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Pollen tubes (PTs) are one of the best characterized
plant cell types in many respects. The identification of
key players involved in tube growth offers the perspec-
tive of an integrative understanding of cell morpho-
genesis processes. One outstanding feature of PTs is their
prominent dependence on ion dynamics to promote and
regulate growth. Many reports have identified and
characterized membrane transport proteins, such as
channels, transporters, and pumps, as well as their reg-
ulatory mechanisms, some of which themselves are de-
pendent on ions such as Ca2+ and H+. The signaling
network that governs growth is based on a strict spatial
distribution of signaling molecules, including apical
gradients of Ca2+, H+, and reactive oxygen species. A
central role for ion homeostasis, and more generally
membrane transport systems, is proposed to underlie
the spatiotemporal establishment of the signaling net-
work that controls the PT self-organization and mor-
phogenesis. Here, we review the latest progress on
understanding tube growth from the perspective of
membrane transporters and ion homeostasis. The on-
going molecular characterization of the Ca2+-signaling
pathways, as well as the recent identification of female
external cues and corresponding receptors on the pollen
that control growth orientation, offer a firm biological
context to boost the field even further.

POLLEN TUBES AS A TAILORED MODEL FOR
STUDYING ION DYNAMICS AT THE CELL
BIOLOGY LEVEL

Pollen tubes (PTs) have long been considered out-
standingmodels for cell biology for a variety of reasons.
On the one hand, they display dramatic features at the
level of cell polarity, cytoskeleton dynamics, growth
rates, membrane recycling, cell-cell interaction mecha-
nisms, etc. (Cheung andWu, 2007; Michard et al., 2009;
Qin and Yang, 2011; Hepler, 2016). On the other hand,
their study is backed up by extensive databases on

transcriptomics and proteomics on practically all of its
biological contexts (Honys and Twell, 2003; Pina et al.,
2005; Borges et al., 2008; Qin et al., 2009; Boavida et al.,
2011; Mayank et al., 2012; Pertl-Obermeyer et al., 2014;
Lang et al., 2015). All these features define a unique
cell type so evolutionarily streamlined to fast growth
and sperm delivery (Williams, 2008) that it remained
basically conserved as the only gametophyte de-
velopmental end product for male function since the
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Cretaceous (Rudall and Bateman, 2007). PTs in an-
giosperms can grow up to 4 mm$s21 and are charac-
terized by the periodic formation of callose plugs that
isolate older parts of the tube to die so that growth
can be maintained continuously restricted to the ap-
ical end (for review, see Boavida et al., 2005a, 2005b).
In plants, PTs share the same type of apical growth
mechanism with root hairs, a fact that is reflected at
the molecular level by the existence of an apical signa-
ture in transcriptomics profiles (Becker et al., 2014). Root
hairs, however, grow slower than PTs. In addition, root
hair length is controlled through a signaling network
involving ROOTHAIR DEFECTIVE SIX-LIKE (RSL)
transcription factors (Honkanen and Dolan, 2016). In
spite of those main differences, the apical growth of
root hairs and PTs is characterized by apical exocytosis
of new cell wall material, similar ion gradients, fluxes
at the tip, and a mechanism depending on actin cyto-
skeleton supporting cell elongation (Gu and Nielsen,
2013; Ketelaar, 2013; Mendrinna and Persson, 2015;
Mangano et al., 2016).

With so many peculiarities and extreme adaptations
to function, the applicability of PT-specific mechanisms
to other plant somatic cells, namely diffuse growing
ones, is not always straightforward. This assumption
is clearly reflected in thewell-differentiated transcriptomic
profiles between PTs and those of other organs and
tissues (for snail-view representations, see Becker et al.,
2003; Pina et al., 2005). The one feature in PTs that
stands out the most is their strict dependence on ion
dynamics to grow and sustain their functions (Michard
et al., 2009). Different ions, namely calcium (Ca2+),
protons (H+ or pH), and chloride (Cl2), form stable/
standing gradients of cytosolic concentration in the
clear zone (Fig. 1). Of relevance, these spatial patterns
and their temporal and spatial variations or choreog-
raphies, correlate remarkablywell with the intracellular
structure of PTs, be it the grading of organelle sizes
defining the so-called clear zone, the cytoplasmic re-
verse fountain (Cheung and Wu, 2007; Hepler and
Winship, 2015), and, to some extent, the definition of
the membrane-recycling domains in the tip (Parton
et al., 2001; Bove et al., 2008; Kost, 2008; Bloch et al.,
2016;Wang et al., 2016; Fig. 1). The existence of these ion
gradients as a putative central coordinating mecha-
nism for cellular growth and morphogenesis in PTs has
been conceptualized elsewhere (Feijó et al., 1995, 2001;
Michard et al., 2009; Daminelli et al., 2017). Largely
believed to be generated from plasma membrane (PM)
activity, the ion choreography of PTs is easily traceable
by noninvasive methods such as ion-specific vibrating
probe electrophysiology and ion-specific probe imag-
ing to show nearly perfect correlation with growth
variationswhile also allowing one to score for very subtle
phenotypes hardly detectable in other nongrowing cells
(Michard et al., 2011).

Of relevance, growth rate, ion fluxes, and concen-
trations may oscillate in PTs, as well as during root hair
growth. Some studies present the choreography of ion
fluxes and intracellular ion concentrations by a relative

lag time during a growth period in PT (for review, see
Holdaway-Clarke and Hepler, 2003; Hepler et al., 2013)
and root hair (Monshausen et al., 2007, 2008). In such
studies, the minimum pH or maximum Ca2+ oscil-
lations and growth peak display a time lag of a few
seconds in both PT and root hairs, suggestive of similar
regulation mechanisms of growth. Of note, the flux of
Cl2 was found to be in phase with growth (Zonia et al.,
2002). Nevertheless, different estimates of advances
and delays have been collected in a variety of biological
systems like lily (Lilium longiflorum), tobacco (Nicotiana
tabacum), petunia (Petunia hybrida), less in Arabidopsis
(Arabidopsis thaliana), using imaging techniques (dif-
ferential interference contrast, wide-field or confocal
fluorescence), and electrophysiology methods in such
ways that comparisons of the published delays and
proposed sequences of events are subject to potential
distortions (Portes et al., 2015; Daminelli et al., 2017).
Last but not least, correlation does not imply causation,
and not much can be deduced from those studies,
particularly because we do not know the kinetic prop-
erties of key reactions within the networks, such as
molecular diffusion, protein phosphorylation, exocy-
tosis, etc. (Daminelli et al., 2017)

Figure 1 highlights the peculiar correlation between
ion dynamics and cell structure. Spatial correlations
between features of the cytosolic gradients (Fig. 1, B, C,
and E) and other cellular structures are conspicuous
and easily observed at the level of zonation of organ-
elles along the clear zone (Fig. 1A) or the actin cyto-
skeleton (Fig. 1D). Characterizing the transport
molecules that generate these gradients may be a first
step in their manipulation and eventually may test the
hypothesis that spatial correlations are not a mere
phenomenological coincidence but may actually be
causal and part of a network of regulatory feedback
loops. One first step in that direction is the establish-
ment of a functional correlation between the transport
molecules and the predicted outcome of their activity in
terms of ion dynamics, whether at the level of cytosolic
concentration or of membrane transport. One such ex-
ample is also offered in Figure 1, where the localization
of the H+-ATPase NICOTIANA TABACUM AUTO-
INHIBITED H+-ATPASE (NtAHA1) (Fig. 1F) correlates
perfectly with the existence of intracellular pH domains
(Fig. 1E) and extracellular H+

fluxes (Fig. 1G; Certal
et al., 2008; Michard et al., 2008). The fact that this
crucial pump is segregated from the tip PM triggers a
number of testable models and by itself already defines
an experimental paradigm offered uniquely by PTs.

In Arabidopsis, more than 800 transporter transcripts
have been identified in pollen using the ATH1 mRNA
microarray (Pina et al., 2005; Bock et al., 2006), and this
overrepresentation is confirmed by RNA sequencing in
Arabidopsis and lily (Loraine et al., 2013; Lang et al.,
2015). This is perhaps one of the reasons why PTs have
been widely explored in recent years for phenotyping an
increasing repertoire of channels, transporters, and
pumps, rendering the vegetative cell of the PT likely one
of the best studied cells in plants in terms of ion
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dynamics. Figure 2 and Table I summarize this accu-
mulated knowledge. They incorporate not only genes
that have already been characterized but also genes that
can be predicted from transcriptomics, proteomics, and
comparative physiology to play roles in PT growth. In
this review,we focus on organizing or systematizing this
growing repertoire, focusing on three different angles.
(1) Is this knowledge sufficient to define regulatory
mechanisms around a specific ion? (2) What are the

downstream targets of specific ions? And (3) how do
cellular processes feed back to regulate ion transport?

OPPOSING FORCES: TURGOR AND CELL
WALL DEPOSITION

When growing PTs or root hairs stop in response to
an osmotic shock, the exocytosis of vesicles ensuring
cell wall deposition continues at the tip (Schroeter and

Figure 1. The ion dynamics regulatory paradigm of the PT structure is supported by strong spatial correlations. A, Lily PTs
(differential interference contrast imaging) display the quintessence of the dramatic polarization of these cells. Actin-driven
reverse-fountain cytoplasmic movement drives organelles to the tip by the periphery and back through the tube core. Yet, this
back-turningmovement occurs some 20 to 50mmback from the tip, resulting in a pattern best described as if there is a size-sorting
or sieving mechanism, first dispatching back big starch plastids (black arrows), then mitochondria (white arrow) and other larger
endomembrane formations, and only allowing small exocytic vesicles to the very tip (asterisk). This pattern generates two clearly
observable cytologic domains: the clear zone, defined by the absence of large plastids and many times seen at lowmagnification
(double asterisk in the inset), and an inverted cone (Lancelle et al., 1987) of small vesicles that, contrary to the rest of the tube
shank, move in a nonorganized Brownian-like motion (dashed lines on the tip). B to G, In tobacco PTs, these domains are re-
markably correlated with cytosolic ion concentrations of Cl2 (B), Ca2+ (C), and H+ (E) when live imaged with specific fluorescent
genetic probes. The acidic tip (E) very closely defines the inverted cone and is also correlatedwith a lower concentration of Cl2. In
tobacco, the inverted cone also seems to be lined up by a concentration of small, highly dynamic actin filaments (D) that are often
organized as a basket or fringe (Rounds et al., 2014). The clear zone is correlated with both the fading of the Ca2+ and the acidic
gradients focused on the tip. The base of the clear zone also defines the appearance of the long actin filaments that support
organelle streaming. A causal correlation between a specific transporter distribution and cytosolic concentration of an ion is best
seen for H+, where the localization of themost highly expressed P-type ATPase in tobacco, NtAHA1 (F; Certal et al., 2008), closely
correlates with the extracellular H+ fluxes (G; effluxes in red and influxes in blue) and cytosolic pH (E). H+ effluxes, on the other
hand, correlate with the presence of the chimeric NtAHA1::GFP protein, and influxes correlate with their absence on the tip. Last
but not least, the acid tip (red in E) correlateswith the largest influxes and the submembranar alkaline linings (purple in E) correlate
with effluxes. Bars = 10mm. (The image in A is byN.Moreno, adapted from Taiz et al. [2015] and Smith et al. [2009]; the image in
B is adapted from Gutermuth et al. [2013]; the images in C and E are adapted from Michard et al. [2008]).
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Sievers, 1971; Li et al., 1996; Zerzour et al., 2009). Ap-
parently, the main control of the apical growth process
does not depend on turgor as much as on other plant
cells (Cosgrove, 2014; Ali and Traas, 2016). Quantifi-
cation of the opposing growth forces in lily PTs led to a
difference of 2 orders of magnitude between the inter-
nal turgor pressure (approximately 0.3 MPa) and the
cell wall elasticity (approximately 20–90 MPa; Vogler
et al., 2012), clearly bringing other growth control
mechanisms than turgor to the board. Supporting this
concept, growth can be arrested by nonrelated turgor
means, such as caffeine treatment (Li et al., 1996). Yet,
despite the fact that there is no correlation between
turgor and growth rate, a minimal turgor pressure of
approximately 0.3 MPa is necessary to sustain PT
growth in lily (Benkert et al., 1997). The general con-
sensus is that turgor drives the PT growth by providing
a minimal mechanical force necessary for cell wall
elongation at the tip but that it plays no or a minor
regulatory role. Various theoretical approaches have
tried to bridge these opposing forces at work by mod-
eling anisotropic-viscoplastic properties (Dumais et al.,
2006), the incorporation of new cell wall material, par-
ticularly pectine esters, as a key factor in softening the
wall by affecting polymer cross-links (Rojas et al., 2011),

and finite element analysis methods (Fayant et al., 2010;
Vogler et al., 2012). A discussion of the opportunities
and caveats of these models is beyond the scope of this
review, and herewe focus on the facts that (1) turgor is a
direct consequence of water transport driven by small
solutes, notably ions, and (2) ions such as Ca2+ and H+

are involved in the mechanical maturation of cell walls.
PTs can appropriately adjust turgor pressure by

adapting to changes in external osmolarity (Benkert
et al., 1997), but no osmosensor has yet been charac-
terized. Mechanosensitive ion channels like the cation
channel REDUCED HYPEROSMOLALITY-INDUCED
[Ca2+]i INCREASE1 (AtOSCA1) (Yuan et al., 2014) or
the anion channel MECHANOSENSITIVE CHANNEL
OFSMALLCONDUCTANCE-LIKE (AtMSL8) (Hamilton
et al., 2015) offer a conceptual basis for a sensor, but so far
the reported ion currents and phenotypes of these chan-
nels do notwarrant that theymaybe acting in PT growth.

Several arguments can be raised regarding the role
of aquaporins in facilitating water transport in PTs
(Obermeyer, 2017). Pollen aquaporins of the SMALL
BASIC INTRINSIC PROTEINS (SIP) and TONOPLAST
INTRINSIC PROTEIN (TIP) clade have been located at
endomembranes (Ishikawa et al., 2005; Wudick et al.,
2014), while NOD26-LIKE INTRINSIC PROTEINS

Figure 2. Molecular basis for the transmembrane transport in the PT. A schematic overview of ion and solute transport in the PT is
shown.Gradients of different ion concentrations (e.g. H+, Ca2+, and Cl2) differentiate the clear zone from the shank region and are
essential for the polarized growth of the tube. We posit that, like cytosolic pH (Fig. 1), ion homeostasis along these gradients is
reached by the integrated transport activity of a network of different transport molecules distributed between the tip, shank, and
internal domains of the tube. Depicted on the images are the channels, transporters, and pumps that were either genetically
described or putative but deemed to be essential from transcriptomic analysis (question marks) to form the ion choreography of a
pollen tune (for details, see Table I). At, Arabidopsis thaliana; Cs, Cucumis sativus; Le, Solanum lycopersicum; Ll, Lilium long-
iflorum; Np, Nicotiana plumbaginifolia; Nt, Nicotiana tabacum; Os, Oryza sativa. (This image is not drawn to scale.)

94 Plant Physiol. Vol. 173, 2017

Michard et al.



T
ab

le
I.

Su
m
m
ar
y
o
f
m
o
le
cu

la
r
d
at
a
av

ai
la
b
le

o
n
th
e
p
h
ys
io
lo
gi
ca

l
ro
le

o
f
io
n
o
r
tu
rg
o
r-
re
la
te
d
m
em

b
ra
n
e
tr
an

sp
o
rt
p
ro
te
in
s
in

P
T
gr
o
w
th
,
ga

th
er
ed

b
y
fu
n
ct
io
n
(p
u
m
p
s,
ch

an
n
el
s,
co

tr
an

sp
o
rt
er
s,

an
d
aq

u
ap

o
ri
n
s)
an

d
se
le
ct
iv
it
y
(s
u
ga

rs
,
an

io
n
s,
p
o
ta
ss
iu
m
,
an

d
ca

ti
o
n
s)

Fo
r
ea

ch
tr
an

sp
o
rt
er

an
d
co

rr
es
p
o
n
d
in
g
ge

n
o
m
ic

id
en

ti
fi
er
,
th
e
m
o
le
cu

la
r
fu
n
ct
io
n
an

d
th
e
b
io
lo
gi
ca
l
sy
st
em

in
w
h
ic
h
it
h
as

b
ee
n
es
ta
b
li
sh
ed

ar
e
in
d
ic
at
ed

as
w
el
l
as

th
e
in
tr
ac

el
lu
la
r

lo
ca

li
za

ti
o
n
an

d
th
e
lo
ca

li
za
ti
o
n
m
et
h
o
d
(s
)
u
se
d
.
P
h
ys
io
lo
gi
ca
l
re
le
va
n
ce

is
d
efi

n
ed

b
y
p
h
en

o
ty
p
es

o
f
kn

o
ck
d
o
w
n
o
r
o
ve
re
xp

re
ss
in
g
li
n
es
,
w
h
en

av
ai
la
b
le
,
o
r
o
th
er

p
h
ys
io
lo
gi
ca

l
tr
ai
ts
.
P
u
ta
ti
ve

ge
n
es

ar
e
in
d
ic
at
ed

w
h
en

(1
)
tr
an

sc
ri
p
to
m
ic
s
in
d
ic
at
ed

p
o
ll
en

se
le
ct
iv
e
an

d
h
ig
h
ex

p
re
ss
io
n
an

d
(2
)
fu
n
ct
io
n
h
as

b
ee

n
d
efi

n
ed

fo
r
th
e
ge

n
e
fa
m
il
y
in

o
th
er

ti
ss
u
es
.
n
/a
,
N
o
t
av
ai
la
b
le
.

N
am

e
Lo

cu
s
Id
en

ti
fi
er

Fu
n
ct
io
n
(S
ys
te
m

a )
Lo

ca
li
za
ti
o
n
b
(M

et
h
o
d
c )

P
h
ys
io
lo
gi
ca

l
R
el
ev
an

ce
d

R
ef
er
en

ce

P
u
m
p
s
N
tA
H
A
1

A
Y
3
8
3
5
9
9

P
-t
yp

e
A
T
Pa
se
;
p
ro
to
n

p
u
m
p
(P
)

P
T,

P
M
,
sh
an

k
(F
P
)

O
X
:
sl
o
w
ed

gr
o
w
th

ra
te
,

ca
ll
o
se

p
lu
g
d
ef
o
rm

at
io
n

C
er
ta
l
et

al
.
(2
0
0
8
)

N
p
P
M
A
5

A
Y
7
7
2
4
6
2
A
Y
7
7
2
4
6
8

P
-t
yp

e
A
T
Pa
se
;
p
ro
to
n

p
u
m
p
(Y
)

Sh
an

k
P
M

(I
)

?
Le

fe
b
vr
e
et

al
.
(2
0
0
5
)

Ll
H
A
1

A
Y
0
2
9
1
9
0

P
-t
yp

e
A
T
Pa
se
;
p
ro
to
n

p
u
m
p
(P
)

P
G
,
P
M

(P
C
)

H
+
cu

rr
en

ts
u
n
d
er

p
at
ch

cl
am

p
G
eh

w
o
lf
et

al
.
(2
0
0
2
)

A
tA
H
A
3

A
t5
g5

7
3
5
0

P
3
A
-t
yp

e
A
T
Pa
se
;
p
ro
to
n

p
u
m
p
(P
)

P
M
?

Ex
p
re
ss
ed

d
u
ri
n
g
p
o
ll
en

d
ev
el
o
p
m
en

t
(G

U
S)
;
K
O
:
le
th
al

R
o
b
er
ts
o
n
et

al
.
(2
0
0
4
)

A
tA
H
A
6

A
t2
g0

7
5
6
0

P
3
A
-t
yp

e
A
T
Pa
se
;
p
ro
to
n

p
u
m
p
?

P
M
?

P
u
ta
ti
ve
,
b
as
ed

o
n
ex

p
re
ss
io
n

le
ve
ls
(A
H
A
8
),
h
o
m
o
lo
gy

w
it
h

N
t
an

d
Ll
,
an

d
p
o
ll
en

se
le
ct
iv
e

(A
H
A
6
,
A
H
A
7
,
an

d
A
H
A
9
)

P
in
a
et

al
.
(2
0
0
5
);
B
o
ck

et
al
.
(2
0
0
6
);
La

n
g
et

al
.

(2
0
1
5
)

A
tA
H
A
7

A
t3
g6

0
3
3
0

A
tA
H
A
8

A
t3
g4

2
6
4
0

A
tA
H
A
9

A
t1
g8

0
6
6
0

A
tA
C
A
9

A
t3
g2

1
1
8
0

P
2
B
-t
yp

e
A
T
Pa
se
;
ca
lc
iu
m

p
u
m
p
(Y
)

P
M

(F
P
)

K
O
:
p
ar
ti
al

m
al
e
st
er
il
it
y

Sc
h
io
tt
et

al
.
(2
0
0
4
)

A
tV
H
A
-E
1

A
t4
g1

1
1
5
0
A
t3
g0

8
5
6
0

A
t1
g6

4
2
0
0

V
ac

u
o
la
r
H

+
-A
T
Pa
se

(P
)

E1
,
va
cu

o
le
s
an

d
en

d
o
so
m
es

o
f
sp
er
m

ce
ll
;
E2

,
ve
ge

ta
ti
ve

ce
ll
,
p
o
ll
en

sp
ec

ifi
c;

E3
,
ve
ge

ta
ti
ve

ce
ll

an
d
sp
er
m

ce
ll
va
cu

o
le

(F
P
)

E1
,
K
O

is
em

b
ry
o
le
th
al
;
E2

,
K
O

h
as

n
o
p
h
en

o
ty
p
e;

E3
,
p
ar
ti
al
ly

re
d
u
n
d
an

t
to

E1
,
p
o
ss
ib
le

st
re
ss

re
sp
o
n
se

im
p
li
ca

ti
o
n
s

St
ro
m
p
en

et
al
.
(2
0
0
5
);

D
et
tm

er
et

al
.
(2
0
1
0
)

A
tV
H
A
-E
2

A
tV
H
A
-E
3

Su
c
tr
an

sp
o
rt
er
s

A
tS
U
C
1

A
t1
g7

1
8
8
0

Su
c
ca

rr
ie
r
(P
)

P
M
,
ar
o
u
n
d
ca

ll
o
se

p
lu
gs

an
d

cy
to
p
la
sm

n
ea
r
P
T
ti
p
(F
P
)

K
O
:
re
d
u
ce

d
p
o
ll
en

ge
rm

in
at
io
n

ra
te

St
ad

le
r
et

al
.
(1
9
9
9
);
Si
vi
tz

et
al
.
(2
0
0
8
)

O
sS
U
T
1

O
s0
3
g0

7
4
8
0

Su
c
tra
ns
po
rt
er

(P
)

?
K
O
:
im

p
ai
re
d
ge

rm
in
at
io
n
ra
te

H
ir
o
se

et
al
.
(2
0
1
0
)

Le
SU

T
2

So
ly
c1

1
g0

1
7
0
1
0

Su
c
tra
ns
po
rt
er

(P
)

P
T,

P
M

(I
)

A
S:

d
ec
re
as
ed

am
o
u
n
ts
o
f
so
lu
b
le

su
ga
rs
,
in
h
ib
it
ed

P
T
gr
o
w
th

H
ac
ke

l
et

al
.
(2
0
0
6
)

C
sH

T
1

G
en

B
an

k
H
Q
2
0
2
7
4
6

H
ex
o
se

tr
an

sp
o
rt
er
,
h
ig
h

af
fin
ity

fo
r
G
lc

(Y
)

P
M

(F
P
)

O
X
:
h
ig
h
er

p
o
ll
en

ge
rm

in
at
io
n

ra
te
,
in
cr
ea

se
d
tu
b
e
gr
o
w
th
;
A
S:

in
h
ib
it
ed

ge
rm

in
at
io
n
an

d
el
o
n
ga

ti
o
n
,
fe
w
er

se
ed

s

C
h
en

g
et

al
.
(2
0
1
5
)

A
tS
W
EE

T
8
/
A
tR
P
G
1

A
t5
g4

0
2
6
0

Su
c
tr
an

sp
o
rt
er

(P
,
H
,
Y
)

P
M

(F
P
)

K
O
:
m
al
e
fe
rt
il
it
y
p
h
en

o
ty
p
e,

m
ic
ro
sp
o
ro
ge
n
es
is
,
ex

in
e

fo
rm

at
io
n
an

d
ce

ll
in
te
gr
it
y

G
u
an

et
al
.
(2
0
0
8
);

C
h
en

et
al
.
(2
0
1
0
);

Su
n
et

al
.
(2
0
1
3
)

A
n
io
n
ch

an
n
el
s
an

d
tr
an

sp
o
rt
er
s

A
tS
LA

H
3

A
t5
g2

4
0
3
0

A
n
io
n
ch

an
n
el

(P
,
O
)

P
M

(F
P
)

V
o
lt
ag

e
cl
am

p
:
re
gu

la
te
d
b
y

A
tC
P
K
2
an

d
A
tC
P
K
2
0

G
u
te
rm

u
th

et
al
.
(2
0
1
3
)

A
tM

SL
8

A
t2
g1

7
0
1
0

A
n
io
n
ch

an
n
el

(O
)

P
M
,
en

d
o
m
em

b
ra
n
es

(F
P
)

W
T:

m
ec
h
an

o
se
n
si
ti
ve
;
K
O
:

im
p
ro
ve
d
ge

rm
in
at
io
n
;O

X
:

in
h
ib
it
ed

ge
rm

in
at
io
n

(n
eg

at
iv
el
y
re
gu

la
te
s)

H
am

il
to
n
et

al
.
(2
0
1
5
)

(T
ab

le
co

n
ti
n
u
es

o
n
fo
ll
o
w
in
g
p
ag
e.
)

Plant Physiol. Vol. 173, 2017 95

Ion Transport in Pollen Tubes



T
ab

le
I.
(C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
p
ag

e.
)

N
am

e
Lo

cu
s
Id
en

ti
fi
er

Fu
n
ct
io
n
(S
ys
te
m

a )
Lo

ca
li
za
ti
o
n
b
(M

et
h
o
d
c )

P
h
ys
io
lo
gi
ca

l
R
el
ev
an

ce
d

R
ef
er
en

ce

A
tC
C
C
1

A
t1
g3

0
4
5
0

C
l2
/c
at
io
n
co

tr
an

sp
o
rt
er

(O
)

P
M
,
G
o
lg
i
(F
P
)

P
o
ll
en

ex
p
re
ss
io
n
;
K
O
:
ab

o
rt
ed

si
li
q
u
es
,
se
ed

-s
et

re
d
u
ct
io
n

C
o
lm

en
er
o
-F
lo
re
s
et

al
.

(2
0
0
7
);
K
o
n
g
et

al
.

(2
0
1
1
);
H
en

d
er
so
n
et

al
.

(2
0
1
5
)

Po
ta
ss
iu
m

ch
an

n
el
s

A
tS
P
IK

(A
tA
K
T
6
)

A
t2
g2

5
6
0
0

K
+
ch

an
n
el

(C
)

P
M

(P
C
)

W
T:

vo
lt
ag
e
d
ep

en
d
en

t,
in
w
ar
d

cu
rr
en

ts
,
C
sC

l
in
h
ib
it
io
n
;
K
O
:

d
is
ru
p
te
d
p
o
ll
en

ge
rm

in
at
io
n
,

sl
o
w
er

tu
b
e
gr
o
w
th
,
fe
rt
il
it
y

af
fe
ct
ed

M
o
u
li
n
e
et

al
.
(2
0
0
2
)

Li
lK
T
1

G
en

e
n
/a
;
p
ro
te
in

A
3
R
G
9
2

K
+
ch

an
n
el

(P
,
Y
)

C
yt
o
p
la
sm

,
p
u
n
ct
at
e;

P
M

in
to
b
ac

co
ep

id
er
m
is
(F
P
)

?
Sa

fi
ar
ia
n
et

al
.
(2
0
1
5
)

A
tT
P
K
4

A
t1
g0

2
5
1
0

K
+
ch

an
n
el

(P
,
O
,
Y
)

P
M

(P
C
)

W
T:

re
gu

la
te
d
in

p
H
,
ca

lc
iu
m
-

d
ep

en
d
en

t
m
an

n
er

B
ec
ke

r
et

al
.
(2
0
0
4
)

A
tS
K
O
R

A
t3
g0

2
8
5
0

O
u
tw

ar
d
-r
ec
ti
fy
in
g
K
+

ch
an

n
el

?
P
u
ta
ti
ve
,
p
o
ll
en

se
le
ct
iv
e

P
in
a
et

al
.
(2
0
0
5
)

C
at
io
n
ch

an
n
el
s
an

d
tr
an

sp
o
rt
er
s

A
tC
N
G
C
7

A
t1
g1

5
9
9
0

C
at
io
n
ch

an
n
el
?

A
tC
N
G
C
7
:
ti
p
P
M

d
u
ri
n
g

tu
b
e
em

er
ge
n
ce
,
P
T
sh
an

k
d
u
ri
n
g
el
o
n
ga

ti
o
n
(F
P
)

W
T:

p
o
ll
en

fe
rt
il
it
y,

in
it
ia
ti
o
n
o
f
P
T

gr
o
w
th
;
d
o
u
b
le

K
O
:
m
al
e
st
er
il
e

Tu
n
c-
O
zd

em
ir
et

al
.
(2
0
1
3
a)

A
tC
N
G
C
8

A
t1
g1

9
7
8
0

A
tC
N
G
C
1
6

A
t3
g4

8
0
1
0

C
at
io
n
ch

an
n
el
?

?
W

T:
P
T
ge

rm
in
at
io
n
an

d
gr
o
w
th

d
u
ri
n
g
st
re
ss
;
K
O
:
re
d
u
ce

d
co

m
p
et
it
iv
e
fi
tn
es
s,
fe
w
er

se
ed

s,
lo
w

p
o
ll
en

tr
an

sm
is
si
o
n

Tu
n
c-
O
zd

em
ir
et

al
.
(2
0
1
3
b
)

A
tC
N
G
C
1
8

A
t5
g1

4
8
7
0

C
a2

+
p
er
m
ea
ti
o
n
(E
),

n
o
n
se
le
ct
iv
e
ca

ti
o
n

ch
an

n
el

(H
)

P
T
ap

ic
al

P
M

(F
P
)

W
T:

C
a2

+
in
fl
u
x;

K
O
:
st
er
il
e

Fr
ie
ts
ch

et
al
.
(2
0
0
7
);
G
ao

et
al
.
(2
0
1
6
)

A
tC
A
X
4

A
t5
g0

1
4
9
0

C
at
io
n
/C
a2

+
ex

ch
an

ge
r

En
d
o
m
em

b
ra
n
es

P
u
ta
ti
ve
,
p
o
ll
en

se
le
ct
iv
e

P
in
a
et

al
.
(2
0
0
5
);
M
o
rr
is

et
al
.
(2
0
0
8
)

A
tC
A
X
9

A
t3
g1

4
0
7
0

A
tG

LR
1
.2

A
t5
g4

8
4
0
0

C
at
io
n
ch

an
n
el
,
C
a2

+

p
er
m
ea
b
le

(P
)

C
a2

+
in
fl
u
x
at

P
T
ti
p
P
M

(V
P
)

W
T:

C
a2

+
in
fl
u
x,

P
T
gr
o
w
th
,
an

d
m
o
rp
h
o
ge

n
es
is
;
K
O
:
A
S,

p
ar
ti
al

m
al
e
st
er
il
it
y

M
ic
h
ar
d
et

al
.
(2
0
1
1
)

A
tG

LR
3
.7

A
t2
g3

2
4
0
0

C
at
io
n
ch

an
n
el
?

?
K
O
:
d
ec
re
as
ed

gr
o
w
th

ra
te
,
p
ar
ti
al

m
al
e
st
er
il
it
y

M
ic
h
ar
d
et

al
.
(2
0
1
1
)

A
tG

LR
3
.5

A
t2
g3

2
3
9
0

C
at
io
n
ch

an
n
el
?

M
it
o
ch

o
n
d
ri
a,

ch
lo
ro
p
la
st

(F
P
)

K
O
:
d
is
ru
p
ts
th
e
fo
rm

at
io
n
o
f

m
it
o
ch

o
n
d
ri
a
an

d
C
a2

+
u
p
ta
ke

Te
ar
d
o
et

al
.
(2
0
1
5
)

A
tO

SC
A
1
.7

A
t4
g0

2
9
0
0

C
a2

+
-p
er
m
ea

b
le
?

o
sm

o
la
ri
ty

ga
te
d
?

P
M
?

?
H
o
u
et

al
.
(2
0
1
4
);
Yu

an
et

al
.
(2
0
1
4
)

A
tM

IC
U

A
t4
g3

2
0
6
0

C
a2

+
-b
in
d
in
g
p
ro
te
in

(P
)

M
it
o
ch

o
n
d
ri
a
(I
,
FP

)
K
O
:
h
ig
h
er

fr
ee

C
a2

+
in

m
it
o
ch

o
n
d
ri
a,

fa
st
er

an
d
h
ig
h
er

C
a2

+
ac

cu
m
u
la
ti
o
n
in

re
sp
o
n
se

to
au

xi
n
an

d
ex

tr
ac

el
lu
la
r
A
T
P

St
ae

l
et

al
.
(2
0
1
2
);
W
ag

n
er

et
al
.
(2
0
1
5
)

H
+
/c
at
io
n
co

tr
an

sp
o
rt
er
s

(T
ab

le
co

n
ti
n
u
es

o
n
fo
ll
o
w
in
g
p
ag
e.
)

96 Plant Physiol. Vol. 173, 2017

Michard et al.



T
ab

le
I.
(C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
p
ag

e.
)

N
am

e
Lo

cu
s
Id
en

ti
fi
er

Fu
n
ct
io
n
(S
ys
te
m

a )
Lo

ca
li
za
ti
o
n
b
(M

et
h
o
d
c )

P
h
ys
io
lo
gi
ca

l
R
el
ev
an

ce
d

R
ef
er
en

ce

A
tC
H
X
1
9

A
t3
g1

7
6
3
0

C
at
io
n
ch

an
n
el
?

P
M

(F
P
)

K
O
:
ch

x1
7
/c
h
x1

8
/c
h
x1

9
m
u
ta
n
t

p
o
ll
en

n
o
rm

al
,
re
ci
p
ro
ca

l
cr
o
ss

ex
p
er
im

en
ts
in
d
ic
at
e
a
la
rg
el
y

m
al
e
d
ef
ec
t

Pa
d
m
an

ab
an

et
al
.
(2
0
1
6
)

A
tC
H
X
1
3

A
t2
g3

0
2
4
0

K
+
ac

q
u
is
it
io
n
,
h
ig
h
-a
ffi
n
it
y

K
+
u
p
ta
ke

(Y
)

P
M

(F
P
)

R
o
o
ts
an

d
se
ed

li
n
gs
:
K
O
:
se
n
si
ti
ve

to
K
+
d
efi

ci
en

cy
;
O
X
:
re
d
u
ce

d
se
n
si
ti
vi
ty

to
K
+
d
efi

ci
en

cy
;
n
o

p
o
ll
en

p
h
en

o
ty
p
e

Sz
e
et

al
.
(2
0
0
4
);
Z
h
ao

et
al
.

(2
0
0
8
)

A
tC
H
X
1
4

A
t1
g0

6
9
7
0

Lo
w
-a
ffi
n
it
y
K
+
ef
fl
u
x
(P
,
Y
)

P
M

(F
P
)

K
O

an
d
d
o
u
b
le

K
O

ch
x1

3
/1
4
:
ro
o
t

gr
o
w
th

se
n
si
ti
ve

to
h
ig
h
K
+
;
O
X
:

ro
o
t
gr
o
w
th

in
cr
ea

se
in

h
ig
h
K
+
;

n
o
p
o
ll
en

p
h
en

o
ty
p
e

Sz
e
et

al
.
(2
0
0
4
);
Z
h
ao

et
al
.

(2
0
1
5
)

A
tC
H
X
2
1

A
t2
g3

1
9
1
0
A
t1
g0

5
5
8
0

A
tC
H
X
2
3
:
K
+
u
p
ta
ke

in
a

p
H
-d
ep

en
d
en

t
w
ay

(E
)

En
d
o
m
em

b
ra
n
es

(F
P
)

K
O
:
P
T
n
av
ig
at
io
n

Sz
e
et

al
.
(2
0
0
4
);
Ev
an

s
et

al
.
(2
0
1
1
);
Lu

et
al
.

(2
0
1
1
)

A
tC
H
X
2
3

A
tN

H
X
1

A
t5
g2

7
1
5
0

N
a+
/H

+
an

ti
p
o
rt
er

(P
)

V
ac

u
o
le

(F
P
)

D
o
u
b
le

K
O
:
p
o
ll
en

u
n
af
fe
ct
ed

;
re
gu

la
te
s
p
H

an
d
K
+
h
o
m
eo

st
as
is

B
as
si
l
et

al
.
(2
0
1
1
)

A
tN

H
X
2

A
t3
g0

5
0
3
0

A
q
u
ap

o
ri
n
s

A
tN

IP
4
;1

A
t5
g3

7
8
1
0

W
at
er

an
d
n
o
n
io
n
ic

so
lu
te

ch
an

n
el
s
(O

)
A
tN

IP
4
;1
,
P
M

an
d

in
tr
ac

el
lu
la
r
ve
si
cl
es

in
P
T,

p
o
ll
en

gr
ai
n
s;
A
tN

IP
4
;2
,

P
M

an
d
in
tr
ac

el
lu
la
r

ve
si
cl
es

o
f
P
T
o
n
ly

(F
P
)

K
O
:
fe
w
er

se
ed

s,
re
d
u
ce

d
p
o
ll
en

ge
rm

in
at
io
n
an

d
P
T
le
n
gt
h

D
i
G
io
rg
io

et
al
.
(2
0
1
6
)

A
tN

IP
4
;2

A
t5
g3

7
8
2
0

N
tP
IP
1
;1

A
F4

4
0
2
7
1

W
at
er

ch
an

n
el
s
(O

)
P
M
?

P
o
ll
en

d
eh

yd
ra
ti
o
n
an

d
d
eh

is
ce

n
ce

B
o
ts
et

al
.
(2
0
0
5
)

N
tP
IP
2
;1

A
F4

4
0
2
7
2

A
tT
IP
1
;3

A
t4
g0

1
4
7
0

R
eg

u
la
ti
o
n
o
f
w
at
er

fl
u
xe

s?
,

w
at
er

an
d
so
lu
te

tr
an

sp
o
rt
(O

)

T
P
o
f
ve
ge

ta
ti
ve

ce
ll
(F
P
)

D
o
u
b
le

K
O

w
it
h
A
tT
IP
5
;1

re
ve
al
ed

p
o
o
r
se
ed

d
ev
el
o
p
m
en

t
an

d
si
li
q
u
e
gr
o
w
th

So
to

et
al
.
(2
0
0
8
);
W
u
d
ic
k

et
al
.
(2
0
1
4
)

A
tT
IP
5
;1

A
t3
g4

7
4
4
0

R
eg

u
la
ti
o
n
o
f
w
at
er

fl
u
xe

s?
,

w
at
er

an
d
so
lu
te

tr
an

sp
o
rt
(O

)

T
P
o
f
sp
er
m

ce
ll
s
(F
P
)

D
o
u
b
le

K
O

w
it
h
A
tT
IP
1
;3

re
ve
al
ed

p
o
o
r
se
ed

d
ev
el
o
p
m
en

t
an

d
si
li
q
u
e
gr
o
w
th

So
to

et
al
.
(2
0
0
8
);
W
u
d
ic
k

et
al
.
(2
0
1
4
)

a
C
,
C
O
S
ce

ll
s;
E,

Es
ch

er
ic
h
ia

co
li
;
H
,
H
EK

ce
ll
s;
O
,
X
en

o
p
u
s
la
ev
is
o
o
cy
te
s;
P,
p
la
n
t;
Y,

ye
as
t.

b
T
P,
To

n
o
p
la
st
.

c F
P,
Fl
u
o
re
sc
en

t
p
ro
te
in

fu
si
o
n
;
I,
im

m
u
n
o
d
et
ec
ti
o
n
;
P
C
,
p
at
ch

cl
am

p
;
V
P,

ca
lc
iu
m
-s
el
ec

ti
ve

vi
b
ra
ti
n
g
p
ro
b
e.

d
A
S,

A
n
ti
se
n
se

li
n
e;

K
O
,
kn

o
ck
o
u
t
li
n
e;

O
X
,
o
ve
re
xp

re
ss
io
n
li
n
e;

W
T,

w
il
d
-t
yp

e
li
n
e.

Plant Physiol. Vol. 173, 2017 97

Ion Transport in Pollen Tubes



(NIP) aquaporins were localized in the pollen PM (Lang
et al., 2015). Heterologous overexpression of PLASMA
MEMBRANE INTRINSIC PROTEIN (AtPIP) aqua-
porins yielded an increase of the water permeability
of lily pollen but no evident functional phenotype
(Sommer et al., 2008). Aquaporins from the SIP, TIP,
and NIP families were shown to transport water and/
or solutes and appear to be involved in PT growth
(Ishikawa et al., 2005; Soto et al., 2008; Di Giorgio et al.,
2016) and fertilization (Wudick et al., 2014). Interest-
ingly, although not expressed in pollen, it was reported
recently that AtPIP2;1 also shows a nonselective cation
channel activity (Byrt et al., 2016), a feature that might
be found for other members of the aquaporin family.

Ion-driven osmotic changes induce electric potential
shifts at the PM in addition to external pH along the PT,
and osmoregulation depends on an active transport
system driven by the proton pump, through 14-3-3
protein regulation (Pertl et al., 2010). Several H+-ATPase
pumps are expressed in pollen (Pina et al., 2005; Bock
et al., 2006), with AtAHA8 being the most highly
expressed and AtAHA6, AtAHA7, and AtAHA9 being
pollen specific (Table I). In tobacco, a close homolog of
AtAHA6 and AtAHA9, NtNHA1, was found to be lo-
calized on the PM but segregated from the tip and in-
volved in tube growth and callose plug formation
(Certal et al., 2008). These pumps are likely to energize
the transport of other molecules that underlie turgor in
PTs, such as sucrose (Stadler et al., 1999; Goetz et al.,
2001). While not necessarily affecting only PT growth,
the Arabidopsis AtSUC1 and rice (Oryza sativa)
OsSUT1 sucrose transporters have defective male ga-
metophyte phenotypes (Sivitz et al., 2008; Hirose et al.,
2010). In cucumber (Cucumis sativus), the hexose trans-
porter CsHT1 is necessary for PT growth (Cheng et al.,
2015). Despite probably being related to microsporo-
genesis and exine pattern formation, mutants of the
PM-localized sucrose transporter AtRPG1/AtSWEET8
display fertility defects (Guan et al., 2008; Chen et al.,
2010; Sun et al., 2013).

However, and importantly, ion fluxes such as anions
(Zonia et al., 2002) or K+ may participate in turgor gen-
eration. K+ inward conductivities have been recorded by
patch clamp and voltage clamp in lily and Arabidopsis
(Mouline et al., 2002; Griessner and Obermeyer, 2003;
Becker et al., 2004). The inward rectifier AtSPIK channel
is involved in PT growth (Mouline et al., 2002), and
AtTPK4 mediates nonrectifying currents and also may
participate in osmotic regulation of the PT (Becker et al.,
2004). For anions, major solutes associated with water
movement and turgor in animals and plants, only
AtSLAH3 has been characterized in PTs (Gutermuth
et al., 2013), but it only accounts for a small percentage of
the total anion flux. Yet the demonstration of a role for
anion channels in stomatal turgor regulation offers an
analogy that could eventually serve as a conceptual
template to screen for their identity in PTs (see Text Box 1;
Fig. 3). High turgor pressure typically induces the burst-
ing in both hyphea, another tip-growing cell (Money and
Hill, 1997), and PTs (Benkert et al., 1997; Amien et al.,

2010). The rupture point always being the tip suggests
anisotropy in the cell wall mechanical properties, char-
acterized by a stronger shank. In hyphae, the turgor
pressure plays a minor role in polarization; rather, the
apical localization of lytic enzymes that loosen the cell
wall determines the growth rate and polarity (Money
and Hill, 1997). Similarly, PT growth is sustained by the
deposition of primary cell wall material at the apex; once
deposited at the tip, the wall is subject to a maturation
process that stiffens it, creating a gradient of viscosity/
elasticity between the growing tip and the nongrowing
tube (Hepler et al., 2013; Cosgrove, 2016). Despite dis-
crepancies over the quantification of the mechanical
properties of the cell wall (Fayant et al., 2010; Vogler
et al., 2012), many biochemical data demonstrate its
anisotropic composition and suggest a viscosity gradient
along the tube (Steer and Steer, 1989; Geitmann, 2010;
Chebli et al., 2012; Hepler et al., 2013). The primary cell
wall of the PT deposited at the apex is essentially com-
posed of pectin plus 2% to 3% cellulose (Aouar et al.,
2010; Derksen et al., 2011). Pectins are exported as
methyl esters and, in parallel, some pectin methylester-
ase enzymes (PME) are secreted by the PT and catalyze
pectin deesterification. This pectin chemomechanical
structure largely determines the growth of the tube, as
revealed by pectinase treatment that affects growth prop-
erties and induces tube swelling (Parre and Geitmann,
2005) and by the PME mutant vanguard1 PTs, which are
slower and burst precociously (Jiang et al., 2005). BothCa21
and H1 either cross-link pectin polymers to induce the
formation of a gel or regulate the activity of PMEs, coor-
dinating the stiffening of the cell wall (Bosch et al., 2005;
Bosch and Hepler, 2005; Parre and Geitmann, 2005; Tian
et al., 2006; Vieira and Feijo’, 2016). pH regulation of root
cell elongation has been demonstrated directly (Fendrych
et al., 2016). Thus, while never directly demonstrated,
the regulation of the excretion of these ions to the
apoplast could have a regulatory role in the anisotropy
of cell wall mechanics of PTs.

ION FLUXES AND GRADIENTS AT THE TIP: AN
ELECTRIFYING AFFAIR?

The particular constitution and regulation of the tip
domain of the PT PM is such that large extracellular ion
fluxes and cytosolic gradients are formed (Fig. 1). Ion
fluxes, and in particular the huge anion efflux at the tip
(Zonia et al., 2002; Gutermuth et al., 2013), are expected
to generate an osmotic gradient, an extracellular electric
field, and, as discussed below, eventually a membrane
voltage gradient along the length of the PM. In Arabi-
dopsis, the accumulation of vesicles at the apex is
enough to sustain a 30-s growth period (Ketelaar et al.,
2008). It has been proposed that vesicles in the clear
zone are governed mainly by Brownian dynamics be-
cause of the apparent disorganization of the actin cy-
toskeleton in this region (Kroeger et al., 2009). But the
existence of such dramatic ion gradients alsomay play a
role in the movement of vesicles by either electrostatic
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or osmotic influence. PM voltage has been determined
to be around2130 mVwhen measured on the shank of
PTs (Mouline et al., 2002; Griessner and Obermeyer,
2003; Becker et al., 2004), a resting potential slightly
more negative than the K+ equilibrium (Mouline et al.,
2002). This hyperpolarization is likely driven by
H+-ATPase activity (Lang et al., 2014). Unfortunately,
the apical voltage remains unknown, since it is not
possible to impale an electrode at the tip without pro-
voking tube burst. Theoretically, apical membrane

potential can be inferred to be more positive compared
with the shank, since large passive ion fluxes at the tip
have a depolarizing effect. Furthermore, H+-ATPases
are excluded from the tip (Certal et al., 2008; Michard
et al., 2009), where there is high NADPH oxidase ac-
tivity (Potocky et al., 2007). This kind of oxidase was
proposed recently to generate electrochemical fluxes of
ions on their own (Segal, 2016). Voltage at the tip PM
and at the shank PM tend to equilibrate to the same
value by charge fluxes along themembrane through the

Plant Physiol. Vol. 173, 2017 99

Ion Transport in Pollen Tubes



equivalent of an electrical circuit, implying electrical
resistance of the cytosol and capacitance of the mem-
brane (Hille, 2001; Michard et al., 2009). Thus, a com-
bination of high enough resistance of the cytosol and
strong charge flux density across the PM at the tip could
induce a membrane voltage gradient between the tip
and the shank, supporting the notion of electrostatic
movement of charges. Exocytic vesicles have long been
found to bear a negative surface charge (Heslop-Harrison
and Heslop-Harrison, 1982), and the existence of
electrostatic fields in plant cells was recently proposed
to underlie cell identity and signaling, namely by reg-
ulating the transfer of proteins from endomembrane to
PM on the basis of charge alone (Simon et al., 2016). In
animals, membrane depolarization promotes the vesi-
cle exocytosis of pancreas b-cells (Yang et al., 2014;
Cardenas andMarengo, 2016). If differential conditions
of cytosolic resistance exist, then theoretically such
mechanisms also could play a role in vesicle migration
and fusion in PTs.

But other cues for polarity could come from anion
fluxes. Large anion conductivity has been recorded in
both Arabidopsis and tobacco (Tavares et al., 2011a,
2011b) with effluxes up to 60 nmol$cm22$s21 (Zonia
et al., 2002), resulting in an anion gradient (Gutermuth
et al., 2013; Fig. 1B). The anion channel AtSLAH3 is
partly responsible for this conductance (Gutermuth
et al., 2013), but other anion channels expressed in the
PT may be involved (Tavares et al., 2011a), like mem-
bers from the AtALMT family (Meyer et al., 2010). The
existence of a gradient and fluxes of anions of such
magnitude has been proposed to be physically suffi-
cient to create conditions for an osmotic gradient strong
enough to generate thrust for vesicles to move toward a
minimum osmotic potential at the apex through the
process of osmophoresis (Lipchinsky, 2015). While
proposed on theoretical grounds, the existence of
biophysical mechanisms for the vectorial movement of
vesicles in the clear zone is an exciting new prospect
calling for experimental validation.

Although the direction of potassium fluxes in the tip
is still debated, anion fluxes must be compensated by
cation efflux (Michard et al., 2009). K+ outward currents
have been recorded by patch clamp (Griessner and
Obermeyer, 2003) but remain unaccounted for in terms
of the channel generating them. The SKOR K+ channel
is known to be expressed in pollen (Pina et al., 2005) and
constitutes a good candidate for that function. Other
channels, namely nonselective cationic channels, as
well as transporters from the cation-proton antiporter
family also could play a role in anion flux compensation
(see below).

The Ca2+ Affair

A Ca2+ gradient in which intensity correlates with
growth rate has long been described in PTs (Reiss and
Herth, 1985; Obermeyer and Weisenseel, 1991; Rathore
et al., 1991; Pierson et al., 1994, 1996; Malho et al., 1995;
Michard et al., 2008; Iwano et al., 2009; Fig. 1C). When

the tube is reversibly stopped by caffeine or low tem-
perature, the Ca2+ gradient dissipates and the Ca2+ in-
flux is lowered to a basal level; regrowth reconstitutes
the Ca2+ gradient and influx (Pierson et al., 1996). Ca2+

channel activity was early deduced by quenching with
Mn2+ (Malho et al., 1995). Several types of channels
permeable to Ca2+ have been characterized by patch
clamp either as inward rectifiers in Arabidopsis and
pear (Pyrus communis; Wang et al., 2004; Shang et al.,
2005; Wu et al., 2010, 2014) or with no clear rectification
in tobacco (Michard et al., 2011). Among the 20 cy-
clic nucleotide-gated channels (CNGCs) in plants, at
least CNGC7, CNGC8, CNGC16, and CNGC18 are
expressed in pollen (Pina et al., 2005; Bock et al., 2006;
Kaplan et al., 2007). Some CNGC channels have been
presented as inward-rectifying channels when expressed
in HEK cells or oocytes (Leng et al., 1999, 2002; Ma et al.,
2007). The disruption of AtCNGC18, localized in the
subapical membrane, induces male sterility due to
defective PT growth (Frietsch et al., 2007). AtCNGC18
was recently shown to drive inward cationic currents
activated by cAMP/cGMP in an animal heterologous
system (Gao et al., 2016). AtCNGC7, which localizes at
the flank of the growing tip, and AtCNGC8 have
weaker phenotypes, but the double knockout is male
sterile (Tunc-Ozdemir et al., 2013a). Lastly, AtCNGC16
only plays a role under stress conditions (Tunc-Ozdemir
et al., 2013b). In animals, CNGCs have calmodulin
(CaM)-binding domains with regulatory functions,
a mechanism recently confirmed for AtCNGC12 in
plants (DeFalco et al., 2016). In tobacco, the Gluta-
mate receptor agonist D-Ser induces a Ca2+ current
while the antagonist CNQX inhibits the Ca2+ con-
ductivity of PT protoplasts (Michard et al., 2011). This
finding led to the description of PT growth pheno-
types for the Arabidopsis Glutamate receptor-like
(GLR) mutants glr1.2 and glr3.7. Additional GLRs
also are expressed in PTs (Pina et al., 2005; Bock et al.,
2006) and may be involved in Ca2+ homeostasis. In
accordance, other plant GLRs have been localized on
the PM, and AtGLR3.4 has been shown to induce Ca2+

accumulation in HEK cells (Meyerhoff et al., 2005;
Tapken and Hollmann, 2008; Teardo et al., 2010; Vincill
et al., 2013). Interestingly, GLRs heterodimerize, as
demonstrated by the sensitivity profile to amino acids
in knockout plants (Stephens et al., 2008), yeast two-
hybrid analysis (Price et al., 2013; Vincill et al., 2013),
or FRET (Vincill et al., 2013). Utilizing a chimera strat-
egy by introducing the pore of plant AtGLR1.1 and
AtGLR1.4 into the animal GluR1 channel demonstrated
low Ca2+ permeability and low rectification with nonse-
lective cation pores (Tapken and Hollmann, 2008). Other
Ca2+-permeable channels are putatively active in pollen
on the basis of transcriptomics/proteomics, namely the
annexins (Lee et al., 2004; Zhu et al., 2014) and the
mechanosensitive channel AtOSCA1 (Yuan et al., 2014).

One common point of the Ca2+-permeable channels
identified so far is their weak selectivity: they appear
to be nonselective cation channels rather than Ca2+-
selective channels. Their gating also is still poorly
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defined. While CNGCs open in response to cAMP and
cGMP in HEK cells, no data are available in situ. GLR
channel activity is modulated by amino acids with low
specificity, as shown by the different responses to Gly,
Glu, and D-Ser (Michard et al., 2011). AtGLR1.4 and
AtGLR3.4 induce nonselective cationic currents in re-
sponse to a broad range of amino acids in mammalian
cells (Tapken and Hollmann, 2008; Vincill et al., 2013;
Tapken et al., 2013). Clearly, a common ligand-gated
system for Ca2+ homeostasis is still missing in plant
biology.

H+ Signaling, the Missing Link?

H+ has long been proposed to act in signaling cas-
cades in plants (Felle, 2001) and has even been identi-
fied as a bona fide neurotransmitter (Beg et al., 2008).
In PTs, H+ gradients also have been correlated with
growth, with an acidic tip and alkaline subapical or
submembranar region in tobacco and lily (Feijó et al.,
1999; Certal et al., 2008; Michard et al., 2008). H+ influx
at the apex and efflux at the shank have been recorded
and participate in the establishment of the gradient
(Feijó et al., 1999; Certal et al., 2008; Michard et al.,
2008). This is particularly clear in lily, where an alkaline
band in the subapical region coincideswith amaximum
proton efflux (Feijó et al., 1999). Interestingly, this pat-
tern is different in tobacco. PTs from this species do not
display a distinct alkaline band (Michard et al., 2008).
Accordingly, the H+ effluxes along tobacco tubes do not
display a maximum in the subapical zone as they do in
lily but look rather constant along the tube (Certal et al.,
2008). To the best of our knowledge, no H+ or H+-
permeable channels have been characterized in plants.
Anion channels have been discussed as participating
in the establishment of pH gradients (Fernie and
Martinoia, 2009). In addition to the endogenous per-
meability of the membrane bilayer to H+ (Gutknecht,
1987), H+ symporters or antiporters may be involved
in H+

fluxes. PTs express 18 genes from the putative
cation-H+ antiporter CHX family, with at least six genes
expressed in the vegetative cell (Sze et al., 2004). Re-
cently, CHX19was localized in pollen PM (Padmanaban
et al., 2017), while other GFP chimeras usually localize
to the endomembrane system (see below; Table I).

THE SHANK OF THE PT: JUST SUPPORTING
AND BUFFERING?

H+ (pH) and Ca2+ gradients seem to depend on at
least three components to be established: (1) influxes at
the tip; (2) a cytoplasmic component including buffer-
ing by proteins and endomembrane transport activity;
and (3) efflux at the shank. This section deals with the
latter two.
The PT membrane appears to play an important role

in the gradient establishment by itsH+- andCa2+-ATPase
activity. PM H+-ATPases play a major role in pH

regulation (Sanders et al., 1981). The tobacco proton
pump, NtAHA1, is specifically excluded from the PT
tip, as shown by a GFP fusion (Certal et al., 2008). Early
studies demonstrated that the inhibition of Ca2+ pumps
using vanadate and compound 48/80 induces the in-
crease of intracellular Ca2+ (Obermeyer andWeisenseel,
1991). Pharmacological studies on a Ca2+-ATPase
reconstituted in proteoliposomes showed that it can act
as a bona fide Ca2+/H+ exchanger (Luoni et al., 2000).
The fact that in PTs there is a high tip Ca2+ concentration
and a low pH also could be dependent, at least in part,
on the activity of this pump. The calcium pump
AtACA9 is expressed specifically in pollen, and the
knockout plant of this transporter displays a defect in
pollen growth (Schiott et al., 2004). A major role is
suspected to be played by 14-3-3 proteins due to their
regulation of the C-terminal activity of all H+-ATPases,
and their proteomics repertoire has been described (Pertl
et al., 2011). Yet, the large diversity and the lack of genetic
studies still hinder their true mechanistic impact on the
pH regulation of PTs.

H+ and Ca2+ are highly buffered in the cytoplasm. pH
homeostasis is largely ensured by metabolic regulation
through the classical pH-STAT pathway (Smith and
Raven, 1979; Sakano, 2001). Ca2+ interacts with many
proteins in the cytosol that lower its diffusion coeffi-
cient (White and Broadley, 2003). In addition, H+ and
Ca2+ fluxes from and into internal stores are accepted to
play a major role in the dynamics of those ions inside
the cell, but there are no quantifications or mechanisms
described. While the role of H+ and Ca2+ influxes at the
tip in generating H+ and Ca2+ gradients is well defined,
the role of cytosol and endomembrane proteins that are
possibly major players in shaping the gradients is only
vaguely known.

Several PM transporters are expressed in apical ves-
icles, including the P-type H+-ATPases that may par-
ticipate in local pH regulation (Certal et al., 2008). These
H+ pumps were recently associated with the rapid
alkalinization factor (RALF) and the important
receptor-like kinase FERONIA in roots (Haruta et al.,
2014). Pollen expresses a number of RALFs (Pina et al.,
2005), and a role of RALFs in PT growth regulation has
long been described (Covey et al., 2010). Given that
both FERONIA and its male counterpart ANXUR have
disruptive fertilization phenotypes (for review, see Li
et al., 2016), this functional relationship between RALFs
and the H+-ATPases could have consequences for pH
regulation in PTs as well.

Cation-H+ antiporters, from the CPA1 and CPA2
family, may play a role in controlling intracellular pH.
CPA1 is typically localized in endomembranes, and
some of them are expressed in pollen (Sze et al., 2004).
From this family, Na+(CATION)/H+ EXCHANGER
(AtNHX1) and AtNHX2 control cell expansion, pH
homeostasis, and K+ accumulation in the vacuole
(Bassil et al., 2011). AtCHXs are expected to modulate
pH by catalyzing H+- and K+-coupled fluxes. AtCHX13
and AtCHX14, both expressed in pollen, are PM
transporters involved in K+ homeostasis (Sze et al.,
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2004; Zhao et al., 2008, 2015). CHX13 is a high-affinity K+

influx transporter (Zhao et al., 2008), while AtCHX14 is
a low-affinity efflux K+ transporter in yeast and plant
cells that operates in a pH-dependent manner (Zhao
et al., 2008, 2015). Other AtCHXs, notably AtCHX21
and AtCHX23, have been characterized to play a role in
pollen navigation through the ovary, resulting in male-
transmitted sterility of the double knockout chx21/23,
although PTs grow normally in vitro and in vivo (Evans
et al., 2011; Lu et al., 2011). AtCHX23 increases yeast
tolerance to high potassium in a pH-dependent man-
ner, suggesting that it is an H+/K+ antiporter, and re-
cent structure-function studies onAtCHX17 opened the
way for understanding the integrated physiological
function of this pollen overrepresented transporter family
(Czerny et al., 2016). Recently, CHX17 and CHX19 were
localized in PT vegetative and sperm cells, respectively,
CHX19 being addressed to the PM (Padmanaban et al.,
2017). The triple mutant displays a fertility phenotype as
well as a compromised pollen cell wall formation that
could affect germination, tube burst, as well as gamete
function (Padmanaban et al., 2017).

Ca2+ internal stores may also be essential in the es-
tablishment of the calcium gradient. In the absence of
the canonical ligand-operated Ca2+-buffering mecha-
nisms as described for animal cells, namely IP3 recep-
tors and G-coupled receptors, the repertoire of possible
candidates in plants include the CAX (cation-H+ ex-
changers) and TPC (two-pore channels) families. TPC
was recently involved in the propagation of Ca2+ sig-
nals in roots (Choi et al., 2014), but no male phenotypes
have been described. Measurement of Ca2+ in the en-
doplasmic reticulum (ER) showed that an inhibition of
growth in parallel with a decrease in ER Ca2+ occurred
when the ER Ca2+-ATPase was inhibited (Iwano et al.,
2009). Some GLRs are expressed in endomembranes
and may participate in Ca2+ signaling (Teardo et al., 2011,
2015). Experimental evidence also is suggestive of a role
for the Arabidopsis mitochondrial channel uniporter
regulator MICU, a Ca2+-binding protein that modulates
the mitochondrial Ca2+ accumulation (Stael et al., 2012).
Interestingly, MICU is expressed in PTs (Wang et al.,
2008b).Mitochondrial membrane charge shifts at the clear
zone of PTs (Colaço et al., 2012) have been speculated to
play a role in cytosolic Ca2+ homeostasis and in the defi-
nition of the Ca2+ gradient at the tip.

Reactive oxygen species (ROS) also have been long
implicated in ion dynamics regulation in PTs. The
subject has been reviewed elsewhere (Wudick and
Feijó, 2014; Mangano et al., 2016), so it will only be al-
luded to briefly here. Tip-localized ROS in growing PTs
have been described in Arabidopsis (Potocky et al.,
2007), and double mutants of the pollen-expressed H
and J members of respiratory burst oxidase homolog
(Rboh) have PT phenotypes and altered Ca2+ gradient
features (Liu et al., 2009; Boisson-Dernier et al., 2013;
Kaya et al., 2014, 2015; Lassig et al., 2014). Plastids and
mitochondria positioned in the subapical region are
other possible sources of ROS (Mittler et al., 2011). In
lily, abundant accumulations of ROS have been linked

to mitochondria (Cardenas et al., 2006). This competing
view of tip-localized ROS raises questions about ROS
concentrations in the shank as either free cytosolic or
localized to subcellular vesicles. Hydrogen peroxide
was recently implicated in the regulation of K+ and Ca2+

conductivities in lily pollen protoplast (Breygina et al.,
2016). The possible integration of these pathways is il-
lustrated in Text Box 2 (Zhou et al., 2014; Zhao et al.,
2013; Xu et al., 2006; Mahs et al. 2013; Kaya et al., 2015;
Garcia-Mata et al., 2010).

DECODING THE ION CODE: DOWNSTREAM
MECHANISMS OF INTEGRATION OF
ION SIGNALING

Various Ca2+ sensor proteins are known, some of them
with activity in PTs. The most prominent are within the
Ca2+-binding EF-hand superfamily, which consists of
calmodulin, calmodulin-like (CML) and calcineurin
B-like (CBL) proteins, CBL-interacting protein kinases
(CIPK), and finally the Ca2+-dependent protein kinases
(CDPK; abbreviated CPK in Arabidopsis; Zhou et al.,
2015a). CaM, CML, and CBL have been demonstrated
previously to serve as sensor relays that lack enzymatic
activity, while CIPK and CDPK are responders. Each of
these proteins contains a special helix-loop-helix motif
known as the EF-hand that enables Ca2+ binding
(Konrad et al., 2011; Steinhorst and Kudla, 2013).

The CPK family appears to have the most diverse
array of targets by interacting with actin and also other
membrane proteins (Curran et al., 2011). Of the 34 CPKs
present in the genome of Arabidopsis, 12 members
(CPK2, CPK4, CPK6, CPK11, CPK14, CPK16, CPK17,
CPK20, CPK24, CPK26, CPK32, and CPK34) are
expressed in pollen (Honys and Twell, 2003; Hrabak
et al., 2003; Harper et al., 2004; Pina et al., 2005). Five of
these have been characterized: AtCPK17 and AtCPK34
show very strong PT growth phenotypes; therefore,
these proteins must play important roles, which were hy-
pothesized to regulate Ca2+ channel activity (Myers et al.,
2009). The expression of the 12 pollen Arabidopsis
CPKs was analyzed by transient expression in tobacco
PTs, revealing differential localizations: CPK4, CPK11,
and CPK26 are cytosolic; CPK16, CPK24, and CPK32
seem to localize preferentially in the generative cell
membrane; while the others localize to the PM of the
PT: CPK2 and CPK20 specifically at the tip, CPK17 and
CPK34 in the subapical zone (Gutermuth et al., 2013).
Furthermore, AtCPK2 and AtCPK20 were shown to in-
teract and activate the conductivity of the anion channel
AtSLAH3. Taken together with the countercorrelation
between the levels of cytosolic Ca2+ andCl2, these data are
suggestive of a feedback regulation loop that could un-
derlie the control of growth as an interplay between these
two ions, AtSLAH3 and a yet unknown depolarization-
activated Ca2+ channel (Gutermuth et al., 2013).

CMLs sense free cytosolic Ca2+ and are likely inte-
gral targets of Ca2+ signaling. There are over 50
AtCMLs expressed within pollen that share the highly
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conserved EF-hand binding motif and up to 75%
amino acid identity with CaM (Bender and Snedden,
2013). Pharmacological evidence of the action of
CaM in PTs of Arabidopsis seems to implicate
hyperpolarization-activated Ca2+ channels, suggestive
of a closed feedback loop dependent on H+-ATPase
activity (Sun et al., 2009). More recently, a function was
identified for AtCML24 in PT growth, acting on the
interface between the actin cytoskeleton and Ca2+

(Yang et al., 2014). Given the relevance of AtCNGCs in
PT growth, the recent description of CaM regulation of
AtCNGC12 (DeFalco et al., 2016) opens the possibility
that such a protein also may also be involved as a
decoder of Ca2+ signals in PTs, as previously suggested
by injection experiments (Moutinho et al., 1998; Rato
et al., 2004).

CIPKs are Ser/Thr kinases that couple with CBLs in
the Ca2+ signaling network (Edel and Kudla, 2015; Mao
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et al., 2016). The AtCBL-AtCIPK complex has been
heavily implicated in abiotic stress tolerance by adjust-
ing the levels of K+ throughAtAKT1 (Manik et al., 2015).
Of the 26 different CIPKs identified within the Ara-
bidopsis genome, AtCIPK10, AtCIPK11, AtCIPK12,
AtCIPK14, and AtCIPK19 are strongly expressed in PTs
(Konrad et al., 2011; Zhou et al., 2015a). They display an
even distribution throughout the cytosol while being
weakly expressed in other tissues (Zhou et al., 2015a).
Different AtCBL/AtCIPK pairs have been implicated in
the activation of various kinds of channels (for review,
see Steinhorst and Kudla, 2013), and in PTs, AtCBL2
and AtCBL3 were described to interact with AtCIPK12
in the tonoplast, with phenotypic consequences at the
level of growth and PT morphogenesis, implicating the
vacuole in Ca2+ homeostasis and signaling (Steinhorst

et al., 2015). A possible integration of these pathways is
offered in Figure 4.

CYTOSKELETON AND ION DYNAMICS

PT growth is accredited to actin polymerization
(Vidali and Hepler, 2001; Cardenas et al., 2008). Yet, a
collective look at actin dynamics suggests an alterna-
tive perspective for normal growth: it is rapid actin
turnover, the continuous assembly and disassembly of
actin, that is important variable. Are signaling gra-
dients, and not strict concentrations, important by
themselves through dynamic mechanisms such as the
polymerization/depolymerization of actin? Possible
interactions between H+ and Ca2+ and actin related

Table II. Cytoskeleton effects linked to Ca2+, H+, or ROS signaling
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proteins have been systematized previously (Feijó
et al., 2004; Hepler, 2016) and are summarized in Table
II. One prominent candidate for interaction with Ca2+

is the GTPase Rho family of plants (ROPs). Primarily
tip localized, members such as the pollen-specific
AtROP1 have been demonstrated to mediate F-actin
and Ca2+ signaling (for review, see Cheung and Wu,
2008; Qin and Yang, 2011). The best characterized ROP
downstream effector are the family of ROP-interactive
CRIB-containing proteins (RICs) that show a diverse
range of responses. Opposing pathways of AtRIC3
and AtRIC4 produced starkly different consequences
on F-actin. AtRIC3 leads to F-actin disassembly, specif-
ically at the tip of PTs, promoting the accumulation of
tip-localized Ca2+. Conversely, AtRIC4 in response to
Ca2+ promotes F-actin assembly (Gu et al., 2005). Addi-
tionally, recent studies investigating the apical PM-
localized AtRIC1 add to the importance of RIC to
regulate actin (Zhou et al., 2015b). Similar to AtRIC3,
AtRIC1 binds to and severs F-actin in the presence ofCa2+.
The ric1 knockout mutant was characterized by an accu-
mulation of actin at the fringe and increased PT growth
rate (Zhou et al., 2015b). Despite multiple pieces of evi-
dence and phenotypes, a consensual mechanism for
ROP GTPases in PT growth is still debated.
A number of actin-binding proteins, such as

LlABP29 and LdABP41, respond in a Ca2+-sensitive
manner to contribute to F-actin regulation (Fan
et al., 2004; Xiang et al., 2007). Also, villins, which
are known to be Ca2+ responsive (Yokota et al., 2005),
have been found to be major players in the actin turn-
over in PTs (Qu et al., 2013). Further details of ABPs
have been reviewed recently (Fu, 2015; Hepler, 2016).
Of note, there are no reports of ion regulatory depen-
dencies for the ABP family of formins, which have
emerged as major regulators of actin organization in
PTs (Cheung et al., 2010). Like all proteins, formin ac-
tion should be dependent on pH, but the range of pH
variations in the PT tip was never associated with their
regulation.
Despite contradictory evidence for a crucial role of

microtubules in PTs, microtubule-destabilizing protein
(MDP) binding activity was found to be augmented by
high Ca2+ in Arabidopsis. Yet, remarkably, its action
seems to be to sever actin instead of tubulin. AtMDP25
is localized in the subapical region on the PM, corre-
sponding to the highest concentrations of Ca2+, where
it directly binds to and severs actin filaments, and
its knockout resulted in an increased PT growth rate
but, paradoxically, reduced fertilization (Qin et al.,
2014). Moreover, MICROTUBULE-ASSOCIATED
PROTEIN18 demonstrates similar actin-severing func-
tions, as it is also localized on the subapical PM (Zhu
et al., 2013). At this point, it is difficult to develop a
mechanism integrating actin and microtubule interac-
tion, but some evidence exists that they may cooperate
in order to regulate the mechanical properties of PTs
(Gossot and Geitmann, 2007).
H+ also may be involved in the cytoskeleton and

exocytosis regulation. Of relevance, alkalinization or

acidification treatment of growing PTs showed that pH
may control actin dynamics in lily PTs, eventually
through the ADF-cofilin complex (Lovy-Wheeler et al.,
2006). Other evidence of H+ targeting the cytoskele-
ton comes from studies on the actin-binding protein
LlLIM1, which is essential for F-actin bundle assembly
and protection against latruncalin B-mediated depo-
lymerization and exhibits preference for activity under
low pH and low calcium concentrations (Wang et al.,
2008a).

CONCLUSION

PTs have been the source of relevant information
of channel identity and function, mostly due to their
strict dependence on ion dynamics and favorable cell
biology. The aspects covered in this review show not
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only significant advances in the repertoire of known
ion transport proteins but also significant advances in
downstream regulatory targets that may elucidate the
very fundamental levels of organization of a living cell.
Also in that respect, PTs offer unique features to bridge
to biophysics, specifically at the levels of electrochem-
istry and biomechanics. Most of the studies covered
refer to in vitro PT growth phenotypes, eventually
backed up by in vivo phenotyping, but several pieces of
evidence suggest that ion dynamics mechanisms can
actually be involved in various steps of the progamic
phase of reproduction. Examples of this centrality come
from recent demonstrations of the influence of pollen
Ca2+-ATPases (Iwano et al., 2014) and GLRs (Iwano
et al., 2015) on the self-incompatibility of Brassica spp.
and the suite of articles that defined the emergence of
an ion-mediated signaling model during PT-embryo
sac interaction, either through K+ in maize (Zea mays;
Amien et al., 2010) or the putative existence of Ca2+

signatures in Arabidopsis (Iwano et al., 2012; Denninger
et al., 2014; Hamamura et al., 2014; Ngo et al., 2014). The
context of cell-cell communication during reproduction
is suggestive that PTs have evolved for fast reaction sig-
naling in the form of chemotaxis, growth turns, growth
rate alterations, and bursting; therefore, it is likely that the
repertoire of basic mechanisms that transduce informa-
tion through ion dynamicswill be increased, benefited by
the plethora of new imagingmethods and genetic probes
continuously being developed.
Received October 12, 2016; accepted November 19, 2016; published November
28, 2016
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