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Abstract — Ten strains of Lactobacillus were tested as adjunct cultures in combination with two
different Lactocococcus lactis starters in miniature washed-curd cheeses manufactured under
controlled bacteriological conditions. Growth of lactobacilli seemed to depend on the strain used,
but was not influenced by the starter strain (either L. lactis subsp. lactis 1L.416 or L. lactis subsp.
cremoris AM?2). Lactococcal counts in miniature cheeses with AM2 starter and added lactobacilli
were higher than in control cheeses without lactobacilli. Consistently good survival (~100% after
four weeks) was observed for IL416, regardless of the presence of adjunct culture). In contrast,
AM2 starter cell viability decreased slowly over the same time period. Gross composition and
protein analyses were performed on the miniature cheeses. Our results indicate that production of
soluble nitrogenous compounds was influenced by the lactobacilli adjunct, and depended on the
starter strain. We conclude that the use of different combinations of starter and adjunct cultures can
result in marked differences in bacterial populations and product properties. Such studies may be
used to choose the combination of strains necessary to obtain a product with particular properties.

Lactobacilli adjunct culture / starter / proteolysis / cheese

Résumé — Influence du levain et d’une culture secondaire de lactobacilles sur I’affinage des
fromages miniatures type pate pressée. Dix souches de lactobacilles de la collection CNRZ ont
été testées en tant que culture secondaire, en combinaison avec deux souches différentes de levain
Lactococcus lactis, dans des fromages miniatures type pate pressée fabriqués en conditions
bactériologiques contrdlées. La croissance des lactobacilles semble dépendre de la souche utilisée,
mais elle n’est pas influencée par la souche de levain (L. lactis subsp. lactis IL416 ou L. lactis subsp.
cremoris AM2). La numération des lactocoques dans les fromages miniatures fabriqués avec la
souche AM?2 et addition de lactobacilles est plus élevée que dans les fromages témoins sans ajout
de lactobacilles. Comme attendue, une bonne survie a été observée pour IL416 (~100 % apres
quatre semaines), et ce indépendamment de la présence d’une culture secondaire. Au contraire, la
viabilité de AM2 a décru au cours de la méme période. La composition globale et des analyses
biochimiques ont été réalisées sur les fromages miniatures. Nos résultats indiquent que 1’addition
de lactobacilles influence la production de composés azotés solubles en liaison avec la souche de
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levain. Nous concluons qu’en utilisant différentes combinaisons de lactocoques et de cultures
secondaires, on peut obtenir des différences marquées dans les populations bactériennes et les
propriétés des produits. De telles études pourraient étre utilisées pour choisir les combinaisons de
souches nécessaires pour obtenir un produit avec des propriétés spécifiques.

Culture secondaire de lactobacilles / levain / protéolyse / fromage type pate pressée

1. INTRODUCTION

Cheese ripening is a complex process
involving proteolysis, lipolysis and metabo-
lism of residual lactose, citrate and lactate
[11]. These transformations are produced
by enzymes of micro-organisms as well as
residual chymosin and indigenous milk
proteases (and lipases in raw-milk cheeses).

Starter lactic acid bacteria (LAB) fer-
ment lactose to give lactic acid during
cheese-making. They also play a role in
cheese flavour development during ripe-
ning [10]. Starter bacteria are added at high
concentrations to milk, and counts attain
108-109 CFU- g‘1 after cheese manufacture;
however, the bacteria die and lyse during
ripening, at rates that vary from strain to
strain [3]. The intracellular peptidases are
then released into the curd, where they can
hydrolyse peptides generated from pri-
mary proteolysis to free amino acids
(FAA) [7]. Some amino acids are sapid
compounds themselves, but FAA in cheese
are mainly important as precursors of fla-
vour, since LAB can metabolise them to
ammonia, carbonyl and sulfur compounds,
etc., all of which strongly influence cheese
flavour [29]. Lactococci of the starter also
participate in the metabolism of residual
lactose, citrate and lactate to produce dif-
ferent volatile compounds that take part in
cheese aroma [28]; they also show weak
lipolytic activity [4].

The contribution to cheese ripening of
the other important group of LAB in
cheese, i.e. non-starter lactic acid bacteria
(NSLAB), remains uncertain. In cheeses
made with pasteurised milk, the adven-
titious NSLAB contaminate cheese after
milk pasteurisation or survive the heat
treatment [42]. The main source of

contamination is probably the resident
flora in the dairy plant and/or the raw milk
itself [31]. In Cheddar cheese, adventitious
NSLAB are able to grow from very low
numbers to 107-108 CFU-g~! during the
first weeks of ripening, and dominate the
cheese microflora after starter cell viability
starts to decrease [11]. NSLAB are mainly
mesophilic lactobacilli in cheeses made
with pasteurised milk, but pediococci and
enterococci  have also been found
[6, 29, 32].

One strategy used to study the influence
of NSLAB in ripening involves addition of
Lactobacillus strains isolated from raw
milk or cheese as a secondary or adjunct
culture in cheese-making experiments. The
majority of studies have shown that FAA
content is increased and flavour intensity
enhanced in experimental cheeses, even
though acceptability by consumers is not
always improved [2, 21, 23-25, 34]. Expe-
rimental Cheddar cheese containing a
complex adjunct culture of mesophilic
lactobacilli developed a stronger flavour
than the control [30] and in another system,
experimental cheese had a higher score for
flavour intensity than the control [41].
Other authors have suggested that lactoba-
cilli cultures can control the secondary
microflora of cheese, and as such, prevent
the growth of adventitious strains of
NSLAB that may potentially cause defects
[27]. However, these results are controver-
sial: it was also reported that lactobacilli
are not needed to obtain a good quality
Gouda cheese [17] and the influence of
lactobacilli in Cheddar cheese flavour was
even suggested to be detrimental [43]. The
influence of non-starter lactobacilli is sug-
gested to be dependent on the species and
strains composing this flora, and their final
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counts [33]. Furthermore, the starter strain
and environmental factors (mainly temper-
ature) seem to play a major role in second-
ary flora development [20].

Experimentation on cheese models for
NSLAB study has proven to be complex.
Even under the strict bacteriological condi-
tions needed for cheese-making, control
cheeses are susceptible to contamination
by adventitious NSLAB, or the NSLAB
may have survived pasteurisation [2, 17,
41]. Phage attack, even at levels that do not
compromise acidification, can also affect
properties of the product by changing pro-
teolysis patterns [3].

The objective of this work was to screen
the expression (growth and biochemical
activities) of ten adjunct cultures of
mesophilic lactobacilli, during the ripening
process of miniature washed-curd cheeses
manufactured with two different Lactococcus
starter strains in controlled microbiological
conditions.

2. MATERIALS AND METHODS
2.1. Cultures

2.1.1. Starter cultures

Two types of starter cultures were used
in the cheese-making: L. lactis subsp.
lactis 1L416, and L. lactis subsp. cremoris
AM2.

Strain IL416 was selected for its high
resistance to phage infection [5], and AM2
for its autolysis due to activated prophage
[22]. Both strains were obtained from the
CNRZ collection.

Each strain was inoculated in sterilised
(110 °C, 10 min), reconstituted (10% w/v),
low-heat skim milk powder (Food Service,
Le Pecq, France). Several ten-fold succes-
sive culture dilutions were prepared and
incubated overnight at 25 °C. The first
dilution (in increasing order) in which milk
did not clot was used as starter, to optimise

the uniformity of starter activity and pH
between cheese-making experiments.

2.1.2. Adjunct cultures

Five strains of Lb. plantarum (identified
as 1228, 1245, 1310, 1311 and 1572), one
Lb. pentosus (1218) and four Lb. casei
(1219, 1227, 1244 and 1308) were tested
as adjunct cultures. All the strains were
obtained from the CNRZ collection (this
laboratory), and had been isolated from
cheese [38].

Strains were cultured individually in
MRS broth [9] at 30 °C overnight, then
transferred (2%) and incubated for 8 h at
30 °C. Several ten-fold dilutions were pre-
pared and incubated at 30 °C overnight.
The dilutions with an optical density
(O.D.) = 0.8 (approximately 108 to
5x108 CFU-mL-! for the tested strains)
were used in the experiments.

2.2. Cheese manufacture

Two experimental cheeses (containing
lactobacilli adjunct culture) and two con-
trol cheeses (without lactobacilli) of
approximately 40 g each were produced
simultaneously per cheese-making day. The
choice of starter strains was alternated
from one cheese-making day to another.
Each lactobacilli adjunct was tested with
both starters.

The cheeses were made in controlled
bacteriological conditions, according to a
previously described protocol adapted
from Saint-Paulin type cheese technology
[13, 36]. Whole pasteurised homogenised
pooled milk was purchased in the local
market every two cheese-making days, and
analysed for pH, fat, dry matter, casein and
non-protein nitrogen content to check for
uniformity of gross composition.

Miniature cheeses were ripened for 28 d
at 12 °C and 80% relative humidity. They
were sampled for physical, chemical and
microbiological analysis at 1, 14 and 28 d
of ripening.



20 E. Hynes et al.

2.3. Analyses

2.3.1. Gross composition of cheeses

The pH values were determined
throughout the cheese-making and ripen-
ing process with a pH meter Orion 920A
(Orion, Boston, USA) equipped with a
penetration electrode (Mettler Toledo,
Paris, France). Measurements were taken
on 2 g of milk or curd samples that were
removed under sterile conditions.

Gross composition was determined on
one-d-old cheeses. Dry matter was analysed
in duplicate using the IDF method (IDF
standard 4:1958) and NaCl content was
determined in triplicate with a potentiometric
chloride analyser (Corning Limited, Halstead,
Essex, England).

2.3.2. Bacteriological analyses
and phage detection

The population of starter lactococci
present in the cheese products after 1, 14
and 28 d of ripening was determined by
plating sample dilutions on M17 agar and
after 48 h of incubation at 30 °C [39]. To
determine the population of NSLAB, samples
were also plated on Lactobacilli Selective
Agar (LBS, Baltimore Biological Labo-
ratories, Rockville, USA) and incubated
for 72 h under anaerobic conditions [26].
The absence of lytic phages during cheese-
making was verified as described [16].

2.3.3. Assessment of proteolysis

Cheese samples were treated to obtain
crude citrate extract, insoluble and soluble
fractions at pH 4.4 and the soluble fraction
in phosphotungstic acid (PTA), according
to Gripon et al. [12]. Nitrogen content of
the fractions was determined in duplicate
by the macro-Kjeldahl method according
to the IDF Standard 20B [15].

The insoluble fraction at pH 4.4 was
analysed by reverse phase liquid chro-
matography (RP-HPLC) and the relation

between the peak area for asl casein and
the peptide as1-I, resulting from chymosin
asl -1
asl —T+asl
was used as an index of primary pro-
teolysis. A 25 mg casein sample was dis-
solved in 1.5 mL of a Bis-Tris buffer also
containing urea and [-mercaptoethanol
and analysed according to Visser et al.
[44]. The HPLC equipment consisted of
two pumps (models 501 and 510), an auto-
matic injector Wisp 712, an interface mod-
ule, and a model 484 Tunable Absorbance
Detector (purchased from Waters: Mil-
lipore S.A., St. Quentin-en-Yvelines,
France). A 250 mm X 3.9 mm Nucleosil
C18, 5 pm-300 A analytical column was
used (Macherey Nagel, Gmbh & Co,
Diiren, Germany) with a C18 Bondapak
cartridge as guard-column (Waters, St.
Quentin-en-Yvelines, France). The chro-
matographic conditions were as described
by Hynes etal. [14].

Ethanol 70% soluble extract of cheeses
was also analysed by RP-HPLC using the
equipment described above. The extract
was prepared according to Lynch et al.
[24]. Water-soluble extracts of the cheeses
were obtained by blending 5 g of cheese
and 15 mL of milliQ water with an
Ultraturrax  homogeniser (IKA-Werke,
Gmbh & Co, Diiren, Germany) at maxi-
mum speed for 2 min then warmed up to
40 °C and maintained for 1 h. The suspen-
sion was centrifuged at 3000 g and filtered
through glass wool [18]. The filtered solu-
tion was adjusted to a final volume of
25 mL, from which aliquots of 1 mL were
fractionated by adding absolute ethanol to
a final ethanol concentration of 70% (v/v).
For each sample, the mixture was main-
tained at room temperature for 1h and
micro-centrifuged at 12 000 g for 10 min.
The supernatant was recovered and the
ethanol was evaporated in a SpeedVac
(Varian, Hicksville, USA). 120 pL of each
Speed-Vac-concentrated liquid sample
were injected into the HPLC chromato-
graph. Detection was performed at 214 nm
and the column temperature was 40 °C.

activity, calculated as %
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Table I. Gross composition of control and
experimental 1-d-old miniature cheeses. Dry
matter and salt-in-moisture (S/M) means did
not differ; pH was significantly different for the
two starter strains (P < 0.05).

Starter strain IL416 AM2

% Dry matter ~ 45.14+0.71  44.92+0.76
% SIM 2.45+0.21 2.39+0.24
pH 5.18 £ 0.06 5.08 +£0.05

The gradient, starting from 100% of
solvent A (H,O-trifluoroacetic  acid
(TFA), 1000:1.1 v/v) and 0% of solvent B
(Acetonitrile-H,O-TFA 600:400:1 v/v/v),
was generated 10 min after injection. The
proportion of solvent B was increased at
1% min~! (80 min); 20% min~! (1 min);
0% min~! (4 min) and then returned to
starting conditions, which took 1 min.
These last setting conditions were main-
tained for 10 min.

Qualitative differences between peptide
profiles of the ethanol 70% soluble extracts
were evaluated by visually comparing
chromatograms, and quantitative differences
by comparing areas of individual peaks
expressed as arbitrary area units.

3. RESULTS

3.1. Gross composition

The gross composition of the one-d-old
miniature cheeses (Tab.I) successfully
modelled washed-curd cheese varieties
[35]. No significant differences in dry mat-
ter and salt-in-moisture (S/M) content
were observed between starter strains.
Average pH values were significantly
lower for cheeses made with AM?2 starter,
than for those made with 1L416 starter.

3.2. Microbiology

Bacterial cell counts of lactococci and
lactobacilli were determined during ripen-
ing of cheeses prepared using the two
tested starters with and without adjunct
cultures (Figs.1 and 2). The control

cheeses were free of exogenous adventi-
tious lactobacilli throughout the ripening
period.

The bacterial counts of L. lactis 1L416
remained constant during ripening (above
109 CFU-g~! of cheese), indicating the
good stability of the starter population.
Lactobacilli did not dominate the micro-
flora of the cheeses at any stage of ripen-
ing. For strains of Lb. casei 1244 and 1308,
and Lb. pentosus 1218, cell counts
increased from ~10® CFU-mL~! in milk to
~107 CFU-g ! in curd during cheese-making
and then remained constant. Lb. casei 1227
increased to ~108 CFU-g~! the first day
and then remained constant. Lb. plantarum
1310, 1572 and 1245 populations all
gained approximately 1 log during ripen-
ing. The other strains did not increase dur-
ing cheese-making (Fig. 1). Lactobacilli
cells were added at circa 109 CFU-mL"!,
but lactobacilli counts in 1-d-old cheeses
were ~107 CFU-g~!. This increase could be
a consequence of cell concentration but
also some growing that compensated for
the loss of lactobacilli during whey
removal and washing.

In contrast to I1L416, the L. lactis AM2
population decreased ~hundred-fold dur-
ing cheese ripening (to 107 CFU-g1), pos-
sibly due to lysis by an activated prophage.
Nevertheless, in several experimental
cheeses (containing lactobacilli), the
starter population remained higher than in
control cheeses (without lactobacilli). This
effect was verified for Lb. casei 1227,
1244, 1308, Lb. plantarum 1572 and 1245
and Lb. pentosus 1218. It was suggested
that lactococcal counts on M 17 agar could
be over-estimated in cheeses containing
added lactobacilli [20]. This possibility
was ruled out in our study because we
observed that the tested Lactobacillus
strains grew very slowly on M17 agar
plates, and were not detected after 48 h of
incubation under aerobic conditions. In
addition, in experimental cheeses prepared
with starter AM2 and Lactobacillus strains
1218 and 1572, lactobacilli counts were
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Figure 1. Growth curves of strain bacteria in miniature cheeses made with starter L. lactis
1L416. [ Lactococci in control cheese; W Lactococci in experimental cheese; 4« Lactobacilli
in experimental cheese. Number in bold characters indicates Lactobacillus strain: 1218 Lb.
pentosus; 1228, 1245, 1310, 1311 and 1572 Lb. plantarum; 1219, 1227, 1244 and 1308 Lb. casei.
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Figure 2. Growth curves of strain bacteria in miniature cheeses made with starter L. lactis
AM?2. [ Lactococci in control cheese; W Lactococci in experimental cheese; a Lactobacilli
in experimental cheese. Number in bold characters indicates Lactobacillus strain: 1218 Lb.
pentosus; 1228, 1245, 1310, 1311 and 1572 Lb. plantarum; 1219, 1227, 1244 and 1308 Lb. casei.
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Table II. Index of primary proteolysis of control and experimental miniature cheeses at 28 d of
ripening; means did not differ significantly (P < 0.05).

Starter strain 1L416

AM2

Lactobacillus
adjunct

Without (control) With (experimental) Without (control) With (experimental)

% asl -1

_ 37+4
asl —IT+asl

41+ 1

43 +3 40+5

ten-fold lower than those of lactococci at
14 and 28 d of ripening, and were therefore
negligible. That was also true for cheeses
prepared with starter AM?2 and Lactobacil-
lus strains 1245, 1227, 1228 and 1311 at
14 d of ripening (Fig. 2).

Lb. casei 1227 grew differently in
miniature cheeses made with AM?2 starter
than in those made with IL416; in this
context, CFU-mL-! are at ~10° in one-d-
old cheese, and reach ~108 CFU-g~! at the
end of the ripening period. Lb. casei 1308
was the only Lactobacillus adjunct strain
that attained a more elevated population
with AM2 than with IL416 starter;
furthermore, AM2 strain survival was also
improved in the cheese product.

3.3. Proteolysis

Chromatographic profiles of the inso-
luble cheese fractions at pH 4.4 were
essentially the same for all cheeses (data not

asl —1 ;
asl-T+asl
not significantly differ (P < 0.05) (Tab. II).

We determined nitrogen content (exp-
ressed as % of total nitrogen) for control
and experimental cheeses for both starters
IL416 and AM2 at 28 d of ripening. The
results are presented in Figure 3 for the sol-
uble nitrogen content at pH 4.4 (SN) and
for the phosphotungstic acid-soluble nitro-
gen content (PTA-N). For starter 1L416,
more than half the experimental cheeses
showed higher SN levels than control
cheeses (without lactobacilli), while SN
values were very close to those of the con-
trol for other cheeses. SN levels of cheeses
made with starter AM2 with and without

shown) and the relation %

lactobacilli were very close and did not
show the same tendency. For both starter
strains, Lb. plantarum 1310 was the
adjunct resulting in the highest increment
in SN levels. The PTA-N values for control
cheeses made with AM2 starter varied
more than those made with IL416. The
production of PTA-N was enhanced for
Lb. plantarum 1310 and 1572 with starter
IL416. The effect of lactobacilli adjunct in
cheeses manufactured with the AM?2 strain
was less evident. In some cases control
cheeses showed a slightly higher level of
PTA-N than experimental ones.

The chromatograms of the 70% ethanol
soluble extracts revealed mainly quantita-
tive differences between miniature control
and experimental cheeses for the majority
of the tested Lactobacillus strains. These
results suggest that the starter strains play a
more important role than the lactobacilli
adjuncts in the production of peptides
soluble in 70% ethanol (see chromato-
grams for IL416 and AM2 strains control
miniature cheeses, Figs. 4a and 4b). Pep-
tide profiles of control cheeses manufac-
tured with the AM2 strain also showed
some quantitative differences (Figs. 4b and
4c), probably because of the changes in
AM?2 starter viability. The differences
agreed with the variability of PTA-N
values for control cheeses manufactured with
the AM2 strain. Thus, each experimental
cheese had only to be compared with the
control cheese manufactured the same day.
Miniature cheese manufactured with both
starters and Lb. plantarum 1572 adjunct
showed qualitative differences compared
with control cheese (without lactobacilli).
Miniature cheese manufactured with AM2
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at 28 d of ripening, made either with starter L. lactis IL416 or starter L. lactis AM2. Numbers under
x-axe indicate Lactobacillus strain: 1218 Lb. pentosus; 1228, 1245, 1310, 1311 and 1572 Lb.

plantarum; 1219, 1227, 1244 and 1308 Lb. casei.

starter and adjunct culture of the Lb.
plantarum 1310 strain also differed from
control cheese (Fig. 4¢).

4. DISCUSSION

In the present study, we provide evi-
dence that miniature cheeses as developed
here provide a reproducible and simple
model for washed-curd cheeses. We also
show that the dynamics of starter and
lactobacilli adjunct culture populations can
vary according to the combination of
strains used in cheese-making. The pre-
sence of the adjunct culture can also result
in altered proteolytic end products, accord-
ing to the starter and the adjunct strains.

We observed significant differences in
starter strain viability according to the

strain used; starter IL416 viable cell counts
remained constant during ripening, while
the AM2 strain population decreased by
~hundred-fold in control cheeses, as was
expected due to autolysis by an activated
prophage. In most experimental cheeses
(containing lactobacilli), the AM2 starter
population remained higher than in control
cheeses (without lactobacilli). This effect
was verified for six Lactobacillus strains
and to our knowledge, has not been
reported to date. The opposite effect for a
starter of L. lactis subsp. cremoris and a
Lb. casei adjunct was previously reported
[2]. The results suggest that lactobacilli
culture may have a positive effect on
survival of AM2 starter.

Even though differences were found for
Lb. casei 1227 and 1308, presumed lysis of
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Figure 4. RP-HPLC chromatograms of 70% (v/v) ethanol soluble extract for miniature cheeses at
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control) adjunct culture of L. plantarum 1572; (b) L. lactis subsp. cremoris AM2 starter with and
without adjunct culture of L. plantarum 1572; (¢) L. lactis subsp. cremoris AM2 starter with and
without adjunct culture of L. plantarum 1310.
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the AM2 strain did not improve growth of
the other Lactobacillus strains (Fig. 2).
Thomas [40] demonstrated that lactobacilli
are able to grow on lactococcal cell
homogenate, so it is generally supposed that
lytic starters improve lactobacilli develop-
ment in cheese. The required concentration
is about 1 mg of cells (dry matter)-mL!,
which is equivalent to ~10° cells-g! of cheese,
i.e. the complete starter population, condi-
tions we get with a hundred-fold drop in
viability. In those studies, carbon, and not
nitrogen, appears to be the limiting factor
in cheese for the growth of NSLAB. In our
cheeses, lactobacilli were added to cheese-
making milk where they can utilise lactose
during the first stages of cheese-making,
thus possibly abolishing the need for added
nutrients provided by lysis of the starter.
Lane et al. [20] reported similar results for
four types of starter, among them the AM?2
strain.

Primary proteolysis was similar for all
control and experimental cheeses, showing
that lactobacilli did not participate in
breakdown of intact caseins in situ. Lane
and Fox [19] found differences in primary
proteolysis between cheeses prepared with
and without a lactobacilli adjunct, and
using glucono-delta-lactone to acidify the
medium instead of LAB starter culture. In
our study, as in others where milk was
acidified by a LAB starter, such a dif-
ference was not detected [19, 23, 25, 37]. The

asl =1
asl-I+asl
experimental and control cheeses also con-
firmed the reproducibility of miniature
cheeses, as it depends on chymosin activity
and therefore on water activity, pH and
cheese composition [8]. We conclude
that the tested Lactobacillus strains do
not possess proteases able to hydrolyse
entire caseins in the present experimental
conditions.

similarity of % values for

Secondary proteolysis products were dif-
ferent for control and experimental cheeses.
Several authors have reported that lactoba-
cilli adjuncts increased the total amount of
free amino acids (FAA) in Cheddar cheese

[17, 24, 25, 34]. In our model, the level of
PTA-N, which is an index of total FAA [1],
was greatest for experimental cheeses
manufactured with starter 1L416 and
adjunct cultures of Lb. plantarum 1310 and
1572. Differences in secondary proteolysis
for these cheeses were also mirrored in
peptide profiles obtained by ethanol solu-
ble extract RP-HPLC. The level of PTA-N
was higher in several control cheeses manu-
factured with the AM2 starter than in the cor-
responding experimental cheeses (containing
lactobacilli). That may be due to greater
viability of AM2 starter in experimental
cheeses and a consequent reduction in
amounts of released starter peptidases. On
the contrary, lactobacilli addition may
improve PTA-N production. In this case,
both contrary effects may be involved, so
that some experimental cheeses — notably
those with Lb. casei 1227 — had greater
PTA-N levels than control.
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