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Highlights 

o A comparative study of two electrophysiological methods was made. 

o The morphology of the evoked CAPs was analyzed by using an empirical model, which 

allowed: 

o Establishing anatomical/functional relations, 

o Highlights the most relevant features of nerve conduction in myelinated fibers, 

o Improve the interpretations of the results obtained from each methodological 

approach,  

o Establish alternative hypotheses and,  

o Make inferences about the global functional aspects of the system, 

o Functional characterizations were made according to the stimuli directions by using different 

processing techniques. 

 

 

Abstract  

Background. Physiological studies of sensorial systems often require the acquisition and processing of 

data extracted from their multiple components to evaluate how the neural information changes in relation 

to the environment changes. In this work, a comparative study about methodological aspects of two 

electrophysiological approaches is described. 

New Method. Extracellular recordings from deep vibrissal nerves were obtained by using a customized 

microelectrode Utah array during passive mechanical stimulation of rat´s whiskers. These recordings 

were compared with those obtained with bipolar electrodes. We also propose here a simplified empirical 

model of the electrophysiological activity obtained from a bundle of myelinated nerve fibers.  
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Results. The peripheral activity of the vibrissal system was characterized through the temporal and 

spectral features obtained with both recording methods. The empirical model not only allows the 

correlation between anatomical structures and functional features, but also allows to predict changes in 

the CAPs morphology when the arrangement and the geometry of the electrodes changes.  

Comparison with Existing Method(s). This study compares two extracellular recording methods based 

on analysis techniques, empirical modeling and data processing of vibrissal sensory information. 

Conclusions. This comparative study reveals a close relationship between the electrophysiological 

techniques and the processing methods necessary to extract sensory information. This relationship is the 

result of maximizing the extraction of information from recordings of sensory activity. 

Keywords 

Extracellular recording, empirical modeling, bipolar electrodes, microelectrode array, data processing 

Introduction 

Nowadays, some studies in neuroscience involve different methodologies 

aimed at obtaining the greatest amount of information from the biological system and 

inferring about functional and global aspects of the system (Vertes and Stackman, 

2011).  However, in neurophysiology the interpretation of the results may not be easy 

in some cases and could lead to wrong conclusions. 

The study of peripheral nerves activity and the interpretation of recordings 

obtained from them require considerations about conduction velocity, sensory 

threshold, neuronal coding/decoding and the nerve fibers types and distribution, among 

others (Ruch, 1973). Emerging methodologies have been used efficiently for the same 

purpose, such as cellular and molecular methods, invasive and non-invasive imaging, 

optogenetic and others (Merighi and Carmignoto, 2002; Rangavajla et al, 2014; 

Mohanty and Lakshminarayananan, 2015). However, few times have the 

electrophysiological methods been overcome by more sophisticated methodologies due 

to their simplicity and versatility (Vogt, 2018). In the last few years, these methods 

have evolved and achieved a greater versatility and applicability in different areas of 

neuroscience. This has been possible due to technological improvements in spatial 

(miniaturization and integration) and temporal resolution of the electrodes. 

In this study, the methodological procedures of two electrophysiological 

techniques are compared and implemented to characterize functional aspects of the 

vibrissal system (Brecht et al, 1997; Krupa et al, 2001; Kleinfeld et al, 2006). They are 
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the classical bipolar extracellular recording (Albarracín et al, 2006) and the 

multichannel extracellular recording with a microelectrode array (MEA) (Branner and 

Normann, 2000).  

The classical approach used to characterize the vibrissal system of rodents 

consisted in evoking activity by passive stimulation at the different nuclei throughout 

the sensorial pathway. Several studies have addressed these issue extracting 

information from the different stages of the pathwaw: at the trigeminal ganglion 

(Zucker and Welker, 1969; Gibson and Welker, 1983; Lichtenstein et al, 1990; 

Shoykhet et al, 2000), the trigeminal nuclei (Gibson, 1987; Nicolelis et al, 1995), the 

thalamus (Simons and Carvell, 1989; Castro-Alamancos, 2002), and the somatosensory 

cortex (Kyriazi et al, 1994; Nicolelis et al, 1995; Ahissar et al, 2000). In general, these 

approaches contributed to posterior studies about neural coding in active touch. 

However, the study of this sensorial system at peripheral level represents a serious 

methodological challenge since a variety of responses are evoked when the whiskers 

are passively stimulated (Mitchinson et al, 2004; Kwegyir-Afful et al, 2008; Lotten and 

Azouz, 2011). 

In this paper, we also propose a simplified empirical model of the 

electrophysiological activity obtained from the infraorbital and vibrissal nerves. With 

this model implementation we aim not only to improve the interpretations of the results 

obtained from each methodological approach, but also to suggest alternative 

hypotheses and to make inferences about functional aspects of the system. 

Materials and methods 

Procedures 

The procedure for accessing to the infraorbital and vibrissal nerves, the 

electrodes placement and the extracellular recording methods are described below.  

Surgical procedure. Five Wistar adult male rats (300 g - 350 g) were used in 

this study. They were deeply anesthetized with urethane (1.5 g/Kg) and their 

temperature was maintained at 37° by a servo-controlled heating pad. Surgery 

consisted of exposing the infraorbital nerve. The zygomatic arch and the surrounding 

musculature from one side of the rat´s muzzle were removed in order to access the 
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nerve. We have used two recordings methods, the bipolar and the multielectrode ones, 

which are described below. 

Bipolar method. The deep vibrissal nerve innervating one vibrissal follicle 

(Gamma vibrissa) was identified with a dissecting microscope. Then, it was proximally 

transected. To make sure that the transacted nerve did not affect the functionality of the 

vibrissal nerve during our recording time, we tested the decrease in the afferent nerve 

activity throughout time (data not shown). We concluded that the activity starts 

decreasing 1 hour after the nerve was sectioned, so we never exceeded this time in our 

experiments. Then, a bipolar electrode (insulated silver wire, 0.2 mm diameter) was 

used to register the multifiber afferent discharge of the selected vibrissal nerve (Fig. 

1B). The electrodes as well as the nerves were immersed in a mineral oil bath during all 

the procedure. Nerve activity was registered and digitized at 20 kHz (sampling rate) by 

a Digidata 1322A (Axon Instruments). Movements of the Gamma whisker were 

monitored simultaneously by using a custom-made photoresistive sensor (Dürig et al, 

2009). 

Multielectrode method. A customized Utah Electrode Array, 6 x 6 

microneedles (400 μm spacing), covering a surface of 2 mm x 2 mm millimetres, was 

placed on the infraorbital nerve (Fig. 1A). The Utah array was connected to an MPA32I 

amplifier (Multichannel Systems, MCS) and the extracellular recordings were digitized 

with an MCS analog-to-digital board. The data were sampled at a frequency of 20 KHz 

and digitally filtered out (100-3000 Hz). 

All procedures described here were carried out in accordance with the 

recommendations of the Guide for the Care and Use of Laboratory Animals (National 

Research Council, NRC), the directive 2010/63/EU of the European Parliament and of 

the Council, the RD 53/2013 Spanish regulations on the protection of animals used for 

scientific purposes. In addition, they were approved by the Miguel Hernandez 

University Committee for Animal use in Laboratory. 

Electrophysiological recordings 

Afferent response was evoked by the application of controlled passive 

stimulations, which consisted of bending the whisker at different directions in the same 

plane (Fig. 1B).  
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Empirical modeling of electrophysiological activity 

A nerve impulse, Vm, is propagated along a myelinated axon with a conduction 

velocity, υ, which is directly proportional to the diameter of the fiber (Ruch, 1973). 

This wave propagation is done in a saltatory mode, that is, the nerve impulse 

propagates from one node to another without amplitude attenuation making it possible 

for Vm to be observed in each of the Ranvier nodes but at different times (Fig. 2A) 

(Goldman and Albus, 1968). Then, a single fiber action potential (SFAP) can be 

observed through an extracellular electrode, e, placed near the fiber. SFAP is 

mathematically calculated by the following equation: 
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Where Λi is a weighting factor that depends on the longitudinal and transverse 

conductivity of the interstitium, as well as the distance between the i-th node and the 

electrode (Andreasen and Struijk, 2002). In eq. 2, xi is the distance from a 

predetermined origin at x = 0 to the i-th node, de is the distance from x = 0 to the 

extracellular electrode, d is the distance between the minimum and maximum 

attenuation of Vm (Fig. 2B). Λmax is the minimum attenuation factor and it is given in 

the longitudinal position where the distance between the i-th node and the electrode is 

minimal (xi position in Fig. 2B).  

In the proposed model, we have considered N myelinated fibers, so Λmax is a 

function of the perpendicular distance between the j-th fiber and the electrode. (dfj in 
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Where Θb is the diameter of the bundle of nerve fibers, and α is a constant 

related to the transverse conductivity of the interstitium. The eq. 3 is a straight line 

with negative slope and ordinate origin 1, i.e. Λmax = 1 for df = 0 (represents the case 

of a fiber contacting the electrode). Likewise, Λmax = 0, for df = Θb/α (corresponding 

to the farthest fiber activity). Then, for N fibers, the CAP is computed as follows: 


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21 ee CAPCAPCAP   (5) 

Where SFAPj is the potential generated by the j-th fiber and CAPe1 is the 

compound action potential recorded by the electrode e1 (Fig. 2C). Finally, the bipolar 

CAP is obtained with eq. 5. 

Digital processing 

Extracellular recordings were analyzed with several processing techniques 

according to the acquisition method. 

Amplitude estimation (Root Mean Square – RMS). In previous studies, the 

amplitude of the afferent activity, with bipolar recordings, was related to the level of 

the mechanoreceptors’ activation, so that higher RMS values would reveal a higher 

percentage of activation (Albarracín et al, 2006; Farfán et al, 2011). This is 

represented in this equation: 
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Where, xk is k-th sample of the signal. 

Time frequency analysis (spectrogram). A commonly used time-frequency 

representation is the short-time Fourier transform (Qian, 2002), defined as: 
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Where 
tf

ft ett   2*

, )()( . STFT analyses the signal x(t) through a 

short-time window )()()(   ttxt , and then a Fourier transform is performed 

on this product using complex exponential basis functions. The square modulus of 

STFT is referred to as the spectrogram (Zhan et al., 2006). 

   2
,, fSTFTfSPEC xx    (8) 

Thus, the spectrogram of each multifiber activity recording is calculated by 

using these parameters: Hamming window length (HWL) of 200 samples, an overlap 

between segments of 97.5% (195 samples), and FFT length of 200. The frequency 

resolution of the spectrogram results in 100 Hz (sampling rate/HWL). 

Event detection (CWT). When the whisker makes contact with a texture, or 

its movement changes because of passive stimulation, whisker motion signals report 

to the brain that the whiskers have been stimulated (Diamond et al. 2008). We have 

recently proposed that mechanical information about changes in the vibrissa position 

could be codified by electrophysiological events extracted from the corresponding 

vibrissal nerves (Farfán et al. 2013). 

In this work, the events in the multifiber recordings were detected by using an 

event detection algorithm based on multiscale decomposition of the signal 

(Continuous Wavelet Transform—CWT). Nenadic and Burdick (2005) proposed the 

algorithm, and its detection methodology consists of a combination of several 

techniques stemming from multiresolution wavelet decomposition, statistics, 

detection theory and estimation theory. Next, we present the five major steps of the 

algorithm. 

1. Multiscale decomposition of the signal using an appropriate wavelet basis.  
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A wavelet ψ is a function of finite energy and zero average which is normalized and 

centered in the neighborhood of the origin. From this function, also called mother 

wavelet, we can obtain a family of time-scale waveforms by translation and scaling 


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a

bt

a
tW ba 

1
)(,

  a,b є R  (9) 

where a > 0 represents the scale and b the translation. The functions ψa,b are called 

wavelets and they share the properties of the mother function (Nenadic and Burdick, 

2005). The wavelet transform of an arbitrary function x(t) is a projection of that 

function onto the wavelet basis. 

 dtttxtaT
R

bax  ,)(),(   (10) 

For event detection, it is important to choose a wavelet that is suitable for the signal of 

interest. The mother wavelet used in this paper belongs to the family of biorthogonal 

wavelets: ‘bior1.5’ (Daubechies, 1992) and it was chosen because its biphasic shape is 

reminiscent of compound action potentials. 

The continuous wavelet transform defined by eq. 10, operates on a continuous set of 

scales and translations. Hence, the basis functions ψa,b are not orthogonal and the 

representation of the signal x by its wavelet coefficients is redundant. Here we chose 

the set of basis function translations to be finite, where this set is determined by the 

sampling rate of the signal fs(kHz) and its duration T(s), i.e., b є B. 

B={0,1,…,k,…,N-1}, and N = Tfs+1 is the number of samples of the discrete signal 

(time series). Biophysical considerations were used to restrict the relevant scales of 

the wavelet basis functions. We used a limited set of scales A={a0, a1,…, aj,…aJ}, 

where a0 and aJ were determined from the signal sampling rate and the minimum and 

maximum event durations, denoted by Wmin and Wmax, respectively. We chose the 

intermediate scales {a1, a2,…,aJ-1} uniformly sampled between the two extremes a0 

and aJ with an arbitrary step. The wavelet decomposition scales were chosen in order 

to detect events with durations of 0.2 to 1.0 ms. 

2. Separation of the signal and noise at each scale.  

By applying the continuous wavelet transform, we obtained a multiscale 

representation of the signal in terms of its wavelet coefficients. If the discrete 
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observations x contain useful signals s and noise w, then the statistical properties of 

the wavelet coefficients will depend on those of the noise. In order to detect signals in 

an unsupervised way, we had to separate these coefficients by estimating the noise 

level σ in each coefficient from the sampled data. Then, the noise of each temporal 

series is eliminated by using simple threshold detection. The adaptive threshold, T, 

defined using the algorithm introduced in (Donoho, 1994) is given in equations (11) 

and (12). 

)(log.2 NT ejj 
 (11) 

Where N is the number of samples of the analyzed time series, σ2
j is the variance of 

the noise coefficients W(j,k) at scale aj, and Tj is the threshold of the time series. For a 

Gaussian random variable, it can be demonstrated that the median of its absolute 

deviation effectively estimates the standard deviation: 

  6745.0/)1,(,...,)0,(ˆ jjj XNjXXjXM 

 
(12) 

Where jX is the simple mean of Xj and M{.} denotes the sample median. 

3. Events detection at a single scale. 

The problem of detecting events in a noisy signal can be seen as a binary hypothesis 

testing problem, where under the null hypothesis, the signal is not present, and under 

the alternative, both signal and noise are present. Because of the transient nature of 

the signal, the alternative hypothesis, if true, will be so only for an interval of time, or 

equivalently for a subset of the discrete time. Moreover, multiple transients could be 

present, and these represent the main differences between the problems of classical 

signal detection and detection of action potentials. Nenadic and Burdick (2005) 

formulated the first step of the problem of detection as a sequential binary hypothesis 

test at each scale. The hypothesis-testing rule for each wavelet coefficient depends on 

the acceptable costs of false alarms and omissions and the prior probabilities of the 

two hypotheses (null and alternative). These factors are related to an acceptance 

threshold for the alternative hypothesis at each scale. In order to evaluate this 

threshold, the costs of false alarms and omissions should be specified. The algorithm 

proposed by Nenadic and Burdick (2005), uses a parameter L that is the result of a 
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reparameterization of the relationship between costs of false alarms and omissions 

(for more details see Nenadic and Burdick, 2005). For most practical purposes:  -0.2 

≤ L ≤ 0.2. Larger L probably produces omissions, smaller L is more likely to produce 

false positives. 

4. To combine the decisions at different scales. 

Because they are highly localized in time, the samples corresponding to neural 

transients occupy contiguous subsets of the discrete time vector B. This property of 

transients is often referred to as a temporal contiguity. Temporal contiguity translates 

into the contiguity of coefficients in the wavelet domain (Wang and Willett, 2001), 

i.e., the wavelet coefficients corresponding to the same transient tend to be neighbors 

in both time and scale. Since the algorithm used here uses the CWT with the basis 

functions of compact support roughly matched to the scale of neural transients, the 

temporal contiguity in the wavelet domain is inherently preserved. The scale 

contiguity follows from a broad frequency spread of a time-limited signal, so if a 

scale is thought of as an approximation of the frequency, a time-limited transient will 

be spread across many scales. The presence of noise, however, may obscure the 

picture at the scales that are not relevant. The scale contiguity can also be viewed in 

the present context as a cross-correlation (redundancy) of the wavelet coefficients 

(decisions) at different scales. The problem of redundancy and statistical decision 

criteria for event detection on multiple scales are formally described in Nenadic and 

Burdick (2005). 

5. To estimate the arrival times of individual events. 

In a noise-free environment, the wavelet basis function that provides the maximum 

correlation with the transient to be detected corresponds to a wavelet coefficient of 

maximum magnitude. The time associated with the translation index of the basis 

function with maximal coefficient can be taken as a good approximation to the 

occurrence time of the underlying transient. Because we chose the set of translations 

B with time resolution down to the sampling period, this approximation is essentially 

as good as the sampling period. Tracking of modulus maxima of the wavelet 

coefficients across scales was proposed for the detection of signal singularities 

(Mallat and Hwang, 1992). In a noisy environment, there is naturally a jitter 

associated with the location of this maximal coefficient. This jitter can be reduced by 
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averaging the locations of the maxima across different scales. This is basically the 

idea employed in procedures used to estimate the arrival times of individual events. 

The MATLAB code of the method and a supporting tutorial are available at: 

http://robotics.caltech.edu/~zoran/Research/detection.html. 

Spike Sorting via CWT. Afferent recordings obtained with microarray 

electrodes were subjected to offline spike sorting analysis. CAPs were extracted with 

Nenadic and Burdick algorithm and then were categorized according to their 

amplitudes. 

Results 

Electrophysiological recordings 

The passive stimulation of a rat vibrissal shaft generates a massive follicle 

mecahnoreceptors discharge that travel through the primary afferents to its final 

destination in the somatosensory cortex.  

Fig. 3A shows the gamma vibrissal nerve afferent activity evoked by a passive 

stimulation and recorded with a bipolar electrode. The vibrissal movement was 

simultaneously recorded by using a sensor displacement. The figure reveals 

morphological changes in the afferent signal related to the vibrissal displacement 

(inset right - Fig. 3A); as the vibrissa displacement magnitude increases, the 

amplitude of the discharge also increases. This amplitude increase could be related to 

the firing rate increase as a result of greater number of mechanoreceptors activated 

(Lichteinsten et al, 1990; Mitchinson et al, 2004; Lottem and Azouz, 2011). 

A previous study established that an increase or decrease in the firing rate 

could evoke changes in the spectral content of the afferent signal (Pizá et al, 2014). 

Fig. 3B shows the time-frequency analysis of the afferent signal. The local maxima 

(100-1000 Hz) were detected between 120-200 ms in the spectrogram. This rising of 

the signal frequency components is associated with the maximum vibrissa deflection.  

As was previously described, the mechanical information about changes in the 

vibrissa position could be codified by electrophysiological events extracted from the 

vibrissal nerves (Farfán et al. 2013). The events were detected by using an event 

detection algorithm based on multiscale decomposition of the signal. As Fig.3C 
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shows, events of 0.2, 0.6 and 1.0 ms in duration were detected. The detection 

algorithm yields a high rate of false detections when it is set to detect events shorter 

than 0.5 ms. Thus, events of 0.35 to 0.4 ms have a unipolar waveform, while events of 

0.6 ms have a bipolar waveform (Fig. 3D). 

The inter-events time showed an evident decline related to the rising of the 

vibrissal deflection. However, the lineal relation and the maximal sensitivity were 

obtained for events with 0.6 ms duration (Fig. 3E).  

These results describe the stimulus-response relation in multifiber recordings 

protocol with passive stimulation; however, the activation of mechanoreceptors is not 

only evoked by the stimulus amplitude but also by the kinematic characteristics of the 

contact (Lottem and Azouz, 2011). To avoid the variation due to these characteristics, 

the stimuli were uniformly applied by using a step made by a transitory phase (around 

20 ms) and a stationary phase. The amplitude deflection was around 5° (Fig. 4). 

Fig 4 shows the afferent activity obtained with a microelectrode array (one 

channel) during a passive stimulation. The gamma vibrissa was deflected 5° to the up 

direction (middle area of Fig. 4). CAPs detected were grouped in two classes 

according to the amplitude differences. No significant differences were found in 

relation to the CAPs durations (around 0.5 ms). Transitory deflections (around 300 ms) 

did not evoke CAPs, suggesting the presence of slowly adapting fibers. 

 

 

Empirical modeling of afferent recordings 

Electrophysiological events with different durations, amplitude and temporal 

occurrence were detected with a bipolar multifiber recording protocol (Fig. 3) (Farfán 

et al, 2013).  

The model described here, was adjusted to the temporal features of events 

detected in both bipolar and monopolar recordings, in order to reveal its origin and to 

improve the interpretation of the results obtained. It is important to make a 

consideration about the stimulation. The model is based on electrically-evoked 

responses and the discharges in our experiments were generated with mechanical 
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stimulation. It does not represent a substantial difference since the CAP morphology 

depends on propagation characteristics and not on how it is generated. Instead, it is 

crucial to rely on anatomical data (i.e. bundle diameter, amount of myelinated fibers, 

etc.) and the electrodes position.  

Fig. 5A shows simulations that were performed under the following 

considerations: the recording electrodes were placed at different distances from the 

stimulation electrode (10000-20000 μm), the number of fibers was 4000, the bundle 

diameter was 1500 μm and the inter-nodal distance was 2000 μm. For simplicity, it 

was considered that the mechanical stimulation evoked nerve impulses (unitary 

amplitude and 0.5 ms duration) in each of the fibers. The monopolar CAPs recorded 

by e1 and e2 electrodes are shown in Fig. 5B-E (red and blue lines, respectively). The 

position of electrode e1 was settled in de1=10000μm, while electrode e2 in de2= 12500, 

15000, 17500 and 15000 μm. The simulation protocol shows that the duration and 

amplitude of bipolar CAPs (shaded areas) increases as distance between e1 and e2 

increase (Fig. 5B-E).  

We have made another set of simulations that are shown in the Fig. 6. If the 

weighting factor (Λi) is varied, the duration and amplitude of the CAPs is affected by 

the longitudinal conductivity (amount of nodes included) (Fig. 6A). On the other hand, 

if the e1 and e2 positions (with 21 ee dd  =2000 μm) are the simultaneously changed, it 

cause more significant morphological changes in the CAPs (Fig. 6B).  

The amount of electrically active mechanoreceptors is another factor that 

affects the CAPs amplitude. Fig. 6C shows simulations obtained varying Λmax that is 

related to the transverse conductivity of the interstitium and the perpendicular 

distance between the fibers and the electrode. Increases in this parameter produce 

decreases in the relative amplitude of differential CAPs. The durations of CAPs is not 

affected. 

Figs. 7A and 7B show the simulation schemes that fitt the model to the 

waveforms of CAPs obtained with the two recording methods. The bipolar CAPs 

were adequately adjusted using the following parameters: de1=15000μm, 

de2=23000μm ( 21 ee dd  =8000 μm), Λj = 5 nodes, Λmax(df=0) =1, number of fibers = 

200, bundle diameter 1250μm. The amount of fibers, bundle diameter and de1 

parameters were kept constant for CAP recorded with the microarray electrode. 
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However, Λj and Λmax changed according to the consideration that the main difference 

between the two protocols is the size of the recording electrodes, which results in 

large differences in the interface impedance. The higher the interface impedance, the 

lower the electrode action field, and therefore only the activity of the nearby fibers 

was recorded. This was simulated through Λj. 

The bipolar CAPs were detected and grouped according to their durations and 

amplitudes. Thus, for example, it was possible to register three morphologically 

different CAPs (Fig. 7C) in an experimental protocol. The model was empirically 

adjusted using constant parameters, such as number of fibers = 200, bundle diameter 

1250μm, and other parameters such as inter-electrode distance ( 21 ee dd  ), Λj and 

Λmax(df=0). The inter-electrode distance and Λj parameters were tuned to fit the 

experimental CAPs durations, while Λmax(df=0) was tuned to fit the amplitude.   

Directional response 

Another set of experiments about of directional response were made in order 

to evaluate the processing techniques and the modeling proposed.  

Fig. 8 shows afferent discharges evoked by vibrissa deflections at different 

directions and recorded with the bipolar method. As we have already mentioned, the 

transitory and stationary phase present different patterns of discharge. Thus, the 

amplitude and the frequency features were analyzed separately. The RMS values 

show directional sensitivity in the deflection transitory phase which is characterized 

by a higher activation for 90°, 135° and 180° directions (Fig. 8A). The stationary 

phase shows higher activation only for 135°; for other directions it stays without 

significant changes. This figure also shows the spectrograms obtained. The 

maximum-energy frequency component (Fmean) is located in the bandwidth 100 – 

1000 Hz for both stimulus phases. The polar diagrams show that, in the case of the 

transitory phase, the Fmean is 600 Hz for 0°, 90°, 135° and 180°, but for 270° it is 

around 200 Hz. In the case of the stationary phase, the Fmean decreases for 135° and 

180° (550 and 400 Hz) but increases to 550 Hz for 270°. 

Events detected from the afferent discharge and their firing rates are 

represented in the Fig. 8B. The events of 0.6 ms have the highest firing rate at 90° for 
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the transitory and stationary phases, 300 events/sec and 150 events/sec, respectively. 

Events of 1.0 ms showed a similar behavior but with a greater directional acuity. 

Our results about the directional response in the vibrissal system could 

partially differ from those described by other authors (Lichtenstein et al, 1990). This 

is because the recordings analyzed here are the average activity of many axons.  

The empirical model implementation allowed us to estimate the relative 

percentage of active fibers in each stimulation direction and to make inferences about 

the proportion of slow and fast adapting responses involved. 

We also analyzed the directional sensitivity for recording obtained by using 

multiarray electrodes. The algorithm detected the CAPs and they were grouped 

according to their amplitude in R1 and R2 responses (Fig 9A). Then, the firing rate 

was calculated and represented in the figure according to the different directions 

applied.  The global firing rate was higher for 180º (150 CAPs/sec), followed by 135° 

(130 CAPs/sec) and 270° (120 CAPs/sec). For other directions, the mean firing rate 

was 70 CAPs/sec (Fig 9A). The R2 group also showed a higher firing rate for the 270º 

(43 CAPs/sec). On the other hand, events with lower amplitude (R1 group) showed 

the highest firing rate for 135º and 180º (around 100 CAPs/sec). In brief, CAPs 

detected by amplitude showed different directional characteristics that explain the 

global pattern observed in the afferent activity during the passive stimulation. Results 

obtained from other animal showed higher firing rate for deflections to180° (Fig. 9B).  

 

Discussion 

In neurophysiology the interpretation of the results depends on multiple factors 

but especially on the methodological features. In this sense, extracellular recordings 

often represent a challenging not only in extracting correctly the information but also in 

the correct interpretation. Because of this, the use of specific data processing methods is 

highly advisable.  

In this paper, we address the analysis of two electrophysiological 

methodologies: the bipolar and multielectrode recordings. 

The bipolar recording method does not require complex equipment for its 

implementation because the recording electrodes are relatively large (small contact 
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impedance). It does require, however, complex processing techniques for a better 

interpretation of the data. The techniques based on microelectrodes, on the other hand, 

need equipment with more complex technological requirements, such as series 

resistance compensation, capacitance compensation, among others. This research 

highlights the advantages and disadvantages of using electrophysiological techniques 

based on bipolar methods and those based on microelectrodes array. Both methods 

were implemented to study the sensorial information carried by the vibrissal afferents 

nerves when the vibrissae are passively stimulated (Lichtenstein et al, 1990; Mosconi 

et al, 2010).  

A variety of responses (slowly adapting, rapidly adapting and slowly adapting 

low threshold) are evoked in the follicle-sinus-complex when the vibrissae are 

passively stimulated (Mitchinson et al, 2004; Kwegyir-Afful et al, 2008; Lotten and 

Azouz, 2011). Thus, studying these responses in the vibrissal nerves represents a great 

methodological challenge. Lichtenstein et al, (1990) demonstrated that the responses 

evoked in the follicle-sinus-complex depend on the direction of the mechanical 

stimulation (directional response of the vibrissal system). Here, we show that it is 

possible to study the directional response through electrophysiological techniques in 

the vibrissal nerves, and that the set of features extracted from the recordings (energy, 

frequency, discrete events, CAPs) could provide anatomical and functional 

descriptions of the system.   

The CAPs modeling was possible through the adjustment of anatomical 

parameters of the vibrissal nerve, spatial arrangement of the recording electrodes, and 

indirectly of its geometric dimensions. The proposed model allows not only the 

association between anatomical and functional characteristics at the afferent level 

(Wijesinghe et al, 1991), but also the prediction of changes in the CAPs morphology 

when the arrangement and the geometry of the electrodes change. It also makes it 

possible to predetermine the distances between the recording electrodes and the 

position where Vm potentials originate, in order to observe the contribution of fast and 

slow nerve fiber groups (McComas, 2011, Pizá et al, 2016). The experimental 

validation of the model was performed by using an electrical stimulation protocol and 

recording the evoked CAP obtained from a frog’s sciatic nerve and from a rat’s 

vibrissal nerve (Pizá et al, 2016). 
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The CAPs modeling requires a priori shape knowledge of the nerve impulse, 

Vm, which propagates along each fiber of the beam. This particularity allows more 

complex morphologies of Vm to be considered, thus giving the model greater 

flexibility. Another characteristic is that the model supposes a point of contact, 

between the electrode and the tissue, with interface impedance equal to zero, which 

simplifies its formulation considerably. However, an improvement could be possible 

by using non-linear approaches to model the contact area, for example, through the 

electrode-electrolyte interface theory (Ruiz and Felice, 2007). 

The comparative study proposed in this work reveals a close relationship 

between the electrophysiological techniques and the processing methods necessary to 

extract sensory information. This relationship, which is not often documented, is the 

result of maximizing the extraction of information from recordings of sensory activity. 

The compendium of processing techniques used here, is not, and does not pretend to 

be, the only one for the study of afferent sensory activity, but it is rather the result of 

previous research in the area (Albarracín et al, 2006; Farfán et al, 2011; Farfán et al, 

2013; Pizá et al, 2014; Alegre-Cortés et al, 2016). 

Conclusions 

This work presents the comparative study of two electrophysiological methods. 

Both of them were used in an experimental protocol aimed at studying the tactile 

information of the rat’s vibrissal system when their whiskers are mechanically 

stimulated. The morphology of the evoked CAPs was analyzed by using an empirical 

model, which allowed establishing anatomical/functional relationships and highlight 

the most relevant features of nerve conduction in myelinated fibers. In addition, the 

analysis techniques used to functionally characterize the rat’s vibrissal system 

revealed a close qualitative relationship between the electrophysiological methods and 

the complexity of the analysis techniques. Finally, this study gathers a compendium of 

known procedures that were implemented for the first time in the analysis of the 

electrophysiological activity recorded in the vibrissal nerves. 
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Fig. 1 Schematic representation and photographs of the recording methods used. (A) 

Multielectrode method and (B) Bipolar method. Vibrissa passive stimulation was applied in the same 

way in both cases. 
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Fig. 2. Empirical model of the discharge in a bundle of myelinated fibers. (A) SFAP model 

recorded by the electrode, e. The action potential attenuation Vm, depends on the distance between the 

i-th node and the recording electrode. (B) Attenuation factor, which depends on the distance to the 

recording electrode. The origin, x=0, is where the action potential Vm is generated. (C) Diagram that 

illustrates the model. The spatial arrangement of the fibers is considered as a uniform distribution 

throughout the cross section of the bundle. 
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Fig. 3. Bipolar recordings and processing. (A) Bipolar recordings obtained from gamma vibrissal 

nerve and the vibrissa displacement applied (passive stimulation). (B) Time-frequency analysis. The 

spectrogram was obtained by using the following setting: window of 200 samples, 195 samples 

overlapped and NFFT = 1000 points. The local maxima components (100–1000 Hz) were obtained 

(orange line points). (C) Bipolar recording and detected events of different durations. (D) Events 

detected. (E) Inter-event time (IET) analysis. IET averages obtained from five similar vibrissal 

displacements.  
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Fig. 4. Afferent recording obtained with microarray electrode (one channel). The gamma vibrissa 

was deflected 5°. The vibrissa displacement and evoked response are shown at the top. Details of the 

CAPs are shown in the shaded areas. Temporary locations of detected CAPs are shown below. The 

clustering of CAPs sorting procedure is at the bottom. 
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Fig. 5. Empirical model: simulations of a nerve multifiber discharge. (A) Scheme of electrodes 

arrangement respect to the bundle. The nerve impulses are generated in x=0 (e.g. due to a 

supramaximal stimulation) and they propagate along fibers with specific conduction velocities. The 

simulations were performed considering the following specifications: de1=10000 μm, d1e2=12500 μm, 

d2e2=15000 μm, d3e2=17500 μm and d4e2=20000 μm. (B) Monopolar (red and blue) and bipolar CAPs 

(black). The nerve impulse that travels along the fibers is in gray line. The CAP amplitudes are relative 

values to the Vm amplitude. Anatomical features considered for the simulated nerve: bundle diameter 

1500 μm, 10 nodes, dn=2000 μm. Electrodes positions of e1 and e2 : 10000 μm and 12500 μm, 

respectively. Five simulations were done. (C-F) Idem to A but changing the e2 electrode position. (C) 

d1e2=12500 μm. (D) d2e2=15000 μm. (E) d3e2=17500 μm and (F) d4e2=15000 μm. 

  

Stim.

e1(+) e2(-)

0 x (μm)
de1 d1e2

dn

Λj

A

B C D


 
 
 
 
 
 


E

R
e
la

ti
v
e

a
m

p
lit

u
d
e

0             1             2             3

Time (ms)
0             1             2             3

Time (ms)
0             1             2             3

Time (ms)
0             1             2             3

Time (ms)

CAPe1

CAPe2

CAP
Vm

d2e2 d3e2 d4e2

d1e2 d2e2 d3e2 d4e2

ACCEPTED M
ANUSCRIP

T



29 
 

 

Fig. 6. Morphological changes of the CAPs by varying the model parameters. (A) Monopolar 

CAPs (red scale) and bipolar CAPs (gray scale) for different Λj values. Λj reaches longitudinal 

openings of 4, 6, 8 and 10 nodes. (B) Monopolar and bipolar CAPs obtained from electrodes placed at 

different positions. The inter-electrode distance was 2000 μm in this case. (C) Monopolar and bipolar 

CAPs for different α values. This parameter is related to the transverse conductivity of the interstitium 

and it is defined in eq. 3. The effect of the interstitial conductivity was qualitatively evaluated by 

varying Λmax so that Λmax(df=0) was equal to 1, 3/4, 1/2 and 1/4. These values correspond to transversal 

coverage of 200, 150, 100 and 50 μm, respectively. 
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Fig. 7. Fitting the model to the experimental data. (A) Scheme of the simulation and the fitting made 

for potentials detected in the bipolar recordings. The experimental data are in gray lines, while the 

model results in black lines. (B) Idem to A, but using potentials detected in the monopolar recordings. 

(C) Fitting for three different potentials detected in a bipolar recording of afferent activity. 
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Fig. 8. Directional responses recorded with bipolar method. (A) Afferents recordings evoked by 

passive stimulus at different directions. The passive stimulus has a transitory phase (0 – 30 ms approx.) 

and a stationary phase (30 – 150 ms approx). The spectrograms of each recording are also shown here. 

The RMS values were calculated and represented in polar coordinates (directional responses). The 

average maximum-energy frequency component (Fmean) into 0.1 – 1 kHz bandwidth was obtained 

from the spectrogram, and its value is also represented in polar coordinates (on the right). (B) Afferent 

signal and events detected by using the CWT algorithm. The cumulative event count (CEC) was 

obtained for both transitory and stationary phases and represented in polar coordinates (on the right). 
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Fig. 9. Directional responses recorded with microarray method. (A) Extracellular recordings 

obtained during passive stimulation applied to E1 vibrissa at different directions. The binary signal (in 

green and blue) represents the detected CAPs from raw signal. Two groups of responses were sorted 

according to energy features: R1 responses (green) and R2 responses (blue). All responses detected 

(red), R1 responses and R2 responses are represented in polar diagrams (right).  (B) Idem to A. No 

morphological differences were found. Directional responses are represented on the right.  
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