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THE ORIENTATION NUMBER OF THREE COMPLETE GRAPHS

WITH LINKAGES

G. RAJASEKARAN1, R. SAMPATHKUMAR2, §

Abstract. For a graph G, let D(G) be the set of all strong orientations of G. The orien-

tation number of G is ~d(G) = min{d(D)|D ∈ D(G)}, where d(D) denotes the diameter
of the digraph D. In this paper, we consider the problem of determining the orientation
number of three complete graphs with linkages.
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1. Introduction

Let G be a finite undirected simple graph with vertex set V (G) and edge set E(G). For a
graph G and x ∈ V (G), the degree of x in G is denoted by dG(x), and the maximum degree
of G by ∆(G). For v ∈ V (G), the eccentricity of v is eG(v) = max {dG(v, x) |x ∈ V (G)},
where dG(v, x) denotes the length of a shortest (v, x)-path in G. The diameter of G is
d(G) = max{eG(v) | v ∈ V (G)}.

Let D be a digraph with vertex set V (D) and arc set A(D) which has no loops and no
two of its arcs have same tail and same head. The notions eD(v), for v ∈ V (D), and d(D)
are defined as in the undirected graph.

An orientation of a graph G is a digraph D obtained from G by assigning a direction
to each of its edge. A vertex v is reachable from a vertex u of a digraph D if there is a
directed path in D from u to v. An orientation D of G is strong if any pair of vertices
in D are mutually reachable in D. Robbins’ one-way street theorem [7] states that a
connected graph G has a strong orientation if and only if G is 2-edge-connected. For a
2-edge-connected graph G, let D(G) denote the set of all strong orientations of G. The

orientation number of G is ~d(G) = min {d(D) |D ∈ D(G)}. Any orientation D in D(G)

with d(D) = ~d(G) is called an optimal orientation of G.
Given r fixed integers n1, n2, . . . , nr with nr ≥ nr−1 ≥ . . . ≥ n1 ≥ 3 and an integer

m with 2 ≤ r ≤ m ≤
∑

1≤ i< j≤ r
ninj , the number of edges of the complete multipartite

graph Kn1,n2,...,nr , let G (n1, n2 . . . , nr;m) denote the family of 2-edge connected graphs
that are obtained from the disjoint union of r complete graphsKn1 ,Kn2 , . . . ,Knr by adding
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m edges so that each edge links a vertex of Kni to a vertex of Knj for some i and j with
i 6= j.

Define G r
m = {G : G ∈ G (n1, n2, . . . , nr;m), where n1, n2, . . . , nr are integers with

nr ≥ nr−1 ≥ · · · ≥ n1 ≥ 3 and 2 ≤ r ≤ m ≤
∑

1≤ i< j≤ r
ninj}, D(G r

m) =
⋃

G∈G r
m

D(G)

and the parameter ~d(r;m) = min{~d(G) : G ∈ G r
m}. For a family of graphs G , define

~d(G ) = min{~d(G) : G ∈ G }. Hence, ~d(r;m) = ~d(G r
m).

In [3], Koh and Ng considered the following problem: given a family of disjoint graphs,
study the orientation number and design a corresponding optimal orientation for a result-
ing graph obtained by linking the given graphs with a set of additional edges.

For r = 2, Koh and Ng [3] proved the following:
• Let G1 and G2 be two bridgeless graphs of orders n1 and n2, respectively, and G ∗2 be the
family of graphs obtained by adding 2 edges to link G1 and G2. If ∆(G1) = n1 − 1 and

∆(G2) = n2 − 1, then ~d(G ∗2 ) = 4.

• min{m : ~d(2;m) = 3} = 4.

• For p ≥ 5, ~d(G (p, p; 2p)) = ~d(G (p, p+1; 2p)) = ~d(G (p, p+2; 2p+1)) = ~d(G (p, p+3; 2p+2))
= 2.

Also, Ng [6] proved the following:

• ~d(G (p, p+ 4; 2p+ 3)) = 2.

• For q ≥ p+ 5, ~d(G (p, q; 2p+ 4)) = 2.
In this paper, we focus on the orientation number and designing a corresponding optimal

orientation for three complete graphs with linkages.
Let D be a digraph. For x, y ∈ V (D), write x → y or y ← x if (x, y) is an arc in D.

More generally, for X,Y ⊆ V (D) with X ∩ Y = φ, write, X → Y if for every vertex x in
X and for every vertex y in Y, we have x → y. For simplicity, write x → Y for {x} → Y

and X → y for X → {y}. The converse of D, denoted by D̃, is the digraph obtained

from D by reversing each arc in D. It is clear that d(D) = d(D̃). The subdigraph of D
induced by A ⊆ V (D) is denoted by D[A].

We refer to [1] for notations and terminology not described here. For results on orienta-
tions of graphs, see a survey by Koh and Tay [4]. (Boesch and Tindell [2] and independently

Maurer [5] proved that: ~d(Kn) = 2 if n ≥ 3 and n 6= 4, and ~d(K4) = 3. Solt́es [8] proved

that ~d(Kp,q) is 3 if 2 ≤ p ≤ q ≤
( p

b p2c
)

and it is 4 if q >
( p

b p2c
)
, where bxc denotes the

greatest integer not exceeding the real x.)

2. Three complete graphs with linkages

In this section, we consider the orientation number for three complete graphs with
linkages.

Theorem 2.1. Let i ∈ {1, 2, 3}. Let Gi be a bridgeless graph of order ni ≥ 3 and let
G (G1, G2, G3; 3) be the family of 2-edge connected graphs obtained by adding 3 edges to

link G1, G2 and G3. If ∆(Gi) = ni − 1, then ~d(G (G1, G2, G3; 3)) = 6.

Proof: Let xi ∈ V (Gi) be a vertex such that dGi(xi) = ni−1, Ai be a maximal indepen-
dent subset of Gi−xi, G′i = Gi− (Ai∪{xi}) and G = G1∪G2∪G3∪{x1x2, x2x3, x1x3}.
Then G ∈ G (G1, G2, G3; 3). Orient the edges of G as follows:
(i) x1 → x2 → x3 → x1;
(ii) Ai → xi → V (G′i);
(iii) u→ a if u ∈ V (G′1), a ∈ A1 and ua ∈ E(G1);
v → b if v ∈ V (G′2), b ∈ A2 and vb ∈ E(G2);
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w → c if w ∈ V (G′3), c ∈ A3 and wc ∈ E(G3);
(iv) orient the remaining edges of G arbitrarily.
Let D be the resulting digraph. We claim that d(D) ≤ 6. By the nature of the orientation,
we compute eccentricities only for vertices of G1.
• Clearly, x1 → V (G′1), x1 → x2 → V (G′2), and x1 → x2 → x3 → V (G′3). Let a ∈ A1,
b ∈ A2, c ∈ A3 be arbitrary. As each Gi is 2-edge-connected, there exist u ∈ V (G′1),
v ∈ V (G′2), w ∈ V (G′3) such that ua ∈ E(G1), vb ∈ E(G2), wc ∈ E(G3). Then u→ a,
v → b, w → c. This shows that eD(x1) ≤ 4.
• Let u ∈ V (G′1). By the choice of A1, there exists a ∈ A1 such that ua ∈ E(G1).
Then u → a. As A1 → x1, u → a → x1. This together with eD(x1) ≤ 4 implies that
eD(u) ≤ 6.
• Let a ∈ A1. A1 → x1 and eD(x1) ≤ 4 implies that eD(a) ≤ 5.

Hence, d(D) ≤ 6, and therefore ~d(G) ≤ 6. Consequently, ~d(G (G1, G2, G3; 3)) ≤ 6.

We next prove ~d(G (G1, G2, G3; 3)) ≥ 6 by the method of contradiction. Suppose there
exists a graph G0 in G (G1, G2, G3; 3) and an orientation D0 in D(G0) such that d(D0) ≤ 5.
Since G0 is 2-edge connected, the three edges added to G1 ∪ G2 ∪ G3 to obtain G0 must
be x′y′, y′′z′, z′′x′′ for some x′, x′′ ∈ V (G1), y

′, y′′ ∈ V (G2), z
′, z′′ ∈ V (G3). As D0 ∈

D(G0), in D0, we have either x′ → y′, y′′ → z′, z′′ → x′′ or x′ ← y′, y′′ ← z′, z′′ ← x′′.
By symmetry, assume that x′ → y′, y′′ → z′, z′′ → x′′. We consider three cases.
Case 1. Among the three pairs {x′, x′′}, {y′, y′′}, {z′, z′′}, at least two satisfy x′ = x′′,
y′ = y′′, z′ = z′′, respectively.

Assume, by symmetry, that x′ = x′′ and z′ = z′′.
If there exists x0 ∈ V (G1)\{x′} such that x′ → x0, then y′ = y′′. (Otherwise, y′ 6= y′′,

and there is no directed path from x0 to any vertex of V (G3) \ {z′}, a contradiction.) For
any z0 ∈ V (G3) \ {z′}, since dD0(x0, z0) ≤ 5, we have x0 → x′0 → x′ → y′ → z′ → z0
for some x′0 ∈ V (G1) \ {x′, x0}. Hence, z′ → (V (G3) \ {z′}). Consequently, there is no
directed path from any vertex of V (G3) \ {z′} to z′, a contradiction.

This contradiction shows that for any x0 ∈ V (G1) \ {x′}, we have x′ ← x0. Hence,
(V (G1)\{x′}) → x′. Then, there is no directed path from x′ to any vertex of V (G1)\{x′},
once again a contradiction.
Case 2. Among the three pairs {x′, x′′}, {y′, y′′}, {z′, z′′}, exactly one satisfy x′ = x′′,
y′ = y′′, z′ = z′′, respectively.

Assume, by symmetry, that x′ = x′′.
If x0 ∈ V (G1) \ {x′} and z0 ∈ V (G3) \ {z′, z′′}, then since dD0(x0, z0) ≤ 5, x0 →

x′ → y′ → y′′ → z′ → z0. Hence, (V (G1) \ {x′}) → x′ and z′ → (V (G3) \ {z′, z′′}).
Then, there is no directed path from x′ to any vertex in V (G1) \ {x′}, a contradiction.
Case 3. x′ 6= x′′, y′ 6= y′′, z′ 6= z′′.

If x0 ∈ V (G1) \ {x′, x′′} and z0 ∈ V (G3) \ {z′, z′′}, then since dD0(x0, z0) ≤ 5, x0 →
x′ → y′ → y′′ → z′ → z0. Hence, (V (G1) \ {x′, x′′}) → x′ and z′ → (V (G3) \ {z′, z′′}).
dD0(z′, y′′) ≤ 5 implies that z′ → z′′ → x′′ → x′ → y′ → y′′. Now dD0(z0, z

′) ≥ 6,
a contradiction. This contradiction shows that for any x0 ∈ V (G1) \ {x′}, we have
x′ ← x0. Hence, (V (G1) \ {x′}) → x′. Then, there is no directed path from x′ to any
vertex of V (G1) \ {x′}, once again a contradiction.

This completes the proof.

Theorem 2.2. Let i ∈ {1, 2, 3}. Let Gi be a bridgeless graph of order ni ≥ 3 and let
G (G1, G2, G3; 4) be the family of 2-edge connected graphs obtained by adding 4 edges to

link G1, G2 and G3. If K1,1,ni−2 ⊆ Gi, then ~d(G (G1, G2, G3; 4)) = 4.
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Proof: Let V (Gi) = {xij | j = 1, 2, . . . , ni}, Vi = {xij | j = 3, 4, . . . , ni}, dGi(x
i
1)

= dGi(x
i
2) = ni − 1, and G = G1 ∪ G2 ∪ G3 ∪ {x11x21, x12x21, x21x31, x21x32}. Then G ∈

G (G1, G2, G3; 4). Orient the edges of G as follows:
(i) {x11, x31} → x21 → {x12, x32};
(ii) x12 → {x11} ∪ V1, V1 → x11, x

2
1 → x22 → V2 → x21, {x32} ∪ V3 → x31, x

3
2 → V3;

(iii) orient the remaining edges of G arbitrarily.
Let D be the resulting digraph. We claim that d(D) ≤ 4.

The existence of the paths from: x21 → x22 → V2, x
2
1 → x12 → V1 ∪ {x11}, and

x21 → x32 → V3 ∪ {x31} shows that eD(x21) ≤ 2. This together with: x12 → x11 → x21
imply that eD(x11) ≤ 3 and eD(x12) ≤ 4; x22 → x23 → x21 imply that eD(x22) ≤ 4; for any
x2i ∈ V2, x

2
i → x21 imply that eD(x2i ) ≤ 3. For any x1i ∈ V1, x

1
i → x11 and eD(x11) ≤ 3

implies that eD(x1i ) ≤ 4. By the nature of the orientation, the bounds for the eccentricities
of the vertices x31, x

3
2, x

3
i , where x3i ∈ V3, are equal to the bounds of the eccentricities of

the vertices x11, x
1
2, x

1
i , where x1i ∈ V1.

This shows that d(D) ≤ 4, and hence ~d(G) ≤ 4. Consequently, ~d(G (G1, G2, G3; 4)) ≤
4.

We next prove ~d(G (G1, G2, G3; 4)) ≥ 4 by the method of contradiction. Suppose there
is a G0 in G (G1, G2, G3; 4) and an orientation D0 of G0 such that d(D0) ≤ 3. We consider
two cases.
Case 1. There is no edge with one end in Gr and other end in Gs for some r, s ∈ {1, 2, 3}
with r 6= s.

Since G0 is 2-edge-connected, assume that the linked edges added to be x1r1x
2
r1 , x

1
r2x

2
r2 ,

x2r3x
3
r1 and x2r4x

3
r2 . As D0 ∈ D(G0), without loss of generality, assume that, in D0, we

have x1r1 → x2r1 , x
2
r2 → x1r2 , x

2
r3 → x3r1 , x

3
r2 → x2r4 . Then, for any x1p ∈ V (G1) \ {x1r1}

and for any x3q ∈ V (G3) \ {x3r1}, dD0(x1p, x
3
q) ≥ 4, a contradiction.

Case 2. For every r, s ∈ {1, 2, 3} with r 6= s, there exists at least one edge with one end
in Gr and other end in Gs.

Since G0 is 2-edge-connected, assume that the linked edges added to be x1r1x
2
r1 , x

2
r2x

3
r1 ,

x1r2x
3
r2 and x1r3x

3
r3 . As D0 ∈ D(G0), without loss of generality, assume that, in D0, we

have x1r1 → x2r1 , x
2
r2 → x3r1 , x

3
r2 → x1r2 and either x1r3 → x3r3 or x3r3 → x1r3 . Then, for any

x3p ∈ V (G3)\{x3r2 , x
3
r3} and for any x2q ∈ V (G2)\{x2r1}, dD0(x3p, x

2
q) ≥ 4, a contradiction.

This completes the proof.
Recall that: G 3

m = {G : G ∈ G (n1, n2, n3;m), where n1, n2, n3 are integers with n3 ≥
n2 ≥ n1 ≥ 3 and 3 ≤ m ≤ n1n2 +n1n3 +n2n3}. Set G 3∗

m = {G : G ∈ G (n1, n2, n3;m),
where n1, n2, n3 are integers with n3 ≥ n2 ≥ n1 ≥ 3, 3 ≤ m ≤ n1n2 + n1n3 + n2n3,
n1 6= 4, n2 6= 4 and n3 6= 4}.

Theorem 2.3. ~d(G 3∗
9 ) ≤ 3.

Proof: Let V (Kn1) = {x1, x2, . . . , xn1}, V (Kn2) = {y1, y2, . . . , yn2}, V (Kn3) = {z1, z2,
. . . , zn3}; V1 = {x3, x4, . . . , xn1}, V2 = {y3, y4, . . . , yn2}, V3 = {z3, z4, . . . , zn3}; G1, G2

and G3 be the complete subgraphs of Kn1 , Kn2 and Kn3 induced by the sets V1, V2 and V3,
respectively; andG = Kn1∪Kn2∪Kn3∪{x1y2, x1z2, x2y1, x2z1, x2y2, x2z2, y1z2, y2z1, y2z2}.
Then G ∈ G 3∗

9 . Orient the edges of G as follows:
(i) x1 → V1 → x2, x1 → x2 → {y1, y2, z1};
(ii) y1 → V2 → y2, y1 → y2 → {z1, z2, x1};
(iii) z1 → V3 → z2, z1 → z2 → {x1, x2, y1}; and

(iv) orient the edges of G1, G2 and G3 such that ~d(G1) ≤ 3, ~d(G2) ≤ 3 and ~d(G3) ≤ 3.
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Let D be the resulting digraph. We claim that d(D) ≤ 3. By the nature of the orienta-
tion, we compute eccentricity only for the vertices of Kn1 . The existence of the paths from:
x1 → V1, x1 → x2 → y2, x1 → x2 → y1 → V2, x1 → x2 → z1 → {z2} ∪ V3, in D,
shows that eD(x1) ≤ 3; x2 → y2 → x1 → V1, x2 → y1 → V2, x2 → z1 → {z2} ∪ V3,
in D, shows that eD(x2) ≤ 3; V1 → x2 → y2 → {x1, z2}, V1 → x2 → y1 → V2,

V1 → x2 → z1 → V3, in D, and ~d(G1) ≤ 3, shows that for every xi ∈ V1, eD(xi) ≤ 3.

Thus d(D) ≤ 3, and hence ~d(G) ≤ 3. Consequently, ~d(G 3∗
9 ) ≤ 3.

Theorem 2.4. ~d(G (4, 4, 4; 12)) ≤ 3.

Proof: Let {x1, x2, x3, x4}, {y1, y2, y3, y4}, {z1, z2, z3, z4} be the vertex sets of three dis-
joint copies of K4 and from 3K4 obtain G by adding the 12 edges: x1y1, y1z1, z1x1, x1y4,
x1z4, y1x4, y1z4, z1x4, z1y4, x4y3, y4z3, z4x3. Then G ∈ G (4, 4, 4; 12). Orient the edges of G
as follows:
x4 → {x1, x2, x3}, x3 → {x1, x2}, x2 → x1,
y4 → {y1, y2, y3}, y3 → {y1, y2}, y2 → y1,
z4 → {z1, z2, z3}, z3 → {z1, z2}, z2 → z1,
x1 → {y1, y4, z4}, y1 → {z1, z4, x4}, z1 → {x1, x4, y4},
x4 → y3, y4 → z3, and z4 → x3.
Let D be the resulting digraph. Direct verification shows that d(D) = 3.

This completes the proof.

Theorem 2.5. Let n3 ≥ 5 or n3 = 3. Then ~d(G (4, 4, n3; 11)) ≤ 3.

Proof: Let {x1, x2, x3, x4}, {y1, y2, y3, y4} and {z1, z2, . . . , zn3} be, respectively, the vertex
sets of two disjoint copies of K4 and Kn3 ; let V ′ = V (Kn3) \ {z1, z2}; and let G = K4

∪ K4 ∪ Kn3 ∪ {x1y1, x1y4, x1z1, x1z2, x3z2, x4y1, x4y3, x4z1, y1z1, y1z2, y4z1}. Then G ∈
G (4, 4, n3; 11). Orient the edges of G as follows:
(i) x1 → {y1, y4, z2}, y1 → {z1, z2, x4}, z1 → {x1, x4, y4}, x4 → y3, z2 → x3;
(ii) x4 → {x3, x2, x1}, {x3, x2} → x1, x3 → x2;
(iii) y4 → {y3, y2, y1}, {y3, y2} → y1, y3 → y2;
(iv) z2 → z1, z2 → V ′ → z1; and

(v) orient the edges of G[V ′] such that ~d(G[V ′]) ≤ 3.
Let D be the resulting digraph. We claim that d(D) ≤ 3. We show this by computing
upper bounds for eccentricities of the vertices.

Let zi ∈ V ′ be arbitrary. In D, the existence of the paths from: x1 → y4 → {y2, y3},
x1 → z2 → {z1, zi}, and x1 → y1 → x4 → {x2, x3} shows that eD(x1) ≤ 3; x2 →
x1 → z2 → {x3, zi}, x2 → x1 → y1 → {z1, x4}, and x2 → x1 → y4 → {y2, y3} shows
that eD(x2) ≤ 3; x3 → x2, x3 → x1 → y1 → x4, x3 → x1 → y4 → {y2, y3}, and
x3 → x1 → z2 → {z1, zi} shows that eD(x3) ≤ 3; x4 → {x2, x3}, x4 → x1 → y1,
x4 → x1 → y4 → {y2, y3}, and x4 → x1 → z2 → {z1, zi} shows that eD(x4) ≤ 3;
y1 → x4 → {x1, x2, x3}, y1 → z1 → y4 → {y2, y3}, and y1 → z2 → zi shows
that eD(y1) ≤ 3; y2 → y1 → x4 → {x1, x2, x3, y3}, y2 → y1 → z1 → y4, and
y2 → y1 → z2 → zi shows that eD(y2) ≤ 3; y3 → y2, y3 → y1 → z1 → y4,
y3 → y1 → x4 → {x1, x2, x3}, and y3 → y1 → z2 → zi shows that eD(y3) ≤ 3;
y4 → y2, y4 → y1 → z1, y4 → y1 → x4 → {x1, x2, x3, y3}, and y4 → y1 → z2 → zi
shows that eD(y4) ≤ 3; z1 → x4 → {x1, x2, x3}, z1 → y4 → {y1, y2, y3}, and z1 →
x1 → z2 → zi shows that eD(z1) ≤ 3; z2 → zi, z2 → z1 → x4 → {x1, x2, x3}, and
z2 → z1 → y4 → {y1, y2, y3} shows that eD(z2) ≤ 3; zi → z1 → x4 → {x1, x2, x3},
zi → z1 → y4 → {y1, y2, y3}, and zi → z1 → x1 → z2 together with ~d(G[V ′]) ≤ 3
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shows that eD(zi) ≤ 3.
This completes the proof.

Theorem 2.6. Let n2 ≥ 5 or n2 = 3, and let n3 ≥ 5 or n3 = 3. Then ~d(G (4, n2, n3; 10) ≤
3.

Proof: Let {x1, x2, x3, x4}, {y1, y2, . . . , yn2}, and {z1, z2, . . . , zn3} be, respectively, the ver-
tex sets of K4, Kn2 and Kn3 ; let V ′ = V (Kn2)\{y1, y2} and V ′′ = V (Kn3)\{z1, z2}; and
let G = K4 ∪Kn2 ∪Kn3 ∪ {x1y1, x1y2, x4y1, x1z1, x1z2, x4z1, y1z1, y1z2, y2z1, x3z2}. Then
G ∈ G (4, n2, n3; 10). Orient the edges of G as follows:
(i) x1 → {y1, y2, z2}, y1 → {z1, z2, x4}, z1 → {x1, x4, y2}, z2 → x3;
(ii) x4 → {x3, x2, x1}, x3 → {x2, x1}, x2 → x1;
(iii) y2 → y1, y2 → V ′ → y1, z2 → z1, z2 → V ′′ → z1; and

(iv) orient the edges of G[V ′] and that of G[V ′′] such that ~d(G[V ′]) ≤ 3 and ~d(G[V ′′]) ≤ 3.
Let D be the resulting digraph. We claim that d(D) ≤ 3. We show this by computing

upper bounds for eccentricities of the vertices.
Let yi ∈ V ′ and zj ∈ V ′′ are arbitrary. In D, the existence of the paths from:

x1 → y1 → x4 → {x2, x3}, x1 → y2 → yi, and x1 → z2 → {z1, zj} shows that
eD(x1) ≤ 3; x2 → x1 → y1 → x4, x2 → x1 → y2 → yi, and x2 → x1 →
z2 → {x3, z1, zj} shows that eD(x2) ≤ 3; x3 → x2, x3 → x1 → y1 → {z1, x4},
x3 → x1 → y2 → yi, and x3 → x1 → z2 → zj shows that eD(x3) ≤ 3; x4 → {x2, x3},
x4 → x1 → y1 → z1, x4 → x1 → y2 → yi, and x4 → x1 → z2 → zj shows that
eD(x4) ≤ 3; y1 → x4 → {x1, x2, x3}, y1 → z1 → y2 → yi, and y1 → z2 → zj
shows that eD(y1) ≤ 3; y2 → yi, y2 → y1 → x4 → {x1, x2, x3}, y2 → y1 → z1, and
y2 → y1 → z2 → zj shows that eD(y2) ≤ 3; yi → y1 → x4 → {x1, x2, x3}, yi → y1 →
z2 → zj and yi → y1 → z1 → y2, together with ~d(G[V ′]) ≤ 3 shows that eD(yi) ≤ 3;
z1 → x4 → {x1, x2, x3}, z1 → y2 → {y1, yi}, and z1 → x1 → z2 → zj shows that
eD(z1) ≤ 3; z2 → zj , z2 → z1 → x4 → {x1, x2, x3}, and z2 → z1 → y2 → {y1, yi}
shows that eD(z2) ≤ 3; zj → z1 → x4 → {x2, x3}, zj → z1 → y2 → {y1, yi}, and

zj → z1 → x1 → z2, together with ~d(G[V ′′]) ≤ 3 shows that eD(zj) ≤ 3.
This completes the proof.

Corollary 2.1.

(i) min{m : ~d(3;m) = 6} = 3.

(ii) min{m : ~d(3;m) = 4} = 4.

(iii) min{m : ~d(G 3∗
m ) = 3} ≤ 9.

(iv) min{m : ~d(G (4, 4, 4;m)) ≤ 3} ≤ 12.

(v) Let n3 ∈ {3, 5, 6, 7, . . . }. min{m : ~d(G (4, 4, n3;m)) ≤ 3} ≤ 11.

(vi) Let n2, n3 ∈ {3, 5, 6, 7, . . . }. min{m : ~d(G (4, n2, n3;m)) ≤ 3} ≤ 10.

(vii) min{m : ~d(3;m) = 3} ≤ 12.

Proof: Proofs of (i), (ii), (iii), (iv), (v), and (vi) follows by Theorems 2.1, 2.2, 2.3, 2.4,
2.5, and 2.6. Proof of (vii) follows from (iii), (iv), (v) and (vi).

Problem 2.1. Find min{m : ~d(3;m) = 3}.
Theorem 2.7. For n ≥ 5 or n = 3, there exists a graph G in G (n, n, n; 6n) with
~d(G) = 2.

Proof: Let m be odd and let V = {v0, v1, . . . , vm−1} be the vertex set of the complete
graph Km. Orient the edges of Km as follows:
(i) {v2, v4, v6, . . . , vm−1} → v0 → {v1, v3, v5, . . . , vm−2};
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(ii) {v0} ∪ {v3, v5, v7, . . . , vm−2} → v1 → {v2, v4, v6, . . . , vm−1};
(iii) {v0, v2, v4, . . . , vm−3} → vm−2 → {v1, v3, v5, . . . , vm−4} ∪ {vm−1};
(iv) {v1, v3, v5, . . . , vm−2} → vm−1 → {v0, v2, v4, . . . , vm−3};
(v) when i ∈ {2, 4, 6, . . . ,m− 3},
({v1, v3, v5, . . . , vi−1} ∪ {vi+2, vi+4, vi+6, . . . , vm−1})→ vi →
({v0, v2, v4, . . . , vi−2} ∪ {vi+1, vi+3, vi+5, . . . , vm−2});
(vi) when i ∈ {3, 5, 7, . . . ,m− 4},
({v0, v2, v4, . . . , vi−1} ∪ {vi+2, vi+4, vi+6, . . . , vm−2})→ vi →
({v1, v3, v5, . . . , vi−2} ∪ {vi+1, vi+3, vi+5, . . . , vm−1}).

Let D be the resulting digraph. We claim that d(D) = 2. We show this by computing
eccentricities for the vertices of D.

The existence of the paths, in D, from: v0 → {v1, v3, v5, . . . , vm−2} and v0 → v1 →
{v2, v4, v6, . . . , vm−1} shows that eD(v0) ≤ 2; v1 → {v2, v4, v6, . . . , vm−1} and v1 → v2
→ {v0} ∪ {v3, v5, v7, . . . , vm−2} shows that eD(v1) ≤ 2; for i ∈ {2, 4, 6, . . . ,m − 5}, vi
→ {v0, v2, v4, . . . , vi−2} ∪ {vi+1, vi+3, vi+5, . . . , vm−2}, vi → vi+1 → {v1, v3, v5, . . . , vi−1}
∪ {vi+2, vi+4, vi+6, . . . , vm−1 shows that eD(vi) ≤ 2; for i ∈ {3, 5, 7, . . . ,m − 4}, vi →
{v1, v3, v5, . . . , vi−2} ∪ {vi+1, vi+3, vi+5, . . . , vm−1}, vi → vi+1 → {v0, v2, v4, . . . , vi−1} ∪
{vi+2, vi+4, vi+6, . . . , vm−2} shows that eD(vi) ≤ 2; vm−3→ {v0, v2, v4, . . . , vm−5} ∪ {vm−2}
and vm−3 → vm−2 → {v1, v3, v5, . . . , vm−4} ∪ {vm−1} shows that eD(vm−3) ≤ 2; vm−2 →
{v1, v3, v5, . . . , vm−4} and vm−2 → vm−1 → {v0, v2, v4, . . . , vm−3} shows that eD(vm−2)
≤ 2; vm−1 → {v0, v2, v4, . . . , vm−3} and vm−1 → v0 → {v1, v3, v5, . . . , vm−2} shows that
eD(vm−1) ≤ 2.

We consider two cases.
Case 1. n = m is odd.

Let V1 = {x0, x1, . . . , xm−1}, V2 = {y0, y1, . . . , ym−1}, and V3 = {z0, z1, . . . , zm−1} be
the vertex sets of three disjoint complete graphs Km.

Let G = 3Km ∪ {xiyi, xi+1yi, yizi, yizi+1, xizm−1−i, xm−izi : i ∈ {0, 1, 2, . . . , m − 1}},
where suffixes are reduced modulo m. Then G ∈ G (m,m,m; 6m). Orient the edges of G
as follows:
(i) if vi → vj , then xi → xj , yi ← yj and zi → zj ;
(ii) xi → {yi, zm−1−i}, yi → {xi+1, zi+1}, and zi → {yi, xm−i}.

Let D′ be the resulting digraph. We claim that d(D′) = 2. We show this by
computing eccentricities for the vertices of D′. Let D′i = D′[Vi], i ∈ {1, 2, 3}. As

D′1
∼= D̃′2

∼= D′3
∼= D, d(D′i) = 2.

The existence of the paths: x0 → y0, x0 → y0 → yj for j ∈ {2, 4, 6, . . . ,m − 1},
x0 → xj → yj for j ∈ {1, 3, 5, . . . ,m−2}, x0 → zm−1 → zj for j ∈ {0, 2, 4, . . . ,m−3},
x0 → xj → zm−1−j for j ∈ {1, 3, 5, . . . ,m − 2}, and x0 → zm−1, in D′, together with
eD′1(x0) ≤ 2 shows that eD′(x0) ≤ 2.

The existence of the paths: x1 → y1 → yj for j ∈ {0} ∪ {3, 5, 7, . . . ,m − 2},
x1 → y1, x1 → xj → yj for j ∈ {2, 4, 6, . . . ,m − 1}, x1 → zm−2 → zj for
j ∈ {1, 3, 5, . . . ,m − 4} ∪ {m − 1}, x1 → xj → zm−1−j for j ∈ {2, 4, 6, . . . ,m − 1},
and x1 → zm−2, in D′, together with eD′1(x1) ≤ 2 shows that eD′(x1) ≤ 2.

Let i ∈ {2, 4, 6, . . . ,m − 3}. The existence of the paths from: xi → yi, xi → yi →
{y1, y3, y5, . . . , yi−1} ∪ {yi+2, yi+4, yi+6, . . . , ym−1}, xi → xj → yj for j ∈ {0, 2, 4, . . . , i−
2}∪{i+1, i+3, i+5, . . . ,m−2}, xi → zm−1−i → {z0, z2, z4, . . . , zm−i−3}∪{zm−i, zm−i+2,
zm−i+4, . . . , zm−2}, xi → xj → zm−1−j for j ∈ {0, 2, 4, . . . , i−2}∪{i+1, i+3, i+5, . . . ,m−
2}, and xi → zm−1−i, in D′, together with eD′1(xi) ≤ 2 shows that eD′(xi) ≤ 2.

Let i ∈ {3, 5, 7, . . . ,m − 4}. The existence of the paths from: xi → yi, xi → yi →
{y0, y2, y4, . . . , yi−1} ∪ {yi+2, yi+4, yi+6, . . . , ym−2}, xi → xj → yj for j ∈ {1, 3, 5, . . . , i−
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2}∪{i+1, i+3, i+5, . . . ,m−1}, xi → zm−i−1 → {z1, z3, z5, . . . , zm−i−3}∪{zm−i, zm−i+2,
zm−i+4, . . . , zm−1}, xi → xj → zm−j−1 for j ∈ {1, 3, 5, . . . , i−2}∪{i+1, i+3, i+5, . . . ,m−
1}, and xi → zm−i−1, in D′, together with eD′1(xi) ≤ 2 shows that eD′(xi) ≤ 2.

The existence of the paths from: xm−2 → ym−2, xm−2 → ym−2 → {y0, y2, y4, . . . , ym−3},
xm−2 → xj → yj for j ∈ {1, 3, 5, . . . ,m − 4} ∪ {m − 1}, xm−2 → z1, xm−2 → z1 →
{z2, z4, z6, . . . , zm−1}, and xm−2 → xj → zm−1−j for j ∈ {1, 3, 5, . . . ,m− 4} ∪ {m− 1},
in D′, together with eD′1(xm−2) ≤ 2 shows that eD′(xm−2) ≤ 2.

The existence of the paths from: xm−1 → ym−1, xm−1 → ym−1 → {y1, y3, y5, . . . , ym−2},
xm−1 → xj → yj for j ∈ {0, 2, 4, . . . ,m − 3}, xm−1 → z0, xm−1 → z0 → {z1, z3, z5, . . . ,
zm−2}, and xm−1 → xj → zm−1−j for j ∈ {0, 2, 4, . . . ,m − 3}, in D′, together with
eD′1(xm−1) ≤ 2 shows that eD′(xm−1) ≤ 2.

The existence of the paths from: y0 → x1, y0 → x1 → {x2, x4, x6, . . . , xm−1},
y0 → yj → xj+1 for j ∈ {2, 4, 6, . . . ,m−1}, y0 → z1, y0 → z1 → {z2, z4, z6, . . . , zm−1},
and y0 → yj → zj+1 for j ∈ {2, 4, 6, . . . ,m−1}, in D′, together with eD′2(y0) ≤ 2 shows

that eD′(y0) ≤ 2.
The existence of the paths from: y1 → x2 → {x0}∪{x3, x5, x7, . . . , xm−2}, y1 → yj →

xj+1 for j ∈ {0}∪{3, 5, 7, . . . ,m−2}, y1 → x2, y1 → z2 → {z0}∪{z3, z5, z7, . . . , zm−2},
y1 → yj → zj+1 for j ∈ {0} ∪ {3, 5, 7, . . . ,m − 2}, and y1 → z2, in D′, together with
eD′2(y1) ≤ 2 shows that eD′(y1) ≤ 2.

Let i ∈ {2, 4, 6, . . . ,m − 5}. The existence of the paths from: yi → xi+1, yi →
xi+1 → {x1, x3, x5, . . . , xi−1} ∪ {xi+2, xi+4, xi+6, . . . , xm−1}, yi → yj → xj+1 for j ∈
{1, 3, 5, . . . , i− 1}∪{i+ 2, i+ 4, i+ 6, . . . ,m− 1}, yi → zi+1, yi → zi+1 → {z1, z3, z5, . . . ,
zi−1} ∪ {zi+2, zi+4, zi+6, . . . , zm−1}, and yi → yj → zj+1 for j ∈ {1, 3, 5, . . . , i− 1} ∪ {i+
2, i+ 4, i+ 6, . . . ,m− 1}, in D′, together with eD′2(yi) ≤ 2 shows that eD′(yi) ≤ 2.

Let i ∈ {3, 5, 7, . . . ,m − 4}. The existence of the paths from: yi → xi+1, yi →
xi+1 → {x0, x2, x4, . . . , xi−1} ∪ {xi+2, xi+4, xi+6, . . . , xm−2}, yi → yj → xj+1 for j ∈
{0, 2, 4, . . . , i− 1}∪{i+ 2, i+ 4, i+ 6, . . . ,m− 2}, yi → zi+1, yi → zi+1 → {z0, z2, z4, . . . ,
zi−1} ∪ {zi+2, zi+4, zi+6, . . . , zm−2}, and yi → yj → zj+1 for j ∈ {0, 2, 4, . . . , i− 1} ∪ {i+
2, i+ 4, i+ 6, . . . ,m− 2}, in D′, together with eD′2(yi) ≤ 2 shows that eD′(yi) ≤ 2.

The existence of the paths from: ym−3 → xm−2, ym−3 → xm−2 → {x1, x3, x5, . . . , xm−4}
∪{xm−1}, ym−3 → yj → xj+1 for j ∈ {1, 3, 5, . . . ,m − 4} ∪ {m − 1}, ym−3 → zm−2,
ym−3 → zm−2 → {z1, z3, z5, . . . , zm−4} ∪ {zm−1}, and ym−3 → yj → zj+1 for
j ∈ {1, 3, 5, . . . ,m − 4} ∪ {m − 1}, in D′, together with eD′2(ym−3) ≤ 2 shows that

eD′(ym−3) ≤ 2.
The existence of the paths from: ym−2 → xm−1, ym−2 → xm−1 → {x0, x2, x4, . . . , xm−3},

ym−2 → yj → xj+1 for j ∈ {0, 2, 4, . . . ,m − 3}, ym−2 → zm−1, ym−2 → zm−1 →
{z0, z2, z4, . . . , zm−3}, and ym−2 → yj → zj+1 for j ∈ {0, 2, 4, . . . ,m−3}, in D′, together
with eD′2(ym−2) ≤ 2 shows that eD′(ym−2) ≤ 2.

The existence of the paths from: ym−1 → x0, ym−1 → x0 → {x1, x3, x5, . . . , xm−2},
ym−1 → yj → xj+1 for j ∈ {1, 3, 5, . . . ,m − 2}, ym−1 → z0, ym−1 → z0 → {z1, z3, z5,
. . . , zm−2}, and ym−1 → yj → zj+1 for j ∈ {1, 3, 5, . . . ,m − 2}, in D′, together with
eD′2(ym−1) ≤ 2 shows that eD′(ym−1) ≤ 2.

The existence of the paths from: z0 → x0, z0 → x0 → {x1, x3, x5, . . . , xm−2},
z0 → zj → xm−j for j ∈ {1, 3, 5, . . . ,m−2}, z0 → y0, z0 → y0 → {y2, y4, y6, . . . , ym−1},
z0 → zj → yj for j ∈ {1, 3, 5, . . . ,m− 2}, in D′, together with eD′3(z0) ≤ 2 shows that

eD′(z0) ≤ 2.
The existence of the paths from: z1 → xm−1 → {x0, x2, x4, . . . , xm−3}, z1 → zj →

xm−j for j ∈ {2, 4, 6, . . . ,m − 1}, z1 → xm−1, z1 → y1, z1 → y1 → {y0} ∪
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{y3, y5, y7, . . . , ym−2}, and z1 → zj → yj for j ∈ {2, 4, 6, . . . ,m − 1}, in D′, together
with eD′3(z1) ≤ 2 shows that eD′(z1) ≤ 2.

The existence of the paths from: z2 → xm−2, z2 → xm−2 → {x1, x3, x5, . . . , xm−4} ∪
{xm−1}, z2 → zj → xm−j for j ∈ {0} ∪ {3, 5, 7, . . . ,m − 2}, z2 → y2, z2 → y2 →
{y1} ∪ {y4, y6, y8, . . . , ym−1}, and z2 → zj → yj for j ∈ {0} ∪ {3, 5, 7, . . . ,m− 2}, in D′,
together with eD′3(z2) ≤ 2 shows that eD′(z2) ≤ 2.

Let i ∈ {4, 6, 8, . . . ,m − 3}. The existence of the paths from: zi → xm−i,
zi → xm−i → {x1, x3, x5, . . . , xm−i−2} ∪ {xm−i+1, xm−i+3, xm−i+5, . . . , xm−1}, zi →
zj → xm−j for j ∈ {0, 2, 4, . . . , i − 2} ∪ {i + 1, i + 3, i + 5, . . . ,m − 2}, zi → yi,
zi → yi → {y1, y3, y5, . . . , yi−1} ∪ {yi+2, yi+4, yi+6, . . . , ym−1}, and zi → zj → yj for
j ∈ {0, 2, 4, . . . , i− 2} ∪ {i+ 1, i+ 3, i+ 5, . . . ,m− 2}, in D′, together with eD′3(zi) ≤ 2

shows that eD′(zi) ≤ 2.
Let i ∈ {3, 5, 7, . . . ,m − 4}. The existence of the paths from: zi → xm−i,

zi → xm−i → {x0, x2, x4, . . . , xm−i−2} ∪ {xm−i+1, xm−i+3, xm−i+5, . . . , xm−2}, zi →
zj → xm−j for j ∈ {1, 3, 5, . . . , i − 2} ∪ {i + 1, i + 3, i + 5, . . . ,m − 1}, zi → yi,
zi → yi → {y0, y2, y4, . . . , yi−1} ∪ {yi+2, yi+4, yi+6, . . . , ym−2}, zi → zj → yj for
j ∈ {1, 3, 5, . . . , i− 2} ∪ {i+ 1, i+ 3, i+ 5, . . . ,m− 1}, in D′, together with eD′3(zi) ≤ 2

shows that eD′(zi) ≤ 2.
The existence of the paths from: zm−2 → x2, zm−2 → x2 → {x0}∪{x3, x5, x7, . . . , xm−2},

zm−2 → zj → xm−j for j ∈ {1, 3, 5, . . . ,m − 4} ∪ {m − 1}, zm−2 → ym−2, zm−2 →
ym−2 → {y0, y2, y4, . . . , ym−3}, and zm−2 → zj → yj for j ∈ {1, 3, 5, . . . ,m−4}∪{m−1},
in D′, together with eD′3(zm−2) ≤ 2 shows that eD′(zm−2) ≤ 2.

The existence of the paths from: zm−1 → x1, zm−1 → x1 → {x2, x4, x6, . . . , xm−1},
zm−1 → zj → xm−j for j ∈ {0, 2, 4, . . . ,m−3}, zm−1 → ym−1 → {y1, y3, y5, . . . , ym−2},
zm−1 → zj → yj for j ∈ {0, 2, 4, . . . ,m − 3}, and zm−1 → ym−1, in D′, together with
eD′3(zm−1) ≤ 2, shows that eD′(zm−1) ≤ 2.

This completes the proof of the claim d(D′) = 2.
Case 2. n = m+ 1 is even.

Let V ′1 = V1 ∪ {x}, V ′2 = V2 ∪ {y}, and V ′3 = V3 ∪ {z}, where V1, V2, V3 are as in Case
1; let G = 3Kn ∪ {xy, yz, zx, xzm−1, yzm−1, yxm−1} ∪ {xyi, zxi, zyi, xiyi, yizi, xizm−i−1 :
i ∈ {0, 1, 2, . . . ,m− 1}}, where suffixes are reduced modulo m. Then G ∈ G (n, n, n; 6n).
Orient the edges of G as follows:
(i) if vi → vj , then xi → xj , yi ← yj and zi → zj ;
(ii) x → V1, {y0, y1, y2, . . . , ym−3} → y → {ym−2, ym−1}, and z → V3;
(iii′) y → x, x → z, y → z,
zm−1 → x, zm−1 → y, xm−1 → y,

{yi → x, xi → z, yi → z, xi → yi, zi → yi, zm−i−1 → xi : i ∈ {0, 1, 2, . . . ,m− 1}}.
Let D′ be the resulting digraph. We claim that d(D′) = 2. We show this by computing

eccentricities for the vertices of D′.
The existence of the paths from: x → V1, x → xi → yi for i ∈ {0, 1, 2, . . . ,m − 1},

x → xm−1 → y, x → z → V3, and x → z, in D′, shows that eD′(x) ≤ 2.
The existence of the paths from: y → x→ V1, y → x, y → ym−2 → {y0, y2, y4, . . . , ym−3},

y → ym−1 → {y1, y3, y5, . . . , ym−2}, y → ym−1, y → z → V3, and y → z, in D′, shows
that eD′(y) ≤ 2.

The existence of the paths from: z → zm−i−1 → xi for i ∈ {0, 1, 2, . . . ,m − 1},
z → zm−1 → x, z → zi → yi for i ∈ {0, 1, 2, . . . ,m− 1}, z → zm−1 → y, and z → V3,
in D′, shows that eD′(z) ≤ 2.

For i ∈ {0, 1, 2, . . . ,m − 1}, xi → yi → x shows that dD′(xi, x) ≤ 2, yi → x shows
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that dD′(yi, x) = 1, and zi → yi → x shows that dD′(zi, x) ≤ 2. y → x shows that
dD′(y, x) = 1. z → zm−1 → x shows that dD′(z, x) ≤ 2.

For i ∈ {0, 1, 2, . . . ,m−3}, xi → yi → y shows that dD′(xi, y) ≤ 2, yi → y shows that
dD′(yi, y) = 1, and zi → yi → y shows that dD′(zi, y) ≤ 2. xm−2 → xm−1 → y shows
that dD′(xm−2, y) ≤ 2. xm−1 → y shows that dD′(xm−1, y) = 1. ym−2 → y0 → y shows
that dD′(ym−2, y) ≤ 2. ym−1 → y1 → y shows that dD′(ym−1, y) ≤ 2. zm−2 → zm−1 →
y shows that dD′(zm−2, y) ≤ 2. zm−1 → y shows that dD′(zm−1, y) = 1. x → xm−1 → y
shows that dD′(x, y) ≤ 2. z → zm−1 → y shows that dD′(z, y) ≤ 2.

For i ∈ {0, 1, 2, . . . ,m − 1}, xi → z shows that dD′(xi, z) = 1, yi → z shows that
dD′(yi, z) = 1, and zi → yi → z shows that dD′(zi, z) ≤ 2. x → z shows that
dD′(x, z) = 1. y → z shows that dD′(y, z) = 1.

For i ∈ {0, 1, 2, . . . ,m − 1}, dD′(x0, yi) ≤ 2 follows from the existence of the paths:
x0 → y0, x0 → y0 → yj for j ∈ {2, 4, 6, . . . ,m − 1}, and x0 → xj → yj for
j ∈ {1, 3, 5, . . . ,m− 2}, in D′.

For i ∈ {0, 1, 2, . . . ,m − 1}, dD′(x1, yi) ≤ 2 follows from the existence of the paths:
x1 → y1, x1 → y1 → yj for j ∈ {0} ∪ {3, 5, 7, . . . ,m − 2}, x1 → xj → yj for
j ∈ {2, 4, 6, . . . ,m− 1}, in D′.

For i ∈ {2, 4, 6, . . . ,m − 3} and j ∈ {0, 1, 2, . . . ,m − 1}, dD′(xi, yj) ≤ 2 follows
from the existence of the paths from: xi → yi, xi → yi → {y1, y3, y5, . . . , yi−1} ∪
{yi+2, yi+4, yi+6, . . . , ym−1}, and xi → xk → yk for k ∈ {0, 2, 4, . . . , i − 2} ∪ {i + 1, i +
3, i+ 5, . . . ,m− 2}, in D′.

For i ∈ {3, 5, 7, . . . ,m − 4} and j ∈ {0, 1, 2, . . . ,m − 1}, dD′(xi, yj) ≤ 2 follows
from the existence of the paths from: xi → yi, xi → yi → {y0, y2, y4, . . . , yi−1} ∪
{yi+2, yi+4, yi+6, . . . , ym−2}, and xi → xk → yk for k ∈ {1, 3, 5, . . . , i − 2} ∪ {i + 1, i +
3, i+ 5, . . . ,m− 1}, in D′.

For i ∈ {0, 1, 2, . . . ,m− 1}, dD′(xm−2, yi) ≤ 2 follows from the existence of the paths
from: xm−2 → ym−2, xm−2 → ym−2 → {y0, y2, y4, . . . , ym−3}, and xm−2 → xj → yj
for j ∈ {1, 3, 5, . . . ,m− 4} ∪ {m− 1}, in D′.

For i ∈ {0, 1, 2, . . . ,m− 1}, dD′(xm−1, yi) ≤ 2 follows from the existence of the paths
from: xm−1 → ym−1, xm−1 → ym−1 → {y1, y3, y5, . . . , ym−2}, and xm−1 → xj → yj
for j ∈ {0, 2, 4, . . . ,m− 3}, in D′.

For i, j ∈ {0, 1, 2, . . . ,m − 1}, dD′(xi, zj) ≤ 2 follows from the existence of the path:
xi → z → zj , in D′.

For i, j ∈ {0, 1, 2, . . . ,m − 1}, dD′(yi, xj) ≤ 2 follows from the existence of the path:
yi → x → xj , in D′.

For i, j ∈ {0, 1, 2, . . . ,m − 1}, dD′(yi, zj) ≤ 2 follows from the existence of the path:
yi → z → zj , in D′.

For i ∈ {0, 1, 2, . . . ,m − 1}, dD′(z0, xi) ≤ 2 follows from the existence of the
paths: z0 → xm−1 → xj for j ∈ {0, 2, 4, . . . ,m − 3}, z0 → zj → xm−1−j for
j ∈ {1, 3, 5, . . . ,m− 2}, and z0 → xm−1, in D′.

For i ∈ {0, 1, 2, . . . ,m − 1}, dD′(z1, xi) ≤ 2 follows from the existence of the paths:
z1 → xm−2 → xj for j ∈ {1, 3, 5, . . . ,m − 4} ∪ {m − 1}, z1 → zj → xm−1−j for
j ∈ {2, 4, 6, . . . ,m− 1}, and z1 → xm−2, in D′.

For i ∈ {2, 4, 6, . . . ,m−3} and j ∈ {0, 1, 2, . . . ,m−1}, dD′(zi, xj) ≤ 2 follows from the
existence of the paths from: zi → xm−1−i → {x0, x2, x4, . . . , xm−i−3} ∪ {xm−i, xm−i+2,
xm−i+4, . . . , xm−2}, zi → zk → xm−1−k for k ∈ {0, 2, 4, . . . , i − 2} ∪ {i + 1, i + 3, i +
5, . . . ,m− 2}, and zi → xm−1−i, in D′.

For i ∈ {3, 5, 7, . . . ,m−4} and j ∈ {0, 1, 2, . . . ,m−1}, dD′(zi, xj) ≤ 2 follows from the
existence of the paths from: zi → xm−i−1 → {x1, x3, x5, . . . , xm−i−3} ∪ {xm−i, xm−i+2,
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xm−i+4, . . . , xm−1}, zi → zk → xm−k−1 for k ∈ {1, 3, 5, . . . , i − 2} ∪ {i + 1, i + 3, i +
5, . . . ,m− 1}, and zi → xm−i−1, in D′.

For i ∈ {0, 1, 2, . . . ,m− 1}, dD′(zm−2, xi) ≤ 2 follows from the existence of the paths
from: zm−2 → x1, zm−2 → x1 → {x2, x4, x6, . . . , xm−1}, and zm−2 → zj → xm−1−j for
j ∈ {1, 3, 5, . . . ,m− 4} ∪ {m− 1}, in D′.

For i ∈ {0, 1, 2, . . . ,m− 1}, dD′(zm−1, xi) ≤ 2 follows from the existence of the paths
from: zm−1 → x0, zm−1 → x0 → {x1, x3, x5, . . . , xm−2}, and zm−1 → zj → xm−1−j for
j ∈ {0, 2, 4, . . . ,m− 3}, in D′.

For i ∈ {0, 1, 2, . . . ,m − 1}, dD′(z0, yi) ≤ 2 follows from the existence of the
paths from: z0 → y0, z0 → y0 → {y2, y4, y6, . . . , ym−1}, and z0 → zj → yj for
j ∈ {1, 3, 5, . . . ,m− 2}, in D′.

For i ∈ {0, 1, 2, . . . ,m − 1}, dD′(z1, yi) ≤ 2 follows from the existence of the paths
from: z1 → y1, z1 → y1 → {y0} ∪ {y3, y5, y7, . . . , ym−2}, and z1 → zj → yj for
j ∈ {2, 4, 6, . . . ,m− 1}, in D′.

For i ∈ {0, 1, 2, . . . ,m − 1}, dD′(z2, yi) ≤ 2 follows from the existence of the paths
from: z2 → y2, z2 → y2 → {y1} ∪ {y4, y6, y8, . . . , ym−1}, and z2 → zj → yj for
j ∈ {0} ∪ {3, 5, 7, . . . ,m− 2}, in D′.

For i ∈ {4, 6, 8, . . . ,m − 3} and j ∈ {0, 1, 2, . . . ,m − 1}, dD′(zi, yj) ≤ 2 follows
from the existence of the paths from: zi → yi, zi → yi → {y1, y3, y5, . . . , yi−1} ∪
{yi+2, yi+4, yi+6, . . . , ym−1}, and zi → zk → yk for k ∈ {0, 2, 4, . . . , i − 2} ∪ {i + 1, i +
3, i+ 5, . . . ,m− 2}, in D′.

For i ∈ {3, 5, 7, . . . ,m − 4} and j ∈ {0, 1, 2, . . . ,m − 1}, dD′(zi, yj) ≤ 2 follows
from the existence of the paths from: zi → yi, zi → yi → {y0, y2, y4, . . . , yi−1} ∪
{yi+2, yi+4, yi+6, . . . , ym−2}, zi → zk → yk for k ∈ {1, 3, 5, . . . , i − 2} ∪ {i + 1, i + 3, i +
5, . . . ,m− 1}, in D.

For i ∈ {0, 1, 2, . . . ,m − 1}, dD′(zm−2, yi) ≤ 2 follows from the existence of the paths
from: zm−2 → ym−2, zm−2 → ym−2 → {y0, y2, y4, . . . , ym−3}, and zm−2 → zj → yj for
j ∈ {1, 3, 5, . . . ,m− 4} ∪ {m− 1}, in D′.

For i ∈ {0, 1, 2, . . . ,m − 1}, dD′(zm−1, yi) ≤ 2 follows from the existence of the
paths from: zm−1 → ym−1 → {y1, y3, y5, . . . , ym−2}, zm−1 → zj → yj for j ∈
{0, 2, 4, . . . ,m− 3}, and zm−1 → ym−1, in D′.

This completes the proof of the claim d(D′) = 2.

Corollary 2.2. If n ≥ 5 or n = 3, min{m : ~d(G (n, n, n;m)) = 2} ≤ 6n.

Problem 2.2. Find min{m : ~d(G (n, n, n;m)) = 2}.

Problem 2.3. Find min{m : ~d(3;m) = 2}.
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