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A B S T R A C T

One of the major questions in high-density transcranial electrical stimulation (TES) is: given a region of interest
(ROI) and electric current limits for safety, how much current should be delivered by each electrode for optimal
targeting of the ROI? Several solutions, apparently unrelated, have been independently proposed depending on
how “optimality” is defined and on how this optimization problem is stated mathematically. The least squares
(LS), weighted LS (WLS), or reciprocity-based approaches are the simplest ones and have closed-form solutions.
An extended optimization problem can be stated as follows: maximize the directional intensity at the ROI, limit
the electric fields at the non-ROI, and constrain total injected current and current per electrode for safety. This
problem requires iterative convex or linear optimization solvers. We theoretically prove in this work that the LS,
WLS and reciprocity-based closed-form solutions are specific solutions to the extended directional maximization
optimization problem. Moreover, the LS/WLS and reciprocity-based solutions are the two extreme cases of the
intensity-focality trade-off, emerging under variation of a unique parameter of the extended directional maxi-
mization problem, the imposed constraint to the electric fields at the non-ROI. We validate and illustrate these
findings with simulations on an atlas head model. The unified approach we present here allows a better under-
standing of the nature of the TES optimization problem and helps in the development of advanced and more
effective targeting strategies.
1. Introduction

Transcranial electrical stimulation (TES) is an emerging therapy for
the treatment of neuropsychiatric conditions such as clinical depression
(Kalu et al., 2012), Parkinson’s disease (Boggio et al., 2006), anxiety and
chronic pain (Mori et al., 2010). Research has also shown that TES can be
a valuable therapeutic tool in epilepsy (Yook et al., 2011), stroke reha-
bilitation (Schlaug et al., 2008), and other neurological and psychiatric
disorders (Brunoni et al., 2013). It has also been extensively studied in
the context of enhancing cognitive skills such as memory and learning
(Nitsche et al., 2003; Berryhill and Jones, 2012). This technique may
eventually become an alternative for psychoactive drugs, as it can be
more selective than drugs by targeting specific regions of interest in the
brain with minimal adverse side effects. Even without producing direct
neuronal firing, TES application is capable of modifying cortical excit-
ability (Priori et al., 1998; Nitsche and Paulus, 2000) as well as brain
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rhythms and networks (Priori, 2003; Lang et al., 2005), and this is why
the method is also named Transcranial Electrical Neuromodulation
(TEN). Because the goal is to stimulate the brain, TES is also termed
Transcranial Brain Stimulation (TBS). If direct or alternating currents are
used, TES is termed transcranial direct current stimulation (tDCS) or
transcranial alternating current stimulation (tACS), respectively. Despite
recent advances, there are ongoing debates on the clinical effectiveness
of TES (Horvath et al., 2014, 2015; Antal et al., 2015) addressing many
issues still to be resolved, in particular, substantial inter-subject response
variability (Batsikadze et al., 2013; Wiethoff et al., 2014). The general
idea is that optimal targeting protocols and the use of subject-specific
accurate head models might enhance rigor and reproducibility in TES
(Bikson et al., 2018).

In TES, electric currents are applied to two or more electrodes placed
on the scalp. If the number of electrodes is larger than 2, it is called multi-
electrode TES. If it is even larger, being for instance 32, 64, 128 or 256
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like typically arranged in high channel count electroencephalography
(EEG), it is known as high-density TES. A list of electric current levels
applied to the head at each electrode is known as a current injection
pattern, which produces an electric field (or current density) map on the
brain that can be considered as the actual dose in TES. The computation
of this map is based on the electromagnetic physical laws and known as
the TES forward problem (FP). The TES FP equations are typically solved
numerically using the finite element method (FEM) (Datta et al., 2013),
boundary element method (BEM) (Goncalves et al., 2003) or finite dif-
ference method (FDM) (Turovets et al., 2014).

The inverse problem (IP) goal in high-density TES is to determine
current injection patterns for optimally targeting a specific region of in-
terest (ROI) within the brain. When solving the TES inverse problem, one
should address a trade-off between maximizing the electric field at the
ROI and limiting or minimizing it at the non-ROI while constraining the
values of the applied currents to meet safety standards. The two common
limits for the electric currents are: total injected current (or “fixed
budget”) and maximum current per electrode. Depending on the opti-
mality criteria, several schemes have been proposed leading to different
optimal solutions.

Least Squares (LS) and Weighted-LS (WLS) are the simplest and
most typical optimization methods. The LS solution derives from mini-
mizing a second-order error between the resulting and the desired elec-
tric field (or current density) profiles at a specific domain of interest Ω.
Typically, these profiles are non-zero at the ROI part ofΩ ðΩROIÞ and zero
at the non-ROI part of Ω ðΩnon�ROIÞ. Domain Ω can be any volume that
includes the ROI and the regions where stimulation should be minimized
or limited, such as the brain (e.g. Dmochowski et al., 2011; Guler et al.,
2016a), the gray matter, or the full head (Fern�andez-Corazza et al.,
2016). WLS is similar to LS with the addition of a weight matrix that, for
instance, can control the intensity-focality trade-off (Dmochowski et al.,
2011) or incorporate additional a-priori knowledge (Ruffini et al., 2014).
If no additional current injection limits are imposed, the LS or WLS so-
lutions follow a well-known closed-form (Dmochowski et al., 2011;
Fern�andez-Corazza et al., 2016; Salman et al., 2016). One option to ac-
count for the total current budget constraint without the need of iterative
solvers is to apply a scaling factor to the closed-form LS/WLS solution (as
in Fern�andez-Corazza et al., 2016; Dmochowski et al., 2017) here
designated as “optimally scaled WLS”. Another option is to include the
total and per electrode current limits explicitly, and solve the problem
using an iterative optimization algorithm such as LASSO (Dmochowski
et al., 2011) or MATLAB convex optimization (Dmochowski et al., 2011).
Limiting the number of active electrodes was also proposed and solved
using genetic algorithms (Ruffini et al., 2014; Otal et al., 2016) and the
branch and bound algorithm (Guler et al., 2016b). The LS based opti-
mization was also earlier formulated in the context of multichannel
Transcranial Magnetic Stimulation (TMS) (Ilmoniemi et al., 1999).

Constrained directional maximization of the electric field (or
current density) intensity at the ROI along a predefined and desired
orientation is another optimization approach. It can be numerically
solved with convex optimization algorithms such as those included in the
“CVX: Matlab Software for Disciplined Convex Programming” package
(Grant and Boyd, 2014). In this approach, the functional to be maximized
is linear with respect to the unknown current injection pattern, thus it
requires some limiting constraints to get finite solutions. The simplest
constraint is to consider only the total current limit (Eq. 17 in Dmo-
chowski et al., 2011). Later, Guler et al., (2016a, 2018) and Wagner et al.
(2016a) included upper bounds for the undesired electric field at
Ωnon�ROI and per-electrode current limits as additional constraints,
constituting an extended directional maximization problem. The
non-ROI constraints can be either the global integral of the electric field
energy (Guler et al., 2016a), or the electric field maximum intensity at
each point in the space (Wagner et al., 2016a) or non-ROI subdomain
(Guler et al., 2018).

Reciprocity-based optimization solutions are based on the reci-
procity theorem in EEG (Rush and Driscoll, 1969; Malmivuo and Plonsey,
2

1995). In this approach, optimal stimulation patterns are derived from
the EEG forward projection to the scalp of source dipoles artificially
placed at the ROI and oriented in the direction of interest (Dutta and
Dutta, 2013; Ruffini, 2015; Cancelli et al., 2016; Fern�andez-Corazza
et al., 2016; Salman et al., 2016). Here, “EEG forward projection” refers
to the electric potential on the scalp produced by the neuronal sources
(typically modelled as electrical dipoles), i.e. the solution of the EEG FP.
One reciprocity approach is to concentrate the electric current sources
and sinks as close as possible to the “poles” of the EEG forward projection
(Fern�andez-Corazza et al., 2015, 2016; Guhathakurta and Dutta, 2016).
These EEG forward projection poles denote the two points on the scalp
with the largest electric potential difference. In our previous work, we
mathematically proved that this strategy maximizes the directional
electric field at the ROI given a fixed current injection budget (Fern�an-
dez-Corazza et al., 2016). Another approach is setting the current in-
jection pattern proportionally to the EEG forward projection, either
directly or after applying a Laplacian filter (Dutta and Dutta, 2013;
Cancelli et al., 2016), though we found that its performance was not
better in any of the tested metrics compared to other approaches (Fer-
nandez-Corazza et al., 2017). As the reciprocity-based solutions are not
iterative, they can be also considered “closed-form” solutions.

In this work, we link these three apparently unrelated optimization
methods and some of their variants resulting in a unified formulation that
couples together most optimization schemes described so far (see Table 1
for a list of covered methods). As far as we know, the links we present
here have not been fully noticed previously and they are a major novelty
of this work. In Section 2, we briefly describe the computational methods
for the TES FP. In Section 3.1, we describe the details of the constrained
directional maximization approaches. Then, we theoretically link this
iterative approach first to LS and WLS solutions (in Section 3.2), and
second, to reciprocity-based solutions (in Section 3.3). In Section 4, we
illustrate these links with two sets of simulations on a virtual head model.
With the first set, we show how the directional maximization iterative
solutions evolve from the WLS to the reciprocity closed-form solutions
when varying the imposed bound to the energy integral over Ωnon�ROI.
The second set is like the first set, but with electric field intensity limits at
each point in Ωnon�ROI instead of a unique global restriction for the in-
tegral of the electric field energy over Ωnon�ROI. The way we present the
different optimal solutions in a unified formulation is also a novelty of
this work. It offers a clear visualization and quantification of the well-
known intensity versus focality trade-off to select the most adequate
targeting strategies for each practical case.

2. TES forward problem

Due to the low frequencies involved, the FP is governed by the quasi-
static Maxwell equations. It is described by the Poisson equation for the
electric potential ψð x!Þ in the head volume with Neumann boundary
conditions (Frank, 1952; Jackson, 1975). Boundary conditions differ in
approximation of pointwise or distributed electrodes. In the latter case,
they are modelled using the complete electrode model (CEM) (Hyv€onen,
2004). The FP is typically solved using the Finite Element Method (FEM)
(Silvester and Ferrari, 1994; Kwon and Bang, 2000), where the whole
head is meshed into NH elements, usually tetrahedrons, and P nodes.
Details of the FEM FP formulation in TES can be found for example in
(Vauhkonen et al., 1999; Windhoff et al., 2013; Ruffini et al., 2014;
Laakso et al., 2016). The TES forward problem is equivalent to the
Electrical Impedance Tomography (EIT) FP, and thus, EIT literature also
details the same FEM formulation (Lionheart et al., 2004; Abascal et al.,
2008; Wang et al., 2009; Fern�andez-Corazza et al., 2013).

The FEM converts the FP formulation into a linear system of equations
Kv ¼ u, where K is the stiffness matrix and accounts for the geometry,
bulk conductivity or a conductivity map of each tissue, and electrode
contact impedances (if using CEM); v is the vector of unknown electric
potentials at each mesh node of the head and at the electrodes, and u is a



Table 1
Summary of covered approaches in the unified framework.

Notation: î: optimal current injection pattern for L� 1 electrodes ½A�; i: electric current for L� 1 electrodes ½A�; ~ı:
electric current for L electrodes ½A�; T: transfer matrix ½V =Am�; f ¼ kd: desired ROI electric field ½V=m�; k: scaling
constant ½V =m�; d: desired ROI electric field orientation [unitless]; Γ: weighting matrix (in our formulation it is a
diagonal matrix with the volumes of each mesh element ½m3�); αI: non-ROI electric field constraint for the Integral
formulation ½ðV=mÞ2m3�; αE: non-ROI electric field constraint for the Elementwise formulation ½V =m�; imax : total
maximum current injection allowed (budget) ½A�; ~ımin and ~ımax: minimum and maximum electric current per electrode
constraints ½A�; ei: canonical vectors [unitless].
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vector accounting for the electric sources and sinks (in TES, the applied
currents or, equivalently, the current injection pattern). Once the system
of linear equations above is solved for v, for instance, using the iterative
preconditioned conjugate gradient (Barrett et al., 1994) or the biconju-
gate stabilized gradient (van der Vorst, 1992) solvers, the electric field

E
!ð x!Þ can be easily computed at each element by: E

!ð x!Þ ¼ �
r!ðψð x!ÞÞ, where r! is the gradient operator.

3. Unification of optimization approaches

Table 1 summarizes different optimization methods covered by this
3

unified approach. The first five rows correspond to variants of the LS
methods (pale pink background), sixth and seventh rows are variants of
the constrained directional maximization methods (white background),
and the last two rows correspond to reciprocity-based methods (pale blue
background). We describe the constrained directional maximization
method in Section 3.1 and we theoretically link it to the WLS and
reciprocity-based solution methods in Sections 3.2 and 3.3, respectively.

Other less common optimization approaches that are not considered
in this work have been proposed in the literature. One of them is
beamforming or Linearly Constrained Minimum Variance (LCMV)
(Dmochowski et al., 2011; Fern�andez-Corazza et al., 2016). This
approach imposes that the electric field at the ROI or target is totally



M. Fern�andez-Corazza et al. NeuroImage 209 (2020) 116403
collinear with a desired targeting orientation. Similarly to LS or WLS, it
has a closed-form solution when no current limits are considered.
Another approach maximizes the modulus of the electric field at the ROI
instead of the directional intensity (Sadleir et al., 2012). This problem,
although it has great interest for multiple applications, is much more
difficult to solve as it is nonconvex and nonlinear. The authors attempted
to solve it using the interior point optimization algorithm, but they
concluded that there is no guarantee that the solution they found is a
global optimum due to the complex nature of this optimization problem
(Sadleir et al., 2012). Although Ruffini et al. (2014) used a formulation of
the WLS problem, their treatment additionally imposes a limit on the
number of active electrodes that we do not consider here. Finally, Guler
et al. (2016b) proposed reducing the number of active electrodes and
solved it with the branch and bound algorithm.
1 To be more precise, the functional to maximize in Eq. (3) should be
dTROIΓROITROIi, where subscript "ROI" means "trimmed to ROI elements",
because the integral of Eq. (1) is taken over ΩROI. But, as the elements of d
corresponding to Ωnon�ROI are set to zero and Γ is a diagonal matrix, it is
equivalent to use dTROIΓROITROIi or dTΓTi.
2 The approximation error is proportional to the product of average intensity

at ΩROI times the ΩROI volume which is typically much smaller than the product
of average intensity at Ωnon�ROI times the Ωnon�ROI volume.
3.1. Constrained directional maximization approaches

The constrained maximization approaches consider the maximization

of the integral over ΩROI of the local electric field E
!ð x!Þ (or current

density) projection onto a desired unitless orientation d
!ð x!Þ. The three

typical constraints are: (i) upper limits for the electric field in Ωnon�ROI,
(ii) a total current limit or “budget”, and (iii) current limits per electrode.
For constraint (i), an option is to constrain the integral of the electric field
(or current density) energy over Ωnon�ROI by an arbitrary scalar αI, where
subindex I stands for “integral” (Guler et al., 2016a). Another option is to
impose a set of constraints: upper bounds αEð x!) for the electric field at
each Ωnon�ROI point or subdomain, as proposed in Wagner et al. (2016a)
and Guler et al., (2018) , where sub-index E stands for “elementwise”. If
the upper bound is equal for allΩnon�ROI points or subdomains, this latter
approach means constraining the maximum intensity at Ωnon�ROI. The
mathematical formulation considering both alternatives can be stated as
follows:

î¼ argmax
i

�Z
ΩROI

E
!ð x!Þ � d!ð x!Þ d x!

�
; subject to

ðiÞ
8<:

ði:aÞ
Z

Ωnon�ROI

kE!ð x!Þk22d x!� αI

ði:bÞ kE!ð x!Þk2 � αEð x!Þ; 8 x! 2 Ωnon�ROI

or

ðiiÞjj~ıjj1 � 2imax

ðiiiÞ~ımin≼~ı≼~ımax (1)

where i is the unknown ðL�1Þ � 1 current injection pattern (where L is
the number of electrodes); imax is the maximum total current intensity
scalar;~ı is the expanded current injection pattern vector of size L� 1 that
considers all electrodes; ~ımin and ~ımax are the L� 1 minimum and
maximum limits per electrode respectively; symbol ≼ means “� ” but
elementwise; and jj �jj1 is the ℓ1-norm (sum of absolute values of all
vector components). For L electrodes, there are ðL�1Þ independent
current injection electrodes (pattern i), as the remaining electrode (the
last element of expanded pattern ~ı) is the sum of all other currents such
that total injected current is zero, i.e., Kirchhoff’s Law (see also section
2.2 in Guler et al. (2016a) and Eq. (10) constraint in Dmochowski et al.
(2011):

(~ıj ¼ ij; 8j ¼ 1;…; L� 1

~ıL ¼ �
XL�1

l¼1

il
(2)

Note that ~ı ¼ H � i, with H being the L� ðL�1Þ matrix�
IL�1

�1� 1… � 1

�
, where IL�1 is the L� 1 identity matrix.
4

Assuming N total brain mesh elements, we define T as the TES
3N � ðL�1Þ transfer matrix where each column “l” is the TES FP solution
(i.e., the x, y and z components of the electric field) computed as
described in Section 2, caused by a current injection pattern that consists
of injecting the electric current at electrode l with last electrode L being
the sink (or reference). Note that for L electrodes, there are L� 1 inde-
pendent current injection patterns. All other patterns can be generated
from this basis by superposition. Other bases can be used such as injecting
the electric current at electrode l and assuming all other L� 1 electrodes
as sinks (as used in Fern�andez-Corazza et al. (2016)). Note that T can be
reduced to cover only the gray matter or expanded to cover other head
regions of interest to stimulate or to avoid stimulation such as the optic
nerves, the eyes, facial muscles, etc.

The constrained directional maximization problem in Eq. (1) can be
re-stated in a discrete form as:

î¼ argmax
i

�
dTΓTi

�
; s:t:

ðiÞ
� ði:aÞ iTTTΓnon�ROITi � αI

ði:bÞ jjTnijj2 � αE½n�; 8n 2 Ωnon�ROI
or (3)

ðiiÞjj~ıjj1 � 2imax

ðiiiÞ~ımin≼~ı≼~ımax

where d is the 3N � 1 vector representing anN point discretization of the

directional vector field d
!ð x!Þ for desired orientation of the stimulation

field in the brain, with non-zero values at ΩROI and zero values at
Ωnon�ROI. The non-zero values of d are typically unitary vectors oriented
perpendicularly to the cortical surface, but they can be, in general, ori-
ented in any direction and have different strengths. Tn is the 3� ðL�1Þ
transfer matrix of each non-ROI element n.

Volume matrices Γ and Γnon�ROI stem from the integration operations
in Eq. (1). Γ is a diagonal 3N � 3N matrix where each element of the
diagonal is the volume of each mesh element.1 If Γ is equal to the identity
matrix, it means that the sum across the mesh elements is used instead of
the volume integral (as in Eq. (17) in Dmochowski et al. (2011)). In the
Ωnon�ROI electric field energy constraint of Eq. (1.i), the integral is taken
over the non-ROI, hence, Γnon�ROI is obtained from Γ by setting the di-
agonal elements corresponding to the ROI to zero. Note that the ΩROI is
typically much smaller than Ωnon�ROI, thus Γnon�ROI � Γ with almost any
matrix norm. This approximation can also be interpreted as integrating
the constraint of Eq. (1.i) over the whole domain of interest Ω, and not
just over Ωnon�ROI

2.
Optimization problem in Eq. (3) is a convex optimization problem

(Boyd and Vandenberghe, 2004), where the objective function is a linear
function, constraints in Eqs. (3.i.a) and (3.i.b) are quadratic, and con-
straints in Eqs. (3.ii) and (3.iii) can be formulated as linear inequalities
(more details can be found in Appendices A and B). Thus, this problem
can be categorized as a quadratically constrained linear program (QCLP).

Matrix T in Eq. (3) is the electric field transfer matrix as explained
before. Alternatively, one can consider the matrix product ΣT as a current
density transfer matrix T’ instead of T in Eq. (3). In such case, the con-
ductivity matrix Σ is a 3N � 3N symmetric block diagonal matrix where
each 3 � 3 block of the diagonal is the conductivity tensor of the mesh
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element n. If piecewise isotropic media is assumed, Σ is a diagonal ma-
trix, and moreover, if only one homogeneous and isotropic conductivity
value σB is assumed for the whole region covered by T, matrix Σ can be
replaced by the scalar σB.
3.2. Link between constrained directional maximization and LS
approaches

We first assume in Eq. (3) that the integral over Ωnon�ROI of the
electric field energy constraint (3.i.a) dominates (i.e., αI is low, and thus
the total injected current constraint (ii) can be neglected), the electric
current per electrode bounds (iii) are ~ımax ¼ imax1 and ~ımin ¼ �imax1

(where 1 is a vector with all ones), i.e., it is allowed that just one elec-
trode pair can inject the maximum allowed current, and that Γnon�ROI � Γ
holds. With these assumptions, Eq. (3) is reduced to:

î ¼ argmax
i

�
dTΓTi

�
; s:t: iTTTΓTi � αI (4)

The constrained maximizing intensity problem in Eq. (4) belongs to a
class of QCLP and, the solution, if not infinity or minus infinity, lies at the
boundary, i.e. at iTTTΓTi ¼ αI (note the “¼ ” instead of the “� ” sign)
(Boyd and Vandenberghe, 2004). In Appendix A we prove, analytically
solving the Karush-Kuhn-Tucker (KKT) conditions,3 that the solution to
Eq. (4) has the form:

î¼ðTTΓTÞ�1TTΓkd; with kðαIÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αI

.
dTΓTðTTΓTÞ�1TTΓd

r
(5)

where kðαIÞ is a scaling constant expressed in ½V=m�. Solution in Eq. (5) is
also the known analytical solution of a typical WLS problem (an uncon-
strained quadratic problem) of the form:

î¼ argmin
i


ðkd� TiÞTΓðkd�TiÞ� (6)

Note that in Eq. (6), kd plays the role of a desired electric field in the
WLS formulation.4 On one hand, given an arbitrarily imposed αI value in
Eq. (4), the formulation in Eq. (5) gives the corresponding value of k and
the closed-form solution to problem (4). On the other hand, if a desired
electric field f ¼ kd (in V=m) is imposed in the WLS formulation of Eq.
(6), one can always assume k ¼ 1V=m. Then, d is equivalent to f but
unitless, and the value of αI that makes Eqs. (4) and (6) to be equivalent
can be derived directly from Eq. (5).

If the approximation Γnon�ROI � Γ is not considered, the solution to

Eq. (4) becomes î ¼ �
TTΓnon�ROIT

��1TTΓdk, with k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αI
.
dTΓT

�
TTΓnon�ROIT

��1TTΓd

r
. This is not exactly a WLS solution

because Γnon�ROI 6¼ Γ, but it is extremely similar if ΩROI is much smaller
than Ωnon�ROI, and still has a closed-form solution. If Γ is the identity
matrix, the equivalence between Eqs. (4) and (6) still holds, and the
solution has the LS form: î ¼ ðTTTÞ�1TTdk, with k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αI
.
dTTðTTTÞ�1TTd

r
.

Overall, if the integral over Ωnon�ROI in Eq. (3.i.a) is low enough such
that the solution to Eq. (3) requires the injection of less current than the
total maximum allowed, the shape of the current injection pattern
maintains the LS/WLS closed-form regardless of the value of αI, and αI
only plays the role of a scaling factor. Thus, the LS/WLS solutions
3 In mathematical optimization, the KKT conditions are the necessary condi-
tions for a solution in nonlinear programming to be optimal. If the problem is
convex, these conditions are also sufficient (Boyd and Vandenberghe, 2004).
4 In the LS/WLS approaches here and in Table 1, a target vector f(or kd) might

have non-zero values at Ωnon�ROI. However, in LS/WLS it is also common
practice to set the desired electric field to zero at Ωnon�ROI. For simplicity, we
also adopt this practice for fand dthroughout the manuscript.
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belong to a limit case of the constrained directional maximization
problem of Eq. (3), the one for low α values.

3.2.1. Links with additional constraints
In addition, we also show in Appendix A that the following two

problems (with total budget constraints added in comparison to Eqs. (4)
and (6)):

î ¼ argmax
i

�
dTΓTi

�
; s:t: iTTTΓTi � αI’ and jj~ıjj1 � 2imax (7a)

î ¼ argmin
i


ðkd� TiÞTΓðkd� TiÞ�; s:t: jj~ıjj1 � 2imax (7b)

also have the same KKT conditions for α’I ¼ îTTTΓTî, with î being the
optimal solution of the constrained WLS problem in Eq. (7b) assuming
k ¼ 1V=m . The difference between this equivalence and the equivalence
previously shown in Eqs. (4) and (6) is that now the KKT conditions do
not have a closed-form solution and an iterative solver such as one of
those provided by the CVX Matlab package is required. In the proof of
Appendix A, the ℓ1-norm constraint in Eqs. (7a) and (7b) is converted
into a set of linear constraints. Thus, Eq. (7a) belongs to a class of QCLP
while Eq. (7b) is a Linearly Constrained Quadratic Program (LCQP). Note
that Eq. (7b) is the same as the problem of the fourth row in Table 1
solved using the LASSO algorithm in (Dmochowski et al., 2011).

Moreover, one can further complicate Eqs. (7a) and (7b) by adding
the current per electrode constraints. Again, the following two problems
(also a QCLP, and an LCQP):

î ¼ argmax
i

�
dTΓTi

�
; s:t: iTTTΓTi � αI’’ ; jj~ıjj1 � 2imax and ~ımin≼~ı≼~ımax

(8a)

î ¼ argmin
i


ðkd� TiÞTΓðkd� TiÞ�; s:t: jj~ıjj1 � 2imax and ~ımin≼~ı≼~ımax

(8b)

have the same KKT conditions for α’’I ¼ îTTTΓTî, now with î being the
optimal solution of the constrained WLS problem in Eq. (8b) (assuming
k ¼ 1V=m). This is expected because if the KKT conditions for Eqs. (7a)
and (7b) are equivalent, then adding the same additional set of con-
straints modifies the KKT for both problems in the same way.

3.3. Link between constrained maximizing intensity and reciprocity

In this section we show that when omitting the constraint (3.i) in Eq.
(3), the iterative solution is equivalent to the closed-form reciprocity-
based solution.

The reciprocity theorem coupling TES and EEG for one dipole and one
injection pair states that given a dipole at position x! with dipolar
moment m!½A:m�, the electric potential (Φ) difference between any points
a and b on the scalp can be computed as the dot product:

ΦðaÞ�ΦðbÞ¼ m!� r!ψabð x!Þ
Iab

; (9)

where ψabð x!Þ is the resulting potential at location x! when an electric
current Iab is injected at the arbitrary points a and b (Malmivuo and
Plonsey, 1995; Rush and Driscoll, 1969). In our previous work we
showed that, as a direct consequence of Eq. (9), if the poles of the EEG
forward projection are used for two-electrode stimulation, the dot
product of the electric field and the desired orientation is maximized
(Fern�andez-Corazza et al., 2016). Mathematically,

A;B¼ argmax
a;b

fΦðaÞ�ΦðbÞg¼ argmax
a;b

�r!ψabð x!Þ
Iab

� m!
�

⇔r!ψABð x!Þ � m! is maximal:

(10)
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In this work, we go a step further and explicitly link the same
reciprocity-based approaches of our previous work with the directional
maximization problem in Eq. (3). For this link to be valid, we assume that
αI or αE is large enough such that the total current limit constraint in Eq.
(3.ii) dominates over the Ωnon�ROI energy limit in Eq. (3.i). Note that this
assumption results in a similar problem to the simpler maximizing in-
tensity approach of Eq. (17) in Dmochowski et al. (2011), formulated
therein for a pointwise ROI. Also note that this case is opposite to the
extreme case considered in the previous Section 3.2, where the Ωnon�ROI

energy limit in Eq. (3.i) dominates over the total current limit constraint
in Eq. (3.ii).

Eq. (9) can be generalized for multiple dipoles and multiple injection
pairs, implying that the elements of TES transfer matrix T and EEG lead
field matrix L are related by transposition: T ¼ LT (both in [V= ðAmÞ]).
Each column of L corresponds to the electric potential at L� 1 electrodes
(assuming electrode L as the reference) due to a unit dipole at a canonical
orientation located at each cortical (or brain) element. Thus, matrixL has
size L� 1� 3N. The fact that T ¼ LT derives from the reciprocity prin-
ciple in Eq. (9) is well known and proven in the literature (Weinstein
et al., 2000; Wolters et al., 2004; Hallez et al., 2005; Malony et al., 2011;
Wagner et al., 2016b), see also more recent discussions in Dmochowski
et al. (2017) and Salman et al. (2016). Then, the linear functional to be
maximized in Eq. (3) can be written as:

î¼ argmax
i

�
dTΓTi

� ¼ argmax
i

�
sdTΓLTi

� ¼ argmax
i

�
ΦT

Γi
�

(11)

ΦΓ ¼ LΓds is a synthetic potential at the electrodes generated by the EEG
dipolar source field sdTΓ, which is shaped by the desired orientation
vector field d with the magnitude given by an arbitrary constant and
positive dipole source density s (in ½Am=m3�). Note that the effect of Γ is
just weighting the strength of each dipolar source according to the vol-
ume of the containing element.

Now, Eq. (3) is reduced to the ℓ1-constrained linear optimization
problem

b~ı¼ argmax
i

�
ΦT

Γi
�
s:t: (12)

jj~ıjj1 � 2imax

Note that ΦT
Γ i ¼

PL�1

l¼1
φl il, where φl is the EEG potential at the lth

electrode. As this problem has a ℓ1-norm constraint, the most typical
approach for solving it until now has been using iterative solvers. We can
now prove that the solution to Eq. (12) is:

b~ı¼ imaxelmax � imaxelmin (13)

where el is a zero L� 1 vector with a “1” at element “l”,5 lmax is the
electrode with maximum ΦΓ and lmin is the electrode with minimum ΦΓ.

Since the functional to maximize in Eq. (12) is linear, the fundamental
theoremof linear programming states that the solution to Eq. (12) belongs
to the boundary, i.e., when jj~ıjj1 ¼ 2imax (Luenberger and Ye, 2008).
Moreover, the same theoremstates that if the feasible domain is a bounded
polyhedron (as the ℓ1-norm defines), the solution occurs at a domain’s
corner. The next step is to prove that the corners in the feasible domain of
Eq. (12) only have two active electrodes. In Appendix B, we depict the
feasible domains for two and three electrodes (2D and 3D geometrical
representations) showing that, effectively, their vertices correspond to
only two active electrodes. Then, we extend the proof for larger di-
mensions. Finally, among all possible pairwise solutions, it is obvious that
picking the two electrodes with maximum ΦΓ difference also maximizes
ΦΓ

Ti. Thus, the reciprocity-based optimization approach is the
5 These vectors correspond to the canonical basis.
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solution that belongs to another limit case of the constrained direc-
tional maximization problem in Eq. (3), the one with high α values.

3.3.1. Considering maximum current per electrode limit
If we include maximum current per electrode limit constraints

~ımin≼~ı≼~ımax, closed-form solutions like Eq. (13) can be derived using a
similar reasoning as described above. The details can be found in Ap-
pendix B. If ~ımin or ~ımax are the same for all electrodes, the resulting so-
lution has groups of neighboring electrodes injecting the same amount of
current, imitating TES “patches”. For instance, suppose that we set~ımax ¼
ðimax=2Þ1 and ~ımin ¼ ð � imax=20Þ1 . This means that the solution will
have at least two sources to reach the upper current limit and maximally
twenty sinks to fulfill Kirchhoff’s law. To maximize ΦTi, the two elec-
trodes with maximum Φ with respect to the reference electrode L should
be selected as sources to inject imax=2 and the 20 electrodes with mini-
mum Φ with respect to L should be selected as sinks to inject � imax=20.
Similarly, it is possible to obtain the “opposite”, “one source-all sinks”,
and “10 sources-30 sinks” schemes suggested in Fern�andez-Corazza et al.
(2016) by solving Eq. (3) with corresponding maximum current per
electrode constraints imposed by Eq. (3.iii).6

4. Simulations

In this section we illustrate our analytical findings with simulations
using a head model based on the ICBM-152 symmetric atlas (Mazziotta
et al., 2001). The unified visualization scheme we use here to present the
results can help a potential TES planner to determine the best stimulation
strategy according to the experimental criteria and specific needs.

4.1. Simulation framework

We used a head model with four tissues: brain, CSF, skull and scalp
based on the ICBM-152 atlas, which is an average of 152 individual heads
(Mazziotta et al., 2001). Base-line triangular surfaces were obtained from
the SPM8 MATLAB package (Friston, 2007) and further refinement,
smoothing and tetrahedral meshing was performed using the Iso2mesh
MATLAB package (Fang and Boas, 2009). The final tetrahedral mesh had
~1 million elements and ~150k nodes. We assumed homogeneous and
isotropic conductivities for each tissue assigning literature values: 0.3,
0.006, 1.79, and 0.33 S/m for the scalp, skull, CSF, and brain, respec-
tively (Gabriel et al., 1996; Baumann et al., 1997; Fernandez-Corazza
et al., 2018). Themodel is completed with 64 pointwise electrodes placed
following a subset of the standard 10-10 EEG electrode coordinates. All
algorithms can be applied to more complex models with different con-
ductivity values and number of electrodes, as theoretical findings
described in previous sections are model-independent.

We selected a part of the M1 cortical region of ~1.4 cm3 as ΩROI or
target. For each tetrahedral element of the ΩROI, its centroid was pro-
jected to the closest triangular element of the external brain surface and
the normal to the cortex vectors of these surface triangles were
computed. A vector representing an average orientation of the ROI was
defined as a weighted by element volume average of these surface tri-
angle normal vectors. Then, this unique orientation was replicated in
each ΩROI element to form the target vector d. Note that any other
orientation, even arbitrary, can be used instead. The transfer matrix T
was obtained as described in Section 2 using our MATLAB implementa-
tion of linear tetrahedral FEM with the Galerkin approach (Silvester and
Ferrari, 1994; Kwon and Bang, 2000; Lionheart et al., 2004; Fern�an-
dez-Corazza et al., 2013).
6 To exactly reproduce solutions from (Fern�andez-Corazza et al., 2016), Γ in
Eq. (10) should be set as the identity matrix as in our previous work we didn’t
consider integration in the objective function.
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4.2. Simulation results

4.2.1. Non-ROI energy constraint
First, we solved the constrained directional maximization problem in

Eq. (3) using the iterative SDPT3 solver (Toh et al., 1999) included in the
CVX package (Grant and Boyd, 2014) for a wide range of αI values,
considering total current limit constraint in Eq. (3.ii) as imax ¼ 1mA, and
current limit per electrode constraint in Eq. (3.iii) as ~ımax ¼ imax1 and
~ımin ¼ �imax1.

For each optimal solution î of the spanned αI range, we computed (a)
the integral of the electric field over ΩROI (i.e., the maximized functional
dTΓTi of Eq. (3)): normalized by the ΩROI volume, (b) the used budget,
i.e., jj~ıjj1, and (c) a focality metric. We defined focality as the ratio be-
tween the mean intensity atΩROI to the square root of the mean energy at
Ωnon�ROI:
Fig. 1. Iterative solutions to the constrained directional maximization problem in Eq.
ROI directional intensity measured as the functional to be maximized in Eq. (3) div
focality (black line) as a function of the Ωnon�ROI energy upper bound (αI). (B) Some e
modulus of the electric field at the brain with ΩROI circled in black (second row), and a
Color scale limits are different, increasing from left to right. The solutions in the pale
form solution. The iterative solutions in the pale blue zone of (B) are equivalent to the
there is a smooth transition between both extreme solutions.
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Integral focality ¼
ðdTΓTîÞ

ΩROI volumeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffir (14)

ðîTTTΓnon�ROITîÞ
Ωnon�ROI volume

There are several ways of defining focality, but we can group them in
basically two types: as ratios between some ROI intensity and some non-
ROI intensity (Cancelli et al., 2016; Wagner et al., 2016a), or as the radius
of a sphere centered at the ROI containing some amount of total intensity
(Dmochowski et al., 2011; Fern�andez-Corazza et al., 2016). We found the
definition of Eq. (14) as the more natural definition according to the
general problem in Eq. (3): the ratio of the expression to maximize in Eq.
(3) to the constraint in Eq. (3.i.a). As the constraint is quadratic and the
functional to maximize is linear with respect to î, we applied the square
root to the denominator (this also makes the metric to be unitless). Note
that the integral focality in Eq. (14) can be interpreted as a ratio of the
“therapeutic dose” to the “side-effects” where the larger is the better. In
Fig. 1A, we plot the intensity, the amount of budget used and the integral
(3) with constraint of Eq. (3.i.a) and computed with the SDPT3 solver. (A) Mean
ided by ΩROI volume (blue line), total injected current (red line), and integral
xamples of the iterative solutions: optimal current injection patterns î (first row);
bsolute value of the normal-to-cortex component of the electric field (third row).
pink zone of (A) are equivalent, except for a scaling constant, to the WLS closed-
closed-form one-to-one reciprocity solution. Between critical points “a” and “b”,
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focality as a function of αI. Fig. 1B depicts some examples of optimal
current injection patterns and their resulting electric fields in the brain
for evenly spaced and representative values of αI, and Movie M1 shows
them for all the evaluated values of αI.

Supplementary video related to Fig. 1 can be found at https://doi.
org/10.1016/j.neuroimage.2019.116403.

In Fig. 1A, three zones can be distinguished by different background
colors. In the left zone (pale pink), the used budget is less than 100% of
the allowed budget, Ωnon�ROI energy constraint in Eq. (3.i.a) dominates,
and the total current limit constraint in Eq. (3.ii) has no influence on the
solution. In the right zone (pale blue), the optimal solution remains the
same regardless the value of αI, both the used budget and the maximum
electric field atΩROI are saturated, the total current limit constraint in Eq.
(3.ii) dominates, and the Ωnon�ROI energy constraint in Eq. (3.i.a) has no
influence. Lastly, in the middle zone (white background), the current
budget is saturated, but a more intense electric field is delivered to ΩROI

at the expense of a larger electric field energy at Ωnon�ROI (by increasing
Fig. 2. Iterative solutions to the constrained directional maximization problem in E
element (Eq. (3.i.b)). (A) Mean ROI directional intensity measured as the functiona
current (red line), and elementwise focality (black line) as a function of the Ωnon�ROI m
current injection patterns î (first row); modulus of electric field at the brain with ΩROI

electric field (third row). Color scale limits are different, increasing from left to righ
scaling constant. The iterative solutions in the pale blue zone of (B) are equivalent to
“b”, there is a smooth transition between both extreme solutions. We marked an ad
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αI). The focality-intensity trade-off is clearly observed between critical
points “a” and “b” (see Movie M1).

We then computed the closed-form WLS and reciprocity solutions
following Eqs. (5) and (13), respectively. Supplementary Fig. S1 depicts
injection patterns and their resulting electric fields obtained with the
optimally scaled WLS formulation (left column) and with the one-to-one
reciprocity optimization approach (right column). It is observed that they
are indeed identical to the first and last columns of Fig. 1B, respectively.

An interesting observation from Fig. 1 is that, for a specific value of αI,
the optimal solution obtained iteratively is equivalent to the WLS solu-
tion with the ℓ1 constraint (row 4 of Table 1 and Eq. (7a)). This finding
verifies the equivalence of Eqs. (7a) and (7b) in Section (3.2.1). As we can
determine the exact point that makes these two problems identical, we
show both identical solutions in the first two columns of Supplementary
Fig. S2. In the last two columns of Fig. S2, we show an example of
verification of the equivalence between Eqs. (8a) and (8b), where the
current limit per electrode constraints of Eq. (3.iii) are also considered.
q. (3) with the constraint of limiting the electric field intensity at each Ωnon�ROI

l to be maximized in Eq. (3) divided by ΩROI volume (blue line), total injected
aximum electric field (αE). (B) Some examples of the optimal solutions: optimal

circled in black (second row), and absolute value of the normal component of the
t. The solutions in the pale pink zone of (A) have the same pattern, except for a
the closed-form one-to-one reciprocity solution. Between critical points “a” and
ditional point “c”, where the focality starts to decrease more sharply.
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We also obtained the iterative solutions of Eq. (3) in the right pale
blue zone (large α), but setting different current limits per electrode
(constraint in Eq. (3.iii)): first, setting ~ımax ¼ imax1 and ~ımin ¼
�imax=ðL� 1Þ1, and second, setting ~ımax ¼ ðimax=2Þ1 and ~ımin ¼
ð � imax=20Þ1. In Supplementary Fig. S3 we show that the optimal iter-
ative solutions for these two cases are equivalent to the “1 source - ðL�1Þ
sinks” and “2 sources - 20 sinks” closed-form reciprocity-based solutions
introduced phenomenologically in Fern�andez-Corazza et al. (2016), thus
verifying what we derive in Section 3.3.1.

4.2.2. Non-ROI elementwise intensity constraint
We also solved Eq. (3) but limited the electric field intensity at each

Ωnon�ROI element (Eq. (3.i.b)) instead of limiting the integral of electric
field energy (Eq. (3.i.a)) to compare with the previous approach. We set
the constraint αE to be equal for all mesh elements, which can be inter-
preted as limiting the maximum intensity in Ωnon�ROI. We defined the
most natural focality metric for this case as the ratio between the mean
intensity at ΩROI to the maximum intensity at Ωnon�ROI:

Elementwise focality¼
ðdTΓTîÞ

ΩROI volume

max
n 2 Ωnon�ROI

kTnîk2
(15)

Fig. 2A shows the intensity, injected current and elementwise focality
plots as a function of αE: Fig. 1B depicts some examples of the resulting
optimal patterns and the imprinted brain electric field, and Movie M2
shows the full evolution of the optimal solutions.

Supplementary video related to Fig. 2 can be found at https://doi.
org/10.1016/j.neuroimage.2019.116403.

When comparing Figs. 1 and 2, and Movies M1 and M2, the general
behavior of a “scalable” solution on the leftmost zone, an intermediate
transition zone, and a right zone resembling the one-to-one reciprocity
solution holds for both optimization approaches. Note that the variety of
solutions in the transition zone is not as rich as in the previous case.
Also note that the extreme optimal solution for αE < a looks somehow
unintuitive as a large portion of Ωnon�ROI has intensities of the same
order of magnitude as in ΩROI. We present related discussion about this
unintuitive pattern in Section 5.1.3 and Fig. S4. In that figure, we
compared this unintuitive pattern with the WLS solutions and show that
they are worse than this pattern in terms of the elementwise focality
metric.

4.2.3. Focality comparison
Figs. 1A and 2A are not directly comparable because the x-axis has

different values in each case. To compare both cases it is necessary to plot
the cross-focality metrics, i.e., the integral focality for the solutions ob-
tained when imposing the Ωnon�ROI elementwise electric field constraint,
Fig. 3. Focality values as a function of the mean electric field intensity in ΩROI for the
Ωnon�ROI elementwise constraint (dotted line). Subfigure A shows the integral focali
solution approaches. The red circles indicate the corresponding critical points “a” of
available budget.
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and the elementwise focality for the solutions obtained when imposing
the Ωnon�ROI integral constraint. In Fig. 3A we depict the integral focality
values of the solutions obtained with both constraints and in Fig. 3B we
plot the elementwise focality values for the same solutions. To make the
comparison clearer, the focality values are plotted as a function of the
mean electric field in ΩROI.

In Fig. 3A, for ROI mean intensities larger than ~0.075 V/m, the in-
tegral focality obtained with the elementwise electric field restriction is
almost as good as when optimizing for the energy integral. For ROI mean
intensity values between ~0.04 V/m and ~0.075 V/m, the focality ob-
tained with the elementwise constraint grows for lower ROI intensity
values but less than the “natural” focality. Below ~0.04 V/m the focality
for the solutions obtained with the elementwise constraint decrease with
decreasing ROI intensity. Note that ~0.04 V/m corresponds to the in-
flection point in the focality plotmarked as “c” in Fig. 2. Fig. 3B shows that
the elementwise focality obtained with the integral energy constraint is
about 30% lower thanwhenusing the elementwise constraint in almost all
the evaluated range. Interestingly, for lower values of ROImean intensity,
the cross-focality (solid line) gets better, contrary to what happens in the
dotted line of Fig. 3A for values lower than ~0.04 V/m.

4.3. Data and code availability statement

No prospective data were used for the research described in this
article. The code supporting the findings of this study is available from
the corresponding author upon request.

5. Discussion

5.1. Links between existing optimization algorithms

We theoretically proved that the apparently unrelated LS, WLS, and
reciprocity-based solutions all belong to the same family of the general
constrained maximizing intensity problem solutions of Eq. (3), consti-
tuting a unified approach (Sections 3.2 and 3.3). We also proved that
constrained LS andWLS (Section 3.2.1) as well as constrained reciprocity
(Section 3.3.1) are covered by the unified formulation. Even expanding
“ring” configurations are also part of the same family, although this last
finding was empirical. All these links were not fully noticed before, and it
is the major novelty of this work.

An interesting finding is the existence of critical points “a” and “b” in
all studied cases. For non-ROI electric field bounds (αI or αE) lower than
“a”, all iterative solutions are identically shaped, no matter if the re-
striction is for the energy integral over Ωnon�ROI (Eq. (3.i.a)) or ele-
mentwise (Eq. (3.i.b)). This is the pale pink zone in Figs. 1 and 2, where
constraint in Eq. (3.i) is active and constraint in Eq. (3.ii) is inactive. In
solutions obtained with the Ωnon�ROI integral constraint (solid line) and with the
ty plots and subfigure B shows the elementwise focality plots for both optimal
Figs. 1A and 2A, i.e. the points where the optimal solutions reach the maximum
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the case of restricting the integral, the optimal injection pattern shape is
equivalent to the LS or WLS solution, but without exploiting the full
current injection budget. Thus, an important result of this work is that the
LS or WLS closed-form solutions, artificially scaled such that the total
current budget is exploited (“scaled LS” in Table 1), is a simple way of
obtaining the solution at point “a”. In the case of restricting the electric
field elementwise (Eq. (3.i.b)), all iterative solutions for αE values lower
than “a” also have the same shape and different scale (see Movie M2) but
we found this effect empirically and did not link them to a closed for-
mula. In all cases, the solution at critical point “a” is the optimal solution
in the sense that it exploits the full available budget and has the best
focality,7 although, at the same time, it has the lowest ROI intensity and
low sparsity requiring more active electrodes.

For αI or αE values larger than “a” and lower than “b”, the total current
limit shapes the solutions producing a smooth transition towards reci-
procity solutions when increasing (relaxing) the non-ROI intensity limit.
This is the white background zone in Figs. 1 and 2, where both con-
straints of Eq. (3.i) and (3.ii) are active. A rich variety of optimal solu-
tions consisting of expanding radius ring-shaped patterns occur naturally
in this transition zone, which are more clearly seen in the first studied
case (Fig. 1 and Movie M1). Many solutions in this middle zone resemble
the ad-hoc “ring” patterns of previous studies (Datta et al., 2009; Dmo-
chowski et al., 2011; Kuo et al., 2013; Fern�andez-Corazza et al., 2016).
Thus, we computationally found that these “ring” solutions are also
optimal. The well-known focality-intensity trade-off can be clearly
observed and quantified in this transition zone, which is the zone with
most practical interest. Moreover, we proved and verified that this
middle zone also contains the WLS with limited total current injection
optimal solution, either considering or not the current limit per electrode
constraints (Supplementary Fig. S2).

Once critical point “b” is reached, the optimal solutions collapse into
one of the reciprocity-based optimal solutions and remain identical for
larger αI or αE values. This is the pale blue zone on the right part of Figs. 1
and 2, where constraint in Eq. (3.i) is inactive and constraint in Eq. (3.ii) is
active. When not considering a current limit per electrode (Eq. (3.iii)),
solutions in this zone are equivalent to the one-to-one reciprocity solution.
In this case, the source and sink electrodes are selected directly as the
nearest electrodes to the most positive and most negative forward projec-
tion EEG “poles” respectively.Moreover, weproved in section 3.3.1 that by
setting different current limits per electrode in constraint of Eq. (3.iii),
iterative solutions to Eq. (3) agreed exactly with the other rather intuitive
variations of the “opposite” reciprocity solutions described in our previous
work (Fern�andez-Corazza et al., 2016), proposed there with the aim of
spreading out the typically undesired electric field concentration due to a
lownumber of sinks. Thus, these solutions are not ad-hoc, but part of the set
of solutions of the optimization problem in Eq. (3) (see Supplementary
Fig. S3). In such cases,multiple current sources and sinks are selectedas the
electrodeswithmaximumdifferences in thevirtual EEG forwardprojection
potential. Overall, the solutions at critical points “b” exploit full available
budget, have the highest ROI intensity and sparsity (requiring the mini-
mum number of active electrodes), but the lowest focality.

5.1.1. Focality
Many definitions of focality have been proposed in the literature so

far. In this work, as we used different optimization criteria, we defined
focality in the most natural way for each specific approach according to
our understanding: the functional to maximize divided by the Ωnon�ROI

electric field constraint. We also computed the “unnatural” or “cross”
focality metrics, shown in Fig. 3. In this figure, it can be verified what is
expected, that each focality definition is better for the solutions of its
corresponding problem for any given ROI electric field intensity. Each
optimal solution performance in terms of its cross-focality definitions
might be of interest for a specific stimulation scenario and pre-treatment
7 For each case natural definition of focality.
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planning. For instance, by inspecting Fig. 3, it is possible to quantify how
much of a focality metric is deteriorated when using a different optimi-
zation method than the “natural” one for this particular focality
definition.

If a different focality metric is proposed to better quantify the trade-
off between the wanted versus the unwanted effects, the problem state-
ment should be changed accordingly to maximize whatever is defined as
“wanted effects” constraining it to whatever is defined as “unwanted
effects”. For example, we found that although directional electric field is
maximized, the modulus of the electric field at Ωnon�ROI is typically
limited. Moreover, the modulus of the electric field or the current density
is typically depicted in most publications about TES optimization. We
find this practice somehow contradictory. Therefore, besides depicting
the modulus, we also depict the normal-to-cortex component in Figs. 1, 2,
S1, S2, and S3. The directional optimization methods studied in this work
result in much better focality when only considering normal-to-cortex
component instead of the modulus. Note that some of the undesired
Ωnon�ROI “hot-spots” seen when depicting the modulus are being targeted
tangentially to the orientation assumed as physiologically influential.
Thus, a new possible optimization method with its corresponding natural
focality definition might be maximizing the directional intensity (as we
did in this work), but constraining just the projected component of the
electric field to the orientation assumed as physiologically influential at
theΩnon�ROI elements instead of the electric field modulus. Typically, it is
assumed that only the normal to the cortical surface electric fields affect
the brain, but this is still an open question.

5.1.2. Previous studies placed into the unified context
According to the patterns shown in Figs. 3 and 4 of (Guler et al.,

2016a), iterative solutions resemble the sparse reciprocity “opposite”
solutions involving 6–7 electrodes as sources and the same number as
sinks. Effectively, they adopted a non-ROI energy bound of 10�6 A2=m,
which corresponds to a loose constraint for their equivalent to our αI
value according to their Fig. 6. This value of the non-ROI energy bound
brings a solution into the reciprocity zone. The constraint on current per
electrode defined roughly the number of active electrodes. The top part
of their Fig. 6 (large αIÞ is equivalent to the right “pale blue” reciprocity
zones of Figs. 1A and 2A, and the bottom part (low αI.) is equivalent to
the left “pink” WLS zone of Fig. 1A. In Fig. 7 of Guler et al. (2016a), a
different (much lower) non-ROI energy bound value is used to get
non-sparse LS-like solutions resembling the constrained LS solutions by
Dmochowski et al. (2011) and Ruffini et al. (2014).

5.1.3. WLS vs LS
In Section 3.2, we showed that the integrals in Eq. (1) can be

formulated as a version of WLS where the weights are the volumes of
each finite element. However, in most TES optimization approaches
using FEMmeshes, this weighting by element volume was not considered
(e.g. Dmochowski et al., 2011; Ruffini et al., 2014; Cancelli et al., 2016;
Fern�andez-Corazza et al., 2016) - including our previous work - deriving
in unweighted LS. In FEM, the element volumes might vary significantly
from each other, thus we believe that theWLS version with the weighting
matrix containing the element volumes is more appropriate than the
unweighted LS. Of course, additional weighting matrices can also be
considered in addition to the volume weighting matrix Γ.

5.1.4. Elementwise non-ROI intensity constraint
In Fig. 2B, the lower extremal solutions for αE < a do not look optimal

in terms of focality. This is because, based on our intuition, we typically
think of the focality metrics in terms of the integral focality definition. In
Supplementary Fig. S4, we verify that indeed this rather unintuitive so-
lution is optimal in terms of elementwise focality for this example, which
is the most natural focality definition for constraint in Eq. (3.i.b). Note
that if the elementwise maximum intensity is restricted, there is a very
sharp transition imposed at the ΩROI boundary between a “free” and a
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“restricted” element. If αE is too small, on the boundary it is not possible
for the electric field to follow this large jump between a “free” ROI
element and a non-ROI constrained element right next to it. If αE in-
creases, this restriction is loosened allowing a softer transition between
ROI and non-ROI neighboring elements. Note that this sharp restriction is
not necessarily imposed when restricting the non-ROI integral of the
electric field. An interesting observation is that these rather “unintuitive”
solutions between points marked as “a” and “c” produce no improvement
in focality and thus, have little practical interest. And at point “c”, the
optimal solution looks qualitatively more focal also in terms of integral
focality than the solution at point “a” (see Fig. 2). The most interesting
region is thus between points “c” and “b”, where the intensity-focality
trade-off is more visible.
5.2. Practical applications of this work

The way we present the focality-intensity trade-off in Figs. 1 and 2
should help a TES-planner to better define what α value (either αI or αE)
to select for a specific ROI, head model, and focality criteria depending
on the specific application requirements. This focality-intensity visuali-
zation approach is also a novelty of this work.

For instance, it is possible to quantify how much intensity or focality
is lost for each value of α at intermediate values within the “a” - “b”
range. If a minimum intensity threshold is defined for a desired ROI, a
TES-planner can search for the lowest α value with this intensity, quantify
how much focality is lost, select this α value to feed the optimization
problem and use the optimal solution to stimulate that ROI. One can also
compare critical points “a” and “b” scanning ROIs placed at different
brain locations to generate spatial brain maps of maximum possible
focalities or doses. Even more, one can study how much these focality
and intensity bounds are influenced by model parameters such as the
skull conductivity for example. It might also be interesting to analyze
how the gap between critical points “a” and “b” varies for superficial
versus deep ROIs.

Another practical use is the analysis of the one-to-one reciprocity
approach that resembles the anodal-cathodal current injection pattern,
probably the most frequently used pattern in TES. If placed at the EEG
“poles”, the anodal-cathodal montage is the extreme solution of the
maximal intensity and the lowest focality on the target. This pattern can
produce unwanted large amounts of stimulation near the cathodal elec-
trode. In order to reduce this unwanted effect, a potential TES user can
evaluate the possibility of using the two possible alternatives we pre-
sented: selecting a lower α value or choosing a lower value of j~ıminj. The
first alternative can be seen in Figs. 1 and 2, where lower values of α
reduce large intensities near the sink. For the second alternative, we
show, in the first two columns of Supplementary Fig. S3, an example of
selecting ~ımin ¼ �imax=ðL� 1Þ1, where it is effectively observed how the
unwanted stimulation near the sink is drastically reduced. The inter-
esting aspect of this work is that these solutions can be derived and
analyzed from the general framework of Eq. (3).

Our findings suggest that a sliding bar for selecting the non-ROI
constraint (αI or αE ) can be included in neurostimulation planning
software to span the whole range of optimal solutions. Moreover, within
the same framework, a disconnected ROI can be selected to target mul-
tiple brain regions simultaneously as it can be useful, for instance, to alter
large-scale brain networks. Also, different restrictions can be imposed for
anatomically specific non-ROIs with different sensitivity (for instance,
visual nerves) by partitioning constraints (3.i.a) or (3.i.b) into sub-
domains of Ωnon�ROI.

Although the analysis done in this work is based in the TES context,
the same results can be applied to other techniques, for instance, to multi-
electrode intracranial electrical stimulation using electrocorticography
(ECoG), or to deep brain stimulation with stereo-EEG electrodes (Guler
11
et al., 2018). In these applications, the electric field intensities can be
much larger than in TES due to electrode proximity to brain tissue and
thus, the focality might be prioritized. Another technique that can benefit
from this work is the application of high frequency alternating electric
fields to treat malignant glioma, known as TTFields (Miranda et al., 2014;
Wong et al., 2015). In this application, the goal is to inject currents that
cover all possible orientations at the localized tumor. An evenly distrib-
uted set of orientations can be defined as different targets within the
tumor, and the TES optimization problems can be solved for each target
to determine a set of current injection patterns that improves the spatial
and directional coverage. The reciprocity principle also holds for the
magnetic field and a duality like this one can be found for TMS/MEG,
although dual TMS/MEG equipment is technically much more complex
to build.

5.2.1. Experimental findings
There have been some studies that experimentally tested individually

optimized TES montages and/or compared different solutions covered in
this work. The reciprocity based TES targeting method has been used by
Luu et al. (2016) in a pulsed TES study of the subject-specific motor area
with a restricted number of electrodes, eight sources and eight sinks.
They found significant effects compared to sham controls, though no
comparison with a standard montage or other optimization methods was
made. Dmochowski et al. (2013) and Richardson et al. (2015) did an
experimental post-stroke rehabilitation study comparing the optimal
directional maximization with the total current constraint using two
sources and two sinks (that we showed here to be equivalent to the
reciprocity method) and a conventional two-patch tDCS electrode
placement. They found a better outcome with the optimized pattern, but
with no statistical significance.

Cole et al. (2018) studied the effects of high definition (HD) tDCS (a
ring shaped montage with one source and four sinks) and conventional
tDCS on motor learning in children and they found differences with
respect to sham controls but no significant differences between the two
tested montages. Kuo et al. (2013) compared HD and conventional tDCS
with an experiment stimulating the motor cortex and they found that
neuronal plasticity changes showed a more delayed peak and longer
lasting after-effects after HD tDCS, as compared to conventional tDCS.
Jacquemin et al. (2018) reported no significant differences in the effects
of electrical stimulation in tinnitus patients comparing conventional
versus HD tDCS. In these studies, the placement of HD tDCS electrodes
was based on standardized atlases or templates but not on subject specific
optimal locations.

Fischer et al. (2017) compared a classical tDCS montage stimulation
targeting a single brain area with a multifocal optimized stimulation
based on resting state fMRI networks, finding that multifocal network
targeting increased the M1 excitability when compared to traditional
single ROI stimulation. More recently, Laakso et al. (2019) found a cor-
relation between the modelled electric field intensity and the efficacy of
tDCS in a motor evoked potential experiment. This finding suggests that
the inter-subject variability might be explained by differences in indi-
vidual electric fields and thus, individual optimization patterns should
improve individual TES efficacy.

The major conclusion of these studies is that individual head
modeling and TES optimization are very important to produce individual
optimal patterns that can possibly account for the variability of experi-
mental results. More comparative studies are still needed to assess the
true efficacy of the full range of possible individualized optimal solutions,
from critical point “a” to critical point “b” in Figs. 1 and 2.
5.3. Open debates

We believe that the question of whether focality or intensity (total or
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directional) should be prioritized for each application is still an open
question. Each algorithm is optimal in a different sense, and the spirit of
this work is to be impartial to all presented algorithms without judging
them by their neurophysiological efficacy. Quantitative analysis of these
algorithms in terms of focality, intensity and other performance metrics
for clinical applications is out of the scope of this work, as this was done
at length elsewhere (Datta et al., 2009; Dmochowski et al., 2011; Datta
et al., 2013; Dmochowski et al., 2013; Ruffini et al., 2014; Fern�andez--
Corazza et al., 2015; Cancelli et al., 2016; Fern�andez-Corazza et al., 2016;
Wagner et al., 2016a).

A question of which orientation is better to target in TES, i.e. which
one is more physiologically influential, is still in debate and would
depend on the specific application. If pyramidal neurons are the target, a
stimulation perpendicular to the cortex surface should be preferred,
whereas if interneuron synapses are aimed, a tangential-to-cortex stim-
ulation would be more appropriate. Note that all covered algorithms in
this work are applicably for any orientation of choice. We opted to use
8 In the Appendices, nr ¼ non� ROI.

12
normal-to-cortex orientation to illustrate our results because it is the most
commonly used orientation.
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Appendix A

Appendix A.1. Equivalence between Eqs. (4) and (6)

Proof that the QCLP in Eq. (4) has the solution of Eq. (6). The standard form of this QCLP is î ¼ argmin
i

ð � dTΓTiÞ s:t: iTTTΓTi� α � 0. Optimal î

and bλ must satisfy the Karush-Kuhn-Tucker (KKT) conditions (Boyd and Vandenberghe, 2004):

iTTTΓTi� α � 0 (A.1.a)

λ � 0 (A.1.b)

λðiTTTΓTi� αÞ¼ 0 (A.1.c)

∂
�� dTΓTi

�
∂i þ λ

∂ðiTTTΓTi� αÞ
∂i ¼ �dTΓTþ λ2iTTTΓT ¼ 0 (A.1.d)

Clearing iT from Eq. (A.1.d) we get

iT ¼dTΓTðTTΓTÞ�1

2λ
(A.2)

From Eq. (A.1.c) either λ ¼ 0 or iTTTΓTi ¼ α. When λ ¼ 0, since Γ is not 0, from the fourth condition the desired orientation field d should be null,
which is uninteresting, so λ 6¼ 0 and iTTTΓTi ¼ α. This means that optimal solution lies on the edge of the feasible set, as expected in a QCLP. Replacing i
from Eq. (A.2) into iTTTΓTi ¼ α, we get:

λ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dTΓTðTTΓTÞ�1TΓd

α

s
: (A.3)

Replacing λ in Eq. (A.2) with Eq. (A.3), we obtain the solution of Eq. (6). The same procedure holds if Γnr
8 is used instead of Γ as in the constraint of

Eq. (4). Note that λ is in ½m=V�.

Appendix A.2. Equivalence between Eqs. (7a) and (7b)

We now prove that Eqs. (7a) and (7b) have the same KKT conditions for α’ ¼ îT TTΓTî, and thus, the problems are equivalent. First, we replace the
ℓ1-norm constraint jj~ıjj1 � 2imax by an equivalent linear set of constraints. The points in the L-dimensional space determined by this constraint are the
interior points of an L-dimensional orthoplex or hyperoctahedron (the extension of a square with vertices fð	2imax; 0Þ ; ð0; 	2imaxÞg in 2D and of a
octahedron with vertices fð	2imax;0; 0Þ; ð0;	 2imax; 0Þ; ð0;0;	2imaxÞg in 3D). The faces of the orthoplex are all regular simplices (hyperplanes) scaled
by 2imax. For instance, for the 3D case, we can rewrite jj~ıjj1 � 2imax as the set of constraints:
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>>>>>~ı1 þ~ı2 þ~ı3 � 2imax
2
1 1 1

3
8
>>>>>>><>>>>>>>>>>>>:

~ı1 þ~ı2 �~ı3 � 2imax
~ı1 �~ı2 þ~ı3 � 2imax
~ı1 �~ı2 �~ı3 � 2imax
�~ı1 þ~ı2 þ~ı3 � 2imax
�~ı1 þ~ı2 �~ı3 � 2imax
�~ı1 �~ı2 þ~ı3 � 2imax
�~ı1 �~ı2 �~ı3 � 2imax

⇒

66666666664

1 1 �1
1 �1 �1
1 �1 �1
�1 1 1
�1 1 �1
�1 �1 1
�1 �1 �1

77777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J

~ı≼2imax1 ⇒ J~ı≼2imax1 ⇒ JHi≼2imax1; (A.4)

where J is a new matrix that accounts for the eight faces of the octahedron, H is the matrix that does the conversion~ı ¼ H � i, 1 is a vector with all ones,
and ≼means� but elementwise. Note that first and last rows of J impose trivial constraints as the additional constraint 1T~ı ¼ 0must hold, i.e. the sum of
all elements of ~ı is zero by Kirchhoff’s current law.

Matrix J can be similarly built for the L-dimensional space as a large but linear set of 2L constraints (or 2L � 2 if trivial top and bottom constraints are
removed), i.e. jj~ıjj1 � 2imax is equivalent to J~ı≼2imax1. The linear set of constraints as an alternative formulation for the ℓ1-norm constraint is useful to
calculate the derivative in the last KKT condition. Indeed, the KKT conditions for Eq. (7.a) become:

iTTTΓTi� α � 0 (A.5.a)

JHi� 2imax1≼0 (A.5.b)

1THi ¼ 0 (A.5.c)

λaq � 0 (A.5.d)

λa
l ≽ 0 (A.5.e)

λaqðiTTTΓTi�αÞ¼ 0 (A.5.f)

λa
l
TðJHi� 2imax1Þ ¼ 0 (A.5.g)

�dTΓTþ λaq2i
TTTΓTþ λa

l
TJHþ va1TH ¼ 0 (A.5.h)

Where λaq is the multiplier associated to the quadratic constraint of the first row, λa
l is a vector with the 2L multipliers associated to the linear

inequality constraints of the second row, v is the multiplier associated to the linear equality constraint of the third row, and superscript “a” is to
distinguish them to the multipliers of Eq. (7.b).

Similarly, the KKT conditions for Eq. (7.b) are:

JHi� 2imax1≼0 (A.6.a)

1THi ¼ 0 (A.6.b)

λb
l ≽ 0 (A.6.c)

λb
l
TðJHi� 2imax1Þ ¼ 0 (A.6.d)

�2kdTΓTþ 2iTTTΓTþ λb
l
T
JHþ vb1TH ¼ 0 (A.6.e)

Where now the superscript “b” refers to Eq. (7.b). Note the slight difference of a “2” multiplying the first term of Eq. (A.6.e) and the lack of a
multiplier in the second term of same equation. These two terms arise from taking the derivative with respect to i of the functional to minimize in Eq.
(7b).9

Dividing Eq. (A.6.e) by 2k, both KKT set of conditions (A.5) and (A.6) are equivalent when 2kλaq ¼ 1, 2kλal ¼ λbl , and 2kva ¼ vb. KKT condition in Eq.

(A.5.g) and 2kλaq ¼ 1 mean that λaq 6¼ 0 and imply that α’ ¼ îTTTΓTî, where bi is the optimal solution to both problems. In our example, we solved Eq.

(7.b) assuming k ¼ 1V=m, used that solution to compute α’ ¼ îTTTΓTî and verified that with this specific value, solution to Eq. (7.a) indeed is identical
to solution to Eq. (7.b). We show this comparison in the first two columns of Supplementary Fig. S3.
9 The functional is ðkd� TiÞTΓðkd � TiÞ ¼ k2dTΓd� 2kdTΓTiþ iTTTΓTi.

13
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Appendix A.3. Equivalence between Eqs. (8a) and (8b)

Similarly to previous subsection, one can prove the equivalence of the KKT conditions for Eqs. (8a) and (8b) when α’’ ¼ îTTTΓTî, now with î being
the optimal solution of the WLS problem in Eq. (8b). The difference with Eq. (7) is the addition of the set of constraints ~ımin≼~ı≼~ımax. These are simple
linear constraints that can be easily incorporated to the KKT conditions of Eqs. (A.5) and (A.6). We validated this equivalence in an example and depict it
in the last two columns of Fig. S3.

Appendix B

Appendix B.1. Proof that solutions to Eq. (12) have only 2 active electrodes

Here we prove that the corners of the feasible domain of Eq. (12) only have two active electrodes. We start by studying the intersection of the ℓ1-

norm constraint for ~ı and the Kirchhoff’s Law condition in Eq. (2). Thus, we can rewrite Eq. (12) as î ¼ argmax
i

ðΦTiÞ s:t:
� jj~ıjj1 � 2imax

1T �~ı ¼ 0
where ~ı ¼ Hi is

the expanded current injection pattern considering all electrodes as defined in Eq. (2), and 1 is a vector with all ones and same length of~ı. The ℓ1-norm
constraint jj~ıjj1 � 2imax can be represented as an L-dimensional orthoplex or hyperoctahedron (see Appendix A). Fig. B1 shows the ℓ1-norm constrained
domain in blue (square in 2D and octahedron in 3D) and the Kirchhoff’s Law geometrical representation for the 2D and 3D cases (two and three
electrodes respectively) of expanded ~ı in red.

Fig. B1. Feasible domains D for the 2D (left) and 3D (right) cases, assuming two and three electrodes respectively. All vertices correspond to only two active
electrodes. The 2D case is trivial, with two electrodes, there are only two possible injection patterns: ðimax ;�imaxÞ and ð � imax ; imaxÞ. For the 3D case there are six
vertices, i.e., six possible solutions.

The fact that the corners of the intersection of the two constraints are vertices where only two electrodes are active can be generalized to L di-
mensions as follows. The two constraints can be expressed as:�
ðaÞ 	 ei1 	 ei2 	 ei3 	…	~ıL�1 	~ıL ¼ 2imax
ðbÞ ei1 þ ei2 þ ei3 þ…þ~ıL�1 þ~ıL ¼ 0

(B.1)

where the	 sign changes for each orthant (n-dimensional generalization of 3D octant). First, note that the two hyperplanes in Eq. (B.1.a) bounding the
two orthants with all positive and all negative signs are parallel to the hyperplane in Eq. (B.2.b). Thus, there is no intersection among them. Second,
without loss of generality we analyze the hyperplane at the orthant where first R < L variables are positive and the rest are negative, i.e. condition in Eq.

(B.1.a) is þ ei1 þ ei2 þ ei3 þ …þ ~ıR � ~ıRþ1 � ~ıRþ2 � …� ~ıL ¼ 2imax. By adding and subtracting this expression to Eq. (B.1.b) we obtain:�
ðaÞ ei1 þ ei2 þ ei3 þ…þ~ıR ¼ imax
ðbÞ �~ıRþ1 �~ıRþ2 �…�~ıL ¼ imax

(B.2)

The expressions in Eq. (B.2) are the positive and negative standard simplices (scaled to imax) of R and L� R dimensions respectively. It is known that
the Dþ 1 vertices of the standard D-simplex are the points ei 2 RDþ1 corresponding to the canonical basis vectors. Thus, the vertices of the intersection in
Eq. (B.2) have the form: imaxei � imaxej, for i 2 f1;…;Rg and j 2 fRþ1;…; Lg meaning that only two electrodes are active at each possible solution,
finalizing the proof.
14
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Appendix B.2. Considering maximum current per electrode limit

We now consider additional constraints~ımin≼~ı≼~ımax, where the absolute value of every entry of~ımin and~ımax is smaller than imax. For simplicity, let us
assume first that we impose the same values c:imax for all~ımax elements and �c:imax for all~ımin elements, with c being an arbitrary real scalar in the ½0; 1�
range. For visualization purposes, let us also assume that R ¼ 3 in Eq. (B.2.a). Depending on the value of constant c, the simplex will be now truncated by

the planes eii ¼ c:imax, and six or three vertices will replace previous 3 vertices v1, v2 and v3, as depicted in Fig. B2 for different values of constant c.

Fig. B2. Example of how the standard simplexes in Eq (B.3) are altered with a current limit per electrode lower in absolute value than imax . In this example we set c > 1
2

(left), c ¼ 1
2 (center), c < 1

2 (right). Corners v1; v2; v3do not longer belong to the truncated simplex, and points va; vb; vc are new corners and thus,
possible solutions.3

If c > 1
2 or c ¼ 1

2, all corners are defined by two active (positive) electrodes and one inactive electrode with zero current. If c < 1
2, three electrodes are

active, two of them supplying the maximum possible current per electrode and the third one supplying the rest to inject a total of imax.
When c is small enough (in this example, if c < 1

3), there is no possible solution on the simplex because the sum of the three positive injections can
never be equal to imax. In this case, more electrodes (i.e. R > 3) are needed to inject imax. That is, a different orthant with more positive current injection
electrodes (with R> 3Þcontains the optimal solution for the sources. As c gets smaller, more electrodes are involved in the possible solutions or corners,
all of them injecting the total allowed current per electrode c:imax, except, possibly, for one that supplies the rest of the current to reach imax. The
reasoning for imposing~ımin limits to the sink electrodes is analogous. In the extreme case that c < 1

L=2, half of the electrodes will be involved as sources

and the other half as sinks, and the optimal solution will not touch any simplex determined by the jj~ıjj1 � 2imax constraint.
Among all corners or possible solutions, the optimal one is the one that maximizes ΦT

Γ i (see Eq. (12)). It is then evident that the optimal solution
involves the electrodes with maximum potential ΦΓ differences. And all sources inject the same amount of current except, possibly, for one, and the
same happens with the sinks.

Lastly, if the current injection bounds are not the same for all electrodes, the same reasoning can be applied and the optimal solution is found as
follows: pick the electrode with largest electric potential and inject as much current as possible, then select the second electrode with maximum po-
tential and inject as much current as possible, and repeat this process until the total maximum current injection limit is reached. Then, repeat this
procedure for the sink electrodes but for the lowestΦΓ. That one is the optimal solution to Eq. (12) with the addition of the~ımin≼~ı≼~ımax set of constraints.

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuroimage.2019.116403.
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