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ON THE TIME DISCRETIZATION OF STOCHASTIC OPTIMAL CONTROL

PROBLEMS: THE DYNAMIC PROGRAMMING APPROACH ∗, ∗∗, ∗∗∗
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Abstract. In this work we consider the time discretization of stochastic optimal control problems.
Under general assumptions on the data, we prove the convergence of the value functions associated
with the discrete time problems to the value function of the original problem. Moreover, we prove
that any sequence of optimal solutions of discrete problems is minimizing for the continuous one. As a
consequence of the Dynamic Programming Principle for the discrete problems, the minimizing sequence
can be taken in discrete time feedback form.
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1. Introduction

Stochastic optimal control problems in continuous time have been extensively studied during the last decades.
This important area of research has a wide range of applications, such as in economy, mathematical finance
and engineering. Usually, there are two approaches to deal with these problems. The first one is related to the
Bellman’s Dynamic Programming Principle (DPP), which allows to characterize the value function as the unique
viscosity solution of the associated Hamilton-Jacobi-Bellman (HJB) equation [21–23]. The second one is the
variational approach, which deals with extensions of the Pontryagin maximum principle [26] to the stochastic
framework. For a detailed account of the theory and historical remarks we refer the reader to the classical
monographs [14,19,30].

Almost independently, another active field of research in the last decades has been the optimal control of
discrete time processes and general state space. In that framework, controls at time k (also called policies)
are probability measures on the actions space, which depend on the history of states at time k and the chosen
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actions up to time k − 1. Given a control, an action is chosen according to the probability measure associated
with this control and this fixes the transition probability function between the states at time k and k + 1. The
literature on this subject is too extensive and we refer the reader to the classical monographs [3, 12, 15, 27, 31],
and the references therein, for a comprehensive presentation and historical remarks. Generally speaking, the
assumptions in this theory are rather general and a common theme is the investigation of existence of optimal
(or ε-optimal) Markov policies, i.e. the chosen control at time k depends only on the value of the state at time
k.

In this work, we consider a continuous time stochastic optimal control problem with deterministic coefficients
and a finite horizon T > 0. Given a time grid with diameter h > 0, we study its natural time discretization.
While we consider only uniform grids, our analysis is easily extended for general time grids. The state equation
is discretized with the classical stochastic explicit Euler scheme. Since at the continuous level we consider the
strong formulation for the state equation (see [30, Chapter 2, Section 4.1]), i.e. the control acts pathwise on
the state on a fixed probability space, it is natural to consider at the discrete level a similar formulation. In
this case, the controls are assumed to be adapted to the filtration generated by the increments of the Brownian
motion on the time grid. In this sense and similarly to the continuous time case (see [30, Chapter 2, Section
4.1 and Section 4.2]) our formulation is more specific than the one described in the previous paragraph, which
is more related to the weak formulation of the continuous problem (see [30, Chapter 2, Section 4.2]).

The study of the discrete time case arises from different objectives. For instance, it can be used to prove the
existence of optimal controls for the continuous time problem, as the limit of optimal discrete time policies (see
e.g. [9] and [20]). Another application is to derive the DPP for the continuous time problem as a consequence
of this property in the discrete time case (see e.g. [19] and [25]). We point out that in [17,19] and [25], given a
discrete time control the associated state solves the continuous time stochastic differential equation and so the
state is not discrete in time. Finally, discrete time problems appear naturally as the first step in obtaining a
numerical approximation of the continuous time problem, the second step being the discretization of the state
space (see e.g. [20]) or the resolution by Monte Carlo methods.

The simplicity of our pathwise formulation and the regularity of the coefficients defining the continuous
problem, which, as we will see, yields the continuity of the optimal cost as a function of the initial state, allow
us to simplify the proof of the DPP for the discrete time problem by arguing as in [5]. Thus, we do not have
to deal with delicate measurability issues as in [3]. Although we consider controls adapted to the filtrations
generated by the increments of the Brownian motion, a consequence of the DPP is the existence of discrete time
optimal feedback (or Markov) controls. This important property in the discrete time case is in contrast with
the analogous property in the continuous time case, where the existence of an optimal feedback control can be
assured only in exceptional cases (see [30, Chapter 5, Section 6] and Remark 3.7). In some sense, this is similar
to the existence issues for continuous time Stochastic Differential Equations (SDEs), where the Euler scheme is
always well-posed even when the continuous time SDEs does not admit explicit solutions.

We study several properties of the discrete time value functions V h, which are analogous to their continuous
time counterparts, such as Lipschitz continuity and semiconcavity with respect to the state variable on bounded
sets. When extended by linear interpolation to the entire interval [0, T ], we prove that V h is Hölder continuous
in time, on bounded sets of the space variable. Using an approximation result by Krylov (see [19, Lemma 6,
Section 3.2, p.143]), we also prove with a direct approach the local uniform convergence of V h to V , the value
function of the continuous time problem. Since we work under quite general assumptions, this convergence
result is more general than those already proved in [9], where under stronger assumptions weak convergence to
a feedback control of the continuous time problems is shown, and [14, Chapter 9]. Probably, the convergence of
the value functions can also be proved by using analytical methods based on viscosity solution theory (see for
instance [7] and [8] for the deterministic case and [2,11] and [14, Chapter 9] for the stochastic one), however, our
direct approach allows us to prove the important fact that optimal (or ε-optimal) discrete time controls form a
minimizing sequence for the continuous time problem. In particular, there always exists a minimizing sequence
of discrete time optimal feedback controls. In addition, under some convexity (strong convexity) assumptions,
we obtain the weak (strong) convergence of the discrete time optimal controls to a solution of the original
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problem. In this general framework, we have not established error estimates for the discrete value functions.
We refer the reader to [17] and [18] where, under additional assumptions, the author tackles this problem.

The paper is organized as follows. In Section 2 we state the continuous time and discrete time problems and
our main assumptions. Also, we provide some technical and fundamental estimates, which are proved in the
Appendix, relating the continuous time and discrete time states associated with piecewise constant controls. In
Section 3 we prove the DPP for the discrete time problem and show the existence of feedback optimal controls.
The continuity of the discrete value function plays an important role here and simplifies its proof. Next, in
Section 4 we prove several regularity properties of V h, which are analogous to those of V . Finally, in Section
5 we prove in Theorem 5.2 the local uniform convergence of V h to V and that the sequence of discrete time
optimal controls is a minimizing sequence of the continuous problem. Under some convexity assumptions, the
convergence of this sequence to an optimal control of the continuous problem is also shown.

2. Preliminaries

We begin by defining the problems we are interested in.

2.1. Continuous time problem

Let (Ω,F ,P) be a probability space on which an m-dimensional standard Brownian motion W (·) is defined.
For every s ∈ [0, T ], we set Fs = {Fst }t∈[s,T ] where for t ∈ [s, T ], Fst is the completion of σ(W (r)−W (s) : s ≤
r ≤ t) by P-null sets of F .

Let s ∈ [0, T ] and x ∈ Rn, we consider the following controlled SDE:{
dys,xu (t) = f(t, ys,xu (t), u(t))dt+ σ(t, ys,xu (t), u(t))dW (t), t ∈]s, T [,

ys,xu (s) = x,
(1)

where f : [0, T ] × Rn × Rr → Rn and σ : [0, T ] × Rn × Rr → Rn×m are given maps. In the notation above
ys,xu ∈ Rn denotes the state function and u ∈ Rr the control. We define the cost functional

Js,x(u) := E

[∫ T

s

`(t, ys,xu (t), u(t))dt+ g(ys,xu (T ))

]
, (2)

where ` : [0, T ] × Rn × Rr → R and g : Rn → R are given maps. A precise definition of the control space, i.e.
the domain of the functional Js,x in (2), and assumptions over the data ensuring that ys,xu is well defined will
be given in the next sections.

Let Uad be a non-empty compact subset of Rr and define

Usad :=
{
u ∈ (H2

Fs)
r : u(t, ω) ∈ Uad, for almost all (a.a.) (t, ω) ∈ [s, T ]× Ω

}
, (3)

where

H2
Fs :=

{
v ∈ L2([s, T ]× Ω) : the process (t, ω) ∈ [s, T ]× Ω 7→ v(t, ω) is Fs-adapted

}
, (4)

and it is endowed with the L2([s, T ]× Ω) norm.
Then, for fixed s ∈ [0, T ] and x ∈ Rn the control problem that we consider is

(Ps,x) inf Js,x(u) subject to u ∈ Usad.

The value function of the continuous problem V : [0, T ]× Rn → R is defined as

V (s, x) := inf
u∈Usad

Js,x(u). (5)
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2.2. Discrete time problem

Let us introduce a discrete time approximation of the above problem. Given N ∈ N \ {0}, define h := T/N .
Let us set tk = kh (k = 0, . . . , N) and consider the sequence of independent and identically distributed (i.i.d.)
m-valued random vectors, defined as ∆Wk+1 := W (tk+1) −W (tk), for k = 0, ..., N − 1 and ∆W0 := 0 in Ω.

Then, E(∆Wk) = 0 and E(∆W i1
k ∆W i2

k ) = hδi1i2 (where δi1i2 = 1 if i1 = i2 and δi1i2 = 0 otherwise). For each

k = 0, ..., N we consider the filtration {Fkj }Nj=k, where

Fkk := {∅,Ω} and Fkj := σ(∆Wk′ ; k + 1 ≤ k′ ≤ j) for all j ∈ {k + 1, ..., N}. (6)

Let us set L2
Fkj

:= L2(Ω,Fkj ,P). For k = 0, . . . , N − 1, we consider the admissible control sets

Uhk := {u = (uk, ..., uN−1) ∈ ΠN−1
j=k L

2
Fkj

: uj(ω) ∈ Uad P-a.s., j = k, ..., N − 1}, (7)

where ΠN−1
j=k L

2
Fkj

is endowed with the norm ‖u‖2Uhk := h
∑N−1
j=k E|uj |2.

Given u ∈ Uhk , x ∈ Rn and k = 0, . . . , N − 1, we recursively define the state yk,x,uj , j = k, . . . , N , associated
with u, x and k as{

yk,x,uj+1 = yk,x,uj + hf(tj , y
k,x,u
j , uj) + σ(tj , y

k,x,u
j , uj)∆Wj+1, j = k, . . . , N − 1,

yk,x,uk = x.
(8)

Note that, under the assumption (H1) below, yk,x,uj ∈ L2
Fkj

, for all j = k, . . . , N .

Finally, we associate to each u ∈ Uhk the cost function,

Jhk (x, u) := E

hN−1∑
j=k

`(tj , y
k,x,u
j , uj) + g(yk,x,uN )

 . (9)

Then, for fixed k and x, the discrete time control problem that we will consider is

(Phk,x) inf Jhk (x, u) subject to u ∈ Uhk .

In this case, the value function {V hk : Rn → R | k = 0, . . . , N} is defined over Rn as

V hN (x) := g(x), and V hk (x) := inf
u∈Uhk

Jhk (x, u) for k = 0, . . . , N − 1. (10)

The main result of this work is to prove the convergence of an extension of V h(·)(·) to [0, T ]×Rn to the value

function V . In the next section we introduce the main assumptions in this work.

2.3. Assumptions

We present the hypothesis that we consider in this paper.

(H1) Assumptions on the dynamics:
(a) The maps ϕ = f, σ are B ([0, T ]× Rn × Rr) measurable.

(b) For almost all t ∈ [0, T ] the map (y, u) 7→ ϕ(t, y, u) is C1 and there exists a constant L1 > 0 such
that for almost all t ∈ [0, T ] and for all y ∈ Rn and u ∈ Uad we have{

|ϕ(t, y, u)| ≤ L1 [|y|+ |u|+ 1] ,

|ϕy(t, y, u)|+ |ϕu(t, y, u)| ≤ L1,
(11)
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where ϕy(t, y, u) := Dyϕ(t, y, u) and ϕu(t, y, u) := Duϕ(t, y, u).

(c) There exists an increasing modulus of continuity ω1 : [0,+∞[→ [0,+∞[ such that for ϕ = f, σ,
and for all y ∈ Rn, u ∈ Uad, s, t ∈ [0, T ] we have

|ϕ(s, y, u)− ϕ(t, y, u)| ≤ ω1(|s− t|). (12)

(H2) Assumptions on the cost:
(a) The maps ` and g are respectively B ([0, T ]× Rn × Rr) and B (Rn) measurable.

(b) For almost all t ∈ [0, T ] the map (y, u) 7→ `(t, y, u) is C1, and there exists L2 > 0 such that for all
y ∈ Rn and u ∈ Uad,{

|`(t, y, u)| ≤ L2 [|y|+ |u|+ 1]
2
,

|`y(t, y, u)|+ |`u(t, y, u)| ≤ L2 [|y|+ |u|+ 1] ,
(13)

where `y(t, y, u) := Dy`(t, y, u) and `u(t, y, u) := Du`(t, y, u).

(c) There exists an increasing modulus of continuity ω2 : [0,+∞[→ [0,+∞[ such that for for all y ∈ Rn,
u ∈ Uad and s, t ∈ [0, T ] we have

|`(s, y, u)− `(t, y, u)| ≤ ω2(|s− t|). (14)

(d) The map y 7→ g(y) is C1 and there exists L2 > 0 such that for all y ∈ Rn,{
|g(y)| ≤ L2 [|y|+ 1]

2
,

|∇g(y)| ≤ L2 [|y|+ 1] .
(15)

In order to keep the notation as simple as possible, we define L := max{L1, L2} and ω := max{ω1, ω2}.
Remark 2.1. Under assumption (H1), for any u ∈ Usad the state equation (1) admits a unique strong solution,
see the proof of [24, Proposition 2.1]. For the sake of completeness, we recall the following particular instance
of [24, Proposition 2.1] which is valid under our assumption (H1).

Proposition 2.1 Assume that (H1) holds true. Then for any u ∈ U0
ad the continuous times state equation (1)

admits a unique strong solution y ∈ L2(Ω;C([0, T ];Rn)), and the following estimate holds:

E

[
sup
s∈[0,t]

|y(s)|2
]
≤ CE

[
|x|2 +

(∫ t

0

|f(s, 0, u(s))|ds
)2

+

∫ t

0

|σ(s, 0, u(s))|2ds

]
. (16)

Moreover, for any γ ≥ 1, there exists Cγ > 0 such that

E

[
sup
s∈[0,t]

|y0,x
u (s)− y0,x̄

u (s)|γ
]
≤ Cγ |x− x̄|γ . (17)

Under assumptions (H1) and (H2) we can prove the main result presented in Section 5 (Theorem 5.2),
which gives the convergence of the discrete value function to the continuous one. The contribution of this work
in the context of the existing literature is that our assumptions are rather general, see for instance [11] where
the coefficient are bounded. Moreover, using the DPP, proved in Section 3, we obtain the existence of feedback
discrete optimal controls which will be shown to form a minimizing sequence for the continuous problem.

We end this section by providing some technical results which will be needed in the next sections.
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2.4. Estimates on the states of the discrete and continuous formulations

We begin this section by providing some estimates for the discrete state and then for the difference between
two discrete states with different initial state. Finally, we also prove some estimates for the difference between
the discrete and continuous time states associated with the same discrete time control, which is extended to a
piecewise constant control at each interval [tk, tk+1[. The proofs of these results will be given in the Appendix.

In order to keep the notation as simple as possible, we assume that the initial time is k = 0 and the initial
state x is fixed, and we omit these indexes in the state.

We start by providing an estimate of the norm of the state in terms of the control and the initial condition.
For a fixed h, let uh = (uk)N−1

k=0 ∈ Uh0 be a given discrete control and define the associated discrete state

yh = (yk)Nk=0 as the solution of (8).
Let us underline that all the constants involved in the following results are independent of h.

Lemma 2.2. Assume that (H1) holds. Then, there exists C > 0, such that

E
[

max
k=0,...,N

|yk|2
]
≤ C

[
|x|2 + ‖uh‖2Uh0 + 1

]
. (18)

Proof. See the Appendix. �

Lemma 2.3. Let (H1) holds. Then, for every p ≥ 2, there exists Cp > 0, such that for all x, y ∈ Rn, we have

E
[

max
k=0,...,N

|yxk − y
y
k |
p

]
≤ Cp|x− y|p, (19)

where (yxk)Nk=0 and (yyk)Nk=0 are the solutions of (8) associated with the control uh and the initial states x and
y, respectively.

Proof. See the Appendix. �

Let uhc ∈ H2
F be defined as uhc (t) := uk for all t ∈ [tk, tk+1) and y be the associated continuous state, i.e. the

unique solution of {
dy(t) = f(t, y(t), uhc (t))dt+ σ(t, y(t), uhc (t))dW (t), t ∈]0, T [,
y(0) = x.

(20)

The existence and uniqueness of solution associated with uhc is guaranteed by Remark 2.1. Now, we are going to
analyse the relationship between y, the solution of (20) associated with uhc , and yh, the solution of (8) associated
with uh. Note that ‖uhc ‖H2

F0
= ‖uh‖Uh0 .

Lemma 2.4. Assume that (H1) holds true. Then, there exists C > 0 such that for all k = 0, ..., N − 1,

E

[
sup

tk≤t<tk+1

|y(t)− yk|2
]
≤ Ch

[
|x|2 + ‖uh‖2Uh0 + 1

]
+ Cω2(h). (21)

Proof. See the Appendix. �
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3. Discrete Time Dynamic Programming Principle

Throughout this section we consider h = T/N fixed. Our goal in this section is to prove the DPP for problem
(Phk,x) parameterized by the initial discrete time k and the initial state x. Besides its own importance, the DPP
implies the existence of discrete time optimal feedback controls, and it is also useful to prove the convergence
of the discrete value functions to the continuous one, as we will see in Section 5.

Our aim is to prove the following DPP for {V hk : k = 0, . . . , N}

V hk (x) = inf
u∈Uad

{
h`(tk, x, u) + E

[
V hk+1(x+ hf(tk, x, u) + σ(tk, x, u)∆Wk+1)

]}
, (22)

for all k = 0, ..., N − 1, where we recall that {V hk : k = 0, . . . , N} was defined in (10). Note that (H2), the
compactness of Uad and Lemma 2.2 imply that V hk (x) ∈ R for all k = 0, . . . , N and x ∈ Rn.

We will need the following result which proves that the discrete value function is Lipschitz continuous with
respect to the state variable, on bounded sets.

Lemma 3.1. Assume that (H1) and (H2) hold. Then, there exists a constant C > 0 (independent of h), such
that for all x, y ∈ Rn, and for all u ∈ Uhk , we have∣∣Jhk (x, u)− Jhk (y, u)

∣∣ ≤ C [|x|+ |y|+ 1] |x− y|, ∀ k = 0, . . . , N − 1. (23)

As a consequence, ∣∣V hk (x)− V hk (y)
∣∣ ≤ C [|x|+ |y|+ 1] |x− y| ∀ k = 0, . . . , N. (24)

Proof. By notational convenience, we omit the indexes k and u in the states. We have for fixed k and u ∈ Uhk

|Jhk (x, u)− Jhk (y, u)| ≤ E

hN−1∑
j=k

|`(tj , yxj , uj)− `(tj , y
y
j , uj)|+ |g(yxN )− g(yyN )|

 . (25)

By (H2) we have for all k ≤ j ≤ N − 1,

E
[
|`(tj , yxj , uj)− `(tj , y

y
j , uj)|

]
≤ E

[∫ 1

0
|`y(tj , y

x
j + s(yyj − yxj ), uj)(y

y
j − yxj )|ds

]
≤ E

[∫ 1

0
[L(1 + |yxj |+ s|yyj − yxj |+ |uj |)|y

y
j − yxj |]ds

]
≤ LE

[
|yyj − yxj |+ |yxj ||y

y
j − yxj |+ |y

y
j − yxj |2 + |uj ||yyj − yxj |

]
.

(26)

Since the set Uad is compact, it is bounded by a positive constant MU , and so by the Cauchy-Schwarz inequality,
Lemma 2.2 and Lemma 2.3 there exists C0 > 0 such that

E
[
|yyj − yxj |

]
≤
(
E[|yyj − yxj |2]

) 1
2 ≤ C0|x− y|,

E
[
|yxj ||y

y
j − yxj |

]
≤
(
E[|yxj |2]

) 1
2
(
E[|yyj − yxj |2]

) 1
2 ≤ C0

[
|x|2 + TM2

U + 1|
] 1

2 |x− y|,

E
[
|uj ||yyj − yxj |

]
≤
(
E[|uj |2]

) 1
2
(
E[|yyj − yxj |2]

) 1
2 ≤ C0MU |x− y|,

E
[
|yyj − yxj |2

]
≤ C0|x− y|2 ≤ C0 [|x|+ |y|] |x− y|.

(27)

We conclude that there exists C1 > 0 such that,

E
[
|`(tj , yxj , uj)− `(tj , y

y
j , uj)|

]
≤ C1 [|x|+ |y|+ 1] |x− y|. (28)
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Analogously we can deduce that

E [|g(yxN )− g(yyN )|] ≤ C1 [|x|+ |y|+ 1] |x− y|. (29)

Since C1 in (28) does not depend on j, we conclude that

|Jhk (x, u)− Jhk (y, u)| ≤ (T + 1)C1 [|x|+ |y|+ 1] |x− y|, (30)

and (23) follows.
Since the set Uhk is bounded, and the constant C1 obtained is independent of u ∈ Uhk , relation (24) easily

follows from the inequality

|V hk (x)− V hk (y)| ≤ sup
u∈Uhk

|Jhk (x, u)− Jhk (y, u)|. (31)

�

In order to prove the DPP (22), for all x ∈ Rn we define

Shk (x) := infu∈Uad

{
h`(tk, x, u) + E

[
V hk+1(yk,x,uk+1 )

]}
, ∀ k = 0, . . . , N − 1,

ShN (x) := g(x),
(32)

where,

yk,x,uk+1 = x+ hf(tk, x, u) + σ(tk, x, u)∆Wk+1. (33)

Lemma 3.2. For all x ∈ Rn, and for all k = 0, ..., N , the map u ∈ Uad 7→ E[V hk+1(yk,x,uk+1 )] is Lipschitz

continuous. As a consequence, Shk (x) ∈ R for all x ∈ Rn, and there exists uk,x ∈ Uad where the minimum in
the first relation in (32) is attained.

Proof. Let u, v ∈ Uad, then by (H1) and the Itô isometry,

E
[
|yk,x,uk+1 − y

k,x,v
k+1 |2

]
≤ E

[
|h(f(tk, x, u)− f(tk, x, v)) + (σ(tk, x, u)− σ(tk, x, v))∆Wk+1|2

]
≤ 2h2E

[
|f(tk, x, u)− f(tk, x, v)|2

]
+ 2hE

[
|σ(tk, x, u)− σ(tk, x, v)|2

]
≤ 2h2L2|u− v|2 + 2hL2|u− v|2.

(34)

Thus, by Lemma 2.2, Lemma 3.1 and the Cauchy-Schwarz inequality, there exist C0 > 0 and C > 0 such that,∣∣∣E [V hk+1(yk,x,uk+1 )− V hk+1(yk,x,vk+1 )
]∣∣∣ ≤ E

[
|C0[|yk,x,uk+1 |+ |y

k,x,v
k+1 |+ 1]|yk,x,uk+1 − y

k,x,v
k+1 |

]
≤

(
E[|C0[|yk,x,uk+1 |+ |y

k,x,v
k+1 |+ 1]|2]

) 1
2
(
E[|yk,x,uk+1 − y

k,x,v
k+1 |2]

) 1
2

≤ C [|x|+ 1] |u− v|.

(35)

By (35), we conclude that Uad 3 u 7→ E[V hk+1(yk,x,uk+1 )] is locally Lipschitz continuous, and, hence, using (H2)

and that Uad is compact, we get that Shk (x) is finite and the minimum in (32) is attained. �

Lemma 3.3. Under assumptions (H1) and (H2), there exists C > 0 (independent of h), such that for all
x, y ∈ Rn, and k = 0, . . . , N − 1, ∣∣Shk (x)− Shk (y)

∣∣ ≤ C [|x|+ |y|+ 1] |x− y|. (36)



TITLE WILL BE SET BY THE PUBLISHER 9

Proof. By the definition of Shk and Lemma 3.1, there exists C0 > 0 such that

|Shk (x)− Shk (y)| ≤ supu∈Uad

{
h|`(tk, x, u)− `(tk, y, u)|+ E

[
|V hk+1(yk,x,uk+1 )− V hk+1(yk,y,uk+1 )|

]}
≤ hC0 [|x|+ |y|+ 1] |x− y|+ E

[
C0[|yk,x,uk+1 |+ |y

k,y,u
k+1 |+ 1]|yk,x,uk+1 − y

k,y,u
k+1 |

]
.

(37)

By the Cauchy-Schwarz inequality, we obtain

E
[
[|yk,x,uk+1 |+ |y

k,y,u
k+1 |+ 1]|yk,x,uk+1 − y

k,y,u
k+1 |

]
≤
(
E[[|yk,x,uk+1 |+ |y

k,y,u
k+1 |+ 1]2]

) 1
2
(
E[|yk,x,uk+1 − y

k,y,u
k+1 |

2]
) 1

2

. (38)

By Lemma 2.2 and Lemma 2.3 we conclude that there exists C1 > 0, independent of u, because Uad is bounded,
such that (

E
[
[|yk,x,uk+1 |+ |y

k,y,u
k+1 |+ 1]2

]) 1
2
(
E
[
|yk,x,uk+1 − y

k,y,u
k+1 |

2
]) 1

2 ≤ C1 [|x|+ |y|+ 1] |x− y|. (39)

Combining (37) and (39), we deduce that (36) holds true. �

Now we prove the DPP. Since V hk is continuous, we can directly prove the result following the arguments
in [5] without needing to embed our problem in the general framework of [3].

Theorem 3.4 (DPP). Under assumptions (H1) and (H2), for all x ∈ Rn we have

V hk (x) = Shk (x) ∀ k = 0, ..., N. (40)

Proof. We start by proving that V hk (x) ≥ Shk (x). Let u = (uk, ..., uN−1) be any element of Uhk . By the definition
of the set Uhk , we can write uj for j ∈ {k + 1, ..., N − 1}, as a measurable function of the increments of the
Brownian motion, i.e. uj(∆Wk+1, ...,∆Wj). For fixed ∆ωk+1 ∈ Rm and j = k + 1, . . . , N − 1, we define the
maps

ûj(∆ωk+1) : ω ∈ Ω 7→ uj(∆ωk+1,∆Wk+2(ω), ...,∆Wj(ω)). (41)

Setting û(∆ωk+1) = (ûk+1(∆ωk+1), . . . , ûN−1(∆ωk+1)), we obtain û(∆ωk+1) ∈ Uhk+1. Then, we can also define,

ŷk+1(∆ωk+1) := x+ hf(tk, x, uk) + σ(tk, x, uk)∆ωk+1, (42)

which is deterministic, and for j = k + 2, . . . , N ,

ŷj(∆ωk+1) : ω ∈ Ω 7→ y
k+1,ŷk+1(∆ωk+1),û(∆ωk+1)(ω)
j (ω). (43)

Then, by the independence of the increments of a Brownian motion, we have

E
[
h
∑N−1
j=k+1 `(tj , y

k,x,u
j , uj) + g(yk,x,uN )

]
=∫

Rm E
[
h
∑N−1
j=k+1 `(tj , ŷj(∆ωk+1), ûj(∆ωk+1)) + g(ŷN (∆ωk+1))

]
dP∆Wk+1

(∆ωk+1),
(44)
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where P∆Wk+1
is the measure induced from P by ∆Wk+1 on Rm (see [1, Section 4.13]). Thus,

E
[
h
∑N−1
j=k+1 `(tj , y

k,x,u
j , uj) + g(yk,x,uN )

]
=
∫
Rm (h`(tk+1, ŷk+1(∆ωk+1), ûk+1(∆ωk+1))

+E
[
h
∑N−1
j=k+2 `(tj , ŷj(∆ωk+1), ûj(∆ωk+1)) + g(ŷN (∆ωk+1))

])
dP∆Wk+1

(∆ωk+1)

≥
∫
Rm V

h
k+1(ŷk+1(∆ωk+1))dP∆Wk+1

(∆ωk+1)

= E
[
V hk+1(x+ hf(tk, x, uk) + σ(tk, x, uk)∆Wk+1)

]
.

(45)

Since uk ∈ L2
Fkk

and Fkk = {∅,Ω}, for all u = (uk, ..., uN−1) ∈ Uhk we have

`(tk, x, uk) + E
[
h
∑N−1
j=k+1 `(tj , y

k,x,u
j , uj) + g(yk,x,uN )

]
≥ `(tk, x, uk) + E

[
V hk+1(x+ hf(tk, x, uk) + σ(tk, x, uk)∆Wk+1)

]
≥ Shk (x).

(46)

Minimizing w.r.t. u ∈ Uhk in the l.h.s. we deduce

V hk (x) ≥ Shk (x). (47)

We next prove the converse inequality by an induction argument. It is clear by the definitions that

V hN (x) = ShN (x) and V hN−1(x) = ShN−1(x), ∀x ∈ Rn. (48)

Now, let ε be a positive number and for each x ∈ Rn let δx > 0 be such that C[|x|+ |y|+ 1]|x− y| < ε
2 for all

y : |x − y| < δx, where C is the maximum of the constants given in Lemma 3.1 and Lemma 3.3. Then, for all
k = 0, ..., N and u ∈ Uhk ,

max
{
|Jhk (x, u)− Jhk (y, u)|, |V hk (x)− V hk (y)|, |Shk (x)− Shk (y)|

}
<
ε

2
, ∀ y : |x− y| < δx. (49)

Since Rn is a Lindelöf space, i.e. every open cover has a countable subcover, there exists a sequence (ξi)i∈N ⊂ Rn
such that Rn =

⋃∞
i=1B(ξi, δξi). In order to obtain a disjoint union, we can define

B̂1 := B(ξ1, δξ1), and B̂i := B(ξi, δξi) \ (∪i−1
j=1B̂j), ∀ i > 1. (50)

Let k < N − 1, and assume that V hn ≡ Shn, for all n = k + 1, ..., N . Since Uad is compact, by Lemma 3.2, for
j = k, ..., N − 1, there exists uij ∈ Uad such that

h`(tj , ξi, u
i
j) + E

[
V hj+1(ξi + hf(tj , ξi, u

i
j) + σ(tj , ξi, u

i
j)∆Wj+1)

]
= Shj (ξi). (51)

We define the measurable function uj(x) =
∑∞
i=1 u

i
jχB̂i(x). Let x ∈ Rn and i such that x ∈ B̂i (see (50)).

Then,

h`(tj , x, uj(x)) + E
[
V hj+1(x+ hf(tj , x, uj(x)) + σ(tj , x, uj(x))∆Wj+1)

]
= h`(tj , x, u

i
j) + E

[
V hj+1(x+ hf(tj , x, u

i
j) + σ(tj , x, u

i
j)∆Wj+1)

]
≤ ε

2 + h`(tj , ξi, u
i
j) + E

[
V hj+1(ξi + hf(tj , ξi, u

i
j) + σ(tj , ξi, u

i
j)∆Wj+1)

]
≤ ε

2 + Shj (ξi)

≤ Shj (x) + ε.

(52)
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Now, we fix x ∈ Rn and take ūk = uk(x) ∈ Uad. We define inductively uj : Ω→ Rr, for all k < j ≤ N − 1, as

ūj+1(ω) := uj+1

(
y
k,x,(ūk,...,ūj)
j+1 (ω)

)
, (53)

where
(
y
k,x,(ūk,...,ūj)
r

)j+1

r=k
satisfies the first equation in (8) for ūk, ..., ūj , and y

k,x,(ūk,...,ūj)
k = x. Since the

function uj+1 is measurable and bounded, and y
k,x,(ūk,...,ūj)
j+1 is measurable with respect to Fkj+1, we obtain

that ū = (ūk, ..., ūN−1) ∈ Uhk . Using the same ideas as in (44)-(45), and the assumption V hj ≡ Shj , for all
k < j ≤ N − 1, we get that

Jhk (x, ū) = h`(tk, x, ūk) + E
[
h
∑N−1
j=k+1 `(tj , y

k,x,ū
j , uj(y

k,x,ū
j )) + g(yk,x,ūN )

]
= h`(tk, x, ūk) + E

[
h
∑N−1
j=k+1 `(tj , y

k,x,ū
j , uj(y

k,x,ū
j )) + V hN (yk,x,ūN )

]
≤ h`(tk, x, ūk) + E

[
h
∑N−2
j=k+1 `(tj , y

k,x,ū
j , uj(y

k,x,ū
j )) + ShN−1(yk,x,ūN−1 ) + ε

]
= h`(tk, x, ūk) + E

[
h
∑N−2
j=k+1 `(tj , y

k,x,ū
j , uj(y

k,x,ū
j )) + V hN−1(yk,x,ūN−1 ) + ε

]
≤ h`(tk, x, ūk) + E

[
V hk+1(yk,x,ūk+1 )

]
+ (N − 1)ε

≤ Shk (x) +Nε,

(54)

where the inequality in the third line above is obtained by using (52). We conclude that,

V hk (x) ≤ Jhk (x, ū) ≤ Shk (x) +Nε. (55)

Since ε > 0 is arbitrary, we obtain
V hk (x) ≤ Shk (x), (56)

from which the result follows. �

The following remark will be used in the proof of the main result of Section 5.

Remark 3.5. Given k ∈ {0, . . . , N − 1}, we introduce the following sets of controls,
Ūhk := {u ∈ ΠN−1

j=k L
2
F0
j

: uj ∈ Uad, P-a.s. ∀ j = k, . . . , N − 1}

Ū1
k := {u ∈ ΠN−1

j=k L
2
F0
tj

: uj ∈ Uad, P-a.s. ∀ j = k, . . . , N − 1},

Ū2
k := {u ∈ ΠN−1

j=k L
2

Ftktj
: uj ∈ Uad, P-a.s. ∀ j = k, . . . , N − 1},

(57)

and the associated value functions,
V̄ hN (x) := g(x), V̄ hk (x) := infu∈Ūhk J

h
k (x, u), k = 0, ..., N − 1,

V̄ h,1N (x) := g(x), V̄ h,1k (x) := infu∈Ū1
k
Jhk (x, u), k = 0, ..., N − 1,

V̄ h,2N (x) := g(x), V̄ h,2k (x) := infu∈Ū2
k
Jhk (x, u), k = 0, ..., N − 1.

(58)

We can observe that all the results of the current section including the DPP, remain true if we deal with any of
the sets in (57). Indeed, the proofs are based in the fact that the processes are adapted to the given filtration

and the increments of Brownian motions are independent. Since V̄ hN (x) = V̄ h,1N (x) = V̄ h,2N (x) = V hN (x) = g(x),

and {V̄ hk }, {V̄
h,1
k }, {V̄

h,2
k } and {V hk } satisfy (40), we have

V̄ hk (x) = V̄ h,1k (x) = V̄ h,2k (x) = V hk (x), ∀k = 0, ..., N, ∀x ∈ Rn. (59)
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3.1. Feedback optimal control

The aim of this section is to prove that there exists a feedback optimal control for (Phk,x). For notational

convenience we define for all 0 ≤ k ≤ N − 1, the function F k : Rn × Uad → R as

F k(x, u) := h`(tk, x, u) + E
[
V hk+1(x+ hf(tk, x, u) + σ(tk, x, u)∆Wk+1)

]
. (60)

Then, by the DPP, for all x ∈ Rn and k = 0, . . . , N − 1, we have,

V hk (x) = inf
u∈Uad

F k(x, u) and V hN (x) = g(x). (61)

Based on a measurable selection theorem due to Schäl [28, Theorem 5.3.1], we can prove the following result.

Proposition 3.6. Under the above assumptions, for all k = 0, ..., N − 1 there exists a measurable function
ūk : Rn → Uad such that

F k(x, ūk(x)) = V hk (x), (62)

for all x ∈ Rn.

Proof. Arguing as in the proof of Lemma 3.3, it is easy to check that (x, u) 7→ F k(x, u) is continuous. Since
Uad is compact we can apply [28, Theorem 5.3.1]. The result follows. �

Remark 3.7. As a corollary of the previous results and the DPP, in this discrete framework, we always have
a discrete time feedback (also called Markov) optimal control. Indeed, the sequence of measurable functions
ū0, . . . , ūN−1 given by the previous proposition, defines the optimal control ū = (ū0(y0), ū1(y1), ..., ūN−1(yN−1)),
where (y0, ..., yN ) is defined recursively as{

yk+1 = yk + hf(tk, yk, ū
k(yk)) + σ(tk, yk, ū

k(yk))∆Wk+1 ∀ k = 0, . . . , N − 1,

y0 = x.
(63)

Let us point out an interesting phenomenon, not underlined enough in the literature, which shows the power of
the DPP. In the continuous time case it is well known (see e.g. [13, Chapter VI] and [14, Chapters 3 and 4]) that
if the Hamilton-Jacobi-Bellman equation associated with the stochastic control problem, which is a consequence
of the DPP in continuous time, admits a solution v which is regular enough, then we can construct a feedback
optimal control. This is known as a verification result and, under standard assumptions, usually holds when σ
does not depend on u and, setting a = σσ>, we have that∑

1≤i, j≤n

ai,j(x, t)ξiξj ≥ c|ξ|2 ∀ ξ ∈ Rd,

for some c > 0. In particular, if we fix (t, x) ∈ [0, T [×Rn, we get the existence of an optimal feedback policy
for the problem associated with V (t, x). The main feature of this analysis is that existence of an optimum is
obtained without some usual convexity assumptions required in the strong formulation (see e.g. [30, Chapter
2, Section 5.2]). On the other hand, as we have just seen, for the problem obtained by discretizing the time
variable we always have the existence of a feedback control without any extra assumption. This is still an
infinite dimensional problem for which existence does not follow by standard methods, but it is a consequence
of the DPP.
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4. Other regularity properties of the value function

In this section we prove some regularity properties of the value function of the continuous and the discrete
problems. Some of them will be used in the proof of our main result in the next section and the others are
interesting by themselves.

In the following result we show the local (in space) Hölder continuity in time for V as well as an analogous
result for its discrete version {V hk ; k = 0, . . . , N} defined in (10). The former result is classical, see e.g. [29,
Section 3.4] and [30, Chapter 4, Proposition 3.1]). However, for the sake of completeness, we prove here a
version adapted to our assumptions.

In the statement of the following result we use the r.h.s. of (2) (respectively (9)) to extend Js,x(·) (respectively
Jhk (x, ·)) to U0

ad (respectively Uh0 ).

Theorem 4.1. Under assumptions (H1) and (H2), there exists C > 0 (independent of h), such that for all
x ∈ Rn, u ∈ U0

ad and s, t ∈ [0, T ],

|Js,x(u)− J t,x(u)| ≤ C[1 + |x|2]|s− t| 12 , (64)

and for all u ∈ Uh0 and r, k = 0, . . . , N ,

|Jhr (x, u)− Jhk (x, u)| ≤ C[1 + |x|2]|k − r| 12h 1
2 . (65)

As a consequence,

|V (s, x)− V (t, x)| ≤ C[1 + |x|2]|s− t| 12 ∀ x ∈ Rn, s, t ∈ [0, T ], (66)

and

|V hr (x)− V hk (x)| ≤ C[1 + |x|2]|k − r| 12h 1
2 ∀ x ∈ Rn, r, k = 0, . . . , N. (67)

Proof. First of all note that for all s ∈ [0, T ] and x ∈ Rn, we have

V (s, x) = inf
u∈U0

ad

Js,x(u). (68)

Indeed, it is clear that V (s, x) ≥ infu∈U0
ad
Js,x(u). On the other hand, if u ∈ U0

ad, then for all s ≤ t ≤ T the

function u(t) is F0
t -measurable, and so there exists a measurable map ut((ωr)0≤r≤s, (ωr − ωs)s≤r≤t) such that

u(t, ω) = ut((Wr(ω))0≤r≤s, (Wr(ω) −Ws(ω))s≤r≤t), P-a.s. ( [1]). Then if we fix (ωr)0≤r≤s we can define the
function

ût((ωr)0≤r≤s) : ω ∈ Ω 7→ ut((ωr)0≤r≤s, (Wr(ω)−Ws(ω))s≤r≤t), (69)

which belongs to Fst . By the independence of the increments of Brownian motions, we obtain the converse
inequality (see, e.g. [5, Remark 5.2]).

Without loss of generality, assume that 0 ≤ s ≤ t ≤ T . We consider a fixed initial state x and a control
u ∈ U0

ad. For simplicity we denote ys := ys,xu , yt := yt,xu and for t ≤ r ≤ T , and ϕ = f, σ,

∆y(r) := ys(r)− yt(r) and ∆ϕ(r) = ϕ(r, ys(r), u(r))− ϕ(r, yt(r), u(r)). (70)

Then, we obtain for t ≤ r ≤ T

∆y(r) =
∫ t
s
f(τ, ys(τ), u(τ))dτ +

∫ t
s
σ(τ, ys(τ), u(τ))dW (τ)

+
∫ r
t

∆f(τ)dτ +
∫ r
t

∆σ(τ)dW (τ).
(71)
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By assumption (H1), the Cauchy-Schwarz inequality and the Itô isometry we have

E
[
|∆y(r)|2

]
≤ 4[|s− t|+ 1]

∫ t
s

3L2(1 + E[|ys(τ)|2] + E[|u(τ)|2])dτ

+4[|s− t|+ 1]
∫ r
t
L2E[|∆y(τ)|2]dτ.

(72)

Since the set Uad is compact, by the Grönwall lemma [10] and [24, Proposition 2.1] there exists C0 > 0 such
that

sup
t≤r≤T

E
[
|∆y(r)|2

]
≤ C0

[
1 + |x|2

]
|s− t|. (73)

Now we compare Js,x(u) and J t,x(u), we denote ∆`(r) := `(r, ys(r), u(r))−`(r, yt(r), u(r)) and ∆g = g(ys(T ))−
g(yt(T )). We have

|Js,x(u)− J t,x(u)| ≤ E
∫ t
s
|`(r, ys(r), u(r))|dr + E

∫ T
t
|∆`(r)|dr + E|∆g|. (74)

By assumption (H2) we obtain,

E
∫ t

s

|`(r, ys(r), u(r))|dr ≤ 3L

∫ t

s

[
E[|ys(r)|2] + E[|u(r)|2] + 1

]
dr, (75)

and since Uad is bounded, again by [24, Proposition 2.1] there exists C1 > 0 such that

E
∫ t

s

|`(r, ys(r), u(r))|dr ≤ C1[1 + |x|2]|s− t|. (76)

On the other hand, for the last two terms we obtain,

E [|∆`(r)|] ≤ E
[∫ 1

0
|`y(r, yt(r) + ξ∆y(r), u(r))∆y(r)|dξ

]
≤ E

[∫ 1

0
[L(1 + |yt(r)|+ ξ|∆y(r)|+ |u(r)|)|∆y(r)|]dξ

]
≤ LE [[1 + |ys(r)|+ |∆y(r)|+ |u(r)|]|∆y(r)|] .

(77)

By the Cauchy-Schwarz inequality, Remark 2.1, the compactness of Uad and (73), we deduce that there exists
C2 > 0 such that

E [|∆`(r)|] ≤ C2

[
1 + |x|2

]
|s− t| 12 . (78)

An analogous estimate holds for ∆g and so the result follows.
In the case of the discrete value function, Remark 3.5 implies that for all x ∈ Rn,

V hk (x) = inf
u∈Uh0

E

hN−1∑
j=k

`(tj , y
k,x,u
j , uj) + g(yk,x,uN )

 , k ∈ {0, . . . , N}. (79)

Let u = (uj) ∈ Uh0 be a given control and r, k ∈ {0, . . . , N − 1} such that r < k. Let us set

∆yj = yr,x,uj − yk,x,uj , ∆ϕj = ϕ(tj , y
r,x,u
j , uj)− ϕ(tj , y

k,x,u
j , uj) and ∆g = g(yr,x,uN )− g(yk,x,uN ), (80)

for ϕ = f, σ, ` and j = k, . . . , N − 1. Then

∆yj+1 = ∆yj + h∆fj + ∆σj∆Wj+1. (81)
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Following the techniques in Subsection 2.4, there exists C3 > 0 such that

E
[
|∆yj+1|2

]
≤ (1 + C3h)E

[
|∆yj |2

]
≤ eC3TE

[
|∆yk|2

]
. (82)

By the definition, we have yk,x,uk = x, and hence,

∆yk = yr,x,uk − x = h

k−1∑
j=r

f(tj , y
r,x,u
j , uj) +

k−1∑
j=r

[σ(tj , y
r,x,u
j , uj)∆Wj+1]. (83)

Since Uad is compact, by the independence of the increments of the Brownian motion and (H1), there exist
C4 > 0 and C5 > 0 such that

E
[
|∆yk|2

]
≤ C4

[
h2(k − r)

∑k−1
j=r E[|f(tj , y

r,x,u
j , uj)|2] + h

∑k−1
j=r E[|σ(tj , y

r,x,u
j , uj)|2]

]
≤ C5h|k − r|

[
1 + maxj=r,...,k−1 E[|yr,x,uj |2]

]
≤ C6h|k − r|

[
1 + |x|2

]
,

(84)

where the last inequality holds by Lemma 2.2. We have

|Jhr (x, u)− Jhk (x, u)| =

∣∣∣∣∣∣h
k−1∑
j=r

E[`(tj , y
r,x,u
j , uj)] + h

N−1∑
j=k

E[∆`j ] + E[∆g]

∣∣∣∣∣∣ , (85)

and also,
|V hr (x)− V hk (x)| ≤ sup

u∈Uh0
|Jhr (x, u)− Jhk (x, u)|. (86)

By (H2), Lemma 2.2 and the compactness of Uad, there exists C7 > 0 such that

h

∣∣∣∣∣∣
k−1∑
j=r

E[`(tj , y
r,x,u
j , uj)]

∣∣∣∣∣∣ ≤ h
k−1∑
j=r

LE
[
1 + |yr,x,uj |+ |uj |

]2 ≤ h|k − r|C7

[
1 + |x|2

]
. (87)

On the other hand, as in (77), by Lemma 2.2 and (84), we obtain the existence of C8 > 0 such that

E [∆`j ] ≤ C8

[
1 + |x|2

]
h

1
2 |k − r| 12 , (88)

and a similar estimate holds for E[∆g]. Therefore, combining (85)-(88) we get the result. �

Our aim now is to study the semiconcavity of V and of its discrete version {V hk ; k = 0, . . . , N}. Recall that
ϕ : Rn → R is locally semi-concave in Rn if for all x ∈ Rn and δ > 0, there exists a constant Kx,δ > 0 such
that, for all y ∈ Bδ(x) := {z ∈ Rn : |z − x| < δ} and λ ∈ [0, 1],

λϕ(x) + (1− λ)ϕ(y)− ϕ(λx+ (1− λ)y) ≤ Kx,δλ(1− λ)|x− y|2. (89)

We will need the following additional assumptions:

(H3) There exists K > 0 such that g is semi-concave with constant K and ` is also semi-concave with constant
K, uniformly in [0, T ]× Uad, i.e. for all y, ȳ ∈ Rn,

λ`(t, y, u) + (1− λ)`(t, ȳ, u)− `(t, λy + (1− λ)ȳ, u) ≤ Kλ(1− λ)|y − ȳ|2, ∀λ ∈ [0, 1], (90)

and
λg(y) + (1− λ)g(ȳ)− g(λy + (1− λ)ȳ) ≤ Kλ(1− λ)|y − ȳ|2, ∀λ ∈ [0, 1]. (91)
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(H4) For ϕ = f, σ, and for almost all t ∈ [0, T ], the map (y, u) 7→ ϕ(t, y, u) is C2 and there exists a constant
L such that for all y ∈ Rn and u ∈ Uad,

|ϕyy(t, y, u)| ≤ L. (92)

Under these additional assumption we prove now a local version of (89) for V and {V hk ; k = 0, . . . , N}. The
following proof is similar to [30, Proposition 4.5, p.187].

Theorem 4.2. Under assumptions (H1)-(H4), the functions V and V hk are locally semi-concave with respect
to the space variable, i.e. for all x̄ ∈ Rn, δ > 0, s ∈ [0, T ] and k = 0, . . . , N , V (s, ·) and V hk (·) satisfy (89) with
constants Kx̄,δ > 0 which are independent of s and k, respectively.

Proof. Let x, x̄ ∈ Rn, λ ∈ [0, 1] and define xλ := λx+ (1− λ)x̄. For any ε > 0, there exists uε ∈ Usad such that

Js,x
λ

(uε)− ε < V (s, xλ). (93)

For notational convenience, we denote yξ(t) = ys,ξuε (t), `(yξ(t)) = `(t, ys,ξuε (t), uε(t)) and g(yξ) = g(ys,ξuε (T )) for

ξ = x, x̄, xλ. Then, we have

λV (s, x) + (1− λ)V (s, x̄)− V (s, xλ) ≤ λJs,x(uε) + (1− λ)Js,x̄(uε)− Js,x
λ

(uε) + ε

≤ E
[∫ T
s

[λ`(yx) + (1− λ)`(yx̄)− `(yxλ)]dt
]

+E
[
λg(yx) + (1− λ)g(yx̄)− g(yx

λ

)
]

+ ε.

(94)

By the semi-concavity assumption (H3) we obtain,

E
[∫ T
s

[λ`(yx) + (1− λ)`(yx̄)− `(yxλ)]dt
]

= E
[∫ T
s

[λ`(yx) + (1− λ)`(yx̄)− `(λyx + (1− λ)yx̄)]dt
]

+E
[∫ T
s

[`(λyx + (1− λ)yx̄)− `(yxλ)]dt
]

≤ Kλ(1− λ)TE
[
supt∈[s,T ] |yx(t)− yx̄(t)|2

]
+E

[∫ T
s

[`(λyx + (1− λ)yx̄)− `(yxλ)]dt
]
.

(95)

By (17), there exists C0 such that

E

[
sup
t∈[s,T ]

|yx(t)− yx̄(t)|2
]
≤ C0|x− x̄|2. (96)

Now, define ∆y(t) := λyx(t) + (1 − λ)yx̄(t) − yxλ(t) for all t ∈ [s, T ]. By (H2), and the compactness of Uad,
there exists C1 > 0 such that

|`(λyx(t) + (1− λ)yx̄(t))− `(yxλ(t))| ≤
∫ 1

0
|`y(yx

λ

(t) + ξ∆y(t))||∆y(t)|dξ

≤ C1[1 + |yxλ(t)|+ |∆y(t)|]|∆y(t)|.
(97)

We can obtain a similar estimate for g. By (H4), there exists C2 > 0 such that

E

[
sup
t∈[s,T ]

|∆y(t)|2
]
≤ C2λ

2(1− λ)2|x− x̄|4. (98)
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Now, returning to (97), by the Cauchy-Schwartz inequality, (17) and the above equation, there exists C3 > 0
such that

E
[
|yxλ(t)||∆y(t)|

]
≤ (E|yxλ(t)|2)

1
2 (E|∆y(t)|2)

1
2

≤ C3

[
1 + |xλ|

]
λ(1− λ)|x− x̄|2

≤ C3 [1 + |x̄|+ |x− x̄|]λ(1− λ)|x− x̄|2.

(99)

Since |x− x̄|4 ≤ δ2|x− x̄|2, for all x ∈ Bδ(x̄), combining (95)-(99), we can complete the proof of (89) for V (s, ·).
Now, for the discrete value, we follow similar arguments. There exists uε ∈ Uhk such that

Jhk (xλ, uε)− ε ≤ V hk (xλ). (100)

Denoting yξj = yk,ξ,uεj and `(yξj ) = `(tj , y
ξ
j , uε,j) for ξ = x, x̄, xλ and j = k, . . . , N , we have

λV hk (x) + (1− λ)V hk (x̄)− V hk (xλ) ≤ λJhk (x, uε) + (1− λ)Jhk (x̄, uε)− Jhk (xλ, uε) + ε

≤ E
[
h
∑N−1
j=k [λ`(yxj ) + (1− λ)`(yx̄j )− `(yxλj )]

]
+E

[
λg(yxN ) + (1− λ)g(yx̄N )− g(yx

λ

N )
]

+ ε.

(101)

As in (95), by the semi-concavity assumption (H3) we obtain

E
[
h
∑N−1
j=k [λ`(yxj ) + (1− λ)`(yx̄j )− `(yxλj )]

]
≤ Kλ(1− λ)T maxj=k,...,N E

[
|yxj − yx̄j |2

]
+E

[
h
∑N−1
j=k [`(λyxj + (1− λ)yx̄j )− `(yxλj )]

]
.

(102)

By Lemma 2.3, there exists C0 > 0 such that

max
j=k,...,N

E
[
|yxj − yx̄j |2

]
≤ C0|x− x̄|2. (103)

In order to estimate the last term in (102) we set ∆yj := λyxj +(1−λ)yx̄j −yx
λ

j . By (H2) and the compactness
of Uad, there exists C1 > 0 such that

E
[
`(λyxj + (1− λ)yx̄j )− `(yxλj )

]
≤ E

[∫ 1

0
|`y(yx

λ

j + ξ∆yj)||∆yj |dξ
]

≤ C1E
[
[1 + |yxλj |+ |∆yj |]|∆yj |

]
.

(104)

We have

∆yj+1 = ∆yj + h
[
f(λyxj + (1− λ)yx̄j )− f(yx

λ

j )
]

+
[
σ(λyxj + (1− λ)yx̄j )− σ(yx

λ

j )
]

∆Wj+1

+h
[
λf(yxj ) + (1− λ)f(yx̄j )− f(λyxj + (1− λ)yx̄j )

]
+
[
λσ(yxj ) + (1− λ)σ(yx̄j )− σ(λyxj + (1− λ)yx̄j )

]
∆Wj+1.

(105)

By the Young’s inequality and the Itô isometry, there exists C2 > 0 such that,

E
[
|∆yj+1|2

]
≤ [1 + C2h]E

[
|∆yj |2

]
+ C2hE

[
|f(λyxj + (1− λ)yx̄j )− f(yx

λ

j )|2
]

+C2hE
[
|σ(λyxj + (1− λ)yx̄j )− σ(yx

λ

j )|2
]

+C2hE
[
|λf(yxj ) + (1− λ)f(yx̄j )− f(λyxj + (1− λ)yx̄j )|2

]
+C2hE

[
|λσ(yxj ) + (1− λ)σ(yx̄j )− σ(λyxj + (1− λ)yx̄j )|2

]
.

(106)
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By (H1), we obtain

E
[
|f(λyxj + (1− λ)yx̄j )− f(yx

λ

j )|2
]

+ E
[
|σ(λyxj + (1− λ)yx̄j )− σ(yx

λ

j )|2
]
≤ 2L2E

[
|∆yj |2

]
. (107)

Now, for the last two terms in (106) we have,

|λf(yxj ) + (1− λ)f(yx̄j )− f(λyxj + (1− λ)yx̄j )|

= |λ
∫ 1

0
fy(λyxj + (1− λ)yx̄j + ξ(1− λ)(yxj − yx̄j ))(1− λ)(yxj − yx̄j )dξ

+(1− λ)
∫ 1

0
fy(λyxj + (1− λ)yx̄j + ξλ(yx̄j − yxj ))λ(yx̄j − yxj )dξ|

≤ Lλ(1− λ)|yxj − yx̄j |2,

(108)

where the last inequality holds by (H4). Analogous estimates are satisfied by σ. By Lemma 2.3, we can
conclude that there exists C3 > 0 and C4 > 0 such that,

E
[
|∆yj+1|2

]
≤ [1 + C3h]E

[
|∆yj |2

]
+ C4hλ

2(1− λ)2|x− x̄|4

≤ eC3TC4λ
2(1− λ)2|x− x̄|4.

(109)

By the Cauchy-Schwarz inequality, and the above inequality, there exists C5 > 0 such that

sup
j=k,...,N

E [|∆yj |] ≤ C5λ(1− λ)|x− x̄|2. (110)

In order to estimate (104), by the Cauchy-Schwarz inequality, Lemma 2.2 and the previous bounds, there exists
C6 > 0 such that,

E
[
|yxλj ||∆yj |

]
≤ (E[|yxλj |2])

1
2 (E|∆yj |2)

1
2

≤ C6[1 + |xλ|]λ(1− λ)|x− x̄|2

≤ C6[1 + |x̄|+ |x− x̄|]λ(1− λ)|x− x̄|2.

(111)

Since |x − x̄|4 ≤ δ2|x − x̄|2, for all x ∈ Bδ(x̄), combining (104), (110) and (111), we deduce that there exists
Cx̄,δ > 0, which depends on x̄ and δ, such that

E

hN−1∑
j=k

[λ`(yxj ) + (1− λ)`(yx̄j )− `(yx
λ

j )]

 ≤ Cx̄,δλ(1− λ)|x− x̄|2. (112)

Similar estimates hold for the term involving g in (101), and then by (102), (103) and (112) we conclude that
(89) holds true for V hk (·). �

Remark 4.3. If in addition to the above assumptions, we assume that the cost functionals ` and g are Lipschitz
or f and σ are affine, then similar arguments as those in the previous proof (see [30, Proposition 4.5, p.187])
show that V and V hk satisfy (89) for some K (independent of h in the case of the discrete value function).

Now we can define for each h = T
N , the discrete value function, V h : [0, T ]×Rn → R as a linear interpolation

in time of the functions V hk , i.e.

V h(t, x) := αV hk (x) + (1− α)V hk+1(x), (113)

for t = αtk + (1− α)tk+1, α ∈ [0, 1). Combining Theorem 4.1 and Theorem 4.2, we easily obtain the following
result.



TITLE WILL BE SET BY THE PUBLISHER 19

Theorem 4.4. Under assumptions (H1) and (H2), for each h = T
N the discrete value function V h is 1

2 -Hölder

continuous in time. If in addition, we assume that (H3) and (H4) hold, then V h is locally semi-concave in the
second variable.

Proof. Let s, t ∈ [0, T ] with s < t. There exist ks, kt ∈ {0, . . . , N−1} such that s ∈ [tks , tks+1) and t ∈ [tkt , tkt+1).
Then, there exists αi ∈ [0, 1), such that i = αitki + (1− αi)tki+1, for i = s, t.

If ks = kt, by the definition of V h we obtain, for all x ∈ Rn,

|V h(s, x)− V h(t, x)| ≤ |αsV hks(x) + (1− αs)V hks+1(x)− αtV hks(x)− (1− αt)V hks+1(x)|

≤ |αs − αt||V hks(x)− V hks+1(x)|

≤ C[1 + |x|2]|αs − αt|h
1
2 ,

(114)

where the last inequality holds by Theorem 4.1. Since |s− t| = |αs − αt|h and |αs − αt| < 1, we deduce that

|V h(s, x)− V h(t, x)| ≤ C[1 + |x|2]|s− t| 12 . (115)

Now, assume that ks < kt. Notice that

|s− t| = [αs + (kt − ks − 1) + (1− αt)]h. (116)

By Theorem 4.1 we have

|V h(s, x)− V h(t, x)|2 ≤ 3
[
|αsV hks(x) + (1− αs)V hks+1(x)− V hks+1(x)|2 + |V hks+1(x)− V hkt(s)|

2

+|V hkt(x)− αtV hkt(x) + (1− αt)V hkt+1(x)|2
]

≤ 3
[
|αs|2|V hks(x)− V hks+1(x)|2 + |V hks+1(x)− V hkt(s)|

2

+|1− αt|2|V hkt(x)− V hkt+1(s)|2
]

≤ 3C2
[
1 + |x|2

]2 [|αs|2h+ (kt − ks − 1)h+ |1− αt|2h
]

≤ 3C2
[
1 + |x|2

]2
[αs + (kt − ks − 1) + (1− αt)]h,

(117)

where the last inequality holds since αs, (1 − αt) ∈ [0, 1]. Finally, by (116) and (117), for all x ∈ Rn and
s, t ∈ [0, T ] we have

|V h(s, x)− V h(t, x)| ≤
√

3C[1 + |x|2]|s− t| 12 . (118)

Since the constant Kx̄,δ in Theorem 4.2 is independent of k = 0, . . . , N , for t = αtk + (1 − α)tk+1, and for all
λ ∈ [0, 1], we have

λV h(t, x) + (1− λ)V h(t, x̄)− V h(t, λx+ (1− λ)x̄)

= α
[
λV hk (x) + (1− λ)V hk (x̄)− V hk (λx+ (1− λ)x̄)

]
+(1− α)

[
λV hk+1(x) + (1− λ)V hk+1(x̄)− V hk+1(λx+ (1− λ)x̄)

]
≤ Kx̄,δλ(1− λ)|x− x̄|2,

(119)

for all x ∈ Bδ(x̄). The result follows. �
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5. Convergence

In this section we will analyse the relationship between the value of the discrete and the continuous problems.
As the time step h tends to zero we will prove that V h converges to V and also that any sequence of solutions
of the discrete problems, extended as piecewise constant processes in [0, T ], is a minimizing sequence for the
continuous problem. In particular, we can take as minimizing sequence the one consisting on the discrete time
feedback controls constructed in Proposition 3.6 and Remark 3.7. Finally, under some convexity assumptions,
we can prove the weak convergence of the discrete optimal controls to a solution of the continuous problem.

Throughout this section we will assume that (H1)-(H2) hold. We begin by providing an estimate on the
difference between the cost functions of the discrete and the continuous problems. In what follows, for any
k = 0, . . . , N − 1 and x ∈ Rn, we extend Jhk (x, ·) to ΠN−1

i=0 L2
F0
ti

using the same r.h.s. as in (9).

Lemma 5.1. Let uh ∈ ΠN−1
i=0 L2

F0
ti

and define the control in U0
ad, still denoted by uh, as uh(t) := uhk for all

t ∈ [tk, tk+1). Then, for all k = 0, . . . , N − 1 there exists C > 0 independent of uh and k such that

∣∣Jhk (x, uh)− J tk,x(uh)
∣∣ ≤ C [|x|2 + 1

]
h

1
2 + C

[
|x|2 + 1

] 1
2 ω(h). (120)

Proof. For notational convenience we will assume that k = 0 and, since x is fixed, we denote Jh(uh) = Jh0 (x, uh)
and J(uh) = J0,x(uh). Let ỹh be the continuous solution of the state equation with respect to the control uh,
and yh = (yhk )Nk=0 the discrete state associated with uh. We have

∣∣J(uh)− Jh(uh)
∣∣ ≤ ∣∣∣∣∣E

N−1∑
k=0

∫ tk+1

tk

[
`(t, ỹh(t), uhk)− `(tk, yhk , uhk)

]
dt

∣∣∣∣∣+
∣∣E [g(ỹh(tN ))− g(yhN )

]∣∣ , (121)

and ∣∣∣E ∫ tk+1

tk

[
`(t, ỹh(t), uhk)− `(tk, yhk , uhk)

]
dt
∣∣∣ ≤ E

∣∣∣∫ tk+1

tk

[
`(t, ỹh(t), uhk)− `(t, yhk , uhk)

]
dt
∣∣∣

+E
∫ tk+1

tk

∣∣`(t, yhk , uhk)− `(tk, yhk , uhk)
∣∣dt. (122)

By (H2), for the last term we obtain,

E
∫ tk+1

tk

∣∣`(t, yhk , uhk)− `(tk, yhk , uhk)
∣∣dt ≤ hω(h), (123)

and for the first one, again by (H2) we have

E
∣∣∣∫ tk+1

tk

[
`(t, ỹh(t), uhk)− `(t, yhk , uhk)

]
dt
∣∣∣

≤ E
∫ tk+1

tk

∫ 1

0

∣∣`y(t, ỹh(t) + s(yhk − ỹh(t)), uhk)
∣∣ ∣∣ỹh(t)− yhk

∣∣dsdt
≤ E

∫ tk+1

tk
L
[[∣∣ỹh(t)

∣∣+
∣∣uhk∣∣+ 1

] ∣∣ỹh(t)− yhk
∣∣+
∣∣ỹh(t)− yhk

∣∣2] dt.

(124)

Since Uad is compact, by the Cauchy-Schwarz inequality, [24, Proposition 2.1] and Lemma 2.4, there exists
C0 > 0 such that ∫ tk+1

tk
E[|ỹh(t)||ỹh(t)− yhk |]dt ≤

∫ tk+1

tk
[E[|ỹh(t)|2]]

1
2 [E[|ỹh(t)− yhk |2]]

1
2 dt

≤ C0[|x|2 + 1]h
3
2 + C0

[
|x|2 + 1

] 1
2 hω(h),

(125)



TITLE WILL BE SET BY THE PUBLISHER 21

and also∫ tk+1

tk

E[|uhk ||ỹh(t)− yhk |]dt ≤
∫ tk+1

tk

[E[|uhk |2]]
1
2 [E[|ỹh(t)− yhk |2]]

1
2 dt ≤ C0[|x|2 + 1]

1
2h

3
2 + C0hω(h). (126)

By (124)-(126) and Lemma 2.4, there exists C1 > 0 such that∣∣∣∣E∫ tk+1

tk

[
`(t, ỹh(t), uhk)− `(t, yhk , uhk)

]
dt

∣∣∣∣ ≤ C1[|x|2 + 1]h
3
2 + C1

[
|x|2 + 1

] 1
2 hω(h). (127)

Arguing as before we can prove that

E
[
|g(ỹh(tN ))− g(yhN )|

]
≤ C1

[
|x|2 + 1

]
h

1
2 + C1

[
|x|2 + 1

] 1
2 ω(h). (128)

Then, we conclude that there exists C > 0 such that∣∣J(uh)− Jh(uh)
∣∣ ≤ C [|x|2 + 1

]
h

1
2 + C

[
|x|2 + 1

] 1
2 ω(h). (129)

�

Consider a sequence (Nj)j∈N ⊂ N such that Nj → ∞ as j → ∞ and define hj = T/Nj and tk = khj
(k = 0, . . . , Nj). Let x ∈ Rn, t ∈ (0, T ] and (εj)j∈N such that εj ≥ 0 and limj→∞ εj = 0. Let (ūhj )j be a
sequence of εj-optimal controls for the discrete problems associated with V hkj+1(x), where kj ∈ {0, . . . , Nj − 1}
is such that t ∈ (tkj , tkj+1

]. Let us define

ũhj (s) =

{
ū
hj
kj+1, s ∈ [t, tkj+1),

ū
hj
m , s ∈ [tm, tm+1), m = kj + 1, · · · , Nj − 1.

(130)

In the case t = 0 we define ũhj (s) = ū
hj
m , for all s ∈ [tm, tm+1) and m = 0, · · · , Nj−1, where ūhj is an εj-optimal

control for the discrete problem associated with V 0(x). Note that by definition ũhj ∈ U tad. We point out that
ũhj depends on t, but for notational convenience we have omitted this dependence. Now we prove the main
result of this section.

Theorem 5.2. Under the above notations we have

V (t, x) = lim
j→∞

V hj (t, x), ∀ (t, x) ∈ [0, T ]× Rn, (131)

where V hj was defined in (113) and
V (t, x) = lim

j→∞
J t,x(ũhj ). (132)

In addition, if K ⊂ Rn is a compact set, the sequence (V hj )j converges uniformly to V on [0, T ]×K.

Proof. Let us first show the pointwise convergence in (131). Let t ∈ [0, T ] and x ∈ Rn be fixed. For each hj , we
consider the partition of [0, T ] given by {t0, t1 · · · , tNj} where tk = khj , for k = 0, · · · , Nj . Thus, if t ∈ (0, T ]
for all j ∈ N there exists kj such that t ∈ (tkj , tkj+1]. If t = 0, we denote tkj+1 = 0. Let ε be a positive number,
then there exists an ε

2 -optimal control ūε ∈ U tad such that

J t,x(ūε) ≤ V (t, x) +
ε

2
. (133)

For all j large enough we have
J tkj+1,x(ūε) ≤ V (tkj+1, x) + ε. (134)
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Indeed, by (133) and Theorem 4.1 there exists C0 > 0, independent of hj , such that,

J tkj+1,x(ūε) = J tkj+1,x(ūε)− J t,x(ūε) + J t,x(ūε)

≤ C0

[
1 + |x|2

]
h

1
2
j + V (t, x) + ε

2

≤ C0

[
1 + |x|2

]
2h

1
2
j + V (tkj+1, x) + ε

2 .

(135)

Let (εj)j∈N be a decreasing sequence of positive numbers that converges to 0. Then, there exists an εj-optimal

control, ūhj ∈ Uhjkj+1 for each V hj (tkj+1, x), i.e.

V hj (tkj+1, x) ≤ Jhjkj+1(x, ūhj ) ≤ V hj (tkj+1, x) + εj . (136)

Since Uad is compact, by a result of Krylov (see [19, Lemma 6, Section 3.2, p.143]), for any ε′ > 0, there exists
Nε′ such that for all j ≥ Nε′ there exists uhj ∈ H2

F0 constant in each interval of the partition {t, tkj+1, ..., tNj},
such that

‖uhj − ūε‖H2
F0
< ε′. (137)

It is clear that uhj = (u
hj
t , u

hj
kj+1, · · · , u

hj
Nj

) belongs to L2
F0
t
×ΠN−1

i=kj+1L
2
F0
ti

. We can define ûhj = (u
hj
kj+1, · · · , u

hj
Nj

) ∈

ΠN−1
i=kj+1L

2
F0
ti

, then, using the same notations that in the previous lemma, we obtain

|J t,x(ūε)− J
hj
kj+1(x, ûhj )| ≤ |J t,x(ūε)− J t,x(uhj )|+ |J t,x(uhj )− J tkj+1,x(ûhj )|

+|J tkj+1,x(ûhj )− Jhjkj+1(x, ûhj )|.
(138)

By (137) and the continuity of J t,x in U0
ad we deduce the first term in the r.h.s. goes to zero when j goes to

infinity. Since uhj and ûhj coincide from the time tkj+1, by Theorem 4.1, there exists C1 > 0 such that,

|J t,x(uhj )− J tkj+1,x(ûhj )| ≤ C1[1 + |x|2]h
1
2
j , (139)

and by Lemma 5.1, there exists C2 > 0 such that,

|J tkj+1,x(ûhj )− Jhjkj+1(x, ûhj )| ≤ C2

[
1 + |x|2

] [
h

1
2
j + ω(hj)

]
. (140)

Therefore, we can conclude that for j large enough we have,

|J t,x(ūε)− J
hj
kj+1(x, ûhj )| < ε. (141)

As we saw in Remark 3.5, the value V hj (tkj+1, x) is the same as if we minimize over the set of controls

Π
Nj−1
i=kj+1L

2
F0
ti

and, since ûhj belongs to this set, we have

V hj (tkj+1, x) ≤ Jhjkj+1(x, ûhj ) ≤ J t,x(ūε) + ε ≤ V (t, x) + 2ε, (142)

where in the last two inequalities we have used (141) and (133). On the other hand, Theorem 4.1 implies that
there exists C3 > 0 such that

V (t, x) ≤ C3

[
1 + |x|2

]
h

1
2
j + V (tkj+1, x). (143)
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Finally, Lemma 5.1 and (136) yield the existence of C4 > 0 such that

V (tkj+1, x) ≤ J tkj+1,x(ūhj ) ≤ Jhjkj+1(x, ūhj ) + C4

[
1 + |x|2

] [
h

1
2
j + ω(hj)

]
≤ V hj (tkj+1, x) + εj + C4

[
1 + |x|2

] [
h

1
2
j + ω(hj)

]
.

(144)

Combining the last three inequalities and using Theorem 4.4, we get the existence of C > 0 such that for j large
enough,

|V (t, x)− V hj (t, x)| ≤ |V (t, x)− V hj (tkj+1, x)|+ |V hj (tkj+1, x)− V hj (t, x)|

≤ εj + 2ε+ C
[
[1 + |x|2

] [
h

1
2
j + ω(hj)

]
.

(145)

Letting j ↑ ∞ and using that ε > 0 is arbitrary we obtain (131).
Now, let us prove (132). Combining Theorem 4.1 and Lemma 5.1, we get the existence of C > 0 such that

|J t,x(ũhj )− Jhjkj+1(x, ūhj )| ≤ |J t,x(ũhj )− J tkj+1,x(ũhj )|+ |J tkj+1,x(ūhj )− Jhjkj+1(x, ūhj )|

≤ C
[
1 + |x|2

] [
h

1
2
j + ω(hj)

]
.

(146)

By (144) and (131), we conclude

lim
j→∞

J t,x(ũhj ) = lim
j→∞

J
hj
kj+1(x, ūhj ) = V (t, x). (147)

In order to prove the last assertion of the theorem, letK ⊂ Rn be a compact set. By Theorem 4.1 and Lemma 3.1,
we deduce that the sequence (V hj )j is uniformly bounded and uniformly equicontinuous on [0, T ] ×K. Then,
by the Ascoli-Arzelá theorem, and the pointwise convergence (131), we deduce that the sequence uniformly
converges to V on [0, T ]×K. �

Remark 5.3. We emphasize that our direct approach allows us to deal with more general assumptions that
the usually considered in the literature, such as, coefficients which are bounded and/or independence of the
time variable. Also an important consequence of relation (132) is that (ũhj ) is a minimizing sequence for the
optimal control problem associated with V (t, x). In particular, we can take as (ũhj ) the sequence of discrete
time feedback controls constructed in Remark 3.7.

The following result shows that under some convexity assumptions, we have convergence of (ũhj ) to an
optimal solution of the continuous problem.

Corollary 5.4. Suppose in addition that Uad is a convex set and J t,x is a convex functional. Then, there exists
at least one weak limit point of (ũhj ), and any limit point u∗ ∈ U tad satisfies,

J t,x(u∗) = V (t, x). (148)

If in addition, J t,x is strongly convex, then the whole sequence (ũhj )j∈N strongly converges to the unique u ∈ U tad
that verifies (148).

Proof. First, note that since Uad is compact, the space U tad is bounded in H2
Ft . Using that the convexity and

continuity of J t,x imply its weak lower semi-continuity, classical arguments yield the existence of at least one
optimal control ū for V (t, x).

Since ũhj is a bounded sequence in H2
Ft , there exists a subsequence (still denoted ũhj ) which converges weakly

to u∗ ∈ H2
Ft . By the weak lower semi-continuity and equation (132) we have

J t,x(u∗) ≤ lim inf
j→∞

J t,x(ũhj ) = V (t, x). (149)



24 TITLE WILL BE SET BY THE PUBLISHER

Finally, if J t,x is strongly convex, the strong convergence follows from the classical argument stating that a
minimizing sequence of a strongly convex problem converge strongly to the unique optimizer of the problem
(see e.g. [4, Proof of Lemma 2.33(ii)]). �

Remark 5.5. It is worth mentioning that the assumption of convexity holds, for instance, when for a.a.
t ∈ [0, T ], the maps (y, u) 7→ `(t, y, u) and y 7→ g(y) are convex and for ψ = f, σ the map (y, u) 7→ ψ(t, y, u)
is affine. If in addition, for some ε > 0, (y, u) 7→ `(t, y, u) − ε|u|2 is convex for a.a. t ∈ [0, T ], then J t,x is a
strongly convex function.

Appendix

Here we prove some technical results stated in Subsection 2.4.

Proof of Lemma 2.2. For all k = 1, ..., N we have

yk = x+ h

k−1∑
j=0

f(tj , yj , uj) +

k−1∑
j=0

σ(tj , yj , uj)∆Wj+1. (150)

Then, by (H1)-(b) there exists C0 > 0 such that,

|yk|2 ≤ 3
[
|x|2 +Nh2

∑k−1
j=0 |f(tj , yj , uj)|2 + (

∑k−1
j=0 σ(tj , yj , uj)∆Wj+1)2

]
≤ C0

[
|x|2 + h

∑k−1
j=0 [|yj |2 + |uj |2 + 1] + (

∑k−1
j=0 σ(tj , yj , uj)∆Wj+1)2

]
.

(151)

By the Doob’s maximal inequality (see [16, Chapter 2, Theorem 6.10]), the Itô isometry, and (H1)-(b), there
exist C1 > 0 and C2 > 0 such that

E
[
max0≤i≤k |yi|2

]
≤ C0

[
|x|2 + h

∑k−1
j=0

[
E[max0≤i≤j |yi|2] + E[|uj |2] + 1

]
+C1E[h

∑k−1
j=0 |σ(tj , yj , uj)|2]

]
≤ C2

[
|x|2 + h

∑k−1
j=0

[
E[max0≤i≤j |yi|2] + E[|uj |2] + 1

]]
.

(152)

The results follows by the discrete Grönwall’s lemma (see, e.g. [10]). �

Proof of Lemma 2.3. Denoting ∆yj = yxj − y
y
j , and ∆ϕj = ϕ(tj , y

x
j , uj) − ϕ(tj , y

y
j , uj) for ϕ = f, σ, we obtain

for i = 0, . . . N − 1,

∆yi+1 = x− y +

i∑
j=0

h∆fj +

i∑
j=0

∆σj∆Wj+1. (153)

We have,

|∆yi+1|p ≤ 3p−1

|x− y|p +

∣∣∣∣ i∑
j=0

h∆fj

∣∣∣∣p +

∣∣∣∣ i∑
j=0

∆σj∆Wj+1

∣∣∣∣p
 . (154)

By (H1) we get ∣∣∣∣ i∑
j=0

h∆fj

∣∣∣∣p ≤ Np−1hp
i∑

j=0

|∆fj |p ≤ T p−1hLp
i∑

j=0

|∆yj |p. (155)
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Now, by (H1) and the Burkholder-Davis-Gundy inequality [6], there exists Kp (independent of h), such that

E
(

max
0≤m≤i

|
∑m
j=0 ∆σj∆Wj+1|p

)
≤ KpE

(
[h
∑i
j=0 |∆σj |2]

p
2

)
≤ KpN

p
2−1h

p
2

∑i
j=0 E(|∆σj |p)

≤ KpT
p
2−1hLp

∑i
j=0 E(|∆yj |p).

(156)

Combining (154), (155) and (156), there exists cp such that

E
(

max
0≤m≤i+1

|∆ym|p
)
≤ cp|x− y|p + cph

i∑
j=0

E
(

max
0≤m≤j

|∆ym|p
)
. (157)

The conclusion follows from the discrete Grönwall’s lemma. �

Finally, for the last result of Subsection 2.4, we need the following lemma. We recall that y(·) is the solution of
(20) and (yk)Nk=0 is the solution of (8) associated with uhc and uh, respectively, where for notational convenience
we have omitted the indexes of the initial time and the initial condition.

Lemma A.1. Assume that (H1) holds true. Then, there exists C > 0 such that

max
k=0,...,N

E |y(tk)− yk|2 ≤ Ch
[
|x|2 + ‖uh‖2Uh0 + 1

]
+ Cω2(h), (158)

for all k = 0, . . . , N .

Proof. For all k = 0, ..., N − 1 we define ∆yk := y(tk)− yk,

∆fk(t) := f(t, y(t), uk)− f(tk, yk, uk), and ∆σk(t) := σ(t, y(t), uk)− σ(tk, yk, uk). (159)

We have,

∆yk+1 = ∆yk +

∫ tk+1

tk

∆fk(t)dt+

∫ tk+1

tk

∆σk(t)dW (t). (160)

Therefore, by the Cauchy-Schwarz inequality and taking conditional expectation inside the expectation, we
obtain

E
[
|∆yk+1|2

]
≤ E

[
|∆yk|2

]
+ E

[
|
∫ tk+1

tk
∆fk(t)dt|2

]
+ E

[
|
∫ tk+1

tk
∆σk(t)dW (t)|2

]
+2
(
E[|∆yk|2]

) 1
2

(
E[|
∫ tk+1

tk
∆fk(t)dt|2]

) 1
2

+2
(
E[|
∫ tk+1

tk
∆fk(t)dt|2]

) 1
2
(
E[|
∫ tk+1

tk
∆σk(t)dW (t)|2]

) 1
2

.

(161)

Applying the Young’s inequality in the last two terms, we have

E
[
|∆yk+1|2

]
≤ [1 + h]E

[
|∆yk|2

]
+ [1 + 2

h ]E
[∣∣∣∫ tk+1

tk
∆fk(t)dt

∣∣∣2]
+[1 + h]E

[∣∣∣∫ tk+1

tk
∆σk(t)dW (t)

∣∣∣2] . (162)
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Now, we study all the square terms in the r.h.s. of (162) separately. By the Jensen’s inequality, we obtain

E
[∣∣∣∫ tk+1

tk
∆fk(t)dt

∣∣∣2] ≤ hE
[∫ tk+1

tk
|∆fk(t)|2dt

]
≤ 2hE

∫ tk+1

tk
|f(t, y(t), uk)− f(t, yk, uk)|2dt

+2hE
∫ tk+1

tk
|f(t, yk, uk)− f(tk, yk, uk)|2dt,

(163)

and by (H1), we get

E
[∣∣∣∫ tk+1

tk
∆fk(t)dt

∣∣∣2] ≤ 2h
[∫ tk+1

tk
L2E |y(t)− yk|2 dt+

∫ tk+1

tk
ω2(|t− tk|)dt

]
≤ 2hL2

∫ tk+1

tk
E |y(t)− yk|2 dt+ 2h2ω2(h).

(164)

In order to estimate the integral term in (164), note that for all tk ≤ t < tk+1 we have,

y(t)− yk = ∆yk +

∫ t

tk

f(s, y(s), u(s))ds+

∫ t

tk

σ(s, y(s), u(s))dW (s). (165)

Then, by (H1), the Cauchy-Schwarz inequality and the Itô isometry, we deduce that there exist c0 > 0 and
C0 > 0 such that for all tk ≤ t < tk+1,

E
[
|y(t)− yk|2

]
≤ c0E

[
|∆yk|2

]
+ c0hE

[∫ tk+1

tk
[|y(t)|2 + |uk|2 + 1]dt

]
+c0E

[∫ tk+1

tk
[|y(t)|2 + |uk|2 + 1]dt

]
≤ C0E

[
|∆yk|2

]
+ C0h

[
|x|2 + ‖uh‖2Uh0 + E|uk|2 + 1

]
,

(166)

where the last inequality follows from [24, Proposition 2.1]. So, by (164) and (166), there exist positive constants
C1 and C2 such that,

E
[∣∣∣∫ tk+1

tk
∆fk(t)dt

∣∣∣2] ≤ C1h
2E
[
|∆yk|2

]
+ C2h

3
[
|x|2 + ‖uh‖2Uh0 + E|uk|2 + 1

]
+ 2h2ω2(h). (167)

By the Itô isometry and (166) we have,

E
[∫ tk+1

tk
∆σk(t)dW (t)

]2
= E

[∫ tk+1

tk
|∆σk(t)|2 dt

]
≤ 2E

[∫ tk+1

tk
(L2 |y(t)− yk|2 + ω2(|t− tk|))dt

]
≤ C3hE

[
|∆yk|2

]
+ C4h

2
[
|x|2 + ‖uh‖2Uh0 + E|uk|2 + 1

]
+ 2hω2(h),

(168)

for suitable positive constants C3 and C4.
Combining (162), (167) and (168) we conclude that there exist C5 > 0, C6 > 0 and C7 > 0 such that

E
[
|∆yk+1|2

]
≤ [1 + C5h]E

[
|∆yk|2

]
+ C6h

2
[
|x|2 + ‖uh‖2Uh0 + E|uk|2 + 1

]
+ C7hω

2(h). (169)
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Therefore, we deduce that

E
[
|∆yk+1|2

]
≤ [1 + C5h]kE

[
|∆y0|2

]
+
∑k−1
j=0 [1 + C5h]jC6h

2
[
|x|2 + ‖uh‖2Uh0 + E|uk|2 + 1

]
+
∑k−1
j=0 [1 + C5h]jC7hω

2(h)

≤ eC5TC6h
[
T |x|2 + 2‖u‖2Uh0 + T

]
+ eC5TC7Tω

2(h)

≤ Ch
[
|x|2 + ‖uh‖2Uh0 + 1

]
+ Cω2(h),

(170)

for a suitable constant C > 0. �

Proof of Lemma 2.4. By (165), the Doob’s maximal inequality and the Itô isometry, there exists K > 0 such
that

E
[
suptk≤t<tk+1

|y(t)− yk|2
]
≤ 2E

[
|y(tk)− yk|2

]
+ 4hE

[∫ tk+1

tk
|f(s, y(s), uk)|2 ds

]
+4KE

[∫ tk+1

tk
|σ(s, y(s), uk)|2 ds

]
.

(171)

Since Uad is compact, by (H1), Remark 2.1 and the previous lemma we obtain the result.
�

References

[1] C. Aliprantis and K. Border. Infinite dimensional analysis. A hitchhiker’s guide. Springer, Berlin, third edition, 2006.

[2] G. Barles and P. Souganidis. Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic
Analysis, 4:271–283, 1991.

[3] D. P. Bertsekas and S. E. Shreve. Stochastic optimal control : the discrete time case. Academic Press New York, 1978.

[4] J. F. Bonnans and A. Shapiro. Perturbation analysis of optimization problems. Springer Series in Operations Research.
Springer-Verlag, New York, 2000.

[5] B. Bouchard and N. Touzi. Weak dynamic programming principle for viscosity solutions. SIAM Journal on Control and
Optimization, 49(3):948–962, 2011.

[6] D. L. Burkholder, B. J. Davis, and R. F. Gundy. Integral inequalities for convex functions of operators on martingales. In

Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Probability Theory, pages
223–240, Berkeley, Calif., 1972. University of California Press.

[7] I. Capuzzo Dolcetta. On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming. Appl. Math.

Optim., 10(4):367–377, 1983.
[8] I. Capuzzo-Dolcetta and H. Ishii. Approximate solutions of the Bellman equation of deterministic control theory. Appl. Math.

Optim., 11(2):161–181, 1984.

[9] N. Christopeit. Discrete approximation of continuous time stochastic control systems. SIAM Journal on Control and Opti-
mization, 21(1):17–40, 1983.

[10] D. S. Clark. Short proof of a discrete Gronwall inequality. Discrete Applied Mathematics, 16(3):279 – 281, 1987.

[11] K. Debrabant and E. R. Jakobsen. Semi-lagrangian schemes for linear and fully non-linear diffusion equations. Mathematics
of Computation, 82(283):1433–1462, 2013.

[12] E. B. Dynkin and A. A. Yushkevich. Controlled Markov processes, volume 235 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin-New York, 1979. Translated from the
Russian original by J. M. Danskin and C. Holland.

[13] W. H. Fleming and R. W. Rishel. Deterministic and stochastic optimal control. Springer-Verlag, Berlin-New York, 1975.
Applications of Mathematics, No. 1.

[14] W. H. Fleming and H. M. Soner. Controlled Markov processes and viscosity solutions, volume 25 of Stochastic Modelling and

Applied Probability. Springer, New York, second edition, 2006.
[15] I. I. Gikhman and A. V. Skorohod. Controlled stochastic processes. Springer-Verlag, New York-Heidelberg, 1979. Translated

from the Russian by Samuel Kotz.

[16] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes. North Holland-Kodansha Publishing,
1981.

[17] N. Krylov. Approximating value functions for controlled degenerate diffusion processes by using piece-wise constant policies.

Electron. J. Probab., 4:1–19, 1999.
[18] N. V. Krylov. Mean value theorems for stochastic integrals. Ann. Probab., 29(1):385–410, 2001.

[19] N. V. Krylov. Controlled diffusion processes, volume 14. Springer Science & Business Media, 2008.



28 TITLE WILL BE SET BY THE PUBLISHER

[20] H. Kushner. Probability methods for approximations in stochastic control and for elliptic equations. Academic Press, New
York, 1977. Mathematics in Science and Engineering, Vol. 129.

[21] P.-L. Lions. Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. I. The dynamic programming

principle and applications. Comm. Partial Differential Equations, 8(10):1101–1174, 1983.
[22] P.-L. Lions. Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. II. Viscosity solutions and unique-

ness. Comm. Partial Differential Equations, 8(11):1229–1276, 1983.

[23] P.-L. Lions. Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. III. Regularity of the optimal
cost function. In Nonlinear partial differential equations and their applications. Collège de France seminar, Vol. V (Paris,
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