THE ORIENTATION NUMBER OF THREE COMPLETE GRAPHS WITH LINKAGES

G. RAJASEKARAN ${ }^{1}$, R. SAMPATHKUMAR ${ }^{2}$, §

Abstract

For a graph G, let $\mathscr{D}(G)$ be the set of all strong orientations of G. The orientation number of G is $\vec{d}(G)=\min \{d(D) \mid D \in \mathscr{D}(G)\}$, where $d(D)$ denotes the diameter of the digraph D. In this paper, we consider the problem of determining the orientation number of three complete graphs with linkages.

Keywords: complete graphs, orientation number AMS Subject Classification: 05C20

1. Introduction

Let G be a finite undirected simple graph with vertex set $V(G)$ and edge set $E(G)$. For a graph G and $x \in V(G)$, the degree of x in G is denoted by $d_{G}(x)$, and the maximum degree of G by $\Delta(G)$. For $v \in V(G)$, the eccentricity of v is $e_{G}(v)=\max \left\{d_{G}(v, x) \mid x \in V(G)\right\}$, where $d_{G}(v, x)$ denotes the length of a shortest (v, x)-path in G. The diameter of G is $d(G)=\max \left\{e_{G}(v) \mid v \in V(G)\right\}$.

Let D be a digraph with vertex set $V(D)$ and arc set $A(D)$ which has no loops and no two of its arcs have same tail and same head. The notions $e_{D}(v)$, for $v \in V(D)$, and $d(D)$ are defined as in the undirected graph.
An orientation of a graph G is a digraph D obtained from G by assigning a direction to each of its edge. A vertex v is reachable from a vertex u of a digraph D if there is a directed path in D from u to v. An orientation D of G is strong if any pair of vertices in D are mutually reachable in D. Robbins' one-way street theorem [7] states that a connected graph G has a strong orientation if and only if G is 2 -edge-connected. For a 2-edge-connected graph G, let $\mathscr{D}(G)$ denote the set of all strong orientations of G. The orientation number of G is $\vec{d}(G)=\min \{d(D) \mid D \in \mathscr{D}(G)\}$. Any orientation D in $\mathscr{D}(G)$ with $d(D)=\vec{d}(G)$ is called an optimal orientation of G.

Given r fixed integers $n_{1}, n_{2}, \ldots, n_{r}$ with $n_{r} \geq n_{r-1} \geq \ldots \geq n_{1} \geq 3$ and an integer m with $2 \leq r \leq m \leq \sum_{1 \leq i<j \leq r} n_{i} n_{j}$, the number of edges of the complete multipartite graph $K_{n_{1}, n_{2}, \ldots, n_{r}}$, let $\mathscr{G}\left(n_{1}, n_{2} \ldots, n_{r} ; m\right)$ denote the family of 2-edge connected graphs that are obtained from the disjoint union of r complete graphs $K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{r}}$ by adding

[^0]m edges so that each edge links a vertex of $K_{n_{i}}$ to a vertex of $K_{n_{j}}$ for some i and j with $i \neq j$.

Define $\mathscr{G}_{m}^{r}=\left\{G: G \in \mathscr{G}\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)\right.$, where $n_{1}, n_{2}, \ldots, n_{r}$ are integers with $n_{r} \geq n_{r-1} \geq \cdots \geq n_{1} \geq 3$ and $\left.2 \leq r \leq m \leq \sum_{1 \leq i<j \leq r} n_{i} n_{j}\right\}, \mathscr{D}\left(\mathscr{G}_{m}^{r}\right)=\bigcup_{G \in \mathscr{G}_{m}^{r}} \mathscr{D}(G)$ and the parameter $\vec{d}(r ; m)=\min \left\{\vec{d}(G): G \in \mathscr{G}_{m}^{r}\right\}$. For a family of graphs \mathscr{G}, define $\vec{d}(\mathscr{G})=\min \{\vec{d}(G): G \in \mathscr{G}\}$. Hence, $\vec{d}(r ; m)=\vec{d}\left(\mathscr{G}_{m}^{r}\right)$.

In [3], Koh and Ng considered the following problem: given a family of disjoint graphs, study the orientation number and design a corresponding optimal orientation for a resulting graph obtained by linking the given graphs with a set of additional edges.

For $r=2$, Koh and $\mathrm{Ng}[3]$ proved the following:

- Let G_{1} and G_{2} be two bridgeless graphs of orders n_{1} and n_{2}, respectively, and \mathscr{G}_{2}^{*} be the family of graphs obtained by adding 2 edges to link G_{1} and G_{2}. If $\Delta\left(G_{1}\right)=n_{1}-1$ and $\Delta\left(G_{2}\right)=n_{2}-1$, then $\vec{d}\left(\mathscr{G}_{2}^{*}\right)=4$.
- $\min \{m: \vec{d}(2 ; m)=3\}=4$.
- For $p \geq 5, \vec{d}(\mathscr{G}(p, p ; 2 p))=\vec{d}(\mathscr{G}(p, p+1 ; 2 p))=\vec{d}(\mathscr{G}(p, p+2 ; 2 p+1))=\vec{d}(\mathscr{G}(p, p+3 ; 2 p+2))$ $=2$.

Also, Ng [6] proved the following:

- $\vec{d}(\mathscr{G}(p, p+4 ; 2 p+3))=2$.
- For $q \geq p+5, \vec{d}(\mathscr{G}(p, q ; 2 p+4))=2$.

In this paper, we focus on the orientation number and designing a corresponding optimal orientation for three complete graphs with linkages.

Let D be a digraph. For $x, y \in V(D)$, write $x \rightarrow y$ or $y \leftarrow x$ if (x, y) is an arc in D. More generally, for $X, Y \subseteq V(D)$ with $X \cap Y=\phi$, write, $X \rightarrow Y$ if for every vertex x in X and for every vertex y in Y, we have $x \rightarrow y$. For simplicity, write $x \rightarrow Y$ for $\{x\} \rightarrow Y$ and $X \rightarrow y$ for $X \rightarrow\{y\}$. The converse of D, denoted by \widetilde{D}, is the digraph obtained from D by reversing each arc in D. It is clear that $d(D)=d(\widetilde{D})$. The subdigraph of D induced by $A \subseteq V(D)$ is denoted by $D[A]$.

We refer to [1] for notations and terminology not described here. For results on orientations of graphs, see a survey by Koh and Tay [4]. (Boesch and Tindell [2] and independently Maurer [5] proved that: $\vec{d}\left(K_{n}\right)=2$ if $n \geq 3$ and $n \neq 4$, and $\vec{d}\left(K_{4}\right)=3$. Soltés [8] proved that $\vec{d}\left(K_{p, q}\right)$ is 3 if $2 \leq p \leq q \leq\binom{ p}{\left\lfloor\frac{p}{2}\right\rfloor}$ and it is 4 if $q>\binom{p}{\left\lfloor\frac{p}{2}\right\rfloor}$, where $\lfloor x\rfloor$ denotes the greatest integer not exceeding the real x.)

2. Three complete graphs with Linkages

In this section, we consider the orientation number for three complete graphs with linkages.

Theorem 2.1. Let $i \in\{1,2,3\}$. Let G_{i} be a bridgeless graph of order $n_{i} \geq 3$ and let $\mathscr{G}\left(G_{1}, G_{2}, G_{3} ; 3\right)$ be the family of 2-edge connected graphs obtained by adding 3 edges to link G_{1}, G_{2} and G_{3}. If $\Delta\left(G_{i}\right)=n_{i}-1$, then $\vec{d}\left(\mathscr{G}\left(G_{1}, G_{2}, G_{3} ; 3\right)\right)=6$.

Proof: Let $x_{i} \in V\left(G_{i}\right)$ be a vertex such that $d_{G_{i}}\left(x_{i}\right)=n_{i}-1, A_{i}$ be a maximal independent subset of $G_{i}-x_{i}, G_{i}^{\prime}=G_{i}-\left(A_{i} \cup\left\{x_{i}\right\}\right)$ and $G=G_{1} \cup G_{2} \cup G_{3} \cup\left\{x_{1} x_{2}, x_{2} x_{3}, x_{1} x_{3}\right\}$. Then $G \in \mathscr{G}\left(G_{1}, G_{2}, G_{3} ; 3\right)$. Orient the edges of G as follows:
(i) $x_{1} \rightarrow x_{2} \rightarrow x_{3} \rightarrow x_{1}$;
(ii) $A_{i} \rightarrow x_{i} \rightarrow V\left(G_{i}^{\prime}\right)$;
(iii) $u \rightarrow a$ if $u \in V\left(G_{1}^{\prime}\right), a \in A_{1}$ and $u a \in E\left(G_{1}\right)$;
$v \rightarrow b$ if $v \in V\left(G_{2}^{\prime}\right), b \in A_{2}$ and $v b \in E\left(G_{2}\right)$;
$w \rightarrow c$ if $w \in V\left(G_{3}^{\prime}\right), c \in A_{3}$ and $w c \in E\left(G_{3}\right) ;$
(iv) orient the remaining edges of G arbitrarily.

Let D be the resulting digraph. We claim that $d(D) \leq 6$. By the nature of the orientation, we compute eccentricities only for vertices of G_{1}.

- Clearly, $x_{1} \rightarrow V\left(G_{1}^{\prime}\right), x_{1} \rightarrow x_{2} \rightarrow V\left(G_{2}^{\prime}\right)$, and $x_{1} \rightarrow x_{2} \rightarrow x_{3} \rightarrow V\left(G_{3}^{\prime}\right)$. Let $a \in A_{1}$, $b \in A_{2}, c \in A_{3}$ be arbitrary. As each G_{i} is 2-edge-connected, there exist $u \in V\left(G_{1}^{\prime}\right)$, $v \in V\left(G_{2}^{\prime}\right), w \in V\left(G_{3}^{\prime}\right)$ such that $u a \in E\left(G_{1}\right), v b \in E\left(G_{2}\right), w c \in E\left(G_{3}\right)$. Then $u \rightarrow a$, $v \rightarrow b, w \rightarrow c$. This shows that $e_{D}\left(x_{1}\right) \leq 4$.
- Let $u \in V\left(G_{1}^{\prime}\right)$. By the choice of A_{1}, there exists $a \in A_{1}$ such that $u a \in E\left(G_{1}\right)$. Then $u \rightarrow a$. As $A_{1} \rightarrow x_{1}, u \rightarrow a \rightarrow x_{1}$. This together with $e_{D}\left(x_{1}\right) \leq 4$ implies that $e_{D}(u) \leq 6$.
- Let $a \in A_{1} . A_{1} \rightarrow x_{1}$ and $e_{D}\left(x_{1}\right) \leq 4$ implies that $e_{D}(a) \leq 5$.

Hence, $d(D) \leq 6$, and therefore $\vec{d}(G) \leq 6$. Consequently, $\vec{d}\left(\mathscr{G}\left(G_{1}, G_{2}, G_{3} ; 3\right)\right) \leq 6$.
We next prove $\vec{d}\left(\mathscr{G}\left(G_{1}, G_{2}, G_{3} ; 3\right)\right) \geq 6$ by the method of contradiction. Suppose there exists a graph G_{0} in $\mathscr{G}\left(G_{1}, G_{2}, G_{3} ; 3\right)$ and an orientation D_{0} in $\mathscr{D}\left(G_{0}\right)$ such that $d\left(D_{0}\right) \leq 5$. Since G_{0} is 2-edge connected, the three edges added to $G_{1} \cup G_{2} \cup G_{3}$ to obtain G_{0} must be $x^{\prime} y^{\prime}, y^{\prime \prime} z^{\prime}, z^{\prime \prime} x^{\prime \prime}$ for some $x^{\prime}, x^{\prime \prime} \in V\left(G_{1}\right), y^{\prime}, y^{\prime \prime} \in V\left(G_{2}\right), z^{\prime}, z^{\prime \prime} \in V\left(G_{3}\right)$. As $D_{0} \in$ $\mathscr{D}\left(G_{0}\right)$, in D_{0}, we have either $x^{\prime} \rightarrow y^{\prime}, y^{\prime \prime} \rightarrow z^{\prime}, z^{\prime \prime} \rightarrow x^{\prime \prime}$ or $x^{\prime} \leftarrow y^{\prime}, y^{\prime \prime} \leftarrow z^{\prime}, z^{\prime \prime} \leftarrow x^{\prime \prime}$. By symmetry, assume that $x^{\prime} \rightarrow y^{\prime}, y^{\prime \prime} \rightarrow z^{\prime}, z^{\prime \prime} \rightarrow x^{\prime \prime}$. We consider three cases.
Case 1. Among the three pairs $\left\{x^{\prime}, x^{\prime \prime}\right\},\left\{y^{\prime}, y^{\prime \prime}\right\},\left\{z^{\prime}, z^{\prime \prime}\right\}$, at least two satisfy $x^{\prime}=x^{\prime \prime}$, $y^{\prime}=y^{\prime \prime}, z^{\prime}=z^{\prime \prime}$, respectively.

Assume, by symmetry, that $x^{\prime}=x^{\prime \prime}$ and $z^{\prime}=z^{\prime \prime}$.
If there exists $x_{0} \in V\left(G_{1}\right) \backslash\left\{x^{\prime}\right\}$ such that $x^{\prime} \rightarrow x_{0}$, then $y^{\prime}=y^{\prime \prime}$. (Otherwise, $y^{\prime} \neq y^{\prime \prime}$, and there is no directed path from x_{0} to any vertex of $V\left(G_{3}\right) \backslash\left\{z^{\prime}\right\}$, a contradiction.) For any $z_{0} \in V\left(G_{3}\right) \backslash\left\{z^{\prime}\right\}$, since $d_{D_{0}}\left(x_{0}, z_{0}\right) \leq 5$, we have $x_{0} \rightarrow x_{0}^{\prime} \rightarrow x^{\prime} \rightarrow y^{\prime} \rightarrow z^{\prime} \rightarrow z_{0}$ for some $x_{0}^{\prime} \in V\left(G_{1}\right) \backslash\left\{x^{\prime}, x_{0}\right\}$. Hence, $z^{\prime} \rightarrow\left(V\left(G_{3}\right) \backslash\left\{z^{\prime}\right\}\right)$. Consequently, there is no directed path from any vertex of $V\left(G_{3}\right) \backslash\left\{z^{\prime}\right\}$ to z^{\prime}, a contradiction.

This contradiction shows that for any $x_{0} \in V\left(G_{1}\right) \backslash\left\{x^{\prime}\right\}$, we have $x^{\prime} \leftarrow x_{0}$. Hence, $\left(V\left(G_{1}\right) \backslash\left\{x^{\prime}\right\}\right) \rightarrow x^{\prime}$. Then, there is no directed path from x^{\prime} to any vertex of $V\left(G_{1}\right) \backslash\left\{x^{\prime}\right\}$, once again a contradiction.
Case 2. Among the three pairs $\left\{x^{\prime}, x^{\prime \prime}\right\},\left\{y^{\prime}, y^{\prime \prime}\right\},\left\{z^{\prime}, z^{\prime \prime}\right\}$, exactly one satisfy $x^{\prime}=x^{\prime \prime}$, $y^{\prime}=y^{\prime \prime}, z^{\prime}=z^{\prime \prime}$, respectively.

Assume, by symmetry, that $x^{\prime}=x^{\prime \prime}$.
If $x_{0} \in V\left(G_{1}\right) \backslash\left\{x^{\prime}\right\}$ and $z_{0} \in V\left(G_{3}\right) \backslash\left\{z^{\prime}, z^{\prime \prime}\right\}$, then since $d_{D_{0}}\left(x_{0}, z_{0}\right) \leq 5, x_{0} \rightarrow$ $x^{\prime} \rightarrow y^{\prime} \rightarrow y^{\prime \prime} \rightarrow z^{\prime} \rightarrow z_{0}$. Hence, $\left(V\left(G_{1}\right) \backslash\left\{x^{\prime}\right\}\right) \rightarrow x^{\prime}$ and $z^{\prime} \rightarrow\left(V\left(G_{3}\right) \backslash\left\{z^{\prime}, z^{\prime \prime}\right\}\right)$. Then, there is no directed path from x^{\prime} to any vertex in $V\left(G_{1}\right) \backslash\left\{x^{\prime}\right\}$, a contradiction.
Case 3. $x^{\prime} \neq x^{\prime \prime}, y^{\prime} \neq y^{\prime \prime}, z^{\prime} \neq z^{\prime \prime}$.
If $x_{0} \in V\left(G_{1}\right) \backslash\left\{x^{\prime}, x^{\prime \prime}\right\}$ and $z_{0} \in V\left(G_{3}\right) \backslash\left\{z^{\prime}, z^{\prime \prime}\right\}$, then since $d_{D_{0}}\left(x_{0}, z_{0}\right) \leq 5, x_{0} \rightarrow$ $x^{\prime} \rightarrow y^{\prime} \rightarrow y^{\prime \prime} \rightarrow z^{\prime} \rightarrow z_{0}$. Hence, $\left(V\left(G_{1}\right) \backslash\left\{x^{\prime}, x^{\prime \prime}\right\}\right) \rightarrow x^{\prime}$ and $z^{\prime} \rightarrow\left(V\left(G_{3}\right) \backslash\left\{z^{\prime}, z^{\prime \prime}\right\}\right)$. $d_{D_{0}}\left(z^{\prime}, y^{\prime \prime}\right) \leq 5$ implies that $z^{\prime} \rightarrow z^{\prime \prime} \rightarrow x^{\prime \prime} \rightarrow x^{\prime} \rightarrow y^{\prime} \rightarrow y^{\prime \prime}$. Now $d_{D_{0}}\left(z_{0}, z^{\prime}\right) \geq 6$, a contradiction. This contradiction shows that for any $x_{0} \in V\left(G_{1}\right) \backslash\left\{x^{\prime}\right\}$, we have $x^{\prime} \leftarrow x_{0}$. Hence, $\left(V\left(G_{1}\right) \backslash\left\{x^{\prime}\right\}\right) \rightarrow x^{\prime}$. Then, there is no directed path from x^{\prime} to any vertex of $V\left(G_{1}\right) \backslash\left\{x^{\prime}\right\}$, once again a contradiction.

This completes the proof.

Theorem 2.2. Let $i \in\{1,2,3\}$. Let G_{i} be a bridgeless graph of order $n_{i} \geq 3$ and let $\mathscr{G}\left(G_{1}, G_{2}, G_{3} ; 4\right)$ be the family of 2-edge connected graphs obtained by adding 4 edges to link G_{1}, G_{2} and G_{3}. If $K_{1,1, n_{i}-2} \subseteq G_{i}$, then $\vec{d}\left(\mathscr{G}\left(G_{1}, G_{2}, G_{3} ; 4\right)\right)=4$.

Proof: Let $V\left(G_{i}\right)=\left\{x_{j}^{i} \mid j=1,2, \ldots, n_{i}\right\}, V_{i}=\left\{x_{j}^{i} \mid j=3,4, \ldots, n_{i}\right\}, d_{G_{i}}\left(x_{1}^{i}\right)$
$=d_{G_{i}}\left(x_{2}^{i}\right)=n_{i}-1$, and $G=G_{1} \cup G_{2} \cup G_{3} \cup\left\{x_{1}^{1} x_{1}^{2}, x_{2}^{1} x_{1}^{2}, x_{1}^{2} x_{1}^{3}, x_{1}^{2} x_{2}^{3}\right\}$. Then $G \in$ $\mathscr{G}\left(G_{1}, G_{2}, G_{3} ; 4\right)$. Orient the edges of G as follows:
(i) $\left\{x_{1}^{1}, x_{1}^{3}\right\} \rightarrow x_{1}^{2} \rightarrow\left\{x_{2}^{1}, x_{2}^{3}\right\}$;
(ii) $x_{2}^{1} \rightarrow\left\{x_{1}^{1}\right\} \cup V_{1}, V_{1} \rightarrow x_{1}^{1}, x_{1}^{2} \rightarrow x_{2}^{2} \rightarrow V_{2} \rightarrow x_{1}^{2},\left\{x_{2}^{3}\right\} \cup V_{3} \rightarrow x_{1}^{3}, x_{2}^{3} \rightarrow V_{3}$;
(iii) orient the remaining edges of G arbitrarily.

Let D be the resulting digraph. We claim that $d(D) \leq 4$.
The existence of the paths from: $x_{1}^{2} \rightarrow x_{2}^{2} \rightarrow V_{2}, x_{1}^{2} \rightarrow x_{2}^{1} \rightarrow V_{1} \cup\left\{x_{1}^{1}\right\}$, and $x_{1}^{2} \rightarrow x_{2}^{3} \rightarrow V_{3} \cup\left\{x_{1}^{3}\right\}$ shows that $e_{D}\left(x_{1}^{2}\right) \leq 2$. This together with: $x_{2}^{1} \rightarrow x_{1}^{1} \rightarrow x_{1}^{2}$ imply that $e_{D}\left(x_{1}^{1}\right) \leq 3$ and $e_{D}\left(x_{2}^{1}\right) \leq 4 ; x_{2}^{2} \rightarrow x_{3}^{2} \rightarrow x_{1}^{2}$ imply that $e_{D}\left(x_{2}^{2}\right) \leq 4$; for any $x_{i}^{2} \in V_{2}, x_{i}^{2} \rightarrow x_{1}^{2}$ imply that $e_{D}\left(x_{i}^{2}\right) \leq 3$. For any $x_{i}^{1} \in V_{1}, x_{i}^{1} \rightarrow x_{1}^{1}$ and $e_{D}\left(x_{1}^{1}\right) \leq 3$ implies that $e_{D}\left(x_{i}^{1}\right) \leq 4$. By the nature of the orientation, the bounds for the eccentricities of the vertices $x_{1}^{3}, x_{2}^{3}, x_{i}^{3}$, where $x_{i}^{3} \in V_{3}$, are equal to the bounds of the eccentricities of the vertices $x_{1}^{1}, x_{2}^{1}, x_{i}^{1}$, where $x_{i}^{1} \in V_{1}$.

This shows that $d(D) \leq 4$, and hence $\vec{d}(G) \leq 4$. Consequently, $\vec{d}\left(\mathscr{G}\left(G_{1}, G_{2}, G_{3} ; 4\right)\right) \leq$ 4.

We next prove $\vec{d}\left(\mathscr{G}\left(G_{1}, G_{2}, G_{3} ; 4\right)\right) \geq 4$ by the method of contradiction. Suppose there is a G_{0} in $\mathscr{G}\left(G_{1}, G_{2}, G_{3} ; 4\right)$ and an orientation D_{0} of G_{0} such that $d\left(D_{0}\right) \leq 3$. We consider two cases.
Case 1. There is no edge with one end in G_{r} and other end in G_{s} for some $r, s \in\{1,2,3\}$ with $r \neq s$.

Since G_{0} is 2-edge-connected, assume that the linked edges added to be $x_{r_{1}}^{1} x_{r_{1}}^{2}, x_{r_{2}}^{1} x_{r_{2}}^{2}$, $x_{r_{3}}^{2} x_{r_{1}}^{3}$ and $x_{r_{4}}^{2} x_{r_{2}}^{3}$. As $D_{0} \in \mathscr{D}\left(G_{0}\right)$, without loss of generality, assume that, in D_{0}, we have $x_{r_{1}}^{1} \rightarrow x_{r_{1}}^{2}, x_{r_{2}}^{2} \rightarrow x_{r_{2}}^{1}, x_{r_{3}}^{2} \rightarrow x_{r_{1}}^{3}, x_{r_{2}}^{3} \rightarrow x_{r_{4}}^{2}$. Then, for any $x_{p}^{1} \in V\left(G_{1}\right) \backslash\left\{x_{r_{1}}^{1}\right\}$ and for any $x_{q}^{3} \in V\left(G_{3}\right) \backslash\left\{x_{r_{1}}^{3}\right\}, d_{D_{0}}\left(x_{p}^{1}, x_{q}^{3}\right) \geq 4$, a contradiction.
Case 2. For every $r, s \in\{1,2,3\}$ with $r \neq s$, there exists at least one edge with one end in G_{r} and other end in G_{s}.

Since G_{0} is 2-edge-connected, assume that the linked edges added to be $x_{r_{1}}^{1} x_{r_{1}}^{2}, x_{r_{2}}^{2} x_{r_{1}}^{3}$, $x_{r_{2}}^{1} x_{r_{2}}^{3}$ and $x_{r_{3}}^{1} x_{r_{3}}^{3}$. As $D_{0} \in \mathscr{D}\left(G_{0}\right)$, without loss of generality, assume that, in D_{0}, we have $x_{r_{1}}^{1} \rightarrow x_{r_{1}}^{2}, x_{r_{2}}^{2} \rightarrow x_{r_{1}}^{3}, x_{r_{2}}^{3} \rightarrow x_{r_{2}}^{1}$ and either $x_{r_{3}}^{1} \rightarrow x_{r_{3}}^{3}$ or $x_{r_{3}}^{3} \rightarrow x_{r_{3}}^{1}$. Then, for any $x_{p}^{3} \in V\left(G_{3}\right) \backslash\left\{x_{r_{2}}^{3}, x_{r_{3}}^{3}\right\}$ and for any $x_{q}^{2} \in V\left(G_{2}\right) \backslash\left\{x_{r_{1}}^{2}\right\}, d_{D_{0}}\left(x_{p}^{3}, x_{q}^{2}\right) \geq 4$, a contradiction.

This completes the proof.
Recall that: $\mathscr{G}_{m}^{3}=\left\{G: G \in \mathscr{G}\left(n_{1}, n_{2}, n_{3} ; m\right)\right.$, where n_{1}, n_{2}, n_{3} are integers with $n_{3} \geq$ $n_{2} \geq n_{1} \geq 3$ and $\left.3 \leq m \leq n_{1} n_{2}+n_{1} n_{3}+n_{2} n_{3}\right\}$. Set $\mathscr{G}_{m}^{3^{*}}=\left\{G: G \in \mathscr{G}\left(n_{1}, n_{2}, n_{3} ; m\right)\right.$, where n_{1}, n_{2}, n_{3} are integers with $n_{3} \geq n_{2} \geq n_{1} \geq 3,3 \leq m \leq n_{1} n_{2}+n_{1} n_{3}+n_{2} n_{3}$, $n_{1} \neq 4, n_{2} \neq 4$ and $\left.n_{3} \neq 4\right\}$.

Theorem 2.3. $\vec{d}\left(\mathscr{G}_{9}^{3^{*}}\right) \leq 3$.

Proof: Let $V\left(K_{n_{1}}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n_{1}}\right\}, V\left(K_{n_{2}}\right)=\left\{y_{1}, y_{2}, \ldots, y_{n_{2}}\right\}, V\left(K_{n_{3}}\right)=\left\{z_{1}, z_{2}\right.$, $\left.\ldots, z_{n_{3}}\right\} ; V_{1}=\left\{x_{3}, x_{4}, \ldots, x_{n_{1}}\right\}, V_{2}=\left\{y_{3}, y_{4}, \ldots, y_{n_{2}}\right\}, V_{3}=\left\{z_{3}, z_{4}, \ldots, z_{n_{3}}\right\} ; G_{1}, G_{2}$ and G_{3} be the complete subgraphs of $K_{n_{1}}, K_{n_{2}}$ and $K_{n_{3}}$ induced by the sets V_{1}, V_{2} and V_{3}, respectively; and $G=K_{n_{1}} \cup K_{n_{2}} \cup K_{n_{3}} \cup\left\{x_{1} y_{2}, x_{1} z_{2}, x_{2} y_{1}, x_{2} z_{1}, x_{2} y_{2}, x_{2} z_{2}, y_{1} z_{2}, y_{2} z_{1}, y_{2} z_{2}\right\}$. Then $G \in \mathscr{G}_{9}^{3^{*}}$. Orient the edges of G as follows:
(i) $x_{1} \rightarrow V_{1} \rightarrow x_{2}, x_{1} \rightarrow x_{2} \rightarrow\left\{y_{1}, y_{2}, z_{1}\right\}$;
(ii) $y_{1} \rightarrow V_{2} \rightarrow y_{2}, y_{1} \rightarrow y_{2} \rightarrow\left\{z_{1}, z_{2}, x_{1}\right\}$;
(iii) $z_{1} \rightarrow V_{3} \rightarrow z_{2}, z_{1} \rightarrow z_{2} \rightarrow\left\{x_{1}, x_{2}, y_{1}\right\}$; and
(iv) orient the edges of G_{1}, G_{2} and G_{3} such that $\vec{d}\left(G_{1}\right) \leq 3, \vec{d}\left(G_{2}\right) \leq 3$ and $\vec{d}\left(G_{3}\right) \leq 3$.

Let D be the resulting digraph. We claim that $d(D) \leq 3$. By the nature of the orientation, we compute eccentricity only for the vertices of $K_{n_{1}}$. The existence of the paths from: $x_{1} \rightarrow V_{1}, x_{1} \rightarrow x_{2} \rightarrow y_{2}, x_{1} \rightarrow x_{2} \rightarrow y_{1} \rightarrow V_{2}, x_{1} \rightarrow x_{2} \rightarrow z_{1} \rightarrow\left\{z_{2}\right\} \cup V_{3}$, in D, shows that $e_{D}\left(x_{1}\right) \leq 3 ; x_{2} \rightarrow y_{2} \rightarrow x_{1} \rightarrow V_{1}, x_{2} \rightarrow y_{1} \rightarrow V_{2}, x_{2} \rightarrow z_{1} \rightarrow\left\{z_{2}\right\} \cup V_{3}$, in D, shows that $e_{D}\left(x_{2}\right) \leq 3 ; V_{1} \rightarrow x_{2} \rightarrow y_{2} \rightarrow\left\{x_{1}, z_{2}\right\}, V_{1} \rightarrow x_{2} \rightarrow y_{1} \rightarrow V_{2}$, $V_{1} \rightarrow x_{2} \rightarrow z_{1} \rightarrow V_{3}$, in D, and $\vec{d}\left(G_{1}\right) \leq 3$, shows that for every $x_{i} \in V_{1}, e_{D}\left(x_{i}\right) \leq 3$. Thus $d(D) \leq 3$, and hence $\vec{d}(G) \leq 3$. Consequently, $\vec{d}\left(\mathscr{G}_{9}^{3^{*}}\right) \leq 3$.

Theorem 2.4. $\vec{d}(\mathscr{G}(4,4,4 ; 12)) \leq 3$.
Proof: Let $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\},\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\},\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ be the vertex sets of three disjoint copies of K_{4} and from $3 K_{4}$ obtain G by adding the 12 edges: $x_{1} y_{1}, y_{1} z_{1}, z_{1} x_{1}, x_{1} y_{4}$, $x_{1} z_{4}, y_{1} x_{4}, y_{1} z_{4}, z_{1} x_{4}, z_{1} y_{4}, x_{4} y_{3}, y_{4} z_{3}, z_{4} x_{3}$. Then $G \in \mathscr{G}(4,4,4 ; 12)$. Orient the edges of G as follows:
$x_{4} \rightarrow\left\{x_{1}, x_{2}, x_{3}\right\}, x_{3} \rightarrow\left\{x_{1}, x_{2}\right\}, x_{2} \rightarrow x_{1}$,
$y_{4} \rightarrow\left\{y_{1}, y_{2}, y_{3}\right\}, y_{3} \rightarrow\left\{y_{1}, y_{2}\right\}, y_{2} \rightarrow y_{1}$,
$z_{4} \rightarrow\left\{z_{1}, z_{2}, z_{3}\right\}, z_{3} \rightarrow\left\{z_{1}, z_{2}\right\}, z_{2} \rightarrow z_{1}$,
$x_{1} \rightarrow\left\{y_{1}, y_{4}, z_{4}\right\}, y_{1} \rightarrow\left\{z_{1}, z_{4}, x_{4}\right\}, z_{1} \rightarrow\left\{x_{1}, x_{4}, y_{4}\right\}$,
$x_{4} \rightarrow y_{3}, y_{4} \rightarrow z_{3}$, and $z_{4} \rightarrow x_{3}$.
Let D be the resulting digraph. Direct verification shows that $d(D)=3$.
This completes the proof.
Theorem 2.5. Let $n_{3} \geq 5$ or $n_{3}=3$. Then $\vec{d}\left(\mathscr{G}\left(4,4, n_{3} ; 11\right)\right) \leq 3$.
Proof: Let $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\},\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ and $\left\{z_{1}, z_{2}, \ldots, z_{n_{3}}\right\}$ be, respectively, the vertex sets of two disjoint copies of K_{4} and $K_{n_{3}}$; let $V^{\prime}=V\left(K_{n_{3}}\right) \backslash\left\{z_{1}, z_{2}\right\}$; and let $G=K_{4}$ $\cup K_{4} \cup K_{n_{3}} \cup\left\{x_{1} y_{1}, x_{1} y_{4}, x_{1} z_{1}, x_{1} z_{2}, x_{3} z_{2}, x_{4} y_{1}, x_{4} y_{3}, x_{4} z_{1}, y_{1} z_{1}, y_{1} z_{2}, y_{4} z_{1}\right\}$. Then $G \in$ $\mathscr{G}\left(4,4, n_{3} ; 11\right)$. Orient the edges of G as follows:
(i) $x_{1} \rightarrow\left\{y_{1}, y_{4}, z_{2}\right\}, y_{1} \rightarrow\left\{z_{1}, z_{2}, x_{4}\right\}, z_{1} \rightarrow\left\{x_{1}, x_{4}, y_{4}\right\}, x_{4} \rightarrow y_{3}, z_{2} \rightarrow x_{3}$;
(ii) $x_{4} \rightarrow\left\{x_{3}, x_{2}, x_{1}\right\},\left\{x_{3}, x_{2}\right\} \rightarrow x_{1}, x_{3} \rightarrow x_{2}$;
(iii) $y_{4} \rightarrow\left\{y_{3}, y_{2}, y_{1}\right\},\left\{y_{3}, y_{2}\right\} \rightarrow y_{1}, y_{3} \rightarrow y_{2}$;
(iv) $z_{2} \rightarrow z_{1}, z_{2} \rightarrow V^{\prime} \rightarrow z_{1}$; and
(v) orient the edges of $G\left[V^{\prime}\right]$ such that $\vec{d}\left(G\left[V^{\prime}\right]\right) \leq 3$.
Let D be the resulting digraph. We claim that $d(D) \leq 3$. We show this by computing upper bounds for eccentricities of the vertices.

Let $z_{i} \in V^{\prime}$ be arbitrary. In D, the existence of the paths from: $x_{1} \rightarrow y_{4} \rightarrow\left\{y_{2}, y_{3}\right\}$, $x_{1} \rightarrow z_{2} \rightarrow\left\{z_{1}, z_{i}\right\}$, and $x_{1} \rightarrow y_{1} \rightarrow x_{4} \rightarrow\left\{x_{2}, x_{3}\right\}$ shows that $e_{D}\left(x_{1}\right) \leq 3 ; x_{2} \rightarrow$ $x_{1} \rightarrow z_{2} \rightarrow\left\{x_{3}, z_{i}\right\}, x_{2} \rightarrow x_{1} \rightarrow y_{1} \rightarrow\left\{z_{1}, x_{4}\right\}$, and $x_{2} \rightarrow x_{1} \rightarrow y_{4} \rightarrow\left\{y_{2}, y_{3}\right\}$ shows that $e_{D}\left(x_{2}\right) \leq 3 ; x_{3} \rightarrow x_{2}, x_{3} \rightarrow x_{1} \rightarrow y_{1} \rightarrow x_{4}, x_{3} \rightarrow x_{1} \rightarrow y_{4} \rightarrow\left\{y_{2}, y_{3}\right\}$, and $x_{3} \rightarrow x_{1} \rightarrow z_{2} \rightarrow\left\{z_{1}, z_{i}\right\}$ shows that $e_{D}\left(x_{3}\right) \leq 3 ; x_{4} \rightarrow\left\{x_{2}, x_{3}\right\}, x_{4} \rightarrow x_{1} \rightarrow y_{1}$, $x_{4} \rightarrow x_{1} \rightarrow y_{4} \rightarrow\left\{y_{2}, y_{3}\right\}$, and $x_{4} \rightarrow x_{1} \rightarrow z_{2} \rightarrow\left\{z_{1}, z_{i}\right\}$ shows that $e_{D}\left(x_{4}\right) \leq 3 ;$ $y_{1} \rightarrow x_{4} \rightarrow\left\{x_{1}, x_{2}, x_{3}\right\}, y_{1} \rightarrow z_{1} \rightarrow y_{4} \rightarrow\left\{y_{2}, y_{3}\right\}$, and $y_{1} \rightarrow z_{2} \rightarrow z_{i}$ shows that $e_{D}\left(y_{1}\right) \leq 3 ; y_{2} \rightarrow y_{1} \rightarrow x_{4} \rightarrow\left\{x_{1}, x_{2}, x_{3}, y_{3}\right\}, y_{2} \rightarrow y_{1} \rightarrow z_{1} \rightarrow y_{4}$, and $y_{2} \rightarrow y_{1} \rightarrow z_{2} \rightarrow z_{i}$ shows that $e_{D}\left(y_{2}\right) \leq 3 ; y_{3} \rightarrow y_{2}, y_{3} \rightarrow y_{1} \rightarrow z_{1} \rightarrow y_{4}$, $y_{3} \rightarrow y_{1} \rightarrow x_{4} \rightarrow\left\{x_{1}, x_{2}, x_{3}\right\}$, and $y_{3} \rightarrow y_{1} \rightarrow z_{2} \rightarrow z_{i}$ shows that $e_{D}\left(y_{3}\right) \leq 3 ;$ $y_{4} \rightarrow y_{2}, y_{4} \rightarrow y_{1} \rightarrow z_{1}, y_{4} \rightarrow y_{1} \rightarrow x_{4} \rightarrow\left\{x_{1}, x_{2}, x_{3}, y_{3}\right\}$, and $y_{4} \rightarrow y_{1} \rightarrow z_{2} \rightarrow z_{i}$ shows that $e_{D}\left(y_{4}\right) \leq 3 ; z_{1} \rightarrow x_{4} \rightarrow\left\{x_{1}, x_{2}, x_{3}\right\}, z_{1} \rightarrow y_{4} \rightarrow\left\{y_{1}, y_{2}, y_{3}\right\}$, and $z_{1} \rightarrow$ $x_{1} \rightarrow z_{2} \rightarrow z_{i}$ shows that $e_{D}\left(z_{1}\right) \leq 3 ; z_{2} \rightarrow z_{i}, z_{2} \rightarrow z_{1} \rightarrow x_{4} \rightarrow\left\{x_{1}, x_{2}, x_{3}\right\}$, and $z_{2} \rightarrow z_{1} \rightarrow y_{4} \rightarrow\left\{y_{1}, y_{2}, y_{3}\right\}$ shows that $e_{D}\left(z_{2}\right) \leq 3 ; z_{i} \rightarrow z_{1} \rightarrow x_{4} \rightarrow\left\{x_{1}, x_{2}, x_{3}\right\}$, $z_{i} \rightarrow z_{1} \rightarrow y_{4} \rightarrow\left\{y_{1}, y_{2}, y_{3}\right\}$, and $z_{i} \rightarrow z_{1} \rightarrow x_{1} \rightarrow z_{2}$ together with $\vec{d}\left(G\left[V^{\prime}\right]\right) \leq 3$
shows that $e_{D}\left(z_{i}\right) \leq 3$.
This completes the proof.
Theorem 2.6. Let $n_{2} \geq 5$ or $n_{2}=3$, and let $n_{3} \geq 5$ or $n_{3}=3$. Then $\vec{d}\left(\mathscr{G}\left(4, n_{2}, n_{3} ; 10\right) \leq\right.$ 3.

Proof: Let $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\},\left\{y_{1}, y_{2}, \ldots, y_{n_{2}}\right\}$, and $\left\{z_{1}, z_{2}, \ldots, z_{n_{3}}\right\}$ be, respectively, the vertex sets of $K_{4}, K_{n_{2}}$ and $K_{n_{3}}$; let $V^{\prime}=V\left(K_{n_{2}}\right) \backslash\left\{y_{1}, y_{2}\right\}$ and $V^{\prime \prime}=V\left(K_{n_{3}}\right) \backslash\left\{z_{1}, z_{2}\right\}$; and let $G=K_{4} \cup K_{n_{2}} \cup K_{n_{3}} \cup\left\{x_{1} y_{1}, x_{1} y_{2}, x_{4} y_{1}, x_{1} z_{1}, x_{1} z_{2}, x_{4} z_{1}, y_{1} z_{1}, y_{1} z_{2}, y_{2} z_{1}, x_{3} z_{2}\right\}$. Then $G \in \mathscr{G}\left(4, n_{2}, n_{3} ; 10\right)$. Orient the edges of G as follows:
(i) $x_{1} \rightarrow\left\{y_{1}, y_{2}, z_{2}\right\}, y_{1} \rightarrow\left\{z_{1}, z_{2}, x_{4}\right\}, z_{1} \rightarrow\left\{x_{1}, x_{4}, y_{2}\right\}, z_{2} \rightarrow x_{3}$;
(ii) $x_{4} \rightarrow\left\{x_{3}, x_{2}, x_{1}\right\}, x_{3} \rightarrow\left\{x_{2}, x_{1}\right\}, x_{2} \rightarrow x_{1}$;
(iii) $y_{2} \rightarrow y_{1}, y_{2} \rightarrow V^{\prime} \rightarrow y_{1}, z_{2} \rightarrow z_{1}, z_{2} \rightarrow V^{\prime \prime} \rightarrow z_{1}$; and
(iv) orient the edges of $G\left[V^{\prime}\right]$ and that of $G\left[V^{\prime \prime}\right]$ such that $\vec{d}\left(G\left[V^{\prime}\right]\right) \leq 3$ and $\vec{d}\left(G\left[V^{\prime \prime}\right]\right) \leq 3$.

Let D be the resulting digraph. We claim that $d(D) \leq 3$. We show this by computing upper bounds for eccentricities of the vertices.

Let $y_{i} \in V^{\prime}$ and $z_{j} \in V^{\prime \prime}$ are arbitrary. In D, the existence of the paths from: $x_{1} \rightarrow y_{1} \rightarrow x_{4} \rightarrow\left\{x_{2}, x_{3}\right\}, x_{1} \rightarrow y_{2} \rightarrow y_{i}$, and $x_{1} \rightarrow z_{2} \rightarrow\left\{z_{1}, z_{j}\right\}$ shows that $e_{D}\left(x_{1}\right) \leq 3 ; x_{2} \rightarrow x_{1} \rightarrow y_{1} \rightarrow x_{4}, x_{2} \rightarrow x_{1} \rightarrow y_{2} \rightarrow y_{i}$, and $x_{2} \rightarrow x_{1} \rightarrow$ $z_{2} \rightarrow\left\{x_{3}, z_{1}, z_{j}\right\}$ shows that $e_{D}\left(x_{2}\right) \leq 3 ; x_{3} \rightarrow x_{2}, x_{3} \rightarrow x_{1} \rightarrow y_{1} \rightarrow\left\{z_{1}, x_{4}\right\}$, $x_{3} \rightarrow x_{1} \rightarrow y_{2} \rightarrow y_{i}$, and $x_{3} \rightarrow x_{1} \rightarrow z_{2} \rightarrow z_{j}$ shows that $e_{D}\left(x_{3}\right) \leq 3 ; x_{4} \rightarrow\left\{x_{2}, x_{3}\right\}$, $x_{4} \rightarrow x_{1} \rightarrow y_{1} \rightarrow z_{1}, x_{4} \rightarrow x_{1} \rightarrow y_{2} \rightarrow y_{i}$, and $x_{4} \rightarrow x_{1} \rightarrow z_{2} \rightarrow z_{j}$ shows that $e_{D}\left(x_{4}\right) \leq 3 ; y_{1} \rightarrow x_{4} \rightarrow\left\{x_{1}, x_{2}, x_{3}\right\}, y_{1} \rightarrow z_{1} \rightarrow y_{2} \rightarrow y_{i}$, and $y_{1} \rightarrow z_{2} \rightarrow z_{j}$ shows that $e_{D}\left(y_{1}\right) \leq 3 ; y_{2} \rightarrow y_{i}, y_{2} \rightarrow y_{1} \rightarrow x_{4} \rightarrow\left\{x_{1}, x_{2}, x_{3}\right\}, y_{2} \rightarrow y_{1} \rightarrow z_{1}$, and $y_{2} \rightarrow y_{1} \rightarrow z_{2} \rightarrow z_{j}$ shows that $e_{D}\left(y_{2}\right) \leq 3 ; y_{i} \rightarrow y_{1} \rightarrow x_{4} \rightarrow\left\{x_{1}, x_{2}, x_{3}\right\}, y_{i} \rightarrow y_{1} \rightarrow$ $z_{2} \rightarrow z_{j}$ and $y_{i} \rightarrow y_{1} \rightarrow z_{1} \rightarrow y_{2}$, together with $\vec{d}\left(G\left[V^{\prime}\right]\right) \leq 3$ shows that $e_{D}\left(y_{i}\right) \leq 3$; $z_{1} \rightarrow x_{4} \rightarrow\left\{x_{1}, x_{2}, x_{3}\right\}, z_{1} \rightarrow y_{2} \rightarrow\left\{y_{1}, y_{i}\right\}$, and $z_{1} \rightarrow x_{1} \rightarrow z_{2} \rightarrow z_{j}$ shows that $e_{D}\left(z_{1}\right) \leq 3 ; z_{2} \rightarrow z_{j}, z_{2} \rightarrow z_{1} \rightarrow x_{4} \rightarrow\left\{x_{1}, x_{2}, x_{3}\right\}$, and $z_{2} \rightarrow z_{1} \rightarrow y_{2} \rightarrow\left\{y_{1}, y_{i}\right\}$ shows that $e_{D}\left(z_{2}\right) \leq 3 ; z_{j} \rightarrow z_{1} \rightarrow x_{4} \rightarrow\left\{x_{2}, x_{3}\right\}, z_{j} \rightarrow z_{1} \rightarrow y_{2} \rightarrow\left\{y_{1}, y_{i}\right\}$, and $z_{j} \rightarrow z_{1} \rightarrow x_{1} \rightarrow z_{2}$, together with $\vec{d}\left(G\left[V^{\prime \prime}\right]\right) \leq 3$ shows that $e_{D}\left(z_{j}\right) \leq 3$.

This completes the proof.

Corollary 2.1.

(i) $\min \{m: \vec{d}(3 ; m)=6\}=3$.
(ii) $\min \{m: \vec{d}(3 ; m)=4\}=4$.
(iii) $\min \left\{m: \vec{d}\left(\mathscr{G}_{m}^{3^{*}}\right)=3\right\} \leq 9$.
(iv) $\min \{m: \vec{d}(\mathscr{G}(4,4,4 ; m)) \leq 3\} \leq 12$.
(v) Let $n_{3} \in\{3,5,6,7, \ldots\} . \min \left\{m: \vec{d}\left(\mathscr{G}\left(4,4, n_{3} ; m\right)\right) \leq 3\right\} \leq 11$.
(vi) Let $n_{2}, n_{3} \in\{3,5,6,7, \ldots\} . \min \left\{m: \vec{d}\left(\mathscr{G}\left(4, n_{2}, n_{3} ; m\right)\right) \leq 3\right\} \leq 10$.
(vii) $\min \{m: \vec{d}(3 ; m)=3\} \leq 12$.

Proof: Proofs of (i), (ii), (iii), (iv), (v), and (vi) follows by Theorems 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6. Proof of (vii) follows from (iii), (iv), (v) and (vi).

Problem 2.1. Find $\min \{m: \vec{d}(3 ; m)=3\}$.
Theorem 2.7. For $n \geq 5$ or $n=3$, there exists a graph G in $\mathscr{G}(n, n, n ; 6 n)$ with $\vec{d}(G)=2$.

Proof: Let m be odd and let $V=\left\{v_{0}, v_{1}, \ldots, v_{m-1}\right\}$ be the vertex set of the complete graph K_{m}. Orient the edges of K_{m} as follows:
(i) $\left\{v_{2}, v_{4}, v_{6}, \ldots, v_{m-1}\right\} \rightarrow v_{0} \rightarrow\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{m-2}\right\}$;
(ii) $\left\{v_{0}\right\} \cup\left\{v_{3}, v_{5}, v_{7}, \ldots, v_{m-2}\right\} \rightarrow v_{1} \rightarrow\left\{v_{2}, v_{4}, v_{6}, \ldots, v_{m-1}\right\}$;
(iii) $\left\{v_{0}, v_{2}, v_{4}, \ldots, v_{m-3}\right\} \rightarrow v_{m-2} \rightarrow\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{m-4}\right\} \cup\left\{v_{m-1}\right\}$;
(iv) $\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{m-2}\right\} \rightarrow v_{m-1} \rightarrow\left\{v_{0}, v_{2}, v_{4}, \ldots, v_{m-3}\right\}$;
(v) when $i \in\{2,4,6, \ldots, m-3\}$,
$\left(\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{i-1}\right\} \cup\left\{v_{i+2}, v_{i+4}, v_{i+6}, \ldots, v_{m-1}\right\}\right) \rightarrow v_{i} \rightarrow$
$\left(\left\{v_{0}, v_{2}, v_{4}, \ldots, v_{i-2}\right\} \cup\left\{v_{i+1}, v_{i+3}, v_{i+5}, \ldots, v_{m-2}\right\}\right)$;
(vi) when $i \in\{3,5,7, \ldots, m-4\}$,
$\left(\left\{v_{0}, v_{2}, v_{4}, \ldots, v_{i-1}\right\} \cup\left\{v_{i+2}, v_{i+4}, v_{i+6}, \ldots, v_{m-2}\right\}\right) \rightarrow v_{i} \rightarrow$
$\left(\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{i-2}\right\} \cup\left\{v_{i+1}, v_{i+3}, v_{i+5}, \ldots, v_{m-1}\right\}\right)$.
Let D be the resulting digraph. We claim that $d(D)=2$. We show this by computing eccentricities for the vertices of D.

The existence of the paths, in D, from: $v_{0} \rightarrow\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{m-2}\right\}$ and $v_{0} \rightarrow v_{1} \rightarrow$ $\left\{v_{2}, v_{4}, v_{6}, \ldots, v_{m-1}\right\}$ shows that $e_{D}\left(v_{0}\right) \leq 2 ; v_{1} \rightarrow\left\{v_{2}, v_{4}, v_{6}, \ldots, v_{m-1}\right\}$ and $v_{1} \rightarrow v_{2}$ $\rightarrow\left\{v_{0}\right\} \cup\left\{v_{3}, v_{5}, v_{7}, \ldots, v_{m-2}\right\}$ shows that $e_{D}\left(v_{1}\right) \leq 2$; for $i \in\{2,4,6, \ldots, m-5\}, v_{i}$ $\rightarrow\left\{v_{0}, v_{2}, v_{4}, \ldots, v_{i-2}\right\} \cup\left\{v_{i+1}, v_{i+3}, v_{i+5}, \ldots, v_{m-2}\right\}, v_{i} \rightarrow v_{i+1} \rightarrow\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{i-1}\right\}$ $\cup\left\{v_{i+2}, v_{i+4}, v_{i+6}, \ldots, v_{m-1}\right.$ shows that $e_{D}\left(v_{i}\right) \leq 2$; for $i \in\{3,5,7, \ldots, m-4\}, v_{i} \rightarrow$ $\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{i-2}\right\} \cup\left\{v_{i+1}, v_{i+3}, v_{i+5}, \ldots, v_{m-1}\right\}, v_{i} \rightarrow v_{i+1} \rightarrow\left\{v_{0}, v_{2}, v_{4}, \ldots, v_{i-1}\right\} \cup$ $\left\{v_{i+2}, v_{i+4}, v_{i+6}, \ldots, v_{m-2}\right\}$ shows that $e_{D}\left(v_{i}\right) \leq 2 ; v_{m-3} \rightarrow\left\{v_{0}, v_{2}, v_{4}, \ldots, v_{m-5}\right\} \cup\left\{v_{m-2}\right\}$ and $v_{m-3} \rightarrow v_{m-2} \rightarrow\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{m-4}\right\} \cup\left\{v_{m-1}\right\}$ shows that $e_{D}\left(v_{m-3}\right) \leq 2 ; v_{m-2} \rightarrow$ $\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{m-4}\right\}$ and $v_{m-2} \rightarrow v_{m-1} \rightarrow\left\{v_{0}, v_{2}, v_{4}, \ldots, v_{m-3}\right\}$ shows that $e_{D}\left(v_{m-2}\right)$ $\leq 2 ; v_{m-1} \rightarrow\left\{v_{0}, v_{2}, v_{4}, \ldots, v_{m-3}\right\}$ and $v_{m-1} \rightarrow v_{0} \rightarrow\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{m-2}\right\}$ shows that $e_{D}\left(v_{m-1}\right) \leq 2$.

We consider two cases.
Case 1. $n=m$ is odd.
Let $V_{1}=\left\{x_{0}, x_{1}, \ldots, x_{m-1}\right\}, V_{2}=\left\{y_{0}, y_{1}, \ldots, y_{m-1}\right\}$, and $V_{3}=\left\{z_{0}, z_{1}, \ldots, z_{m-1}\right\}$ be the vertex sets of three disjoint complete graphs K_{m}.

Let $G=3 K_{m} \cup\left\{x_{i} y_{i}, x_{i+1} y_{i}, y_{i} z_{i}, y_{i} z_{i+1}, x_{i} z_{m-1-i}, x_{m-i} z_{i}: i \in\{0,1,2, \ldots, m-1\}\right\}$, where suffixes are reduced modulo m. Then $G \in \mathscr{G}(m, m, m ; 6 m)$. Orient the edges of G as follows:
(i) if $v_{i} \rightarrow v_{j}$, then $x_{i} \rightarrow x_{j}, y_{i} \leftarrow y_{j}$ and $z_{i} \rightarrow z_{j}$;
(ii) $x_{i} \rightarrow\left\{y_{i}, z_{m-1-i}\right\}, y_{i} \rightarrow\left\{x_{i+1}, z_{i+1}\right\}$, and $z_{i} \rightarrow\left\{y_{i}, x_{m-i}\right\}$.

Let D^{\prime} be the resulting digraph. We claim that $d\left(D^{\prime}\right)=2$. We show this by computing eccentricities for the vertices of D^{\prime}. Let $D_{i}^{\prime}=D^{\prime}\left[V_{i}\right], i \in\{1,2,3\}$. As $D_{1}^{\prime} \cong \widetilde{D_{2}^{\prime}} \cong D_{3}^{\prime} \cong D, d\left(D_{i}^{\prime}\right)=2$.

The existence of the paths: $x_{0} \rightarrow y_{0}, x_{0} \rightarrow y_{0} \rightarrow y_{j}$ for $j \in\{2,4,6, \ldots, m-1\}$, $x_{0} \rightarrow x_{j} \rightarrow y_{j}$ for $j \in\{1,3,5, \ldots, m-2\}, x_{0} \rightarrow z_{m-1} \rightarrow z_{j}$ for $j \in\{0,2,4, \ldots, m-3\}$, $x_{0} \rightarrow x_{j} \rightarrow z_{m-1-j}$ for $j \in\{1,3,5, \ldots, m-2\}$, and $x_{0} \rightarrow z_{m-1}$, in D^{\prime}, together with $e_{D_{1}^{\prime}}\left(x_{0}\right) \leq 2$ shows that $e_{D^{\prime}}\left(x_{0}\right) \leq 2$.

The existence of the paths: $x_{1} \rightarrow y_{1} \rightarrow y_{j}$ for $j \in\{0\} \cup\{3,5,7, \ldots, m-2\}$, $x_{1} \rightarrow y_{1}, x_{1} \rightarrow x_{j} \rightarrow y_{j}$ for $j \in\{2,4,6, \ldots, m-1\}, x_{1} \rightarrow z_{m-2} \rightarrow z_{j}$ for $j \in\{1,3,5, \ldots, m-4\} \cup\{m-1\}, x_{1} \rightarrow x_{j} \rightarrow z_{m-1-j}$ for $j \in\{2,4,6, \ldots, m-1\}$, and $x_{1} \rightarrow z_{m-2}$, in D^{\prime}, together with $e_{D_{1}^{\prime}}\left(x_{1}\right) \leq 2$ shows that $e_{D^{\prime}}\left(x_{1}\right) \leq 2$.

Let $i \in\{2,4,6, \ldots, m-3\}$. The existence of the paths from: $x_{i} \rightarrow y_{i}, x_{i} \rightarrow y_{i} \rightarrow$ $\left\{y_{1}, y_{3}, y_{5}, \ldots, y_{i-1}\right\} \cup\left\{y_{i+2}, y_{i+4}, y_{i+6}, \ldots, y_{m-1}\right\}, x_{i} \rightarrow x_{j} \rightarrow y_{j}$ for $j \in\{0,2,4, \ldots, i-$ $2\} \cup\{i+1, i+3, i+5, \ldots, m-2\}, x_{i} \rightarrow z_{m-1-i} \rightarrow\left\{z_{0}, z_{2}, z_{4}, \ldots, z_{m-i-3}\right\} \cup\left\{z_{m-i}, z_{m-i+2}\right.$, $\left.z_{m-i+4}, \ldots, z_{m-2}\right\}, x_{i} \rightarrow x_{j} \rightarrow z_{m-1-j}$ for $j \in\{0,2,4, \ldots, i-2\} \cup\{i+1, i+3, i+5, \ldots, m-$ $2\}$, and $x_{i} \rightarrow z_{m-1-i}$, in D^{\prime}, together with $e_{D_{1}^{\prime}}\left(x_{i}\right) \leq 2$ shows that $e_{D^{\prime}}\left(x_{i}\right) \leq 2$.

Let $i \in\{3,5,7, \ldots, m-4\}$. The existence of the paths from: $x_{i} \rightarrow y_{i}, x_{i} \rightarrow y_{i} \rightarrow$ $\left\{y_{0}, y_{2}, y_{4}, \ldots, y_{i-1}\right\} \cup\left\{y_{i+2}, y_{i+4}, y_{i+6}, \ldots, y_{m-2}\right\}, x_{i} \rightarrow x_{j} \rightarrow y_{j}$ for $j \in\{1,3,5, \ldots, i-$
$2\} \cup\{i+1, i+3, i+5, \ldots, m-1\}, x_{i} \rightarrow z_{m-i-1} \rightarrow\left\{z_{1}, z_{3}, z_{5}, \ldots, z_{m-i-3}\right\} \cup\left\{z_{m-i}, z_{m-i+2}\right.$, $\left.z_{m-i+4}, \ldots, z_{m-1}\right\}, x_{i} \rightarrow x_{j} \rightarrow z_{m-j-1}$ for $j \in\{1,3,5, \ldots, i-2\} \cup\{i+1, i+3, i+5, \ldots, m-$ $1\}$, and $x_{i} \rightarrow z_{m-i-1}$, in D^{\prime}, together with $e_{D_{1}^{\prime}}\left(x_{i}\right) \leq 2$ shows that $e_{D^{\prime}}\left(x_{i}\right) \leq 2$.

The existence of the paths from: $x_{m-2} \rightarrow y_{m-2}, x_{m-2} \rightarrow y_{m-2} \rightarrow\left\{y_{0}, y_{2}, y_{4}, \ldots, y_{m-3}\right\}$, $x_{m-2} \rightarrow x_{j} \rightarrow y_{j}$ for $j \in\{1,3,5, \ldots, m-4\} \cup\{m-1\}, x_{m-2} \rightarrow z_{1}, x_{m-2} \rightarrow z_{1} \rightarrow$ $\left\{z_{2}, z_{4}, z_{6}, \ldots, z_{m-1}\right\}$, and $x_{m-2} \rightarrow x_{j} \rightarrow z_{m-1-j}$ for $j \in\{1,3,5, \ldots, m-4\} \cup\{m-1\}$, in D^{\prime}, together with $e_{D_{1}^{\prime}}\left(x_{m-2}\right) \leq 2$ shows that $e_{D^{\prime}}\left(x_{m-2}\right) \leq 2$.

The existence of the paths from: $x_{m-1} \rightarrow y_{m-1}, x_{m-1} \rightarrow y_{m-1} \rightarrow\left\{y_{1}, y_{3}, y_{5}, \ldots, y_{m-2}\right\}$, $x_{m-1} \rightarrow x_{j} \rightarrow y_{j}$ for $j \in\{0,2,4, \ldots, m-3\}, x_{m-1} \rightarrow z_{0}, x_{m-1} \rightarrow z_{0} \rightarrow\left\{z_{1}, z_{3}, z_{5}, \ldots\right.$, $\left.z_{m-2}\right\}$, and $x_{m-1} \rightarrow x_{j} \rightarrow z_{m-1-j}$ for $j \in\{0,2,4, \ldots, m-3\}$, in D^{\prime}, together with $e_{D_{1}^{\prime}}\left(x_{m-1}\right) \leq 2$ shows that $e_{D^{\prime}}\left(x_{m-1}\right) \leq 2$.

The existence of the paths from: $y_{0} \rightarrow x_{1}, y_{0} \rightarrow x_{1} \rightarrow\left\{x_{2}, x_{4}, x_{6}, \ldots, x_{m-1}\right\}$, $y_{0} \rightarrow y_{j} \rightarrow x_{j+1}$ for $j \in\{2,4,6, \ldots, m-1\}, y_{0} \rightarrow z_{1}, y_{0} \rightarrow z_{1} \rightarrow\left\{z_{2}, z_{4}, z_{6}, \ldots, z_{m-1}\right\}$, and $y_{0} \rightarrow y_{j} \rightarrow z_{j+1}$ for $j \in\{2,4,6, \ldots, m-1\}$, in D^{\prime}, together with $e_{D_{2}^{\prime}}\left(y_{0}\right) \leq 2$ shows that $e_{D^{\prime}}\left(y_{0}\right) \leq 2$.

The existence of the paths from: $y_{1} \rightarrow x_{2} \rightarrow\left\{x_{0}\right\} \cup\left\{x_{3}, x_{5}, x_{7}, \ldots, x_{m-2}\right\}, y_{1} \rightarrow y_{j} \rightarrow$ x_{j+1} for $j \in\{0\} \cup\{3,5,7, \ldots, m-2\}, y_{1} \rightarrow x_{2}, y_{1} \rightarrow z_{2} \rightarrow\left\{z_{0}\right\} \cup\left\{z_{3}, z_{5}, z_{7}, \ldots, z_{m-2}\right\}$, $y_{1} \rightarrow y_{j} \rightarrow z_{j+1}$ for $j \in\{0\} \cup\{3,5,7, \ldots, m-2\}$, and $y_{1} \rightarrow z_{2}$, in D^{\prime}, together with $e_{D_{2}^{\prime}}\left(y_{1}\right) \leq 2$ shows that $e_{D^{\prime}}\left(y_{1}\right) \leq 2$.

Let $i \in\{2,4,6, \ldots, m-5\}$. The existence of the paths from: $y_{i} \rightarrow x_{i+1}, y_{i} \rightarrow$ $x_{i+1} \rightarrow\left\{x_{1}, x_{3}, x_{5}, \ldots, x_{i-1}\right\} \cup\left\{x_{i+2}, x_{i+4}, x_{i+6}, \ldots, x_{m-1}\right\}, y_{i} \rightarrow y_{j} \rightarrow x_{j+1}$ for $j \in$ $\{1,3,5, \ldots, i-1\} \cup\{i+2, i+4, i+6, \ldots, m-1\}, y_{i} \rightarrow z_{i+1}, y_{i} \rightarrow z_{i+1} \rightarrow\left\{z_{1}, z_{3}, z_{5}, \ldots\right.$, $\left.z_{i-1}\right\} \cup\left\{z_{i+2}, z_{i+4}, z_{i+6}, \ldots, z_{m-1}\right\}$, and $y_{i} \rightarrow y_{j} \rightarrow z_{j+1}$ for $j \in\{1,3,5, \ldots, i-1\} \cup\{i+$ $2, i+4, i+6, \ldots, m-1\}$, in D^{\prime}, together with $e_{D_{2}^{\prime}}\left(y_{i}\right) \leq 2$ shows that $e_{D^{\prime}}\left(y_{i}\right) \leq 2$.

Let $i \in\{3,5,7, \ldots, m-4\}$. The existence of the paths from: $y_{i} \rightarrow x_{i+1}, y_{i} \rightarrow$ $x_{i+1} \rightarrow\left\{x_{0}, x_{2}, x_{4}, \ldots, x_{i-1}\right\} \cup\left\{x_{i+2}, x_{i+4}, x_{i+6}, \ldots, x_{m-2}\right\}, y_{i} \rightarrow y_{j} \rightarrow x_{j+1}$ for $j \in$ $\{0,2,4, \ldots, i-1\} \cup\{i+2, i+4, i+6, \ldots, m-2\}, y_{i} \rightarrow z_{i+1}, y_{i} \rightarrow z_{i+1} \rightarrow\left\{z_{0}, z_{2}, z_{4}, \ldots\right.$, $\left.z_{i-1}\right\} \cup\left\{z_{i+2}, z_{i+4}, z_{i+6}, \ldots, z_{m-2}\right\}$, and $y_{i} \rightarrow y_{j} \rightarrow z_{j+1}$ for $j \in\{0,2,4, \ldots, i-1\} \cup\{i+$ $2, i+4, i+6, \ldots, m-2\}$, in D^{\prime}, together with $e_{D_{2}^{\prime}}\left(y_{i}\right) \leq 2$ shows that $e_{D^{\prime}}\left(y_{i}\right) \leq 2$.

The existence of the paths from: $y_{m-3} \rightarrow x_{m-2}, y_{m-3} \rightarrow x_{m-2} \rightarrow\left\{x_{1}, x_{3}, x_{5}, \ldots, x_{m-4}\right\}$ $\cup\left\{x_{m-1}\right\}, y_{m-3} \rightarrow y_{j} \rightarrow x_{j+1}$ for $j \in\{1,3,5, \ldots, m-4\} \cup\{m-1\}, y_{m-3} \rightarrow z_{m-2}$, $y_{m-3} \rightarrow z_{m-2} \rightarrow\left\{z_{1}, z_{3}, z_{5}, \ldots, z_{m-4}\right\} \cup\left\{z_{m-1}\right\}$, and $y_{m-3} \rightarrow y_{j} \rightarrow z_{j+1}$ for $j \in\{1,3,5, \ldots, m-4\} \cup\{m-1\}$, in D^{\prime}, together with $e_{D_{2}^{\prime}}\left(y_{m-3}\right) \leq 2$ shows that $e_{D^{\prime}}\left(y_{m-3}\right) \leq 2$.

The existence of the paths from: $y_{m-2} \rightarrow x_{m-1}, y_{m-2} \rightarrow x_{m-1} \rightarrow\left\{x_{0}, x_{2}, x_{4}, \ldots, x_{m-3}\right\}$, $y_{m-2} \rightarrow y_{j} \rightarrow x_{j+1}$ for $j \in\{0,2,4, \ldots, m-3\}, y_{m-2} \rightarrow z_{m-1}, y_{m-2} \rightarrow z_{m-1} \rightarrow$ $\left\{z_{0}, z_{2}, z_{4}, \ldots, z_{m-3}\right\}$, and $y_{m-2} \rightarrow y_{j} \rightarrow z_{j+1}$ for $j \in\{0,2,4, \ldots, m-3\}$, in D^{\prime}, together with $e_{D_{2}^{\prime}}\left(y_{m-2}\right) \leq 2$ shows that $e_{D^{\prime}}\left(y_{m-2}\right) \leq 2$.

The existence of the paths from: $y_{m-1} \rightarrow x_{0}, y_{m-1} \rightarrow x_{0} \rightarrow\left\{x_{1}, x_{3}, x_{5}, \ldots, x_{m-2}\right\}$, $y_{m-1} \rightarrow y_{j} \rightarrow x_{j+1}$ for $j \in\{1,3,5, \ldots, m-2\}, y_{m-1} \rightarrow z_{0}, y_{m-1} \rightarrow z_{0} \rightarrow\left\{z_{1}, z_{3}, z_{5}\right.$, $\left.\ldots, z_{m-2}\right\}$, and $y_{m-1} \rightarrow y_{j} \rightarrow z_{j+1}$ for $j \in\{1,3,5, \ldots, m-2\}$, in D^{\prime}, together with $e_{D_{2}^{\prime}}\left(y_{m-1}\right) \leq 2$ shows that $e_{D^{\prime}}\left(y_{m-1}\right) \leq 2$.

The existence of the paths from: $z_{0} \rightarrow x_{0}, z_{0} \rightarrow x_{0} \rightarrow\left\{x_{1}, x_{3}, x_{5}, \ldots, x_{m-2}\right\}$, $z_{0} \rightarrow z_{j} \rightarrow x_{m-j}$ for $j \in\{1,3,5, \ldots, m-2\}, z_{0} \rightarrow y_{0}, z_{0} \rightarrow y_{0} \rightarrow\left\{y_{2}, y_{4}, y_{6}, \ldots, y_{m-1}\right\}$, $z_{0} \rightarrow z_{j} \rightarrow y_{j}$ for $j \in\{1,3,5, \ldots, m-2\}$, in D^{\prime}, together with $e_{D_{3}^{\prime}}\left(z_{0}\right) \leq 2$ shows that $e_{D^{\prime}}\left(z_{0}\right) \leq 2$.

The existence of the paths from: $z_{1} \rightarrow x_{m-1} \rightarrow\left\{x_{0}, x_{2}, x_{4}, \ldots, x_{m-3}\right\}, z_{1} \rightarrow z_{j} \rightarrow$ x_{m-j} for $j \in\{2,4,6, \ldots, m-1\}, z_{1} \rightarrow x_{m-1}, z_{1} \rightarrow y_{1}, z_{1} \rightarrow y_{1} \rightarrow\left\{y_{0}\right\} \cup$
$\left\{y_{3}, y_{5}, y_{7}, \ldots, y_{m-2}\right\}$, and $z_{1} \rightarrow z_{j} \rightarrow y_{j}$ for $j \in\{2,4,6, \ldots, m-1\}$, in D^{\prime}, together with $e_{D_{3}^{\prime}}\left(z_{1}\right) \leq 2$ shows that $e_{D^{\prime}}\left(z_{1}\right) \leq 2$.

The existence of the paths from: $z_{2} \rightarrow x_{m-2}, z_{2} \rightarrow x_{m-2} \rightarrow\left\{x_{1}, x_{3}, x_{5}, \ldots, x_{m-4}\right\} \cup$ $\left\{x_{m-1}\right\}, z_{2} \rightarrow z_{j} \rightarrow x_{m-j}$ for $j \in\{0\} \cup\{3,5,7, \ldots, m-2\}, z_{2} \rightarrow y_{2}, z_{2} \rightarrow y_{2} \rightarrow$ $\left\{y_{1}\right\} \cup\left\{y_{4}, y_{6}, y_{8}, \ldots, y_{m-1}\right\}$, and $z_{2} \rightarrow z_{j} \rightarrow y_{j}$ for $j \in\{0\} \cup\{3,5,7, \ldots, m-2\}$, in D^{\prime}, together with $e_{D_{3}^{\prime}}\left(z_{2}\right) \leq 2$ shows that $e_{D^{\prime}}\left(z_{2}\right) \leq 2$.

Let $i \in\{4,6,8, \ldots, m-3\}$. The existence of the paths from: $z_{i} \rightarrow x_{m-i}$, $z_{i} \rightarrow x_{m-i} \rightarrow\left\{x_{1}, x_{3}, x_{5}, \ldots, x_{m-i-2}\right\} \cup\left\{x_{m-i+1}, x_{m-i+3}, x_{m-i+5}, \ldots, x_{m-1}\right\}, z_{i} \rightarrow$ $z_{j} \rightarrow x_{m-j}$ for $j \in\{0,2,4, \ldots, i-2\} \cup\{i+1, i+3, i+5, \ldots, m-2\}, z_{i} \rightarrow y_{i}$, $z_{i} \rightarrow y_{i} \rightarrow\left\{y_{1}, y_{3}, y_{5}, \ldots, y_{i-1}\right\} \cup\left\{y_{i+2}, y_{i+4}, y_{i+6}, \ldots, y_{m-1}\right\}$, and $z_{i} \rightarrow z_{j} \rightarrow y_{j}$ for $j \in\{0,2,4, \ldots, i-2\} \cup\{i+1, i+3, i+5, \ldots, m-2\}$, in D^{\prime}, together with $e_{D_{3}^{\prime}}\left(z_{i}\right) \leq 2$ shows that $e_{D^{\prime}}\left(z_{i}\right) \leq 2$.

Let $i \in\{3,5,7, \ldots, m-4\}$. The existence of the paths from: $z_{i} \rightarrow x_{m-i}$, $z_{i} \rightarrow x_{m-i} \rightarrow\left\{x_{0}, x_{2}, x_{4}, \ldots, x_{m-i-2}\right\} \cup\left\{x_{m-i+1}, x_{m-i+3}, x_{m-i+5}, \ldots, x_{m-2}\right\}, z_{i} \rightarrow$ $z_{j} \rightarrow x_{m-j}$ for $j \in\{1,3,5, \ldots, i-2\} \cup\{i+1, i+3, i+5, \ldots, m-1\}, z_{i} \rightarrow y_{i}$, $z_{i} \rightarrow y_{i} \rightarrow\left\{y_{0}, y_{2}, y_{4}, \ldots, y_{i-1}\right\} \cup\left\{y_{i+2}, y_{i+4}, y_{i+6}, \ldots, y_{m-2}\right\}, z_{i} \rightarrow z_{j} \rightarrow y_{j}$ for $j \in\{1,3,5, \ldots, i-2\} \cup\{i+1, i+3, i+5, \ldots, m-1\}$, in D^{\prime}, together with $e_{D_{3}^{\prime}}\left(z_{i}\right) \leq 2$ shows that $e_{D^{\prime}}\left(z_{i}\right) \leq 2$.

The existence of the paths from: $z_{m-2} \rightarrow x_{2}, z_{m-2} \rightarrow x_{2} \rightarrow\left\{x_{0}\right\} \cup\left\{x_{3}, x_{5}, x_{7}, \ldots, x_{m-2}\right\}$, $z_{m-2} \rightarrow z_{j} \rightarrow x_{m-j}$ for $j \in\{1,3,5, \ldots, m-4\} \cup\{m-1\}, z_{m-2} \rightarrow y_{m-2}, z_{m-2} \rightarrow$ $y_{m-2} \rightarrow\left\{y_{0}, y_{2}, y_{4}, \ldots, y_{m-3}\right\}$, and $z_{m-2} \rightarrow z_{j} \rightarrow y_{j}$ for $j \in\{1,3,5, \ldots, m-4\} \cup\{m-1\}$, in D^{\prime}, together with $e_{D_{3}^{\prime}}\left(z_{m-2}\right) \leq 2$ shows that $e_{D^{\prime}}\left(z_{m-2}\right) \leq 2$.

The existence of the paths from: $z_{m-1} \rightarrow x_{1}, z_{m-1} \rightarrow x_{1} \rightarrow\left\{x_{2}, x_{4}, x_{6}, \ldots, x_{m-1}\right\}$, $z_{m-1} \rightarrow z_{j} \rightarrow x_{m-j}$ for $j \in\{0,2,4, \ldots, m-3\}, z_{m-1} \rightarrow y_{m-1} \rightarrow\left\{y_{1}, y_{3}, y_{5}, \ldots, y_{m-2}\right\}$, $z_{m-1} \rightarrow z_{j} \rightarrow y_{j}$ for $j \in\{0,2,4, \ldots, m-3\}$, and $z_{m-1} \rightarrow y_{m-1}$, in D^{\prime}, together with $e_{D_{3}^{\prime}}\left(z_{m-1}\right) \leq 2$, shows that $e_{D^{\prime}}\left(z_{m-1}\right) \leq 2$.

This completes the proof of the claim $d\left(D^{\prime}\right)=2$.
Case 2. $n=m+1$ is even.
Let $V_{1}^{\prime}=V_{1} \cup\{x\}, V_{2}^{\prime}=V_{2} \cup\{y\}$, and $V_{3}^{\prime}=V_{3} \cup\{z\}$, where V_{1}, V_{2}, V_{3} are as in Case 1; let $G=3 K_{n} \cup\left\{x y, y z, z x, x z_{m-1}, y z_{m-1}, y x_{m-1}\right\} \cup\left\{x y_{i}, z x_{i}, z y_{i}, x_{i} y_{i}, y_{i} z_{i}, x_{i} z_{m-i-1}\right.$: $i \in\{0,1,2, \ldots, m-1\}\}$, where suffixes are reduced modulo m. Then $G \in \mathscr{G}(n, n, n ; 6 n)$. Orient the edges of G as follows:
(i) if $v_{i} \rightarrow v_{j}$, then $x_{i} \rightarrow x_{j}, y_{i} \leftarrow y_{j}$ and $z_{i} \rightarrow z_{j}$;
(ii) $x \rightarrow V_{1},\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{m-3}\right\} \rightarrow y \rightarrow\left\{y_{m-2}, y_{m-1}\right\}$, and $z \rightarrow V_{3}$;
$\left(i i i^{\prime}\right) y \rightarrow x, x \rightarrow z, y \rightarrow z$,

$$
z_{m-1} \rightarrow x, z_{m-1} \rightarrow y, x_{m-1} \rightarrow y
$$

$\left\{y_{i} \rightarrow x, x_{i} \rightarrow z, y_{i} \rightarrow z, x_{i} \rightarrow y_{i}, z_{i} \rightarrow y_{i}, z_{m-i-1} \rightarrow x_{i}: i \in\{0,1,2, \ldots, m-1\}\right\}$.
Let D^{\prime} be the resulting digraph. We claim that $d\left(D^{\prime}\right)=2$. We show this by computing eccentricities for the vertices of D^{\prime}.

The existence of the paths from: $x \rightarrow V_{1}, x \rightarrow x_{i} \rightarrow y_{i}$ for $i \in\{0,1,2, \ldots, m-1\}$, $x \rightarrow x_{m-1} \rightarrow y, x \rightarrow z \rightarrow V_{3}$, and $x \rightarrow z$, in D^{\prime}, shows that $e_{D^{\prime}}(x) \leq 2$.

The existence of the paths from: $y \rightarrow x \rightarrow V_{1}, y \rightarrow x, y \rightarrow y_{m-2} \rightarrow\left\{y_{0}, y_{2}, y_{4}, \ldots, y_{m-3}\right\}$, $y \rightarrow y_{m-1} \rightarrow\left\{y_{1}, y_{3}, y_{5}, \ldots, y_{m-2}\right\}, y \rightarrow y_{m-1}, y \rightarrow z \rightarrow V_{3}$, and $y \rightarrow z$, in D^{\prime}, shows that $e_{D^{\prime}}(y) \leq 2$.

The existence of the paths from: $z \rightarrow z_{m-i-1} \rightarrow x_{i}$ for $i \in\{0,1,2, \ldots, m-1\}$, $z \rightarrow z_{m-1} \rightarrow x, z \rightarrow z_{i} \rightarrow y_{i}$ for $i \in\{0,1,2, \ldots, m-1\}, z \rightarrow z_{m-1} \rightarrow y$, and $z \rightarrow V_{3}$, in D^{\prime}, shows that $e_{D^{\prime}}(z) \leq 2$.

For $i \in\{0,1,2, \ldots, m-1\}, x_{i} \rightarrow y_{i} \rightarrow x$ shows that $d_{D^{\prime}}\left(x_{i}, x\right) \leq 2, y_{i} \rightarrow x$ shows
that $d_{D^{\prime}}\left(y_{i}, x\right)=1$, and $z_{i} \rightarrow y_{i} \rightarrow x$ shows that $d_{D^{\prime}}\left(z_{i}, x\right) \leq 2 . y \rightarrow x$ shows that $d_{D^{\prime}}(y, x)=1 . z \rightarrow z_{m-1} \rightarrow x$ shows that $d_{D^{\prime}}(z, x) \leq 2$.

For $i \in\{0,1,2, \ldots, m-3\}, x_{i} \rightarrow y_{i} \rightarrow y$ shows that $d_{D^{\prime}}\left(x_{i}, y\right) \leq 2, y_{i} \rightarrow y$ shows that $d_{D^{\prime}}\left(y_{i}, y\right)=1$, and $z_{i} \rightarrow y_{i} \rightarrow y$ shows that $d_{D^{\prime}}\left(z_{i}, y\right) \leq 2 . x_{m-2} \rightarrow x_{m-1} \rightarrow y$ shows that $d_{D^{\prime}}\left(x_{m-2}, y\right) \leq 2 . x_{m-1} \rightarrow y$ shows that $d_{D^{\prime}}\left(x_{m-1}, y\right)=1 . y_{m-2} \rightarrow y_{0} \rightarrow y$ shows that $d_{D^{\prime}}\left(y_{m-2}, y\right) \leq 2 . y_{m-1} \rightarrow y_{1} \rightarrow y$ shows that $d_{D^{\prime}}\left(y_{m-1}, y\right) \leq 2 . z_{m-2} \rightarrow z_{m-1} \rightarrow$ y shows that $d_{D^{\prime}}\left(z_{m-2}, y\right) \leq 2 . z_{m-1} \rightarrow y$ shows that $d_{D^{\prime}}\left(z_{m-1}, y\right)=1 . x \rightarrow x_{m-1} \rightarrow y$ shows that $d_{D^{\prime}}(x, y) \leq 2 . z \rightarrow z_{m-1} \rightarrow y$ shows that $d_{D^{\prime}}(z, y) \leq 2$.

For $i \in\{0,1,2, \ldots, m-1\}, x_{i} \rightarrow z$ shows that $d_{D^{\prime}}\left(x_{i}, z\right)=1, y_{i} \rightarrow z$ shows that $d_{D^{\prime}}\left(y_{i}, z\right)=1$, and $z_{i} \rightarrow y_{i} \rightarrow z$ shows that $d_{D^{\prime}}\left(z_{i}, z\right) \leq 2 . x \rightarrow z$ shows that $d_{D^{\prime}}(x, z)=1 . y \rightarrow z$ shows that $d_{D^{\prime}}(y, z)=1$.

For $i \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(x_{0}, y_{i}\right) \leq 2$ follows from the existence of the paths: $x_{0} \rightarrow y_{0}, x_{0} \rightarrow y_{0} \rightarrow y_{j}$ for $j \in\{2,4,6, \ldots, m-1\}$, and $x_{0} \rightarrow x_{j} \rightarrow y_{j}$ for $j \in\{1,3,5, \ldots, m-2\}$, in D^{\prime}.

For $i \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(x_{1}, y_{i}\right) \leq 2$ follows from the existence of the paths: $x_{1} \rightarrow y_{1}, x_{1} \rightarrow y_{1} \rightarrow y_{j}$ for $j \in\{0\} \cup\{3,5,7, \ldots, m-2\}, x_{1} \rightarrow x_{j} \rightarrow y_{j}$ for $j \in\{2,4,6, \ldots, m-1\}$, in D^{\prime}.

For $i \in\{2,4,6, \ldots, m-3\}$ and $j \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(x_{i}, y_{j}\right) \leq 2$ follows from the existence of the paths from: $x_{i} \rightarrow y_{i}, x_{i} \rightarrow y_{i} \rightarrow\left\{y_{1}, y_{3}, y_{5}, \ldots, y_{i-1}\right\} \cup$ $\left\{y_{i+2}, y_{i+4}, y_{i+6}, \ldots, y_{m-1}\right\}$, and $x_{i} \rightarrow x_{k} \rightarrow y_{k}$ for $k \in\{0,2,4, \ldots, i-2\} \cup\{i+1, i+$ $3, i+5, \ldots, m-2\}$, in D^{\prime}.

For $i \in\{3,5,7, \ldots, m-4\}$ and $j \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(x_{i}, y_{j}\right) \leq 2$ follows from the existence of the paths from: $x_{i} \rightarrow y_{i}, x_{i} \rightarrow y_{i} \rightarrow\left\{y_{0}, y_{2}, y_{4}, \ldots, y_{i-1}\right\} \cup$ $\left\{y_{i+2}, y_{i+4}, y_{i+6}, \ldots, y_{m-2}\right\}$, and $x_{i} \rightarrow x_{k} \rightarrow y_{k}$ for $k \in\{1,3,5, \ldots, i-2\} \cup\{i+1, i+$ $3, i+5, \ldots, m-1\}$, in D^{\prime}.

For $i \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(x_{m-2}, y_{i}\right) \leq 2$ follows from the existence of the paths from: $x_{m-2} \rightarrow y_{m-2}, x_{m-2} \rightarrow y_{m-2} \rightarrow\left\{y_{0}, y_{2}, y_{4}, \ldots, y_{m-3}\right\}$, and $x_{m-2} \rightarrow x_{j} \rightarrow y_{j}$ for $j \in\{1,3,5, \ldots, m-4\} \cup\{m-1\}$, in D^{\prime}.

For $i \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(x_{m-1}, y_{i}\right) \leq 2$ follows from the existence of the paths from: $x_{m-1} \rightarrow y_{m-1}, x_{m-1} \rightarrow y_{m-1} \rightarrow\left\{y_{1}, y_{3}, y_{5}, \ldots, y_{m-2}\right\}$, and $x_{m-1} \rightarrow x_{j} \rightarrow y_{j}$ for $j \in\{0,2,4, \ldots, m-3\}$, in D^{\prime}.

For $i, j \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(x_{i}, z_{j}\right) \leq 2$ follows from the existence of the path: $x_{i} \rightarrow z \rightarrow z_{j}$, in D^{\prime}.

For $i, j \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(y_{i}, x_{j}\right) \leq 2$ follows from the existence of the path: $y_{i} \rightarrow x \rightarrow x_{j}$, in D^{\prime}.

For $i, j \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(y_{i}, z_{j}\right) \leq 2$ follows from the existence of the path: $y_{i} \rightarrow z \rightarrow z_{j}$, in D^{\prime}.

For $i \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(z_{0}, x_{i}\right) \leq 2$ follows from the existence of the paths: $z_{0} \rightarrow x_{m-1} \rightarrow x_{j}$ for $j \in\{0,2,4, \ldots, m-3\}, z_{0} \rightarrow z_{j} \rightarrow x_{m-1-j}$ for $j \in\{1,3,5, \ldots, m-2\}$, and $z_{0} \rightarrow x_{m-1}$, in D^{\prime}.

For $i \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(z_{1}, x_{i}\right) \leq 2$ follows from the existence of the paths: $z_{1} \rightarrow x_{m-2} \rightarrow x_{j}$ for $j \in\{1,3,5, \ldots, m-4\} \cup\{m-1\}, z_{1} \rightarrow z_{j} \rightarrow x_{m-1-j}$ for $j \in\{2,4,6, \ldots, m-1\}$, and $z_{1} \rightarrow x_{m-2}$, in D^{\prime}.

For $i \in\{2,4,6, \ldots, m-3\}$ and $j \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(z_{i}, x_{j}\right) \leq 2$ follows from the existence of the paths from: $z_{i} \rightarrow x_{m-1-i} \rightarrow\left\{x_{0}, x_{2}, x_{4}, \ldots, x_{m-i-3}\right\} \cup\left\{x_{m-i}, x_{m-i+2}\right.$, $\left.x_{m-i+4}, \ldots, x_{m-2}\right\}, z_{i} \rightarrow z_{k} \rightarrow x_{m-1-k}$ for $k \in\{0,2,4, \ldots, i-2\} \cup\{i+1, i+3, i+$ $5, \ldots, m-2\}$, and $z_{i} \rightarrow x_{m-1-i}$, in D^{\prime}.

For $i \in\{3,5,7, \ldots, m-4\}$ and $j \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(z_{i}, x_{j}\right) \leq 2$ follows from the existence of the paths from: $z_{i} \rightarrow x_{m-i-1} \rightarrow\left\{x_{1}, x_{3}, x_{5}, \ldots, x_{m-i-3}\right\} \cup\left\{x_{m-i}, x_{m-i+2}\right.$,
$\left.x_{m-i+4}, \ldots, x_{m-1}\right\}, z_{i} \rightarrow z_{k} \rightarrow x_{m-k-1}$ for $k \in\{1,3,5, \ldots, i-2\} \cup\{i+1, i+3, i+$ $5, \ldots, m-1\}$, and $z_{i} \rightarrow x_{m-i-1}$, in D^{\prime}.

For $i \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(z_{m-2}, x_{i}\right) \leq 2$ follows from the existence of the paths from: $z_{m-2} \rightarrow x_{1}, z_{m-2} \rightarrow x_{1} \rightarrow\left\{x_{2}, x_{4}, x_{6}, \ldots, x_{m-1}\right\}$, and $z_{m-2} \rightarrow z_{j} \rightarrow x_{m-1-j}$ for $j \in\{1,3,5, \ldots, m-4\} \cup\{m-1\}$, in D^{\prime}.

For $i \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(z_{m-1}, x_{i}\right) \leq 2$ follows from the existence of the paths from: $z_{m-1} \rightarrow x_{0}, z_{m-1} \rightarrow x_{0} \rightarrow\left\{x_{1}, x_{3}, x_{5}, \ldots, x_{m-2}\right\}$, and $z_{m-1} \rightarrow z_{j} \rightarrow x_{m-1-j}$ for $j \in\{0,2,4, \ldots, m-3\}$, in D^{\prime}.

For $i \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(z_{0}, y_{i}\right) \leq 2$ follows from the existence of the paths from: $z_{0} \rightarrow y_{0}, z_{0} \rightarrow y_{0} \rightarrow\left\{y_{2}, y_{4}, y_{6}, \ldots, y_{m-1}\right\}$, and $z_{0} \rightarrow z_{j} \rightarrow y_{j}$ for $j \in\{1,3,5, \ldots, m-2\}$, in D^{\prime}.

For $i \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(z_{1}, y_{i}\right) \leq 2$ follows from the existence of the paths from: $z_{1} \rightarrow y_{1}, z_{1} \rightarrow y_{1} \rightarrow\left\{y_{0}\right\} \cup\left\{y_{3}, y_{5}, y_{7}, \ldots, y_{m-2}\right\}$, and $z_{1} \rightarrow z_{j} \rightarrow y_{j}$ for $j \in\{2,4,6, \ldots, m-1\}$, in D^{\prime}.

For $i \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(z_{2}, y_{i}\right) \leq 2$ follows from the existence of the paths from: $z_{2} \rightarrow y_{2}, z_{2} \rightarrow y_{2} \rightarrow\left\{y_{1}\right\} \cup\left\{y_{4}, y_{6}, y_{8}, \ldots, y_{m-1}\right\}$, and $z_{2} \rightarrow z_{j} \rightarrow y_{j}$ for $j \in\{0\} \cup\{3,5,7, \ldots, m-2\}$, in D^{\prime}.

For $i \in\{4,6,8, \ldots, m-3\}$ and $j \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(z_{i}, y_{j}\right) \leq 2$ follows from the existence of the paths from: $z_{i} \rightarrow y_{i}, z_{i} \rightarrow y_{i} \rightarrow\left\{y_{1}, y_{3}, y_{5}, \ldots, y_{i-1}\right\} \cup$ $\left\{y_{i+2}, y_{i+4}, y_{i+6}, \ldots, y_{m-1}\right\}$, and $z_{i} \rightarrow z_{k} \rightarrow y_{k}$ for $k \in\{0,2,4, \ldots, i-2\} \cup\{i+1, i+$ $3, i+5, \ldots, m-2\}$, in D^{\prime}.

For $i \in\{3,5,7, \ldots, m-4\}$ and $j \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(z_{i}, y_{j}\right) \leq 2$ follows from the existence of the paths from: $z_{i} \rightarrow y_{i}, z_{i} \rightarrow y_{i} \rightarrow\left\{y_{0}, y_{2}, y_{4}, \ldots, y_{i-1}\right\} \cup$ $\left\{y_{i+2}, y_{i+4}, y_{i+6}, \ldots, y_{m-2}\right\}, z_{i} \rightarrow z_{k} \rightarrow y_{k}$ for $k \in\{1,3,5, \ldots, i-2\} \cup\{i+1, i+3, i+$ $5, \ldots, m-1\}$, in D.

For $i \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(z_{m-2}, y_{i}\right) \leq 2$ follows from the existence of the paths from: $z_{m-2} \rightarrow y_{m-2}, z_{m-2} \rightarrow y_{m-2} \rightarrow\left\{y_{0}, y_{2}, y_{4}, \ldots, y_{m-3}\right\}$, and $z_{m-2} \rightarrow z_{j} \rightarrow y_{j}$ for $j \in\{1,3,5, \ldots, m-4\} \cup\{m-1\}$, in D^{\prime}.

For $i \in\{0,1,2, \ldots, m-1\}, d_{D^{\prime}}\left(z_{m-1}, y_{i}\right) \leq 2$ follows from the existence of the paths from: $z_{m-1} \rightarrow y_{m-1} \rightarrow\left\{y_{1}, y_{3}, y_{5}, \ldots, y_{m-2}\right\}, z_{m-1} \rightarrow z_{j} \rightarrow y_{j}$ for $j \in$ $\{0,2,4, \ldots, m-3\}$, and $z_{m-1} \rightarrow y_{m-1}$, in D^{\prime}.

This completes the proof of the claim $d\left(D^{\prime}\right)=2$.
Corollary 2.2. If $n \geq 5$ or $n=3$, $\min \{m: \vec{d}(\mathscr{G}(n, n, n ; m))=2\} \leq 6 n$.
Problem 2.2. Find $\min \{m: \vec{d}(\mathscr{G}(n, n, n ; m))=2\}$.
Problem 2.3. Find $\min \{m: \vec{d}(3 ; m)=2\}$.

References

[1] Bang-Jensen, J., and Gutin, G. (2009), Digraphs: Theory, Algorithms and Applications, Second Edition, Springer, London.
[2] Boesch. F., and Tindell, R. (1980), Robbin's theorem for mixed multigraphs, Amer. Math. Monthly, 87, 716-719.
[3] Koh, K. M., and Ng, K. L. (2005), The orientation number of two complete graphs with linkages, Discrete Math., 295, 91-106.
[4] Koh, K. M., and Tay, E. G. (2002), Optimal orientations of graphs and digraphs: A survey, Graphs and Combin., 18, 745-756.
[5] S.B. Maurer, S. B. (1980), The king chicken theorems, Math. Mag., 53, 67-80.
[6] Ng, K. L. (2009), On a conjecture concerning the orientation number of a graph, Discrete Math., 309, 1603-1610.
[7] Robbins, H. (1939), A theorem on graphs with an application to a problem of traffic control, Amer. Math. Monthly, 46, 281-283.
[8] Soltés, L. (1986), Orientations of graphs minimizing the radius or the diameter, Math. Slovaca, 36, 289-296.

Dr. G. Rajasekaran received his Master's degree in the year 2007, Ph. D degree in 2014 from Annamalai University, Annamalainagar, India. His area of interest mainly on graph theory. He is currently working as Assistant Professor, Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India. He has more than 5 years of teaching experience and 9 years of research experience. He published research articles in international journals.

Prof. R. Sampathkumar graduated from Annamalai University, Annamalainagar, India in 1995. He received his M.Sc. degree and Ph.D. in Mathematics from Annamalai University in year 1987 and 1995, respectively. He is currently a Professor and Head, Department of Mathematics, Annamalai University, Annamalainagar, India since 1995. He has more than 26 years teaching experience and more than 30 years research experience. He was a Fellow of the Insitute of Combinatorics and its Applications. He published more than 40 research articles in reputed graph theory journals. His research interests focus mainly on Graphs and Combinatorics.

[^0]: ${ }^{1}$ Department of Mathematics, Vellore Institute of Technology, Vellore, India. e-mail: rajasekaran.ganapathy@vit.ac.in; ORCID: https://orcid.org/0000-0003-0837-2127.
 ${ }^{2}$ Department of Mathematics, Annamalai University, Annamalainagar, India. e-mail: sampathmath@gmail.com; ORCID: https://orcid.org/0000-0002-4910-7074.
 § Manuscript received: October 20, 2019; accepted: April 02, 2020. TWMS Journal of Applied and Engineering Mathematics, Vol.11, Special Issue © Işık University, Department of Mathematics, 2021; all rights reserved.

