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ABSTRACT 

Charcoal rot, caused by the fungus Macrophomina phaseolina, is an economically 1 

important disease of soybean (Glycine max) worldwide.  Objectives of the present research 2 

were to (i) study the genetic and pathogenic diversity in a collection of M. phaseolina 3 

isolates from Argentina and Paraguay and (ii) develop an improved in vitro phenotyping 4 

method to evaluate disease response of soybean genotypes to M. phaseolina isolates.  5 

Cluster analysis showed no clear association among simple sequence repeats (SSR) 6 

profiles, year of collection, pathogenicity and geographical origin of the isolates from 7 

Argentina and Paraguay.  Subsequently, the response of four soybean genotypes against 8 

seven M. phaseolina isolates was evaluated in the field and the results were confirmed 9 

using the in vitro assay developed.  This assay, which is based on root disease development 10 

on soybean seedlings, allowed the detection of a differential level of aggressiveness among 11 

the isolates on four soybean genotypes.  The results suggest the existence of specific 12 

interactions among soybean genotypes and M. phaseolina isolates.  In addition, cultivar 13 

Munasqa RR showed a superior response against M. phaseolina compared with DT 97-14 

4290 (moderately resistant), thus becoming a novel source of resistance to charcoal rot.   15 

 16 

 17 

Additional keywords: charcoal rot; genetic and pathogenic diversity; in vitro phenotyping. 18 
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INTRODUCTION 

Macrophomina phaseolina (Tassi) Goid. is a polyphagous fungus, infecting nearly 500 19 

species in more than 100 plant families worldwide (Mihail and Taylor 1995) including 20 

cereals, legumes, vegetables, fruits and fiber crops (Dhingra and Sinclair 1978).  In soybean 21 

[Glycine max (L.) Merr.], M. phaseolina is the causal agent of charcoal rot, an 22 

economically serious and potentially destructive disease; in 2006, it was estimated to be 23 

responsible for yield losses of around 4% worldwide (Wrather et al. 2010).  Measurements 24 

in experimental field plots recorded losses between 18 and 30% caused by this fungus 25 

(Mengistu et al. 2011).  In South America, charcoal rot has caused severe problems in 26 

soybean crops in Paraguay, where the prevalence of the disease was 100% in 48 localities 27 

evaluated from April to August 2008 (Orrego Fuente et al. 2009).  In Argentina, the hot and 28 

dry weather that prevailed in the northwestern region (NW) during the 2000-2001, 2011-29 

2012 and 2012-2013 growing seasons favored charcoal rot development in soybean crops.  30 

This affected the production areas in the provinces of Catamarca, Salta, Santiago del Estero 31 

and Tucumán in the NW, resulting in varying levels of yield losses, and even total losses in 32 

some fields (Ploper et al. 2001; Reznikov 2016). 33 

The use of resistant cultivars provides an effective approach for disease control, 34 

particularly for charcoal rot (Romero-Luna et al. 2017).  In addition, genetic resistance is a 35 

key strategy that minimizes the use of fungicides, reduces crop losses and supports 36 

sustainable production management (Bowen and Schapaugh 1989; Bristow and Wyllie 37 

1984; Smith and Carvil 1997).  However, to date, the germplasm line DT 97-4290 is the 38 

only soybean genotype registered as moderately resistant to M. phaseolina (Paris et al. 39 

2006). 40 
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Genetic and pathogenic diversity in the species M. phaseolina was previously 41 

observed (Su et al. 2001).  Recently, genetic diversity among isolates of M. phaseolina 42 

collected mainly from soybean fields in the United States was determined using simple 43 

sequence repeats (SSR) markers (Baird et al. 2010; Baird et al. 2009); and an association 44 

between M. phaseolina and plant-host origin of the isolates was found (Arias et al. 2011).  45 

Similar results were reported with the use of universal rice primers (URP) for polymerase 46 

chain reaction (PCR) fragment amplification, when analyzing the diversity of isolates from 47 

three different crop species (Jana et al. 2005).  Saleh et al. (2010) reached the same 48 

conclusion through random amplification of genomic fragments by using oligo repeats 49 

comparing crops with wild host species. 50 

In order to screen the disease reaction of soybean genotypes to this pathogen 51 

accurately, a precise and reproducible phenotyping method is required.  To this day, the 52 

best method to evaluate host resistance to charcoal rot has been the analysis of root and 53 

stem severity at the R7 growth stage based on a colony-forming unit (CFU) index in field 54 

conditions (Mengistu et al. 2007).  However, this method is not only time-consuming and 55 

expensive, but also requires artificial inoculation of the soil with M. phaseolina.  These 56 

limitations make this method difficult to be used consistently when evaluating the reaction 57 

of large numbers of soybean genotypes against charcoal rot.   58 

The underlying hypothesis of the current study was the existence of genotype-59 

genotype specific interactions between soybean germplasm and M. phaseolina isolates.  In 60 

order to validate these interactions, the specific aims of this research were to (i) 61 

characterize the genetic diversity and aggressiveness of M. phaseolina isolates collected 62 

from soybean fields in Paraguay and Argentina, and (ii) develop a rapid and reliable in vitro 63 
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assay to evaluate and confirm specific responses of soybean genotypes to M. phaseolina 64 

isolates.  65 

  66 

MATERIALS AND METHODS 67 

Fungal isolates and growth conditions.  Thirty-nine isolates of M. phaseolina were 68 

obtained from roots and stems of soybean plants showing characteristic symptoms of 69 

charcoal rot in fields from Argentina and Paraguay in 2008, 2009, 2010 and 2013 (Table 1).  70 

The geographic areas were selected based on their importance regarding soybean 71 

production in each region (Fig. 1). 72 

All plant samples were rinsed with deionized water, and 0.5-cm tissue sections were 73 

surface-disinfested with 70% (v/v) ethanol for 30 s, followed by 5% (v/v) NaClO for 1 min, 74 

rinsed with sterile water, and then air-dried in sterile conditions.  Samples were placed on 75 

potato dextrose agar (PDA; Difco, Detroit, MI) dishes, acidified with 0.2% (v/v) lactic acid 76 

and incubated at 28 ± 2ºC for 4 days.  A single microsclerotium of each isolate was 77 

removed with a sterile needle under the stereoscopic microscope and transferred to a new 78 

acidified PDA dish.  Pure cultures of each isolate were obtained in 24 to 48 h and preserved 79 

at -20°C on filter paper. 80 

Nucleic acid purification.  Fungal DNA was extracted by employing the CTAB method 81 

for total nucleic acid extraction (Murray and Thompson 1980).  First, mycelium was grown 82 

in 100 mL of potato-glucose broth for 2 weeks in darkness at 28 ± 2°C.  Then, it was 83 

harvested by filtration through a layer of metal filter (1 mm), washed twice with sterile 84 

water, and dried at room temperature in sterile conditions for 24 h.  Dry mycelium was 85 

ground with liquid nitrogen using a mortar and pestle, and 100 mg of each sample was used 86 

for total nucleic acid extraction. 87 
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Polymerase chain reaction amplification of SSR markers.  Genotypic analysis of 39 M. 88 

phaseolina isolates was performed using the 28 SSR primers reported by Arias et al. 89 

(2011): StvMPh_209a, StvMPh_213a, StvMPh_329a, StvMPh_415b, StvMPh_114a, 90 

StvMPh_146a, StvMPh_100a, StvMPh_102a, StvMPh_144a, StvMPh_162a, 91 

StvMPh_173a, StvMPh_190a, StvMPh_19b, StvMPh_20a, StvMPh_34a, StvMPh_132a, 92 

StvMPh_49a, StvMPh_63a, StvMPh_182a, StvMPh_197a, StvMPh_310a, StvMPh_461a, 93 

StvMPh_484a, StvMPh_562c, StvMPh_109b, StvMPh_116a, StvMPh_123a, and 94 

StvMPh_137a.  Primers labelled with 6-carboxy-fluorescein (FAM) (IDT Technologies, 95 

Coralville, IA) were used for amplification of 10 ng of fungal DNA using Titanium Taq 96 

DNA Polymerase (Clontech, Fremont, CA) in 5-µL reactions in a thermal cycler using the 97 

following amplification scheme: 95°C for 1 min, 60°C for 1 min (2 cycles), 95°C for 30 s, 98 

60°C for 30 s, 68°C for 30 s (27 cycles) and a final extension cycle at 68°C for 4 min.  99 

Fluorescently-labelled amplified PCR fragments were analyzed on an ABI 3730XL DNA 100 

Analyzer (Applied Biosystems, Foster City, CA). 101 

Genetic cluster analysis.  For SSR markers, amplicons were screened for length 102 

polymorphisms and transformed into binary data for each locus based on the presence (= 1) 103 

or absence (= 0) of alleles.  For each SSR marker, the number of amplified alleles, the size 104 

range (bp), the number of polymorphic alleles, and the polymorphism information content 105 

(PIC) were calculated (Milbourne et al. 1997).  In addition, Info-Gen software (Balzarini 106 

and Di Rienzo 2013) was used to estimate the percentage of polymorphism (band or locus), 107 

the average number of alleles per primer set or per locus, the effective number of alleles, 108 

and Nei’s genetic diversity (Nei 1973).  Cluster analysis of M. phaseolina isolates was 109 

performed using the Unweighted Pair-Group Method with Arithmetic Averages (UPGMA) 110 

with the SSR data in Info-Gen.  To evaluate the robustness of the diversity analysis and the 111 
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clusters formed, the binary data set was subjected to 1,000 bootstrapping replicates using 112 

the WINBOOT program (Yap and Nelson 1996), and confidence values higher than 50% 113 

were indicated (Highton 1993). 114 

Pathogenicity of M. phaseolina isolates in field conditions.  A field test to evaluate the 115 

pathogenicity of M. phaseolina isolates was conducted at the Capitán Miranda Research 116 

Center (CICM) within Instituto Paraguayo de Tecnología Agraria (IPTA), Capitán 117 

Miranda, Itapúa, Paraguay (27° 11' 59.92" S and 55° 47' 28.90" W).  The trial was planted 118 

by hand on 16 January 2013 with four soybean genotypes from different maturity groups 119 

(MG): DT 97-4290 and CRIA 4 (MG IV), DM 6.2i RR (MG VI) and Munasqa RR (MG 120 

VIII).  Soybean genotype DT 97-4290 was the moderately resistant control (Paris et al. 121 

2006) and DM 6.2i RR was the susceptible control.  The experimental design was a 122 

blocked split plot with three replicates, in which M. phaseolina isolates were assigned to 123 

the whole plots and soybean genotypes to the subplots, each of which consisted of four 1-m 124 

rows, spaced 0.5 m apart, and planted at a density of 23 seeds/m.  As inoculum, seven 125 

isolates of M. phaseolina (Mp15, Mp17 and Mp18 from Argentina, and Mp32, Mp37, 126 

Mp42 and Mp48 from Paraguay) (Table 1) were used to inoculate sterile millet, which was 127 

then incubated for 20 days at 30°C in darkness to stimulate the development of 128 

microsclerotia.  When soybean seeds were planted, 5 g of millet colonized with each isolate 129 

of M. phaseolina was applied by hand per linear meter.  At the R7 growth stage (Fehr et al. 130 

1971), disease severity was estimated on 10 plants per plot using the scale established by 131 

Paris et al. (2006): 1 = no discoloration and no microsclerotia visible; 2 = no discoloration 132 

of vascular tissue, with very few microsclerotia visible in the pith, vascular tissue or under 133 

the epidermis; 3 = partially discolored vascular tissue, with microsclerotia partially 134 

covering the tissue; 4 = discolored vascular tissue, with numerous microsclerotia visible in 135 
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the tissue under the outer epidermis, in stem and root sections; and 5 = vascular tissue with 136 

numerous microsclerotia producing a dark color inside and outside of the stem and root 137 

tissue.  In addition, CFU/g of tissue was determined on the same 10 plants, according to 138 

Mengistu et al. (2007).  Briefly, plant samples were obtained by cutting 10 cm above and 139 

below the soil line including root and stem tissue.  Three rinses with tap water were 140 

performed to remove traces of soil from the samples, which were then dried at room 141 

temperature and ground.  From each sample, 5 mg of ground tissue was placed in a test 142 

tube and disinfested with 5% (v/v) NaClO for 1 min, followed by three 1-min washes using 143 

sterile distilled water.  Subsequently, 5 mL of 60°C sterile PDA was added and samples 144 

were poured into sterile Petri dishes.  Total CFU was quantified after incubation at 28°C for 145 

3-5 days, and expressed as CFU per gram of dry tissue, CFU/g.  Disease severity at R7 146 

(log-transformed) and CFU/g (square root-transformed) were analyzed by generalized 147 

linear mixed models followed by mean comparison (LSD, P = 0.05) with InfoStat software 148 

(Di Rienzo et al. 2011).   149 

In vitro method of soybean root infection with M. phaseolina.  Soybean seeds were 150 

disinfested with 5% (v/v) NaClO for 1 min, followed by 70% (v/v) ethanol for 30 s and 151 

three 1-min rinses with sterile distilled water.  Disinfected seeds were placed in a Petri dish 152 

containing a layer of sterile filter paper, to which 15 mL of sterile distilled water was 153 

added.  Seeds were incubated for 48 h at 28°C in darkness in order to induce germination.  154 

Next, five healthy germinated seeds were placed in a sterilized glass flasks (15 cm high and 155 

10 cm diameter) containing a 3 cm layer of cotton and filter paper and 50 mL of sterile 156 

distilled water.  Three toothpick pieces (2 cm long) colonized with a M. phaseolina isolate 157 

derived from a single microsclerotium were added to each flask in a sterile flow chamber.  158 
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The flasks containing the germinated and inoculated soybean seeds were kept in a growth 159 

chamber under a 16-h light (600 µE m-2s-1)/8-h dark regime and a temperature of 30°C.  160 

The in vitro infection method was conducted at the Plant Physiology Laboratory of 161 

the Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad 162 

Nacional de Rosario (UNR) and Consejo Nacional de Investigaciones Científicas y 163 

Tecnológicas (CONICET), located in Zavalla, Santa Fe, Argentina.  The root infection 164 

severity of four soybean cultivars: DT 97-4290 and CRIA 4 (MG IV), DM 6.2i RR (MG 165 

VI) and Munasqa RR (MG VIII) was tested with seven single-microsclerotium isolates of 166 

M. phaseolina (Mp15, Mp17, Mp18, Mp32, Mp37, Mp42 and Mp48) (Table 1).  Root 167 

disease severity was evaluated every 48 h for 12 days; to do this, images were acquired 168 

with a digital camera (Nikon D50) and the length of necrosis in the root system was 169 

measured for each seedling with an image processing program (ImageJ; NIH, Bethesda, 170 

MD).  Disease severity values were expressed as a percentage of necrosis of the root 171 

system. 172 

The experimental design was a randomized complete block with three replicates, and 173 

was repeated twice.  Each replication consisted of three flasks, each containing five 174 

germinated seeds.  Two flasks contained the germinated seeds inoculated with M. 175 

phaseolina (10 experimental units) and the control sample flask contained the non-176 

inoculated germinated seeds (5 experimental units).  The area under the disease progress 177 

curve (AUDPC) was calculated based on disease severity data (Madden et al. 2007) and 178 

analyzed by generalized linear mixed models followed by mean comparison (LSD, P = 179 

0.05) with InfoStat software (Di Rienzo et al. 2011).  To determine the predictive ability of 180 

the in vitro assay, Spearman´s rank correlation coefficients were calculated between in vitro 181 
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AUDPC value and field disease severity or field CFU/g values using InfoStat software (Di 182 

Rienzo et al. 2011). 183 

 184 

RESULTS 185 

Genetic relationships among M. phaseolina isolates.  For each SSR marker, information 186 

on the number of amplified alleles (1 to 14), the size range (bp) (91 to 270 bp), the number 187 

of polymorphic alleles (0 to 14) and PIC (-0.710 to 0.841) are presented in Table 2.  When 188 

the 39 M. phaseolina isolates were genotypically analyzed with 28 SSR markers, a total of 189 

213 amplicons were obtained, of which 155 (72.8%) were polymorphic.  The value of Nei´s 190 

genetic diversity obtained was 0.13.  191 

A single-linkage dendrogram was obtained from the SSR markers data.  Genetic 192 

relationships among isolates were determined by the Jaccard’s similarity coefficient (Fig. 193 

2).  The cluster analysis showed that isolate Mp18 from Argentina was clearly 194 

differentiated from the rest of the isolates at a genetic distance of 0.90.  The rest of the 195 

isolates were separated into two major clusters with a 0.80 dissimilarity value.  Cluster I 196 

harbored the majority of M. phaseolina isolates, including all isolates from Paraguay and 197 

11 from Argentina, whereas cluster II included 10 M. phaseolina isolates from Argentina 198 

(Fig. 2), seven from the NW and the remaining three (Mp06, Mp08 and Mp12) from the 199 

central region of the country (Table 1 and Fig. 1). 200 

Pathogenicity of M. phaseolina isolates in field conditions.  Seven isolates of M. 201 

phaseolina from the collection (Table 1) were selected for the pathogenicity tests.  These 202 

isolates originated from both countries (Mp15, Mp17 and Mp18 from Argentina and Mp32, 203 

Mp37, Mp42 and Mp48 from Paraguay) and belonged to the two main clusters in the 204 

dendrogram, except for isolate Mp18 from Argentina, which, as stated above, was 205 
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differentiated from the rest of the isolates (Fig. 2).  In addition, the selected isolates showed 206 

differences in cultural and growth characteristics (data not shown). 207 

When the seven isolates of M. phaseolina were inoculated on the four soybean 208 

genotypes in field conditions, no significant differences in aggressiveness were observed 209 

among isolates considering the results of disease severity and CFU/g, for each one as an 210 

average in the four soybean genotypes (Table 3).  Disease severity values ranged from 1.9 211 

to 2.2 (P = 0.6203) and CFU/g values ranged from 233.3 to 611.6 (P = 0.5015).  However, 212 

when the effect of the soybean genotypes were tested and the disease reaction of each of the 213 

four genotypes (DM 6.2i RR, CRIA 4, DT 97-4290, and Munasqa RR) was considered as 214 

an average against the seven M. phaseolina isolates, significant differences were found in 215 

disease severity (P = 0.0001) and also in CFU/g values (P = 0.0001) (Table 3).  216 

Additionally, the analysis of the soybean genotype x M. phaseolina isolate 217 

interactions showed significant effects for both disease severity (P = 0.0277) and CFU/g (P 218 

= 0.0025) (Table 3).  As shown in Fig. 3A, contrasting responses were detected in field 219 

conditions when the specific interactions between each soybean cultivar inoculated with the 220 

different isolates of the pathogen were analyzed in detail.  The lowest value of CFU/g was 221 

obtained in the Munasqa RR x Mp15 combination (33.3), whereas the highest value of 222 

CFU/g was obtained in the DM6.2i RR x Mp48 combination (2,366.7) (Fig. 3A). 223 

Since the significance of the soybean cultivar x M. phaseolina isolate interaction for 224 

disease severity in field conditions was relatively marginal (P = 0.0277), the main effects of 225 

the cultivars were analyzed (Table 4).  Munasqa RR displayed the highest level of 226 

resistance among the four genotypes evaluated, although it was not significantly different in 227 

disease severity values from DT 97-4290, which was classified as moderately resistant.  228 
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Both genotypes showed the lowest values of disease severity and differed from CRIA 4 and 229 

DM 6.2i RR (P = 0.0001).  However, DM 6.2i RR was the most susceptible to M. 230 

phaseolina and was significantly different from CRIA 4 that was classified as moderately 231 

susceptible (Table 4).   232 

Pathogenicity of M. phaseolina isolates in vitro.  Initially, the in vitro root infection assay 233 

was optimized with isolate Mp17, and reproducible results were obtained after a 2-week 234 

incubation period.  At day 2 post inoculation (dpi), no symptoms of necrosis on the radicle 235 

of either resistant or susceptible genotypes were observed (Fig. 4).  At 5 dpi, initial 236 

symptoms of necrosis were observed in 60% of the germinated seeds of the susceptible 237 

genotype DM 6.2i RR, whereas in 40% of the initially germinated seeds the germination 238 

process was arrested, compared with the uninfected germinated seeds control.  At 9 dpi, all 239 

seedlings of the two susceptible genotypes (DM 6.2i RR and CRIA 4) showed symptoms of 240 

necrosis on the root system, whereas the moderately resistant genotype DT 97-4290 241 

presented initial symptoms of necrosis in 60% of the seedlings.  It is interesting to note that 242 

none of the Munasqa RR seedlings showed signs of necrosis in the root system, 243 

demonstrating that also in controlled conditions this genotype displayed the highest level of 244 

resistance.  At 12 dpi, clear and reproducible differences were observed between the 245 

susceptible genotypes and the moderately resistant genotype DT 97-4290 when compared 246 

with Munasqa RR inoculated with Mp17 isolate (Fig. 4).  Disease severity, measured as a 247 

percentage of necrosis on the root system, was evaluated every 48 h during 12 dpi, allowing 248 

the disease progress to be determined in each interaction.   249 

By applying the in vitro phenotyping method previously described, the root disease 250 

severity of the same four soybean genotypes (Munasqa RR, DT 97-4290, CRIA 4 and DM 251 

6.2i RR) previously inoculated in field conditions with seven isolates of M. phaseolina 252 
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(Mp15, Mp17, Mp18, Mp32, Mp37, Mp42, and Mp48) was monitored in controlled 253 

conditions.  The results obtained in the pathogenicity test are summarized in Table 3 and in 254 

Figs. 3B and 5.  Statistical differences were found in the specific interactions among the 255 

four soybean genotypes and the seven M. phaseolina isolates, evaluated in controlled 256 

conditions (P = 0.0004), in accordance with the field trial (Table 3).  As shown in Fig. 3B, 257 

contrasting responses among the soybean cultivar were also detected in controlled 258 

conditions when inoculated with the different isolates of the pathogen.  Again, Munasqa 259 

RR showed the highest level of resistance among the four genotypes evaluated, displaying 260 

the lowest values of AUDPC against all the inoculated isolates (Fig. 3B).  In controlled 261 

conditions, the lowest value of AUDPC was obtained in the Munasqa RR x Mp17 262 

combination (4.2), whereas the highest value was obtained in the DM6.2i RR x Mp37 263 

combination (233.3) (Fig. 3B).  The contrasting phenotypes observed in some 264 

representative specific interactions by applying the in vitro root infection method are shown 265 

in Fig. 5.  Indeed, the in vitro assay data (AUDPC) correlated with the square root-266 

transformed CFU/g field data with a Spearman´s rank correlation coefficient value of 0.62, 267 

P = 0.0004 (Fig. 6A).  In addition, the AUDPC data obtained in controlled conditions 268 

correlated with the ln-transformed severity field data with a rank correlation coefficient of 269 

0.59, P = 0.0009 (Fig. 6B), validating the in vitro phenotyping method developed and 270 

presented in this work.  271 

272 
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DISCUSSION 273 

In this study, the genetic diversity in a collection of 39 isolates of M. phaseolina, an 274 

important fungal pathogen that seriously affects soybean crops worldwide, was analyzed.  275 

Previous genetic studies using molecular markers and subsequent cluster analysis showed a 276 

high degree of global genetic diversity among isolates of this pathogen (Arias et al. 2011; 277 

Muñoz-Cabañas et al. 2005).  Our cluster analysis based on 28 SSR markers revealed two 278 

distinct genetic groups and one ungrouped isolate, Mp18, at a genetic distance threshold of 279 

0.80 in the dendrogram.  Nevertheless, all the isolates from different geographical origin 280 

and year of collection had a unique and monomorphic allele for SSR marker StvMPh_162a, 281 

which has a significant sequence homology to an endoglucanase or a cellulase gene (E-282 

value: 2 × 10-40) (Arias et al. 2011).  Further studies are needed to confirm whether isolate 283 

Mp18 might belong to another species, such as the novel species Macrophomina 284 

pseudophaseolina, reported in Senegal (Sarr et al. 2014).  285 

Our results suggest a certain degree of genetic association between geographical 286 

region and isolates, which could be explained by the movement of infected seed throughout 287 

the different soybean-producing regions included in this study.  In this sense, all the M. 288 

phaseolina isolates from Paraguay grouped together in cluster I but the isolates from 289 

Argentina were separated in both clusters.  No clear associations were observed between 290 

the year of collection and the SSR profiles.  Previously, genetic association among isolates 291 

from the same geographical region, where two groups with different genetic profiles and 292 

pathogenicity had been isolated from two different geographical regions, was reported from 293 

México (Mayék-Pérez et al. 2001).  In contrast, other studies have found only a very low 294 
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association between the genetic profile and geographical origin of M. phaseolina isolates 295 

(Baird et al. 2010; Baird et al. 2009; Muñoz-Cabañas et al. 2005).   296 

In the pathogenicity assays in field conditions, disease variables were first analyzed 297 

for each inoculated isolate averaging the data obtained interacting with the four tested 298 

soybean genotypes.  No significant differences in aggressiveness were observed between 299 

the isolates from Paraguay and Argentina.  However, when the results obtained in the same 300 

field assay were analyzed for each soybean genotype tested averaging the data obtained 301 

interacting with the seven inoculated M. phaseolina isolates, significant differences were 302 

observed.  The results obtained in the present study demonstrated that the local elite 303 

genotype Munasqa RR exhibited lower values of the disease parameters than the 304 

moderately resistant DT 97-4290 in field conditions.  Furthermore, specific interactions 305 

among the four soybean genotypes and the seven M. phaseolina isolates evaluated in field 306 

conditions were found. 307 

The use of resistant soybean germplasm is the most effective strategy for charcoal rot 308 

management (Mengistu et al. 2013b; Romero-Luna et al. 2017).  However, although new 309 

sources of genetic resistance need to be identified, very few genotypes were accurately 310 

characterized as resistant to M. phaseolina in both field and controlled conditions.  311 

Previously, the plant introduction genotypes PI594302, PI567562A, PI506764 and 312 

PI567334 were reported as markedly more resistant to M. phaseolina infection in field 313 

conditions than DT 97-4290, the first genotype described by Paris et al. (2006) as 314 

moderately resistant (Mengistu et al. 2013a).  Later, three other genotypes, PI548302, 315 

PI548414 and PI548178, were also characterized as more resistant against M. phaseolina 316 

than DT97-4290, using a cut-stem inoculation technique in semi-controlled greenhouse 317 
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conditions (Pawlowski et al., 2015). However, it is important to note that none of these 318 

genotypes is a commercial cultivar with good agronomic traits.  319 

Consequently, in order to corroborate the best performance of the local elite cultivar 320 

Munasqa RR and to evaluate the specific interactions observed in the field trial, an 321 

improved method for phenotyping the disease response in controlled conditions was 322 

developed.  The new in vitro method proved to be an effective and reliable technique to 323 

assess the disease reaction of multiple soybean genotypes against several M. phaseolina 324 

isolates.  It is also simple to perform; inexpensive since does not require culture medium, 325 

reproducible, and quick, since the whole process takes no longer than 2 weeks (inoculation 326 

of 2-day germinated soybean seeds and evaluation after 12 days).  In this context, Bressano 327 

et al. (2010) used an in vitro method to evaluate the M. phaseolina infection process in 328 

soybean seedlings (in growth stage V1) by using culture medium and Petri dishes.  329 

However, this approach has not been used to evaluate the response of different soybean 330 

genotypes to charcoal rot.  In addition, the in vitro method developed in this work allows 331 

quantifying the progress of the disease without damaging the infected tissue (non-332 

destructive).  Furthermore, it is considerably faster than the cut-stem inoculation technique 333 

described previously (Twizeyimana et al. 2012), in which each cycle of evaluation takes 334 

about 8 weeks, not to mention the field evaluation, which requires a full crop season to 335 

complete the process (Mengistu et al. 2013b).  Moreover, this approach can be used to 336 

screen a large number of soybean genotypes, searching for alternative sources of genetic 337 

resistance to charcoal rot.  Most importantly, environmental variation, which can contribute 338 

to inconsistent results between field tests (Mengistu et al. 2013b), can be controlled by 339 

using this in vitro approach in growth chambers, further reducing experimental error and 340 

improving reliability in the evaluation of resistance to M. phaseolina.  It is noted that, the 341 
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results obtained by this method in controlled conditions were correlated with those obtained 342 

in field conditions.  Finally, this in vitro infection method evaluates necrosis on the root 343 

system, the natural tissue infected by M. phaseolina, a soilborne pathogen.  Other methods 344 

previously described infect leaf (Mayék-Pérez et al. 2001) or stem (Twizeyimana et al. 345 

2012) tissues.  Consequently, the method presented here should be useful to perform more 346 

advanced studies, like transcriptomic and metabolomics analysis, of this specific plant-347 

pathogen interaction. 348 

In addition to characterizing a novel soybean genotype resistant to charcoal rot 349 

(Munasqa RR) and specific interactions between soybean genotypes and different M. 350 

phaseolina isolates in field conditions; these specific interactions were also observed and 351 

analyzed in controlled conditions.  Except for Munasqa RR which showed significantly 352 

lower levels of disease response with most of the isolates, the other three analyzed 353 

genotypes developed contrasting responses to the different isolates (Fig. 3B).  Moreover, 354 

crossed specific interactions were observed among DT97-4290 and CRIA4 genotypes with 355 

isolates Mp15 and Mp17 (Fig. 3B).  On the other hand, isolate Mp37, which showed the 356 

same disease response when interacting with DT97-4290 and CRIA4, was also the most 357 

aggressive on DM 6.2i RR while was one of the least aggressive on Munasqa RR (Fig.3B). 358 

In addition, although isolate Mp17 was the least aggressive on all genotypes when 359 

compared with the other isolates, it showed different degrees of aggressiveness in the 360 

genotypes tested, being significantly more aggressive when interacting with DM 6.2i RR 361 

than when interacting with Munasqa RR.  362 

Macrophomina phaseolina is a polyphagous pathogen and there is currently no 363 

evidence of host specificity (Gupta et al. 2012).  The in vitro infection method revealed 364 

significant differences in AUDPC values between the M. phaseolina isolates when 365 
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interacting with the same soybean genotype.  Also, these results showed that M. phaseolina 366 

isolates from Paraguay were more aggressive than the ones collected in Argentina, in 367 

controlled conditions.  In addition, it was demonstrated that the cultivar Munasqa RR 368 

showed a better response against all the M. phaseolina isolates tested than DT 97-4290 369 

(moderately resistant), as previously shown in the field trial, thus rendering the results 370 

obtained by this method more robust.  371 

Based on our results, we suggest the existence of specific interactions between 372 

soybean genotypes and M. phaseolina genotypes in field and controlled conditions, a result 373 

which had not been demonstrated empirically before.  These specific interactions between 374 

soybean elite cultivars and the local genotypes of the pathogen should be considered when 375 

developing improved charcoal rot management programs.  Other studies have previously 376 

recommended that soybean genotypes in general adapted to a particular region should be 377 

tested with local isolates when screening genotypes resistant to charcoal rot (Sexton et al. 378 

2016).  379 

In conclusion, a better understanding of the genetic and pathogenic diversity and the 380 

specific interactions between soybean genotypes and M. phaseolina isolates will be useful 381 

to develop new technologies that would favor the sustainability of this crop.  The present 382 

results indicate that the local elite cultivar Munasqa RR has the best performance against 383 

the seven M. phaseolina isolates tested, not only local ones, but also those from Paraguay, 384 

in both field and controlled conditions.  Resistance levels in Munasqa RR were even higher 385 

than in the moderately resistant genotype DT 97-4290.  Therefore, Munasqa RR should be 386 

regarded as a new source of resistance, available to soybean breeders, a finding which will 387 

help in charcoal rot management in northwestern Argentina and in other soybean-producing 388 

countries.  Furthermore, a new simple, reproducible and reliable method is now available to 389 
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rapidly screen the disease response of soybean genotypes to M. phaseolina infection in 390 

controlled conditions and would be useful for other studies aims to understand this complex 391 

plant-pathogen interaction.  Finally, we demonstrated the existence of specific interactions 392 

between soybean and M. phaseolina genotypes. 393 
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 518 

CAPTIONS 519 

Fig. 1.  Location of the sampling regions of the 39 Macrophomina phaseolina isolates 520 

during 2008, 2009, 2010 and 2013 cropping seasons in Argentina and Paraguay.  521 

Fig. 2.  Genotypic diversity analysis of 39 Macrophomina phaseolina isolates from 522 

Argentina (ARG) and Paraguay (PY).  Dendrogram constructed using the unweighted pair-523 

group method using arithmetic averages of Jaccard´s similarity coefficient and 28 SSR 524 

marker profiles.  Numbers at the node for each cluster represent the bootstrap values (> 50) 525 

obtained from 1,000 replicates.  Boxed text indicates the M. phaseolina isolates used in the 526 

pathogenicity assays. 527 

Fig. 3.  Evaluation of disease response of four soybean genotypes (DM 6i RR, CRIA 4, DT 528 

97-4290 and Munasqa RR) against seven Macrophomina phaseolina isolates (Mp15, 529 

Mp17, Mp18, Mp32, Mp37, Mp42 and Mp48).  A, Soybean – M. phaseolina interactions in 530 
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field conditions in Capitán Miranda, Itapúa, Paraguay in the 2013 cropping season.  Disease 531 

response presented as colony-forming units of the pathogen per gram of root tissue 532 

(CFU/g).  B, Soybean – M. phaseolina interactions in controlled conditions using the in 533 

vitro phenotyping method on germinated seeds.  Disease response presented as area under 534 

the disease progress curve (AUDPC) during the 12 days post-inoculation period.  (*) 535 

Means followed by the same letters are not significantly different (P < 0.05) from each 536 

other based on two-way mixed model analysis of variance followed by means separation 537 

(LSD).  538 

Fig. 4.  Progress of symptoms on four soybean genotypes inoculated with isolate Mp17 of 539 

Macrophomina phaseolina.  The artificial inoculation was made on 2-day germinated seeds 540 

in controlled conditions.  Disease development was measured as percentage of necrosis on 541 

the root system of the seedlings, and its progress recorded every 48 h for 12 days post-542 

inoculation (dpi).  543 

Fig. 5.  Differential disease response of four soybean genotypes interacting with four 544 

representative Macrophomina phaseolina (Mp) isolates in controlled conditions at 12 days 545 

post-inoculation (dpi).  For each soybean genotype - M. phaseolina isolate interaction, one 546 

representative flask with five inoculated individuals is shown.   547 

Fig. 6.  Scatter plot showing the relationship between the area under the disease progress 548 

curve (AUDPC) data obtained for each combination of soybean genotypes and 549 

Macrophomina phaseolina isolates in controlled conditions, and A, the square root-550 

transformed colony-forming units per gram of root (CFU/g) and B, ln-transformed disease 551 

severity data from the field trial. 552 

 553 
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Table headers: 554 

TABLE 1.  Isolates of Macrophomina phaseolina from Argentina and Paraguay 555 

characterized in this study. 556 

TABLE 2.  Summary of genotyping results of 39 isolates of Macrophomina phaseolina 557 

from Argentina and Paraguay using 28 single sequence repeats (SSR) markers. 558 

 559 

TABLE 3.  Results of mixed-model analyses of variance to determine the main effects and 560 

interactions of soybean cultivar and Macrophomina phaseolina (Mp) isolate on colony-561 

forming units per gram of tissue (CFU/g) and disease severity data obtained in the field and 562 

on area under the disease progress curve (AUDPC) obtained in the in vitro assay. 563 

 564 

Footnote: 565 

a Field conditions in Capitán Miranda, Itapúa, Paraguay, during the 2013 growing season. 566 

b Disease severity at R7 stage. 567 

*Data of CFU/g were transformed to √x and data of disease severity to ln(x) before the 568 

statistical analysis (LSD, P = 0.05). 569 

 570 

TABLE 4.  Assessment of averaged disease response of four soybean genotypes inoculated 571 

with seven Macrophomina phaseolina isolates in field conditions in Capitán Miranda, 572 

Itapúa, Paraguay during the 2013 cropping season. 573 

 574 

Footnote: 575 
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a Resistance according to Paris et al. (2006). S: susceptible, MS: moderately susceptible, 576 

MR: moderately resistant. 577 

b The severity of the disease at R7 stage is the average for each genotype inoculated with 578 

each of the seven evaluated isolates of M. phaseolina (Mp15, Mp17, Mp18, Mp32, Mp37, 579 

Mp42 and Mp48). 580 

*Statistically significant differences (LSD, P ≤ 0.05) in each column are shown in different 581 

capital letters. Data of disease severity were transformed to ln(x) before the statistical 582 

analysis.  583 
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TABLE 1.  Isolates of Macrophomina phaseolina from Argentina and Paraguay characterized in 
this study.

b Provinces of Argentina and districts of Paraguay, respectively. 
Boxed text indicates the M. phaseolina isolates tested in the pathogenicity assays. 

Isolate Locality Municipalityb Coordinates Country Year

Mp01 San Agustín Tucumán 26°49'24.2"S 64°51'00.9"W Argentina 2008

Mp02 San Agustín Tucumán 26°49'30.1"S 64°51'00.5"W Argentina 2008

Mp03 San Agustín Tucumán 26°49'33.6"S 64°51'09.0"W Argentina 2008

Mp05 San Agustín Tucumán 26°49'36.6"S 64°51'01.8"W Argentina 2009

Mp06 Reconquista Santa Fe 29°12'36.9"S 59°56'23.6"W Argentina 2009

Mp07 San Agustín Tucumán 26°49'22.8"S 64°51'36.2"W Argentina 2009

Mp08 Tres Arroyos Buenos Aires 38°22'38.6"S 60°20'24.5"W Argentina 2009

Mp10 Arenales Santiago del Estero 26°41'37.1"S 64°30'47.9"W Argentina 2009

Mp12 Juan N. Fernández Buenos Aires 37°59'34.6"S 59°15'39.7"W Argentina 2009

Mp13 Santa Teresita Tucumán 26°40'20.0"S 64°30'46.7"W Argentina 2010

Mp14 Piedra Buena Tucumán 26°44'15.1"S 64°39'26.6"W Argentina 2010

Mp15 San Agustín Tucumán 26°49'15.1"S 64°51'33.8"W Argentina 2010

Mp16 San Agustín Tucumán 26°49'41.9"S 64°51'31.4"W Argentina 2010

Mp17 Piedra Buena Tucumán 26°44'05.6"S 64°40'19.4"W Argentina 2010

Mp18 San Agustín Tucumán 26°49'24.5"S 64°51'06.3"W Argentina 2010

Mp19 Arenales Santiago del Estero 26°41'35.3"S 64°31'41.5"W Argentina 2010

Mp20 Arenales Santiago del Estero 26°41'20.2"S 64°33'02.8"W Argentina 2010

Mp23 Arenales Santiago del Estero 26°40'52.1"S 64°32'06.6"W Argentina 2010

Mp24 El Palomar Santiago del Estero 26°51'06.9"S 64°42'23.7"W Argentina 2010

Mp25 Piedra Blanca Tucumán 26°43'39.2"S 64°47'44.1"W Argentina 2010

Mp26 Piedra Blanca Tucumán 26°44'02.5"S 64°47'12.0"W Argentina 2010

Mp27 San Agustín Tucumán 26°49'54.3"S 64°51'29.8"W Argentina 2010

Mp32 Chore Chore 24°10'24.7"S 56°34'47.1"W Paraguay 2013

Mp33 Chore Chore 24°11'39.9"S 56°34'54.1"W Paraguay 2013

Mp34 Chore Chore 24°11'17.3"S 56°37'05.4"W Paraguay 2013

Mp35 Chore Chore 24°11'38.6"S 56°37'45.9"W Paraguay 2013

Mp36 Chore Chore 24°11'41.3"S 56°34'16.6"W Paraguay 2013

Mp37 Capitán Miranda Capitán Miranda 27°13'04.1"S 55°46'49.2"W Paraguay 2013

Mp39 Capitán Miranda Capitán Miranda 27°13'01.4"S 55°46'21.6"W Paraguay 2013

Mp40 Yhovy Yhovy 24°17'52.0"S 54°58'47.9"W Paraguay 2013

Mp41 Yhovy Yhovy 24°17'47.7"S 54°58'57.7"W Paraguay 2013

Mp42 Yhovy Yhovy 24°18'02.7"S 55°00'15.1"W Paraguay 2013

Mp43 Yhovy Yhovy 24°17'52.4"S 55°00'10.1"W Paraguay 2013

Mp44 Yhovy Yhovy 24°18'22.9"S 55°00'05.5"W Paraguay 2013

Mp45 San Juan Bautista San Juan Bautista 26°40'14.7"S 57°07'24.8"W Paraguay 2013

Mp46 San Juan Bautista San Juan Bautista 26°39'43.3"S 57°07'18.9"W Paraguay 2013

Mp47 San Juan Bautista San Juan Bautista 26°40'22.6"S 57°09'58.2"W Paraguay 2013

Mp48 San Juan Bautista San Juan Bautista 26°40'52.0"S 57°05'45.7"W Paraguay 2013

Mp49 San Juan Bautista San Juan Bautista 26°40'47.2"S 57°06'02.6"W Paraguay 2013
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TABLE 2.  Summary of  genotyping results  of  39  isolates  of  Macrophomina phaseolina from
Argentina and Paraguay using 28 single sequences repeats (SSR) markers. 

               * Polymorphism information content for each SSR

Locus N° Alleles
Size range

(bp)
N° polymorphic

alleles
PIC*

StvMPh_209a 5 162-176 5 0.7
StvMPh_213a 6 137-166 6 0.5
StvMPh_329a 9 96-181 9 0.7
StvMPh_415b 4 164-235 4 0.2
StvMPh_114a 7 168-203 7 0.7
StvMPh_146a 4 91-120 4 0.5
StvMPh_100a 2 174-176 2 -0.7
StvMPh_102a 3 179-183 3 0.6
StvMPh_144a 14 147-219 14 0.6
StvMPh_162a 1 129 0 0.0
StvMPh_173a 6 122-157 6 0.8
StvMPh_190a 5 136-169 5 0.5
StvMPh_19b 5 172-185 5 0.5
StvMPh_20a 3 165-173 3 0.4
StvMPh_34a 4 169-185 4 0.4
StvMPh_132a 10 120-166 10 0.7
StvMPh_49a 7 117-190 7 0.8
StvMPh_63a 5 159-178 5 0.2
StvMPh_182a 7 102-122 7 0.7
StvMPh_197a 5 133-142 5 0.7
StvMPh_310a 4 165-173 4 0.6
StvMPh_461a 6 99-173 6 0.7
StvMPh_484a 13 124-270 13 0.8
StvMPh_562c 5 116-184 5 0.7
StvMPh_109b 3 133-169 3 0.1
StvMPh_116a 7 103-138 7 0.5
StvMPh_123a 3 159-164 3 0.4
StvMPh_137a 3 172-176 3 0.5
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TABLE  3.  Results  of  mixed-model  analyses  of  variance  to  determine  the  main  effects  and
interactions  of  soybean cultivar  and  Macrophomina phaseolina (Mp) isolate  on colony-forming
units per gram of tissue (CFU/g) and disease severity in the field and on area under the disease
progress curve (AUDPC) in the in vitro assay.

Source
Field testa [CFU/g] Field test [disease severity]b In vitro assay [AUDPC]

df F P* df F P df F P
Main effects:
Cultivar 3 60.82 <0.0001 3 74.01 <0.0001 3 84.79 <0.0001
Mp Isolate 6 0.94 0.5015 6 0.75 0.6203 6 26.96 <0.0001
Interactions:
Cultivar X Mp isolate 18 2.40 0.0025 18 1.77 0.0277 18 3.23 0.0004

a Field conditions in Capitán Miranda, Itapúa, Paraguay, during the 2013 growing season.
b Disease severity at R7 stage. 
*Data of CFU/g were transformed to √x and data of disease severity to ln(x) before the statistical analysis 
(LSD, P = 0.05).
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TABLE 4.  Assessment of averaged disease response of four soybean genotypes inoculated with
seven Macrophomina phaseolina isolates independently and in field conditions in Capitán Miranda,
Itapúa, Paraguay during the 2013 growing season. 

Genotype
Resistance
reaction a

Severity 
at R7 b

DM 6.2i RR S   3.1 A*

CRIA 4 MS 2.5 B

DT 97-4290 MR 1.6 C

Munasqa RR MR 1.4 C

P = <0.0001

a Resistance according to Paris et al. (2006).  S: susceptible, MS: moderately susceptible, MR: moderately resistant. 
b The severity of the disease at R7 stage is the average for each genotype inoculated with each of the seven evaluated
isolates of M. phaseolina (Mp15, Mp17, Mp18, Mp32, Mp37, Mp42 and Mp48).  
*Statistically significant differences (LSD, P ≤ 0.05) in each column are shown in different capital letters.  
Data of disease severity were transformed to ln(x) before the statistical analysis. 
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Fig. 1.  Location of the sampling regions of the 39 Macrophomina phaseolina isolates during 2008, 2009, 
2010 and 2013 cropping seasons in Argentina and Paraguay.  
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Fig. 2.  Genotypic diversity analysis of 39 Macrophomina phaseolina isolates from Argentina (ARG) and 
Paraguay (PY).  Dendrogram constructed using the unweighted pair-group method using arithmetic 

averages of Jaccard´s similarity coefficient and 28 SSR markers profiles.  Numbers at the node for each 
cluster represent the bootstrap values (> 50) obtained from 1,000 replicates.  Boxed text indicates the M. 

phaseolina isolates used in the pathogenicity assays.  
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Fig. 3.  Evaluation of disease response of four soybean genotypes (DM 6i RR, CRIA 4, DT 97-4290 and 
Munasqa RR) against seven Macrophomina phaseolina isolates (Mp15, Mp17, Mp18, Mp32, Mp37, Mp42 and 
Mp48).  A, Soybean – M. phaseolina interactions in field conditions in Capitán Miranda, Itapúa, Paraguay in 
the 2013 cropping season.  Disease response presented as colony-forming units of the pathogen per gram of 

root tissue (CFU/g).  B, Soybean – M. phaseolina interactions in controlled conditions using the in vitro 
phenotyping method on germinated seeds.  Disease response presented as area under the disease progress 
curve (AUDPC) during the 12 days post-inoculation period.  (*) Means followed by the same letters are not 

significantly different (P < 0.05) from each other based on two-way mixed model analysis of variance 
followed by means separation (LSD).  
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Fig. 4.  Progress of symptoms on four soybean genotypes inoculated with isolate Mp17 of Macrophomina 
phaseolina.  The artificial inoculation was made on 2-day germinated seeds in controlled conditions.  Disease 
development was measured as percentage of necrosis on the root system of the seedlings, and its progress 

recorded every 48 h for 12 days post-inoculation (dpi).  
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Fig. 5.  Differential disease response of four soybean genotypes interacting with four representative 
Macrophomina phaseolina (Mp) isolates in controlled conditions at 12 days post-inoculation (dpi).  For each 

soybean genotype - M. phaseolina isolate interaction, one representative flask with five inoculated 

individuals is shown.    
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Fig. 6.  Scatter plot showing the relationship between the area under the disease progress curve (AUDPC) 
data obtained for each combination of soybean genotypes and Macrophomina phaseolina isolates in 

controlled conditions, and A, the square root-transformed colony-forming units per gram of root (CFU/g) and 

B, ln-transformed disease severity data from the field trial.  
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