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Abstract 
Purpose of Study: To evaluate the left superior pulmonary venous ridge 

length (RL) and the left atrial appendage fractal dimension (LAA FD) as 
predictors of cardioembolic ischemic stroke (CVA) and transient ischemic attack 
(TIA) in patients with atrial fibrillation (AF).

Materials, Methods and Procedures: A multicenter, retrospective multi-
center study was conducted on patients with AF who underwent cardiac CT 
prior to catheter ablation between 01/01/2010 and 12/31/2015. Patients were 
grouped by presence or absence of prior CVA/TIA. Patients with mitral stenosis, 
prior mechanical aortic valve replacement, ascending aortic arch atheroma, high-
risk patent foramen ovale, history of atrial septal repair or device, preexisting 
LAA thrombus or intra-cardiac tumor, or prior open-heart surgery were 
excluded. Further exclusion was performed for patients with sub-optimal or 
unavailable cardiac CT imaging by investigators blinded to clinical data. Blinded 
investigators obtained RL by measuring the distance between the left superior 
pulmonary venous ostium and the internal ostium of the left atrial appendage. 
LAA FD was calculated using semi-automated volume rendering and processing 
software (ImageJ, Bethesda, MD) [1] and LAA FD are presented as means (95% 
confidence interval) and were compared between groups using unpaired t-tests. 
Logistic regression analysis was used to construct receiver operating curves and to 
assess the abilities of RL and LAA FD to predict prior CVA/TIA.

Results: 225 patients met inclusion criteria. Mean RL were 4.32 (3.80-
4.93) and 5.20 (4.93-5.48) for patients with (n=24; mean age: 59.4; 70.8% male) 
and without (n=165; mean age: 59.3; 75.4% male) prior CVA/TIA, respectively 
(p=0.033). Mean LAA FD were 2.29 (95% CI: 2.24-2.34) and 2.33 (2.32-2.34) 
for patients with (n=22; mean age: 60.3; 68.2% male) and without (n=171; mean 
age: 59.3; 74.9% male) prior CVA/TIA, respectively (p=0.052). In a regression 
model including LAA FD, RL, and established predictive markers, only RL 
predicted prior CVA/TIA (OR 0.73; 0.54 to 0.98; p=0.034).

Discussion: Lower RL values were associated with prior CVA/TIA, whereas 
LAA FD values were similar between patients with AF with and without prior 
CVA/TIA. RL is a novel marker that may refine clinical decision-making 
regarding anticoagulation goals and treatment decisions for patients with AF. 
Future studies with larger samples should investigate the clinical utility of RL 
to improve CVA/TIA risk stratification of patients with AF and prospectively 
reduce the incidence of CVA/TIA in this population.
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Introduction
The mechanism of cardioembolic ischemic stroke (CVA) 

in atrial fibrillation (AF) is well-validated. Among patients 
with AF, left atrial thromboembolism is the mechanism 
underlying CVA in approximately 70% of cases [2] with up 
to 90% of these specifically originating from the left atrial 
appendage (LAA) based on autopsy and radiographic studies 
[3].

Therapeutic anticoagulation is the principle strategy 
used to prevent CVA in patients with AF deemed to be at 
increased risk. The decision to treat is primarily informed 
by a validated clinical decision-making tool known as the 
CHA2DS2-VASc scoring system to estimate an individual 
patient’s annual risk of CVA based on the presence of certain 
risk factors (heart failure, hypertension, age, diabetes mellitus, 
vascular disease, female gender). A CHA2DS2-VASc score of 
2 or greater is considered an indication to initiate therapeutic 
anticoagulation in most patients whereas a score of 0 indicates 
low-dose aspirin monotherapy [2-3]. While well-validated 
in high-risk populations, large retrospective meta-analyses 
have reported poor predictive value for intermediate-risk 
patients, or patients with CHA2DS2-VASc scores of 1 [4, 5]. 
CHA2DS2-VASc scores are similarly imprecise in identifying 
high-risk patients who would receive net clinical benefit from 
long-term anticoagulation [4, 5]. 

Radiographic LAA structural parameters have previously 
been studied to predict CVA/TIA among patients with AF. 
LAA volume has long been considered an independent marker 
of thromboembolic risk in AF [6-8]. Additionally, patients 
with suspected cardioembolic CVA often demonstrated 
increased LAA volume and single-lobed LAA morphology 
[9].

Retrospective studies have identified archetypal LAA 
morphologies (Figure 1) derived from cross-sectional imaging 
and assessed their role in predicting CVA risk in patients with 
AF. Di Biase and colleagues reported a negative association 
between CVA risk and presence of the ‘chicken wing’ LAA 
morphology that persisted when controlling for other risk 
factors in multivariate analysis [10]. One study attributed 
the higher risk ‘chicken wing morphology’ to higher maximal 
LAA empty flow velocity [11]. Significant data heterogeneity 
and imprecision have been cited as major limitations to this 
approach to studying LAA morphology [12]. 

In figure 1, the four originally described archetypal LAA 
morphologies volume-rendered and segmented from cardiac 
computed tomographic angiographic (CCTA) studies. LAA 
reconstructions are designated as windsock, chicken wing, 
broccoli, and cactus morphologies (left to right). Retrospective 
studies have associated lower risk of CVA with presence of the 
chicken wing LAA morphology [10].

Fractal dimensions (FD) are ratios that provide statistical 
indices of complexity by measuring how the complexity of 
each object varies with each measuring scale. FDs have been 
applied to study heterogeneous biological objects derived 
from radiographic and histologic modalities where they have 
been shown to yield highly reproducible and accurate data 
[13]. To the best of our knowledge, the present study is the 
first attempt to apply fractal analysis to evaluate the role of 
LAA morphology in CVA risk among patients with AF and 
to stratify stroke risk in AF. We hypothesize that a higher 
FD reflects a more complex or irregularly structured LAA 
endocardial surface that is more likely to produce abnormal 
blood flow and serve as a nidus for thromboembolism. 
Therefore the LAA FD may be a clinically useful marker of 
CVA risk in patients with AF.

The relationships between the LAA and other 
atrial features have been investigated as predictors of 
thromboembolism in atrial fibrillation [14-22]. LAA “take- 
off ” was defined by Nedios et al. as whether the superior and 
inferior LAA ostial ridges were “higher” or “lower” than the 
respective left superior pulmonary vein (LSPV) and the right 
superior pulmonary vein (RSPV) [17]. Nedios et al. proposed 
a pathophysiologic mechanism of tachycardia-mediated 
thrombogenic flow in patients with superior LAA “takeoff ” 
anatomy, and that inferior LAA “takeoff ” anatomy is protective 
against cardioembolic events in AF [17]. Electrophysiologists 
at [institution blinded] observed variation in both size and 
thickness of the ridge of tissue interfacing between the 
LSPV and the LAA upon review of CCTA studies prior to 
catheter-based ablation procedures. A systematic literature 
review demonstrated no prior studies attempting to classify 
or investigate this structure, and the pulmonary venous ridge 
length (RL) is proposed as the designation of the interface 
between the LSPV and the LAA. 

The purpose of this study is to investigate the abilities 
of the LAA FD and RL to predict CVA and/or transient 
ischemic attack (TIA) in patients with AF.

Methods
A multicenter, retrospective study was performed using 

patients with AF who underwent both cardiac CT and 
catheter ablation between 01/01/2010 and 12/31/2015. 205 
patients from [institution blinded] and 20 patients from 
[institution blinded] were stratified based on the presence or 

Figure 1: Volume-rendered LAA segmentations (left to right): Wind sock 
morphology, chicken wing morphology, broccoli morphology, and cactus 
morphology.
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absence of prior CVA/TIA.

Exclusion was performed based on the presence of mitral 
stenosis, prior mechanical aortic valve replacement, ascending 
aortic arch atheroma, high risk patent foramen ovale, history 
of atrial septal repair or device, preexisting LAA thrombus, 
intracardiac tumor, or prior open-heart surgery. Independent 
investigators blinded to radiographic data completed a 
retrospective chart review for the cohort, obtaining baseline 
characteristics of age, patient sex, and CHA2DS2-VASc scores. 
Corresponding patient CCTA studies were de-identified and 
randomized, and further exclusion was performed on the basis 
of study availability by investigators blinded to clinical data.

Open-source image processing with volume-rendering 
software was utilized (3D Slicer [23]) to analyze CCTA 
studies. On three-view analysis (coronal, sagittal, and axial), 
manual binary selection of cardiac blood pool and non-
contrast phases was performed (Figure 2). A native automated 
thresholding function for total binarization was then applied, 
and a cropped three-dimensional volume was rendered 
following manual cropping by trained investigators at the level 
of each LAA ostium.

Following the generation of a cropped volume and three-
dimensional model, volumes were saved as NRRD files that 
were imported into a custom batch processor (Figure 3) 
leveraging an open source fractal analysis algorithm and Image 
J (NIH [1]) to compute LAA FDs for each segmentation.

Schematic depicting the batch-processing algorithm we 
developed and utilized to generate LAA FD values (Figure 

3). Two-dimensional metrics were instantly compiled using 
custom-designed running summation, average, and standard 
deviation scripts.

The native measurement tool from the open-source 
image processing software (3D Slicer [23]) was utilized to 
measure RL from CCTA studies. RL was measured on axial 
CCTA section as the shortest distance (width) perpendicular 
to the vector direction of the ridge wall extending between 
the LSPV and the LAA (Figures 4-9). Two board-certified 
electrophysiologists and one board-certified cardiothoracic 
radiologist measured RL. Ground truth labels were determined 

Figure 5: RL=3.38 in a patient with prior CVA.

Figure 6: RL=7.17 in a patient with no prior CVA.

Figure 2: Three-view view of CCTA study for binarization and semi-
automated LAA segmentation.

Figure 3: Batch processor schematic of LAA segmentations to generate 
LAA FD values.

Figure 4: RL measurement derived from CCTA measuring shortest length 
(mm) from the LAA to the LSPV perpendicular to axis of the pulmonary 
venous ridge (RL=6.01).
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by mean RLs with consensus measurements. Inter-rater 
variability was not formally statistically evaluated. 

Statistical analyses were performed using Prism 6 
(GraphPad Software, San Diego, CA). The unpaired student’s 
t-test was used to compare continuous variables. Multivariate 

logistic regression analysis was used to identify clinical 
variables predictive of prior CVA/TIA. Classifier values were 
assessed through receiver operating characteristic analysis to 
calculate the area-under- the-curve.

Results
Significantly fewer subjects had histories of CVA/

TIA compared to those without. Baseline study cohort 
characteristics were otherwise similar (Table 1). Mean RL were 
4.32 (3.80-4.93) and 5.20 (4.93-5.48) for patients with (n=24; 

mean age: 59.4; 70.8% male) and without (n=165; mean age: 
59.3; 75.4% male) prior CVA/TIA, respectively (p=0.033). 
Mean LAA FD were 2.29 (95% CI: 2.24-2.34) and 2.33 
(2.32-2.34) for patients with (n=22; mean age: 60.3; 68.2% 
male) and without (n=171; mean age: 59.3; 74.9% male) prior 
CVA/TIA, respectively (p=0.052). In a regression multivariate 
analysis model including LAA FD, RL, CHA2DS2-VASc 
scores, and individual CHA2DS2-VASc scoring criteria, only 
RL was a significant predictor of prior CVA/TIA (OR 0.73; 
0.54 to 0.98; p=0.034) (Table 2).

Discussion
A lower RL predicted prior CVA/TIA in patients with 

AF whereas LAA FD was similar between patients with and 
without prior CVA/TIA.

Our findings serve as proof-of-concept for the semi-
automated workflow developed and utilized to segment 
anatomic structures of interest from standard-of-care cross-

Figure 9: RL=3.53 in a patient with no prior CVA.

Figure 7: RL=5.32 in a patient with no prior CVA.

Figure 8: RL=3.33 in a patient with no prior CVA.

Table 2: LAA FD and RL values and results of statistical analysis (significance defined at α< 0.05).

  Mean (95% CI)          

  Past CVA/TIA No Past CVA/
TIA

P-Value for 
Comparison

Odds Ratio (95% 
CI)

P-Value for 
Regression

Area under the 
curve (AUC)

P-Value for AUC 
= 0.5

LAA 
FD

2.292 2.326 0.0519 0.004 0.0548 0.59 0.2322

(2.243 to 2.341) (2.315 to 2.337) (0.000 to 1.119) (0.517 to 0.660)

RL
4.319 4.319 0.033 0.727 0.0342 0.635 0.0168

(3.796 to 4.842) (4.861 to 5.393) (0.541 to 0.977) (0.564 to 0.702)

Table 1: Study cohort characteristics.

  LAA FD RL

 
Past CVA/

TIA 
n = 22

No Past 
CVA/TIA 

n = 171

Past CVA/
TIA 

n = 24

No Past 
CVA/TIA 

n = 175

Male, No. (%) 15 (68.2) 128 (74.9) 17 (70.8) 132 (75.4)

Age, mean (SD) 60.3 (10.1) 59.3 (10.3) 59.4 (10.6) 59.3 (9.9)

Median 
CHA2DS2-
VASc Score*

2 (1 to 3) 2 (1 to 2) 1.5 (1 to 3) 1 (1 to 3)

Median 
CHA2DS2-
VASc Score* 
(Interquartile 
Range)

2 (1 to 3) 2 (1 to 2) 1.5 (1 to 3) 1 (1 to 3)
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sectional imaging. Custom fractal analysis batch-processing 
soft-ware derived from ImageJ (NIH [1]) created for this 
investigation provides a scalable approach for volumetric 
analysis from large datasets.

RL values were significantly lower in patients with prior 
CVA/TIA and represented the only statistically significant 
parameter in multivariate logistic regression analysis 
incorporating LAA FD and individual parameters from 
the CHA2DS2-VASc scoring system. RL measurements 
involved two-dimensional measurements between two 
iodinated structures and were less work-intensive and less 
sensitive to variations in study quality, in comparison to LAA 
FD calculations which depended upon three-dimensional 
volumetric analysis. Furthermore, RL is feasible to obtain 
using native measurement tools from standard-of- care 
medical imaging digital access platforms such as the PACS 
and therefore can be efficiently reported by radiologists in 
CCTA study reports. Subjective investigator assessments of 
perpendicular axes to each pulmonary venous ridge and the 
shortest distances between the LAA and LSPV represent 
possible sources of variation that should be considered 
in interpreting such data. In this study, ground-truth RL 
measurements were determined by statistical means from 
observers and consensus.

Variations in RL may play a potential role in thrombogenic 
flow within the LAA. The possible presence of muscular bands 
or trabeculated surface irregularity within the pulmonary 
venous ridge could also result in higher risk for thrombus 
formation and subsequent thromboembolism. If RL is shown 
to be a useful marker for thromboembolic risk in AF, then it 
could be utilized for clinical scoring and to direct treatment 
in AF.

Additional feasibility studies are warranted to further 
assess clinical benefit and efficacious value-based resource 
utilization of the time radiologists would spend during 
manual semi-automated segmentation of the LAA to 
ultimately obtain the LAA FD. The role of machine learning 
and fully convoluted neural networks (FCNs) could provide 
an automated, validated solution to LAA segmentation from 
CCTA, as FCNs have already demonstrated success in the 
segmentation of pancreatic structures on CT [24]. 

Nedios et al., proposed “tachycardiac-mediated throm-
bogenic flow” as a possible mechanism for increased 
thromboembolic risk in patients with higher LAA “takeoff ” 
with respect to the LSPV and LIPV [16]. If our findings 
are confirmed in larger prospective studies, future studies 
should investigate differential patterns of left atrial blood 
flow in AF as RL varies through use of modalities such as 
Doppler echocardiography and four-dimensional flow MRI 
to identify a pathophysiologic thromboembolic mechanism 
[25]. Electrophysiological analyses of the conductive features 
of the pulmonary venous ridge may also be helpful to assess for 
the presence of muscular bands or arrhythmogenic foci with 
variant activation frequency within the pulmonary venous 
ridge.

Current clinical scoring criteria using the CHA2DS2-
VASc demonstrates modest efficacy in appropriately indicating 
anticoagulation therapy in AF [5]. The P2-CHA2DS2-VASc 
score has been validated as an improved scoring criterion 
for stroke risk in AF by incorporating abnormal p-wave axis 
from prothrombotic atrial remodeling in stroke risk as an 
additional index for the administration of anticoagulation 
[26]. The primary clinical application of RL would be to 
identify patients with AF at increased CVA risk to achieve 
early initiation of therapeutic anticoagulation. Larger studies 
and further investigation of the pathophysiologic mechanisms 
underlying LA thromboembolism in AF related to the RL 
are necessary to clarify the utility of the RL to inform clinical 
decision-making.

Our relatively small sample size of patients with prior 
CVA/TIA and the overall precision of the LAA FD values 
obtained render meaningful interpretation of our findings 
difficult. The non-significant trend observed in these data 
would suggest that a lower LAA FD is associated with prior 
CVA/TIA, which contrasts with our initial hypothesis and 
established pathophysiologic mechanisms of cardioembolic 
CVA [7]. Variations in CCTA study quality and contrast dose 
imposed artifact and spiculation into the semi-automated 
volume-rendering LAA segmentations. The incorporation of 
variable artifact and spiculation from CCTA studies constitutes 
a confounding variable affecting the internal validity of the 
LAA FD data. The manual cropping of LAA ostia during 
semi-automated volume rendering additionally incorporates 
a subjective component, which also threatens the validity of 
these findings. Based on these findings, the authors conclude 
that larger studies are necessary to clarify the role of the LAA 
FD to predict CVA/TIA in AF.

Conclusion
LAA FD and RL are novel parameters derived from 

standard-of-care CCTA imaging with potential utility to 
refine clinical decision-making for patients with AF. In this 
retrospective study, LAA FD values were similar between 
patients with AF with and without prior CVA/TIA, whereas a 
lower RL predicted prior CVA/TIA. These parameters should 
be further investigated in larger and prospective studies to 
clarify their utilities in refining clinical decision-making for 
intermediate-risk patients with AF. In addition, future studies 
should clarify possible pathophysiologic mechanisms related 
to RL and LA thrombosis.
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