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1 Department of Physics, Faculty of Engineering,
Kyushu Institute of Technology, Kitakyushu 804-8550, Japan

2 M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30348 Kraków, Poland

? kamada@mns.kyutech.ac.jp

Proceedings for the 24th edition of European Few Body Conference,
Surrey, UK, 2-6 September 2019
doi:10.21468/SciPostPhysProc.3

Abstract

We investigated three-nucleon (3N) force effects in the final state interaction (FSI) con-
figuration of the d(n, nn)p breakup reaction at the incoming nucleon energy En= 200
MeV. Although 3N force effects for the elastic nucleon-deuteron scattering cross section
at comparable energies are located predominantly in the region of intermediate and
backward angles, the corresponding 3N force effects for the integrated FSI configura-
tion breakup cross section are found also at forward scattering angles.
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1 Introduction

Our studies of 3N continuum are based on the exact solutions of the 3N Faddeev equation in
momentum space. They began in the 1980s and in the 1990s were performed with several
realistic two-nucleon (2N) forces: the AV18 [1], CD Bonn [2], NijmI, NijmII, Nijm93 and
Reid93 [3] potentials. The results of these studies (see for example Refs. [4, 5]) proved that
predictions of 3N scattering observables are in good agreement with the data at input nucleon
energies below about 30 MeV. The situation changed at highier energies, where theoretical
predictions using only 2N forces clearly deviated from the data [6, 7]. In particular, strong
discrepancies between such calculations based on 2N potentials and the data were found in
the minimum of the elastic scattering cross section. For energies smaller than approximately
140 MeV the agreement between theoretical predictions and the data for this observable was
regained, when the Tucson–Melbourne (TM) [8] or Urbana IX [9] 3N force (3NF) models
were included in the 3N Hamiltonian [10]. Thus the studies in Ref. [10] provided strong
evidence for the action of 3NF in 3N scattering. However, the description of many polarization
observables and generally the description of the data at still higher energies was not always
satisfactory [5,11].
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At high energies one could expect deficiencies in the nonrelativistic Faddeev approach.
That is why we constructed a relativistic framework in the form of relativistic Faddeev equa-
tions [12–18] according to the Bakamjian-Thomas theory [19]. However, the relativistic ef-
fects turned out to be generally small and insufficient to significantly improve the data descrip-
tion.

Neither TM nor Urbana IX could be considered merely as phenomenological 3NF models,
since they are based on a meson theoretical picture. However, it was pointed out that these 3N
forces were not consistent with the widely used 2N forces. The QCD Lagrangian with massless
quarks possesses chiral symmetry. This chiral symmetry is explicitly broken because of the
quark mass terms. This feature of QCD and the mechanism of spontaneous chiral symmetry
breaking inspired Weinberg to use effective field theory of QCD in the form of chiral pertur-
bation theory as a tool to construct nuclear interactions. This idea was then implemented by
many physicists, who strove for construction of precision 2N and many-nucleon potentials.
We mention here work by van Kolck [20], the early model of the Bochum-Bonn group [22]
and the nuclear forces developed by the Moscow (Idaho)-Salamanca group [21]. In particular
Epelbaum and collaborators for the first time used chiral 2N and 3N forces to study nucleon-
deuteron scattering [23].

Currently the investigations of few- and many-nucleon systems with the new generations of
chiral potentials from the Bochum-Bonn group are carried out within the LENPIC project [24].
More information about this initiative, coordinated by E. Epelbaum and J. Vary, can be found
in the contribution to this conference by J. Golak et al. [25].

In the present contribution we studied in detail one of the most important kinematical
configurations of the nucleon-induced deuteron breakup reaction, namely the final state in-
teraction (FSI) configuration. We considered the case, where two neutrons emerged with the
same momenta, forming quasi dineutron, while the final proton momentum was restricted by
four-momentum conservation. Our purpose was to estimate 3NF effects for this effectively
two-body reaction.

2 Final State Interaction configuration

We investigated 3NF effects in the FSI configuration of the d(n, nn)p breakup reaction. To this
end we obtained solutions of the 3N Faddeev equations [4] with the CDBonn nucleon-nucleon
potential [2] and the Tucson-Melbourne 3NF [8]. From these solutions one can construct not
only the elastic scattering observables but also the observables for the breakup process. In this
contribution we restrict ourselves to an integrated breakup cross section around the final state
interaction condition for the two emerging neutrons:

d2σ

dΩ1dΩ2
≡
∫ S0+∆S

S0−∆S

d3σ

dΩ1dΩ2dS
dS

�

�

�

�

�

Ω1=Ω2

(n+ d → (nn) + p). (1)

Here Ω1 and Ω2 represent the directions of the momenta of the outgoing neutrons 1 and 2,
respectively. Note that for fixed Ω1 and Ω2, the energies of the two neutrons, E1 and E2 lie
on a certain curve, the so-called "kinematical locus". Choosing an appropriate starting point
where by definition S = 0, the S parameter is calculated as a distance taken along the curve
from its starting point:

S =

∫

dS =

∫

Æ

(dE1)2 + (dE2)2 . (2)

This arc-length variable S defines uniquely the three-nucleon kinematics, yielding a specific
(E1, E2) point on the kinematically allowed curve in the (E1, E2) plane. The FSI occurs for the

046.2

https://scipost.org
https://scipost.org/SciPostPhysProc.3.046


SciPost Phys. Proc. 3, 046 (2020)

 0.1

 1

 10

 0  10  20  30  40  50  60  70

dσ
1

Ω
Ω

d
2

d
2

[m
b/

sr
   

]
2

θ [deg]lab

Figure 1: The integrated final state interaction configuration breakup cross section
for the incident neutron laboratory kinetic energy En= 200 MeV. The theoretical pre-
dictions based solely on a 2N interaction (here the the CDBonn potential [2]) are
represented by the dotted line, while the results obtained with the 2N potential aug-
mented by the Tucson-Melbourne 3NF [8] are shown with the solid line.

condition E1 = E2, where S ≡ S0.
Figure 1 shows the breakup cross section of Eq. (1) for the incident neutron laboratory en-

ergy En=200 MeV resulting from integrations over the S variable in the interval S0−∆S, S0+∆S
with the width parameter ∆S= 20 MeV. The angle θlab is the common laboratory scattering
angle of nucleons 1 and 2, for which the FSI condition is realized.

We found a large deviation between the theoretical predictions for the FSI cross section
including or not including 3NF. Although the 3NF effects for the elastic scattering cross section
are located predominantly in the region starting from middle up to backward scattering angles,
the 3NF effects for the integrated FSI configuration breakup cross section are found also at
forward scattering angles.

3 Conclusion

We found a large deviation between the theoretical predictions including or not including
3NF. Although the 3NF effects for the elastic scattering cross section [6, 7, 26, 27] are most
pronounced for the intermediate and backward scattering angles, the 3NF effects for the in-
tegrated FSI configuration breakup cross section are found also at forward scattering angles.
We hope that our results can be in future confronted with experimental data.
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