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Abstract

The so called Driven Liouville-von Neumann equation is a dynamical formulation

to simulate a voltage bias across a molecular system and to model a time-dependent

current in a grand-canonical framework. This approach introduces a damping term in

the equation of motion that drives the charge to a reference, out of equilibrium density.

Originally proposed by Horsfield and co-workers, further work on this scheme has led

to different coexisting versions of this equation. On the other hand, the multiple-probe

scheme devised by Todorov and collaborators, known as the hairy-probes method, is

a formal treatment based on Green’s functions that allows to fix the electrochemical

potentials in two regions of an open quantum system. In this article, the equations

of motion of the hairy probes formalism are rewritten to show that, under certain

conditions, they can assume the same algebraic structure as the Driven Liouville-von

Neumann equation in the form proposed by Morzan et al. [J. Chem. Phys. 2017,

146, 044110]. In this way, a new formal ground is provided for the latter, identifying

the origin of every term. The performance of the different methods are explored us-

ing tight-binding time-dependent simulations in three trial structures, designated as

ballistic, disordered, and resonant models. In the context of first-principles Hamiltoni-

ans the Driven Liouville-von Neumann approach is of special interest, because it does

not require the calculation of Green’s functions. Hence, the effects of replacing the

reference density based on the Green’s function by one obtained from an applied field

are investigated, to gain a deeper understanding of the limitations and the range of

applicability of the Driven Liouville-von Neumann equation.

1 Introduction

The interest in molecular conductance and electronic transport across nanostructures has

inspired the development of a multiplicity of theoretical treatments to compute the current

under an applied bias. The proposed schemes vary in complexity and computational cost,

going from the original Landauer-Büttiker method1,2 and different static models meant to

2



describe steady state transport,3–7 to dynamical methodologies that take into account the

time evolution of the charge density.6–11 The present article is concerned with the later

class of approaches, and in particular with the subset of methods based on the so-called

Driven Liouville-von Neumann (DLvN) equation. In this framework, the dynamics at the

electrodes is modulated by an additional driving term that augments the standard Liouville-

von Neumann equation of motion. The role of these terms is to enforce part of the density

matrix associated with the electrodes to remain close to a reference density matrix, thus

introducing a charge imbalance between a “source” or left lead (L) and a “drain” or right

lead (R). This driving term originally takes the form of a difference between the time-

dependent density matrix ρ̂(t), and a reference density matrix ρ̂0,

˙̂ρ(t) = − i
~

[Ĥ, ρ̂(t)]− Γ(ρ̂(t)− ρ̂0) (1)

where Ĥ is the electron Hamiltonian, Γ is the driving rate parameter, and the matrix ρ̂0 can

be defined as follows:

ρ0ij =

 ρij(t0) if i, j ∈ L ∪R

ρij(t) if i, j /∈ L ∪R
(2)

This type of approach was first introduced by Horsfield and co-workers12,13 as an intuitive

way of including at the level of the density matrix the circulation of charge between the

electrodes, and it was further enriched by the work of Nitzan14 and Mazziotti.15 These ideas

were later taken on by Hod and co-workers16–19 and reelaborated by deriving the driving

terms from the theory of complex absorbing potentials. In doing so, they arrived at a

modified form in which coherences were damped to zero,

˙̂ρ(t) = − i
~

[Ĥ, ρ̂(t)]− Γ

2


2(ρ̂LL − ρ̂0LL) ρ̂LC 2ρ̂LR

ρ̂CL 0 ρ̂CR

2ρ̂RL ρ̂RC 2(ρ̂RR − ρ̂0RR)

 , (3)
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that improved the stability of the calculations and the steady-state convergence, and that

was shown to satisfy Pauli’s principle regardless of the initial conditions.16 Franco and col-

laborators presented a formal derivation of this formula from the theory of non-equilibrium

Green’s functions, demonstrating that it can accurately capture time-dependent transport

phenomena.20 More recently, Zelovich et al. proposed a strategy to replace the single rate

parameter Γ by diagonal matrices containing the broadening factors corresponding to the

lead states.21 These factors can be computed from the self-energies of the electrodes, thus

providing a parameter-free version of the Driven Liouville-von Neumann approach.21

Because of its conceptual simplicity and good compromise between computational cost

and physical accuracy, the DLvN method has attracted significant attention, and several

further refinements of its implementation and analysis of its theoretical foundation were

made. Among these, of particular relevance is the adaptation to a first-principles real-time

TDDFT framework carried out by Morzan and co-authors,22 where an observed imbalance

between injection and absorption of charge during the dynamics prompted a reformulation

of the driving term. In an orthonormal basis, this equation of motion assumes the following

structure:

˙̂ρ(t) = − i
~

[Ĥ, ρ̂(t)]− Γ

2


2(ρ̂LL − ρ̂0LL) ρ̂LC − ρ̂0LC 2(ρ̂LR − ρ̂0LR)

ρ̂CL − ρ̂0CL 0 ρ̂CR − ρ̂0CR

2(ρ̂RL − ρ̂0RL) ρ̂RC − ρ̂0RC 2(ρ̂RR − ρ̂0RR)

 (4)

where the subscripts indicate the corresponding blocks of the time-dependent density matrix,

and ρ̂0 denotes a reference, time-independent density matrix. A major change with respect to

previous expressions is that here all off-diagonal contributions are damped to their reference

values (obtained e.g. from the polarized density matrix). This proved to be important for

charge conservation and an appropriate balance between incoming and outgoing currents in

the relatively small models tractable in TDDFT simulations.22 Despite intuitively justifying

this modification both from a numerical standpoint and interpreting it as a change in the
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boundary conditions, no formal theoretical derivation was provided at the time.

In parallel with these developments, a different driving term for the Liouville-von Neu-

mann equation was put forward by Todorov and co-workers.10 This new embedding method

called multiple-probe or “hairy probes” (HP), formally derived a different structure of the

driving term via the application of Green’s functions and the Lippmann-Schwinger equa-

tion.10,23 In spite of its good results and wide range of applicability,24–26 its relationship with

the reference density driving method remained undetermined.

The objective of the present study is to bridge the gap between the two methodologies:

the heuristic formulation of the Driven Liouville-von Neumann equation, and the hairy-

probes scheme. For that purpose, we have been able to rewrite the driving terms of the HP

theory into two terms, one of which resembles the damping term of the reference density

approach. In doing so we have found that the latest addition of Morzan and co-workers is

the most compatible with HP, thus finally providing a formal framework for their correction

of the non-diagonal blocks of the driving term. Through the application of these schemes to

a series of model systems, we better characterize these methodologies for different situations

and shed light on the reliability of the equation of motion including the driving term with

the reference density matrix ρ̂0.

In the next two sections we introduce the theoretical and methodological framework

for this work: we first show how the HP theory can be rewritten to arrive to the Driven

Liouville-von Neumann equation plus an additional term (section 2), and then provide a brief

description of the models employed in the simulations (section 3). In section 4 we examine

the impact that the progressive simplifications of the HP equation have on the accuracy of

the physical description of these systems. After that we examine the effect that some of

the relevant parameters of the models have on the baseline performance of these different

approximations. In particular, we will focus on the Γ parameter (section 5) and the shape of

the field used to generate the reference matrix in the DLvN scheme (section 6). Finally, in

section 7, we discuss the differences between the two forms of the DLvN equation reported
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in the literature: the one emerging from the truncation of the HP method (eq. 4), and the

one proposed by Hod and co-workers (eq. 3).

2 Recasting the multiple-probe equations of motions

We consider in this work a system formed by a central molecule or device, identified hereafter

with the symbol C, coupled to a right and a left electrode (or lead), denoted as regions R and

L respectively. In the multiple-probes framework this system is embedded in an implicitly

represented environment via the coupling of each atom of the left and right leads to an

external probe, which in isolation has a retarded and an advanced surface Green’s function

g±j (E) and a surface local density of states dj(E) = −π−1=g+j (E).10 These probes have fixed

electrochemical potentials µL and µR, depending on whether they are connected to the left

or right electrode, with Fermi-Dirac distributions fL(E) and fR(E). For this model, and

assuming that the Hamiltonian of the system is time-independent, the HP theory provides

the following equation of motion for the electronic density (see eq. 38 in reference 10):

i~ ˙̂ρS(t) = [ĤS, ρ̂S(t)] + Σ̂+ρ̂S(t)− ρ̂S(t)Σ̂− +

∫
[Σ̂<(E)Ĝ−S (E)− Ĝ+

S (E)Σ̂<(E)]dE (5)

where ρ̂ is the time-dependent density matrix, Ĥ is the electron Hamiltonian, subscript S

refers to the full system (L, C and R sections), and the Σ̂ and Ĝmatrices are the system’s self-

energy and Green’s function. We also assume that (i) all probes interact with the electrodes

through the same coupling term γ, and (ii) the wideband limit applies to the probes so that

their density of states becomes a constant, dj(E) = d. In these conditions, these matrices

adopt the following form:

Σ̂± = Σ̂±L + Σ̂±R = −iΓ
2
· P̂L −

iΓ

2
· P̂R =

(
Σ̂∓
)†
, (6)
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Σ̂<(E) =
Γ

2π
· fL(E) · P̂L +

Γ

2π
· fR(E) · P̂R, (7)

Ĝ±S (E) =
(
E · P̂S − ĤS − Σ̂±

)−1
. (8)

In the above equations, Γ = 2πγ2d, and fL(E) and fR(E) correspond to the Fermi-Dirac

distributions for the left and right probes. The matrices P̂L and P̂R are the corresponding

projector operators, with P̂S being the projection over the whole explicit system (i.e. the

identity).

We will now take equation 5 as the starting point for our derivation. Our goal in this

section is to express it in terms of a difference between weighted density matrices—one

corresponding to the current state of the system and the other to a reference system—that

assumes the form of the driving term in the DLvN equations.

For this, we focus on the second (Σ̂+ρ̂S(t) − ρ̂S(t)Σ̂−) and third (
∫

[Σ̂<(E)Ĝ−S (E) −

Ĝ+
S (E)Σ̂<(E)]dE) terms on the right hand side of equation 5, and examine separately each

of the sub-blocks corresponding to the orbitals of the electrodes (L, R) and of the device

(C). The first thing to note is that, since all Σ̂ matrices contain projections on the leads

only, the second and third terms will vanish in the central block:

i~ ˙̂ρCC(t) =
(

[ĤS, ρ̂S(t)]
)
CC

. (9)

In turn, the off-diagonal blocks of the second term can be expanded as:

Σ̂+ρ̂S − ρ̂SΣ̂− = −iΓ
2

(
P̂Lρ̂S + P̂Rρ̂S + ρ̂SP̂L + ρ̂SP̂R

)

= −iΓ
2

(2ρ̂LL + 2ρ̂LR + 2ρ̂RL + 2ρ̂RR + ρ̂LC + ρ̂CL + ρ̂RC + ρ̂CR) (10)

where for conciseness we have omitted the time-dependence of ρ̂. In matrix form, this can
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be written as:

Σ̂+ρ̂S − ρ̂SΣ̂− = −iΓ
2


2ρ̂LL ρ̂LC 2ρ̂LR

ρ̂CL 0 ρ̂CR

2ρ̂RL ρ̂RC 2ρ̂RR

 . (11)

We now turn our attention to the third term on the right hand side of equation 5,

considering separately each off-diagonal block. For the upper left one, we have:

∫
[Σ̂<(E)Ĝ−S (E)−Ĝ+

S (E)Σ̂<(E)]LLdE =
Γ

2π

∫ (
fL(E)P̂LĜ

−
S (E)P̂L − fL(E)P̂LĜ

+
S (E)P̂L

)
dE

=
Γ

2π
P̂L ·

∫
fL(E)

[
Ĝ−S (E)− Ĝ+

S (E)
]
dE · P̂L = iΓP̂L ·

∫
fL(E)D̂S(E)dE · P̂L (12)

where we used the relation between the Green’s function and the density of states matrix

D̂S(E) = (2πi)−1
(
Ĝ−S (E)− Ĝ+

S (E)
)

. The integral in the last term of equation 12 defines

a fictitious equilibrium density matrix with an electronic distribution fL corresponding to

the left probes, that we will denote ρ̂0L. After applying on the left and on the right the

projection operator associated with the upper left block, we arrive at the final result,

∫
[Σ̂<(E)Ĝ−S (E)− Ĝ+

S (E)Σ̂<(E)]LLdE = iΓ · P̂L · ρ̂0L · P̂L = iΓ · ρ̂0LLL. (13)

For the RR sub-matrix we get an analogous expression, but with the R projectors and

the Fermi-Dirac distribution for the right probes, which defines a different reference density

matrix ρ̂0R,
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∫
[Σ̂<(E)Ĝ−S (E)− Ĝ+

S (E)Σ̂<(E)]RRdE = iΓP̂R ·
∫
fR(E)D̂S(E)dE · P̂R = iΓ · ρ̂0RRR. (14)

To evaluate the off-diagonal terms involving the central region (blocks LC, CL, RC, and

CR), we first observe that in all these cases part of the integrand vanishes when operating

on Σ̂< due to the contiguous application of projectors belonging to different regions,

∫
[Σ̂<(E)Ĝ−S (E)− Ĝ+

S (E)Σ̂<(E)]LCdE =

∫ (
P̂LΣ̂<(E)Ĝ−S (E)P̂C − P̂LĜ+

S (E)Σ̂<(E)P̂C

)
dE

=
Γ

2π

∫
fL(E)P̂LĜ

−
S (E)P̂CdE =

Γ

2π
P̂L ·

∫
fL(E)Ĝ−S (E)dE · P̂C . (15)

Similarly,

∫
[Σ̂<(E)Ĝ−S (E)− Ĝ+

S (E)Σ̂<(E)]CLdE = − Γ

2π
P̂C ·

∫
fL(E)Ĝ+

S (E)dE · P̂L. (16)

To recover the density of states from just one of the Green’s matrices, we rewrite the latter

in the following way:

Ĝ−S (E) =

(
Ĝ−S (E)

2
− Ĝ+

S (E)

2

)
+

(
Ĝ−S (E)

2
+
Ĝ+
S (E)

2

)
= iπD̂S(E) + Ĝ<S (E) (17)

− Ĝ+
S (E) =

(
Ĝ−S (E)

2
− Ĝ+

S (E)

2

)
+

(
−Ĝ

−
S (E)

2
− Ĝ+

S (E)

2

)
= iπD̂S(E)− Ĝ<S (E), (18)

for which we have defined the matrix Ĝ<S (E) = 1
2
(Ĝ−S (E) + Ĝ+

S (E)). Inserting equations 17
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and 18 in equations 15 and 16, we arrive at

∫
[Σ̂<(E)Ĝ−S (E)− Ĝ+

S (E)Σ̂<(E)]LCdE =

iΓ

2
P̂L ·

∫
fL(E)D̂S(E)dE · P̂C +

Γ

2π
P̂L ·

∫
fL(E)Ĝ<S (E)dE · P̂C =

iΓ

2
ρ̂0LLC +

Γ

2π
Ω̂L
LC . (19)

Similarly ∫
[Σ̂<(E)Ĝ−S (E)− Ĝ+

S (E)Σ̂<(E)]CLdE =
iΓ

2
ρ̂0LCL −

Γ

2π
Ω̂L
CL (20)

where we have introduced the matrix Ω̂L/R =
∫
fL/R(E)Ĝ<S (E)dE. The terms involving the

right lead can be treated on the same footing, to obtain an analogous result but incorporating

the reference density and Ω̂ corresponding to the right region,

∫
[Σ̂<(E)Ĝ−S (E)− Ĝ+

S (E)Σ̂<(E)]RCdE =
iΓ

2
ρ̂0RRC +

Γ

2π
Ω̂R
RC (21)

∫
[Σ̂<(E)Ĝ−S (E)− Ĝ+

S (E)Σ̂<(E)]CRdE =
iΓ

2
ρ̂0RCR −

Γ

2π
Ω̂R
CR. (22)

To complete the derivation, we consider the two remaining blocks that couple both leads

together (LR, RL):

∫
[Σ̂<(E)Ĝ−S (E)−Ĝ+

S (E)Σ̂<(E)]LRdE =
Γ

2π

∫ (
fL(E)P̂LĜ

−
S (E)P̂R − fR(E)P̂LĜ

+
S (E)P̂R

)
dE

=
Γ

2π
P̂L ·

∫ (
fL(E)Ĝ−S (E)− fR(E)Ĝ+

S (E)
)
dE · P̂R. (23)

The expression within the brackets can be rewritten introducing relations 17 and 18 to
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elicit the reference density and omega matrices,

∫ (
fL(E)Ĝ−S (E)− fR(E)Ĝ+

S (E)
)
dE

=

∫ (
iπfL(E)D̂S(E) + fL(E)Ĝ<S (E) + iπfR(E)D̂S − fR(E)Ĝ<S

)
dE

= iπρ̂0LS + Ω̂L
S + iπρ̂0RS − Ω̂R

S , (24)

leading to the following result:

∫
[Σ̂<(E)Ĝ−S (E)− Ĝ+

S (E)Σ̂<(E)]LRdE =
iΓ

2

(
ρ̂0LLR + ρ̂0RLR

)
+

Γ

2π

(
Ω̂L
LR − Ω̂R

LR

)
(25)

which combines the left and right probes populated matrices. The RL block is treated

analogously, to obtain:

∫
[Σ̂<(E)Ĝ−S (E)− Ĝ+

S (E)Σ̂<(E)]RLdE =
iΓ

2

(
ρ̂0LRL + ρ̂0RRL

)
+

Γ

2π

(
Ω̂R
RL − Ω̂L

RL

)
. (26)

Thus, the third term in equation 5 can in matrix form be written as:

∫
[Σ̂<(E)Ĝ−S (E)− Ĝ+

S (E)Σ̂<(E)]dE

=
iΓ

2


2ρ̂0LLL ρ̂0LLC ρ̂0LLR + ρ̂0RLR

ρ̂0LCL 0 ρ̂0RCR

ρ̂0LRL + ρ̂0RRL ρ̂0RRC 2ρ̂0RRR

+
Γ

2π


0 Ω̂L

LC Ω̂L
LR − Ω̂R

LR

−Ω̂L
CL 0 −Ω̂R

CR

Ω̂R
RL − Ω̂L

RL Ω̂R
RC 0

 (27)

where the first matrix on the right hand side will be referred to as the “region-weighted

reference density matrix”, or simply reference density matrix.
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Finally, collecting all the pieces together, the HP master equation can be rewritten in

the following way:

˙̂ρ(t) = − i
~

[ĤS, ρ̂S(t)]− Γ

2~


2(ρ̂LL − ρ̂0LLL) ρ̂LC − ρ̂0LLC 2

(
ρ̂LR −

ρ̂0LLR+ρ̂0RLR

2

)
ρ̂CL − ρ̂0LCL 0 ρ̂CR − ρ̂0RCR

2
(
ρ̂RL −

ρ̂0LRL+ρ̂
0R
RL

2

)
ρ̂RC − ρ̂0RRC 2(ρ̂RR − ρ̂0RRR)



− iΓ

2π~


0 Ω̂L

LC Ω̂L
LR − Ω̂R

LR

−Ω̂L
CL 0 −Ω̂R

CR

Ω̂R
RL − Ω̂L

RL Ω̂R
RC 0

 (28)

We have thus arrived at a mathematical structure that is very similar to that of the

DLvN scheme as presented in equation 4. By this we mean that the second term has the

form of a block-weighted difference between the current time dependent density matrix and

a reference density matrix. The implications of the definition of this reference matrix and

the impact of including or excluding the remaining Ω-term are analyzed in the remainder of

this work.

3 Equations of motion, model systems, and time prop-

agation

In what follows we assess and compare the performance of three different implementations of

the HP equation of motion: (i) the full formula 28; (ii) a version excluding the Ω-term; and

(iii) same as (ii), but where the region-weighted reference density matrix is computed using

a step-shaped field encoding the bias potential. In the latter, notice that ρ̂0L and ρ̂0R are the

same matrix ρ̂0, corresponding to the polarized density in the presence of a step-field, and

thus the equation of motion becomes identical to equation 4. These three schemes (i), (ii)

and (iii), will be referred to as “full-HP”, “partial-HP”, and “step-potential” methods, or, for
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short, F-HP, P-HP, and ST-P, respectively. As mentioned above, the mathematical structure

of the P-HP approach resembles closely the one of the DLvN equation 4, implemented in

this study as the ST-P method. In particular, the driving term arising in the HP formula

reinstates the damping of the coherences to the equilibrium values. In this sense, the ST-P

scheme can also be thought of as an approximation to the P-HP method with an alternative

reference density matrix. The motivation to explore it is to bypass the calculation of Green’s

functions, which becomes especially appealing in the context of ab-initio Hamiltonians.

For comparison purposes, we also consider in this work the alternative form of DLvN

given by equation 3, which hereafter will be referred to as DLvN-z, whereas the version in

equation 4 will be denoted as DLvN-e (since these two equations damp the lead-molecule

coherences to zero and to their equilibrium values, respectively). It is important to note

from this is that “ST-P” and “DLvN-e” refer to the exact same method: we will in general

use the first notation when comparing only with other HP-derived methods, and the second

one when also including the other version of the DLvN equation.

To examine the performance of these different equations of motion, a series of model

systems were chosen as case studies in numerical simulations. All these systems consist of

linear chains of atoms arranged in different spatial configurations (see below). The electronic

structure is represented by a tight-binding Hamiltonian with an orthonormal one-electron

basis, using the model presented by Sutton and co-workers27 (other possible, more elaborate

electronic models are discussed in26). This scheme adopts a single orbital |j〉 per atom (or

site), coupled with each other by nearest-neighbour hopping terms that only depend on the

distance between sites. The onsite energies will in general be identical for all atoms, except

in the “disordered” model (see below), or in the presence of an external field used to obtain

the reference matrix.

For the HP method, the potential difference ∆V between the left and right probes de-

termines the Fermi-Dirac distributions according to the corresponding electrochemical po-

tentials µL = +∆V/2 and µR = −∆V/2. The presence of an external field (to generate the
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reference density to be used either in the modified HP or the DLvN schemes) is simulated

through the modification of the onsite energies. The shape of this field is a matter of analy-

sis in section 6, but for the simulations in sections 4 and 5, constant values of +∆V/2 and

−∆V/2 were used for the atoms in the left and right leads (respectively), whereas the onsite

energies of the atoms in the device were left unmodified.

The time integration of the equations of motion for the electrons was performed by using

a simple Leapfrog algorithm, and for all the simulations presented in this work the time-step

chosen was of 0.005 fs. The driving term was weighted by an extra time dependent factor

that grows linearly from 0 to 1 in the first few steps of the propagation. Tests were performed

to check that the time step and the slope of the initial ramp did not affect the shape of the

current.

Simulations were performed on three basic systems characterized by the configuration

of their central region (C). In all systems the electrodes L and R are made of 200 atoms,

except for some results shown in section 7 in which shorter leads of 50 atoms were explored.

In all cases the systems are metallic, exhibiting a half-filled conduction band. These three

systems are:

• Ballistic: all atoms in the system (S) are equally spaced by 2.5 Å, involving a hopping

integral of -3.88 eV (which corresponds to the tight-binding reference parameters for

gold27). The on-site energy is the same for all atoms. There are 21 atoms in the central

region C.

• Disordered: this system has the exact same geometry as the ballistic (same number of

atoms all equally spaced), but with a different on-site energy for every atom belonging

to the central region C. These different on-site energies were randomly generated using

a homogeneous distribution with values between plus and minus the absolute value of

the hopping term above.

• Resonant: all sites are equally spaced as in the previous cases, with the exception of
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two distances separating a group of 15 atoms in the center of the device, from two

groups of 9 atoms on each end, connected to the electrodes. All of these belong to the

C region, as can be seen in Figure 1. These two bonds were 0.5 Å longer than the rest.

The on-site energies are the same for all atoms, but the hopping terms of the longer

bonds are -1.88 eV.

Figure 1: Scheme of the resonant system. All on-site energies are the same.

Modified versions of the resonant system were later used in section 6. Instead of having a

9-15-9 configuration of the central region (with the dash standing for the longer separation),

these are 9-45-9 and 30-15-30.

4 The components of the driving term and their role

Figure 2 depicts the current as a function of time for transport simulations based on the

F-HP, P-HP, ST-P (or DLvN-e), and DLvN-z methods. It is seen that the currents reach

a stable steady state, regardless of the method, model system, and the value of Γ. The

upper, middle and lower panels of Figure 2, correspond to the ballistic, the resonant, and

the disordered models, respectively, for an applied bias of 1.5 V (the same stable behavior

is found for other bias). Left and right panels show the currents for Γ equal to 0.1 eV and

0.6 eV. It can be seen that for large couplings, the steady state is reached faster, and that

in none of the cases is there any ambiguity in the identification of the final current, since it

typically converges to a precise value within the first 10 - 40 fs of dynamics, depending on

Γ. While the figures present the current for the initial 400 fs, most of the simulations have

been evolved for up to 1 ps, without the detection of instabilities.
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Figure 2: Current as a function of time obtained for a bias of 1.5 V with the three different
implementations of the hairy-probes method (including the so called DLvN-e, given by equa-
tion 4), and with the Driven Liouville-von Neumann formula given in equation 3 (DLvN-z).
The upper, middle and lower panels, correspond to the ballistic, the disordered, and the
resonant models, respectively. Left and right panels show the currents for Γ equal to 0.1 eV
and 0.6 eV.
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Figure 3 presents the steady state current-voltage curves obtained from the three methods

deriving from HP. For the ballistic system all three approaches show only marginal differences

between each other, which become negligible in the low bias region. The same is true for

the disordered case. In both kinds of model system, the differences in the steady-state

currents resulting from the three methods are below 5%, and typically much less than this

at low biases. Somehow curiously, the scheme based on the step-potential reproduces more

accurately the response of the full HP method, despite the difference in their reference

densities. This suggests the existence of a compensation mechanism through which the step-

generated reference density matrix balances the absence of the Ω̂ contribution. A possible

explanation can be found in its higher polarization, as discussed below.

The I − V curves in the resonant system display a more complex behavior. The P-HP

and ST-P equations of motion still reproduce the currents of the full HP method, but with

slightly larger deviations. Here, these appear to be comparable in the P-HP and in the

ST-P method. The latter scheme produces in all three systems, for a given bias, higher

currents than the first one. This trend was confirmed also in exploratory calculations for

other resonant systems with variable separation between atoms: the step-potential yields

systematically larger steady states currents than the P-HP method for a fixed potential

difference. This might be related to the fact that in the case of a reference density generated

from an abrupt step-field, the device is subject to a larger effective bias than in the case

of a smoother reference density constructed from the Green’s functions. In other words,

the action of the field, through the direct modification of the on-site energies, affects more

severely the density matrix of the electrodes when compared to the HP method, in which

the electrochemical potential at the leads is controlled via the coupling with external probes

according to γ. This is consistent with the eigenstates populations plotted in Figure 4. The

full and the P-HP simulations produce a manifold of partially occupied states, both methods

exhibiting essentially no differences from each other. When the reference density derives

from the step-wise potential, instead, the eigenvalues of the density matrix are 0 or 1, with a
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Figure 3: Current as a function of the applied bias, computed in the steady state from
quantum dynamics simulations based on the three different implementations of the hairy-
probes method. Results are shown for the ballistic (top), disordered (center), and resonant
(bottom) model systems.
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small fraction of states associated with intermediate occupations. This circumstance reflects

a lower electronic temperature and a more drastic polarization in the ST-P approach arising

from a highly perturbed ρ̂0, in comparison with the other two treatments. On the other hand,

in the former there are a few states that violate the Pauli’s principle, bearing negative, or

larger than unity occupations. The results in Figure 4 correspond to the resonant system,

but analogous behavior is found for the ballistic and resonant models. The behavior of the

eigenvalues for the different schemes, including the one in equation 3, is further discussed in

the final section.

5 Effect of the Γ parameter

The question of the proper value of Γ is an interesting problem that has been investigated

recently,26 but has not been entirely settled. In the context of the DLvN approach, it has been

argued in the literature that the magnitude of the driving rate should be somewhere between

the energy spacing separating the lead levels, and the effective device-lead coupling.20 If Γ

is too high, the target density is enforced in the lead sections too tightly to allow for an

appropriate response and relaxation at the interface. As a consequence, in this regime the

current is a decreasing function of Γ (see e.g. refs. 20 , 16 , 22). Moreover, when Γ is too low,

the relaxation process in the leads is not sufficiently fast to allow for the electronic density

in the leads to reach ρ̂0. The net effect in this case can be assimilated to a situation in which

the leads are disconnected or weakly connected to the reservoirs and the system approaches

a microcanonical regime.

On the other hand, in the context of hairy probes Γ depends on the system parameters d

and γ, where d is the probe surface density of states and γ the matrix element coupling the

sites at the electrodes with the external probes. While the value of d can be defined to fit the

density of states of the device, there is no particular criterion to uniquely assign the value of

γ. In principle, in the wideband limit it is expected to satisfy the second requirement listed
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Figure 4: Temporal evolution of the eigenvalues of the density matrix for the resonant model
system, computed using the full HP (top), P-HP (center), and ST-P (bottom) methods.
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above for Γ in DLvN: it must be larger than the mean energy level spacing in the leads, to

ensure an effective broadening of the electronic states and hence a metallic behavior of the

electrodes. In the present case this implies a lower bound for Γ of around 0.1 eV.

Figure 5 illustrates the effect of Γ on the I − V plots in the case of the resonant system,

also showing the derivatives of the current (conductance) in the insets. We chose this system

because in its case the I−V curve displays a distinctive physical pattern, and the discrepan-

cies between the three approaches are more significant than in any other model, both facts

making improvements easier to identify. Indeed, these discrepancies tend to fade away as Γ

decreases from 0.6 to 0.1 eV (within this range Γ remains larger than the mean energy level

spacing in the leads, of 0.078 eV). Interestingly, the insets reveal that conductances derived

from the ST-P methodology turn out to be more rugged than in the other methods. This

can be attributed to the presence of the self-energy in the Green’s functions, that, provided

Γ is larger than the energy level spacing in the electrodes, screens the far ends of the system

in the case of the F-HP and P-HP methods. In the absence of the self-energy, finite size

effects manifest in the form of interference oscillations. As a matter of fact, for a small Γ the

wiggles are visible in all three curves (see the inset on the right panel of Figure 5), because

the screening effect dilutes as the Green’s function carries a dependence on this parameter in

the denominator. The insets also reveal that a large Γ value tends to damp the resonances

in the ST-P case, which are otherwise intact for Γ = 0.1 eV.

The currents obtained for a bias of 1.5 V are depicted as a function of Γ in Figure 6,

where it can be seen that the agreement between methods is progressive as the parameter

gets smaller. Additionally, this Figure shows that all approaches are relatively robust against

the variation of Γ, in particular the full HP scheme, for which the change in the steady state

current is just 2% when this parameter is reduced by a factor of six.

In the F-HP and P-HP dynamics, the effect of Γ arises not only from the multiplication

of the driving terms, but also because the reference matrices ρ̂0 and Ω̂ are all functions

of Γ through the self-energy and the Green’s function (see equations 6 and 8). Therefore,
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Figure 5: Steady state current as a function of the applied bias computed with the three
different implementations of the hairy-probes method, for two different values of the Γ pa-
rameter: 0.6 eV (left panel) and 0.1 eV (right panel). The results correspond to the resonant
system. For a better comparison, the derivatives are shown in the insets.

Figure 6: Steady state current as a function of the Γ parameter, computed with the three
different implementations of the hairy-probes method. The shown results correspond to the
resonant system with an applied bias of 1.5 V.
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it becomes relevant to check how the structure of these matrices change when varying the

value of Γ. Figures 7 and 8 show that the elements of these matrices exhibit a slight inverse

dependence on Γ, which, as mentioned above, limits the spatial range of the Green’s functions

and reference density matrices in the electrode region, in a way that has no analogue in ST-P.

This spatial damping is visible on Figures 7 and 8.

Figure 7: Color maps representing the structure of different blocks of the Ω̂ matrix for
different values of the Γ parameter, computed for the resonant system. Top panels: LC
blocks. Bottom panels: LR blocks. Left panels: Γ=0.1 eV. Right panels: Γ=0.6 eV. The
colors reflect the absolute values of the matrix elements, in a natural logarithmic scale. This
matrix determines the difference between the F-HP and P-HP schemes.

In particular, the magnitude of the Ω̂ contribution is responsible for the difference between

the F-HP and P-HP methods. All diagonal blocks of the Ω̂ matrix are identically zero, and

hence only the LC and LR blocks are depicted in Figure 7 (the remaining blocks, CL, RL,

RC and CR are similar). The off-diagonal elements of Ω̂ are of the same order of magnitude

as those of the reference matrix ρ̂0. Yet, the impact of the former matrix on the dynamics is
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Figure 8: Color maps representing the LL block of the reference density matrix ρ̂0 in the
F-HP and P-HP methods, for different values of the Γ parameter, in the case of the resonant
system. Left panel: Γ=0.1 eV. Right panel: Γ=0.6 eV. The colors reflect the absolute values
of the matrix elements, in a natural logarithmic scale.

only secondary because it has zeros throughout its diagonal blocks, which is where ρ̂0 gives

the highest contribution. In spite of its seemingly small importance in numerical terms,

though, the presence of the Ω̂ matrix appears to balance the effect of ρ̂0 in the current,

furnishing the full HP method with a reduced sensitivity with respect to Γ.

Figure 9 displays the difference between the reference density matrices in the P-HP and

ST-P methods. Given that in the latter this matrix is independent of Γ, Figure 9 just reflects

the effect of this parameter on the hairy probes reference density. Interestingly, since the

decrease of Γ tends to relax the spatial damping of the P-HP reference density, which is in

any case absent from the step-field generated ρ̂0, both matrices become with such a decrease

more similar to each other. The agreement between these two approaches at low Γ is manifest

in the behavior of the currents in Figures 5 and 6.

As mentioned in the introduction, Zelovich and co-workers proposed a method for the

computation of a set of broadening factors that are applied to the lead states. In this way, the

rate parameter Γ is replaced by diagonal matrices Γ̂L and Γ̂R, with dimensions given by the

number of basis sets associated with the leads. The calculation of these matrices involves a

self-consistent procedure to extract from the self-energy of the isolated lead, the broadening

factors that afterwards must be assigned to the corresponding levels of the lead coupled to
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Figure 9: Color maps representing the LL block for the difference between the reference
density matrices of the P-HP and ST-P methods, for the resonant system and different
values of the Γ parameter. Left panel: Γ=0.1 eV. Right panel: Γ=0.6 eV. The colors reflect
the absolute values of the matrix elements.

the reservoir. Whereas this procedure is somehow involved, the Γ̂ matrices are transferable to

any calculation using the same lead model, and the propagation of the dynamics represents

a negligible additional computational cost. The authors rationalized the magnitude of the

resulting broadening factors Γi by invoking Fermi’s golden rule for a single lead level coupled

to a reservoir, which gives a value determined essentially by the coupling matrix element

between lead and reservoir states. This is precisely the meaning of γ in the context of hairy

probes. In any case, this treatment was shown to be of importance in particular when the

DOS of the leads is inhomogeneous in the vicinity of the Fermi energy. However, the effect

of considering a single rate parameter instead of one per level was shown negligible in simple

tight-binding models as the present one, where the DOS is uniform around the Fermi energy.

As a matter of fact, the authors reported that the adoption of the maximal broadening value

calculated for such systems using their procedure as the single driving rate, produces current

traces and steady-state occupations almost indistinguishable from those obtained using the

parameter-free DLvN method.
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6 Generation of the reference density

The encouraging results obtained with the ST-P implementation raise the question of whether

it is possible to better reproduce the F-HP dynamics with a truncated equation of motion,

through the optimization of the reference density. This pathway is considered in the present

section, using the shape of the electric field as a tool to prepare ρ̂0, although other strategies

could be adopted as for example the state representation of Hod and co-workers.16

We initially compare the results obtained with a step-like potential, with those corre-

sponding to a ramp, a sigmoidal decay, and a double sigmoidal decay at the start and the

end of the central region. These different patterns are illustrated in Figure 10. The analysis

of the reference matrices generated in this way did not reveal any significant improvement in

the description of the full hairy probes density, with the exception of a very slight increase

in similarity for those matrix elements lying in the proximity of the central region. This

improvement was most noticeable in the case of the sigmoid field (denoted as “SI-P”), as

can be visualized in Figure 11.

As a matter of fact, the adoption of the sigmoidal field proved to be at least as good as

the step potential, when not better, to reproduce the I − V plots. Figure 12 presents these

curves for three resonant systems exhibiting different morphologies. Aside from the original

structure displayed in Figure 1, two other models were examined in which the number of

atoms in either the central or the lateral segments was extended. The value of Γ was fixed to

0.6 eV, for which the disagreement between methods was most noticeable. For the standard

resonant system the performances obtained from the step or the sigmoidal potentials are

comparable. The same is true for the alternative resonant model with a longer intermediate

region, for which no significant differences are found between the results yielded by either

method. However, in this case the description provided by these two approaches is manifestly

worse. In this sense, it is noteworthy that the P-HP scheme is still able to capture the main

features of the full hairy probes curve. On the other hand, in the third model where the

device bears longer lateral segments, the reference calculated with the sigmoidal potential
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Figure 10: Shapes of the different electric fields applied to generate the reference density. L,
C, and R, represent the left electrode, central, and right electrode regions, respectively.

Figure 11: Color maps representing the LL block for the difference between the reference
density matrix of the full HP method with the one generated with a step field (left), or the
one generated with a sigmoidal field (right). Data corresponding to the resonant system for
Γ=0.6 eV. The colors reflect the absolute values of the matrix elements.
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outperforms the one calculated with the step-like field.

7 The two different forms of the Driven Liouville-von

Neumann formula

Equations 3 and 4 are two expressions of the DLvN approach, both of which had an heuristic

origin, and for which different formal derivation routes have been proposed. From a mathe-

matical point of view, the difference between these two formulas is found in the off-diagonal

elements of the driving term: while in equation 3 these damp the lead-device coherences to

zero, in equation 4 coherences are pushed towards their equilibrium values. Their derivations

involve different approximations and assumptions, and it is of particular interest to compare

the paths that lead to one or the other. This is the goal of the present section, where the

performances of the two schemes are also confronted.

It is possible to identify three assumptions or approximations specific to one or the other

formula, that explain their different mathematical structures:

1. In equation 3, the explicit lead levels are in contact with an implicit fermionic reservoir,

for which coupling the wideband limit is assumed. Equation 4 is in turn a truncation

of the hairy probes formula, where the leads are coupled to a set of probes in which

the wideband limit holds. The latter procedure broadens but preserves the electronic

structure of the (finite) leads adjoining the central region.

2. To arrive to DLVN-z, it is assumed that the relaxation dynamics in the leads is inde-

pendent of the presence of the device. This amounts to the zeroth-order approximation

of the Green’s functions in which Gadv and Gret commute with the leads subspace pro-

jector Q. This step eventually leads to the disappearence of ρeq in the last term of

equation 36 in the work by Franco et al.20 Interestingly, the same result would also be

obtained e.g. from equations 15 or 16 of our manuscript, if P̂L or P̂R were assumed
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Figure 12: Steady state currents as a function of the applied potential, computed with
different implementations of the hairy-probes method with Γ = 0.6 eV. Results are shown
for the resonant system with different arrangements of the atoms in the central region: 9-15-9
(top), 9-45-9 (center), and 30-15-30 (bottom).
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to commute with the Green’s functions Ĝ±S . In such a case, these contributions would

vanish, suppressing ρ0L and ρ0R from the off-diagonal elements of the equation of mo-

tion, and thus giving rise to a driving term analogous to DLvN-z. Thus, the damping

of the coherences either to zero or to equilibrium is related to this approximation in

the Green’s functions, which physically translates into an independency of the electron

dynamics in the leads with respect to the device.

3. Finally, the Ω̂ terms are dropped from the HP expression to arrive at DLvN-e. These

terms arise from the Green’s functions keeping track of the forward time-propagation

of carriers coming from the probes. Thus, they introduce a propagation sense to the

injected lead-device charge. Its suppression must imply a drop in the current, as is

certainly observed in the simulations.

In ref.22 it has been reasoned that while DLvN-z represents a device between electronic

reservoirs at equilibrium with well-defined chemical potentials, DLvN-e resembles the state

of a charged capacitor, where the target density represents the equilibrium state of the entire

finite junction model and not just the leads. This seems to be consistent with the origins of

each of these schemes, that have now come to light. Figure 13 depicts the current-voltage

curves for the two DLvN approaches, together with the results of the HP method. At

small couplings it can be seen that the performance of any of these methods is essentially

indistinguishable from each other. As the Γ parameter is increased, discrepancies start to

emerge.

DLvN-z has been shown to observe Pauli’s principle regardless of the initial conditions.16

It is interesting to note that, while the hairy probes scheme also fulfills Pauli’s principle at

long times (by construction), it does not necessarily obey it in the transient. This can be seen

in Figure 14, which displays the occupations for F-HP, P-HP, DLvN-e, and DLvN-z in the

resonant system. It must be recalled that in all these schemes, the dynamics is switched on

smoothly, to avoid sudden jumps which could lead to numerical discontinuities. Specifically,

the driving term and the Ω term are introduced in the first part of the simulation using a
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Figure 13: Steady state current as a function of the applied bias computed with the two
forms of the DLvN equation and with the hairy-probes method. The top panel presents the
data corresponding to the ballistic (left) and disordered (right) systems, for Γ equal to 0.6
eV. The bottom panel shows the results for the resonant system with Γ equal to 0.6 eV (left)
and 0.1 eV (right).
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linear ramp. For F-HP, the positive and negative deviations from 1 and 0 respectively—

which become smaller with a smoother ramp—disappear in the long term. When the Ω

term is suppressed from the F-HP scheme, the dynamics and in particular the occupations

are affected but the exclusion principle is still obeyed in the steady state. However, if

the reference density matrix is replaced by the one obtained from an electric field to give

the DLvN-e approach, the violation to the exclusion principle persists even in the steady

state. This is not observed with the DLvN-z method, for which the exclusion principle is

satisfied throughout the full dynamics, despite the adoption of the same ρ̂0 as in DLvN-

e. Interestingly, this makes manifest that the observance of Pauli’s principle is determined

neither by Ω nor by the reference density, but by their combination.

Figure 14: Temporal evolution of the eigenvalues of the density matrix for the resonant
model system. The top row corresponds to the full HP method where the driving term was
appplied gradually using ramps of different durations: 5.0 fs, 12.5 fs and 25.0 fs (from left to
right). The bottom row compares the behavior found with the other methods using a ramp
of 5.0 fs: the P-HP (left), the DLvN-e (center) and the DLvN-z (right) schemes. Part of this
data has been already given in a different size scale in Figure 4.

Finally, Figure 15 explores the effect of Γ and of the electrode size on the currents, using
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the resonant model. The bottom left panel shows that the HP method, consistently with

its physical origin, is particularly robust with respect to electrode size and Γ. In the case of

an electrode of 50 atoms, significant deviations in the current are observed only for Γ <0.2

eV. The two upper panels depict the I-V curves for the DLvN-e and DLvN-z approaches,

compared with the F-HP method. In both cases it can be observed that the reduction

of the electrode size to 50 atoms affects the currents. The agreement with F-HP improves

marginally as Γ decreases, until it breaks down when this parameter falls below the wideband

limit, which in this case is higher since the energy level spacing becomes larger with smaller

leads. This distortion in the currents is less critical in the DLvN-e approach. In particular,

the bottom right panel displays the difference between the benchmark F-HP current (Γ=0.6

eV, 200 atoms in the leads) and the currents produced by the DLvN approaches (Γ=0.3 and

50 atoms in the leads). It can be seen that deviations tend to be larger for DLvN-z, whereas

the DLvN-e approach, inheriting the mathematical structure from F-HP, copes better with

the shortening of the electrodes.

To summarize, the two forms of the Driven Liouville-von Neumann equation produce

similar results, reproducing the hairy probes method provided large values of Γ are avoided.

The most noticeable difference is that, whereas DLvN-z observes Pauli’s principle, DLvN-e

does not. At the same time, in some situations the DLvN-e equation is more tolerant to a

decrease of electrode size, as discussed in ref.22 , which is a consequence of the robustness

of the HP method from which it is descended.

8 Summary and final remarks

In this article, it was shown that the Green’s functions based multiple-probes—or hairy

probes—formalism, adopts a form equivalent to the heuristic Driven Liouville-von Neumann

method as proposed in reference 22 (equation 4), plus an additional term involving a matrix

(Ω̂) with null diagonal blocks. A distinctive feature of this form of the DLvN equation
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Figure 15: Effect of electrode size and of the Γ parameter on the current-voltage curves
obtained for the resonant model. Top panels present in black the curve obtained from F-HP
with 200 atoms in each lead and Γ=0.6 eV (labelled ref), in comparison with the curves
computed using 50 atoms leads and different Γ values for the DLvN-e (left) and DLvN-
z (right) methods. We also include the behaviour of the F-HP method with the small
electrodes and varying Γ (bottom left). The bottom right panel displays, for DLvN-e and
DLvN-z (Γ = 0.3 eV), the difference with respect to the F-HP current (obtained with Γ =
0.6 eV).
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of motion is that, at variance with the previous versions introduced in references 13 or

16 , the coherences are damped to the equilibrium density. It has been argued that in this

approach the electrodes are not meant to represent infinite reservoirs with homogeneous

and well defined chemical potentials. Instead, through the action of the driving operator,

the leads are driven close to, rather than exactly to, the target density.22 This is parallel

to the physics in the HP model, where the electrodes are connected to multi-probes with

electrochemical potentials µL/R. The electrochemical potential of the lead is not necessarily

that of the probes but depends on the strength of their coupling (and on position down the

lead). These particular boundary conditions of the HP method are reminiscent of those in

the DLvN implementation of equation 4 and demonstrated to be well suited for small size

electrodes.22

To neglect the Ω̂ matrix in the driving term of the HP formula has minor effects on

the dynamics and the steady state currents obtained for a variety of model systems. These

effects are even less significant when the coupling between the probes and the leads is reduced

by decreasing the Γ parameter. More specifically, our results show that the P-HP method

can reproduce the behavior described by the full HP scheme for ballistic and disordered

systems, and with some care it can also be tuned for more complicated resonant systems. In

general, at least in the context of tight-binding Hamiltonians, it is possible to conclude that

the DLvN method, incarnated here in the P-HP or ST-P equations of motion, converges

to the hairy probes description in the limit of small couplings between the probes and the

leads (providing Γ is still larger than the energy level spacing). The P-HP method can

be thought of as a version of the DLvN approach in which the calculation of the reference

density is based on Green’s functions. The ST-P method, on the other hand, reproduces the

formulation presented in reference 22 . It has proved to be a very good approximation to the

full HP description, but the finite size effects which manifest in the absence of a self-energy

imply a limitation in comparison with the P-HP approach that seems difficult to overcome.

The possibility to avoid the calculation of Green’s functions acquires special interest for
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the applications in the context of TDDFT or other first-principles schemes. In that respect,

we explored the substitution of the reference density computed from Green’s functions in

the P-HP method, by the one emerging from an electric field applied to the system. This

strategy systematically produced higher currents than the P-HP method, presumably be-

cause the application of a field, in the present setting, amounts to an additive constant in

the density matrix elements, whereas in the HP scheme the chemical potential is fixed at an

external probe and not directly on the leads, whose polarization is mediated by a coupling

parameter. The effective bias arising between the electrodes in operation conditions may

thus not be as large as the one imposed by the field. Further sources of improvement for the

region-weighted field-generated reference density method proved hard to find. Our results

here seem to suggest that the step and sigmoideal shapes fields can better fit those parts of

the reference matrices at the boundary with the device, providing the most accurate repre-

sentations of the current in comparison with the other fields tested. Whereas the ballistic

and disordered models could be described reasonably well with the ST-P and SI-P schemes,

the resonant systems proved to be challenging for those methods using electric-field based

reference densities. This limitation becomes particularly relevant for TDDFT applications,

where the complexity of the chemical structures, far from the simple tight-binding models

examined in the present work, may lead to stronger discrepancies between the results ob-

tained using a reference density generated from Green’s functions or from an electric field.

It would be interesting to establish how the different reference densities and the omission of

the Ω̂ matrix affect the dynamics in the case of first-principles simulations. That question

will be the subject of future work.

Acknowledgement

This work was supported by a research grant from Science Foundation Ireland (SFI) and the

Department for the Economy Northern Ireland under the SFI-DfE Investigators Programme

36



Partnership, Grant Number 15/IA/3160, by the Argentinean Agency for Scientific and Tech-

nological Promotion (ANPCYT) through PICT 2015-2761, and by the University of Buenos

Aires, UBACYT 20020160100124BA. We are grateful to Uriel Morzan for very appreciated

discussions.

References

(1) Landauer, R. Spatial Variation of Currents and Fields Due to Localized Scatterers in

Metallic Conduction. IBM J. Res. Dev. 1957, 1, 223–231.

(2) Buttiker, M. Four-Terminal Phase-Coherent Conductance. Phys. Rev. Lett. 1986, 57,

1761.

(3) Brandbyge, M.; Mozos, J.-L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-Functional

Method for Nonequilibrium Electron Transport. Phys. Rev. B 2002, 65, 165401.

(4) Kosov, D. S. Lagrange Multiplier Based Transport Theory for Quantum Wires. J.

Chem. Phys. 2004, 120, 7165–7168.

(5) Goyer, F.; Ernzerhof, M.; Zhuang, M. Source and Sink Potentials for the Description

of Open Systems with a Stationary Current Passing Through. J. Chem. Phys. 2007,

126, 144104.

(6) Koentopp, M.; Chang, C.; Burke, K.; Car, R. Density Functional Calculations of

Nanoscale Conductance. J. Phys-Condens. Mat. 2008, 20, 083203.

(7) Thoss, M.; Evers, F. Perspective: Theory of Quantum Transport in Molecular Junc-

tions. J. Chem. Phys. 2018, 148, 030901.

(8) Kurth, S.; Stefanucci, G.; Almbladh, C.-O.; Rubio, A.; Gross, E. K. U. Time-Dependent

Quantum Transport: A Practical Scheme Using Density Functional Theory. Phys. Rev.

B 2005, 72, 035308.

37



(9) Burke, K.; Car, R.; Gebauer, R. Density Functional Theory of the Electrical Conduc-

tivity of Molecular Devices. Phys. Rev. Lett. 2005, 94, 146803.

(10) McEniry, E. J.; Bowler, D. R.; Dundas, D.; Horsfield, A. P.; Sánchez, C. G.;

Todorov, T. N. Dynamical Simulation of Inelastic Quantum Transport. J. Phys-

Condens. Mat. 2007, 19, 196201.
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