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We study the transport properties of a monolayer transition-metal dichalcogenide (TMDC) ribbon subject to a
time-periodic circularly polarized laser field. First, we calculate the quasienergy spectrum within the framework
of the Floquet theory and analyze the nontrivial topology of the Floquet bulk gaps. The latter is revealed by the
presence of chiral edge states inside the bulk gaps in finite samples, in agreement with the calculation of the
appropriate winding numbers as a function of both the energy and the amplitude of the laser field. The effect
of the time-dependent perturbation on the equilibrium edge states is also analyzed. Finally, we calculate the
two-terminal conductance and discuss how the above mentioned effects manifest on it. In particular, besides
the expected suppression of the bulk conductance and the emergence of edge transport at the Floquet gaps, we
find that there is an asymmetry between left and right transmission coefficients (in the zigzag case), leading
to pumping effects. In addition, we found that the laser field can lead to a complete switch off of the linear
conductance when the latter is dominated by the equilibrium edge states.
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I. INTRODUCTION

Much attention in condensed matter physics has been de-
voted in recent years to the study of new classes of atomically
thin materials with a variety of very promising electronic
and mechanical properties [1]. Monolayers of transition-metal
dichalcogenides (TMDC) are one family of such materials,
characterized by the chemical formulas MX,, where M is a
transition-metal atom—usually tungsten (W) or molybdenum
(Mo)—and X is a chalcogen atom—typically sulfur (S), sele-
nium (Se), or tellurium (Te)—and a two-dimensional crystal
structure that corresponds to an hexagonal lattice as in the
case of graphene [2]. One important difference with the latter,
however, is that these materials present a direct gap of a few
electronvolts, which makes them particularly interesting for
fabricating semiconductor devices [3,4] and for photonics and
optoelectronics applications [5,6].

At the same time, there has also been much interest in the
so-called topological materials [7—11] (a bulk insulator with
conducting surface states) and in different ways of inducing
and controlling their topological properties. Among several
proposals, there was the idea that out-of-equilibrium systems
might present new topological properties that are absent at
equilibrium [12-15]—for instance by applying a circularly
polarized laser field on graphene [16-23]. This has opened
a new research area of the so-called Floquet topological insu-
lators due to the method used in their investigation (Floquet
theory [24-27]). Since then, such nonequilibrium properties
have been intensively investigated in a variety of systems with
the focus in many different aspects of the problem [28—55].

An experimental confirmation of the existence of protected
edge states in Floquet topological insulators has been recently
achieved [30]. In addition, the Floquet induced gaps have
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already been observed at the surface of a topological insulator
by using time and angle resolved photoemission spectroscopy
[29], and more recently, effective Floquet Hamiltonians were
realized in cold matter systems [56]. Hence, there is a clear
need for the investigation of other possible scenarios for the
observation of signatures of such phenomena [57].

The Floquet approach has been applied to TMDCs mainly
by using first principle techniques and tight-binding models
to investigate the properties of the Floquet spectrum [58,59].
Interestingly, the lack of inversion symmetry in monolayer
TMDC dictates that optical transition between valence and
conduction bands at the K and K’ points of the Brillouin
zone (BZ) are selectively forbidden when using left or right
handed circularly polarized light [60-63]. This asymmetry
has been exploited in the realization of valley polarization
[64,65], the experimental measurement of the optical Stark
shift [66], and the generation of valley- and spin-polarized
currents [67,68]—the latter thanks to the relatively strong
spin-orbit coupling in the valence band.

The band structure of generic TMDC has been studied
using density functional theory (DFT) calculations [69,70],
and the results were used to fit different tight-binding models
(differing in the number of orbitals involved) [70]. A first
approximation to this was a two-band model with orbitals d.-
and d,, & id,» of the transition metal (the sign depending on
the K point), a model inspired in a graphene tight binding
Hamiltonian with a mass term, which opens a gap as a result of
the broken inversion symmetry [60]. This model suffices for
some calculations of valley and spin conductances [60,61,71],
although it has been shown to be insufficient when describing
phenomena such as the optical Stark shift [58]. This has led to
proposals where more than two transition-metal orbitals and
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even a contribution from p orbitals from the chalcogen atoms
are considered [70,72].

In this work we use the three-band model for TMDC
developed by Liu et al. [69] to describe the bands of a
monolayer TMDC ribbon. The effect of the laser radiation
normally incident upon the monolayer is included by using
the usual Peierls substitution, resulting in a time-dependent
Hamiltonian. The solution of the problem is obtained by using
Floquet theory [15,24-27]. With the bulk Floquet Hamilto-
nian we calculate the topological invariants that explain the
presence of chiral edge states in the Floquet spectrum. We also
analyze the effect that the time-dependent perturbation has on
the equilibrium edge states that appear inside the bulk gap in
finite width ribbons. Finally, we perform calculations of the
zero-temperature conductance in a two-terminal configuration
with the aim to determine how different aspect of the Floquet
spectrum manifest on such a physical observable. We find that,
as expected, there is a suppression of the bulk conductance
for electrons with an incident energy on the range of the
Floquet gaps, coincident with the presence of edge transport.
Additionally, we find that there is an asymmetry between
left and right transmission coefficients for the case of zigzag
ribbons, that leads to the appearance of pumping effects.

This work is organized as follows. In Sec. II we describe
the equilibrium band structure and the main ingredients of the
TB model [69]. In Sec. III we introduce the time-dependent
perturbation together with a brief discussion of some relevant
aspects of the Floquet theory. The TMDC'’s Floquet spectrum,
for both bulk and ribbons, is analyzed here and the appearance
of chiral edge states is discussed by using the appropriate
topological invariants. Finally, we present our results for the
two-terminal conductance in irradiated ribbons in Sec. IV. A
summary is given in Sec. V.

II. THREE-BAND TIGHT-BINDING MODEL WITH
THIRD NEAREST NEIGHBORS

A. Model and symmetry considerations

The general crystal structure of a monolayer TMDC
(Fig. 1) consists of a hexagonal lattice with lattice parameter
a and a basis of three atoms: one corresponding to a transition
metal located at the lattice points and two out of plane
chalcogen atoms [72]. This structure (when viewed normally
to the plane) resembles that of graphene. The Brillouin zone
(BZ) is hexagonal with two nonequivalent high symmetry
points K and K’ (see Fig. 1). One important departure from
graphene is the lack of inversion symmetry, which results
in a semiconductor gap whose magnitude depends on the
particular kind of material. From hereon we will consider the
case of WS, for the sake of concreteness, but our conclusions
apply to the other members of the family as well.

Monolayer WS, has the D3, point group symmetry. Based
on DFT calculations, the main contribution to the band struc-
ture of conduction and valence bands comes from W’s d
orbitals, with a small contribution coming from S’s p orbitals.
Different models for the band structure of TMDC have been
put forward differing in the number of orbitals involved
[70,72,73]. Although initially it was common to treat this
system in a two-band approximation [60,64], recently a three

FIG. 1. (a) Crystal basis of a generic monoloyer TMDC (WS,
in particular), showing a W atom (in plane) and two S atoms (out of
plane). The two W-S links form an angle 6 ~ 100°. (b) Crystal Struc-
ture of a monolayer TMDC. The gray and purple circles represent
the W and S atoms, respectively. The tungsten atoms are arranged
in an hexagonal Bravais lattice. (c) Brillouin zone exhibiting the two
inequivalent high-symmetry points K and K'.

band model proved to account for a more complete description
[58]. Due to the marginal contribution from the S’s p orbitals
it is possible to make a model using d orbitals from W only. In
addition, due to the z — —z symmetry in the monolayer case,
d; and d,; orbitals (odd with respect to z — —z operation) are
decoupled from d,,, d2, and d,» orbitals, so that a consistent
model can be constructed on the basis of the latter. Along
these lines, and following Liu ef al. [69], we use a three-
band model composed of the d.,, d2, and d,» W orbitals
with hoppings up to third nearest neighbors, necessary for a
complete description over the whole BZ. Some details of this
tight-binding model can be found in Appendix A. Figure 2
shows the bands for monolayer WS, along the path I'-K-M-I"
in the BZ. We labeled the three bands as valence (v band),
conduction (¢ band) and x band. Notice that monolayer WS,
is a direct gap semiconductor with a gap of ¢, = 1.81 €V at the
K point (and similarly for the K’ point). It will be useful for

FIG. 2. Band structure for WS, along the pathI' - K - M —
I" in the Brillouin zone, showing the direct semiconductor gap &, at
the K point.
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FIG. 3. Two kinds of edge termination for a WS, nano ribbon.
(a) Zigzag edge where it is clear that both edges are different since
they end in different types of atoms, W (bottom) or S (top). The red
dotted square indicates the unit cell for density of state calculation
while the blue one is the unit cell for calculations of conductance.
(b) Armchair case. Here, there is a reflection symmetry through a
plane normal to the layer and parallel to the edge. The dashed rectan-
gle encloses the unit cell both for density of states and conductance.

what follows to also define the energy difference e, = 2.18eV
between the top of x band and bottom of ¢ band.

B. Equilibrium edge states in nanoribbons

The WS, nanoribbons present themselves edge states with
energy dispersion relations that depend on the kind of edge
termination, namely zigzag or armchair [74]. The zigzag case
has a striking difference with that of graphene since in TMDC
ribbons each edge is different: While one of them is composed
of tungsten (W) atoms, the other is made of sulfur (S) atoms.
We will denote them as W edge and S edge, respectively.
This is clearly seen in Fig. 3(a). As a result, edge states
corresponding to different edges have different dispersion
relations (see below), and will be treated separately.

Other important kind of edge is the armchair edge. One
ribbon with this kind of termination is shown in Fig. 3(b).
This ribbon exhibits a symmetry of rotation of 180° around
an in-plane axis parallel to the edge (equivalent to a reflection
through a plane normal to the monolayer and parallel to the
direction of the edge); this guarantees that both the local
density of states and the dispersion relation be the same for
both edges (see below).

Figures 4 and 5 show the local (in the transverse site
index) spectral density as a function of k, (k-LSD) for very
wide zigzag and armchair ribbons, respectively [22]. This is

——

FIG. 4. Band structure (k-LSD) for a zigzag ribbon for bulk (a),
the tungsten edge (b), and the sulfur edge (c). The gray scale indicates
the local density of states. Note that each edge supports two edge
states that cross the gap and travel in opposite directions. The energy
dispersion of these edge states are different in both edges due to the
difference in the lattice structure as seen in Fig. 3.

done using a decimation method for the Green’s function
[75]. In the zigzag case there are metallic edge states span-
ning the entire semiconductor gap; for each type of edge
(W- or S-like) there are two edge states traveling with opposite
velocities (positive or negative slop of the energy dispersion).
In addition, there are also edge states near the top of the
valence band for the S edge and and near the bottom of the
conduction band for the W edge. Some extra edge states are
also found in the energy region between the conduction and
the x band.

For an armchair ribbon we have semiconducting edge
states which do not close the gap (see Fig. 5), and thus leave
the ribbon with an effective smaller gap. Due to the symmetry
mentioned before, we only show the bands for one of the
edges only.

III. FLOQUET STATES

In this section we describe how circularly polarized radia-
tion can induce topological states on WS,, hence leading to a
Floquet topological insulator [12—15].
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FIG. 5. Band structure (k-LLSD) for a armchair ribbon for bulk (a)
and one of the edges (b). In contrast with the zigzag ribbon, here both
edges show the same dispersion relations. Moreover, these states do
not span the semiconductor gap and remain near both the conduction
and valence band.

A. Floquet formalism

When the Hamiltonian does depend on time explicitly, the
energy of the system is no longer a conserved quantity and the
usual approach of diagonalizing the Hamiltonian is no longer
useful. Yet, for the special cases where the Hamiltonian is
periodic in time one can apply the Floquet theory to reduce
the calculation once again to an eigenvalue problem. Just as
a brief introduction we will present here the basic features of
this method.

Floquet theory [24-27] is a suitable approach for prob-
lems involving periodic time-dependent Hamiltonians H(¢) =
H(t + 27 /2), which can be written as a Fourier series in time
H(t)=Y, H™ ¢™¥ The solutions of the time-dependent
Schrodinger equation i 0;|W) = H(¢)|V) can be written as
|W(t)) = e /7 |d(t)), with |®(¢)) periodic in time with the
same period as H (¢). The quantity ¢ is called the quasienergy.
With this ansatz |P(¢)) satisfies the so-called Floquet
equation:

(H(t) —ind,)| (1)) = e|P(1)). )]

Since |®(z)) is periodic in time we can treat this time-
dependent problem as a time-independent one by extending
the Hilbert space as a product R ® 7 of the usual time-
independent space R (of the static system) and the space T
of functions periodic in time with period T = 27 /2. T space
can be spanned by the |m) basis functions that satisfy

—— ™ g =0,41, 42, 2)

(t|m) = N

when projected onto the time basis. The final set of eigen-
functions are then written as |y, m), where x refers to the
orbitals dp2, d,,, or d,», and m to the Floquet replica or
Floquet subspace and runs according to Eq. (2), |®(?)) =
D m e™¥ ¢, ulx,m). It must be said that when looking at
the K points, it would be more useful to resort to the basis
given by Eqgs. (B1) and (B2), which diagonalize the static
Hamiltonian at these points and are written as |v), |c), and
|x), referring to the valence, conduction and x band, respec-
tively (see Appendix B for details). By expanding the time-
dependent Hamiltonian in a Fourier series we can construct
the Floquet Hamiltonian Hr [cf. Eq. (6)]. We use the 3 x 3
tight-binding Hamiltonian Eq. (A2). To apply the Floquet
method in the present case we make use of the well known
Peierls substitution. Namely, we make the replacement

Bk — Bk + S AQ). 3)
C

Since we are mainly interested on the effects of circu-
larly polarized light we take the vector potential to be
Ap [cos(2t) X + sin(2t 4+ ¢)§]. The ¢ argument can take the
values 0 and m, indicating counterclockwise and clockwise
polarization, respectively. With this choice the Peierls sub-
stitution gives place to terms in the Hamiltonian of the
general form cos(ak, + Bk, + aAq sin Qt + BAg cos 2t) and
sin(ak, + Bk, + aAg sin 2t + BAg cos Qt), a and B being
real constants. These terms can readily be Fourier expanded
by using the well known Jacobi-Anger identity [76]

eizsin@ — Z Jn(z) ein9 , (4)

where J,,(z) is the Bessel function of the first kind with integer
order n. In expanding these expressions we will encounter
double summations of Bessel functions that can be simplified
(and thus reduce the computational effort) with the following
property of Bessel functions [76],

D Tuim@ (B e ™ = eI, (), )

with T = /a2 4 B2 —2af cos 2 and ¥ given by tan ¥ =
B sin /(e — B cos ). Hence, the Floquet Hamiltonian Hp
can be written (in the |y, m) basis) in the usual block matrix
form:

HO 4+ r0 HOD H®

Hp = HY H® HWY .| ()
HE2 HED  HO _ s

Here H is the mth Fourier component of H (¢).

B. Floquet bulk bands

Following Ref. [58], when studying the Floquet bands
in TMDCs it is convenient to define two regimes for the
possible values of /€2: the blue and red detuned regimes.
These two regimes are defined by the positions of the Floquet
replicas |v, 1) and |x, —1) with respect to the conduction

075423-4



FLOQUET SPECTRUM AND TWO-TERMINAL CONDUCTANCE ...

PHYSICAL REVIEW B 99, 075423 (2019)

2.4 Red detuned 2 = 1.78 eV Blue detuned 71,5‘2 =225¢eV

. ", 0 c,0
(@) ‘ I‘v.} __________ (b) 51—
T, —1) eweenee

FIG. 6. The two regimes of photon energy %4<2: (a) Red detuned
with Q2 < 1/2[e,(K) — &,(K)], which brings into resonance the
conduction and x bands, while leaving the valence bands below the
conduction one, that is ensured by the extra condition &, (K) + A2 <
e.(K). (b) The blue detuned regimen is characterized by 12 >
1/2[e,(K) — €,(K)], and this gives place to a resonance between
conduction and valence bands. The additional condition &,(K) —
hQ2 < e.(K) pushes the x band bellow the conduction band and off
resonance.

band |c, 0). If &,(k), &c(k), and e.(k) are the correspond-
ing dispersion relations for our three band model, then the
red-detuned regime corresponds to the case &,(K) — A2 >
&,(K) + hS2, whereas the blue detuned is defined by &,(K) —
hQ2 < &,(K) + hS2. The transition between both regimes oc-
curs at 2, = [&,(K) — €,(K)]/2. Choosing appropriately the
value of 2 we can make, for instance, the conduction band
to go into resonance with only one of the Floquet replicas,
|x, —1) or |v, 1), as it is shown in Fig. 6. For the specific case
of WS, (¢, = 1.81 eV and ¢, = 2.18 V) we have that /iQ2, =
(&x + &¢)/2 ~ 2¢eV. In addition, the intensity of the laser field
enters to the problem through the dimensionless parameter
s = eApa/2hc, which will appear throughout the paper.

Optical selection rules (see Appendix B) tell us that an
counterclockwise vector field A(t) = Ag (cos Qf X + sin Q¢ §)
can only couple the transitions |v, 1) — |c, 0) — |x, —1) at
the K point, whereas at K’ those transitions are forbidden.
For the red-detuned regime [Fig. 7(a)] there is a sizable band
repulsion (optical Stark shift) between |c,0) and |v, 1) at
exactly the K point while leaving |x, —1) almost unchanged.
Selection rules predict this upshot for this particular choice of
A(t), see Appendix C, although the negligible shift in |x, —1)
needs to be accounted for by using perturbation theory. At
K’ the Floquet replicas are not modified [the same is valid in
the blue detuned case; see Fig. 7(b)]. In a neighborhood of
K and K’ the optical selection rules no longer hold exactly but
approximately. In the vicinity of both of these K points, where
the conduction and the replica of the x band cross each other,
small gaps develop. We refer to them as dynamical gaps. They
host chiral edge states as we will discuss below.

C. Floquet edge states

In the previous section we have discussed the gaps opening
in the bulk Floquet bands, whose properties can be deduced

hQ)=1.78 eV

K’

FIG. 7. Floquet bulk states (solid black lines) in two different
regimes and with s = 0.05 in both cases. In any case we use five
Floquet replicas with —2 << m < 2. The colored dotted lines are
Floquet replicas and are described in the plot. (a) Red detuned with
h2 = 1.78 eV showing the optical Stark shift between states |c, 0)
and |v, +1). This shift is large when compared with the gap opening
in the crossing between |c, 0) and |x, —1). (b) Blue detuned regimen
with Q2 = 2.25eV. In both cases it is clear that only a certain K
point is sensitive to the laser field, depending on the direction of
rotation of the vector potential A () .

from the analysis of the tight binding Hamiltonian in k-space
presented in Eq. (A2) after the Peierls substitution is done.
We will now explore the question of whether we can find
edge states of topological nature inside those gaps, in a similar
fashion as obtained in monolayer graphene [21,22,44].

To study a finite width ribbon we need to go back to the
real space lattice tight binding Hamiltonian. The details of its
construction are quite standard. In this case, the time depen-
dence induced by the radiation field is introduced by changing
the hopping matrix elements according to the following form
of Peierls substitution:

i — 1 Jlelhe i Amdt ) e/MAOR; )
which is equivalent to that given in Eq. (3). The last equality
holds since A(¢) is homogeneous in space, Rj; = r; — r; being
the lattice vector between sites j and /. It must be emphasized
that the nomenclature j and / refers, more precisely, to both
the d-orbital (d, d,y, or d) and the lattice point. The
Fourier expansion of the Hamiltonian depends ultimately on
the expansion of the exponential in Eq. (7). This can be done
using the same properties of the Bessel functions given in
Egs. (4) and (5). For the calculations of Floquet spectra we
will use the decimation method for the Green functions (see
Refs. [75] and [74] for details).

We performed our calculations with photon energies of the
order of the gap size (~2 eV), to couple the replicas of the x
and v bands with the conduction band to first order, and with
small intensities (that is, small values of the parameter s). We
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Red Detuned

Blue Detuned

1.7 : :
K’ ak, K’

ak,

FIG. 8. Topological transition of the 0-Floquet spectrum when
going from red detuned [(a) and (b)] to blue detuned [(c) and (d)]
in a zigzag ribbon. The bands are shown in a vecinity of the K’
point and are projected over the subspace m = 0 (in the range of
quasi energies corresponding to the equilibrium conduction band).
Sub-figures (a) and (b) correspond to A2 = 1.92eV and s = 0.05
(red detuned), and in this case the uppermost gap results from the
coupling between replicas |c, 0) and |x, —1); the parameters for (c)
and (d) are A2 = 2.07 eV and s = 0.05 (blue detuned) and now the
coupling of |c, 0) and |v, 1) generates the uppermost gap. (a) and (c)
are bulk bands and (b) and (d) are edge bands (one edge only for
clarity). In any case the coupling between |x, —1) and |c, 0) gives
place to one chiral edge state, whereas coupling |c, 0) and |v, +1)
gives two edge states. The topological invariants will be calculated
in any case for the uppermost of these gaps .

allowed up to second order photon processes, which means
that we used Floquet replicas from m = —2 through m =
+2. To prove the sufficiency of these figures, we performed
subsidiary calculations with more replicas and verified that
we get an acceptable convergence with just five of them (see
Appendix D). As in graphene, irradiated WS, ribbons harbor
edge states inside the dynamical gaps, though in the present
case the edge states appear only near the K’ point for the
chosen polarization (counterclockwise). This is more evident
in the zigzag termination where the two cones do not overlap.
Here, we concentrate in the states formed by the crossing of
replicas |c, 0) and |x, —1), on the one hand (red detuned), and
|c, 0) and |v, 1), on the other hand (blue detuned). Figure 8
shows the Floquet k-LSD weighted over the m = O replica
(0-Floquet band from now on) for bulk and one edge for
the red and blue detuned cases. It is apparent from these
figures that the coupling of the |x, —1) and |c, 0) bands gives
place to one chiral edge state, whereas the coupling of |c, 0)
and |v, 4+1) gives two chiral edge states. If we consider the
uppermost gap in both cases, then it is clear that there is

0.1 i 2
T
i<
<
0.2 W=2 - 1
<
<
P
0.3 - 0
0.4 -1
1.6 1.8 2 2.2 24

hQ (eV)

FIG. 9. Topological phase diagram showing the transition from
one to two chiral edge states (s = eApa/2hc). The two regions
correspond to the red and blue detuned regimes before mentioned.
There is also a region at large intensities where W = 0 (the changing
colors at the W = 0 — 2 transition reflects the presence of numerical
instabilities).

a topological transition that changes the number of states
appearing inside such a gap and that this transition occurs
when passing from the red detuned to the blue detuned regime
[58]. Similar considerations can be drawn from other gaps
but is in this one where we can see the effects in their more
pristine form.

D. Topological characterization

The topological nature of the Floquet edge states can be
deduced from the bulk band structure by looking at the Chern
numbers C, associated to each one of the Floquet bands,
labeled here with n. Their calculation involves an integration
over the whole BZ of the Berry curvature I',,(k)

1
Co=— [ dkdk, T,k) -3,
27 BZ 4 ( ) z
(un |V i Hg |ty) X (1| Vi HE [1y,)
=31 T
® e " (“'J‘rt_gm)2 ©

As it is well known and has been extensively discussed in the
literature [15,41,43,44], in contrast with static systems, the
bulk-edge correspondence and its relation to the Chern num-
bers is very subtle when describing time-dependent problems.
As before, we construct a truncated Hamiltonian keeping the
replicas —M < m < M, where M is a large positive integer.
The resulting matrix can be interpreted as the Hamiltonian of
a static system. With this reduced Floquet Hamiltonian we can
calculate the net number of chiral edge states (those traveling
in one direction minus those traveling opposite) in a given gap
as a summation of the C, of all the bands below it:

Wy => Cu ©

m<n

Clearly, not all the Floquet gaps are well defined so we will
concentrate in the gap where we have seen the transition
depicted in Fig. 8. In Fig. 9 we show the winding number
W, = W for the uppermost gap in Fig. 8 as a function of
the photon energy 72 and the dimensionless parameter s.
In the range of values plotted, we clearly see three regions
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with different values of W. For small values of s (<0.3), a
transition from W = 1to W = 2 occurs near 72 = 2 eV, with
decreasing value as s increases. This transition is in agreement
with the 0-Floquet bands shown in Fig. 8. As s increases above
0.3, the transition line reaches a triple point where a region
with W = 0 appears. This gives place to two new transition
lines separating the region W = 0 from those with W = 1 and
W =2 (in the later transition numerical instabilities in the
calculation of W are present).

E. Effect on the equilibrium edge states

As shown in Figs. 4 and 5, WS, ribbons also support, in
the absence of radiation, a set of nontopological edge states.
In the zigzag case they span the entire band gap, while for the
armchair termination they do not. We will now analyze how
these edge states are affected by the laser field.

The results for the 0-Floquet bands for a zigzag termination
are shown in Fig. 10. There are several interesting features
to point out: (i) small gaps develop at points in k space
where there is a resonance between the W-edge states inside
the gap and those near the bottom of the ¢ and x bands.
The same situation occurs in the S edge, where the replica of
the narrow edge states near the valence band couples with the
edge states near the conduction band, although this coupling is
less favorable than in the W edge and to make it apparent we
require a higher intensity. This can be explained by looking
at the orbital’s character of the edge states: In the S edge the
almost flat edge states near the top of the valence band have
their largest weight on d,. orbitals, while those spanning the
gap are mainly of d,, character. The coupling between these
orbitals is given by #; ~ —0.1 eV, while, as a comparison,
in the W edge the relevant hopping is #, ~ 0.6 eV; (ii) the
coupling between the equilibrium edge states and the replicas
of the bulk bands leads also to a broadening of the k-LSD
of these edge states, that is a loss of the projected spectral
weight, which in turn depends on the order of the photon
transition (Floquet replica) involved; (iii) the latter effect is
also different for the W- and S-edge states depending on the
quasienergy range; (iv) both the gaps and the broadening
are selective: for a given polarization of the laser field, say
counterclockwise, the equilibrium edge states traveling in one
direction are much more affected than those that travel in the
opposite direction. The situation is, of course, inverted when
the polarization is changed to be clockwise. Similar effects
occur for the armchair termination (see Fig. 11).

To better appreciate the effect of the broadening of the
edge states, we plot in Fig. 12 a zoom of the 0-Floquet bands
(adding the bulk and both edges) in the quasienergy range
1.5eV < ¢ < 2¢eV and in the same red detuned regime as in
Fig. 10. The edge states in the S-edge are labeled as S-L and
S-R, according to whether they travel to the left (S-L) or to the
right (S-R). Similarly for the W-edge. In particular, we look
at a given quasienergy region (delimited by the blue dashed
horizontal lines), where the effect is clearer: the right-moving
W-R state is suppressed due to the coupling with the m = 1
replica of the v band. On the contrary, near the K point, this
|v, 1) replica is pushed down due to the Stark effect and thus
does not couple with the left moving W-L edge state, leaving

FIG. 10. 0-Floquet bands [bulk (a) and edges (b and c¢)] of a wide
ribbon (2050 tungsten atoms wide) in the red detuned regime for
h2 =1.91eV and s = 0.04. Notice the appearance of chiral edge
states inside the dynamical gap formed in the K’ valley. These bands
have the property that making k, — —k, is equivalent to change the
direction of rotation of the vector field A(z). It is worth pointing out
the emergence of gaps on the energy dispersion of the equilibrium
W-edge states due to the resonant coupling with other edge states in
the ¢ and x bands.

it unaltered in that quasienergy range. However, both states
S-L and S-R remain untouched in that range.

This asymmetry of the edge states when coupling with
the continuum has important consequences in the transport
properties of the system as we will discuss in the following
sections, for it affects asymmetrically edge states traveling
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FIG. 11. The same as Fig. 10 but for the armchair edge.

in opposite directions, which determine both directions of
transport in a two-terminal setup.

IV. TWO-TERMINAL CONDUCTANCE

In this section we present results for the two-terminal
conductance of a WS, ribbon in the presence of a time-
periodic driving. For that purpose we separate the ribbon into
three regions (Fig. 13): A central region where the laser field
is turned on (see details below) and two regions on the left
and the right that have no driving and constitute the source
and drain reservoirs (leads), respectively. The calculation is
done using the Green function technique for the calculation
of the transmission coefficient within the Landauer-Buttiker
formalism [75,78,79] properly adapted to the present case
using Floquet theory [27,77,80,81].

FIG. 12. Zoom in of the 0-Floquet bands (adding the bulk and
edges) for the ribbon in Fig. 10, showing the selective switching-off
of the equilibrium edge states (see text).

To start with we calculate the transmission (the linear
conductance is proportional to it) in the absence of the laser
field. The result is shown in Fig. 14 for the particular case of
a zigzag ribbon. As expected, it reproduces the features of the
band structure shown in Fig. 4. Notice in particular that the
presence of the equilibrium edge states inside the bulk gap
leads to a constant transmission of 2 in that energy range due
to the presence of two distinct edge states (one on the W-edge
and one on the S-edge)—the factor 2 coming from the spin
variable is not included in the transmission but added at the
end to the expression for the current [see Eq. (10)].

A. Effects of the Floquet gaps and Floquet edge states

We now consider the time-dependent case. The setup is
depicted in Fig. 13. The amplitude of the laser field (Ao) is
taken to be constant inside the central region and it slowly
switches off near the leads, where it becomes zero. This is
modeled by defining a local parameter s near the leads as
s(x) = %[1 = cos(mx/A)], where x is the spatial coordinate
along the ribbon, the minus/plus sign corresponds to the re-
gion near the left/right lead and A defines the length (along the
ribbon) of the switching region. Once s reaches its maximum
value (eaA/2/ic) it is kept constant between leads. Since the
numerical calculation requires the use of large matrices—the
effective width of the ribbon is augmented by the number of
Floquet replicas as well as the three orbitals involved—they
become quite demanding for large systems. For that reason
we work with ribbons up to 130 tungsten atoms wide, which

laser

S

T ™ Irradiated Region

FIG. 13. Setup for the calculation of the conductance using the
Landauer-Buttiker approach for Floquet systems [23,77]. The system
(including the leads) is WS, and the laser field is applied along
the central region. The intensity of the field is decreased smoothly
towards the leads until it vanishes.
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FIG. 14. Nonirradiated two-terminal transmittance of a zigzag
WS, nano ribbon (130 tungsten atoms wide) at zero temperature. The
nonzero values along the semiconductor gap (roughly 0 < ¢ < 2eV)
are due to the two equilibrium edge states traveling in each direc-
tion (see Fig. 4). The inset shows the transmittance in the region
1.5eV < ¢ < 2eV, where it is clearly monotonous .

are large enough to shown the main features that the laser field
introduces into the transport properties.

The time-averaged two-terminal conductance can be
written as [23]

1 T
— drl(t),
T/o ()

2
WX / de [Ty fule) = Tjg fa(e)].  (10)

1

~i
I

where T, (¢) is the transmission probability for an electron
from lead L with energy ¢ to lead R emitting (absorbing)
n >0 (n < 0) photons and f,(¢) is the Fermi functions at
lead @ (@ = L, R). In the absence of many-body interactions
this is equivalent to the Keldysh formalism [27,77]. Defining
the quantities T'(¢) = 1/2 )", [Tir(e) + Tre(e)] and 67 (¢) =
1/2 ZH[TLR(S) — Tri(e)], the current T can be written as the
sum of two terms:

- 2
I=f/dE{T(g)[fL(E)_fR(E)]_ST(g)[fL(8)+fR(5)]}-
D

Keeping only linear terms in the bias voltage §V and consid-
ering the zero-temperature limit (this is not a limitation and
can be easily generalized) the above expression reduces to

262 4e [°F
1= W T (ep)8V — %/ de 8T (¢). (12)

The last term in this equation is the so-called pumped current
and it appears when there is an asymmetry in the transmission
probability, that is Trg # Tgz, and it is clear that it does
not depend on the applied bias and so it is present even in
the absence of a voltage drop. The mirror symmetry in an
armchair ribbon (see Sec. IIB) leads to Ty = Tz, and thus
in this kind of ribbons there is no pumped current—it is
interesting to point out that such symmetry can lead to an

15

(a) 130 atoms
66 atoms

10

T(e) (2€2/h)

5 OOk O

=

1.5 1.6 1.7 1.8 1.9 2
e (eV)

FIG. 15. (a) Transmittance of an irradiated zigzag ribbon in the
red detuned regime (A2 = 1.91eV and s = 0.04) for two different
widths (60 and 130 W atoms wide). In both cases we see clear
signatures of suppression in the energy ranges of the Floquet gaps.
Interestingly, there are energy regions where the conductance does
not depend on the ribbon’s width, and so they must correspond
to electron transport due to edge states. The vertical dashed red
lines indicate the dynamical gap. (b) 0-Floquet bands, for the same
parameters /€2 and s as in (a) but for a large width (same as Fig. 12).
The black arrow in both figures correspond to the small gap that
appears in the crossing of |c, 0) and |v, 1) replicas.

additional robustness of the topological edge states in other
systems [82].

Figures 15 and 16 show the transmittance 7 (¢) for two
zigzag ribbons of different widths (66 and 130 tungsten
atoms) in the red (A2 =1.91eV and s = 0.04) and blue
(h2 =2.07eV and s = 0.05) detuned regimes, respectively.
To describe correctly the Floquet gaps we allow the switch-
ing on and off of the laser intensity to take place over a
length of 100 tungsten atoms, which corresponds to A = 100a
(a being the lattice constant), the homogeneous central region
being also of 100 atoms in length (along the ribbon). This
reduces the effect of multiple reflections at the entrance and
exit of the irradiated region (which appear as Fabry-Perot
type oscillations) on the conductance. The 0-Floquet bands
are also shown in the corresponding energy range for the
purposes of comparison and identification of the relevant
features: Floquet gaps and their corresponding Floquet edge
states. Interestingly, there are quasienergy regions where the
transmittance clearly does not depend on the ribbon’s width,
which is a hint that for this values of quasienergy the electron
transport occurs entirely through edge states. However, as ex-
pected, there are dips in 7'(¢) coinciding with the quasienergy
ranges of the Floquet gaps, as compared with the monotonous
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FIG. 16. Same as in the previous figure but for the blue detuned
regime (A2 =2.07eV and s = 0.05). Both dynamical gaps are
marked with dashed red lines. Notice that the features in the lower
gap (fomed by the couple of |c, 0) and |x, —1)) are similar to those
in Fig. 15.

behavior in the non irradiated case (see inset in Fig. 14).
There, the transmittance is significantly reduced but it does
not drop completely to zero due to the presence of Floquet
edge states—this is consistent with the fact that the transmit-
tance is almost the same for the two widths—the lack of exact
quantization of the conductance in the Floquet case is to be
expected, as it has been discussed previously [23,50]. Yet, in
this case the analysis of the number of edge states involved
becomes somehow intrincate due to the fact that, apart from
the Floquet edge states inside the dynamical gaps, there are
equilibrium edge states already present in the absence of
radiation—this represents a departure from graphene case
where only Floquet edge states matter [23].

It is worth emphasizing that the difference in size of the two
Floquet gaps shown in Fig. 8 together with the reduction of the
transmittance induced by them, allows in principle to identify
the topological transition with a transport measurement. To
this end, we note that the red detuned gap is in general
wider than the blue detuned one. For quasienergies below the
center of the red detuned dynamical gap, the transmittance
is identical to that of the non irradiated sample (7 (¢) =
2), indicating a poor matching between the incoming wave
function and the Floquet edge states inside the irradiated
region [23,50]. Above the center of the gap we can see the
influence of the chiral edge states, although the quantization
is not recovered due also to the matching problem and the
presence of equilibrium edge states. The blue detuned gap is
significantly smaller and the transmittance there has a mean
value roughly equal to 7'(¢) = 3 in both regimes.

T(e) (2¢2/h)

“wlb T T T —T N T
S : S

01 02 03 04 05 06 07
e (eV)

FIG. 17. (a) Transmittance 7' (¢) for 72 = 0.4eV and s = 0.18
of a 130 tungsten atoms wide ribbon. The vertical blue dashed lines
separate quasienergy regions where the photonics processes involve
one or two photons. (b) 0-Floquet bands. The transmittance is the
smallest where the equilibrium edge states couples with the m = 1
replicas of the valence band, whereas where the coupling is with the
m = 2 the suppression in transmittance is less important .

Another important aspect is that there is a suppression
of the conductance due to the equilibrium edge states. The
magnitude of such suppression is in close relationship with the
number of photons exchanged between the different replicas.
This effect is more clearly seen if we change to the regime
given by Q2 = 0.4eV and s = 0.18. As we know, with zero
laser intensity (s = 0), the conductance along the semiconduc-
tor gap in the zigzag ribbon is due entirely to the equilibrium
edge states that are shown in Fig. 4. In units of 2¢?/h this
accounts for a constant transmittance of two (7' (¢) = 2). In
Fig. 17(a) the transmittance 7' (¢) of a 130 tungsten atoms
wide ribbon is shown, along with the 0-Floquet bands of the
same ribbon in the same quasienergy range [Fig. 17(b)]. In
Fig. 17(b) the region where the equilibrium edge states couple
with the m = 1 and m = 2 replicas of the valence bands are
shown, and the same regions are marked in Fig. 17(a). This
clearly shows that the process involving only one photon is
more effective in suppressing the conductance, and that this
effect is less important as the order |m| of the Floquet pro-
cesses increases. The noise-like behavior that Fig. 17 exhibits
results from the coupling between transverse modes of the
Floquet bulk replicas with the equilibrium edge states. These
transverse modes have their origin in the smallness of the
ribbon’s width and can be seen in Fig. 17(b) as anticrossings
in the 0-Floquet bands.

B. Left/right asymmetry: Pumped current

We now discuss the lack of left/right symmetry of the
transmittance, T;g # Tg., as shown in Fig. 18. While the
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FIG. 18. (a) Zero-temperature transmittance of a zigzag ribbon
for both directions of electron flow in the red detuned case (72 =
1.91eV, s = 0.04). For energies below roughly 1.75eV, the trans-
mittance is through edge states. In the energy region between the
vertical dashed blue lines, the conductance goes from 2 to 1 when
changing the flux direction, remaining roughly the same in the rest
of the energy interval shown. (b) 0-Floquet density of states for the
same ribbon (bulk and both edges). The S-edge states contribute
with a transmittance 1 in every direction. In the region between the
horizontal dashed blue lines, the W-R edge state is suppressed due to
the coupling with the continuum of a replica, while the W-L is not.
This produces the asymmetry in conductance seen in (a) .

asymmetry is present on the entire energy range (with dif-
ferent magnitudes), we concentrate here on the quasienergy
range corresponding to the equilibrium semiconductor gap,
for there the effect is more easily seen. This same phe-
nomenon has already been addressed in Sec. III E for the 0-
Floquet spectral density. Figure 18(a) shows the transmittance
for each direction (L — R and R — L) for a zigzag ribbon in
the red detuned case (parameters 72 = 1.91 eV and s = 0.04)
near the bottom of the conduction band. It is clear from
this figure that there is a large right/left asymmetry in the
region delimited by the vertical dashed blue lines. Namely,
there is one transport channel difference between the two
directions. This feature can be easily understood by looking
at the 0-Floquet bands shown in Fig. 18(b) (this is the same
as Fig. 12 but rotated). First, we point out again that there are
four edge states, that we named as the W- and S-edge states,
that run in both directions (positive and negative slop as a
function of k,; see Figs. 4 and 12 for a better reference). As we
discussed previously, the S-edge states are almost unaffected
by the radiation in that quasienergy range since they couple
weakly to it, so they contribute with a factor ~1 equally
to both directions, as in equilibrium. On the contrary, the
We-edge states couple strongly to the bulk Floquet replicas,

L—-R —
R—L —
=
g
B!
2
=
0 (a)
—T T T T
K [T e
0 o i i@
K't i :
. . . : = (b)
0.3 0.4 0.5
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FIG. 19. (a) Transmittance in the red detuned regime (hQ2 =
1.91eV, s = 0.04) in the quasienergy interval 0.3eV < e < 0.5eV
of a 130 atoms wide ribbon for both directions. (b) 0-Floquet
bands. The region (I) only one right-traveling is not mixed with the
continuum and thus contributes to the transmittance. In (II) a gap
appears as a result to the coupling with another edge state and the
transmittance drops to zero. Note that exchange of roles of the W-
and S-edge states with respect to the previous case (the W-edge states
are now closer to k = 0).

in that quasienergy region, and hence their contribution to the
transmission is altered with respect to the equilibrium case.
In particular, due to the differences on the optical Stark shift
in each one of the K points, the splitting of the bulk bands is
quite different in K and K’ points and so is the quasienergy
region where they overlap (and couple) with the W-edge state.
This manifests particularly as a broadening of the W state
traveling to the right (state W-R in Fig. 12), while the W state
traveling to the left (state W-L) is almost unaffected. This
broadened right-moving W state does not contribute to the
transmittance (or it does with a significantly smaller value),
whereas the left-moving states does it with. This results in the
strong asymmetry Y, T, = 3" T shown in Fig. 18. The
sharp difference Y, ;% — 3", T\ ~ 1 found here comes as
a result of the particular value of s chosen and it might be
smaller for other values. It is worth mentioning that similar
asymmetries has been found in other systems such as a topo-
logical insulator coupled with a metal [83] and other Floquet
systems such as irradiated bilayer graphene [84]. Because the
suppression occurs in the W edges, it is clear that the current
flow in that regime is not homogeneous, being larger on the S
edge (whose edge states are not affected).

A similar asymmetry can be found when examining the
quasienergy region 0.3eV < ¢ < 0.5eV (the metallic zigag
equilibrium edge states). This is shown in Fig. 19, where the
top panel corresponds to the transmission coefficient T (¢)
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while the bottom one is the 0-Floquet bands in the corre-
sponding quasienergy range. The width of the ribbon in both
calculations is the same (130 tungsten atoms). The regime is
red detuned with the same parameters as Fig. 15. Here, in ad-
dition to the broadening induced by the coupling with the bulk
states, there is a dynamical gap (at roughly ¢ = 0.43eV) in the
quasienergy dispersion of the W-edge states originated by the
mixing with the replica of the other W-edge near the bottom
of the conduction band (cf. Fig. 10). This completely degrades
the transmission in one direction as seen in Fig. 19(a). This is
indicated by region (II) between vertical dashed blue lines.
The suppression in conductance around ¢ = 0.4eV occurs
due to coupling with bulk states. This clearly shows that the
Floquet replicas are highly effective in suppressing the static
edge conductance.

Notice also that there are regions of quasienergy where
the edge states (in a given direction) are not coupled to
the Floquet replicas and hence the transmittance reaches its
maximum value of one, indicated by regions (I) and (IIT). On
the other hand, and as before, the noisy behavior is a finite-size
effect related to the quantization of the bulk states (transverse
modes) along a direction transversal to the ribbon’s length.
This could be eliminated by using a wider ribbon, but this
increases dramatically the computational time and it is beyond
our capabilities. In any case, we expect the suppression of the
transmittance to be more homogeneous for larger ribbons.

We emphasize again that this asymmetry is absent in the
case of armchair ribbons due to their reflection symmetry (see
Sec. IIB).

V. CONCLUSIONS

In this paper, we have studied how the electronic structure
of a monolayer TMDC ribbon (taking WS, as an example) is
affected by a monocromatic laser field using the framework
given by Floquet theory and a three-band tight binding model
developed by Liu et al. [69], with hopping terms up to third
nearest neighbors.

Our results of the the bulk Floquet bands are consistent
with previous works [58]. The optical selection rules give
place to an asymmetrical gap opening in both high symmetry
K points, which can be explained (and quantified to lowest
order at least) by looking at the Floquet matrix around each
of these points and reducing the whole extended Hilbert
space 7 ® R to the appropriate number of Floquet replicas
(see Appendix C). This asymmetry has a deep significance
in understanding all the features we found in the O-Floquet
spectrum and in the two-terminal conductance. Apart from
the expected emergence of chiral Floquet edge states (as is
the case with graphene), and the topological transition that
appears when going from the red to the blue detuned regime,
we find that, in the case of zigzag ribbons, there are also
very unusual and interesting effects on the equilibrium edge
states. Namely, we find that small gaps can develop at points
where there is a resonance between them and those edge
states near the bottom of the ¢ and x bands or the top of
the v band. When the coupling involves bulk states, it leads
to a broadening of the formerly peaked spectral density of
the edge state (and hence a loss of spectral weight in the
0-Floquet bands). The magnitude of this broadening depends

on the number of photons involved in the process (the quan-
tum number m of the replica), and it can be identified as a dif-
ferent level of suppression in the two-terminal transmittance.
These effects are different for the different edge states and
differ for those traveling to the right or to the left depending on
the polarization (clockwise or counterclockwise) of the laser
field—which is responsible for the breaking of time reversal
symmetry.

In addition, we performed two-terminal transport calcula-
tions in the presence of a laser field, and compare our results
with the Floquet bands previously found. On the one hand, we
verify that the Floquet gaps found earlier show up as dips in
the conductance in the correct quasienergy interval. The value
of the conductance inside these gaps is not zero due to the
contribution of the chiral edge states and although its value
is not quantized it is seen to be independent of the ribbon’s
width, which is a signature of edge transport. On the other
hand, we found that the asymmetry between the K and K’
points in the Floquet bands cause the transmittance to exhibit
different values for each direction of the electron flux for the
zigzag case, leading to a pumped current without bias. This
effect is particularly important when transport involves the
equilibrium edge states found in zigzag ribbons, and can even
lead to a switch off of the conductance (in a given direction)
depending on the laser amplitude. This offers an interesting
prospect for future research, specially on the light of the recent
experimental results on light-induced anomalous Hall effect in
graphene [85].
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APPENDIX A: THE THREE-BAND MODEL FOR TMDC

In this section we present, for the sake of completeness,
the three-band model for TMDC developed by Liu et al. [69],
with hoppings up to third nearest neighbors (a model with
only nearest neighbors has also been presented although it was
shown to describe correctly the bands only in a small region
around K and K’ points). This model uses the atomic bases
{d.2,d,y,d2} of the tungsten atom alone, something that is
known to be sufficient to correctly describe the valence and
conduction bands. The Hamiltonian will be constructed on the
basis of the following Bloch wave functions:

da(k)) = — e*R|d(R))
|d_2 (k) = f ; |d»(R)),
|d,, (k) = T ; ¢*R|d, (R)),
|dp(k)) = — (A1)

fz sz|d (R)).
R

The symmetries of the Hamiltonian can be used to show
that the numbers of independent hoppings between orbitals
at different sites are six for the nearest neighbors, five for
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the second neighbors, and six for the third neighbors. These
hoppings are denoted t;, r;, and u;, respectively, and their

J

values are obtained by using DFT [69]. The final Hamiltonian
H (k) can be written in the following form:

hit hiy hiz
HE)=|hi, hn hxnl|, (A2)
hiy o has
where the matrix elements are given by
hi1 = &1 + 2t6(2cosa cos B+ cos28) + 2rg(2 cos 3 cos B 4 cos 28) + 2ug(2 cos 2c cos 28 + cosda), (A3)
hy, = &3 + (t11 + 3txn) cosa cos B + 2t cos 2a + 4ryy cos 3 cos B + 2(ry) + \/grlz) cos2p
—+ (111 + 3up;) cos 2a cos 28 + 2uy; cosda (Ad)
hsz = &3 + (3t11 + trn) cosa cos B + 2ty cos 2o + 2111 (2 cos 3 cos B + cos28)
2
+ %r12(4 cos3a cos B —cos2B) + (Bui; + uxp)cos2a cos 2B + 2uy; cos 4o, (AS)
hi = —2+/3t sina sin B + 2(ry + r2) sin 3 sin B — 2+/3u, sin 2« sin 28
+ 2it sina(2 cosa + cos B) + 2i(r; — rp) sin 3 cos B + 2iuy sin 2a(2 cos 2« + cos 28), (A6)
2
hi3 = 2t(cos 2a — cos cos ) — E(rl + rp)(cos 3 cos B — cos2B) + 2i\/§u| cos 2« sin 28
2
4+ 2uyp(cos 4o — cos2a cos28) + 2i«/§t1 cosa sin 8 + 7%(1*1 — rp) sin B(cos 3o 4+ 2 cos B), (A7)
hy = ﬁ(m —t11)sina sin B + 4rp sin3a sin B + x/g(uzz — uy1)sin2a sin28
+ 4it1, sin @ (cos o — cos ) + 4iuy, sin 2c(cos 200 — cos 28). (A8)

Here, we defined the dimensionless parameters o = ak,/2
and 8 = ﬁaky /2. As it was mentioned before, the hoppings
parameters t;, r;, and u; (as well as the on site energies &
and &;) have been obtained by Liu er al. [69] by fitting the
analytical eigenvalues obtained from H (k) with DFT bands
at the K point. For the particular case of WS, we have the
following values (in units of eV):

o 1 12} 33! 3} 155)
—0.175 —0.090 0.611 0.043 0.181 0.008
o r L) Lot L&V Ug
0.075 —0.282 0.356 2.015 2.014 2.056
U U Uy 1235} U
2.045 0.659 3.014 0.457 0.478
el &
0.717 1.916

APPENDIX B: OPTICAL SELECTION RULES

In Fig. 7 we show the Floquet bands along a line joining
K and K’ points for two different values of AQ2. The inten-
sity of the coupling due to the laser field is given by the
dimensionless quantity s = eaAq/2kic, where a is the lattice
parameter (distance between tungsten atoms). Looking only
at K and K’ points, we can see that the effect of circularly

(

polarized radiation is sensitive to the K point under consid-
eration; more precisely, the direction of rotation of the vector
field (clockwise or counterclockwise) determines the K point
affected: changing the direction of rotation makes the K points
change roles. This dependency on the rotation of A(¢) can be
understood in the frame of group theory [86]. Looking exactly
at K points, the symmetry group of the system is reduced
to Cs (plus 0, symmetry which has already been taken into
account). It can be shown that the Bloch waves at K and
K’ points are eigenfunctions of the operator C3 (rotation of
27 /3 around an axis normal to the monolayer). We must keep
in mind, however, that this rotation affects the r or r — R
argument of the Wannier orbitals in the the Bloch waves (the
so-called intrinsic rotation) as well as the lattice sites R in the
factors exp(ik - R). At both K and K’ points the conduction
band is described by

1 ik-R
= — E d.2(R)), B1
|C> \/N = € | Z ( )) ( )

whereas the Bloch wave at K points are given by (r = 1 for
Kand t = —1 for K)

%

1 oo 1 ,
) = TN ;W‘—z[ ldy(R)) + it |d2(R))].  (B2)

1 . 1 .
ve) = i gje“—z[ |dyy(R)) — it |d2(R)) 1,

/2
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TABLE I. Bloch functions at K points.

K K’

x band (|dyy) +ild2))/2 (Idw) = ild2))/V2
¢ band |d2) d.2)
v band (Idw) — ild2))//2 (Idw) +ild2))/2

These solutions for every K point are summarized in Table 1.
As it has been pointed out by several authors [61,64,86], the
effect of the rotation upon a Bloch wave depends heavily on
the center of rotation chosen, although the final selection rules
from here derived cannot depend on this election. To make
things simpler, we are going to choose the center of rotation
at one tungsten site, although other alternatives have been
discussed [66]. In making this choice we get to the following
results:

Cile) = Ie), Cslve) = "5 |vy), Calxe) = e "3 |xy)
(B3)

These properties are relevant because of the following argu-
ment. The coupling with circularly polarized radiation be-
tween states |A;) and |A ;) depends ultimately on the matrix in-
tegrals (A flf’i |A;), where P, is the combination of momentum
operators P, + i13y and the sign is determined by the direction
of the polarization (clockwise or counterclockwise). If |A;)
and |Af) are eigenfunctions of C’g, that is, if it holds that
Cs|hy) = e ™ 273 |3y for u = i, f, then we can write

(Af1PLIn) = (hf1C7 G P sl
= mE (1 CsPLC YA, (B4)

and using the identity Cg,PiC; I = eszTn’f’i we get to the
following important result:

(1= ™ T5) (0 p|Pali) = 0. (BS)

The equation above tells us that a necessary condition for
((pf|13i|<pi) be non zero is that my —m; = 1 = 3/, [ being an
integer. For o, radiation (counterclockwise circularly polar-
ized) the relevant operator for a transition to a Floquet state
with a extra photon (|A;, m) — |Ay, m+ 1)) is P, so that
the condition becomes my — m; + 1 = 3[. Given the values
in Eq. (B3), this condition is satisfied for o, radiation only
for very specific transitions, as it is shown in Table II. It
is worth emphasizing that these selection rules differ from
those valid for atomic transition (namely Am; = =£1), and this
is partially due to the ambiguity in defining the azimuthal
angular momentum m;: since it comes from the eigenvalue

TABLE II. m; — m; + 1 for the transition |A;, m) to [Ay, m + 1).

K K’
le,m) lv,m) |x,m) lc,m) |v,m) |x,m)
le,m+1) 1 2 0 1 0 2
lv,m+1) 0 1 1 2 1 3
|x,m+ 1) 2 3 1 0 -1 1

exp(—im;2m /3), it is clear that the quantity m; + 3k (k inte-
ger) is also a valid angular momentum. This in turn comes
from the reduced rotational symmetry of the system (Cs), in
contrast with that of an electron in a central field (SO(3)).

APPENDIX C: OPTICAL STARK SHIFT

To explain the features seen in Fig. 7 in the red de-
tuned case, we can write the Hamiltonian up to liner terms
around K points, H(ky, k) ~ H(K) + (k, — K,) 0 H(K) +
(ky, — K,) 0 H(K), where K can be any of the two nonequiv-
alents K points. After performing the Peierls substitution we
arrive at the following time-dependent Hamiltonian:

H(ky, ky;t) = HK) + (ky — K,) 0 H(K)
+ (ky — K,) 0, H(K)
+2s¢ o (K)+2se o (K), (Cl)

where o.(K) = 1/2[3 H(K) £ id; H (K)], which clearly sat-
isfy o_ = of. Around K points the o matrices are the follow-
ing [using the base {|c), |v;), |x;)} from Egs. (B1) and (B2)]:

0 0 ify 0 ig O
o_(K)=|if 0 0], o_(K)=[20 0 2.
0 £ O igs 0 O
(C2)

where f; and g; (i = 1, 2, 3) are real parameters depending on
the hoppings given in Appendix A. The differences in these
matrices is one of the manifestations of the optical selection
rules shown in the Appendix B. In the red detuned case (and
for a suitable value of 7€), the Floquet replicas |c, 0) and
|v, 1) can be brought into almost resonance (see Fig. 6), and
as a result of the interaction with the laser field an important
band repulsion appears. Here we give a simple explanation of
this effect by using degenerate perturbation theory. To this end
it is sufficient to look at the K points only and the Hamiltonian
in Eq. (C1) is reduced to

H(K)+2se o (K)+2se 0, (K), (C3)

keeping in mind that in the basis chosen the matrix H(K) is
diagonal. The Floquet matrix 6 can be constructed and, in a
first approximation at least, we can keep only the replicas
m =0 and m = 1. The form of this reduced matrix clearly
depends on the K point under examination, as it obvious from
Egs. (C2). At the K point we have

e.+hQ2 0 0 0 0 2is fi
0 &y+h<2 0 2isf> 0 0
0 0 ex+h2 0 2sf3 0
0 —2isf 0 & 0 0
0 0 2sf3 0 &y 0

—2isfi 0 0 0 0 Ex

(C4)
Here we see that in a first order approximation the coupling
between |c, 0) and |v, 1) is through the matrix element 2i s f>.
In the exactly degenerate situation (e, = ¢, + /<2) the eigen-
values are
&c + &y + A2

E%f:tlﬂle, (C5)
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FIG. 20. Comparison of the Floquet bulk bands obtained with
diffent number of replicas, —N < m < N with N = 2, 3, and 4, for
hQ2 = 1.78 eV and s = 0.12 (a larger value that the one used in the
main text). The horizontal dashed lines delimit the central Floquet
Brillouin zone, where there is a clear convergence for all the cases.
The black dashed lines correspond to the unperturbed bands.

which gives a symmetric shift around the central value
1/2(e. + €, + h2) in the replicas |c, 0) and |v, 1), as seen in
Fig. 7(a). The result given in Eq. (C5) remains valid when
lec — &, — I2| K 4s|f>|. At K’ point the situation is quite
different. The reduced Floquet matrix is now the following:

AN 0 0 0 2isg 0

0 &y+h<2 0 0 0 258>

0 0 ex+h<2 | 2isgs 0 0

0 0 —2isg3 & 0 0ol
—2isg; 0 0 0 &y 0

0 258> 0 0 0 &y

(Co)
and since there is no direct matrix element that links |c, 0) and
|v, 1), there is no shift in this case, as in Fig. 7(a). Similar
considerations can be drawn for the blue detuned regime
[Fig. 7(b)]. In this case the shift in the three replicas |c, 0),
|v, 1) and |x, —1) is roughly the same at K (for this particular
choice of /2), whereas there is no shift at K’. Similar to the

= 0.6
=~
Wyl N=2 |! N=4 {l o4
0% IS 2H 02
. \/ \v/\/ \/ \V/\/
L L L L L L 0
K M K K M K

FIG. 21. Comparison of the 0-Floquet bulk bands obtained with
N =2 (five replicas) and N = 4 (nine replicas) for the same param-
eters as in the previous figure.

red detuned case, around the K’ we see dynamical gaps much
smaller than those in the red detuned case. This is due to
the different coupling strength between the conduction and
valence or x band.

APPENDIX D: CONVERGENCE OF THE FLOQUET BANDS

As mentioned in the main text, our calculations include a
finite number of Floquet replicas, namely five. This choice
results from a balance between those required to achieve the
convergence of the physical quantities and those that mini-
mize the computational cost of the numerical calculations. To
illustrate this, we show in Fig. 20 the bulk Floquet bands that
result from the Floquet Hamiltonian with different number of
replicas, —N < m < N with N = 2, 3, and 4. The unperturbed
bands are indicated with black dashed lines. Notice that
inside the central Floquet Brillouin zone (indicated by the
horizontal dashed lines) the Floquet bands are the same for
all values of N. Only outside that central zone there are small
differences between the N = 2 case and the others. However,
such differences correspond to high order replicas and do not
show up on the 0-Floquet bands as we show in Fig. 21.
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