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By definition, metacognitive processes may monitor or regulate various stages of

first-order processing. By combining causal analysis with hypotheses expressed by

other authors we derive the theoretical and methodological consequences of this

special relation between metacognition and the underlying processes. In particular, we

prove that because multiple processing stages may be monitored or regulated and

because metacognition may form latent feedback loops, (1) without strong additional

causal assumptions, typical measures of metacognitive monitoring or regulation are

confounded; (2) without strong additional causal assumptions, typical methods of

controlling for first-order task performance (i.e., calibration, staircase, including first-order

task performance in a regression analysis, or analyzing correct and incorrect trials

separately) not only do not deconfound measures of metacognition but may even

introduce bias; (3) that the first two problems cannot be solved by using simple models

of decision-making derived from Signal Detection Theory. We conclude the paper by

advocating robust methods of discovering properties of latent mechanisms.

Keywords: metacognition, causal inference, confounding, structural causal model, meta-theory

1. INTRODUCTION

In this paper, the term metacognition denotes cognitive processes that monitor other cognitive
processes, as well as the results of such monitoring, including metacognitive regulation. This broad
definition seems to be in agreement with what can be found in themajority of introductory chapters
of various monographs on metacognition, of which there are now many (e.g., Nelson and Narens,
1994; Chambres et al., 2002; Koriat and Shitzer-Reichert, 2002; Dunlosky and Metcalfe, 2008;
Beran et al., 2012). A monitored or regulated process is sometimes called a first-order process,
an object-level process, a type 1 process, or a lower-level process. This naming convention reflects
the hierarchical nature of the overall cognitive process responsible for performing tasks involving
metacognition. Following this convention from now on, we will use the term “hierarchical task” to
denote an arbitrary cognitive task that involvesmetacognitivemonitoring or regulation of any kind.

One of the reasons that it is difficult to study metacognition is that it is a latent mechanism
which has a dual causal role, i.e., it monitors and so is influenced by the underlying cognitive
process, but, since one of the main functions of monitoring is regulation, it may also regulate and
so influence the monitored process. To further complicate the matter, not every case of a first-order
process influencing metacognition may represent genuine metacognitive monitoring; for example,
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a first-order process could become more resource consuming,
thus limiting the amount of resources available for
metacognition. Similarly, it is theoretically possible for
metacognition to influence a first-order process in a
non-metacognitive way.

The aim of this paper is to use causal analysis to derive
the theoretical and methodological consequences of this special
relation between metacognition and the underlying processes.
Even though this is a theoretical paper, we made sure that it does
not contain any speculative claims: instead of providing our own
hypotheses about how metacognition works, we combine causal
analysis with the hypotheses expressed by other authors. In that
sense, we are proposing a meta-theoretical causal framework for
studying hierarchical tasks.

The usefulness of this approach is illustrated by showing
how it can help identify important limitations of certain
widespread practices in studies on metacognition. We
prove that every measure of metacognitive monitoring or
regulation is confounded unless strong additional causal
assumptions are introduced. In particular, without additional
causal assumptions, neither metacognitive judgements (e.g.,
confidence ratings) nor correlations between performance
(e.g., accuracy or sensitivity) and metacognitive judgements
are unbiased measures of metacognitive monitoring or
regulation. We also show that controlling for first-order
task performance may not only fail to deconfound measures
of metacognition, but it may even introduce bias. Finally,
we show that measures based on Signal Detection Theory
or some of its generalizations are just as confounded as
simpler measures of statistical dependence because they use
the same information in the data. We conclude the paper
by advocating robust methods of discovering properties of
latent mechanisms.

Almost one-third of our paper is devoted to introducing
elements of causal analysis. It is only after we describe the relevant
formalism and its interpretation that we begin to address the
issues directly related to metacognition. The reason for this is
that we cannot assume that a researcher interested in studying
metacognition will also be acquainted with causal inference, and
we decided not to rely on the introductory books or papers on
the subject since they contain much more information than we
need to derive the main results. Note also that while we are
fairly specific in our criticism of the way in which metacognition
is often studied, the constructive part of our paper, in which
we try to provide advice on how to do some things better,
is rather generic and may not be directly applicable to any
specific research problem. This is a consequence of the fact that
the problems that we identify are general, but the solutions
to these problems depend on the particular characteristics of
each study.

1.1. Structure and Interpretation of Causal
Graphs
We will rely on Pearl’s Structural Causal Model (Pearl, 2000;
Pearl et al., 2016). At present there is only one alternative

theory of causality with similar scope, i.e., Rubin’s potential
outcomes framework (Rubin, 2005); however, since the two
theories are equivalent in the sense that all the axioms of one
theory can be derived from the axioms of the other (Galles
and Pearl, 1998), the choice is only a matter of convenience.
It is impossible to introduce all the major results of SCM
in a single paper, so we will describe only the part that
seems most readily applicable in typical scenarios when doing
basic research.

We will be concerned with qualitative causal structure, i.e.,
with the issue of the mere presence or absence of causal
connections between variables. The quantitative properties of
causal relations, such as how to best describe the effect by some
deterministic function or statistical model, will be considered
only to illustrate a general point. The qualitative structure of
causal relations will be represented by graphs consisting of nodes
(i.e., variables) and arrows. Unless we state that certain effect
simply exists, an arrow from A to Bwill represent the assumption
that A may be a direct cause of B, which means that the absence
of an arrow will represent a stronger assumption (i.e., A does not
cause B) than its presence (i.e.,Amay cause B). Here “direct” does
not mean immediate, it only means that the effect is not mediated
by any other variable in the graph. When arrows represent the
mere theoretical possibility of causal effects the graph represents
the space of theoretically possible qualitative causal relations.
The process represented by an arrow may be arbitrarily complex
and multi-staged, but it has to go in the direction of the
arrow. In fact, every arrow or node can be thought of as a
collapsed graph.

The graph may still be valid even if some of its arrows
do not correspond to any real processes, as long as no
real arrows connecting the modeled variables are omitted.
That is because, as long as they stand for theoretically
possible effects, additional arrows may only limit the statistical
implications of causal graphs. Moreover, the presence of an
arrow from A to B does not mean that A is the only
thing causing changes in B, and so whenever we draw
a graph, unless we clearly state otherwise by saying that
some variables are deterministic functions of other variables,
we assume that every variable is also influenced by other
unspecified factors which can be safely omitted from the graph,
except for special cases. In particular, we have to include
unspecified factors which may be common causes of variables
represented in the graph. Finally, unlike in structural equation
models, the effects may be non-linear, and when two or
more arrows enter the same node, the joint influence may
be interactive.

Because of the dual causal role of metacognition, there will be
causal loops in some of our graphs. Given that causal processes
take time, the loop could be taken to mean that causality can
go back in time. That is not our intention; A loop may arise
because the arrows comprising it cannot be theoretically excluded
or because there may be a genuine feedback connection. A real
feedback loop can only connect time-aggregated variables and
it is shorthand for mutual influence occurring over time, as
illustrated by Figure 1.
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FIGURE 1 | Interpretation of causal loops which represent feedback

processes.

Here ti indexes discrete time.
A causal graph can be used to predict, interpret or explain the

data because causal relations have statistical implications, e.g., if
A may cause B, then A and B may be statistically dependent1.
A path is a finite sequence of adjacent arrows that may change
direction along the way, but the sequence must not contain
repetitions. The three most important simple cases are the chain
(A → B → C), the fork (A ← B → C), and the collider (A →
B ← C). The first two paths imply that the outermost variables
may be correlated and the correlations due to the given path can
be broken by physically fixing the value of the middle variable
or by conditioning on the middle variable (e.g., by including
the middle variable as a predictor in a regression analysis).
The collider represents two independent parent variables that
influence a common child; it behaves in an almost opposite way
to the other two paths: even if A and C are independent, they
may be dependent given B, and so regressing A on C will show no
effect; however, regressingA onC and B simultaneously will show
the effect of B and the spurious effect of C. This phenomenon is
known as Berkson’s paradox (Berkson, 1946) and it shows that
introducing additional variables in the regression analysis, e.g.,
controlling for first-order performance when trying to estimate
metacognitive monitoring effects, requires not only statistical but
also causal considerations.

We will often make use of the following important fact:
variablesX andY may be correlated according to graphG iff there
exists at least one collider-free path between X and Y in G. For
brevity, we will call such paths conductive. Different conductive
paths connecting the same two variables represent alternative
but non-exclusive causal explanations of the correlation between
the two variables: more than one conductive path between two
variables may be true, in which case each path represents a partial
explanation of the statistical dependence between these variables.

1.2. Identifying Confounding Paths Using
Causal Graphs
The causal graph representing a study may contain many
variables and many arrows, but usually, the researcher will
be primarily interested in only a small subset of paths—
often just a single arrow. Following Pearl (2000) we will

1Amay actually cause B and yet the two variables may be statistically independent,

but this happens in special cases that can be ignored most of the time.

use the term “target causal quantity” or “target causal
effect” to denote any causal relation or causal property of
interest. These are impossible to derive from statistical analysis
alone because, just as statistical inference requires statistical
assumptions, causal inference requires causal assumptions,
even in experimental studies. One consequence of this is
that, in general, causal questions cannot be answered just
by showing that one statistical model fits the data better
than another.

The importance of causal assumptions can be illustrated by
elaborating on the essential difference between experimental
and observational studies. If X represents some experimental
manipulation and Y represents the measured effect, then,
given the causal assumption of random assignment, the only
cause of X is a random device, so the only arrow that
enters X is disconnected from everything else. It follows
that there can be no conductive path between X and Y
that enters X, hence any conductive path between X and
Y has to leave X. Such a path cannot change direction,
otherwise it would contain a collider and would not be
conductive. Consequently, the observed statistical dependence
between any randomly assigned X and any measure Y
can only be explained by the process going from X to
Y : when observed, this statistical relation [i.e., observed
p(Y|X)] is an unbiased estimate of the total causal effect
of X on Y . Because of their importance, we will often
label randomly assigned variables with the letter E as in
“experimental manipulation.”

Oftenmore than one conductive path corresponds to the same
correlation. This is especially true if the two variables are only
observed, since in general either one of the two observed variables
may cause the other, or the two variables may have common
causes, as illustrated in Figure 2.

FIGURE 2 | Conductive paths in experimental and observational studies.

FIGURE 3 | Confounding paths in an experiment with indirect manipulation

and measurement.
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Here, E is randomly assigned, but X, Y , and V are only
observed. A dashed arc on the right is shorthand for X ← U →
V , where U represents all the unidentified common causes of X
and V . When more than one conductive path corresponds to
the given correlation, inferring causes from a correlation may
require deconfounding, i.e., solving the problem of alternative
causal explanations.

In SCM we usually talk about confounding paths, not
variables, because a variable by itself cannot imply any statistical
dependence. A path is confounding only with respect to some
target causal quantity (e.g., X → V) and its estimate (e.g.,
correlation between X and V), just as something is an alternative
explanation only with respect to some other explanation and
to something that is supposed to be explained. Justifying the
preferred causal explanation for the obtained statistical results
consists of neutralizing or arguing against the confounding paths
(e.g., maybe V happens only after X has already happened, so
X← V can be safely deleted). The same goes for the justification
of the preferred theoretical interpretation of the chosen measure
since validity of measurement is closely related to the relation of
being caused by the subject of measurement (Borsboom et al.,
2004).

If some plausible alternative causal explanations are not ruled
out, i.e., if some confounding paths are not neutralized or broken,
then the estimate of the target effect may be biased, i.e., the
expected value of the estimate—what it actually measures—may
be a mixture of the target causal effect and other confounding
effects. In particular, even when the estimated statistical effect is
different from zero, the contribution of the target causal effect to
the estimate may be null, in which case the researcher will miss
the target quantity entirely.

Every confounding path is critical unless something is already
known about the relative strength of the relevant causal effects.
Unlike noise or measurement error, bias resulting from the
presence of confounding paths cannot be dealt with by increasing
the sample size because it depends onwhat is beingmeasured, not
on how reliable the measurement is. This bias can only be dealt
with—if at all—by changing the design, the method of analysis,
or both.

Deconfounding is crucial when doing basic research,
especially when the study is concerned with discovering the
latent mechanism, such as the mechanism of metacognition.
Of course, no study is perfect, but once the confounding paths
are identified, they need to be addressed. As is commonly
accepted in observational studies, the burden of proof is on
the researcher, who omits certain arrows and thus dismisses
alternative explanations.

There are several non-exclusive ways of dealing with
confounding. One is by intervention, as in experimental design.
However, despite their inherent strength, experimental studies
rarely if ever provide definitive answers; this is partly because,
especially in disciplines such as psychology, for many variables, it
is impossible to alter them directly, and the effects of interest may
not be directly observable. For example, let the target quantity be
the influence of short-term memory load (L) on the duration of
the memory search (D). L is not directly accessible and D is not
directly observable, and so the set size (S) is chosen at random

on every trial as a way to indirectly determine the memory load,
and recognition reaction time (RT) is used as an indirect measure
of memory search duration. Thanks to random assignment, the
correlation between S and RT is an unbiased estimate of the total
causal effect of S on RT, but this is not the target quantity. The
researcher hopes that the correlation between S and RT estimates
the target quantity S → L → D → RT. As an estimate
of the target quantity, this correlation may be biased because
without additional causal assumptions all that is guaranteed by
random assignment of S is that the correlation of S and RT can
only be explained by some unidirectional path from S to RT;
it does not guarantee that this is the path that the researcher
has in mind. In fact, if we assume that the latent effect variable
(here D) cannot influence the latent cause variable (here L), there
are exactly three kinds of confounding paths in an arbitrary
experiment with indirect manipulation and measurement2, as
shown in Figure 3.

For example, the S → D path could represent the
metacognitive effect of perceived set size on memory search
duration mediated by motivation or effort, not by memory load.

Another approach to deconfounding is by conditioning, i.e.,
by selecting observations or subjects with some property (e.g.,
only correct trials), or by introducing additional variables in
the possibly non-linear regression analysis (see Pearl et al.,
2016, for a more comprehensive treatment). For example, if
X and Y are observed and Y cannot possibly influence X,
then conditioning by regressing Y on X and all the common
causes, if any, without introducing any spurious correlations
(by conditioning on a collider) or breaking part of the target
path (by conditioning on a mediator or its descendant), would
correctly neutralize all the confounding paths. In this case,
even though the design is observational, given the causal
assumptions it would be possible to estimate X → Y
without bias.

By now it should already be clear why we take the arrow
to mean that the causal effect is merely possible. All it takes
for some path to provide a valid candidate explanation of the
observed correlation is for the path to be theoretically possible
and conductive. That is why the fewer arrows there are in the
graph, the stronger the assumptions: there are fewer alternative
explanations and more can be inferred from data about the
generating process. It follows that the more theoretically possible
forms of monitoring or regulation there are, the harder it is
to deconfound measures of metacognition in general. As we
will now show, the relevant literature clearly indicates that it
is more difficult to list processing stages that cannot possibly
be monitored or regulated than it is to list ones that, at least
theoretically, can be.

2This can be proved: if S is randomly assigned, then the correlation between S

and RT is an unbiased estimate of the unidirectional path from S to RT. Any

unidirectional path from S to RT has to leave S and it either enters L or not. If

it does enter L, it either enters D or not. From D it can only go to RT. If it does not

enter D, it has to go to RT directly. If it does not enter L, it either enters D or not.

If it does not enter D, it has to go to Y directly. Here we are assuming that L and D

are not time-aggregated variables that can hide mutual influence, otherwise there

are additional possible confounding paths.
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2. A CAUSAL ANALYSIS OF A GENERIC
HIERARCHICAL TASK

Metacognition is usually studied using tasks in which the
stimuli or their properties can be experimentally controlled and
both the first-order (e.g., classification or free recall) and the
second-order (some form ofmetacognitive judgement) responses
are measured, sometimes simultaneously. The generic graph
representing theoretically possible causal process responsible for
performing such tasks is shown later in the paper (see Figure 4).
Because of the random assignment of stimulus properties, as a
first approximation we can represent such tasks as unidirectional
paths going from the stimulus S to some first-order response R:
this is the first-order process. Metacognition can be represented
by a node connected with the nodes along the S→ R path.

For our purposes it will be useful to divide the S → R path
into six stages: stimulus S, stimulus encoding SE, decision- or
evidence-accumulation process DP, the making of the decision
D, motor response preparationMP, and first-order task response
R. However, this subdivision into stages is in no way final and
only serves as an example of how a preliminary sketch of a causal
graph for a given study could look.

We will restrict our attention to monitoring or regulatory
processes that operate during a task trial. If the data are not
aggregated over trials, then the effects of any trial-level events on
subsequent trials can often be safely ignored, which simplifies the
graph considerably. This alone is a good reason not to aggregate
repeated measures data: for example, by performing statistical
analysis on data that are not aggregated over trials, we can ignore
the possibility of the alteration of decision criterion used on the
following trial caused by the perceived distribution of the stimuli
on previous trials, or the possible effect of confidence in a given
trial on confidence in the following trials (Rahnev et al., 2015).
This is because a path of the form Xi → Yi+1, where i is the
trial number, cannot connect trial-level variables (i.e., variables
with the same i value). As far as statistical relations within-
trial are concerned, such effects rightly belong to the omitted
unspecified factors category, unless some trial-level variable may
influence two or more trial-level variables on the following trial,
thus forming a conductive path between them.

When deriving the graph for a generic hierarchical task, we
will not assume anything about the stimulus or the response other
than that the stimulus is randomly assigned. In this way, our
model can be applied both to finite alternative forced-choice tasks
as well as to tasks where the space of valid responses is not clearly
defined, such as learning tasks with a free recall stage.

In the following section, we will provide a non-comprehensive
list of theoretical and empirical arguments for introducing
specific arrows in the graph that represents the overall process
responsible for performing a generic hierarchical task. Note
that the fact that we mention a study or a hypothesis does
not necessarily mean that we agree with the interpretation
of the results given by the authors; The reason that we do
not preface most of the interpretations of the results in terms
of metacognitive monitoring or regulation with the phrase
“according to the authors” is readability. We do not believe
that such conclusions are demonstrably false but, as our results
imply, establishing the validity of such claims may require
careful analysis of confounding paths. Usually, the fact that
we list some study as indicating that a certain causal effect
may exist only means that the authors expressed a hypothesis
that has causal meaning and—because it broadens the scope
of possible explanations—that should be taken into account
when designing or interpreting the results of an experiment
on metacognition.

Some variables that influence metacognition change
asynchronously with task stimuli. For example, Samaha
et al. (2017) observed that fluctuations in prestimulus alpha-
band power are strongly negatively related to confidence
ratings, although the relation to accuracy was not detected.
Another example is the level of arousal, which fluctuates
while a person is doing the task, and may influence cognitive
performance on many different levels. Such factors can
cause spurious correlations between confidence judgments
in different trials, which can be interpreted, for example, as
evidence of the influence of confidence in a given trial on
confidence in the following trial (see for example: Rahnev
et al., 2015). However, because we restrict our attention
to processes occurring within trial, here we will ignore
such effects.

FIGURE 4 | A partial causal graph representing a generic hierarchical task. Here S is the stimulus or some stimulus property, SE is the stimulus encoding stage, DP is

the decision process, D is the act of making the decision, MP is the motor preparation stage, R is the response, M is metacognition, and MJ is the metacognitive

judgement.
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2.1. Some Candidate Metacognitive
Monitoring Processes
Most theories of confidence assume that metacognitive
assessments are informed by stimulus-related information,
such as the quality of a perceptual item, its intensity or its size
(e.g., Vickers and Lee, 1998; Galvin et al., 2003; Rhodes and
Castel, 2008; Higham et al., 2009), although the degree to which
stimuli-related evidence translates to metacognitive assessments
varies between theories (see e.g., Kiani et al., 2014; Moran et al.,
2015). In some studies, it was found that confidence correlates
with experimentally manipulated characteristics of the stimuli,
such as presentation time (e.g., Lou et al., 2011), SOA (e.g.,
Del Cul et al., 2009), and motion coherence/strength (Kiani et al.,
2014).

The first-order decision process that follows the stimulus-
encoding stage may also be monitored by metacognitive
processes. For example, an important class of hypotheses in
metamemory studies concerns the relation between fluency
or ease of processing and metacognitive judgments (Kelley
and Lindsay, 1993; Koriat, 1997; Koriat and Ma’ayan, 2005;
Dunlosky andMetcalfe, 2008). Moreover, all the models of choice
confidence based on dynamic generalizations of Signal Detection
Theory that we are aware of assume that confidence is a function
of the history of evidence accumulation (sometimes referred to as
“random walk”), such as the drift rate (Ratcliff and Starns, 2009),
the distance traversed by the decision-accumulation process
scaled by the discriminability parameter (Link and Heath, 1975),
post-decisional evidence accumulation (Pleskac and Busemeyer,
2010), or the ratio of smoothed sampled discriminal differences
obtained when the response is made (Juslin and Olsson,
1997).

The very act of making a decision may also affect
metacognition, for example, by reducing uncertainty (Busemeyer
et al., 2006; Kvam et al., 2015; Wang and Busemeyer, 2016;
Yearsley and Busemeyer, 2016). Stages of the process of
translating the decision to the motor response may also
be monitored. Motor response allows action monitoring
and control and it seems implausible that the results of
performance monitoring (e.g., a failure to execute an intended
motor response) would not affect confidence judgments. It
has been shown, for example, that response-locked error-
related neural activity covaries with confidence level (Scheffers
and Coles, 2000; Boldt and Yeung, 2015). A number of
studies report correlations between confidence level and action
characteristics, such as reaction time (Kelley and Lindsay,
1993; Dougherty et al., 2005; Koriat and Ma’ayan, 2005;
Kiani et al., 2014; Fleming et al., 2015; Faivre et al.,
2018; Gajdos et al., 2019; Siedlecka et al., 2019; Wokke
et al., 2019) or the presence of preparatory motor activity
(Gajdos et al., 2019) and such results are typically interpreted
as evidence for metacognitive monitoring. Also, the model
of self-evaluation proposed by Fleming and Daw (2017)
assigns a crucial role to action by assuming that it provides
information about one’s own decisional process that might not
be accessible otherwise.

2.2. Some Candidate Metacognitive
Regulatory Processes
It seems that the majority of studies on metacognition are
concerned with monitoring, while metacognitive regulation is
studied less frequently, especially in basic research. Sometimes
authors (including us) may even omit the regulatory role when
defining the term “metacognition,” stating, for example, that it
refers to the ability to monitor one’s cognitive processes or to
knowledge about ongoing task performance (e.g., Metcalfe and
Shimamura, 1994; Fleming and Dolan, 2012; Siedlecka et al.,
2016; Fleming and Daw, 2017).

Metacognitive regulation during stimulus-encoding stages is
probably ubiquitous, given the assumption that perception is
an active process (for review see: Stark and Ellis, 1981; Findlay
and Gilchrist, 2001; Henderson, 2003, 2007). The central idea
in active perception theories (Gibson, 1966; Bajcsy, 1988) is that
behaviors are selected based on the expected information content
of the sensory data obtained by those behaviors, and expected
information content can be thought of as a metacognitive
property because it is relative to current knowledge and to the
goals of an agent. A more trivial example of metacognitive
regulation of stimulus encoding is the use of mnemonic
techniques to improve future memory performance.

The generalizations of Signal Detection Theory provide
theoretical arguments for the existence of a regulatory arrow
from metacognition to the decision process as well as for
the existence of an arrow that enters the stage of making of
the decision. According to the common interpretation of the
diffusion model (Ratcliff andMcKoon, 2008), which is a dynamic
generalization of the standard SDTmodel, the decision process is
a kind of noisy evidence accumulation that starts from a possibly
biased state and stops when accumulated evidence crosses a
decision threshold. There are theoretical and empirical reasons
to believe that both the initial bias and the decision thresholds
can be metacognitively regulated (Ratcliff and McKoon, 2008).
For example, studies on performance monitoring have shown
that after encountering a difficulty (e.g., a conflicting stimulus)
or after committing an error the subsequent response tends to be
slower, which may be an indicator of engaging in a more cautious
strategy (Gratton et al., 1992; Ullsperger and Von Cramon, 2001;
Veen and Carter, 2006; Dutilh et al., 2012). A similar effect has
been shown with real and false accuracy feedback: participants
took longer to respond in a trial following negative feedback
(Derryberry, 1991; Siedlecka et al., 2020). Finally, Desender
et al. (2019) have found that decision bounds that regulate the
speed-accuracy tradeoff in the diffusion model are related to the
confidence judgement on the preceding trial.

Metacognitive regulation has also been studied in the context
of learning. These studies indicate that the allocation of learning
time or the selection of learning strategies may be guided
by metacognitive monitoring and metacognitive knowledge.
For example, feeling-of-knowing judgements positively correlate
with the time spent on a question before giving up (e.g.,
Gruneberg et al., 1977; Reder, 1987, 1988; Nelson et al., 1990;
Costermans et al., 1992). Judgements of Learning can be inversely
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related to self-paced study time, a result which may indicate
that the time spent studying an item may depend on monitored
or expected changes in the encoding strength (Mazzoni et al.,
1990; Mazzoni and Cornoldi, 1993; Dunlosky and Connor, 1997;
Thiede and Dunlosky, 1999).

Finally, correlations between motor response properties
and confidence judgments found in many studies may also
be interpreted as manifestations of the regulatory role of
metacognition. For example, the positive correlation between
confidence and reaction time may be at least partially explained
by the hypothesis that when confidence in a decision is high
there is little need to be cautious and the motor execution of
the response can be relatively fast (see Gajdos et al., 2019, for a
related result).

We are now in a position to draw, in Figure 4 below, a partial
causal graph representing the process of performing a generic
hierarchical task. We want to stress that this graph is only meant
as a simplified illustration of the problem of confounding in
studies on metacognition. Note that the fact that there is only
one node representing metacognition does not imply that there
is only one metacognitive process or module, since, as we have
already explained, every node may represent a collapsed graph.

To improve the readability on this graph, causal loops are
represented by bi-directional edges. Note that the S → M
arrow represents the possibility of influence of S on M mediated
by stimulus encoding processes unrelated to the first-order
task. An immediate consequence of the presence of all the
conductive paths in Figure 4 is that without additional strong
causal assumptions any single arrow or any path corresponding
to a proper subset of conductive paths, such as all the paths
involving only monitoring, is, and we cannot stress this enough,
not estimable.

Because there is more than one possible causal loop in
Figure 4 it is hard to say anything in general about the relative
importance of various confounding paths, which means that
every confounding path is critical. Also note that even if
something was already known about the relative strength of
various confounding effects making use of this information
would not be a trivial task (see for example Pearl, 2012).
A researcher who—without accounting for all the possible
confounds—claims to have captured for example mostly the
R → M arrow is simply more or less arbitrarily favoring one
hypothetical path over other hypothetical paths. Any attempt to
justify such a decision on the basis of the results of previous
studies will be circular unless the authors of these previous studies
have already provided solutions to the relevant confounding
problems. To better illustrate the issues involved, we will use the
graph from Figure 4 to identify potential confounding paths in
studies on metacognitive monitoring.

3. CONFOUNDING IN STUDIES ON
METACOGNITIVE MONITORING

The majority of studies on metacognition target metacognitive
monitoring. The results of metacognitive monitoring, such
as choice confidence, are only observed—they are not

FIGURE 5 | Confounding paths in a generic metacognitive monitoring study.

experimentally manipulated—and the sources of monitored
information are also often not subject to experimental
manipulation, at least not directly. Just for this reason, but
also because of the possibility of metacognitive regulation, any
measure of metacognitive monitoring may be biased.

Imagine that a researcher was interested in metacognitive
monitoring, or metacognitive “resolution,” or “accuracy,”
but interpreted as a property of metacognitive monitoring.
This researcher measured both accuracy and confidence and
interpreted their correlation as a measure of metacognitive
monitoring. This situation is so common in studies on
metacognition that it deserves a graph, shown in Figure 5.

Here S is the stimulus, P represents all the first-order
processing stages between S and R, R is the response, M
represents all the metacognitive processes, and MJ is some
metacognitive judgement. The S → M arrow represents the
possibility of monitoring the properties of the stimulus (e.g., if
it looks familiar, if it is clearly visible, etc.), P → M represents
the possibility of monitoring arbitrary stages of the first-order
decision process, and R → M represents the possibility of
monitoring the first-order response (e.g., if it was quick or slow,
or if there was an error in motor execution).

The arrows from S and R to ACC represent the fact that
observed accuracy is a deterministic function of the stimulus
and the response (ACC = 1 iff S = R). Note that nothing
changes in the graph if an estimate of accuracy is replaced
by an estimate of sensitivity (i.e., d′) since it is also just a
deterministic function of S and R. The arrows from M to
the first-order processing stages S, P and R represent the
assumption that these stages can be metacognitively regulated.
For example, M → S could represent metacognitively guided
active perception, and M → R could represent metacognitively
regulated response bias.
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If the researcher was interested only in the correlation between
MJ and ACC, then the graph would be irrelevant, but this is
unlikely since this correlation by itself has no psychological
meaning. If, however, the researcher interpreted this correlation
as a measure of monitoring, e.g., of the amount of first-
order information available for metacognition, then there are
conductive paths that need to be addressed. The only way to
justify the claim that this correlation represents metacognitive
monitoring is to argue, based on the design of the study and
the chosen method of statistical analysis, against the relevance
of all the conductive paths between MJ and ACC that do not
correspond to metacognitive monitoring. For example, both the
ACC ← S → P1 → M1 → P2 → M2 · · ·Mn →

MJ path, where n is the number of feedback loop iterations,
and the MJ ← M → P → R → ACC path are
conductive and connect MJ to ACC, but the former represents
a metacognitive feedback loop involving not only monitoring but
also regulation; the latter has nothing to do with metacognitive
monitoring, instead, this path represents one way in which
metacognitive regulation may contribute to the correlation
betweenMJ and ACC.

Imagine also that the MJ–ACC correlation was significantly
different in the two experimental conditions, and this difference
was interpreted as a measure of the influence of the experimental
manipulation on metacognitive monitoring. We could represent
this on the graph by introducing the experimental manipulation
variable E that emits an arrow to M. The assumption that the
amount of first-order information available for metacognition
depends on E corresponds to the assumption that the joint
influence of E and P (or S or R, since these are also stages
of first-order processing) on M is interactive [e.g., E(M) =
a0 + a1P + a2E + a3PE, a3 6= 0, assuming linearity]. This
would certainly explain the between-group difference in theMJ–
ACC correlation, but the researcher does not get to choose what
is affected by E—nature does. If the researcher is interested
only in a specific monitoring path such as P → M or an
arrow from a specific stage of P to M, then this correlation is
also confounded with other forms of metacognitive monitoring.
Moreover, random assignment of E does not change the fact
that, given the graph, as a measure of metacognitive monitoring
the MJ–ACC correlation is confounded with metacognitive
regulation. Thus, the difference in theMJ–ACC correlation could
also be explained by the effect of experimental manipulation on
metacognitive regulation, i.e., interactive effects E → P ← M
or E → R ← M (but not E → S ← M, since S was
randomly assigned).

With some modifications, the graph from Figure 5 can also
be used to identify potential confounding paths in studies on
the influence of heuristic cues such as fluency, response time,
memorizing effort, or familiarity on metacognitive judgement
formation. In many such studies, the cues are not directly
manipulated, although there are clear exceptions, such as
font size, which when directly manipulated correlates with
metacognitive judgement (Rhodes and Castel, 2008). The results
of such studies are sometimes interpreted as evidence that
changes in cues cause changes in metacognitive judgements by
informing the monitoring process. However, when the cues are

not directly manipulated, the correlation between the cues and
metacognitive judgements is not a valid measure of the influence
of the cues since there may be common causes of both. Finally,
regardless of whether the cues are directly manipulated or not,
the correlation between the cues and metacognitive judgments
may reflect a complicated process involving iterations of a
metacognitive feedback loop.

Common use of simple deconfounding strategies such as
controlling for first-order task performance clearly indicates
that researchers who study metacognition are well aware of the
critical importance of deconfounding. However, as we will now
demonstrate, these popular simple deconfounding strategies not
only fail to address this issue in its full generality but may even
introduce bias.

4. WHY CONTROLLING FOR FIRST-ORDER
TASK PERFORMANCE MAY NOT
DECONFOUND MEASURES OF
METACOGNITION

A popular approach to deconfounding measures of
metacognition, or measures of effects of various manipulations
on metacognition, is by attempting to make some chosen
performance measure equal between the conditions, either by
intervention, as in calibration or staircase3, or by statistically
controlling for the effect of first-order task performance.

The basic idea, which dates back at least to Nelson (1984),
seems simple enough: common sense seems to indicate that if the
experimental conditions differ in first-order task performance,
then any differences in measures of metacognition can be
attributed at least in part to the differences in first-order
processing, which makes the latter a confound. If we force the
performance measure to be equal in different conditions by
calibration, or by using some form of staircase procedure, or if we
control for performance in statistical analysis, then, it seems, any
remaining differences in metacognition will be deconfounded
from the effects of first-order task processing.

Unfortunately, this is not how deconfounding works.
Statistically controlling for a variable just because it correlates
with the effect of interest may just as easily introduce bias
instead of removing it. Trying to intervene on a variable (here by
staircasing or calibration) may alter this particular variable and

3The limitations of staircasing in studies on metacognition were recently discussed

by Rahnev and Fleming (2019) who claimed that by introducing variability in

stimulus strength, staircasing may have an undesirable effect on estimates of

metacognitive effects. In the paper, the authors consider this to be an important

finding for which they even introduce a new term (i.e., “metacognitive inflation”).

However, although we also believe that staircasing may sometimes lead to estimate

bias in studies on metacognition we do not endorse the authors’ reasoning. Firstly,

Rahnev and Fleming’s claim is causal (they use the terms “influence” or “affect” to

describe it) but this claim is based on observational data; the authors re-analyzed

some available datasets by selecting the trials with constant or variable stimulus

strength, i.e., stimulus strength variability was not randomly assigned. Secondly, in

our view the authors should examine to what extent their results can be explained

by the simple statistical fact that—by definition—non-linear estimates (in this

case the area under the ROC 2 curve and the meta-d′ based measures) may be

asymptotically biased when based on data aggregated over different values of a

correlated variable (in this case the stimulus strength).
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may remove all the other arrows that point to it, but this does
not mean that it removes all the confounding paths to which this
variable is somehow connected.

In order to achieve deconfounding one first has to consider
how confounding may arise: it is only after assuming something
about the way in which the observed effects may be causally
attributed to first-order and metacognitive processing that
something meaningful can be said about the role of controlling
for first-order task performance. We will now prove that
the claim that controlling for first-order task performance
deconfounds measures of metacognition is not true without
additional strong causal assumptions and that it is, in fact,
unlikely to be true in general. We will only consider two
popular ways of controlling for first-order task performance,
namely calibration and including the performance estimate in a
regression analysis, but with minor modifications, our reasoning
can be easily generalized to other cases.

Controlling for first-order task performance by calibration
in metacognition studies usually consists of altering the stimuli
in the preliminary stage of the experiment in such a way as
to make the chosen performance measure more or less equal
between the conditions. Anything that we say about calibration
can also be said about staircasing, but not vice versa since
staircasing is often continued throughout the task. As long as the
performance does not change during the experiment, calibration
maymake any observed differences inmeasures ofmetacognition
not significantly related to the calibrated performance measure.

Calibration certainly limits the set of possible paths between
the stimulus and the response to those that correspond to the
fixed performance score. However, this is a purely quantitative
restriction: it changes the apparent performance of the task,
but not how difficult it is since equalization of the targeted
performance measure is achieved by introducing the necessary
differences in stimulus strength or difficulty. In other words,
neither calibration nor staircasing does not solve the problem of
equalizing the actual performance, theymerely hide it somewhere
else. Most importantly, additional causal assumptions are
necessary to infer that calibration makes any of the arrows in the
graph from Figure 4 disappear. In particular, this procedure is of
no help to the researcher who claims that the observed effect is
due to any specific arrow, such as metacognitive monitoring of a
specific stage along the S → R path, because without additional
causal assumptions all the other monitoring or regulatory arrows
are still relevant.

Common trust in the deconfounding power of calibration
or staircasing is based on a conceptual error: just because the
first-order task performance measure was equalized between
the conditions does not mean that first-order processing was
equalized, nor does it mean that only first-order processing was
affected by calibration. Without additional causal assumptions,
it is impossible to say if calibration affects only some first-
order processing stages, or if it affects both some first-
order stages and some metacognitive processes but does so
in a way that makes the performance measure more or
less equal between the conditions. In particular, calibration
is a stimulus-level intervention and since stimulus properties
can be metacognitively monitored, calibration may influence

metacognitive monitoring. Because the main function of
metacognitive monitoring is to guide metacognitive regulation,
calibration may also influence metacognitive regulation. It
follows, perhaps surprisingly, that without additional strong
causal assumptions calibration deconfounds nothing, all it does is
make one statistical effect disappear; With or without calibration
or staircase, the difficulty of deconfounding the effects observed
for the chosen measure of metacognition remains essentially
the same: the researcher either provides theoretical or empirical
reasons to believe that all the confounding paths have been
addressed or the observed effects cannot be interpreted in
terms of any specific path that connects metacognition to the
first-order process.

Task performance can also be controlled for statistically.
When there is uncertainty as to which performance measure
is most relevant, the researcher can perform separate analyses,
each time controlling for a different performance measure to
see if the results hold. One way to statistically control for
first-order task performance is by introducing the performance
measure as a predictor in the regression analysis that is aimed
at estimating the metacognitive effects of interest. This method
succeeds only if (1) it breaks all the confounding paths that are
not dealt with by other means and (2) the first-order performance
measure is not influenced by any stage along the target path. The
second, arguably less obvious but equally important condition
is necessary because conditioning on the descendant of a stage
along the target path takes away some (or all, if the variable
conditioned on is a stage along the target path) of the variance
due to this path4.

To see when conditioning on first-order performance may
result in successful deconfounding, consider a study in which
some stimulus-level manipulation (S) is assumed to influence
metacognition (M) by affecting some latent cause (C). This
situation can be represented by a modified graph for an
experiment with indirect manipulation and measurement shown
in Figure 6. Just for the sake of illustration we assume here that
task performance mediates the S → M confounding path, but
the same line of reasoning would apply if it mediated any of the
other two confounding paths.

Note that here we generously assume that P represents
directly observable purely first-order performance, which it never
does (there is a measurement error involved which complicates
matters even more). As we have explained before, indirect
manipulation and measurement allows three types of possible
confounding paths. Importantly, the confounding paths may
be non-overlapping and it is impossible for the same variable
(here P) to break (i.e., mediate) more than one distinct path. It
immediately follows that without additional causal assumptions
which imply that the other two confounding paths can be deleted,
deconfounding by conditioning on performance is partial at
best, even when the chosen performance measure not only
somehow estimates purely first-order processing but also does it
without any measurement error. Finally, whenever some form of
metacognitive regulation takes place, statistically controlling for
first-order performance introduces bias in the estimate of those

4This may also introduce bias in another way (see Pearl, 2012).
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FIGURE 6 | Deconfounding by conditioning on first-order task performance.

monitoring or regulatory effects which partially account for the
variance in the performance measure.

Our reasoning generalizes to statistical control of first-order
task performance when it is built in simplified models of
decision-making, such as models of metacognitive judgement
based on Signal Detection Theory. In fact, one such model,
called meta-d′ (Maniscalco and Lau, 2012; Fleming and Lau,
2014), seems to have been explicitly designed to “deconfound
metacognition”: according to its authors, one of the meta-
d′ parameters provides “a bias-free measure of metacognitive
sensitivity” that is deconfounded from the effects of first-order
performance and bias. We mention these models here to better
illustrate the point, but a detailed analysis of their limitations
deserves a separate paper. We should stress, however, that our
critique applies only to the extent that these models are used to
provide estimates of specific components of metacognition —we
do not argue against using Signal Detection Theory models in
general (quite the contrary, see e.g., Paulewicz and Blaut, 2020).

In every model of metacognitive judgement based on Signal
Detection Theory that we are aware of, the process of arriving at
a decision is represented either by an internal evidence sample, as
in the meta-d′ model, or, in the case of dynamic SDT-like models
(e.g., Link and Heath, 1975; Juslin and Olsson, 1997; Ratcliff and
Starns, 2009; Pleskac and Busemeyer, 2010), by some form of
an evidence-accumulation process. Importantly, in these models,
the cognitivemechanism is seen as an abstract evidence-sampling
or evidence-accumulation process and the mechanism by which
the evidence was obtained is not explicitly represented. This
abstract internal evidence may just as well be the result of purely
first-order processing or of an arbitrarily complex interplay of
first-order and metacognitive processes.

No part of an SDTmodel can help in disentangling the vertical
arrows in Figure 4, because this model is essentially a measure
of statistical dependence between exactly two variables, i.e., the
stimulus and the response. The only path that an SDT model—
if it is true—can intercept is the one mediated by response
bias. In effect, the problem of controlling for purely first-
order processing that we have already encountered reappears.
To provide deconfounding, an SDT model would have to be
extended so that it accounts for additional variables which, when

conditioned on, neutralize the confounding paths. However, we
are not aware of any such extension of Signal Detection Theory.

5. WHY DECONFOUNDING
METACOGNITION IS HARD AND WHAT
CAN BE DONE ABOUT IT

As we hope we have already demonstrated, it is not easy to
see when successful deconfounding of metacognition is achieved
without formal causal analysis, even in the case of widely
practiced, intuitively sound and seemingly straightforward
control of first-order task performance. The limitations of
performance equalization or of fitting simplified models of
decision-making as methods of studying metacognition are a
consequence of several properties that make metacognition
a challenging subject of study: little is known about the
mechanism of metacognition, therefore the researcher is forced
to consider many arrows and paths, which in turn may force
the researcher to address many confounding paths. Moreover,
these confounding paths can be particularly problematic
because by definition metacognitive processes may be connected
uni- or bi-directionally with many different stages of the
first-order process.

5.1. Robust Approaches to Deconfounding
Ultimately, the limitations of all the approaches to
deconfounding metacognition that we have analyzed so far
are consequences of strong causal assumptions which are
implicit in simplified models or in simple statistical corrections.
There are several general-purpose approaches to deconfounding
which can be used in studies on metacognition and which
are robust in the sense that they may not require strong
unsubstantiated causal assumptions. We describe these methods
here because compared to a fully-fledged causal analysis targeted
at a particular research problem and study design, they are
relatively easy to apply, and they may already be familiar to many
researchers who study metacognition.

For lack of space, the purpose of this final section of our paper
is only to provide a set of pointers and examples of how some
already established practices could help in addressing various
confounding issues.We want to stress that none of thesemethods
is powerful enough to replace causal analysis. Moreover, their
robustness comes at a price: as we have already mentioned at the
beginning of our paper, these methods are rather generic, which
means that they are not based on strong causal assumptions
about the target latent mechanism, and so they may not allow
for particularly strong causal conclusions. As we will see, in a
way all these methods revolve around the idea of deleting arrows
or paths.

5.1.1. Breaking Confounding Paths by Design
Sometimes confounding paths can be guaranteed to be broken
because of the design of the study. One example is studies on
the effect of response order that some of us were involved in
the past (Siedlecka et al., 2016, 2019). These studies were not
aimed specifically at deconfounding, but this is irrelevant to
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the point that we are now making. The main manipulation
was the order in which the metacognitive judgement and the
first-order response were provided. Although this intervention
does not break many confounding paths, when metacognitive
ratings are provided first it certainly does break one path,
i.e., from the first-order motor response to the metacognitive
judgement. In principle, thanks to the simple manipulation
of order, such studies are well suited to eventually showing
when metacognitive judgement can be influenced by motor
response execution.

5.1.2. Deleting Arrows by Arguing for the Null

Hypothesis
To the extent that it is possible that the arrows belonging
to a confounding path are not real, it makes sense to try to
demonstrate this empirically. Interestingly, demonstrating that
some conductive path does not exist does not require an unbiased
estimate of the path. To see why, imagine that a researcher was
interested in the causal effect of X on Y , but the two variables
were only observed and given what is known about them it
was also possible that Y affects X. It follows that the correlation
between X and Y is not an unbiased estimate of either arrow.
However, if the researcher managed to demonstrate that X and Y
are statistically independent, then the most likely explanation of
this fact would be that neither arrow really exists. The downside
is that obtaining evidence of statistical independence is not
nearly as straightforward as obtaining evidence of an effect being
different from zero.

We are aware of two ways of solving the problem of obtaining
evidence for the null, but we will only mention them briefly since
this is not a paper on statistical analysis. One popular solution
is to use Bayesian inference. The null hypothesis significance
testing framework is ill-suited to the task of arguing for the
null hypothesis because a lack of statistical significance in no
way indicates that the effect does not exist, it only means that
it was not reliably detected. Moreover, in frequentist inference,
it is impossible to obtain a probabilistic statement about the
null hypothesis because in frequentist inference point hypotheses
such as a null hypothesis are not points of some probability space,
and so frequentist point hypotheses can only be true or false. In
Bayesian inference, a set of mutually exclusive and exhaustive
hypotheses may form a probability space associated with a
prior probability distribution and, once the data are obtained,
a posterior probability distribution. A common approach to
arguing for the null in Bayesian inference is by using the Bayes
Factor in the form of the Savage-Dickey ratio (Wagenmakers
et al., 2010). Another solution is to collect enough data points
so that the resulting frequentist confidence intervals will be
so narrow that if they contain zero it will make sense to
say that the effect is either nonexistent or so small as to
be negligible. The downside to the Bayes Factor is that it is
sensitive to the choice of the prior distribution (Sinharay and
Stern, 2002), while the downside to the frequentist approach
is that it forces the researcher to justify the choice of the
threshold below which the effect size can be considered to
be negligible.

5.1.3. Identifying Functionally Distinct Parts of the

Latent Mechanism by Selective Modification
Arguing for the null is also an essential part of Sternberg’s
method of demonstrating separate modifiability by selective
influence (Sternberg, 2001), which is a method of process and
structure decomposition that has proved useful in the past
(see Sternberg, 2001, for examples) and can be reconciled with
Pearl’s theory of causality. We are aware of five studies on
metacognition or consciousness that were interpreted by the
authors as demonstrating (partial) selective influence either
on performance but not on metacognitive judgement or on
metacognitive judgement but not on performance (Lau and
Passingham, 2006; Wilimzig et al., 2008; Busey and Arici, 2009;
Rounis et al., 2010; Fleming et al., 2015).We should point out that
only one of these studies (i.e., Busey and Arici, 2009) contained
a discussion of the inherent problems associated with arguing
for the null hypothesis; it was also the only study in which the
sample size was substantial. In every other case, the authors of the
studies claimed—already in the abstract—that one of the effects
(either on performance or on confidence) was zero based solely
on the fact that it was not significant! Moreover, in some of these
studies the effect on confidence was found to be non-significant
when conditioning on performance, which is problematic since,
as we have already pointed out, first-order task performance may
causally depend on metacognitive monitoring and regulation.

Given all of the above, it seems worthwhile to briefly introduce
the method of separate modifiability. In its most basic form,
this method consists of finding two distinct randomly assigned
factors, F and G, such that (1) given the hypothetical nature
of the latent mechanism, F and G could potentially influence
distinct aspects of the mechanism (e.g., stages, processes, or
modules), and (2) the effects of each factor are demonstrably
independent. The premise is that if there exist functionally
distinct parts of a latent process or structure, then it may be
possible to selectively influence them, which could be established
if there were also distinct measures, each sensitive to one of
the distinct parts. It is perhaps worth noting that none of
the studies that we have just mentioned demonstrated that
two factors selectively influenced two different measures in the
same task.

The purpose of separate modifiability is to decompose a latent
mechanism by providing information about the separate parts
from which it could be composed. By itself, this method does
not deconfound anything, but it is a robust method that may
help in understanding the problem of confounding by providing
information about the latent causal structure.

5.1.4. Abandoning the Idea of Isolating Specific Parts

of Metacognition
In order to derive valid conclusions from the study, researchers
may have to acknowledge the inherent limitations of the chosen
method and settle for a modest interpretation of the results.
Similarly, sometimes the only way of dealing with the problem
of confounding may be to look for a different target quantity.
When deconfounding measures of metacognition, it does not
matter if the measure of statistical dependence is theory-
based (e.g., meta-d’, or SDT thresholds) or not (e.g., logistic
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regression slope or gamma correlation), because our results hold
for arbitrary measures of statistical dependence. Nor does it
matter if some other variables (e.g., some stimulus property) are
randomly assigned: as far as deconfounding is concerned, the
only difference between observational and experimental studies is
that because of random assignment in experimental studies, some
but not all confounding paths can be safely deleted. When there
are no good reasons to assume that no metacognitive regulation
takes place, researchers can safely interpret suchmeasures only in
terms of the overall strength of the total, possibly bi-directional,
causal connection between some part of metacognition and the
first-order process.

This means that often the terms “metacognitive monitoring,”
“metacognitive sensitivity,” or “metacognitive efficiency” may
have to be replaced with something else. One alternative is
to use the term “metacognitive accuracy,” interpreted strictly
as denoting the statistical relation between accuracy and
some metacognitive judgement; another is to introduce a
new term, such as “metacognitive coupling,” to emphasize
that some unknown causal connection is there and that
it may or may not be bi-directional. Perhaps the term
“metacognitive judgement formation,” when used carefully,
may also be appropriate. Admittedly, this will often make
conclusions much less impressive, but it may also be
the only way to ensure that what the researcher argues
for is not just wishful thinking, i.e., that the conclusions
actually follow from the theoretical assumptions and
the data.

6. CONCLUDING REMARKS

In this paper, we have demonstrated the limitations of
common approaches to studying metacognition, including
methods specifically aimed at deconfounding. Our analysis
shows that detailed questions about metacognition are unlikely
to be answered using simple statistical corrections such as
conditioning on performance, or by fitting overly simplified
mathematical models, such as various generalizations of Signal
Detection Theory.

Because by definition metacognitive processes may be
connected uni- or bi-directionally with arbitrary stages of
first-order processing, confounding is a major problem and
formal causal analysis may be required to correctly identify
all the theoretically possible alternative causal explanations of

the obtained statistical results, or to design a study that can
potentially provide unbiased estimates of target causal quantities.
It would be unreasonable to expect that every theoretically
possible confounding effect has been identified and discussed, but
for the causal conclusions to logically follow from the data and
the theoretical assumptions, every possible kind of confounding
effect, i.e., a type of path, such as “other kinds of metacognitive
monitoring” or “some kind of metacognitive regulation,” needs
to be addressed. The reader who believes that addressing,

either directly or indirectly, every plausible alternative causal
explanation is too tall an order should be reminded that this is
exactly what is commonly required when observational studies
are interpreted causally.

As the understanding of metacognition advances, some
confounding paths may become irrelevant while new
confounding paths may appear, thus making studies that
once seemed valid look unconvincing or vice versa. In fact,
the theoretical analysis that we have presented in this paper
led us to question what we thought our own past studies on
metacognition indicated.

We believe that it is not unreasonable to expect that every
study provides results which are valid given the explicitly stated
assumptions. To this end we have advocated modesty when
interpreting the data, using selective influence and special designs
that break confounding paths in order to better identify distinct
parts of metacognition, and, most importantly, supplementing
intuitive understanding of causality with formal analysis.
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