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Relaxation-time approximation with pair production and annihilation processes
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We extend the Boltzmann equation in the relaxation-time approximation to explicitly include transitions
between particles forming an interacting mixture. Using the detailed balance condition as well as conditions
of energy-momentum and current conservation, we show that only two independent relaxation time scales are
allowed in such an interacting system. Dissipative hydrodynamic equations and the form of transport coefficients
are subsequently derived for this case. We find that the shear and bulk viscosity coefficients, as well as the baryon
charge conductivity, are independent of the transition time scale. However, the bulk viscosity and conductivity
coefficients that can be attributed to the individual components of the mixture depend on the transition time.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the fundamental the-
ory of strong interactions. High energy heavy-ion collision
experiments at the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven and the Large Hadron Collider (LHC) at CERN,
Geneva, provide the opportunity to create hot and dense QCD
matter and study its properties [1]. At very high energies,
the quark and gluon degrees of freedom are liberated over
the volume of colliding nuclei and produce the so called
quark-gluon plasma (QGP). The phenomenological study of
space-time evolution of QGP, by analyzing the experimental
observables, helps us to understand its thermodynamic and
transport properties [2,3].

Relativistic dissipative hydrodynamics has been quite suc-
cessful in explaining the experimental results indicating that
QGP behaves like a nearly thermalized fluid (for recent
reviews see, e.g., Refs. [4–8]). Indeed the value of shear vis-
cosity to entropy density ratio, extracted from hydrodynamic
analysis of flow data (for recent results see Ref. [9]), was
found to be very close to the lower bound [10,11], which led
to the claim that QGP is the most perfect fluid ever observed.

Hydrodynamic modeling of relativistic heavy-ion colli-
sions requires information about the microscopic dynamics
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of the system via equation of state and transport coefficients
[6,12]. This can be achieved by considering the dynamics
of the microscopic degrees of freedom within the frame-
work of relativistic kinetic theory [13–24]. The quantities
relevant for hydrodynamics can be obtained from relativis-
tic kinetic theory by considering suitable moments of the
phase-space distribution function [24–38]. Moreover, the
space-time evolution of the phase-space distribution func-
tion is governed by the Boltzmann equation. Therefore, the
hydrodynamic evolution of a system can be obtained from
the moments of this equation. For a system close to equi-
librium (which is believed to be true for strongly coupled
QGP), the collision kernel of the Boltzmann equation can
be simplified using the relaxation-time approximation (RTA)
[39,40]. The RTA assumes that the effect of collisions is
to exponentially drive the system towards local equilibrium
[41].

The relaxation-time approximation turns out to be very
useful and has been employed extensively to derive the form
of kinetic coefficients [16,42–48] and dissipative hydrody-
namic equations [15,31,49–53] as well as find their exact
solutions [54,55] and attractors [56–60]. While enormous
simplification is achieved by considering RTA for the collision
kernel, this comes at the expense of ignoring the interaction
mechanism of the microscopic constituents. Moreover, RTA
assumes a single time scale for thermalization of all types
of microscopic interactions, whether they are elastic or in-
elastic. This may be a reasonable approximation if the time
scale for inelastic processes is much smaller than for elastic
processes such that the chemical equilibration precedes the
kinetic equilibration. However, if such separation of scales
is not possible and the two time scales are comparable, RTA
needs to be modified to correctly account for the elastic and
inelastic processes separately (a first step in this direction,
however, for a simplified space-time geometry, was done in
Refs. [61,62]).
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In this article, we extend the Boltzmann equation in the
relaxation-time approximation to include explicitly the tran-
sitions between different particles forming an interacting
mixture. We consider two types of particles. The particles
of the first type carry a conserved quantum number; hence,
it is necessary to split them into particles and antiparticles.
However, the number of particles of the second type is not
conserved. In the following we call the particles of the first
type “quarks” and those of the second type “gluons.” We also
identify the conserved charge with the baryon number. We
note, however, that these are to large extent symbolic names,
since our particles may have several properties different from
those characterizing quarks and gluons that appear in field-
theoretic calculations. With this nomenclature remark in mind
we may state that we consider inelastic interactions for the
quark-antiquark annihilations to gluons and corresponding
quark-pair production processes.

Using the detailed balance condition as well as condi-
tions of energy-momentum and current conservation, obtained
from the Boltzmann equations, we show that there exist only
two independent relaxation time scales in such an interacting
system. Subsequently, we derive dissipative hydrodynamic
equations for the evolution of this system as well as the corre-
sponding transport coefficients.

The present article has the following structure: In Sec. II
we set up the necessary hydrodynamic framework required
to study the space-time evolution of QGP using fundamental
conservation laws. In Sec. III we generalize the RTA to explic-
itly include inelastic interactions in the Boltzmann equation.
Section IV deals with the derivation of the first-order trans-
port coefficients, and some limiting cases for the interacting
medium are worked out therein. In Sec. V we present nu-
merical results for the transport coefficients and study effects
coming from the presence of the transition time. Finally, in
Sec. VI we summarize the key results of the present work and
outline possible extensions of the present framework that can
be studied in the close future.

Notations and conventions. In this article we use the fol-
lowing notations and conventions. The quantity uμ is the
fluid four-velocity (normalized to unity) and in the fluid
rest frame uμ = (1, 0, 0, 0). The tensor �μν = gμν − uμuν is
the projection operator that is orthogonal to the fluid velocity.
The metric tensor is taken to be gμν = diag(1,−1,−1,−1).
We choose the appropriate gluon and quark-antiquark de-
generacy factors respectively as gg = Ns(N2

c − 1) and gq =
NsNcNf , where Nf = 3 is the number of flavors, Ns = 2 is the
spin degeneracy, and Nc = 3 is the number of colors.

II. RELATIVISTIC HYDRODYNAMICS

Hydrodynamic evolution of a relativistic system is gov-
erned by the conservation of energy-momentum tensor, T μν ,
and particle four-current, Nμ (that we identify here, up to
a factor of 3, with the baryon current). In the present work
we consider a system of interacting quarks, antiquarks, and
gluons. One can then write the conserved hydrodynamic quan-
tities as moments of the phase-space distribution functions
of quarks, antiquarks, and gluons, which can be further ten-
sor decomposed in terms of the hydrodynamic degrees of

freedom,

T μν =
∫

d p pμ pν[gq(Q + Q̄) + gg G]

= ε uμuν − (P + �) �μν + πμν, (1)

Nμ =
∫

d p pμ gq(Q − Q̄) = n uμ + nμ, (2)

where d p ≡ d3 p/[(2π )3
√

p2 + m2] is the Lorentz invariant
momentum integral measure with m the particle mass, pμ the
particle four-momentum, and gq and gg the degeneracy factors
for quarks and gluons, respectively. In the above equations,
Q, Q̄, and G are used to denote the distribution functions
for quarks, antiquarks, and gluons, respectively. The hydro-
dynamic variables ε, P, and n in the above equations are
the energy density, pressure, and net number density of the
system, respectively. The dissipative quantities, �, πμν , and
nμ, are the bulk viscous pressure, shear stress tensor, and the
dissipation current, respectively. In order to express T μν and
Nμ in terms of the hydrodynamic variables, we define the fluid
four-velocity in the Landau frame: T μνuν = εuμ. To define
thermodynamic quantities for a nonequilibrium system, we
used the matching condition ε = εeq and n = neq, where εeq

and neq are the corresponding equilibrium values.
The equilibrium quantities appearing in Eqs. (1) and (2)

can be written in terms of the equilibrium distribution func-
tions as

εeq = uμuν

∫
d p pμ pν[gq(Qeq + Q̄eq ) + gg Geq], (3)

Peq = −�μν

3

∫
d p pμ pν[gq(Qeq + Q̄eq ) + gg Geq], (4)

neq = uμ

∫
d p pμ gq(Qeq − Q̄eq ), (5)

where Qeq, Q̄eq, and Geq are the equilibrium distribution
functions for quarks, antiquarks, and gluons, respectively. To
obtain the above relations, we use the identities uμuνπ

μν =
uμnμ = 0.

Furthermore, we consider here the Jüttner form of the
classical Maxwell-Boltzmann distribution function for the
equilibrium case. Since quarks and antiquarks have nonzero
baryon chemical potential whereas gluons have zero baryon
chemical potential, their equilibrium phase-space distribu-
tions are given by the expressions

Qeq = e−β(u·p)+α, (6)

Q̄eq = e−β(u·p)−α, (7)

Geq = e−β(u·p), (8)

where β ≡ 1/T is the inverse temperature, α ≡ μ/T is the
ratio of baryon chemical potential and temperature, and A ·
B ≡ AμBμ. The above distribution is locally isotropic in mo-
mentum space. A mixture of quarks and gluons was also
studied previously with an anisotropic distribution function in
Ref. [63].

We note that the use of the classical distributions (6)–(8)
is appropriate for sufficiently dilute systems of particles. This

064910-2



RELAXATION-TIME APPROXIMATION WITH PAIR … PHYSICAL REVIEW C 102, 064910 (2020)

implies that the parameter α cannot be too large. A natural
range for α is given by the condition |α| < 4, since for larger
values of |α| the entropy density of the system described
by Eqs. (6)–(8) may become negative (see, for example,
Table 8.2 in Ref. [64]). Thus, we use the condition |α| < 4
in our numerical calculations presented below in Sec. V.

For a system close to equilibrium, one can write the
nonequilibrium distribution functions as

Q(x, p) = Qeq(x, p) + δQ(x, p), (9)

Q̄(x, p) = Q̄eq(x, p) + δQ̄(x, p), (10)

G(x, p) = Geq(x, p) + δG(x, p), (11)

where δQ, δQ̄, and δG are the deviations from the equilibrium
distribution functions of quarks, antiquarks, and gluons, re-
spectively, satisfying δQ � Qeq, δQ̄ � Q̄eq, and δG � Geq.
The dissipative quantities appearing in Eqs. (1) and (2) can be
expressed in terms of these deviations as

πμν = �
μν

αβ

∫
d p pα pβ[gq(δQ + δQ̄) + gg δG], (12)

� = −�αβ

3

∫
d p pα pβ[gq(δQ + δQ̄) + gg δG], (13)

nμ = �μ
α

∫
d p pα gq(δQ − δQ̄). (14)

The above expressions are used later to derive the form of the
dissipative equations and calculate the corresponding trans-
port coefficients.

In covariant form, the relativistic hydrodynamic equations
are given by vanishing four-divergence of energy-momentum
tensor and conserved four-current, i.e., ∂μT μν = 0 and
∂μNμ = 0. Using the second equalities in Eqs. (1) and (2),
and making appropriate projections, we obtain

ε̇ + (ε + P + �)θ − πμνσμν = 0, (15)

(ε + P + �)u̇α − ∇α (P + �) + �α
ν ∂μπμν = 0, (16)

ṅ + nθ + ∂μnμ = 0, (17)

where θ ≡ ∂μuμ is the expansion scalar, σμν ≡ �
μν

αβ (∇αuβ )
is the shear tensor, Ȧ ≡ uμ∂μA is the co-moving deriva-
tive, ∇α ≡ �αμ∂μ is the spacelike derivative, and �

μν
αβ ≡

(�μ
α�ν

β + �
μ
β�ν

α )/2 − (1/3)�μν�αβ is a 4-rank traceless
symmetric projection operator orthogonal to both uμ and
�μν . Equivalently, in terms of the distribution functions, the
energy-momentum conservation and current conservation im-
ply ∫

d p pμ pν∂μ[gq(Q + Q̄) + ggG] = 0, (18)

∫
d p pμ ∂μ[gq(Q − Q̄)] = 0. (19)

From the above equations, we conclude that the space-time
evolution of the distribution functions is necessary to deter-
mine the evolution of the system. In the following, we set up
the Boltzmann equation within the kinetic theory framework
to determine the space-time evolution of the phase-space dis-
tribution functions.

III. KINETIC THEORY SETUP

For a dilute system, the evolution of a single particle
phase-space distribution function, governed by the Boltzmann
equation, is sufficient to characterize the system on a micro-
scopic level. For a relativistic system, the Boltzmann equation
in the relaxation-time approximation can be written as [42]

pμ∂μ f = −(u · p)
δ f

τeq
, (20)

where f ≡ f (x, p) is the phase-space distribution function,
and δ f ≡ f − feq is the deviation of the distribution function
from equilibrium with feq being the equilibrium distribution
function and τeq is the relaxation time scale in which a system
approaches equilibrium. As discussed earlier, a single time
scale of the above form may not be adequate to account for
elastic as well as inelastic interactions, especially when these
two scales are not sufficiently apart.

To account for inelastic interactions, we formulate an im-
provement of the Boltzmann equation with RTA collision
term. For a system of quarks and gluons, we consider the
inelastic processes g ↔ qq̄. For such a system, we propose
the following set of RTA Boltzmann equations:

pμ∂μQ = −(u · p)

[
δQ

τ
q
eq

− 1

2

(
G

τ
g→q
tr

− Q + Q̄

τ
q→g
tr

)]
, (21)

pμ∂μQ̄ = −(u · p)

[
δQ̄

τ
q̄
eq

− 1

2

(
G

τ
g→q
tr

− Q + Q̄

τ
q→g
tr

)]
, (22)

pμ∂μG = −(u · p)

[
δG

τ
g
eq

+ r

(
G

τ
g→q
tr

− Q + Q̄

τ
q→g
tr

)]
, (23)

where τ
q
eq, τ

q̄
eq, and τ

g
eq represent the relaxation time scales for

quarks, antiquarks, and gluons, respectively; τ
q→g
tr and τ

g→q
tr

represent the relaxation times for the processes qq̄ → g and
g → qq̄, respectively; and

r = gq

gg
. (24)

It is important to note that the relaxation times, τ
q
eq, τ

q̄
eq, τ

g
eq,

τ
q→g
tr , and τ

g→q
tr , can, in general, be momentum dependent.

However, in the present study, which is a first step towards
development of such an RTA framework, we treat these re-
laxation times to be momentum independent. We also note
that in the usual relaxation-time approach, Eq. (20), only
the first terms on the right-hand side of Eqs. (21)–(23) are
present. The additional inelastic-interaction terms are writ-
ten keeping in mind that the process qq̄ → g increases the
gluon distribution and decreases the distribution of quarks and
antiquarks. Similarly, the reverse process g → qq̄ decreases
the gluon distribution and increases the distribution of quarks
and antiquarks. The factors 1/2 and r are introduced to en-
sure energy-momentum and net baryon current conservation,
Eqs. (18) and (19), as explained in more detail below.

At this juncture, we would like to emphasize that the
usual RTA Boltzmann equation, Eq. (20), is quite general
in the sense that one need not go into the mechanism of
interaction. Rather, the relaxation-time approximation states
that the “effect” of the interactions is to drive the system
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towards equilibrium, exponentially, with a time scale which
is set by the relaxation time τeq. Let us consider the case in
Eqs. (21)–(23) when all τtr → ∞. In this case we are left with
the usual RTA Boltzmann equations for quarks, antiquarks,
and gluons. It is important to note that this set of Boltzmann
equations is not specific to any reaction or processes. This is
apparent when one considers no quarks at the beginning of
the evolution. However, due to the collision term, quarks are
generated immediately. This is due to the fact that the presence
of the rest of the constituents leads to a thermal medium which
in turn fixes the thermal distribution for quarks to be nonzero.
We emphasize that in this sense, the RTA implicitly considers
all interactions that lead to a thermalized state described by
equilibrium distributions via the first terms on the right-hand
sides of Eqs. (21)–(23). A new feature of the present approach
is that in addition to such general thermalization processes
we explicitly include transitions between components of the
system. The latter processes, by themselves, may not lead
to equilibration and are constrained only by the conservation
laws as shown later. The aim of the current work is to inves-
tigate whether such processes “couple” to the thermalization
processes and affect the values of the kinetic coefficients.

From Eqs. (21)–(23), it might seem that there are five inde-
pendent relaxation times, which characterize the time scales of
equilibration of different collision processes. However, only
two of them are truly independent, as demonstrated in the
following. We first note that, as a consequence of the Landau
frame and matching conditions, uμδT μν = 0 and uμδNμ =
0, where δT μν ≡ T μν − T μν

eq and δNμ ≡ Nμ − Nμ
eq, with the

equilibrium energy-momentum tensor and net baryon current
being evaluated using the corresponding equilibrium distribu-
tion functions. Keeping this in mind, we see that in order to
satisfy net baryon current conservation, Eq. (19), the required
condition is τ

q
eq = τ

q̄
eq. Similarly, in order to satisfy the total

energy momentum conservation, Eq. (18), we find the nec-
essary condition to be τ

q
eq = τ

q̄
eq = τ

g
eq. Therefore, within our

framework, there is only one independent equilibration time
scale possible, henceforth denoted as τeq and corresponding
to the three processes given in Eqs. (21)–(23).

To find the relation between the two transition time scales,
τ

q→g
tr and τ

g→q
tr , we first rewrite the coupled Boltzmann equa-

tions, Eqs. (21)–(23), in a compact form using matrix notation.
Introducing vector notation for the distribution functions,
namely,

F(x, p) =
⎡
⎣ Q(x, p)

Q̄(x, p)
G(x, p)

⎤
⎦, (25)

Feq(x, p) =
⎡
⎣ Qeq(x, p)

Q̄eq(x, p)
Geq(x, p)

⎤
⎦, (26)

we rewrite Eqs. (21)–(23) as

pμ∂μF = −(u · p)[R̂eq(F − Feq ) + R̂trF]. (27)

In the above equation, R̂eq and R̂tr are 3 × 3 square matrices,
whose elements are inverse of the various relaxation time

scales and are given by

R̂eq = νeq

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦, (28)

R̂tr = 1

2

⎡
⎢⎣

ν
qg
tr ν

qg
tr −ν

gq
tr

ν
qg
tr ν

qg
tr −ν

gq
tr

−2rνqg
tr −2rνqg

tr 2rνgq
tr

⎤
⎥⎦, (29)

where we introduced

νeq = 1

τeq
, ν

qg
tr = 1

τ
q→g
tr

, ν
gq
tr = 1

τ
g→q
tr

, (30)

to simplify our notation.
Now we examine some constraints that are obtained from

the fact that in global and local equilibrium cases, the Boltz-
mann equation gets simplified. In global equilibrium, the
distribution function F = F0 becomes constant and therefore
its derivatives must vanish, i.e., ∂μF0 = 0. Note that the phase-
space distribution function in global equilibrium is a solution
of the Boltzmann equation. When the system approaches
global equilibrium, the local equilibrium distribution function
also attains a constant value, i.e., Feq = F0. Hence in global
equilibrium, the first term on the right-hand side of Eq. (27) is
zero and thus leaves us with the condition R̂tr F0 = 0. Using
this condition and assuming that the quarks and gluons have
equal masses, we get the constraint

τ
q→g
tr = 2τ

g→q
tr cosh α0, (31)

where the subscript 0 denotes the constant value of α in
global equilibrium. Therefore, the constraint obtained from
the global equilibrium condition reduces the number of inde-
pendent relaxation times to two. It is important to note that
if the quark and gluon masses are different, the transition
relaxation time becomes momentum dependent. Herein, we
restrict our considerations to the case where all masses are the
same.

Similarly, in local equilibrium the distribution function
takes the form F = Feq, which is a function of space-time
coordinates. It is important to note that the local equilibrium
is defined as the maximum entropy state and, in general, it
is not a solution of the Boltzmann equation. However, the
condition that the distribution function has to be positive
definite at all space-time points during its evolution requires
that R̂trFeq = 0. Again, assuming that the quarks and gluons
have equal masses, this yields a constraint between the two
transition relaxation times,

τ
q→g
tr = 2τ

g→q
tr cosh α. (32)

Interestingly, the form of the constraint is similar to that
obtained in Eq. (31) from global equilibrium consideration.
It turns out that the above constraint, obtained using the
condition of positive definiteness of the distribution function,
can also be derived from entropy arguments as demonstrated
below.
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The entropy four-current for a mixture of quark, antiquark,
and gluon with identical particle masses can be written as [65]

Sμ = −
3∑

k=1

gk

∫
d p pμFk (ln Fk − 1), (33)

where, k = 1, 2, 3 represents quark, antiquark, and gluon,
respectively, with gk being the corresponding degeneracy
factors and Fk being the components of F(x, p) defined in
Eq. (25). The four-divergence of Sμ in the above equation can
be obtained as

∂μSμ = −
∫

d p M • (pμ∂μF), (34)

where M has components Mk = gk ln Fk and A • B ≡∑
k AkBk . Using Eq. (27), one can write the above equation

as

∂μSμ =
∫

d p (u · p) M • [R̂eq(F − Feq ) + R̂trF]. (35)

In local equilibrium, F = Feq, the divergence of entropy
four-current should vanish, i.e., ∂μSμ

eq = 0. From the above
equation, we see that this condition can be fulfilled, with
correct limiting approach to global equilibrium, if R̂trFeq = 0
which again leads to Eq. (32).

Using the above constraint relation, the two transition time
scales can be written in a parametric form in terms of a single
transition relaxation time, τtr , as follows:

τ
q→g
tr = τtr sinh 2α, τ

g→q
tr = τtr sinh α. (36)

Along with the previously obtained constraints from energy-
momentum and net baryon current conservation, τ

q
eq = τ

q̄
eq =

τ
g
eq = τeq, the above parametrization leads to two independent

relaxation time scales: τeq and τtr . We note that we assume
that all the transition times are positive; hence, Eq. (36) can
be used if α > 0. In the case where α < 0, one should change
α to −α in Eq. (36) and follow in exactly the same way as in
the case α > 0. As it does not lead to any relevant differences,
we may restrict our considerations to the case α > 0.

The set of coupled Boltzmann equations introduced by
Eqs. (21)–(23) can now be reexpressed in terms of the inde-
pendent relaxation times as

pμ∂μQ = −(u · p)

[
δQ

τeq
− 1

2τtr

(
δG

sinh α
− δQ + δQ̄

sinh 2α

)]
,

(37)

pμ∂μQ̄ = −(u · p)

[
δQ̄

τeq
− 1

2τtr

(
δG

sinh α
− δQ + δQ̄

sinh 2α

)]
,

(38)

pμ∂μG = −(u · p)

[
δG

τeq
+ r

τtr

(
δG

sinh α
− δQ + δQ̄

sinh 2α

)]
,

(39)

where we have also used the fact that the right-hand sides of
Eqs. (21)–(23) vanish in equilibrium, i.e., arguments leading
to Eq. (32). The above equations are one of the main results
of the present work and represent a generalization of the
Boltzmann equation to explicitly include inelastic scattering

in the relaxation-time approximation. We note here that the
pair production mechanism within kinetic theory was also
studied in Refs. [66,67] by deriving a source term.

Before we turn to a systematic analysis of the near equilib-
rium behavior of the system described by Eqs. (37)–(39), it is
interesting to observe that there are two combinations of the
distribution functions that may be interpreted as independent
ones:

Q− = Q − Q̄, (40)

S+ = r(Q + Q̄) + G = rQ+ + G. (41)

By making appropriate linear combinations of Eqs. (37)–(39)
one finds that both Q− and S+ satisfy the same kinetic equa-
tion:

pμ∂μQ− = −(u · p)
δQ−

τeq
, (42)

pμ∂μS+ = −(u · p)
δS+

τeq
. (43)

It is interesting to notice that the evolution of Q− and S+ is
not affected by the transition processes. This is due to the de-
tailed balance constraint included in Eqs. (37)–(39). Clearly,
Eqs. (42) and (43) should be supplemented by a third equation
for yet another linear combination of the original distribution
functions.

For the third combination, it is convenient to use

S− = Q + Q̄ − G = Q+ − G, (44)

which satisfies the equation

pμ∂μS− = −(u · p)

[
δS−

τeq
− 1 + r

τtr

(
G

sinh α
− Q+

sinh 2α

)]
.

(45)

Using the fact that the right-hand side of Eq. (45) vanishes for
local equilibrium, we can rewrite it as

pμ∂μS− = −(u · p)

[
δS−

τ eff
eq

+ δS+

τtr

(
1

sinh 2α
− 1

sinh α

)]
,

(46)

where we have introduced an effective relaxation time for the
distribution S−,

τ eff
eq = τeq

γ

γ + r
sinh α

+ 1
sinh 2α

, (47)

and the ratio

γ = τtr

τeq
. (48)

From Eq. (47) we conclude that the effective relaxation time
is always smaller than the original relaxation time, τ eff

eq � τeq,
and τ eff

eq → 0 for γ → 0 or α → 0, i.e., for very small transi-
tion times.

IV. TRANSPORT COEFFICIENTS

In this section, we derive the Navier-Stokes equation and
the corresponding transport coefficients for the interacting
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QGP system described by the set of Boltzmann equations
given in Eqs. (37)–(39). We also calculate the individual con-
tribution to the transport coefficients from quarks, antiquarks,
and gluons.

A. Nonequilibrium corrections to distribution functions

To derive the transport coefficients corresponding to var-
ious dissipative quantities, we evaluate the integrals in
Eqs. (12)–(14). The first step towards evaluating these in-
tegrals is to obtain the out-of-equilibrium parts of the
distribution functions, δQ, δQ̄, and δG. We use Eq. (27) to
derive these out-of-equilibrium parts in a compact form. For
distributions which are slightly away from equilibrium, we
have F = Feq + δF, where

δF(x, p) =

⎡
⎢⎣

δQ(x, p)

δQ̄(x, p)

δG(x, p)

⎤
⎥⎦. (49)

Keeping in mind that R̂trFeq = 0, Eq. (27) can be rewritten as

pμ∂μF = −(u · p) R̂ δF, (50)

where R̂ = R̂eq + R̂tr and is given by the following matrix:

R̂ = 1

2

⎡
⎢⎣

2νeq + ν
qg
tr ν

qg
tr −ν

gq
tr

ν
qg
tr 2νeq + ν

qg
tr −ν

gq
tr

−2rνqg
tr −2rνqg

tr 2νeq + 2rνgq
tr

⎤
⎥⎦. (51)

In the above equation, we have used the notations given in
Eq. (30).

Using Eq. (50), we obtain the first-order gradient correc-
tion to the vector distribution function,

δF = − 1

(u · p)
R̂−1 pμ∂μFeq, (52)

where R̂−1 is the inverse of the matrix R̂. This inverse matrix
is given by

R̂−1 = τeq

⎡
⎣ A −B C

−B A C
D D E

⎤
⎦, (53)

where A = 1 − [2 + 4 cosh α(γ sinh α + r)]−1, B = 1 − A,
C = 2B cosh α, D = 2Br, and E = 1 − 2Cr.

From Eqs. (52) and (53), we finally obtain the nonequilib-
rium corrections to the distribution functions:

δQ = τeq

(u · p)
[B pμ∂μQ̄eq − A pμ∂μQeq − C pμ∂μGeq], (54)

δQ̄ = τeq

(u · p)
[B pμ∂μQeq − A pμ∂μQ̄eq − C pμ∂μGeq], (55)

δG = −τeq

(u · p)
[Dpμ∂μQeq + Dpμ∂μQ̄eq + E pμ∂μGeq]. (56)

B. Navier-Stokes relations and transport coefficients

The derivatives of the equilibrium distribution functions
in the above equations lead to derivatives of uμ, β, and α.
Some of these derivatives can be eliminated using first-order

hydrodynamic equations. In particular, using the equations
for hydrodynamic evolution, Eqs. (15)–(17), along with the
expressions for the thermodynamic quantities, Eqs. (3)–(5),
we obtain

α̇ = χα θ, β̇ = χβ θ, ∇μβ = −β u̇μ + n

ε + P
∇μα, (57)

where

χα ≡ (2gq cosh α + gg)I30 n − 2gq sinh α I20(ε + P)

2 gq D20
, (58)

χβ ≡ sinh α I20 n − cosh α I10 (ε + P)

D20
. (59)

Here the thermodynamic integrals and the coefficient D20 are
defined as

Inq ≡ 1

(2q + 1)!!

∫
d p(u · p)n−2q(�αβ pα pβ )qGeq, (60)

D20 ≡ 2gq sinh2 α I2
20 − (2gq cosh α + gg) cosh α I30I10.

(61)

These relations can be used to derive the relativistic Navier-
Stokes equations connecting the shear stress tensor, bulk
pressure, and baryon charge conductivity with the shear flow
tensor, expansion scalar, and transverse gradient of α.

Substituting Eqs. (54)–(56) into Eqs. (12)–(14), using
Eqs. (57)–(61), and performing the integrals, we obtain

πμν = 2η σμν, � = −ζ θ, nμ = κ (∇μα), (62)

where η, ζ , and κ are the coefficient of shear viscosity, co-
efficient of bulk viscosity, and baryon charge conductivity,
respectively. These transport coefficients are given by the
following expressions:

η

τeq
= (gg + 2 gq cosh α)β I32, (63)

ζ

τeq
=

(
5

3
+ χβ I31

β I32

)
η

τeq
+ χα nT, (64)

κ

τeq
= − n2 T

ε + P
− 2 gq I11 cosh α. (65)

From the above equations, we see that the transport coeffi-
cients η, ζ , and κ do not depend on γ and hence on the
transition time scale. This can be understood from Eqs. (1)
and (2), where we see that the energy-momentum tensor and
net particle current depend on S+ and Q−, respectively. How-
ever, the evolution of Q− and S+ does not depend on τtr as
demonstrated in Eq. (42) and (43). Also, note that despite an
overall negative sign in Eq. (65), κ is positive because I11 is a
negative quantity [see Eq. (A2)].

C. Quark, antiquark, and gluon contributions
to transport coefficients

Splitting the total energy-momentum tensor into individual
components describing quarks, antiquarks, and gluons, we
can identify the viscosity coefficients characterizing different
components of the system. In particular, we obtain the three
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FIG. 1. The m/T dependence of the kinetic coefficients η, ζ , and
κ , rescaled by sT τeq (shear and bulk viscosities) and sτeq (baryon
conductivity). The parameter α ranges from 0.1 (solid lines) to 4
(dashed lines).

shear viscosity coefficients:

ηQ

τeq
= gqeαβ I32, (66)

ηQ̄

τeq
= gqe−αβ I32, (67)

ηG

τeq
= ggβ I32. (68)

Equations (66)–(68) show that the partial shear viscosities are
independent of the transition time. The total shear viscosity
is given by the sum η = ηQ + ηQ̄ + ηG and turns out to be
positive. Similarly, we can write ζ = ζQ + ζQ̄ + ζG, where

ζQ

τeq
=

(
5

3
+ χβ I31

β I32

)
ηQ

τeq
− gq(Aeα + Be−α )χα I21, (69)

ζQ̄

τeq
=

(
5

3
+ χβ I31

β I32

)
ηQ̄

τeq
+ gq(Beα + Ae−α )χα I21, (70)

ζG

τeq
=

(
5

3
+ χβ I31

β I32

)
ηG

τeq
+ D χα

r
nT . (71)

In this case, the partial contributions do depend on the transi-
tion time. It is interesting to note that the dependence of ζG on
α is due to finite γ and this dependence vanishes for γ → ∞.
We can also define the net conductivity by the difference
κ = κQ − κQ̄ with

κQ

τeq
= gq

[(
n eα

ε + P

)
I21 − (Aeα + Be−α ) I11

]
, (72)

κQ̄

τeq
= gq

[(
n e−α

ε + P

)
I21 + (Beα + Ae−α )I11

]
. (73)

Here, κQ and κQ̄ also depend on the transition time.

D. Limiting cases

It is interesting to separately consider the limit of zero
baryon chemical potential. For α → 0 (very low values of the

FIG. 2. The individual contributions to the shear viscosity coef-
ficient, rescaled by the total value of η and shown as functions of α.
In this case, the presented ratios are functions of α and r only.

μ/T ratio) and with other parameters fixed, including γ , one
finds

lim
α→0

η

τeq
= (gg + 2 gq)βI32, (74)

lim
α→0

κ

τeq
= −2 gqI11, (75)

lim
α→0

ζ

τeq
=

(
5

3
− I2

31

I30I32

)
η

τeq

∣∣∣∣
α→0

. (76)

We note that for low values of z, one can use the expansions
of the thermodynamic integrals given by Eqs. (A10)–(A12).
The limits for individual contributions are as follows:

lim
α→0

ηQ

η
= lim

α→0

ζQ

ζ
= r

1 + 2r
, (77)

lim
α→0

ηQ̄

η
= lim

α→0

ζQ̄

ζ
= r

1 + 2r
, (78)

FIG. 3. The individual contributions to the bulk viscosity coeffi-
cient, rescaled by the total value of ζ and calculated for z = 1. The
parameter γ varies from 0.1 (solid lines), through 1 (dotted lines) to
10 (dashed lines). Note that in certain regions of the parameter space
ζG and ζQ̄ become negative.
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FIG. 4. Same as Fig. 3 but for γ = 1. The ratio z varies from 1
(solid lines) to 10 (dashed lines).

lim
α→0

ηG

η
= lim

α→0

ζ G

ζ
= 1

1 + 2r
, (79)

lim
α→0

κQ

κ
= − lim

α→0

κ Q̄

κ
= 1

2
. (80)

V. RESULTS AND DISCUSSIONS

In the previous section, we showed that the coefficient of
shear viscosity, η, is independent of γ and hence the tran-
sition time scale. In this section we present our numerical
results describing the two viscosity coefficients and the baryon
conductivity based on Eqs. (63)–(65). We also evaluate nu-
merically the individual contribution from quarks, antiquarks,
and gluons to the coefficient of bulk viscosity, ζ , and the
charge conductivity, κ , based on Eqs. (69)–(73).

Figure 1 shows the dependence of the three considered
kinetic coefficients on the ratio z = m/T . The values of the
shear and bulk viscosities are rescaled by the factor sT τeq,
while the baryon conductivity is rescaled by sτeq. At low

FIG. 5. The two contributions to the baryon conductivity coef-
ficient for z = 1; γ varies from 0.1 (solid lines), through 1 (dotted
lines) to 10 (dashed lines).

FIG. 6. The two contributions to the baryon conductivity coef-
ficient for γ = 1; z varies from 0.1 (solid lines), through 1 (dotted
lines) to 10 (dashed lines).

temperatures and small values of the chemical potential, the
rescaled value of the shear viscosity approaches the value of
1/5 [52]. For small masses, i.e., for z < 1, the bulk viscosity is
significantly smaller compared to the shear viscosity. We find
that all the kinetic coefficients for the mixture are positive, as
required by the second law of thermodynamics.

In Fig. 2 we show individual contributions to the shear
viscosity, plotted now as functions of α. In view of the argu-
ments presented below Eq. (8) we restrict our calculations to
the range 0 � α < 4. As expected, for very large values of α

the shear viscosity is dominated by the quark contribution. At
low values of α, the individual contributions are given by the
fractions involving internal degeneracy factors [see Eq. (80)].
In the numerical calculations we use r = 9/8; note that for
r = 1 all the contributions would be the same and equal to
1/3.

Figures 3 and 4 show the α dependence of the individual
contributions to the bulk viscosity coefficient ζ . We find a
nontrivial dependence on the transition rate quantified by the
value of γ (Fig. 3), and on the mass over temperature ratio
z (Fig. 4). Interestingly, in some regions of the parameter
space the individual contributions turn out to be negative.
Nevertheless, the total value of the bulk viscosity is always
positive as demonstrated in Fig. 1.

Finally, in a similar way in Figs. 5 and 6 we show the α

dependence of the two contributions to the baryon conductiv-
ity. Here again, one can find a nontrivial dependence on the
transition time and the m/T ratio.

VI. SUMMARY AND OUTLOOK

In this work, we have extended the Boltzmann equation in
the relaxation-time approximation (RTA) to include explicitly
the transitions between quarks and gluons. We considered
inelastic interactions for the quark-antiquark annihilation to
gluon and corresponding pair production. Using the detailed
balance condition as well as conditions of energy-momentum
and current conservation, obtained from the Boltzmann equa-
tions, we demonstrated that there exists only two independent
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relaxation time scales in such an interacting system. Sub-
sequently we derived first-order dissipative hydrodynamic
equations for the evolution of this interacting system and
obtained their corresponding transport coefficients. We found
that the detailed balance condition renders the transport co-
efficients of the plasma insensitive to the newly proposed
transition time scale. However, we showed that the individual
contributions due to quarks, antiquarks, and gluons are depen-
dent on this new time scale.

It is interesting to note that the out-of-equilibrium parts
of the distribution functions, given by Eqs. (54)–(56), also
depend on this new time scale. These contributions are impor-
tant for thermal particle production in the medium. Therefore,
electromagnetic probes such as photons and dileptons, which
are sensitive to the evolution of the QGP, are expected to
be affected by this transition time scale. Looking forward,
it will be interesting to estimate the dependence of these
probes on the transition time scale and this is left for future
works. Moreover, the present method of generalizing the RTA
Boltzmann equation, to explicitly include inelastic collisions,
can be applied to other processes as well. In that sense, we
have presented a powerful framework to model different pro-
cesses within RTA. It will be interesting to consider different
processes and construct a set of RTA Boltzmann equations.
It will also be interesting to extend the current derivation to
momentum-dependent relaxation times and quantum statis-
tics, as well as to obtain causal second-order dissipative
equations. We leave these problems for future work.
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APPENDIX: THERMODYNAMIC INTEGRALS

The thermodynamic integrals Inq, which are frequently
used in this work, can be expressed in terms of well-known
special functions. Since the defining integrals are Lorentz
scalars, they can be computed in the local fluid rest frame
defined by the condition uμ = (1, 0). In this way, we obtain
the following expressions:

I10 = z2T 3

2π2
K2(z), (A1)

I11 = − z3T 3

24π2
[K3(z) − 5K1(z) + 4Ki,1(z)], (A2)

I20 = z2T 4

2π2
[3K2(z) + zK1(z)], (A3)

I21 = − z2T 4

2π2
K2(z), (A4)

I30 = z5T 5

32π2
[K5(z) + K3(z) − 2K1(z)], (A5)

I31 = − z5T 5

96π2
[K5(z) − 3K3(z) + 2K1(z)], (A6)

I32 = z5T 5

480π2
[K5(z) − 7K3(z) + 22K1(z) − 16Ki,1(z)], (A7)

where Kn(z) denotes the modified Bessel functions of the
second kind with the argument z = m/T . Here

Ki,1(z) ≡
∫ ∞

0
dθ sech θ exp(−z cosh θ ) (A8)

= π

2
[1 − zK0(z)L−1(z) − zK1(z)L0(z)] (A9)

is the first-order Bickley-Naylor function with Li being the
modified Struve function.

The small-z expansions of the thermodynamic integrals
that can be applied to Eqs. (74)–(76) are

βI32 ≈ 4T 4

5π2

[
1 − 5z2

24
+ O(z3)

]
, (A10)

I11 ≈ − T 3

3π2

[
1 − 3z2

4
+ O(z3)

]
, (A11)

5

3
− I2

31

I30I32
≈ 25

432
[z4 + O(z5)]. (A12)

In terms of the integrals Inq, one can also express the energy
density, pressure, and particle number density as

ε = (2 gq cosh α + gg)I20, (A13)

P = −(2 gq cosh α + gg)I21, (A14)

n = 2 gq sinh α I10. (A15)

It is important to point out that the above relations for ε, P,
and n are valid because the masses of quarks and gluons are
assumed to be the same. We can further express some other
important thermodynamic integrals as combinations of the
above thermodynamic quantities:

I30 = 3ε + (3 + z2)P

β(2 gq cosh α + gg)
, (A16)

I31 = − (ε + P)

β(2 gq cosh α + gg)
. (A17)

Using these expressions we can write

χα =
(

2 gq cosh α + gg

2 gq

)
(2gq cosh α + gg)n[3ε + (3 + z2)P] − 2 β gq sinh α ε(ε + P)

2βgq sinh2 α ε2 − (2gq cosh α + gg) cosh α[3ε + (3 + z2)P]βP
, (A18)

χβ = β(2 gq cosh α + gg)
sinh α n ε − cosh α(ε + P)βP

2βgq sinh2 α ε2 − (2gq cosh α + gg) cosh α[3ε + (3 + z2)P]βP
. (A19)
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