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Abstract The aim of this study is to use a Multilayer Per-
ceptron (MLP) Artificial Neural Network (ANN) for phase-
less imaging the human heel (modeled as a bilayer dielec-
tric media: bone and surrounding tissue) and the calcaneus
cross-section size and location using a two dimensional (2D)
microwave tomographic array. Computer simulations were
performed over 2D dielectric maps inspired by Computed
Tomography (CT) images of human heels for training and
testing the MLP. A morphometric analysis was performed
to account for the scatterer shape influence on the results.
A robustness analysis was also conducted in order to study
the MLP performance in noisy conditions. The standard de-
viations of the relative percentage errors on estimating the
dielectric properties of the calcaneus bone were relatively
high. Regarding the calcaneus surrounding tissue, the di-
electric parameters estimations are better, with relative per-
centage error standard deviations up to≈ 15%. The location
and size of the calcaneus are always properly estimated with
absolute error standard deviations up to ≈ 3 mm.
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1 Introduction

The dielectric properties (relative permittivity (εr) and con-
ductivity (σ )) of the cancellous bone are related to its mi-
crostructure, organic and inorganic composition which togheter
determine the bone quality [1,2,3,4].
Microwave Tomography (MWT) is a consolidated technique
suitable for retrieving the electromagnetic parameters (εr
and σ ) and shape of an unknown target located in an investi-
gation domain [5]. Recently, Meaney et al. [6] have success-
fully used MWT technique to measure dielectric properties
of human bone in vivo. They have studied the calcaneus,
which is the main bone of the heel, by measuring amplitude
and phase of the transmitted wavefield of a circular array of
antennas. Phase measurement presents considerable practi-
cal difficulties and hardware cost which makes amplitude–
only methods highly attractive [7,8,9]. Simulating the same
array of antennas, Fajardo et al. [10] have computationally
studied the feasibility of detecting dielectric properties of
the calcaneus with phaseless data of two dimensional (2D)
models. The authors have concluded that the problem is highly
sensitive to the conductivity of the tissues that surround the
calcaneus and the conductivity of the calcaneus itself. More-
over, the work also showed evidence supporting the fact that
the cortical bone layer (cortex of the calcaneus) and skin
(surrounding the heel) do not weight in the detection of the
dielectric properties of the calcaneus.
Usually, the inverse problem in MWT can be solved apply-
ing two different approaches: deterministic (e.g.: the con-
trast source inversion method [7]) or stochastic (e.g.: parti-
cle swarm optimization [11]). An alternative approach is to
make use of Artificial Neural Networks (ANN). In reference
[12] it has been shown the capability of the Multilayer Pere-
ceptron (MLP) ANN for estimating parameters of complex
nonlinear problems. Bermani et al. [13] have achieved good
results measuring the location and dielectric properties of a
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2 J. E. Fajardo et al.

homogeneous cylinder with amplitude-only information by
means of a MLP ANN. Recently, Wei and Chen have ob-
tained a fast method for inverse scattering problems using
convolutional neural networks [14]. Li et al. [15] have pro-
posed a general approach for solving nonlinear electromag-
netic inverse scattering using convolutional neural networks
aswell.
The objective of this work was to present an efficient inver-
sion method for the detection of dielectric properties of the
calcaneus with phaseless data. We propose a MLP ANN us-
ing a deeper network than that applyed by [13] with more
training data. The 2D model considers the whole heel as a
two dielectric media (calcaneus and surrounding tissue) with
realistic shape inspired by Computed Tomography (CT) im-
ages of human heels. In order to quantify the shape differ-
ences between the 2D dielectric maps, morphological vari-
ability of the images was assessed using geometric morpho-
metric techniques [16].

2 Materials and Methods

2.1 Data Generation

2.1.1 Electromagnetic Simulations

We conducted several simulations in order to train the ANN.
A total of 18 coronal CT slices of human heels (from 9
different patients) at different heights and inclinations were
used as the realistic shape geometries for simulating the elec-
tromagnetic phenomena (see Fig. 1 (A)). Segmentations and
image processing was performed using 3DSlicer [17]. The
geometry of each model considers the whole heel as a two
dielectric media: (I) surrounding tissue (muscle/tendon), and
(II) calcaneus (considered as trabecular bone). This simpli-
fied model is based on the results presented in the sensitivity
analysis of our previous work [10]. The range of values of
conductivity and permittivity of the materials employed in
computer model are shown in Table 1 [10].
Maxwell equations were numerically solved in 2D using

Table 1 Simulated range of the dielectric properties of the tissues in-
volved (at 1.3 GHz).

Region εr σ (Sm−1)
I (Muscle/Tendon) [29.0, 70.0] [0.90, 1.55]
II (Trabecular Bone) [12.5, 20.1] [0.44, 0.92]

finite-difference time-domain (FDTD) method (implemented
in the freely available software package MEEP [18]). An
array of monopole antennas similar to that developed by
Meaney et al.[1] was simulated (a circular array of 16 an-
tennas equally angularly spaced and disposed in a circle
with a diameter of 152 mm). The monopole antennas were

modeled in 2D as a line of current (a point source in 2D)
emitting a TM-polarized electric field Ez ∝ e jωt , being “z”
the axis parallel to the antennas, where ω = 2π f , and f is
the frequency ( f = 1.3 GHz). The size of the simulation
box was 250 mm × 250 mm, the spatial grid resolution of
the simulation box was 1.0 mm and the Courant factor was
0.5. The boundary conditions were Perfectly Matched Lay-
ers (PML), which means that there was total absorption in
the box edges. The coupling bath was a glycerin-water mix-
ture in 80:20 proportion.
In the simulations we computed the absolute value of the to-
tal field (|Ez|) in the receiver antennas (Rx). This magnitude
was measured in the seven receiver antennas right in front of
the transmitter (Tx), since in [10] was shown that these an-
tennas have considerably more information than the others.
A complete simulation gives a total of 7×16 = 112 mea-
surement points. In Fig. 1 (B), the radiation pattern created
by Tx = 0 (transmitter number 0) is shown over the simula-
tion box.
A total of 7200 complete simulations were performed from
18 different 2D slices (for training and testing purposes)
containing different combinations of the dielectric proper-
ties taken from a random uniform sampling of the intervals
shown in Table 1. Two hundred different combinations of
these parameters were generated from each 2D slice. The
heel position was also displaced within the tomographic cir-
cular array. Furthermore, we duplicated the amount of mod-
els by mirroring the original images, taking advantage of the
geometric symmetry.
In order to train the ANN in a robust way and to evaluate
the prediction accuracy in presence of different noise levels,
two main sources of errors were added: additive noise in the
receptor and unknowledge in the actual position of it. There-
fore, the data from each simulation were altered as follows.
The input vector j of the MLP is:

xnoisy
j = |Ez(x,y)| j +N(0,std2

2) (1)

where the normally distributed random variables x and y
(with mean in the true antennas coordinates and standard
deviation std1) emulate the uncertainty in the position of
the antennas. N

(
0,std2

2
)

is a normally distributed variable
with zero mean and standard deviation std2 corresponding
to the noise in the measured signal. Different noise levels
were added, std1 up to 1 mm, and std2 up to 5% of the un-
altered received signal (it approximately corresponds to a
signal–to–noise ratio (SNR) up to 26 dB). The main results
of this work were obtained using these noise levels. In the
following, it will be explicitly indicated if they are changed
for a particular parameter study.

2.1.2 Morphometric Information

In order to quantify shape differences between the 2D di-
electric maps, morphological variability of the outlines was
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Fig. 1 (A) 3D Reconstruction of the feet from CT, showing one of the planes used for reconstructing the heels 2D images. (B) Simulation showing
the antenna Tx = 0 emitting at the right side of the image and the rest of the antennas (white dots). The colored bar corresponds to the magnitude
of the electric field (|Ez|) in logarithmic scale for better visualization. Tx = 15 is also shown for reference. (C) Coordinates sampling the bone
edges (blue dots), the centroid (white dot with coordinates Xcen, Ycen) and equivalent radius (rm) of the circular cross section area of the bone (red
circle). The grayscale represents the relative permittivity values of this particular 2D slice.

assessed using geometric morphometrics techniques [16].
Additionally, a set of 28 (x,y) coordinates on the bone bor-
ders was recorded to compute the Xcen and Ycen. The com-
puted coordinates of the centroid of the calcaneus, and an
equivalent radius (rm), are shown in Fig. 1 (C).

For the morphometric analysis, a set of 25 cartesian co-
ordinates in 2D were recorded for each original slice, 15 on
the skin outline and 10 on the bone outline. Outlines were
digitized as series of discrete equidistant points, known as
semilandmarks. The individual points were slid along a tan-
gential direction so as to remove tangential variation, be-
cause contours should be homologous from slice to slice,
whereas their individual points need not. This variation can
be removed by minimizing procrustes distance with respect
to a mean reference form [19]. Semilandmarks digitization
on the skin outline started from an anatomical landmark, de-
fined as the posterior outermost point of the Achilles ten-
don, and proceeded clockwise. On the bone outline, a sec-
ond landmark was defined as the intersection of the bone
outline and a vertical line (with respect to the image frame
of reference) passing through the first landmark. Semiland-
marks on the bone outline were then digitized clockwise
from this second point. The coordinates of landmarks were
aligned using generalized least-squares procrustes fit [20].
This procedure optimally translates, rotates and scales coor-
dinates of landmarks in order to remove the information on
position, orientation and size [21]. A Principal Components
(PC) analysis was then conducted on the covariance matrix
of the procrustes residuals, and the two first PC (covering
≈ 70% of the variance) were used to quantify shape differ-
ences between slices.
Figure 2 shows the position of each slice in the two first PC
shape space. It also shows as reference the deformed grids

PC1

P
C
2

Fig. 2 Geometric distribution of the 2D slices in the space of the PC 1
and 2, The number of the slice is indicated next to the corresponding
point. Also as reference, deformed grids in the extremes of PC1 and
PC2 are shown with the landmarks over them, ilustrating the deforma-
tion respect to the mean form in the corresponding axis.

with the aforementioned landmarks at the extreme values of
the two first PC axes.

2.2 The MLP ANN

2.2.1 MLP ANN Overview

A MLP ANN is an interconnected network of artificial neuron-
like units, disposed in layers, where all the units of each
layer are connected with all the units of the previous and
next layer, but there are not connections between the units
in the same layer.
In this kind of ANN the output of each neuron variates ac-
cording to a given input x j = {x1 j · · ·xN j}, applied to a net-
work of Nm layers and Nn nodes in the n-th layer as:

xk(l) = f

(
Nl−1

∑
i=1

xi(l−1)w(k)
i (l)+bk(l)

)
(2)
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with l = 1 · · ·Nm, k = 1 · · ·Nl , being f(·) the activation func-
tion, xk(l) the state of the k-th neuron of the l-th layer, w(k)

i (l)
the associated weight to the connection between the i-th neu-
ron of the (l−1) layer and the k-th neuron of the layer l and
bk(l) the bias associated to the k-th neuron of the l-th layer.
Once input vectors x j are propagated through the network
and output vectors ỹ j of parameters are calculated, the result
is compared to the actual y j values and a loss is calculated.
Tipically one of the loss metrics used in regression is the
Mean Absolute Percentage Error (MAPE):

MAPE =
1
n

n

∑
i=1

|ỹi− yi|
yi

(3)

where ỹi and yi are, respectively, the output of the model
(a particular parameter) and the actual value, n is the num-
ber of parameters where the difference is evaluated. In this
work we also use the Mean Absolute Error (MAE) which is
directly computed as 1

n ∑
n
i=1 |ỹi− yi|.

After evaluating the loss, the gradients are retropropa-
gated through the network from y to x and the weights are
updated in all the neuron-like units composing the network
in a direction opposite to that of the gradients ∇θ J(θ), where
J(θ) is the objective or loss function parameterized to the
model parameters θ . Several approaches are used for doing
this task. For an overview in this particular topic, see [22].
Once the loss is low enough and the network is capable of
generalizing the prediction for new input vectors (not used
during the training period), the matrices with the weights are
saved and a useful model is obtained.

2.2.2 Topology and characteristics of the implemented
MLP ANN

The topology of the implemented MLP ANN corresponds to
a first layer of inputs, which are the antennas measurements
described in the subsection 2.1 (i.e.: 112 inputs regarding
|Ez|), then three “hidden” layers with 100 units each one,
and finally an output layer with seven units (corresponding
to the parameters to be estimated: εr and σ of the calca-
neus and the sourrounding tissue, Xcen and Ycen coordinates
of the calcaneus centroid, and the equivalent radius (rm)).
As activation functions, rectifier linear units functions were
used in all the neurons, except in the output layer, where
a general linear function was used. The rectifier linear unit
function is a function f(·) whose value is 0 if f ≤ 0 and a
linear function if f > 0. The weights updating (w(k)

i ) during
the network training was implemented using backpropaga-
tion with the “Adam” gradient descent method [23]. This
approach outperformed other gradient descent methods in
this particular study.
We used the application programming interface Keras [24]
with Tensorflow [25] as backend package for implementing

the ANN. The selected loss function was MAPE (Eq. 3). The
data were normalized to the [0,1] range and 20 epochs were
used for training the network with a batch size of 50. The
fixed number of epochs was previously found using early–
stopping and then fixed to use validation data as test data
avoiding validation bias, despite the risk of underfitting in
some cases.
The network training and testing was done using jackknife-
like cross validation [26] in order to use the higher ammount
of models in the training set and also to use all the data as
test set. For example: taking out the data corresponding to
Xi (with i = 1, . . . ,n) for testing the model from the training
set X = {X1, . . . ,Xi−1,Xi+1, . . . ,Xn} (with Xi /∈ X), being Xi
a matrix with all the x j input vectors of the ANN made of
combinations of dielectric properties generated from the i-th
2D slice.

3 Results

Seven output parameters were obtained from the inversion
method presented in this work, four related to the dielec-
tric properties and three to the calcaneous cross–section. We
will call them dielectric and geometric parameters, respec-
tively. Figure 3 shows the predictions of these parameters for
the 7200 models generated from the 18×2 slices using the
metodology previously described. Linear fitting was com-
puted for the dielectric properties of the calcaneus (see Fig.
3 (A) and (B)). This shows that there were always an over-
estimation of the actual lower values and a sub estimation
of the higher ones. The histograms of the errors for each pa-
rameter estimation are also shown. While the errors in the
estimation of the dielectric properties of the surrounding tis-
sues (Fig. 3 (F)) and the geometric parameters (Fig. 3 (J))
seem to follow a normal distribution, this is not the case for
the estimation errors of the dielectric properties of the cal-
caneus (Fig. 3 (C)).
An example of the estimation of the geometric parameters

of the calcaneus (centroid and equivalent radius) is shown in
Fig. 4. Estimations from four different slices are shown.

In Fig. 5, the effect of the SNR on the prediction er-
ror is shown. The 200 models generated from a single slice
(named 21) were depicted. This slice was selected under the
assumption that it is close to the mean shape of the PC space
(see Fig. 2) and the relative errors in the predictions were
representative of the overall behavior of the MLP ANN. The
training set for this particular study was generated without
noise in the received signals. As expected, the errors de-
crease when the SNR become higher. Figure 5 also shows
that the conductivity of the calcaneus presents the greatest
errors in estimation even for high SNR values.
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Fig. 3 Predictions for the 7200 models. (A) and (B) predictions and true values of the relative permittivity and conductivity, respectively, of
the calcaneus. A red line is plotted with the best linear fit. (C) Histogram of the relative errors for the prediction of the calcaneus conductivity
(grey) and relative permittivity (light red). (D) and (E) predictions and true values of the relative permittivity and conductivity, respectively, of
the calcaneus surrounding tissue. (F) Histogram of the relative errors of the prediction of the calcaneus surrounding tissue conductivity (grey) and
relative permittivity (light red). (G), (H), and (I) predictions and true values of the Xcen coordinate, Ycen coordinate, and equivalent radius rm of
the calcaneus. (J) Histogram of the prediction error of the Xcen (light green), Ycen (light red), and rm (light blue).

The prediction error behaviour related to differences in
the shape of the slices is studied by computing the linear
correlations (r) between the scores of the two first PC (PC1
and PC2), and the mean and the standard deviation of MAPE
(for εr and σ ) and MAE (for Xcen, Ycen, and rm). Tables 2
and 3 show the results (see Fig. 2 for reference). The highest
linear negative correlation is obtained between PC2 and the
standard deviation of the error in the estimation of εr of the
calcaneus (significantly p < 0.05). Regarding the geometric
properties, the same behavior is observed for Xcen and Ycen.
PC1 is weakly positive correlated with the mean error in the
estimation of εr and Xcen of the calcaneus.

Figure 6 shows the linear correlations between the first
and second PC and the mean and standard deviation of the

relative permittivity MAPE for the calcaneus and the sur-
rounding tissue. Each point represents the mean and stan-
dard deviation of the MAPE of 200 models generated with
different dielectric properties and position of a particular
slice.

4 Discussion

The motivation of this study is to search an alternative method
to evaluate bone health in vivo. Microwave imaging is a
technique that could provide new insights to this exciting
clinical challenge. Mainly because it can be applied peri-
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Table 2 Linear correlations (r) between PC1 and PC2, and the mean and standard deviation of MAPE for the predictions of the dielectric properties
of the calcaneus and the surrounding tissue. The correlations with determination coefficient greater than 25% are highlighted with boldface font.

Calcaneus Surrounding tissue
Mean MAPE εr (Std.) Mean MAPE σ (Std.) Mean MAPE εr (Std.) Mean MAPE σ (Std.)

PC1 0.52** (0.12) 0.03 (0.13) -0.17 (-0.18) 0.00 (0.25)
PC2 -0.11 (-0.71**) 0.06 (-0.25) 0.67** (0.28*) -0.10 (0.36**)
* p < 0.10.
** p < 0.05.

Table 3 Linear correlations (r) between PC1 and PC2, and the mean and standard deviation of MAE for the predictions of the geometric properties
of the calcaneus. The correlations with determination coefficient greater than 25% are highlighted with boldface font.

Mean MAE Xcen (Std.) Mean MAE Ycen (Std.) Mean MAE rm (Std.)
PC1 0.56** (0.17) 0.37** (0.17) 0.32* (0.10)
PC2 -0.34** (-0.67**) -0.28* (-0.67**) -0.14 (0.42**)
* p < 0.10.
** p < 0.05.

(A) (B)

(D)(C)

Fig. 4 Estimation of the geometric properties. The red circles plotted
over the actual simulated heels are obtained from the ANN predictions
(parameters: Xcen, Ycen, and rm).

odically in patients due to its non ionizing condition. Other
desired conditions in such alternative methods are: low cost
and portability of the required equipment. This work presents
a robust inversion method for MWT with phaseless data that
gives a step towards meeting the aforementioned character-
istics.
The magnitude of the errors obtained in the prediction of
the relative permittivity and geometric circular approxima-
tion of the calcaneus suggests the suitability of using a MLP
ANN for estimating these properties with an experimental
setup similar to that used for Meaney et al. [6]. However, the
high error in predicting the calcaneus dielectric conductiv-
ity makes this method not–suitable for predicting this par-
ticular parameter properly. The dielectric properties of the
calcaneus surrounding tissue are predicted but, in this case,
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Fig. 5 The mean (marks) and standard deviation (error bars) of the
prediction erros for 200 different combinations of the parameters gen-
erated from slice 21. (A) MAPE of the calcaneus εr (grey circles) and
σ (green squares) and surrounding tissue εr (blue triangles) and σ (red
triangles) for different SNR in the signal. (B) MAE of the calcaneus
geometric parameters Xcen (grey circles), Ycen (green squares) and rm
(red triangles) for different SNR in the signal.

the conductivity prediction errors are lower than those of the
permittivity.
The model is robust enough to noise levels similar to those
used during its training (about 26 dB in the signal and 1 mm
in the antennas position uncertainty). Increasing the SNR
over these levels, leads to a faster decreasement of the di-
electric properties prediction errors.
Special attention was paid in understanding the behavior of
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Fig. 6 Relationship between PC1 and PC2, and the mean (red squares)
and standard deviation (blue circles) of the MAPE for the relative per-
mittivities of the calcaneus (A) and the surrounding tissue (B). Each
point represents the mean (red square) and standard deviation (blue
circle) of the prediction relative errors of 200 models generated with
different dielectric properties and position of a particular slice.

the ANN with the geometry and the position of the heel.
We studied the results yielded only by the first two Princi-
pal Components. It can be assumed from Fig. 2 that PC1
and PC2 are associated to the inclination of the heel and
the area occuped by the calcaneus within the heel, respec-
tively. The PC1 and relative permittivity of the calcaneus
are weakly correlated. It can be seen that for lower values
of PC1 (the slice of heel is less stretched) lower errors are
obtained. In general, the dispersions in the predictions of the
calcaneus parameters are better at higher values of PC2 (the
correlation coefficients were always negative, excepting for
the equivalent radius). This means that the higher the area
occupied by the calcaneus the lower the dispersions of the
estimate errors. This result should be carefully considered
because the estimate could be biased but with low variance.
Low values of PC2 improved the estimation of the relative
permittivity of the surrounding tissue (see Fig.6 (B)). This is
expected, since lower PC2 values are associated with lower
calcaneus cross–section areas. In short, better estimations of
the relative permittivity could be achieved avoiding inclina-
tion towards the Achilles tendon (in the case of calcaneus),
and having a smaller proportion of bone area (in the case of
the surrounding tissue).
A commentary should be added regarding the inversion method.
The convergence of traditional or stochastic algorithms usu-
ally is time consuming and depends on the initial guesses.

In the method proposed here, once the ANN is trained, the
inversion is performed almost instantaneously. Therefore, it
can also be used to obtain better initial guesses in order to
accelerate traditional inversion methods.
It is worth mentioning that the proposed method is not in-
tended to be a general–purpose invertion method, but an spe-
cialized one focused in the particular problem of evaluating
the calcaneus.
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