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ABSTRACT  

The room temperature synthesis of copper (Cu) nanoparticles (NPs) supported within SiO2 

mesoporous thin films (MTF) modified with either COOH or NH2 functional groups is reported. The 

functional groups present in the MTF surface acted as adsorption sites for Cu (II) ions, which were 

afterwards reduced to Cu NPs in presence of sodium borohydride at room temperature. The 

oxidation state of the copper NPs, corroborated by X-ray Photoelectron Spectroscopy and Electron 

Energy Loss Spectroscopy, was strongly dependent on the functional group present in the pores of 

the MTF and on the number of adsorption/reduction (A/R) cycles applied for NPs loading. Metallic 

Cu (0) NPs were obtained in MTFs displaying COOH groups applying 10 A/R cycles while NPs with 

higher oxidation state were as well present after 20 A/R cycles. For MTF functionalized with NH2 

groups the copper is present as Cu (I) and Cu(II) in the NPs but no Cu (0) can be detected. The 

MTF-Cu(CuOx) composite materials were tested as catalysts for the reduction of 4-nitrophenol in 

the presence of NaBH4. Catalytic activity of composite materials depends on the oxidation state of 

Cu NPs, being more active those samples containing Cu (0) NPs, synthesized from COOH 

functionalized MTFs. 
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INTRODUCTION  

Metallic nanoparticles (NPs) have interesting size-dependent optical and catalytic properties and a 

high surface to volume ratio that make them appealing for many different applications, such as 

sensing, catalysis, energy conversion and storage, biomedicine and environmental technology, to 

cite a fews.[1],[2] Among the various metal NPs, Au and Ag NPs are the most frequently used for 

optical applications and Pt and Pd NPs are the most appealing for catalysis. 

In recent years, copper NPs have also received increasing attention for their excellent 

performance in electronics, sensing and catalysis.[3],[4] Cu has multiple advantages: it is abundant, 

it can catalyze a great variety of reactions[5] and it is an inexpensive metal.[6] However, the 

susceptibility of Cu (0) to oxidation upon exposure to air represents a big challenge for the 

synthesis of metallic Cu NPs Therefore, literature on Cu NPs is rather limited compared with other 

metallic NPs.[7] 

Cu displays multiple oxidation states and usually forms two stable oxides: Cu2O and CuO.[8] In 

particular, Cu2O is an environmentally friendly p-type semiconductor with a band gap of 2 eV and 

high optical absorption coefficient, which makes it an excellent candidate for solar-energy-

conversion applications.[8] This range of accessible oxidation states results in a reactivity involving 

the exchange of one or two electron. Because of this versatility, Cu oxides can promote a variety 

of reactions.[1] For example both Cu (I) and Cu (II) oxides have been reported to have catalytic 

activity for azide alkyne cycloaddition (CuAAC) reactions[9],[10], 4-nitrophenol (4-NIP) 

reduction[11] and tryazoles synthesis.[12] 

Both Cu and CuOx NPs synthesized in solution require stabilization in order to avoid nanoparticle 

coarsening and/or aggregation. The use of porous templates has become one of the most 

promising strategies for NPs support and stabilization.[1, 13] In particular, ordered mesoporous 

oxides are highly appealing supports due to their high specific area and, in the case of transition 

metal based oxides, for their good stability in reaction media. The use of mesoporous oxides as 

supports for metallic or Cu NPs can improve the selectivity, conversion and yield of Cu(CuOx) 

catalyzed reactions and, most important, the mesoporous oxide will facilitate the recovery of the 

catalysts.[1, 13, 14] Several syntheses of powdered mesoporous materials modified with Cu(CuOx) 

NPs have been reported in the literature.[15-28] In most of those cases, Cu (II) is first adsorbed to 



  

the mesoporous surface through surface functionalization, and then a thermal treatment follows 

that results in the NPs formation. The Cu(CuOx) mesoporous composite powders have been 

mainly applied on catalysis of organic reactions. The use of mesoporous thin films (MTF) instead of 

powders as supports for Cu based catalysts will result in more efficient recovery and reuse than in 

the case of powdered supports and can also facilitate the integration of the catalyst in devices.[29-

31] However, up to now only Ag, Au and Pt loaded MTF have been synthesized and used as 

catalysts and no examples can be found in the literature about Cu loaded MTF synthesis and/or 

applications.  

In this work, we have explored the room temperature synthesis of Cu based NPs supported within 

SiO2 MTF. This silica based MTF present the typical properties of mesoporous oxides, including: 

high surface area, ordered porosity and versatility for organic functionalization during or after the 

materials’ synthesis.[31, 32] The pores in silica MTF can be easily modified including silanes during 

its synthesis. This allows good control of the chemistry of the pore and the functional groups 

present within. Profiting from this advantage pores were modified with either COOH or NH2 

functional groups. Both COOH and NH2 can act as adsorption sites for Cu (II).[33] However, it will 

be shown that the choice of one or the other group will finally determine the oxidation state of 

the resulting NPs. The MTF-Cu(CuOx) composite materials were tested as catalysts for the 

reduction of 4-nitrophenol in the presence of NaBH4. Catalytic activity depends on the Cu NPs 

oxidation state, which was in turn determined by the functional group included within the oxide 

used as support.  

To resume, here we will show that it is possible to control the formation of metallic or metal oxide 

Cu NPs in mesoporous materials by varying the chemistry of the pore. This opens the route for the 

design of hybrid SiO2 MTF including in situ synthesized metal or metal oxide NPs with controlled 

chemistry and properties. 

MATERIALS AND METHODS 

a) Materials 

Tetraethyl orthosilicate (TEOS, 98%), vinyltrimethoxysilane (VTMS, 98%), mercaptoacetic acid 

(MAA, 97%), benzophenone (Ph2CO, 99%), Pluronic F127, hydrochloric acid (37%), methanol, 

CuSO4.5H2O, NaOH, aminopropyltriethoxysilane (APTES), sodium borohydride, ascorbic acid and 4-



  

nitrophenol (4-NIP) were obtained from Merck. Methanol, pure grade ethanol and Milli-Q water 

were used as solvents. Methanol was dried over activated MS-3 Å before use. 

b) Synthesis of hybrid SiO2 MTF  

b.1) Synthesis of carboxylic trialkoxysilane precursor by click reaction 

2-((2-(trimethoxysilyl)ethyl)thio)acetic acid ((MeO)3Si-MAA) was prepared as previously 

reported.[34] Briefly, 2.86 mmol of VTMS was added to a vial containing 1 mL of a methanol 

solution of MAA (2.86 mmol) and 15% mol of Ph2CO as photoinitiator. The solution was irradiated 

for 16 h, under gentle stirring, using a 15 W black-light lamp (λmax = 360 nm). The amount of 

modified silane was chosen to have a final concentration of 20% of the organic function in the 

preparation of the sol. The reaction mixture was used for the subsequent step, without any 

additional treatment. 

b.2) Preparation of sols  

Hybrid sols for synthesis of functionalized mesoporous films were prepared by first mixing TEOS, 

ethanol and Pluronic F127. Then, the functional silane was added dropwise under stirring. For 

COOH modified films, the reaction mixture of click reaction was used; and for NH2 modified films, 

APTES was chosen as the precursor.[35] Finally, an HCl solution was added dropwise under 

stirring. The chosen order of mixture results in stable solutions that can be kept in the freezer for 

several months. The molar proportions of the sols were TEOS : Si-R : F127 : HCl : EtOH : H2O = 0.8 : 

0.2 : 0.005 : 0.28 : 24 : 5.2, with Si-R = (MeO)3Si-MAA or (EtO)3Si-NH2. After preparation the sol was 

aged for 1 h before use.  

b.3) Preparation of films  

Functionalized mesoporous thin films were produced by combining sol−gel reactions with self-

assembly of amphiphilic molecules, through the strategy known as Evaporation Induced Self 

Assembly.[36] The resulting sols were used to produce films by dip-coating on carefully cleaned 

glass substrates, under 40–50% relative humidity at 25 °C, using 2 mm s-1 withdrawing speed. 

Freshly deposited films were placed in a chamber with a 50% relative humidity for 24 h at 25 °C, 

followed by a stabilizing thermal treatment of two successive 24 h steps at 60 °C and 130 °C, and a 

final 2 h step at 200 °C. The template was extracted by immersing the films for 2 days in ethanol. 

c) Synthesis of Cu based NPs inside the films 



  

Cu NPs supported into mesoporous films were synthesized by a chemical reduction method that 

involves the reaction of Cu (II) with sodium borohydride, following a procedure proposed for NPs 

synthesis in solution.[37] For that purpose, 25 mL of 0.01 M CuSO4·5H2O solution was prepared in 

deionized water; 0.5 ml of 0.03 M ascorbic acid solution was slowly added and under stirring, 

followed by the addition of 80 µl of 1 M NaOH solution.  

The formation of Cu NPs into mesoporous films was achieved by iterative Cu adsorption/reduction 

(A/R) cycles, represented in Scheme 1. Films were first immersed for 30 min in the Cu (II) solution, 

then were extracted and carefully rinsed with Milli-Q water. Then, films were immersed for 3 min 

in a 10 mM NaBH4 solution, rinsed with water and dried under N2 flow. These two consecutive 

steps were repeated 10 and 20 times. Depending on the functional group used and the number of 

cycles applied samples are denominated SiO2-COOH-Cux or SiO2-NH2-Cux, where x is the number of 

A/R cycles. 

 

Scheme 1. Schematic representation of the synthetic method used to produce Cu NPs in MTF 

pores functionalized with COOH and NH2 groups. 

d) Characterization 

UV-vis absorption spectra were measured with a Cary 5000 UV-vis-NIR spectrophotometer 

(Varian, Inc.).  

Transmission electron microscopy (TEM) images were obtained with a JEOL JEM-2100F UHR 

operated at 200 kV. High Resolution TEM (HR-TEM) images and electron energy loss spectra (EELS) 

were acquired with a JEOL – ARM200F (200kV) equipped with a field emission gun and a Gatan GIF 
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quantum EELS spectrometer. Samples were measured immediately after scratching the glass 

surfaces and casting the collected dust on membrane-free lacey carbon grids (Ted Pella). 

X-ray photoelectron spectroscopy (XPS) measurements were carried out with a SPECS Sage HR 100 

spectrometer equipped with a 100 mm mean radius PHOIBOS analyzer and a non-monochromatic 

X-ray source (Mg Kα line of 1253.6 eV energy and 250 W), placed perpendicular to the analyzer 

axis and calibrated using the 3d5/2 line of Ag, with a full width at half maximum of 1.1 eV. The 

selected resolution for high resolution spectra was 15 eV of pass energy and 0.15 eV per step. All 

measurements were made in an ultrahigh vacuum chamber at a pressure of around 8 × 10−8 mbar. 

An electron flood gun was used to neutralize for charging. Measurements were conducted directly 

on the films, which were previously washed with absolute ethanol and cut into samples of 1 cm × 

1 cm. 

e) Catalytic activity  

The well-known reduction of 4-NIP by NaBH4 was used as model reaction to study the catalytic 

activity of the obtained composites. For that purpose, 10 μL of 4-NIP 0.01 M solution and 100 μL of 

freshly prepared NaBH4 0.5 M solution were mixed with 2.5 ml of milliQ water. A piece of ∼1 cm2 

of the MTF catalyst was introduced in a 3 mL quartz cuvette filled with the reaction solution. The 

slide was positioned inside the cuvette in such way that it did not block the beam path. The 

reaction was followed using the spectrophotometer described before. The absorbance of the 

solution was recorded in the 200–800 nm range every 5 minutes until reaction completion. 

Copper content of the composites used for catalytic tests was measured by inductively coupled 

plasma mass spectrometry (ICP-MS). For this purpose, pieces of ∼ 2.25 cm2 of the same samples 

used for catalysis tests were immersed in boiling HNO3 (c) and refluxed during 1 hour. Then, the 

remaining piece of substrate was removed and the solution was boiled for some minutes to 

concentrate it. Finally, the 0.25 mL of the digestion was mixed with 2.75 mL of milliQ water and 

this solution was used to carry out the measurements.  

RESULTS AND DISCUSSION  

SYNTHESIS AND STRUCTURAL CHARACTERIZATION  

Copper NPs were synthesized inside SiO2 MTF functionalized with carboxylic acid (SiO2–COOH) or 

amine groups (SiO2–NH2) through Cu (II) adsorption followed by a chemical reduction at room 

temperature. MTFs were synthesized according to previously reported procedures[34, 35] that 



  

result in thin films of around 200 nm thickness, and 30% of porosity. In both cases, Pluronic F127 

was used as template for the pore formation and, as a consequence, both kinds of films present a 

well-ordered mesoporous body centered cubic (Im3m) structure with a pore’s periodicity of 8.5 

nm. The method used to deposit Cu NPs inside the films is based on the combination of a 

previously reported procedure for the synthesis of Au nanoparticles inside mesoporous thin films 

[38, 39] and a method for obtaining Cu NPs in solution.[37] In the first step, the Cu (II) species 

present in the solution are adsorbed into the MTF, taking advantage on the presence of functional 

groups (COOH or NH2) that can complex the metallic ions. Remarkably, the use of ascorbic acid 

and NaOH mixture in the metal salt solution allows better results in this adsorption step, due to 

the fact that the pH is higher than when only Cu (II) is used (5.6 vs 4.9). The second step involves 

the reduction of the previously adsorbed Cu (II) species by BH4
-, a well-known reductive agent. 

Since the amount of Cu (II) that can be adsorbed by the MTF in each step is limited, the 

adsorption-reduction cycles are repeated several times in order to ensure the formation of an 

adequate amount of NPs, as depicted in Scheme 1. 

Figure 1Figure shows the TEM images of the resulting composite materials. As shown in Figure 1a, 

Cu structures are clearly visible in the pores since highly dense materials, like metallic particles, are 

seen as dark spots in transmission electron images. Conversely, in dark field images (see Figure S1, 

SI), the high density materials can be visualized as bright objects. 

The in pore synthesized NPs are spherical and have an average diameter of ~3.8 nm and ~3.5 nm 

for SiO2–COOH-Cu10 and SiO2–NH2-Cu10 samples, respectively. It is interesting to mention that in 

the case of the SiO2–COOH-Cu20 sample, i.e. the one in which the A/R cycles were repeated 20 

times, the NPs size is ~3.9 nm, similar to the size of the other samples prepared with 10 cycles, 

indicating that the NPs size is controlled by the pore size (5 nm of diameter, approximately).[34] 

While a larger number of A/R cycles does not imply an increase in the NPs size, the amount of Cu 

incorporated inside the films increases, as demonstrated by XPS measurements (see Table 1). This 

means that more pores are filled with NPs. It is interesting to note, however, that the relation 

between number of A/R cycles and amount of Cu incorporated is not linear, as observed 

previously for Au NPs incorporation within mesoporous TiO2.[39] This is probably due to 

differences in the amount of Cu (II) species that can be adsorbed in already filled pores. 

After NP synthesis samples show color changes, being brown for SiO2-COOH-Cu10 and green for 

SiO2-COOH-Cu20 (see Figure S2, SI). These differences in color, observed by naked eye, suggests the 



  

presence of Cu NPs for the SiO2-COOH-Cu10 samples, while the SiO2-COOH-Cu20 should be loaded 

with copper oxide (CuOx) NPs or a mixture of both.[8] 

 

Figure 1. TEM micrographs of (a, a* and a**) SiO2–COOH-Cu10, under different magnifications, (b) 

SiO2-NH2-Cu10 and (c) SiO2-COOH-Cu20 samples. 

 

Table 1. Cu/Si % obtained by XPS 

Sample Cu/Si (%) 

SiO2-COOH-Cu10 2.69 

SiO2-COOH-Cu20 9.46 

SiO2-NH2-Cu10 3.09 

 



  

 

Figure 2. UV–vis spectra SiO2-COOH-Cu10, SiO2-COOH-Cu20 and SiO2-NH2-Cu10 samples, as indicated 
in the labels. 

 

Figure 2 shows the UV –Vis spectra of the MTF Cu composites. A localized surface plasmon 

resonance (LSPR) band between 570 and 600 nm is observed for the SiO2-COOH-Cu10 sample.[40] 

Spherical Cu (0) nanoparticles synthesized in solution display an LSPR band centered at 570 

nm.[41-43] However, the exact location of this LSPR maximum depends on the particle size, aspect 

ratio, capping agent and the average dielectric constant of the surrounding environment.[43] 

Thus, the band observed for SiO2-COOH-Cu10 can be attributed to Cu (0) and the broadness of the 

band is probably related to the NPs size distribution. Moreover, the LSPR band for the SiO2-COOH-

Cu10 sample remains almost invariable for at least 8 days, hinting that the Cu NPs are stable in the 

MTF and protected from air oxidation (see Figure S3, SI).  

SiO2-COOH-Cu20, on the other hand, presents a UV-vis band that is shifted towards longer 

wavelength, with a maximum around 650 nm. Also, a small attenuation in the intensity of the 

plasmon was observed. The observed shift could be associated to changes in the oxidation state of 

the NPs surface, when the amount of A/R cycles is increased. In particular, the presence of 

semiconductor Cu2O can contribute in two ways to the observed red-shift: due to the increment 

on the local refractive index around the Cu (0)[44] and due to the appearance of an excitonic 

band.[45, 46] Moreover, it is important to note that surface oxidation of many metals occurs at a 
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rapid rate until the formation of an oxide layer passivates the surface and prevents its total 

oxidation.[8]  

For the SiO2-NH2-Cu10 sample the LSPR resonance band attributed to Cu (0) NPs and/or Cu (I) oxide 

were not observed. The absence of the LSPR or excitonic bands suggests that the NPs obtained in 

presence of NH2 groups display a different oxidation state from the NPs obtained in presence of 

COOH groups.[47]  

In order to evaluate more carefully the oxidation state of the synthesized NPs, samples were 

characterized by XPS measurements. XPS spectra of SiO2-COOH-Cu10 and SiO2-COOH-Cu20 samples 

are presented in Figure 3.  

 

Figure 3. XPS spectra of SiO2-COOH-Cu10 and SiO2-COOH-Cu20 samples in the Cu region, as 
indicated in the labels. 

 

For both samples, the XPS spectra feature Cu 2p peaks, which confirm the incorporation of Cu 

inside the mesoporous structure. Interestingly, the shape of the spectra depends on the number 

of A/R cycles used to prepare the sample. For 10 A/R cycles, the spectrum show two peaks: the 

one corresponding to Cu 2p3/2 around 933 eV and the one of Cu 2p1/2 at around 952 eV. According 

to previously reported data,[48] the presence of such peaks indicate the presence of Cu (0) and/or 

Cu (I) species. The two species cannot be easily distinguished by XPS analysis. For the SiO2-COOH-
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Cu20 sample, Cu 2p1/2 and Cu 2p3/2 peaks are again present, and both peaks are less symmetric 

than for 10 A/R cycles displaying shoulder peaks pointing towards the presence of Cu (II) species, 

whose XPS peaks appear at higher binding energies.[48] Moreover, the characteristic shake-up 

peaks of Cu(II) species between 945 and 940 eV can be clearly seen in the 20 A/R cycles sample. 

Since these signals are exclusive of Cu (II) species[48] we can conclude from XPS results that the 

oxidation state of Cu NPs depends on the number of A/R cycles used for its synthesis inside the 

mesoporous film.  

Since XPS results were not conclusive regarding the Cu species identification, EELS measurement 

were performed, in order to clarify this point. Results are presented in Figure 4.  
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Figure 4. Cu L2,3 edge EELS spectra for SiO2-COOH-Cu10 and SiO2- COOH-Cu20 samples, as indicated 
in the labels. 

The background subtracted EELS spectra, denominated energy loss near edge structure (ELNES), 

show the Cu L2,3 edge due to the excitation from the occupied 2p core shell to the vacant 3d states 

localized at Cu NPs. The SiO2-COOH-Cu10 sample spectrum shows flat and broad L2,3 edges, which 

correspond to metallic Cu and the SiO2-COOH-Cu20 sample spectrum shows peaks attributed at the 

L2,3 edge.[49] Also, an extra peak located at 947.5 eV can be observed for the sample prepared 

with 20 A/R cycles; this peak could be attributed to the transitions into the 4s Cu states above the 

Fermi level,[50] which is associated to the presence of Cu (I), Cu (II) or a mixture of both.[40] 



  

By analyzing XPS and EELS results, it can be concluded that COOH groups available in the 

mesoporous SiO2 films can be used as an effective support to synthesize and stabilize metallic Cu 

(0) nanoparticles when 10 A/R cycles are applied.[16] However, for 20 A/R cycles this protective 

effect was not observed, suggesting that it only takes place until a particular Cu/COOH ratio, and 

increasing the Cu concentration the carboxylic groups cannot prevent the oxidation of the metal 

surface.[51] 

The influence of the functional groups present in the pores of SiO2 MTF on the oxidation state of 

Cu NPs was also evaluated, by comparing the COOH modified oxides with the samples containing 

NH2 groups. The XPS spectrum of the SiO2-NH2-Cu10 sample is presented in Figure 5.  

 

Figure 5. XPS spectrum of the SiO2-NH2-Cu10 sample. 

 

The spectrum presents similar features to the one of SiO2-COOH-Cu20 sample: Cu 2p3/2 peaks at 

binding energies around 932.8 and 935.0 eV and the presence of shake up peaks in the 945-940 eV 

region. XPS results, together with the absence of absorption bands in UV-visible spectra, point 

towards the presence of Cu (I) / Cu (II) species inside the amino functionalized mesoporous 

structure.   

These results demonstrate the influence of the pores’ surface chemistry over the oxidation states 

of the obtained Cu NPs. The NH2 groups allow the adsorption of Cu (II) onto the mesoporous oxide 
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surface and possibly the Cu (0) NP formation, but the amine groups in the pores seem to not have 

such a protective effect against the oxidation process that occurs in aerobic conditions, therefore, 

the Cu (0) species are oxidized. 

Catalytic Activity 

 

The catalytic activity of all composites was studied using a well-known model catalytic reaction: 

the reduction of 4-NIP with NaBH4.[52] Despite being usually taken as model reaction it is 

important to highlight that this reaction has also practical applications, since 4-NIP is a common 

pollutant from industrial wastes.[53] 

The reaction was performed immersing ∼1 cm2 pieces of each MFT composite in stirred solutions 

containing the reactants.[54] The reaction was monitored by UV–vis spectroscopy. In all tested 

cases, a decrease of the 4-NIP absorption band centered at 400 nm and the appearance of a new 

peak located at 300 nm were observed, indicating the conversion of 4-NIP into 4-aminophenol 

(see Figure S4, SI).[55] The reaction rate was modeled according to pseudo first-order kinetic that 

can be described by the following equation: 

ln(At/A0) = -kt  

Where t is the reaction time, At and A0 are the absorbances of 4-NIP at 400 nm at time t and 0, 

respectively and k is the reaction constant rate.[56],[57] Figure 6 shows the plot of ln(At/A0) as a 

function of reaction time for the composites used as catalysts. All data can be linearly fitted, 

confirming the pseudo first order kinetic assumption.[58] 
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Figure 6. Plot of ln (At /A0) as a function of time for the reaction catalyzed by SiO2- COOH-Cu10, 
SiO2- COOH-Cu20 and SiO2-NH2-Cu10 composite materials.  

The lines correspond to linear fitting of the data. 
 

The resulting geometric-area normalized apparent constants rates (kapp, obtained taking into 

account the geometric area of the sample and its Cu content) are presented in Table 2. These kapp 

are in order of values reported in literature for non-supported metallic NPs.[11],[55],[59] 

The induction time required for the reaction start was of about 2 minutes for all samples, and can 

be related with diffusion processes that take place within the mesoporous structure,[60] as 

observed before for Cu NPs loaded SBA-15 mesoporous catalysts.[53] The obtained values indicate 

an easy diffusion of the reagents into the mesoporous matrix.[54] 

Table 2 Constant rates for the 4-NIP reduction catalyzed by Cu loaded SiO2 MTF 

Sample kapp [10−3 min−1 cm-2] * k’app [103 min g] −1 ** 

SiO2-COOH-Cu10 8.3 16.2 

SiO2-COOH-Cu20 3.6 4.2 

SiO2-NH2-Cu10 2.0 6.8 

 

* normalized per geometric area 
**normalized per Cu content measured by IC-PMS (see Table S1, SI) 



  

 

Although all the obtained composite materials present catalytic activity for 4-NIP reduction, the 

best results in terms of kapp were obtained for SiO2-COOH-Cu10 sample, where Cu is present as Cu 

(0). Indeed the kapp has a value of 8.3 10−3 min−1.cm-2 for the SiO2-COOH-Cu10 sample, more than 

twice the value for the SiO2-COOH-Cu20 sample and four times the value of the kapp of the SiO2-

NH2-Cu10 sample. Moreover, XPS measurements performed after the catalytic measurements 

demonstrate that Cu (0) remains in the sample after the experiments (see Figure S5, SI), hinting on 

the chemical stability of the obtained composites. 

These results confirms, as expected, that the oxidation state of Cu inside the composite material is 

a critical point for the control of its catalytic activity. This feature depends not only on the NPs 

surface to volume ratio and exposed facets, but also on their oxidation state. Interestingly, this last 

characteristic of the NPs can be controlled through MTF functionalization combined with the 

number of A/R cycles performed to incorporate the copper.  

 

CONCLUSIONS 

Cu NPs were grown inside accessible porous SiO2 MTF functionalized with COOH and NH2 groups 

at room temperature, using an adsorption-reduction procedure based on easily available reagents. 

The oxidation state of the Cu NPs depended both on the functional group present in the pores and 

the number of adsorption-reduction steps applied, as demonstrated by UV-visible spectra, XPS and 

EELS analysis. Metallic Cu (0) NPs were obtained for MTF displaying pores functionalized with 

COOH groups and applying 10 A/R cycles. For the same pore functionalization, Cu NPs with higher 

oxidation state were also present when 20 A/R cycles were used. This observation hints a 

stabilization effect due to the presence of COOH group, is more effective when less Cu is present 

inside the MTF. When NH2 groups are present in the pores, on the other hand, Cu (0) is not 

present in the NPs, indicating a lower stabilizing capacity of the amines. 

The oxidation state of Cu NPs controlled the catalytic activity of the composite material towards 4-

NIP reduction: the more active samples were the ones that contained Cu (0) NPs. Catalytic activity 

can be therefore controlled through the proper choice of MTF functionalization combined with the 

number of A/R cycles performed to incorporate the copper. 



  

Our result show a simple methodology for controlling the chemistry and performance of in pore 

synthesized nanoparticles by modifying the surface chemistry of the pores. Such approach can be 

applied for the synthesis of other NPs and it is a nice example of the interplay between pore 

chemistry and functionality in mesoporous materials. 
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Synthesis of Cu nanoparticles supported within functional SiO2 mesoporous films 

The functional group (NH2 or COOH) defines the oxidation state of the Cu particles 

Composite’s catalytic activity depends on the Cu nanoparticles oxidation state 

 


