.

This yields

θ̂ =

[
n∑
i=1

Ji∑
j=1

Ki∑
k=1

Kh (Tij −Rik) ∆i(Tij)
{
X (Tij; γ̂)⊗2 − X̄ (Tij; γ̂)⊗2

}]−1

×

[
n∑
i=1

Ji∑
j=1

Ki∑
k=1

Kh (Tij −Rik) ∆i(Tij)Yi (Tij)
{
Xi (Tij, Rik)− X̄ (Tij; γ̂)

}]
.

Another case where the proposed estimator µ̂ has a closed-form is g(x) = x,

corresponding to the proportional mean model. For the situation, we have

µ̂ (t; θ, γ̂) =

∑n
i=1 ∆i(t)Yi (t) dNi (t)∑n

i=1 ∆i(t)dNi (t)
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×
∑n

i=1

∫ τ
0
Kh (t− r) ∆j(t) exp (γ̂′Zj (r)) dOj (r)∑n

j=1

∫ τ
0
Kh (t− r) ∆j(t) exp (θ′Xj (t, r) + γ̂′Zj (r)) dOj (r)

. (4.11)

By plugging (4.11) into (4.9), the estimating equation (4.6) or (4.9) becomes

Ũθ(θ; γ̂) =
1

n

n∑
i=1

∫ τ

0

∫ ∞
0

Kh (t− r) ∆i(t)Yi (t) [Xi (t, r)

−
∑n

j=1

∫ τ
0
Kh (t− u) ∆j(t)Xj (t, u) exp (θ′Xj (t, u) + γ̂′Zj (u)) dOj (u)∑n

j=1

∫ τ
0
Kh (t− u) ∆j(t) exp (θ′Xj (t, u) + γ̂′Zj (u)) dOj (u)

]
dOi (r) dNi (t) .

In the next section, we will establish the asymptotic properties of the estimators

proposed above.

4.4 Asymptotic Properties and Bandwidth Selec-

tion

In this section, we will derive the asymptotic distribution of θ̂. For k = 0, 1, 2, define

Q(k)
n (t; θ, γ) =

1

n

n∑
l=1

∫ τ

0

Kh (t− s) ∆l(t)ġ{µ̂ (t; θ, γ) exp (θ′Xl(t, s))}

×X⊗kl (t, s) exp (θ′Xl(t, s) + γ′Zl(s)) dOl (s) ,

and suppose that S
(k)
n (t; γ) and Q

(k)
n (t; θ, γ) converge with the limits

s(k) (γ, t) = E
[
∆ (t)Z (t)⊗k exp

{
γTZ (t)

}]
ν0 (t)
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and q(k) (t; θ, γ) = E
[
Q

(k)
n (t; θ, γ)

]
, respectively. For a function g (·), let ġ (·) denote

its first order derivative and define x̃ (t; θ, γ) = q(1) (t; θ, γ) /q(0) (t; θ, γ),

A (γ0) = −
∫ τ

0

{
s(2) (t; γ0)−

s(1) (t; γ0)
⊗2

s(0) (t; γ0)

}
dΛ0 (t) ,

Σγ (γ0) =

∫ ∞
−∞

K (z)2 dz

∫ τ

0

{
s(2) (t; γ0)−

s(1) (t; γ0)
⊗2

s(0) (t; γ0)

}
dΛ0 (t) ,

V (t, θ, γ) = E [∆(t)ġ{µ0 (t) exp (θ′X(t, t))}X (t, t)

× {X(t, t)− x̃ (t; θ, γ)}′ exp (θ′X(t, t) + γ′Z(t))
]
ν0 (t) ,

B (θ0, γ0) = E

∫ τ

0

∆(t)
V (t, θ0, γ0)

s(0) (t; γ0)
µ0 (t) exp (γ′0Z(t)) dΛ0 (t) ,

D (θ0, γ0) = −E
∫ τ

0

∆(t)
ν0 (t)

s
(0)
n (t; γ)

{
X (t, t)− q(1) (t, θ0, γ0)

q(0) (t, θ0, γ0)

}
g{µ0 (t) exp (θ′0X(t, t))}

×
{
Z(t)− s(1) (t; γ0)

s(0) (t; γ0)

}
exp (2γ′0Z(t)) dΛ0 (t) ,

I (t, s) = X (t, s)Y (t)−Q
(1)
n (t; θ0, γ0)

S
(0)
n (t, γ0)

+D (θ0, γ0)A
−1 (γ0)

{
Z(s)− S

(1)
n (t, γ0)

S
(0)
n (t, γ0)

}
exp (γ′0Z(t)) ,

Σθ (θ0) =

∫
z

K2 (z) dz

∫ τ

0

ν0 (t)E

[
∆(t)

[
X (t, t)Y (t)− q(1) (t; θ0, γ0)

s(0) (t, γ0)

+D (θ0, γ0)A
−1 (γ0)

{
Z(t)− s(1) (t, γ0)

s(0) (t, γ0)

}]
exp (γ′0Z(t))

]
dΛ0 (t) ,

G1 (t, s) = E [ġ{µ0 (t) exp (θ′0X(t, s))}X (t, s)

× {X(t, s)− x̃ (t; θ0, γ0)}′ exp (θ′0X(t, s) + γ′0Z(s))λ (t) ν0 (s)
]
,

G2 (t, s) = E

[{
X (t, s)− Q

(1)
n (t, θ0, γ0)

Q
(0)
n (t, θ0, γ0)

}
g {µ̂ (t; θ0, γ0) exp (θ′0X(t, s))}
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×

{
Z(s)− S

(1)
n (t; γ0)

S
(0)
n (t; γ0)

}
exp (γ′0Z(t))λ0 (t) ν0 (s)

]
,

and

G3 (t1, t2, s1, s2) = E[∆(t1)∆(t2)I (t1, s1) I
′ (t2, s2) ν0 (s1)λ0 (t1) ν0 (s2)λ0 (t2)] .

For the asymptotic properties, we need the following regularity conditions.

(E1) Pr (C ≥ τ) > 0, where τ is a predetermined constant.

(E2) N (τ) and O (τ) are bounded by finite constants, and λ0 (t) and ν0 (t) are twice

continuously differentiable for t ∈ [0, τ ].

(E3) For i = 1 . . . n, the Zi (t)’s have bounded variation. In addition, E[Z (s) ∆ (t)

exp {β′0Z (t)}] is twice continuously differentiable for s, t ∈ [0, τ ]⊗2.

(E4) If there is a vector θ such that θ′X (t, s) = 0, then θ = 0 for any t and s.

(E5) The functions g (·) and µ0 (·) are twice continuously differentiable for t ∈ [0, τ ],

and H (·) is twice continuously differentiable too. Furthermore, G1 (t, s) and

G2 (t, s) are bounded for (t, s) ∈ [0, τ ]⊗2 and twice continuously differentiable

for s ∈ [0, τ ], and G3 (t1, t2, s1, s2) is bounded for (t1, t2, s1, s2) ∈ [0, τ ]⊗4 and

continuously differentiable for (s1, s2) ∈ [0, τ ]⊗2. Also

E

[∫ τ

0

∫ ∞
0

∆(t)

[
X (t, s)Y (s)− Q

(1)
n (t; θ0, γ0)

S
(1)
n (t; γ0)

]
exp (γ′0Z(t))λ0 (t) ν0 (s)

]
<∞ ,

and

E

[∫ τ

0

∆(t)
V (t, θ0, γ0)

s(0) (t; γ0)
µ0 (t) exp (γ′0Z (t)) dΛ0 (t)

]
<∞ .
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(E6) The function K (z) is a symmetric density function satisfying
∫∞
−∞K (z) dz = 1,∫∞

−∞ zK (z) dz = 0,
∫∞
−∞ z

2K (z) dz <∞, and
∫∞
−∞K (z)2 dz <∞.

(E7) For the bandwidth, we have that h→ 0, nh→∞ and nh5 → 0 as n→∞.

Before describing the asymptotic distribution of θ̂, note that for the estimator γ̂,

Cao et al. (2015a) showed that under the Conditions (E1)-(E3) and (E6)-(E7), we

have that

(nh)1/2A (γ0) (γ̂ − γ0)→d N (0,Σγ (γ0)) .

Also A (γ0) and Σγ (γ0) can be consistently estimated by

Â (γ̂) =
1

n

n∑
i=1

∫ τ

0

Ki∑
k=1

Kh(t−Rik)∆i(t)

{
S(2) (t, γ̂)

S(0) (t, γ̂)
−
[
S(1) (t, γ̂)

S(0) (t, γ̂)

]⊗2}
dNi (t) ,

and

Σ̂γ (γ̂) =
1

n2

n∑
i=1

[∫ τ

0

∫ ∞
0

Kh (t− r)
{
Zi (r)− Z̄ (t, γ̂)

}
dOi (r) dNi (t)

]⊗2
,

respectively. Now we are ready to establish the asymptotic distribution of θ̂.

Theorem 5. Suppose that Conditions (E1) - (E7) hold. Then as n → ∞, we have

that (nh)1/2
{
B (θ0, γ0)

(
θ̂ − θ0

)}
→ N (0,Σθ (θ0)) in distribution. Furthermore,

B (θ0, γ0) and Σθ (θ0) can be consistently estimated by their empirical counterparts

B̂
(
θ̂, γ̂
)

= − ∂Uθ(θ; γ̂, µ̂ (·; θ, γ̂))

∂θ

∣∣∣∣
θ=θ̂

,
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and

Σ̂θ

(
θ̂
)

=
1

n2

n∑
i=1

[∫ τ

0

∫ ∞
0

{
Kh (t− r) ∆i(t)

[
Xi (t, r)Yi (t)−

Q
(1)
n (t; θ, γ̂)

S
(0)
n (t; γ̂)

]

−D̂
(
θ̂, γ̂
)
Â−1 (γ̂) {Zi(r)− Z̄(t; γ̂)}

}
dOi (r) dNi(t)

]⊗2
,

respectively, where

D̂
(
θ̂, γ̂
)

=
∂Uθ

(
θ̂; γ, µ̂

(
·; θ̂, γ

))
∂γ

∣∣∣∣∣∣
γ=γ̂

.

The proof of Theorem 5 is sketched in Appendix A.3. To make use of the result

given above, it is apparent that one needs to choose a kernel function K(·) and the

bandwidth h. For the former, there exist many choices and a commonly used one is

the Epanechnikov kernel to be used below. For the selection of bandwidth h, it is

well-known that a smaller h usually leads to a smaller bias but a larger variance and

a proper h should be chosen based on their trade-off. For this, note that the optimal

bandwidth may depend on the total number of the observations on covariates of

all subjects, and the second term in the square bracket of (4.9) can be regarded

as the Nadaraya-Watson estimator of a certain function at time point t given the

observations at the Rik’s, i = 1 . . . , n, k = 1, . . . , Ki. Also it is well-known that the

optimal bandwidth of the Nadaraya-Watson estimator in such context is O (ñ−0.2),

where ñ =
∑

iKi. These suggest that we can consider the bandwidth h = ñ−a with

0.2 < a < 1. The simulation study below indicates that the value of a between 0.6

and 0.7 gives a good balance between the bias and variance.

Instead of the approach considered above, sometimes one may prefer a data-driven
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method to select the bandwidth through the grid search. For this, by following Cao et

al. (2015a) and Cao et al. (2015b), we suggest choosing h that minimizes the estimated

mean square error (MSE) Ĉ2h4+V̂ (h) over the range of bandwidth candidates, where

V̂ (h) denotes the estimated asymptotic variance of β̂ for a given h and Ĉ is defined

below. To define the range, it is apparent that a natural lower bound is given by

maxi mink=(1,...,Ki),j=(1,...,Ji) |Tij −Rik|. The upper bound of the range is usually taken

to be M times the lower bound with the simulation study indicating M = 5 being a

good choice. Given the range, one can regress β̂ (h) to h2 with 25 equally spaced h

over the range to obtain the slope Ĉ, which can be used to estimate the bias by the

slope Ĉ. Note that Cao et al. (2015a) and Cao et al. (2015b) used a different method

to estimate the asymptotic variance of β̂ and the approach given here can be more

reliable and faster.

4.5 A Simulation Study

Now we report some results obtained from an extensive simulation study conducted to

assess the finite sample performance of the method proposed in the previous sections.

In the study, we assumed that the covariate process Z (t) is a piecewise constant

function given by

Z (t) =
20∑
i=1

I {(i− 1) /20 ≤ t < i/20} zi ,

where { zi }20i=1 follows the multivariate normal distribution with mean zero and the

covariance matrix { e−|i−j|/20 }i,j=1,...,20. For the response process, it was assumed that

Yi (t) = g [µ0 (t) exp {β′0Zi (t) + α′0Ni (t−)}] + εi (t)
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with g(t) = log(t) or g (t) = t, where εi (t) is a Gaussian process with mean zero

and covariance 2−|t−s| between εi (t) and εi (s). On the observation processes, we

assumed that both N∗i (t) and O∗i (t) are Poisson processes with the intensity functions

exp (γ′0Z (t)) λ0 (t) and ν0(t), respectively. In the following, we considered the set-up

with λ0 (t) = 3 and ν0 (t) = 6 or λ0 (t) = 4 and ν0 (t) = 8. Also the follow-up times

Ci’s were generated from the uniform distribution over (0.8, 1). The results given

below are based on n = 100 or 500 with 1000 replications.

Table 4.1 presents the results on the estimation of β and α given by the proposed

method with β0 = −2, α0 = 0.1, γ0 = 1.5, µ0 (t) = exp (2) and g(x) = log(x). In the

table, we calculated the estimated bias (Bias) given by the average of the estimates

minus the true value, the sample standard errors of the estimates (SSD), the average

of the estimated standard errors (ESE), and the 95% empirical coverage probabilities

(CP). For the results here, we used the Epanechnikov kernel K (t) = 0.75 (1− t2)+

and set the bandwidth h to be ñ−a with a = 0.6 or 0.7 or selected by the data-driven

grid search approach (grid) described in the previous section. For comparison, we

also include the results on the estimation of β given by the method proposed in Cao

et al. (2015b), denoted by β̂Cao, which assumes that the observation process on the

response process is independent of or non-informative above the response process.

One can see from Table 4.1 that the proposed estimators seem to be unbiased,

and the variance estimation and the normal approximation to the distribution of the

proposed estimator appear to be appropriate. On the bandwidth selection, all three

methods seem to give reasonable results and as expected, the results became better

when the sample size increased. In addition, the results indicate that the method

given in Cao et al. (2015b) gave biased results or in other words, in the presence
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of dependent or informative observation processes, the proposed approach should be

used. Table 4.2 gives the results on the estimation of β and α given by the proposed

method with µ0(t) = exp (sin (2πt)) and the other set-up being the same as in Table

4.1, and Tables 4.3 and 4.4 present the results as those given in Tables 4.1 and 4.2,

respectively, except g(x) = x. Again they all suggest that the proposed methodology

seems to work well and furthermore, it can be seen that the bias and standard error

became smaller when the number of observations increased. We also considered some

other set-ups, including different kernel and link functions, namely, K(t) and g(x),

and obtained similar results.

4.6 An Application to the HIV study

In this section, we will apply the methodology proposed in the previous sections to

the cohort study of HIV-infected subjects discussed above and in Cao et al. (2015b)

and Wohl et al. (2005) among others. As mentioned before, the study consisted of 190

patients who were followed for about five years from July 1997 to September 2002,

and among others, the patient’s HIV viral load and CD4 cell counts were measured at

different time points during the study. In other words, both the measurement times

and the numbers of observations on the HIV viral load and CD4 cell counts differ

and we have sparse and asynchronous longitudinal data on the two variables. In the

analysis here, by following Cao et al. (2015b), we will focus on the 181 patients who

had at least one measurement on both the HIV viral load and CD4 cell counts and

infer the relationship between the two variables.

To apply the proposed approach, again by following Cao et al. (2015b), we will
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treat the HIV viral load as the response variable and the CD4 cell count as the

covariate with the use of the log transformation on both. Also we transfer the scale

to make the follow-up period to be (0, 1]. For the data, we have ñ = 723, the total

number of observations on the covariate, and maxi mink=(1,...,Ki),j=(1,...,Ji) |Tij −Rik| =

0.0180, the smallest possible bandwidth. For the results given below, we used the

bandwidths h = ñ−a with a = −0.4,−0.5,−0.6 as well as the choice given by the

data-driven bandwidth selection method described above. Note that ñ−0.7 is smaller

than the smallest possible bandwidth.

Table 4.5 presents the estimates β̂, γ̂ and α̂ given by the proposed method based on

the Epanechnikov kernel along with their estimated standard errors and the p-values

for testing the corresponding parameter equal to zero. Here we took g(x) = log(x)

and set Hi(Fit) to be the total number of the observations on the HIV viral load

of the ith patient during the last three months. For comparison, the estimate of

β given by the method proposed by Cao et al. (2015b), denoted by β̂Cao, was also

obtained and included in the table as well as their estimated standard errors and the

p-values for testing β being equal to zero. One can see from Table 4.5 that both

methods suggest that the HIV viral load and CD4 cell counts were significantly and

negatively correlated, which is consistent with the literature (Cao et al., 2015b), but

the observation process on the HIV viral load did not seem to be related to the CD4

cell counts. Furthermore, the results indicate that the HIV viral load seems to be

significantly related to the number of the observations during the last three months,

and as seen in the simulation study, the method that ignores this relationship tended

to overestimate the covariate effect.

64



4.7 Discussion and Concluding Remarks

This chapter discussed regression analysis of asynchronous longitudinal data in the

presence of informative observation times, and for the problem, we presented a class of

flexible semiparametric transformation models, which include many commonly used

models as special cases. For estimation, an estimating equation-based approach was

developed with the use of the kernel weighting technique, and the asymptotic distri-

bution of the proposed estimator of regression parameters was derived. The numerical

studies were carried out for the assessment of the finite sample performance of the

proposed methodology and suggested that it seems to work well for practical situ-

ations. In particular, they indicated that as expected, the use of the method that

ignores the dependent or informative observation process could yield biased results

or conclusions.

As mentioned above, the focus here is on the longitudinal process Yi(t) and with

respect to Yi(t), the proposed estimation approach is essentially a conditional one.

With respect to Yi(t) and N∗i (t) together or given their correlation, instead of the

conditional model (4.1), one could take a joint modeling approach or a marginal

modeling method. The former models them together by using, for example, some

latent variables to describe their correlation, while the latter models Yi(t) marginally

and then N∗i (t) conditional on Yi(t). It is apparent that the latter method would be a

natural choice if the counting process N∗i (t) is of primary interest. One advantage of

the proposed conditional model (4.1) is that in addition to the evaluation of covariate

effects on the longitudinal process, it also allows the prediction and the independence

testing between the response and observation processes.
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Table 4.1: The simulation results based on µ0 (t) = exp (2) and g(x) = log(x).

n = 100 n = 500

h para Bias ESE SSD CP(%) Bias ESE SSD CP(%)
λ0 (t) = 3, ν0 (t) = 6

ñ−0.6 β̂ 0.072 0.579 0.548 94.8 0.053 0.345 0.336 95.7

β̂Cao 0.371 0.459 0.478 86.0 0.380 0.278 0.284 72.1
α̂ -0.012 0.098 0.089 94.9 -0.009 0.058 0.053 96.2

ñ−0.7 β̂ 0.061 0.656 0.657 94.5 0.044 0.423 0.414 95.9

β̂Cao 0.359 0.529 0.555 86.5 0.369 0.367 0.386 81.2
α̂ -0.011 0.111 0.109 94.6 -0.008 0.070 0.068 95.3

grid β̂ 0.143 0.507 0.484 94.3 0.075 0.276 0.267 94.2

β̂Cao 0.416 0.398 0.441 78.8 0.394 0.166 0.176 34.4
α̂ -0.015 0.088 0.075 95.5 -0.007 0.047 0.039 97.6

λ0 (t) = 4, ν0 (t) = 8

ñ−0.6 β̂ 0.051 0.561 0.507 96.1 0.027 0.320 0.313 95.5

β̂Cao 0.492 0.426 0.415 77.2 0.486 0.247 0.253 47.4
α̂ -0.006 0.080 0.065 97.3 -0.003 0.045 0.041 96.7

ñ−0.7 β̂ 0.044 0.625 0.600 95.3 0.026 0.383 0.398 95.3

β̂Cao 0.469 0.488 0.489 81.9 0.479 0.323 0.344 65.2
α̂ -0.008 0.089 0.077 97.0 -0.003 0.054 0.052 96.1

grid β̂ 0.106 0.506 0.460 96.0 0.049 0.262 0.243 95.9

β̂Cao 0.529 0.380 0.385 68.8 0.514 0.196 0.200 26.1
α̂ -0.008 0.074 0.056 97.2 -0.003 0.038 0.030 97.9
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Table 4.2: The simulation results based on µ0 (t) = exp(sin (2πt)) and g(x) = log(x).

n = 100 n = 500

h para Bias ESE SSD CP(%) Bias ESE SSD CP(%)
λ0 (t) = 3, ν0 (t) = 6

ñ−0.6 β̂ 0.021 0.615 0.557 96.7 0.019 0.366 0.358 95.8
α̂ 0.004 0.092 0.082 97.5 0.004 0.054 0.051 96.5

ñ−0.7 β̂ 0.009 0.694 0.651 96.1 0.006 0.449 0.458 94.8
α̂ 0.005 0.104 0.098 96.1 0.004 0.065 0.067 95.6

grid β̂ 0.102 0.536 0.492 95.2 0.051 0.292 0.286 95.1
α̂ -0.003 0.083 0.074 97.2 0.001 0.043 0.039 97.6

λ0 (t) = 4, ν0 (t) = 8

ñ−0.6 β̂ 0.022 0.549 0.490 96.2 0.007 0.316 0.300 96.1
α̂ 0.000 0.063 0.056 96.1 0.001 0.036 0.033 97.3

ñ−0.7 β̂ 0.001 0.613 0.582 95.2 0.003 0.380 0.387 94.9
α̂ 0.001 0.070 0.066 95.8 0.001 0.043 0.041 96.2

grid β̂ 0.097 0.491 0.447 94.5 0.037 0.256 0.239 96.1
α̂ -0.005 0.058 0.050 97.2 -0.001 0.029 0.026 97.4

Table 4.3: The simulation results based on µ0 (t) = exp (2) and g(x) = x.

n = 100 n = 500

h para Bias ESE SSD CP(%) Bias ESE SSD CP(%)
λ0 (t) = 3, ν0 (t) = 6

ñ−0.6 β̂ 0.071 0.381 0.399 95.2 0.040 0.255 0.263 95.2
α̂ -0.013 0.070 0.075 96.2 -0.009 0.046 0.048 95.1

ñ−0.7 β̂ 0.076 0.301 0.355 96.4 0.045 0.199 0.217 94.8
α̂ -0.013 0.054 0.067 96.5 -0.009 0.035 0.039 96.0

grid β̂ 0.135 0.312 0.264 94.7 0.063 0.174 0.150 95.5
α̂ -0.017 0.060 0.047 97.5 -0.008 0.032 0.025 97.2

λ0 (t) = 4, ν0 (t) = 8

ñ−0.6 β̂ 0.060 0.275 0.343 96.5 0.030 0.184 0.200 96.0
α̂ -0.007 0.035 0.050 98.5 -0.003 0.024 0.029 98.4

ñ−0.7 β̂ 0.063 0.333 0.379 96.0 0.030 0.234 0.236 95.4
α̂ -0.008 0.044 0.055 98.2 -0.004 0.030 0.034 97.8

grid β̂ 0.107 0.245 0.309 95.4 0.053 0.139 0.164 96.7
α̂ -0.009 0.031 0.046 98.0 -0.004 0.018 0.024 98.9
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Table 4.4: The simulation results based on µ0 (t) = exp(sin (2πt)) and g(x) = x.

n = 100 n = 500

h para Bias ESE SSD CP(%) Bias ESE SSD CP(%)
λ0 (t) = 3, ν0 (t) = 6

ñ−0.6 β̂ -0.143 1.128 1.016 95.6 -0.042 0.606 0.613 95.4
α̂ 0.061 0.173 0.125 99.6 0.016 0.092 0.072 98.6

ñ−0.7 β̂ -0.191 1.311 1.175 96.0 -0.125 0.776 0.770 96.9
α̂ 0.084 0.215 0.164 99.5 0.038 0.122 0.097 99.0

grid β̂ 0.007 1.725 1.311 93.0 -0.002 0.701 0.735 95.3
α̂ -0.024 0.253 0.197 97.9 -0.011 0.104 0.113 97.8

λ0 (t) = 4, ν0 (t) = 8

ñ−0.6 β̂ -0.083 1.075 1.047 94.4 -0.002 0.487 0.513 94.6
α̂ -0.012 0.198 0.193 98.3 -0.005 0.060 0.062 96.0

ñ−0.7 β̂ -0.109 1.314 1.241 95.2 -0.020 0.601 0.669 94.6
α̂ -0.016 0.284 0.252 98.8 -0.004 0.076 0.084 95.5

grid β̂ 0.085 0.907 0.868 94.1 0.002 0.552 0.558 94.6
α̂ -0.014 0.127 0.128 97.9 0.000 0.060 0.060 96.1

Table 4.5: The analysis results for the HIV study, including the estimated parameters
(Est.), the estimated standard errors (SE) and the p-values (p-val).

h Est. SE p-val
0.019 (ñ−0.6) γ̂ -0.009 0.103 0.930

α̂ -3.031 1.743 0.082

β̂ -0.945 0.219 0.000

β̂Cao -1.08 0.226 0.000
0.037 (ñ−0.5) γ̂ -0.039 0.105 0.712

α̂ -2.944 1.394 0.035

β̂ -1.026 0.200 0.000

β̂Cao -1.103 0.191 0.000
0.072 (ñ−0.4) γ̂ -0.036 0.107 0.734

α̂ -3.298 1.173 0.005

β̂ -1.072 0.204 0.000

β̂Cao -1.147 0.167 0.000
grid γ̂ -0.011 0.103 0.913

α̂ -3.036 1.732 0.080

β̂ -0.950 0.217 0.000

β̂Cao -1.139 0.228 0.000

68



Chapter 5

Future Research

5.1 Research Topics for Variable Selection of Event

History Data

In Chapter 2 and 3, we have focused on the situation where the number of variables or

predictors is fixed or can increase with the sample size n but smaller than n, for which

little literature exists, although the problem discussed can occur often. It is apparent

that one direction for future research is to generalize the idea or approach discussed

above to high-dimensional situations where pn is larger than n. One example of this

could be that the event of interest is related to the occurrence of some diseases or the

symptoms associated with some diseases and an objective of the study is to establish

the relationship between the disease and genes or markers, which can be hundreds

of thousands or even larger. Although the idea described here may still apply, the

implementation procedure would not work due to the irregularity of some needed
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matrices.

The BAR method may have a high computational burden if the dimension of

parameters is large, due to the matrix inversion in the algorithm. A more efficient al-

gorithm needs to be developed to ease the computational burden. For example, Dai et

al. (2018) proposed to use the iterative hard-thresholding algorithm to approximately

solve the ridge regression iteration for the linear regression case. Another possible

direction is to apply the coordinate descent (Friedman et al., 2010; Mazumder et al.,

2011) to compute each iteration. However, since the BAR penalty is essentially non-

convex, one should theoretically show the coordinate descent can achieve the same

local optimum as the original BAR algorithm.

In addition, we have focused on the underlying recurrent event process that fol-

lows the additive rate model (1.1). It would be useful to generalize the proposed

method to the situation where the event process may follow other models, such as

the proportional rate model or the semiparametric transformation model (Li et al.,

2010).

Another extension is to consider a terminal event, which corresponds to the situ-

ation where the follow-up time Ci may be related to N∗i (t). In this case, it is clear

that the proposed method may not be valid and could give biased results (Cook and

Lawless, 2007).

Last but not least, as discussed in the application in Section 3.5 , instead of one

recurrent event of interest, one may face more than one correlated recurrent events of

interest and it would be useful to generalize the proposed method to these multivariate

cases.
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5.2 Research Topics for Asynchronous Longitudi-

nal Data

In Chapter 4, for simplicity, we have used the same kernel function and bandwidth

for the estimation of γ and θ. The proposed method is still valid if different kernel

functions and bandwidths are used instead. However, the derivation of the asymptotic

distribution of the proposed estimator θ̂ will be different. Also note that in the

proposed method, we have focused on the situation where the observation process on

the response process may be informative but the observation process on the covariate

process is non-informative. It is apparent that sometimes both observation processes

could be informative and thus it would be useful to generalize the proposed method

to this latter situation.

Another direction for the generalization of the proposed approach is that through-

out Chapter 4, we have assumed that the follow-up times Ci’s are independent of both

the response process and the observation process. In reality, this may not be true

as, for example, the Ci’s may be caused by a terminal event that is correlated to the

response process, and such situations have been discussed by many authors when one

observes synchronous longitudinal data or the covariate process can be completely

observed. However, it does not seem to exist any literature for the situation of sparse

asynchronous longitudinal data.
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Appendix A

Theoretical Proofs

A.1 Proofs of Theorem 1 and 2

In this section, we will sketch the proofs of the oracle and grouping effect properties

of the proposed BAR estimator β̂
∗
R described in Theorems 1 and 2 of Chapter 2.

A.1.1 Preliminaries and Lemmas

For the proof, define

 α∗(β)

γ∗(β)

 ≡ g(β) = (Ωn + λnD(β))−1P n , (A.1)
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and the partition of matrix (n−1Ωn)−1 as

(
n−1Ωn

)−1
=

 A B

B′ G

 ,

whereA is a q×q matrix. Note that since Ωn is nonsingular, by multiplying Ω−1n (Ωn+

λnD(β)) and subtracting β0 on both sides of Equation (A.1), we can obtain

 α∗ − β01

γ∗

+
λn
n

 AD1(β1)α
∗ +BD2(β2)γ

∗

B′D1(β1)α
∗ +GD2(β2)γ

∗

 = b̂−β0 = Op(n
−1/2) , (A.2)

where D1(β1) = diag(β−21 , . . . , β−2q ) and D2(β2) = diag(β−2q+1, . . . , β
−2
p ).

To prove Theorem 1, we need the following two lemmas.

Lemma 1. Let { δn } be a sequence of positive real numbers satisfying δn → ∞ and

δ2n/λn → 0. Define H ≡ {β = (β′1,β
′
2)
′ : β1 ∈ [1/K0, K0]

q, ‖β2‖ ≤ δn/
√
n}, where

K0 > 1 is a constant such that β01 ∈ [1/K0, K0]
q. Then under the regular conditions

(C1)−(C7) and with probability tending to 1, we have

(i) sup
β∈H

‖γ∗(β)‖
‖β2‖

<
1

c0
for some constant c0 > 1.

(ii) g(·) is a mapping from H to itself.

Proof. Based on conditions (C6) and (C7) and note that β1 ∈ [1/K0, K0]
q and ‖α∗‖ ≤

‖g(β)‖ < K for some constant K > 0, we have

sup
β∈H

∥∥∥λn
n
B′D1(β1)α

∗
∥∥∥ = op(n

−1/2).
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Since λmin(G) > c−1, it follows from Equation (A.2) that, with probability tending

to 1,

c−1
∥∥∥λn
n
D2(β2)γ

∗
∥∥∥− ‖γ∗‖ ≤ sup

β∈H

∥∥∥γ∗ +
λn
n
GD2(β2)γ

∗
∥∥∥ ≤ δn√

n
. (A.3)

Let mγ∗/β2
= (γ∗1/βq+1, γ

∗
2/βq+2, . . . , γ

∗
p−q/βp)

′, then from the Cauchy-Schwarz in-

equality and the assumption ‖β2‖ ≤ δn/
√
n, we have

‖mγ∗/β2
‖ ≤ ‖D2(β2)γ

∗‖δn/
√
n,

and

‖γ∗‖ = ‖(D2(β2))
−1/2mγ∗/β2

‖ ≤ ‖mγ∗/β2
‖ · ‖β2‖ ≤ ‖mγ∗/β2

‖δn/
√
n, (A.4)

for all large n. Thus

λn
nC

√
n

δn
‖mγ∗/β2

‖ − ‖mγ∗/β2
‖ δn√

n
≤ δn√

n
.

Immediately from δ2n/λn → 0, we have

‖mγ∗/β2
‖ ≤ 1

λn
δ2nc
− 1

<
1

c0
, (A.5)

with probability tending to one. Hence it follows from inequality (A.4) and (A.5)

that

‖γ∗‖ < ‖β2‖ ≤ δn/
√
n→ 0 as n→∞, (A.6)

which implies that conclusion (i) holds.
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To prove (ii), we only need to verify thatα∗ ∈ [1/K0, K0]
q with probability tending

to 1. Analogously, given conditions (C6), β1 ∈ [1/K0, K0]
q and ‖α∗‖ < K,

sup
β∈H

∥∥∥λn
n
AD1(β1)α

∗
∥∥∥ = op(n

−1/2).

Then from Equation (A.2), we have

sup
β∈H

∥∥∥α∗ − β01 +
λn
n
BD2(β2)γ

∗
∥∥∥ = Op(n

−1/2) ≤ δn√
n
. (A.7)

Also according to inequality (A.3) and Condition (C6), we know that as n→∞ and

with probability tending to one,

sup
β∈H

∥∥∥λn
n
BD2(β2)γ

∗
∥∥∥ ≤ λn

n
‖B‖ sup

β∈H
‖D2(β2)γ

∗‖ ≤ 2c2δn√
n
. (A.8)

Therefore from inequality (A.7) and (A.8), we can get

sup
β∈H
‖α∗ − β01‖ ≤

(2c2 + 1)δn√
n

→ 0

with probability tending to one, which implies that for any ε > 0, P (‖α∗ − β01‖ ≤

ε)→ 1. Since β01 ∈ [1/K0, K0]
q, thus α∗ ∈ [1/K0, K0]

q holds for large n. Then with

the fact that ‖γ∗‖ ≤ δn/
√
n, we proved that (ii) is true.

Lemma 2. Under the regular conditions (C1)−(C7) and with probability tending to 1,

the equation α = (Ω(1)
n + λnD1(α))−1P (1)

n has a unique fixed-point α̂∗ in the domain

[1/K0, K0]
q.
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Proof. Since β02 = 0, we define

f(α) = (f1(α), f2(α), . . . , fq(α))′ ≡ (Ω(1)
n + λnD1(α))−1P (1)

n , (A.9)

where α = (α1, . . . , αq)
′. It is obviously that (f(α)′, 0′)′ = g(α, 0) and f(α) is a map

from [1/K0, K0] to itself. Multiplying Ω(1)
n + λnD1(α) and taking derivative with

respect to α on both sides of Equation (A.9), we have

( 1

n
Ω(1)
n +

λn
n
D1(α)

)
ḟ(α) +

λn
n

diag
(−2f1(α)

α3
1

, . . . ,
−2fq(α)

α3
q

)
= 0,

where ḟ(α) = ∂f(α)/∂α′. Then

sup
α∈[1/K0,K0]q

∥∥∥( 1

n
Ω(1)
n +

λn
n
D1(α)

)
ḟ(α)

∥∥∥ = sup
α∈[1/K0,K0]q

2λn
n

∥∥∥diag
(f1(α)

α3
1

, . . . ,
fq(α)

α3
q

)∥∥∥ = op(1).

According to Condition (C6) and the fact that α ∈ [1/K0, K0]
q, we can derive

∥∥∥( 1

n
Ω(1)
n +

λn
n
D1(α)

)
ḟ(α)

∥∥∥ ≥ ∥∥∥ 1

n
Ω(1)
n ḟ(α)

∥∥∥−∥∥∥λn
n
D1(α)ḟ(α)

∥∥∥ ≥ (1

c
−λn
n
K2

0

)
‖ḟ(α)‖.

Thus, supα∈[1/K0,K0]q ‖ḟ(α)‖ → 0, which implies that f(·) is a contraction mapping

from [1/K0, K0]
q to itself with probability tending to one. Hence, according to the

contraction mapping theorem there exists one unique fixed-point α̂∗ ∈ [1/K0, K0]
q,

such that

α̂∗ = (Ω(1)
n + λnD1(α̂

∗))−1P (1)
n . (A.10)
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A.1.2 Proof of Theorem 1

We prove conclusion (2) of Theorem 1 first. According to the definitions of β̂
∗
R and

β̂
(k)

R2 , it follows from inequality (A.6) that

β̂
∗
R2 ≡ lim

k→∞
β̂

(k)

2 = 0 (A.11)

holds with the probability tending to 1.

Next, we will show that P (β̂
∗
R1 = α̂∗) → 1. Consider Equation (A.2), we define

γ∗ = 0 if β2 = 0. Note that for any fixed large n, from Equation (A.2), we have

lim
β2→0

γ∗(β) = 0.

Furthermore, multiply (Ωn + λnD(β)) on both sides of Equation (A.1), then we can

get

lim
β2→0

α∗(β) = (Ω(1)
n + λnD1(β1))

−1P (1)
n = f(β1). (A.12)

Combining Equation (A.11) and (A.12), we have

sup
β1∈[1/K0,K0]q

‖f(β1)−α∗(β1, β̂
(k)

R2)‖ → 0, as k →∞. (A.13)

Since f(·) is a contract mapping, then it follows from Equation (A.10) that

‖f(β̂
(k)

R1)− α̂∗‖ = ‖f(β̂
(k)

R1)− f(α̂∗)‖ ≤ 1

c
‖β̂

(k)

R1 − α̂
∗‖. (c > 1) (A.14)
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Let hk = ‖β̂
(k)

R1 − α̂
∗‖, then from (A.13) and (A.14) we get

hk+1 = ‖α∗(β̂
(k)

R )− α̂∗‖ ≤ ‖α∗(β̂
(k)

R )− f(β̂
(k)

R1)‖+ ‖f(β̂
(k)

R1)− α̂∗‖

≤ ηk +
1

c
hk, for some small ηk > 0.

From (A.13), for any ε ≥ 0, there exists N > 0, such that |ηk| < ε. Employing some

recursive calculation, we have hk → 0 as k →∞. Hence, with probability tending to

one,

‖β̂
(k)

R1 − α̂
∗‖ → 0 as k →∞.

Since β̂
∗
R1 ≡ limk→∞ β̂

(k)

R1 and from the uniqueness of fixed-point, we have P (β̂
∗
R1 =

α̂∗)→ 1. That is, condition (1) holds.

Finally, based on Equation (A.2) and (C6) and note that λn/n = op(n
−1/2), we get

√
n(β̂

∗
R1−β01) ≈

√
n(b̂1−β01), where b̂1 is the first q elements of b̂. Then conclusion

(3) follows from the asymptotic normality of b̂ Schaubel et al. (2006).

A.1.3 Proof of Theorem 2

Let

Q(β|β̃) ≡ ‖y −Xβ‖2 + λn

p∑
j=1

β2
j

β̃2
j

,

and ε̂ = y −Xβ̂, where β̂ = arg minβQ(β|β̃).

On the one hand, from Q(β̂|β̃) ≤ Q(0|β̃), we have

‖ε̂‖2 + λn

p∑
i=1

β̂2
m

β̃2
m

≤ ‖y‖2.
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Therefore,

‖ε̂‖ ≤ ‖y‖.

On the other hand, when β̂m 6= 0, considering the derivative

∂Q(β|β̃)

∂βm
|β=β̂ = −2x′m(y −Xβ̂) + 2λn ·

β̂m

β̃2
m

= 0,

where m ∈ {1, . . . , p}, we have

β̂m =
β̃2
m

λn
· x′mε̂. (A.15)

Taking limitation on both sides of Equation (A.15), that is, limk→∞ β̂m = limk→∞ β̃m =

β̂∗Rm hold with probability tending to 1, then we can obtain that

1

β̂∗Ri
=

1

λn
x′iε̂ and

1

β̂∗Rj
=

1

λn
x′j ε̂.

Therefore,

∣∣∣ 1

β̂∗Ri
− 1

β̂∗Rj

∣∣∣ ≤ 1

λn
‖ε̂‖ · ‖x′i − x′j‖ ≤

1

λn
‖y‖

√
2(1− ρij).

This completes the proof.

A.2 Proofs of Theorem 3 and 4

In this section, we will sketch the proofs of the oracle and grouping effect properties

of β̂
∗
P described in Theorems 3 and 4.
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A.2.1 Preliminaries and Lemmas

For this, define  α∗(β)

γ∗(β)

 = g(β) = {Ωn + λnD(β)}−1vn, (A.16)

and the partition of the matrix (Ωn/n)−1 as

(Ωn/n)−1 =

 A B

B> G

 ,

whereA is a qn×qn matrix. Note that since Ωn is nonsingular, it follows by multiplying

Ω−1n {Ωn + λnD(β)} and subtracting β0 on both sides of Eq. (A.16) that we have

 α∗ − β01

γ∗

+
λn
n

 AD1(β1)α
∗ +BD2(β2)γ

∗

B>D1(β1)α
∗ +GD2(β2)γ

∗

 = b̂− β0, (A.17)

where b̂ = Ω−1n vn, D1(β1) = diag(β−21 , . . . , β−2qn ) and D2(β2) = diag(β−2qn+1, . . . , β
−2
pn ).

To prove Theorem 3, we also need the following two lemmas.

Lemma 3. Let δn be a sequence of positive real numbers satisfying δn → ∞ and

δ2npn/λn → 0. Define Hn = {β = (β>1 ,β
>
2 )> : β1 ∈ [1/K0, K0]

qn , ‖β2‖ ≤ δn
√
pn/n},

where K0 > 1 is a constant such that β01 ∈ [1/K0, K0]
qn. Then under regularity

conditions (D1)–(D8) and with probability tending to 1, we have

(i) sup
β∈Hn

‖γ∗(β)‖/‖β2‖ < 1/c0 for some constant c0 > 1.

(ii) g is a mapping from Hn to itself.

Proof. First according to Li et al. (2010), we have that E(‖b̂−β0‖2) = tr(Ω−1n ΞnΩ
−1
n )/n =
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O(pn/n), and hence ‖b̂− β0‖2 = Op(pn/n). It then follows from Eq. (A.17) that

sup
β∈Hn

‖γ∗ + λnB
>D1(β1)α

∗/n+ λnGD2(β2)γ
∗/n‖ = Op(

√
pn/n).

By Condition (D5) and the fact that

‖BB>‖ − ‖A2‖ ≤ ‖BB> + A2‖ ≤ ‖(Ωn/n)−2‖ < c2,

we can deduce that ‖B‖ ≤
√

2c. Furthermore, based on Conditions (D5) and (D6),

and given that β1 ∈ [1/K0, K0]
qn and ‖α∗‖ ≤ ‖g(β)‖ ≤ ‖b̂‖ = Op(

√
pn), we have

sup
β∈Hn

‖λnB>D1(β1)α
∗/n‖ = op(

√
pn/n). (A.18)

Since λmin(G) > 1/c, it follows from (A.17) that, with probability tending to 1,

‖λnD2(β2)γ
∗/n‖/c− ‖γ∗‖ ≤ sup

β∈Hn

‖γ∗ + λnGD2(β2)γ
∗/n‖ ≤ δn

√
pn/n. (A.19)

Let mγ∗/β2
= (γ∗1/βqn+1, γ

∗
2/βqn+2, . . . , γ

∗
pn−qn/βpn)>. It then follows from the

Cauchy–Schwarz inequality and the assumption ‖β2‖ ≤ δn
√
pn/n that

‖mγ∗/β2
‖ ≤ ‖D2(β2)γ

∗‖δn
√
pn/n,

and

‖γ∗‖ = ‖{D2(β2)}−1/2mγ∗/β2
‖ ≤ ‖mγ∗/β2

‖ × ‖β2‖ ≤ ‖mγ∗/β2
‖δn
√
pn/n, (A.20)
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for all large n. Thus from Eqs. (A.19)–(A.20), we have the inequality

λn
nC

√
n

δn
√
pn
‖mγ∗/β2

‖ − ‖mγ∗/β2
‖δn
√
pn/n ≤ δn

√
pn/n.

From pnδ
2
n/λn → 0, we immediately have, for c0 > 1,

‖mγ∗/β2
‖ ≤ 1

λn/(pnδ2nc)− 1
< 1/c0, (A.21)

with probability tending to 1. Hence it follows from Eqs. (A.20)–(A.21) that, as

n→∞,

‖γ∗‖ < ‖β2‖ ≤ δn
√
pn/n→ 0, (A.22)

which implies that conclusion (i) holds.

To prove (ii), we only need to verify that α∗ ∈ [1/K0, K0]
qn with probability

tending to 1 since (A.22) guarantees that ‖γ∗‖ ≤ δn
√
pn/n with probability tending

to 1. Analogously, given Condition (D5), β1 ∈ [1/K0, K0]
qn and ‖α∗‖ < Op(

√
pn),

we have

sup
β∈Hn

‖λnAD1(β1)α
∗/n‖ = op(

√
pn/n).

Then from Eq. (A.17), we have

sup
β∈Hn

‖α∗ − β01 + λnBD2(β2)γ
∗/n‖ = Op(

√
pn/n) ≤ δn

√
pn/n, (A.23)

and according to Eqs. (A.19) and (A.22), we have ‖λnD2(β2)γ
∗/n‖ ≤ 2cδn

√
pn/n.

Then based on Condition (D5), we know that as n→∞ and with probability tending
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to 1,

sup
β∈Hn

‖λnBD2(β2)γ
∗/n‖ ≤ λn‖B‖ sup

β∈Hn

‖D2(β2)γ
∗‖/n ≤ 2

√
2c2δn

√
pn/n. (A.24)

Therefore from Eqs. (A.23)–(A.24), we can get, as n→∞,

sup
β∈Hn

‖α∗ − β01‖ ≤ (2
√

2c2 + 1)δn
√
pn/n→ 0

with probability tending to 1, which implies that for any ε > 0, Pr(‖α∗ − β01‖ ≤

ε)→ 1. Since β01 ∈ [1/K0, K0]
qn , thus α∗ ∈ [1/K0, K0]

qn holds for large n. Thus (ii)

is true. This concludes the proof of Lemma 3.

Lemma 4. Under regularity conditions (D1)–(D8) and with probability tending to 1,

the equation α = {Ω(1)
n + λnD1(α)}−1v(1)

n has a unique fixed-point α̂∗ in the domain

[1/K0, K0]
qn.

Proof. Define

f(α) = (f1(α), . . . , fqn(α))> = {Ω(1)
n + λnD1(α)}−1v(1)

n , (A.25)

where α = (α1, . . . , αqn)>. By multiplying (Ω(1)
n )−1{Ω(1)

n + λnD1(α)} and then sub-

tracting β01 on both sides of (A.25), we have

f(α)− β01 + λn(Ω(1)
n )−1D1(α)f(α) = (Ω(1)

n )−1v(1)
n − β01 = β̂1(OLS)− β01,
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where β̂1(OLS) is the first qn-dimensional subvector of b̂. Therefore,

sup
α∈[1/K0,K0]qn

‖f(α)− β01 + λn(Ω(1)
n )−1D1(α)f(α)‖ = Op(

√
qn/n).

Similar to Eq. (A.18), it can be shown that

sup
α∈[1/K0,K0]qn

‖λn(Ω(1)
n /n)−1D1(α)f(α)/n‖ = op(

√
qn/n).

Thus, as n→∞,

sup
α∈[1/K0,K0]qn

‖f(α)− β01‖ ≤ δn
√
qn/n→ 0,

which implies that f(α) ∈ [1/K0, K0]
qn with probability tending to 1. That is, f(α)

is a mapping from [1/K0, K0]
qn to itself.

Also by multiplying Ω(1)
n + λnD1(α) and taking derivative with respect to α on

both sides of A.25, we have

{Ω(1)
n /n+ λnD1(α)/n}ḟ(α) + λndiag{−2f1(α)/α3

1, . . . ,−2fqn(α)/α3
qn}/n = 0,

where ḟ(α) = ∂f(α)/∂α>. Then

sup
α∈[1/K0,K0]qn

‖{Ω(1)
n /n+ λnD1(α)/n}ḟ(α)‖ =

sup
α∈[1/K0,K0]qn

2λn‖diag{f1(α)/α3
1, . . . , fq(α)/α3

qn}‖/n = op(1).
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According to Condition (D6) and the fact that α ∈ [1/K0, K0]
qn , we can derive

‖{Ω(1)
n /n+ λnD1(α)/n}ḟ(α)‖ ≥ ‖Ω(1)

n ḟ(α)/n‖ − ‖λnD1(α)ḟ(α)/n‖

≥ (1/c− λnK2
0/n)‖ḟ(α)‖.

Thus we have that supα∈[1/K0,K0]qn ‖ḟ(α)‖ → 0, which implies that f is a con-

traction mapping from [1/K0, K0]
qn to itself with probability tending to 1. Hence

according to the Contraction Mapping Theorem, there exists a unique fixed-point

α̂∗ ∈ [1/K0, K0]
qn such that

α̂∗ = {Ω(1)
n + λnD1(α̂

∗)}−1v(1)
n . (A.26)

This concludes the proof of Lemma 4.

A.2.2 Proof of Theorem 3

First we will prove conclusion (ii). For this, according to the definitions of β̂
∗
P2 and

β̂
(k)

P2, it follows from (A.22) that

β̂
∗
P2 = lim

k→∞
β̂

(k)

P2 = 0 (A.27)

holds with probability tending to 1.

Next we will show that Pr(β̂
∗
P1 = α̂∗) → 1. For this, consider (A.17) and define

γ∗ = 0 if β2 = 0. Note that for any fixed large n, from Eq. (A.17), we have

lim
β2→0

γ∗(β) = 0.
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Furthermore, multiplying by {Ωn +λnD(β)} on both sides of Eq. (A.16), we can get

lim
β2→0

α∗(β) = {Ω(1)
n + λnD1(β1)}−1v(1)

n = f(β1). (A.28)

By combining (A.27) and (A.28), it follows that, as k →∞,

ηk = sup
β1∈[1/K0,K0]qn

‖f(β1)−α∗(β1, β̂
(k)

P2)‖ → 0. (A.29)

Since f is a contract mapping, (A.26) yields

‖f(β̂
(k)

P1)− α̂∗‖ = ‖f(β̂
(k)

P1)− f(α̂∗)‖ ≤ 1

c
‖β̂

(k)

P1 − α̂
∗‖ (A.30)

with c > 1. Let hk = ‖β̂
(k)

P1 − α̂
∗‖. It then follows from (A.29) and (A.30) that

hk+1 = ‖α∗(β̂
(k)

)− α̂∗‖ ≤ ‖α∗(β̂
(k)

)− f(β̂
(k)

P1)‖+ ‖f(β̂
(k)

P1)− α̂∗‖ ≤ ηk + hk/c.

From (A.29), for any ε ≥ 0, there exists N > 0 such that when k > N , |ηk| < ε.

Employing some recursive calculation, we have hk → 0 as k → ∞. Hence, with

probability tending to 1, we have, as k →∞,

‖β̂
(k)

P1 − α̂
∗‖ → 0.

It follows that Pr(β̂
∗
P1 = α̂∗) → 1 holds since β̂

(k)

P1 → β̂
∗
P1 as k → ∞ and by the

uniqueness of the fixed-point.
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Finally, based on (A.26), we have
√
n (α̂∗ − β01) = Π1 + Π2, where

Π1 =
√
n [{Ω(1)

n + λnD1(α̂
∗)}−1Ω(1)

n − Iqn ]β01

and

Π2 =
√
n {Ω(1)

n + λnD1(α̂
∗)}−1(v(1)

n −Ω(1)
n β01).

It follows from the first order resolvent expansion formula that

{Ω(1)
n + λnD1(α̂

∗)}−1 = (Ω(1)
n )−1 − λn(Ω(1)

n )−1D1(α̂
∗){Ω(1)

n + λnD1(α̂
∗)}−1. (A.31)

This yields

Π1 = − λn√
n

(Ω(1)
n /n)−1 D1(α̂

∗){Ω(1)
n /n+ λnD1(α̂

∗)/n}−1 Ω(1)
n β01/n.

From Conditions (D5) and (D6), we have, as n→∞,

‖Π1‖ = Op(λn
√
qn/n)→ 0. (A.32)

Furthermore, it follows from (A.31) that

Π2 =
√
n {(Ω(1)

n /n)−1 − op(n−1/2)}(v(1)
n /n−Ω(1)

n β01/n) (A.33)

=(Ω(1)
n /n)−1(v(1)

n −Ω(1)
n β01)/

√
n+ op(1), (A.34)

where
√
n (v(1)

n −Ω(1)
n β01) =

√
n

n∑
i=1

U
(1)
i → N [0,E{U (1)

1 U
(1)>
1 }]
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with U
(1)
i consisting of the first qn components of Ui. The covariance E{U (1)

1 U
(1)>
1 }

can be estimated by Ξ̂
(1)
n , where Z

∗(1)
i (t) and Z̄

∗(1)
(t) consist of the first qn com-

ponents of Z∗i (t) and Z̄
∗
(t), respectively. Thus Π2 converges in distribution to a

mean-zero normal distribution whose covariance can be consistently estimated by

{n−1Ω(1)
n }−1 Ξ̂

(1)
n {n−1Ω(1)

n }−1, and the conclusion (iii) of Theorem 3 holds by com-

bining (A.32) and (A.34).

Thus the proof of Theorem 3 is complete. 2

A.2.3 Proof of Theorem 4

Let

Q(β|β̂
(k)

P ) = ‖y −Xβ‖2 + λn

pn∑
`=1

β2
` /(β̂

(k)

P` )
2,

and ε̂(k+1) = y −Xβ̂
(k+1)

P , where β̂
(k+1)

P = arg minβQ(β|β̂
(k)

P ). On the one hand,

from Q(β̂
(k+1)

P |β̂
(k)

P ) ≤ Q(0|β̂
(k)

P ), we have

‖ε̂(k+1)‖2 + λn

p∑
`=1

(β̂
(k+1)
P` )2/(β̂

(k)
P` )2 ≤ ‖y‖2.

Therefore, ‖ε̂(k+1)‖ ≤ ‖y‖. On the other hand, when β̂P` 6= 0, note that

∂

∂β`
Q(β|β̂

(k)
)
∣∣∣
β=β̂

(k+1)
= −2x>` ε̂

(k+1) + 2λn × β̂(k+1)
P` /(β̂

(k)
P` )2 = 0,

where ` ∈ {1, . . . , pn}. It then follows that

β̂
(k+1)
P` = (β̂

(k)
P` )2 × x>` ε̂

(k+1)/λn. (A.35)
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Since limk→∞ β̂
(k+1)
P` = limk→∞ β̂

(k)
P` = β̂∗P` and by taking the limitation on both sides

of (A.35), we have that

1/β̂∗Pi = x>i ε̂
∗/λn, 1/β̂∗Pj = x>j ε̂

∗/λn

hold with probability tending to 1 for any i, j ∈ {1, . . . , pn} and β̂∗Pi× β̂∗Pj 6= 0, where

ε̂∗ = y −Xβ̂∗. Therefore

|1/β̂∗Pi − 1/β̂∗Pj| ≤ ‖ε̂
∗‖ × ‖xi − xj‖/λn ≤ ‖y‖

√
2(1− ρij)λn.

This completes the proof of Theorem 4. 2

A.3 Proof of Theorem 5

This section consists of three parts. Section A.3.1 gives two lemmas as well as their

proofs that will be needed for the proof of Theorem 5. Section A.3.2 sketches the

proof of Theorem 5 and Section A.3.3 gives the closed forms of Σ̂θ

(
θ̂
)

, B̂
(
θ̂, γ̂
)

and

D̂
(
θ̂, γ̂
)

associated with the special link functions g(x) = log(x) and x, respectively.

A.3.1 Two Lemmas to Prove Theorem 5

Lemma 5. Assume that the regularity conditions (E1)-(E7) hold. Then we have

∂Uθ (θ; γ0, µ̂ (t; θ, γ0))

∂θ

∣∣∣∣
θ=θ0

→ −E
∫ τ

0

∆(t)
V (t, θ0, γ0)

s(0) (t; γ0)
µ0 (t) exp (γ′0Z) dΛ0 (t)

= −B (θ0, γ0)
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in probability, where

V (t, θ, γ) = E [∆(t)ġ{µ0 (t) exp (θ′X(t, t))}X (t, t)

× {X(t, t)− x̃ (t; θ, γ)}′ exp (θ′X(t, t) + γ′Z(t))
]
ν0 (t) .

Proof. Let

B̂ (θ, γ) = − ∂Uθ (θ; γ, µ̂ (t; θ, γ))

∂θ

∣∣∣∣
θ=θ

and

B̂ (θ, γ) =
1

n

n∑
i=1

∫ τ

0

∫ ∞
0

Kh (t− r) dOi (r) ∆i(t)
1

nS
(0)
n (t; γ)[

n∑
l=1

∫ τ

0

Kh (t− s) ∆l(t)Xl (t, s) ġ{µ̂ (t; θ, γ) exp (θ′Xl(t, s))}

×
{
∂µ̂ (t; θ, γ)

∂θ

∣∣∣∣
θ=θ

+ µ̂ (t; θ, γ)Xl(t, s)

}′
exp (θ′Xl(t, s) + γ′Zl(s)) dOl (s)

]
dNi (t)

(A.36)

Taking differentiation of Uµ (µ̂ (t; θ, γ) ; γ) = 0 on both sides with respect to θ yields

∂µ̂ (t; θ, γ)

∂θ

∣∣∣∣
θ=θ

= −X̃ (t; θ, γ) µ̂ (t; θ, γ) , (A.37)

where

X̃ (t; θ, γ) =
Q

(1)
n (t; θ, γ)

Q
(0)
n (t; θ, γ)

.
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Combining (A.36) and (A.37), we obtain

∂Uθ (θ; γ, µ̂ (t; θ, γ))

∂θ

∣∣∣∣
θ=θ

= − 1

n

n∑
i=1

∫ τ

0

∫ ∞
0

Kh (t− r) dOi (r) ∆i(t)
1

nS
(0)
n (t; γ)

×

[
n∑
l=1

∫ τ

0

Kh (t− s) ∆l(t)ġ{µ̂ (t; θ, γ) exp (θ′Xl(t, s))}Xl (t, s)

×
{
Xl(t, s)− X̃ (t; θ, γ)

}′
exp (θ′Xl(t, s) + γ′Zl(s)) dOl (s)

]
µ̂ (t; θ, γ) dNi (t) .

From Proposition 1 in the supplementary material of Cao et al. (2015a), in a

neighborhood of γ0, S
(0)
n (t; γ) converge to s(0) (t; γ) a.s. and uniformly in γ. By

a similar argument, in a neighborhood of γ0 and θ0, it is not hard to show that

Q
(k)
n (t; θ, γ) converges to some nonrandom function q(k) (t; θ, γ) a.s. and uniformly in

θ and γ. Hence, X̃ (t; θ, γ) also converges to x̃ (t; θ, γ) = q(1) (t; θ, γ) /q(0) (t; θ, γ) a.s.

by the continuous mapping theorem. Let

V̂ (t, θ, γ) =
1

n

n∑
l=1

∫ τ

0

Kh (t− r) ∆l(t)ġ{µ̂ (t; θ, γ) exp (θ′Xl(t, r))}Xl (t, r)

×
{
Xl(t, r)− X̃ (t; θ, γ)

}′
exp (θ′Xl(t, r) + γ′Zl(r)) dOl (r) .

By the uniform law of large numbers and uniform convergence of µ̂ (t; θ0, γ0) to
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µ (t; θ0, γ0) ≡ µ0 (t), V̂ (t, θ0, γ0) converges to

V (t, θ0, γ0) =E

[∫ τ

0

Kh (t− s) ∆(t)ġ{µ0 (t) exp (θ′0X(t, s))}X (t, s)

×
{
X(t, s)− X̃ (t; θ0, γ0)

}′
exp (θ′0X(t, s) + γ′0Z(s)) dO (s)

]
=E

[∫ τ

0

Kh (t− s) ∆(t)ġ{µ0 (t) exp (θ′0X(t, s))}X (t, s)

× {X(t, s)− x̃ (t; θ0, γ0)}′ exp (θ′0X(t, s) + γ′0Z(s)) ν0 (s)
]
ds+ op (1)

=E

[∫
z

K (z) ∆(t)ġ{µ0 (t) exp (θ′0X(t, t− hz))}X (t, t− hz) ν0 (t− hz)

×{X(t, t− hz)− x̃ (t; θ, γ)}′ exp (θ′0X(t, t− hz) + γ′Z(t− hz))
]
dz + op (1) .

By Taylor expansion with respect to h, under conditions (E3) and (E5), we have

V (t, θ0, γ0) = E [∆(t)ġ{µ0 (t) exp (θ′0X(t, t))}X (t, t)

{X(t, t)− x̃ (t; θ0, γ0)}′ exp (θ′0X(t, t) + γ′0Z(t))
]
ν0 (t) +O

(
h2
)
.

Then, by the law of large numbers and conditions (E5) and (E7), B̂ (θ0, γ0) con-

verges to

B (θ0, γ0) = E

[
n∑
i=1

∫ τ

0

∫ ∞
0

Kh (t− r) dOi (r) ∆i(t)
V (t, θ0, γ0)

s(0) (t; γ)
µ0 (t) dNi (t)

]
+O

(
h2
)

= E

[∫ τ

0

∆(t)
V (t, θ0, γ0)

s(0) (t; γ0)
µ0 (t) exp (γ′0Z (t)) dΛ0 (t)

]
+O

(
h2
)

= E

[∫ τ

0

∆(t)
V (t, θ0, γ0)

s(0) (t; γ0)
µ0 (t) exp (γ′0Z (t)) dΛ0 (t)

]
+ o (1) ,

as n→∞ and h→ 0.
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Lemma 6. Assume that the regularity conditions (E1)-(E7) hold. Then

∂Uθ (θ0; γ, µ̂ (t; θ0, γ))

∂γ

∣∣∣∣
γ=γ0

converges to

D (θ0, γ0) = −E
∫ τ

0

∆(t)
ν0 (t)

s
(0)
n (t; γ)

{
X (t, t)− q(1) (t, θ0, γ0)

q(0) (t, θ0, γ0)

}
g{µ0 (t) exp (θ′0X(t, t))}

×
{
Z(s)− s(1) (t; γ0)

s(0) (t; γ0)

}
exp (2γ′0Z(t)) dΛ0 (t)

in probability.

Proof. The derivative of Uθ (θ; γ, µ̂ (t; θ, γ)) with respect to γ is

∂Uθ (θ; γ, µ̂ (t; θ, γ))

∂γ

∣∣∣∣
γ=γ

=
1

n

n∑
i=1

∫ τ

0

Ki∑
k=1

K (t−Rik) ∆i(t)

[
− ∂µ̂ (t; θ, γ)

∂γ

∣∣∣∣
γ=γ

Q
(1)
n (t, θ, γ)

nS
(0)
n (t; γ)

− 1

nS
(0)
n (t; γ)

[
n∑
l=1

∫ τ

0

K (t− s) ∆l(t)Xl (t, s) g{µ̂ (t; θ, λ)

× exp (θ′Xl(t, s))}

{
Zl(s)−

S
(1)
n (t; γ)

S
(0)
n (t; γ)

}
exp (γ′Zl(s)) dOl (s)

]
dNi (t) . (A.38)

Similarly to the proof of Lemma 5, take differentiation of Uµ (µ̂ (t; θ, γ) ; γ) with re-

spect to γ, we obtain

∂µ̂ (t; θ, γ)

∂γ

∣∣∣∣
γ=γ

= − 1

nQ
(0)
n (t, θ, γ)

[
n∑
l=1

∫ τ

0

K (t− s) ∆l(t)g{µ̂ (t; θ, γ) exp (θ′Xl(t, s))}

×

{
Zl(s)−

S
(1)
n (t; γ)

S
(0)
n (t; γ)

}
exp (γ′Zl(s)) dOl (s)

]
. (A.39)
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Plugging in (A.39) into (A.38), we have

∂Uθ (θ; γ, µ̂ (t; θ, γ))

∂γ

∣∣∣∣
γ=γ

= − 1

n

n∑
i=1

∫ τ

0

Ki∑
k=1

K (t−Rik) ∆i(t)
1

nS
(0)
n (t; γ)

×

[
n∑
l=1

∫ τ

0

K (t− s) ∆l(t)

{
Xl (t, s)−

Q
(1)
n (t, θ, γ)

Q
(0)
n (t, θ, γ)

}
g{µ̂ (t; θ, γ) exp (θ′Xl(t, s))}

×

{
Zl(s)−

S
(1)
n (t; γ)

S
(0)
n (t; γ)

}
exp (γ′Zl(s)) dOl (s)

]
dNi (t) .

By the convergence of µ̂ (t; θ0, γ0), since h→ 0, by a similar argument in the proof of

Lemma 5, it is not hard to show that

1

n

n∑
l=1

∫ τ

0

K (t− s) ∆l(t)

{
Xl (t, s)−

Q
(1)
n (t, θ0, γ0)

Q
(0)
n (t, θ0, γ0)

}
g{µ̂ (t; θ0, γ0) exp (θ′0Xl(t, s))}

×

{
Zl(s)−

S
(1)
n (t; γ0)

S
(0)
n (t; γ0)

}
exp (γ′0Zl(s)) dOl (s)

converges to

E

[
∆(t)

{
X (t, t)− q(1) (t, θ0, γ0)

q(0) (t, θ0, γ0)

}
g{µ0 (t) exp (θ′0X(t, t))}

×
{
Z(t)− s(1) (t; γ0)

s(0) (t; γ0)

}
exp (γ′0Z(t))

]
ν0 (t) ,
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in probability. Therefore, by the law of large numbers, we can show

∂Uθ (θ0; γ, µ̂ (t; θ0, γ))

∂γ

∣∣∣∣
γ=γ0

=− E
∫ τ

0

∫ ∞
0

K (t− r) dO (r) ∆(t)
1

s
(0)
n (t; γ0)

×
[{

X (t, t)− q(1) (t, θ0, γ0)

q(0) (t, θ0, γ0)

}
g{µ0 (t) exp (θ′0X(t, t))}

×
{
Z(t)− s(1) (t; γ0)

s(0) (t; γ0)

}
exp (γ′0Z(t))

]
dN (t) + op (1)

=− E
∫ τ

0

∆(t)
ν0 (t)

s
(0)
n (t; γ)

{
X (t, t)− q(1) (t, θ0, γ0)

q(0) (t, θ0, γ0)

}
× g{µ0 (t) exp (θ′0X(t, t))}

{
Z(s)− s(1) (t; γ0)

s(0) (t; γ0)

}
× exp (2γ′0Z(t)) dΛ0 (t) +O

(
h2
)

+ op (1) .

This lemma then follows.

A.3.2 Detailed Proof of Theorem 5

By Taylor expansion with respect to θ̂, we obtain

(nh)1/2 Uθ

(
θ̂; γ̂, µ̂

(
t; θ̂, γ̂

))
= (nh)1/2 Uθ (θ0; γ̂, µ̂ (t; θ0, γ̂))

+ (nh)1/2
∂Uθ (θ; γ̂, µ̂ (t; θ, γ̂))

∂θ

∣∣∣∣
θ=θ∗

(
θ̂ − θ

)
. (A.40)

where θ∗is a line segment between θ0 and θ̂. By Lemma 5, the continuous mapping

theorem and the consistency of θ̂ and γ̂,

∂Uθ

(
θ; γ̂, µ̂

(
t; θ̂, γ̂

))
∂θ

∣∣∣∣∣∣
θ=θ∗

→ B (θ0, γ0) . (A.41)

95



Then, it is necessary to establish the asymptotic distribution of (nh)1/2 Uθ (θ0; γ̂, µ̂ (t; θ0, γ̂)).

By Taylor expansion with respect to γ̂,

(nh)1/2 Uθ (θ0; γ̂, µ̂ (t; θ0, γ̂))

= (nh)1/2 Uθ (θ0; γ0, µ̂ (t; θ0, γ0)) + (nh)1/2
∂Uθ (θ0; γ, µ̂ (t; θ0, γ))

∂γ

∣∣∣∣
γ=γ∗

(γ̂ − γ0)

= (nh)1/2 Uθ (θ0; γ0, µ̂ (t; θ0, γ0))

+ (nh)1/2
∂Uθ (θ0; γ0, µ̂ (t; θ0, γ))

∂γ

∣∣∣∣
γ=γ∗

Â−1 (γ0)

×

[
1

n

n∑
i=1

∫ τ

0

∫ ∞
0

Kh(t− r){Zi(r)−
S
(1)
n (t, γ0)

S
(0)
n (t, γ0)

}dOi (r) dNi (t)

]
(A.42)

where γ∗ is a line segment between γ and γ̂. The last equationcomes from Theorem

2 of Cao et al. (2015a).

By Lemma 6 and the consistency of γ̂ to γ0,

∂Uθ (θ0; γ, µ̂ (t; θ0, γ))

∂γ

∣∣∣∣
γ=γ∗

→ D (θ0, γ0) (A.43)

in probability.

It is then necessary to deal with Uθ (θ0; γ0, µ̂ (t; θ0, γ0)). Take the linear expansion

of g{µ̂ (t; θ0, γ0) exp (θ′0Xl(t, s))} at µ0 (t) in Uθ (θ0; γ0, µ̂ (t; θ0, γ0)), under condition
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(E5), we have

Uθ (θ0; γ0, µ̂ (t; θ0, γ0))

=
1

n

n∑
i=1

Ki∑
k=1

∫ τ

0

Kh (t−Rik) ∆i(t)

[
Xi (t, Rik)Yi (t)−

Q
(1)
n (t; θ0, γ0)

S
(0)
n (t; γ0)

]
dNi (t)

=
1

n

n∑
i=1

Ki∑
k=1

∫ τ

0

Kh (t−Rik) ∆i(t) [Xi (t, Rik)Yi (t)

−
∑n

l=1

∫ τ
0
K (t− s) ∆l(t)Xl (t, s) g{µ0 (t) exp (θ′0Xl(t, s))} exp (γ′0Zl(s)) dOl (s)

S
(0)
n (t; γ0)

− µ̂ (t; θ0, γ0)− µ0 (t)

S
(0)
n (t; γ0)

[
n∑
l=1

∫ τ

0

Kh (t− s) ∆l(t)Xl (t, s)

× ġ{µ∗ (t) exp (θ′0Xl(t, s))} exp (θ′0Xl(t, s) + γ′0Zl(s)) dOl (s)]] dNi (t) , (A.44)

where µ∗ (t) lies between µ̂ (t; θ0, γ0) and µ0 (t).

Similarly, take the linear expansion of g{µ̂ (t; θ0, γ0) exp (θ′0Xl(t, s))} at µ0 (t) in

Uµ (µ̂ (t; θ0, γ0) ; γ0),

Uµ (µ̂ (t; θ0, γ0) ; γ0) =
1

n

n∑
i=1

Ki∑
k=1

Kh (t−Rik) ∆i(t) [Yi (t)

−
∑n

l=1

∫ τ
0
Kh (t− s) ∆l(t)g{µ0 (t) exp (θ′0Xl(t, s))} exp (γ′0Zl(s)) dOl (s)

S
(0)
n (t; γ0)

− µ̂ (t; θ0, γ0)− µ0 (t)

S
(0)
n (t; γ0)

×
n∑
l=1

∫ τ

0

Kh (t− s) ∆l(t)ġ{µ∗∗ (t) exp (θ′0Xl(t, s))} exp (θ′0Xl(t, s) + γ′0Zl(s)) dOl (s)

]

×dNi (t) . (A.45)
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From (A.45) and some algebra, we have

µ̂ (t; θ0, γ0)− µ0 (t) ={
n∑
l=1

∫ τ

0

Kh (t− s) ∆l(t) [Yl (t)− g{µ0 (t) exp (θ′0Xl(t, s))}] exp (γ′0Zl(s)) dOl (s)

}

/

{
n∑
l=1

∫ τ

0

Kh (t− s) ∆l(t)ġ{µ∗∗ (t) exp (θ′0Xl(t, s))} exp (θ′0Xl(t, s) + γ′0Zl(s)) dOl (s)

}
(A.46)

where µ∗∗ (t) lies between µ̂ (t; θ0, γ0) and µ0 (t).

Then, combining (A.44) and (A.46), we obtain

(nh)1/2 Uθ (θ0; γ0, µ̂ (t; θ0, γ0))

= (nh)1/2
1

n

n∑
i=1

Ki∑
k=1

∫ τ

0
K (t−Rik) ∆i(t) [Xi (t, Rik)Yi (t)

−
∑n

l=1

∫ τ
0 Kh (t− s) ∆l(t)Xl (t, s) g{µ0 (t) exp (θ′0Xl(t, s))} exp (γ′0Zl(s)) dOl (s)∑n

l=1

∫ τ
0 Kh(t− s)∆l(t) exp{γ′0Zl(s)}dOl (s)

−

{∑n
l=1

∑Kl
k=1Kh (t−Rlk) ∆l(t)Yl (t) dNl (t)∑n

l=1

∑Kl
k=1Kh (t−Rlk) ∆l(t)dNl (t)

−
∑n

l=1

∫ τ
0 Kh (t− s) ∆l(t)g{µ0 (t) exp (θ′0Xl(t, s))} exp (γ′0Zl(s)) dOl (s)∑n

l=1

∫ τ
0 Kh(t− s)∆l(t) exp{γ′0Zl(s)}dOl (s)

}
×
∑n

l=1

∫ τ
0 Kh (t− s) ∆l(t)Xl (t, s) ġ{µ∗ (t) exp (θ′0Xl(t, s))} exp (θ′0Xl(t, s) + γ′0Zl(s)) dOl (s)∑n
l=1

∫ τ
0 Kh (t− s) ∆l(t)ġ{µ∗∗ (t) exp (θ′0Xl(t, s))} exp (θ′0Xl(t, s) + γ′0Zl(s)) dOl (s)

]
× dNi (t)

+ op

(
(nh)1/2

)
= (nh)1/2 Ũθ (θ0; γ0) + op

(
(nh)1/2

)
, (A.47)
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where

Ũθ (θ0; γ0) =
1

n

n∑
i=1

∫ τ

0

∫ ∞
0

Kh (t− r) ∆i(t) [{Xi (t, r)− x̃ (t)}Yi (t)

−
∑n

l=1

∫ τ
0
Kh (t− s) ∆l(t) {Xl (t, s)− x̃ (t)} g{µ0 (t) exp (θ′0Xl(t, s)) + γ′0Zl(s)}dOl (s)∑n

l=1

∫ τ
0
Kh(t− s)∆l(t) exp{γ′0Zl(s)}dOl (s)

]
×dOi (r) dNi (t) .

The last equation comes from the uniform convergence of µ̂ (t; θ0, γ0) to µ0 (t) and

(nh)1/2
1

n

n∑
i=1

∫ τ

0

∫ ∞
0

Kh (t− r) ∆i(t)

[
Xi (t, r)Yi (t)−

Q
(1)
n (t; θ0, γ0)

S
(1)
n (t; γ0)

]
dOi (r) dNi (t)

is op

(
(nh)1/2

)
under condition (E5).

Plugging (A.43) and (A.47) into (A.42), we have,

(nh)1/2 Uθ (θ0; γ̂, µ̂ (t; θ0, γ̂))

= (nh)1/2 Ũθ (θ0; γ0) + (nh)1/2D (θ0, γ0) Â
−1 (γ0)

×

(
1

n

n∑
i=1

∫ τ

0

∫ ∞
0

Kh(t− r)∆i(t)

{
Zi(r)−

S
(1)
n (t, γ0)

S
(0)
n (t, γ0)

}
dOi (r) dNi (t)

)
+ op

(
(nh)1/2

)
= (nh)1/2

1

n

n∑
i=1

∫ τ

0

∫ ∞
0

Kh (t− r) ∆i(t)

[
Xi (t, r)Yi (t)−

Q
(1)
n (t)

S
(0)
n (t, γ0)

+ D (θ0, γ0) Â
−1 (γ0)

{
Zi(r)−

S
(1)
n (t, γ0)

S
(0)
n (t, γ0)

}]
dOi (r) dNi (t) + op

(
(nh)1/2

)

Next we need to derive the variance of (nh)1/2 Uθ (θ0; γ̂, µ̂ (t; θ0, γ̂)). It is calculated
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as

Σθ (θ0) =var
[
(nh)1/2 Uθ (θ0; γ̂, µ̂ (t; θ0, γ̂))

]
=nhE

[
Uθ (θ0; γ̂, µ̂ (t; θ0, γ̂))⊗2

]
− nhE [Uθ (θ0; γ̂, µ̂ (t; θ0, γ̂))]⊗2 . (A.48)

For the first term on the right hand side of (A.48), it can be shown that, by the

similar arguments in Cao et al. (2015a) and Cao et al. (2015b) and the convergence

of γ̂, under (E3) and (E5)

nhE
[
Uθ (θ0; γ̂, µ̂ (t; θ0, γ̂))⊗2

]
=hE

[{∫ τ

0

∫ ∞
0

Kh (t− r) ∆(t)

[
X (t, r)Y (t)− Q

(1)
n (t; θ0, γ0)

S
(0)
n (t, γ0)

+ D (θ0, γ0) Â
−1 (γ0)

{
Z(r)− S

(1)
n (t, γ0)

S
(0)
n (t, γ0)

}]
dO (r) dN (t)

}⊗2+O (h) + op (1)

=hE

[∫ τ

0

∫ ∞
0

Kh (t− r) ∆(t)

{
X (t, r)Y (t)− Q

(1)
n (t; θ0, γ0)

S
(0)
n (t, γ0)

+ D (θ0, γ0) Â
−1 (γ0)

{
Z(r)− S

(1)
n (t, γ0)

S
(0)
n (t, γ0)

}}⊗2
exp (γ′0Z(t))

 ν0 (r) drdΛ0 (t)

+O (h) + op (1)

=

∫ τ

0

∫
z

K2 (z) dzE

[∫ τ

0

∆(t)

{
X (t, t− hz)Y (t)− Q

(1)
n (t; θ0, γ0)

S
(0)
n (t, γ0)

+ D (θ0, γ0) Â
−1 (γ0)

{
Z(t− hz)− S

(1)
n (t, γ0)

S
(0)
n (t, γ0)

}}⊗2
exp (γ′0Z(t))


× ν0 (t− hz) dΛ0 (t) +O (h) + op (1)

=

∫ τ

0

∫
z

K2 (z) dz
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×E

{X (t, t)Y (t)− Q
(1)
n (t; θ0, γ0)

S
(0)
n (t, γ0)

+D (θ0, γ0) Â
−1 (γ0)

{
Z(t)− S

(1)
n (t, γ0)

S
(0)
n (t, γ0)

}}⊗2

× ∆(t) exp (γ′0Z(t))] ν0 (t) dΛ0 (t) +O (h) + op (1)

=

∫ τ

0

∫
z

K2 (z) dzE

[
∆(t) exp (γ′0Z(t))

{
X (t, t)Y (t)− q(1) (t; θ0, γ0)

s(0) (t, γ0)

+ D (θ0, γ0)A
−1 (γ0)

{
Z(t)− s(1) (t, γ0)

s(0) (t, γ0)

}}⊗2]
ν0 (t) dΛ0 (t) +O (h) + op (1)

For the second term on the right hand side of (A.48),

nhE [Uθ (θ0; γ̂, µ̂ (t; θ0, γ̂))]⊗2 = op (1) ,

because Uθ (θ0; γ̂, µ̂ (t; θ0, γ̂)) = op

(
(nh)−1/2

)
. Since h→ 0 as n→∞ and

∫
z
K2 (z) dz <

∞,

Σθ (θ0) =

∫
z

K2 (z) dz

∫ τ

0

E [∆(t) exp (γ′0Z(t))

×

{
X (t, t)Y (t)− q(1) (t; θ0, γ0)

s(0) (t, γ0)
+D (θ0, γ0)A

−1 (γ0)

{
Z(t)− s(1) (t, γ0)

s(0) (t, γ0)

}}⊗2]

×ν0 (t) dΛ0 (t) + op (1) . (A.49)

The last step is to verify that Lyapunov condition holds. Define

Hi = (nh)1/2
1

n

∫ τ

0

∫ ∞
0

Kh (t− r) ∆(t)

[
Xi (t, r)Yi (t)−

Q
(1)
n (t; θ0, γ0)

S
(0)
n (t, γ0)

+ D (θ0, γ0) Â
−1 (γ0)

{
Zi(r)−

S
(1)
n (t, γ0)

S
(0)
n (t, γ0)

}]
dOi (r) dNi (t)

]
.

It is not hard to show that E [Hi] = o
(

(h/n)1/2
)

. From (A.49), E [H2
1 ] = O ((nh)−1).
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To verify Lyapunov condition, it is seen that

n∑
i=1

E
[
(Hi − E [Hi])

3] = n
{
E
[
H3

1

]
− 3E

[
H2

1

]
E [H1] + 4E [H1]

3}
= n

{
E
[
H3

1

]
− 3O

(
(nh)−1

)
o
(

(h/n)1/2
)

+ 4o
(

(h/n)3/2
)}

= nE
[
H3

1

]
+ o (1) . (A.50)

Similar to calculating Σθ (θ0), due to the fact that
∫
z
K3 (z) dz = 0 induced by the

symmetry of K(·), we have

E
[
H3

1

]
= O

(
(nh)3/2 n−3h−3h

)
= O

(
n−3/2h−1/2

)
. (A.51)

Combining (A.50) and (A.51), we obtain

n∑
i=1

E
[
(Hi − E [Hi])

3] = O
(
(nh)−1/2

)
→ 0

as n→∞.

Therefore,

(nh)1/2 Uθ (θ0; γ̂, µ̂ (t; θ0, γ̂))→ N (0,Σθ (θ0)) . (A.52)

Theorem 5 then follows by combining (A.40), (A.41) and (A.52).
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A.3.3 Special Forms of Σ̂θ

(
θ̂
)
, B̂

(
θ̂, γ̂
)

and D̂
(
θ̂, γ̂
)

For the linear case where g (x) = log (x),

Σ̂θ

(
θ̂
)

=
1

n2

n∑
i=1

[
Ji∑
j=1

Ki∑
k=1

Kh (Tij −Rik) ∆i(Tij)
[
Yi (Tij)

{
Xi (Tij, Rik)− X̄ (Tij)

}
−
{
X (Tij)

⊗2 − X̄ (Tij)
⊗2
}
θ̂
]

− D̂
(
θ̂, γ̂
)
Â−1

∫ τ

0

∫ τ

0

Kh(u− s){Zi(s)− Z̄(u; γ)}dOi (s) dNi(u)

]⊗2
,

B̂
(
θ̂, γ̂
)

=
1

n

n∑
i=1

Ji∑
j=1

Ki∑
k=1

Kh (Tij −Rik) ∆i(Tij)Yi (Tij)
{
X (Tij; γ̂)⊗2 − X̄ (Tij; γ̂)⊗2

}
,

and

D̂
(
θ̂, γ̂
)

=
1

n

n∑
i=1

Ji∑
j=1

Ki∑
k=1

Kh (Tij −Rik) ∆i(Tij)Yi (Tij)

×

[
−
∑n

l=1

∑Kl

u=1Kh (Tij −Rlu) I (Cl ≥ Tij)Xl (Tij, Rlu)Zl (Rlu)
′ exp (γ̂′Zl (Rlu))∑n

l=1

∑Kl

u=1Kh (Tij −Rlu) I (Cl ≥ Tij) exp (γ̂′Zl (Rlu))

+ X̄ (Tij) Z̄
′ (Tij)

]
− 1

n

n∑
i=1

Ji∑
j=1

Ki∑
k=1

Kh (Tij −Rik)

×

{∑n
l=1

∑Kl

u=1Kh (Tij −Rlu) I (Cl ≥ Tij)Xl (Tij, Rlu)
⊗2 θZ ′l (Rlu) exp (γ̂′Zl (Rlu))∑n

l=1

∑Kl

u=1Kh (Tij −Rlu) I (Cl ≥ Tij) exp (γ̂′Zl (Rlu))

−
∑n

l=1

∑Kl

u=1Kh (Tij −Rlu) I (Cl ≥ Tij)Xl (Tij, Rlu)
⊗2 exp (γ̂′Zl (Rlu))∑n

l=1

∑Kl

u=1Kh (Tij −Rlu) I (Cl ≥ Tij) exp (γ̂′Zl (Rlu))
θZ̄ ′ (Tij)

}

− 1

n

n∑
i=1

Ji∑
j=1

Ki∑
k=1

Kh (Tij −Rik)×
{
−2θ′X̄ (Tij)

∂X̄ ′ (Tij)

∂γ

}
.
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For the proportional case where g (x) = x,

Σ̂θ

(
θ̂
)

= n−1
n∑
i=1

[∫ τ

0

∫ ∞
0

Kh (t− r) ∆i(t)Yi (t) [Xi (t, r)

−
∑n

l=1

∫ τ
0
Kh (t− s) ∆l(t)Xl(t, s) exp (θ′Xl(t, s) + γ′Zl(s)) dOl (s)∑n

j=1

∫ τ
0
Kh (t− s) ∆j(t) exp (θ′Xj (t, s) + γ̂′Zj (s)) dOj (s)

]
dOi (r) dNi (t)

+D̂
(
θ̂, γ̂
)
Â−1 (γ̂)

∫ τ

0

∫ τ

0

Kh(t− r){Zi(r)− Z̄(t; γ̂)}dOi (r) dNi(t)

]⊗2
,

B̂
(
θ̂, γ̂
)

=
1

n

n∑
i=1

∫ τ

0

∫ ∞
0

Kh (t− r) ∆i(t)Yi (t)

×

∑n
j=1

∫ τ
0
Kh (t− s) ∆j(t)X

⊗2
j (t, s) exp

(
θ̂′Xj (t, s) + γ̂′Zj (s)

)
dOj (s)∑n

j=1

∫ τ
0
Kh (t− s) ∆j(t) exp

(
θ̂′Xj (t, s) + γ̂′Zj (s)

)
dOj (s)

−


∑n

j=1

∫ τ
0
Kh (t− s) ∆j(t)Xj (t, s) exp

(
θ̂′Xj (t, s) + γ̂′Zj (s)

)
dOj (s)∑n

j=1

∫ τ
0
Kh (t− s) ∆j(t) exp

(
θ̂′Xj (t, s) + γ̂′Zj (s)

)
dOj (s)


⊗2

×dOi (r) dNi (t)

and

D̂
(
θ̂, γ̂
)

= − 1

n

n∑
i=1

∫ τ

0

∫ ∞
0

Kh (t− r) ∆i(t)Yi (t)

×

∑n
j=1

∫ τ
0
Kh (t− s) ∆j(t)Xj (t, s)Z ′j (s) exp

(
θ̂′Xj (t, s) + γ̂′Zj (s)

)
dOj (s)∑n

j=1

∫ τ
0
Kh (t− s) ∆j(t) exp

(
θ̂′Xj (t, s) + γ̂′Zj (s)

)
dOj (s)

−

∑n
j=1

∫ τ
0
Kh (t− s) ∆j(t)Xj (t, s) exp

(
θ̂′Xj (t, s) + γ̂′Zj (s)

)
dOj (s)∑n

j=1

∫ τ
0
Kh (t− s) ∆j(t) exp

(
θ̂′Xj (t, s) + γ̂′Zj (s)

)
dOj (s)
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×


∑n

j=1

∫ τ
0
Kh (t− s) ∆j(t)Zj (s) exp

(
θ̂′Xj (t, s) + γ̂′Zj (s)

)
dOj (s)∑n

j=1

∫ τ
0
Kh (t− s) ∆j(t) exp

(
θ̂′Xj (t, s) + γ̂′Zj (s)

)
dOj (s)


′

×dOi (r) dNi (t) .
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