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ABSTRACT Metarhizium rileyi (formerly known as Nomuraea rileyi) is a potential
agent for microbial control of many insect pests from the order Lepidoptera, the
damages of which can cause considerable loss of productivity in agriculture. We re-
port the genome sequence and annotation of M. rileyi strain Cep018-CH2/ARSEF
7053.

etarhizium rileyi is a cosmopolitan species of entomopathogenic fungi of the

family Clavicipitaceae (Hypocreales, Ascomycota) with extensive literature pub-
lished under its synonym Nomuraea rileyi (1, 2). The main susceptible species of insects,
which are key pests of crops such as cotton and soybean, belong to the lepidopteran
families Noctuidae, Erebidae, and Nymphalidae (3-7). Metarhizium rileyi usually pres-
ents high genetic variability (8), which has been closely related to the host species from
which it is isolated (4, 9, 10). Unlike other most common fungal entomopathogens with
the greatest known epizootic potentials, such as Metarhizium anisopliae and Beauveria
bassiana, M. rileyi has a narrow spectrum of hosts (10, 11). Because of its high selectivity
and effective control under natural or agricultural conditions, M. rileyi is an attractive
biocontrol agent with potential for development as a bioinsecticide (3, 5) or for
prospecting potential biologically active compounds with many possible uses. The
genome data of M. rileyi strain Cep018-CH2/ARSEF 7053 were obtained, with the aim of
providing additional insights into fungal diversity and interactions with the host.

M. rileyi strain Cep018-CH2 was isolated from a velvetbean caterpillar (Anticarsia
gemmatalis) on 4 April 2001, in Chivilcoy (Buenos Aires Province, Argentina), and it was
deposited at the Centro de Estudios Parasitoldgicos y de Vectores (CEPAVE) collection,
La Plata, Buenos Aires, Argentina, and also at ARSEF (12) under the accession number
ARSEF 7053. A single-spore culture of Cep018-CH2/ARSEF 7053 was prepared on
Sabouraud maltose agar with yeast extract (SMAY; 2.5 g of neopeptone, 10 g of
maltose, 2.5 g of yeast extract, 3.75 g of agar, and 250 ml of water) at 26°C for 5 to
7 days. Conidia were inoculated in 50 ml of SMAY broth with shaking at 250 rpm at 26°C
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version 5.0.2 (15). The final assembly had a total length of 31,808,756 bp, with 1,044
contigs joined into 249 scaffolds, 240 of which were larger than 1,000 bp. The lengths
of the longest and N, scaffolds were 2,535,063 bp and 815,204 bp, respectively, and
the Ls, value was 10. The overall G+C content was 51.30%.

Gene prediction and annotation using Funannotate version 1.5.0-b99af2c (16), with

the gene predictors AUGUSTUS version 3.3.1 (17), GeneMark-ES Suite version 4.35 (18),
and tRNAscan-SE version 2.0.0 (19), resulted in 8,945 protein-coding and 102 tRNA
genes. This annotation is comparable with that of M. rileyi RCEF 4871 (GenBank
accession number AZHC00000000), which has a total assembly length of 32,013,981 bp
and 8,764 protein-coding genes (20). Secondary metabolite analysis was performed
using antiSMASH fungal version 4.2.0 (21), identifying 30 gene clusters involved in the
biosynthesis of specialized metabolites, 480 biosynthetic enzymes, and 155 secondary
metabolism Clusters of Orthologous Groups (smCOGs). Functional annotation of the
predicted proteins, by pattern matching with the Pfam (22), UniProtKB/Swiss-Prot (23),
eggNOG (24), CAZy (25), MEROPS (26), InterPro (27), and antiSMASH (28) databases, as
well as comparison to other entomopathogenic fungal genomes, revealed key genes
coding for peptidases, carbohydrate-active enzymes, secreted proteins, and transcrip-
tion factors.

Data availability. This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession number SBHS00000000. The version de-
scribed in this paper is version SBHS01000000. The raw reads were deposited in the
NCBI Sequence Read Archive under the BioProject accession number PRJINA503201.
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