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ABSTRACT 

This thesis presents a robust multi-objective optimal design of four-degree-of-freedom passive 

and semi-active suspension systems. The passive suspension system is used in a racing car and 

the semi-active suspension is implemented on a passenger car.  Mathematical models of the 

commercial and racing vehicle suspension systems are used in the computer simulations. A 

robust multi-objective design of the suspension systems is carried out by considering the 

minimization of three objectives: passenger’s head acceleration (HA), suspension deflection 

(SD), and tire deflection (TD). The first objective is concerned with the passenger’s health and 

comfort. The suspension stroke is described by SD and the tire holding is characterized by TD. 

The optimal design of the passive suspension involves tuning the coefficients of the sprung 

spring and damper, tire stiffness, and inertance of the inerter. Suspension systems’ parametric 

variations are very common and cannot be avoided in practice. To this end, a robust multi-

objective optimization method that takes into consideration small changes in the design 

parameters should be considered. Unlike traditional multi-objective optimization problems where 

the focus is placed on finding the global Pareto-optimal solutions which express the optimal 

trade-offs among design objectives, the robust multi-objective optimization algorithms are 

concerned with robust solutions that are less sensitive to perturbations of decision variables. As a 

result, the mean effective values of the fitness functions are used as design objectives. 

Constraints on the design parameters and goals are applied. Numerical simulations show that the 

robust multi-objective design (RMOD) is very effective and guarantees a robust behavior as 

compared to that of the classical multi-objective design (MOD). The results also show that the 

robust region is inside the feasible search space and avoids all of its boundaries. The decision 
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parameter space of the semi-active suspension includes both passive and active components. The 

passive components include the stiffness of the sprung spring, damping coefficient of the shock 

absorber, and stiffness of the tire. The active elements are the design details of the LQR 

algorithm. During the design, global sensitivity analysis is conducted to determine the elements 

of the suspension system that have high impact on the design objectives. The mass of the 

passenger’s head and upper body, the mass of the passenger’s lower body and cushion, passenger 

and cushion’s elastic properties, and the sprung mass of the vehicle are selected for the 

sensitivity analysis. Results show that the design goals are more sensitive to the variations in the 

sprung mass than the other parameters. As a result, parametric variations in the sprung mass of 

the vehicle and passive elements of the suspension system are considered. Similar to the design 

of the passive suspension, the mean effective values of SD, TD, and HA are used as design 

objectives. Also, constraints are applied on the objectives in compliance with the requirements of 

ISO 2631-1 on the design of car suspension systems.  The optimization problem is solved by the 

NSGA-II (non-dominated sorting genetic algorithm) and robust Pareto front and set are obtained. 
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CHAPTER 1: INTRODUCTION 

1.1  Literature Review 

Most of the real-world design problems have complex multidisciplinary objectives. For 

example, in the optimal design of the suspension system, the most common design targets are the 

comfort, road handling, and suspension stability. Furthermore, the multi-objective design 

technique is employed to obtain a Pareto-optimal solution set, which gives the designer the real 

picture of the problem before making the final selection. Vehicle suspension systems, in terms of 

their multi contradictory objectives, have been widely studied over the last three decades 

(Callejo, Jalon, Luq, & Mantaras, 2015). The role of a vehicle suspension system is to provide 

road comfort to the occupants and assurance of handling stability. Overall, the vehicle 

suspension systems can be put into three categories: active suspension system, semi-active 

suspension system, and passive suspension system. Passive suspension systems are widely used 

because of their high dependability, no energy consumption, simplicity, and they are 

comparatively less expensive than active and semi-active suspension systems. They consist of 

only passive elements such as springs, masses, dampers, and inerters. However, active and semi-

active suspension systems comprise of controllable suspension system equipped with sensors and 

electronic control units.  

Several studies have been focused on the optimal design of passive suspension systems. For 

instance, Alfonso and his colleagues investigated a multi-objective optimal design of a multi-

body suspension system by considering two objectives: passengers’ comfort and road handling 

(Callejo et al., 2015). The front and rear dampers, rear air springs, front air springs, body work 

stiffness, rear antiroll bar, rear relaxed length, front relaxed length, and bodywork stiffness are 

chosen as setup parameters. Two optimization constraints were defined to specify the 
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commercial vehicle safety which include the lateral contact force and the tire grip. After that, the 

sensitivity analysis was conducted by C++ and MATLAB. The results showed that the multi-

objective approach is beneficial in obtaining optimal trade-offs among the design targets.  

In the second study (Xu, Sardahi, & Zheng, 2018), a passive suspension system with inerter 

was presented. Four design objectives were considered: suspension deflection, crest factor, 

occupant’s head acceleration, and tire deflection. The multi-objective optimization problem was 

solved by the non-dominating sorting genetic algorithm (NSGA-II) to obtain the trade-offs 

among the design objectives. The spring stiffness and damper, spring constant of the tire, and the 

inertance were selected as design variables. Upper and lower bounds were imposed on these 

parameters. The results showed competing relationships between the design targets and the 

necessity to handle the design problem in multi-objective settings.  

 In the third study, an analytical approach was proposed to solve the multi-objective 

optimization problem of a passive suspension system. A half car model was used in the analysis 

to quantify three design objectives: reduction of the root mean square values in the cushion 

acceleration, improving the tire grip, and enhancing the suspension deflection (Bhargav Gadhvi, 

2016). The optimization problem was solved using three multi-objective evolutionary algorithms 

(MOEAs): NSGA-II, SPEA-II (Strength Pareto Evolutionary Algorithm II), and PESA-II (Pareto 

Envelope-Based Selection Algorithm II). Constraints on the seat acceleration, tire deflection, and 

suspension deflection were imposed. The front tire deflection and rear tire deflection were 

selected as design parameters. The results showed that Pareto front obtained from NSGA-II 

provides a better optimal solution for the optimization problem compared to the other algorithms. 

A robust multi-objective optimal (RMOP) design of an uncertain passive suspension of a 

quarter car was conducted (Loyer & Jézéquel, 2009). The road holding and ride comfort were 
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considered as design objectives. The stiffness of the spring and the damper of the shock absorber 

connected to the sprung mass were selected as design parameters. Two constraints on the wheel 

travel, and body bounce mode natural frequency were imposed. The spring mass and tire 

stiffness were considered uncertain and the optimization problem was solved by a multi-

objective evolutionary algorithm (MOEA). The result obtained by the algorithm gives the 

designer clear image of the suspension tuning possibilities by subjecting the desired variants, 

objective robustness, and the product line. 

A five-degree-of-freedom model with a passive suspension system was designed in multi-

objective settings using a multi-objective uniform diversity genetic algorithm (Nariman-Zadeh, 

Salehpour, Jamali, & Haghgoo, 2010). The seat acceleration, rear tire velocity, forward tire 

velocity, and suspension travel of the front and rear tire are selected as design targets. These 

conflicting design targets are evaluated by adjusting the seat mass; rear tire mass; momentum 

inertia of the sprung mass; forward tire stiffness coefficient; rear tire stiffness constant; sprung 

mass; forward and rear tires’ positions; and forward tire mass. The equality constraints were 

applied during the optimization. The results showed that there are many optimal solutions that 

the decision-maker can choose from to implement. 

A vector optimization of a passive suspension parameters was achieved by using 

evolutionary computation (Goga & Kľúčik, 2012). The optimization performed was based on 

advancing the occupant’s comfort and driving stability. The optimization objectives considered 

were to reduce the vertical acceleration, minimizing the angular acceleration, and lowering the 

vertical displacement. The stiffness coefficients and damping coefficients were considered as 

optimized design parameters. The results obtained by using MATLAB Simulink indicated that 
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the driving stability and occupant’s comfort was not as satisfying for the passive suspension 

system as compared to the other vehicle suspension system. 

In another study, a multi-objective optimization (MOP) of a passive suspension system 

for a full car model was conducted to obtain global optimal Pareto solutions (Fossati, Miguel, & 

Casas, 2019). The passenger comfort, tire grip, and suspension travel were the conflicting 

objectives that were selected in this optimization problem. These conflicting objectives were 

evaluated by six design parameters which include driver seat stiffness coefficient, front spring 

stiffness coefficient, rear spring stiffness coefficient, driver seat damping coefficient, front 

dampers damping coefficient, and rear dampers damping coefficient. The NSGA-II was 

employed to obtain the three-dimensional Pareto optimal solution. The result indicated that the 

proposed methodology is an effective tool for the optimal design of passive suspension systems 

in terms of passenger ride comfort and stability.   

A multi-objective optimization of the performance of a passive vehicle model was 

achieved by considering the road excitation (Jamali, Shams, & Fasihozaman, 2014). The 

acceleration of the seat, working space, and vertical tire velocity were used as design targets.  

The seat stiffness coefficient, suspension stiffness coefficient, seat damping coefficient, 

suspension damping coefficient, and seat position were presented as design variables. The 

system is solved by a multi-objective uniform diversity algorithm to obtain global Pareto optimal 

solutions and system frequency response. The optimization results indicated that the proposed 

methodology allows the designer to select the ultimate design to achieve the desired performance 

criteria. 

Another optimal design of a passive suspension system for a military vehicle was 

presented (Mahmoud Mohsen, 2018). The driver body vertical displacement, seat vertical 
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displacement, and seat suspension working space were considered as fitness functions. The 

stiffness and damping coefficients of the suspension system, driver seat suspension, and seat 

cushion were chosen as design parameters. The genetic algorithm was employed to optimally 

adjust the decision variables and minimize the design objectives simultaneously. The results 

manifested an improvement in the dynamic performance of vehicle suspension system.  

Similarly, an optimal design of a passive car suspension system was performed by multi-

objective evolutionary algorithms (Niahn-Chung Shieha, 2004). The objective goal was to find 

the optimal compromise between ride quality and sprung mass suspension stroke. Eight tuning 

parameters related to the suspension spring stiffness and damping coefficient were selected and 

their feasible constraints were defined. The results showed that ride quality is improved by 

expanding the working space of the car suspension system. 

Several studies have been reported about the multi-objective optimal design of semi-

active suspension systems. For example, a multi-objective design of a semi-active car suspension 

system with magnetorheological dampers was performed (Crews, Mattson, & Bucker, 2011). 

Two conflicting objective functions are selected which include the thermal performance and 

absorbed power. The control limitations are implemented on the control inputs which are taken 

as design variables. Skyhook, feedback linearization, and sliding mode controls are implemented 

and their performances are compared.  The optimization is performed by a multi-objective 

genetic algorithm to achieve the final Pareto frontier. The results showed that this approach was 

not able to accommodate real-time control solutions that would operate with the Pareto frontier. 

A semi-active suspension system with a magnetorheological suspension system was 

evaluated in wheel electric vehicles (Anaya-Martinez, et al., 2020). The main goal was to 

achieve a compromise solution between better road grip and ride comfortability. A switched 
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reluctance motor was attached to the unsprung mass for engaging the spring and dampers to 

achieve a vibration reduction. The simulation results obtained from pseudo bode plots showed 

that the skyhook and Mix one sensor controller provide the best enhancement in terms of the 

design goals.  

In another work, an optimal design of a semi-active suspension system is conducted by 

genetic algorithms (Koulocheris, Papaioannou, & Chrysos, 2017). The root-mean-square 

acceleration and the median of front and rear wheel travel were determined as cost functions. 

The damping coefficient of the suspension system and spring stiffness of the tire were defined in 

the working space. The skyhook two-state damper control, skyhook linear approximation damper 

control, power-driven damper control, acceleration driven damper control, and mixed skyhook 

acceleration driving control were used as control algorithms. The study provided detailed 

comparisons among these techniques.  

A continuous skyhook control and modified skyhook control were employed in the 

optimal control of a semi-active suspension system in two-wheeled vehicles (Khadr & 

Romdhane, 2016).The root-mean-square of vertical acceleration of the chassis and the wheel 

dynamic load were selected as design targets to achieve the best comfort and the drive safety. 

The front and rear damping coefficients of skyhook dampers were defined as design parameters. 

The NSGA-II was used to solve the optimization problem. The multi-objective optimization 

results exhibited that both control laws guarantee the highest comfort and dive safety. 

A linear quadratic regulator (LQR) and mixed H2/H∞ optimization control was 

employed in the optimal design of a semi-active suspension system (Ye & Zheng, 2019).  The 

vehicle vertical acceleration, suspension travel, and wheel dynamic load were defined as control 

objectives. Numerical simulations were carried out by MATLAB/Simulink and compared with 
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those of the passive suspension system. The performance of the closed-loop system under these 

control strategies showed improved comfort and road handling. 

Fuzzy and PID controls were developed for a semi-active suspension system with 

magnetorheological damper (Lazaro, Villegas, Ruiz, & Aldana, 2019). Passengers’ comfort, ride 

handling, and ground contact of the wheel were selected as control objectives. The results 

demonstrated that both control strategies were proven to be effective, but the fuzzy controller 

was the most acceptable in terms of comfortability.  

A Model predictive control (MPC) algorithm for vibration attenuation was applied on a 

semi-active suspension system with a magnetorheological (MR) damper (Mai, Yoon, Choi, & 

Kim, 2020). The vertical sprung mass acceleration and sprung mass displacement were defined 

as design objectives. Both bump and random excitations were used as inputs to test the 

performance of the controlled system numerically and experimentally. The results demonstrated 

that the algorithm successfully achieved the highest ride comfort and road handling for the semi-

active suspension system with MR dampers. 

An adaptive optimal controller with policy iteration algorithm for a semi active 

suspension system with MR damper was presented by Wang (Xiaolong, 2017). The acceleration 

of sprung mass, sprung mass travel, tire deflection, and suspension deviation were chosen as 

design criteria for bump excitation response. The responses of the system under the adaptive 

control algorithm were compared with those of linear quadratic regulator algorithm assuming the 

system is excited by a step input. The simulation results showed that the adaptive optimal 

controller outperforms the linear quadratic regulator method.  

An optimal control design of a semi-active suspension system consisting of a 

magnetorheological shock absorber under both skyhook and linear quadratic regulators was 
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presented (Majdoub et al., 2018). The chassis vertical travel and drive comfort were used as cost 

functions. The viscous damping coefficients and wheel stiffnesses were defined as design 

parameters. The numerical simulations obtained by MATLAB/Simulink manifested that the 

performance of the suspension system under the linear quadratic regulator was better than that of 

the skyhook controller. 

A Commande Robuste Ordre Non-Entier (CRONE) - Skyhook control approach was 

proposed (Frej, Moreau, Hamrouni, Benine-Neto, & Hernette, 2020) for a passenger-sport car 

with a multi-mode semi-active suspension system. The control criteria were to achieve the best 

solution between minimum frequency convenience and controlled chassis movement. The 

vertical stiffness of the wheel, stiffness coefficient of the suspension, damping coefficient of the 

tire, and damping of the suspension were taken as design variables. The control criteria were 

analyzed through the CRONE-Skyhook control approach and mode shifting was performed. The 

results showed that the car stability and occupant’s comfort were achieved. 

Multi-objective optimization control for semi active suspension system in self-driving car 

is proposed in view of car speed and suspension vibration (Wu, Zhou, Liu, & Gu, 2020). The 

optimization goal was to achieve the best car comfort performance and maximum suspension 

adaptability to four different speed trajectories. The hybrid horizon varying (HV) model 

predictive control (MPC) approach is employed as a suspension controller to adjust the upright 

and longitudinal acceleration making use of random road excitation information. The simulation 

results demonstrated the efficacy of the HV-MPC control approach and the importance of 

designing the suspension system by considering more than one objective.   

Energy efficient look-ahead cruise controller integrated with adaptive semi-active 

suspension system was presented for a utility commercial vehicle (Basargan, Mihάly, Gáspár , & 
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Sename, 2020).  The optimization criteria were to minimize the horizontal control force and the 

velocity limits for achieving the occupant’s comfort and ride stability. The tire stiffness, damping 

rate of the shock absorber and spring stiffness were defined as design variables. The multi-

criteria optimization problem was solved by the look-ahead estimation algorithm based on global 

positioning system. The results showed an improved vehicle adaptability based on the variations 

of the vehicle velocity. 

Based on the above literature review, the significance of uncertainties in the mechanical 

components such as spring, damper, and inerter for the passive suspension system was not 

considered. The passive components of the suspension system are uncertain due to either 

manufacturing errors, or operation. Their values will certainly impact the performance of the 

suspension system. Robust multi-objective optimization technique is proposed to fill the above 

research gap in the literature. The robust multi-objective optimization method aims to reduce the 

sensitivity of the design objectives to the uncertainties in the design parameters. The solution of 

the robust multi-objective optimization problem is expected to be less sensitive to parametric 

variations as compared to that of the traditional multi-objective optimization.  

In the next sections, we introduce the concepts of classical and robust multi-objective 

optimization, delineate the working principle of NSGA-II, and outline of the thesis.  

1.2  Multi-Objective Optimization 

Multi-objective optimization problems (MOPs) have received much attention recently because of 

their enormous applications. A MOP can be stated as follows: 

min
𝑘∈𝐷

{𝐅(𝐤)},                                                                      (1) 

where F is the map that consists of the objective functions 𝑓𝑖: Q → 𝑅1 under consideration.

F: Q→ 𝐑k, 𝐅(𝐤) = [𝑓1(𝒌), … , 𝑓𝑘(𝒌)]. (2)
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K∈ 𝑫  is a q-dimensional vector of design parameters. The domain D⊂ 𝐑𝒒 can in general be 

expressed by inequality and equality constraints: 

𝐷 = {𝐤 ∈ 𝐑𝒒| 𝑔𝑖(𝐤) ≤ 0, 𝑖 = 1, … , 𝑙, 𝑎𝑛𝑑  ℎ𝑗(𝐤) = 0, 𝑗 = 1, … , 𝑚 }.                               (3) 

Where there are l inequality and m equality constraints. The solution of MOPs forms a set known 

as the Pareto set and the corresponding set of the objective values is called the Pareto front. The 

dominancy concept (Marler & Arora, 2004) is used to find the optimal solution. The MOPs are 

solved using multi-objective optimization algorithms. These methods can be classified into 

scalarization, Pareto, and non-scalarization non-Pareto methods (Sardahi, 2016). 

The scalarization methods such as the weighted sum, goal attainment, and lexicographic 

approach require transformation of the MOP into a single optimization problem (SOP) (Pareto, 

1971), normally by using coefficients, exponents, constraint limits, etc.; and then methods for 

single objective optimization are utilized to search for a single solution. Computationally, these 

methods find a unique solution efficiently and converge quickly. However, these methods cannot 

discover the global Pareto solution for non-convex problems. Also, it is not always clear for the 

designer to know how to choose the weighting factors for the scalarization (Hernández et al., 

2013). 

Unlike the scalarization methods, the Pareto methods do not aggregate the elements of 

the objectives into a single fitness function. They keep the objectives separate all the time during 

the optimization process. Therefore, they can handle all conflicting design criteria independently, 

and compromise them simultaneously. The Pareto methods provide decision-makers with a set of 

solutions such that every solution in the set expresses a different trade-off among the functions in 

the objective space. Then, the decision-maker can select any point from this set. Compared to the 

scalarization approaches, the Pareto methods can successfully find the optimal or near optimal 
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solution set, but they are computationally more expensive. Examples of algorithms that fall 

under this category are the MOGA (Multiple Objective Genetic Algorithm), PSO (Particle 

Swarm Optimization), NSGA-II (Non-dominated Sorting Genetic Algorithm), SPEA2 (Strength 

Pareto Evolutionary Algorithm), and NPGA-II (Niched Pareto Genetic Algorithm). Mainstream 

evolutionary algorithms for MOPs include NSGA-II, multi-objective particle swarm 

optimization (MOPSO) and strength Pareto evolutionary algorithm (SPEA). Deterministic 

methods such as set oriented methods with subdivision techniques, and multi-objective 

algorithms based on the simple cell mapping (SCM) can be also used to find the solution set 

(Sardahi, 2016). 

The 𝜖−constraint method and the VEGA (Vector Evaluated Genetic Algorithm) approach 

are examples of the non-scalarization non-Pareto methods. In the 𝜖−constraint method, one of 

the cost functions is selected to be optimized and the rest of the functions in the objective space 

are converted into constraints by setting an upper bound to each of them. The VEGA works 

almost in the same way as the single objective genetic algorithm, but with a modified selection 

process. A comprehensive survey of the methods used for solving MOPs can be found in (Jones, 

Mirrazavi, & Tamiz, 2002), (Marler & Arora, 2004), and (Tian, Cheng, Zhang, & Jin, 2017). 

Passive and semi-active suspension systems can be optimally designed by using any one 

of these techniques. The optimization problems of these systems are complex and nonconvex, 

therefore evolutionary algorithms are methods of choice (Woźniak, 2010). They outperform 

classical direct and gradient based methods which suffer from the following problems when 

dealing with non-linear, non-convex, and complex problems: 1) the convergence to an optimal 

solution depends on the initial solution supplied by the user, and 2) most algorithms tend to get 

stuck at a local or sub-optimal solution. On the other side, evolutionary algorithms are 
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computationally expensive (Hu, Huang, & Wang, 2003). However, this cost can be justified if a 

more accurate solution is desired and the optimization is conducted offline. The most widely 

used multi-objective optimization algorithm is the NSGA-II (Sardahi & Boker, 2018) and (Xu et 

al., 2018). It yields a better Pareto front as compared to other algorithms (Gadhvi, Savsani, & 

Patel, 2016). Therefore, in this paper, we use the NSGA-II to solve the robust multi-objective 

problems. 

1.3  Robust Multi-Objective Optimization 

Robust optimization has considerable advantage over traditional Multi-objective 

optimization (MOP). Traditional multi-objective optimization problems seek to find global 

Pareto solutions without considering uncertainties in the system parameters. On the other side, 

robust multi-objective approaches seek to find the less sensitive trade-offs among the design 

goals.  A Robust Multi-objective optimization problem (RMOP) can be stated as follows: 

{ 𝐅𝐞𝐟𝐟 (𝐤)}𝐊∈𝐐
𝐦𝐢𝐧  (4) 

where 𝑭𝑒𝑓𝑓 is the map that consists of the mean effective objective functions 𝑓𝑖
𝑒𝑓𝑓

 : Q→𝑅1

under consideration.  

𝑭𝑒𝑓𝑓 ∶ 𝑄 →  𝑅𝑘, 𝐹𝑒𝑓𝑓 (𝒌) =  [𝑓1
𝑒𝑓𝑓(𝒌),…… , 𝑓𝑘

𝑒𝑓𝑓
 (𝒌)] (5) 

k ∈ Q is a q-dimensional vector of design parameters. The domain Q⊂ ℝ𝑞  can in general be

expressed by mean effective inequality and equality constraints: 

𝑄 =  {𝑘 ∈ ℝ𝑞 | 𝑔𝑖
𝑒𝑓𝑓(𝑘) ≤ 0, 𝑖 = 1, …… . , 𝑙,

𝑎𝑛𝑑 ℎ𝑗
𝑒𝑓𝑓
 (𝑘) = 0, 𝑗 = 1, … . . , 𝑛}.

(6) 

Where, 𝑓𝑖𝑒𝑓𝑓 is defined as:
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𝑓𝑖
𝑒𝑓𝑓

= 
1

|𝐁𝛅(𝐤)| 
 ∫ 𝑓𝑖(𝒚)𝑑𝒚.𝐲∈𝐁𝛅(𝐤)

(7) 

Where δ is a q-dimensional vector of parameters’ uncertainties is the-neighborhood of the 

solution Bδ(k) is the δ-neighborhood of the solution k (k is perturbed in the neighborhood 

[k−δ,k+δ] and | Bδ(k)| is the hyper-volume of the neighborhood. To use this definition in 

practice, a finite set of 𝐻 solutions can be randomly generated within the perturbed range of k 

and then used to evaluate 𝑭𝒆𝒇𝒇  (Deb & Gupta, Introducing robustness in multi-objective

optimization, 2006). 

1.4  Evolutionary algorithm 

The genetic algorithm is used to solve a multi-objective optimization problem to obtain a 

Pareto optimal front. The algorithm used in this research is the non-dominating genetic 

algorithm. The algorithm begins with population initialization with the consideration of 

constraints. The initialization set contains all the individual elements of objective functions that 

are dominated by population P. The algorithm is best with comparison to the older version 

because the information of define set dominates the individual. Further, the population is defined 

as the crowding distance is assigned, where the distance between each individual is calculated 

based on their multi-objectives. After the distance is allocated the selection is performed using 

the comparison operator. These individuals are selected by tournament selection with a 

comparison operator to influence the objective. The genetic operator for crossover and mutation 

is initialized to obtain the sample distribution of generated values between zero and one. The 

successor population is combined with the current population to achieve the best upcoming 

generation.  

The control parameters of the genetic algorithm are adjusted to obtain the best performance. The 

parameter included the probability of crossover, distribution index, mutation probability, and 
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pollution size. These define control parameters provide with best convergence and dispersion of 

the Pareto optimal points located on the Pareto front. The flow chart of the genetic algorithm is 

shown in Figure 1 (Kanagarajan, Karthikeyan, Palanikumar, & Paulo Davim, 2008).

Figure 1: The flow chart of genetic algorithm. 
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1.5  Outline of the Thesis 

This thesis is based on the research and publications on the robust multi-objective optimal 

design of suspension systems. Chapter 1 describes the introduction. Chapter 2 presents the robust 

multi-objective optimal design of a racing car suspension system. Chapter 3 proposes a multi-

objective and robust design of a semi-active suspension system of a passenger car. Chapter 4 

summarizes the thesis and suggests future directions.  
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CHAPTER 2: ROBUST MULTI-OBJECTIVE OPTIMAL DESIGN OF A RACING CAR 

SUSPENSION SYSTEM 

2.1 Introduction 

The role of a vehicle suspension system is to provide road comfort to the occupants, and 

guarantee stability and road handling. In general, vehicle suspension systems can be classified as 

active, semi-active, and passive suspension systems. Active suspension systems were last seen in 

racing cars such as Formula 1 (F1) in 1993. Recently, F1 rejected a proposal to permit active 

suspensions in 2021 (Keith, 2019). Passive suspension has been widely used in racing cars due to 

their high reliability, simplicity, and low cost compared to the other types. Conventional passive 

schemes are based around two components - springs and shock absorbers (dampers). A new 

device called inerter was introduced in 2002 with the motivation to improve the mechanical grip 

of racing cars. Studies have also shown that inerters can significantly improve ride comfort, tire 

grip, and handling in comparison to standard passive systems (Papageorgiou, Houghton, & 

Smith, 2009). 

This chapter presents a robust multi-objective optimal design of a racing car suspension 

system. Three design objectives are considered: passenger’s head acceleration, suspension travel, 

and tire deflection. The first objective is concerned with the passenger’s health and comfort, 

second requirement characterizes the suspension stroke, and the third criterion describes the tire 

grip. To quantify the design objectives, the vertical dynamics of a quarter-car model employing 

an inerter is considered. The coefficients of the sprung spring and damping, tire stiffness, and 

inertance of the inerter are chosen as decision variables. The effect of design parameters’ 

variations on the optimal solution is also considered. To this end, a robust multi-objective 

optimization problem is formulated and solved by the Non-dominated Sorting Genetic Algorithm 
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(NSGA-II). Unlike traditional multi-objective optimization problems where the focus is placed 

on finding the global Pareto-optimal solutions which express the optimal trade-offs among 

design objectives, the robust multi-objective optimization methods are concerned with robust 

solutions that are less sensitive to decision variables’ perturbations. As a result, the mean 

effective values of the fitness functions are used as design objectives. Constraints on the design 

parameters and goals are applied. Numerical simulations are conducted on a quarter car model of 

a racing car. Details about this model are introduced in the next section.  

2.2 Racing Car Suspension System Mathematical Model 

The concept of “inerter” was first proposed in 2002 by Smith (Smith, 2002). Inerters are 

the mechanical equivalents of ungrounded capacitors, using the force–current analogy between 

mechanical and electrical circuits. In the industry sector, inerter is known as J-damper. Soon 

after it was introduced, the J-damper was implemented in the suspension systems of Formula 1 

racing cars. McLaren Mercedes started using the J-damper in early 2005. In the same year, Kimi 

Raikkonen was the first one to race with a McLaren MP4- 20 having the inerter as a part of its 

suspension system at the 2005 Spanish Grand Prix and he won the competition. Inerters also 

have found their applications (Perlikowski, 2017) in the suspension systems of railway vehicles 

(Wang, Hsieh, & Chen, 2012), (Jiang, Matamoros-Sanchez, Goodall, & Smith, 2012), (Jiang, 

Matamoros-Sanchez, Zolotas, Goodall, & Smith, 2015), devices that absorb impact forces (Faraj, 

Holnicki-Szulc, Knap, & Seńko, 2016) or protect buildings from earthquakes (Takewaki, 

Murakami, Yoshitomi, & Tsuji, 2012), (Chen, Tu, & Wang, 2015)  and steering compensators 

for motorcycles (Evangelou, Limebeer, Sharp, & Smith, 2007). 

Inerters alleviate mechanical loads on the suspension and improve its handling and 

gripping performance (Chen, Papageorgiou, Scheibe, & Wan, 2009). The fact that adding an 
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inerter device into the suspension structure can decrease the natural frequencies of the system 

was proved algebraically (Chen, Hu, Huang, & Chen, 2014). Schematically, the inerter element 

is a one port (two-terminal) mechanical network as shown in Figure 2 (Smith, 2002). A linear 

inerter can be constructed by meshing a nut, screw, bearing, gear and flywheel which rotates in 

proportion to the relative displacement between the terminals. The screw forms one terminal of 

the device and the other terminal is mounted on the casing that houses the gears. The applied 

force induces relative acceleration on both terminals which is further transmitted into rotational 

motion of the flywheel using gear and pinion assembly. The dynamic equation of the inerter 

element reads 

Figure 2:   A one-port (two-terminal) mechanical element. 

𝐹 =  𝐵 (𝑣2 − 𝑣1), (8)

where, 𝐹 is the force at the two terminals of the inerter, 𝐵 is the inertance of the inerter in kg, and 

𝑣1 and 𝑣2 are denote velocities of the two terminals of the inerter. A four-degree-of-freedom 

quarter car model implementing inerter in its suspension part is depicted in Figure 3 and its 

dynamic equations read 
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mtz̈t = −ct(żt − żp) −kt(zt − zp)
 (9) 

mpz̈p = ct(żt − żp) + kt (zt − zp)  − cc (żp-żs) − kc(zp − zs), (10) 

msz̈s = cc(�̇�𝑝 − 𝑧�̇�)żp +  kc(zp − zs) − cs(żs − żu) − ks(zs − zu) −

B(z̈s − z̈u)

(11) 

𝑚𝑢�̈�𝑢 = 𝑐𝑠(�̇�𝑠 − �̇�𝑢) + 𝑘𝑠(𝑧𝑠 − 𝑧𝑢) − 𝑘𝑦(𝑧𝑢 − 𝑧𝑦) + 𝐵(�̈�𝑠 − �̈�𝑢) (12) 

Figure 3: The quarter car model of passive suspension system with inerter  (Xu, Sardahi, & Zheng, 2018) 

Among them, mt and mp are respectively the equivalent mass of head and upper body, and lower 

body and cushion. That is, the passenger is modelled as a two-degree-of-freedom system by 

splitting the passenger’s body mass into two parts: mt and mp such that mp is connected to mt by 

an assumed spring kt and damper 𝑐𝑡. The cushion’s elastic properties are modeled as an 
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equivalent spring kc and damper cc which couple mp to the sprung mass ms. The suspension 

system is modeled as a spring with constant ks, damper with coefficients, and an inerter having B 

as its constant. The tunable parameters, system parameters and state space equation of racing car 

are defined in Appendix B (See Appendix B on page 74). These three components couple 𝑚𝑠. to 

𝑚𝑡.  (unsprang mass of the tire). The tire is assumed to be touching the road surface permanently 

during the movement of the car and its stiffness is represented by the equivalent spring ky. The 

vertical displacement of the head and thorax, pelvis and cushion, sprung mass, and unsprung 

mass are represented by zt, zp, zs, and zu, respectively. While zr denotes the road excitation. 

In matrix form, equations 9 to 12 can written as   

[

𝑚𝑡 0 0 0
0 𝑚𝑝 0 0

0 0 𝐵 +𝑚𝑠 −𝐵
0 0 −𝐵 𝐵 +𝑚𝑢

] [

𝑧�̈�
𝑧�̈�
𝑧�̈�
𝑧�̈�

]

= [

−𝐶𝑡 𝐶𝑡 0 0
𝐶𝑡 −𝐶𝑡−𝐶𝑐 𝐶𝑐 0
0 𝐶𝑐 −𝐶𝑐−𝐶𝑠 𝐶𝑠
0 0 𝐶𝑠 −𝐶𝑠

] [

�̇�𝑡
�̇�𝑝
�̇�𝑠
�̇�𝑢

]

+

[
 
 
 
−𝑘𝑡 𝑘𝑡 0 0
𝑘𝑡 −𝑘𝑡−𝑘𝑐 𝑘𝑐 0
0 𝑘𝑐 −𝑘𝑐−𝑘𝑠 𝑘𝑠
0 0 𝑘𝑠 −𝑘𝑠 − 𝑘𝑦]

[

𝑧𝑡
𝑧𝑝
𝑧𝑠
𝑧𝑢

] + [

0
0
0
−𝑘𝑦

] 𝑧𝑦(𝑡)

(13) 

Equation (13), can be written in the following compact matrix form

𝑴�̈� =  𝑪�̇� + 𝑲𝒁 + 𝑩𝑧𝑦(𝑡) (14) 

According to Equation (14), 𝑴, Z, �̇�, �̈�, C, K, and B are given by 
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𝑴 = [

𝑚𝑡 0 0 0
0 𝑚𝑝 0 0

0 0 𝐵 +𝑚𝑠 −𝐵
0 0 −𝐵 𝐵 +𝑚𝑢

] 
(15) 

𝒁 = [

𝑧𝑡
𝑧𝑝
𝑧𝑠
𝑧𝑢

] , �̇� = [

�̇�𝑡
�̇�𝑝
�̇�𝑠
�̇�𝑢

] , and �̈� =  [

𝑧�̈�
𝑧�̈�
𝑧�̈�
𝑧�̈�

] 
(16) 

𝑪 = [

−𝐶𝑡 𝐶𝑡 0 0
𝐶𝑡 −𝐶𝑡−𝐶𝑐 𝐶𝑐 0
0 𝐶𝑐 −𝐶𝑐−𝐶𝑠 𝐶𝑠
0 0 𝐶𝑠 −𝐶𝑠

] 
(17) 

𝑲 = 

[
 
 
 
−𝑘𝑡 𝑘𝑡 0 0
𝑘𝑡 −𝑘𝑡−𝑘𝑐 𝑘𝑐 0
0 𝑘𝑐 −𝑘𝑐−𝑘𝑠 𝑘𝑠
0 0 𝑘𝑠 −𝑘𝑠 − 𝑘𝑦]

(18) 

𝑩 = [

0
0
0
−𝑘𝑦

] 
(19) 

Solving for �̈� from Equation (14), we get 

�̈� = −𝑴−𝟏(𝑪�̇� +𝑲𝒁+𝑩𝑧𝑦) (20)
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Using the following state variable definitions, 

x1 = zt, x2 = zp, x3 = zs x4 = zu 

x5 = zṫ, x6 = zṗ, x7 = zṡ,  x8 = zu̇ 

(21) 

 The state space model of the system reads 

�̇�(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒚𝑧𝑦(𝑡) (22) 

The state vector is defined as 

𝒙(𝒕) = [𝑧𝑡, 𝑧𝑝, 𝑧𝑠, 𝑧𝑢�̇�𝑡, �̇�𝑝, �̇�𝑠, �̇�𝑢]
𝑇 (23) 

The system matrices A, 𝑩𝒚  are given by 

𝑨 = [
𝟎4×4 𝑰4×4

−𝑴−𝟏𝑲 −𝑴−𝟏𝑪
], 

(24) 

𝑩𝒚 = [
𝟎4×4

−𝑴−𝟏𝑩
]. 

(25)
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Here, I and 0 denote the identity and zero matrices, respectively. Having the mathematical 

model, the robust multi-objective optimization problem can be formulated, and numerical 

simulations can be conducted to evaluate the design objectives. 

2.3 Robust multi-objective optimization optimal design of the passive suspension system 

We consider the RMOD of the passive suspension system of the quarter car model given 

by Equation (22). Four pieces of information are needed for any RMOD: the design vector, 

uncertainty in the decision variables, objective space, and constraints. The design vector reads  

𝑲 = [𝑘𝑠, 𝑐𝑠, 𝑘𝑦,𝐵] (26) 

Springs are responsible for supporting the vehicle and absorbing large bumps. While shock 

absorbers dampen the motion of the springs after a bump by dissipating energy mostly through 

heat. Unlike shock absorbers, inerters absorb excess energy from tires and suspension and thus 

reduce the effect of the oscillations and help the car to retain a better grip on the road. The 

calculations for uncertainty ranges are provided in Appendix C (See Appendix C on page 76). 

So, these are very important design parameters. The corresponding vector of uncertainties is 

given by 

𝛅 = [δ𝑘𝑠, δ𝑐𝑠, δ𝑘𝑦,δ𝐵]= [5%, 10%, 10%, 5%] (27) 

The tire stiffness 𝑘𝑦  and the shock absorber 𝑐𝑠  experience large variations due to wear 

maintenance (Iroz, 2015) and (E. Abdellahi, 2001). The inerter 𝐵 relays on the accurate knowledge 

of the gear ratios, radii, and inertias, and inertia of the flywheel. Also, inerter’s performance may 
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deviate from its ideal one (Papageorgiou, 2009). As a result, we assume that the uncertainties 𝛿𝑘𝑦 

and 𝛿𝑐𝑠 are twice that of 𝛿𝑘𝑠 and 𝛿𝐵. The objective space is defined as 

{𝐷𝑠
𝑒𝑓𝑓
,𝑘∈𝑄

𝑚𝑖𝑛 𝐷𝑇
𝑒𝑓𝑓
, 𝑎𝐻
𝑒𝑓𝑓
},       (28) 

where the superscript 𝑒𝑓𝑓 indicates the mean-effective value of the cost function, and 𝑎𝐻 are the 

suspension deflection, tire deflection, passenger’s head acceleration, respectively. According to 

the mathematical model given in equations 9-12, they are defined mathematically as follows: 

𝐷𝑠 = 𝑧𝑠 − 𝑧𝑢 (29) 

       𝐷𝑇 = 𝑧𝑢 − 𝑧𝑟 (30) 

𝑎𝐻 = 𝑧�̈� (31) 

According to Equation (29), the suspension travel describes the relative travel between the 

sprung mass and unsprung mass and its Root-Mean-Square (RMS) reads (Deb, 2001).  

𝐷𝑠
𝑅𝑀𝑆 = [

1

𝑇
∫(𝐷𝑠)

2𝑑𝑡

𝑇

0

]

1

2
(32) 

Where, T is the duration of measurement. Using the definition in Equation (7), the mean 

effective value of DS is given by 
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𝐷𝑠
𝑒𝑓𝑓

= [
1

|𝑩𝛅(𝐤)|
∫ (𝐷𝑇)

𝑅𝑀𝑆(𝑦)𝑑𝑦

𝑦𝜖𝑩𝛅(𝐤)

(33) 

The Road handling is denoted by DT which is defined as the relative travel between the unsprung 

mass and the road (see Equation (31). The RMS of DT reads 

𝐷𝑇
𝑅𝑀𝑆 = [

1

𝑇
∫(𝐷𝑇)

2𝑑𝑡

𝑇

0

]

1

2

(34) 

and its mean effective value is 

𝐷𝑇
𝑅𝑀𝑆 = [

1

|𝑩𝛅(𝐤)|
∫ (𝐷𝑇)

𝑅𝑀𝑆(𝑦)𝑑𝑦

𝑦𝜖𝑩𝛅(𝐤)

(35) 

In accordance with ISO 2631-1 (Mechanical vibration and shock; evaluation of human exposure 

to whole body vibration in the working environment; part 1 general requirement), the RMS of 

the head acceleration 𝑎𝐻 is given by 

𝑎𝐻
𝑅𝑀𝑆 = [

1

𝑇
∫ (𝑎𝐻)

2𝑑𝑡
𝑇

0
]

1

2
(36) 

Similarly, its mean effective value is given by 

 𝑎𝐻
𝑒𝑓𝑓

= 
1

( |𝑩𝜹(𝒌)| )
∫ 𝑎𝐻

𝑅𝑀𝑆
𝑦∈𝑩𝜹(𝒌)

(𝑦)𝑑𝑦 (37)
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The decision variables’ search space is constrained to the following region: 

𝑄 = { 𝑘 ∈ [150 × 103, 450 × 103]  × [4 ×  103,12 × 103] × [116.5 ×  103,345 ×

103] × [ 116.5 ×  103,345 × 103] × [0,4] ⊂ ℝ4}

(38) 

The ranges of 𝑘𝑆 and 𝑘𝑌 are chosen as 𝑘𝑆𝑁 × [0.5,1.5] 𝑎𝑛𝑑 𝑘𝑌𝑁 × [0.5,1.5], respectively, 

where 𝑘𝑆𝑁 = 300 kN /m and 𝑘𝑌𝑁 = 233kN/m (Bulman, 1997). The ranges of 𝑐𝑠, and 𝐵 are 

specified from the engineering point of view of suspension deflection (Kuznetsov, Mammadov, 

Sultan, & Hajilarov, 2011). Furthermore, constraints are imposed on the objective space. 

According to (A. Baumal, 1998) and (Nagarkar, Patil, & Patil, 2016), the maximum suspension 

travel should be 125 mm to avoid hitting the suspension stop and the maximum 𝑎𝐻 should be 

less than or equal to 4.5 𝑚/𝑠2. For better tire gripping, the maximum deflection should not 

increase 58 mm.  

In the numerical simulation, zy is modeled as a bump of height 0.1 unit (Nagarkar et al.,

2016). The parameters are set as mt = 2m/7 kg, 𝑚𝑝 = 5m/7 kg, ct = 1360 N. s/m, kt =  

45005.3 N/m, cc = 900 N. s/m, 𝑘𝑐 = 10000 N/m, and mu=  20 kg, where m =

 65 kg (Kuznetsov et al. , 2011).  The sprung mass ms is set to 180 kg (Bulman, 1997). This 

value is very close to the quarter mass of the 2017 Formula 1(F1) car, which was about 728kg 

according to motorsport. However, in 2018, the mass was increased to 734 kg after adding the 

Halo (driver crash protection system). In order to follow the design method introduced in this 

thesis, designers should adjust ms based on the weight of the car on which they are working. To 

solve this multi-optimization problem, NSGA-II is used. Due to space limitations, the reader can 

refer to (Deb, 2001)  for more details about this algorithm. It was shown by Deb and Gupta (Deb 

& Gupta, Introducing robustness in multi-objective optimization, 2006)  that the algorithm is 

efficient in finding robust solutions of benchmark problems with two and three objectives. 
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There is not a clear guide about setting up the number of populations and generations for NSGA-

II. However, according to the MATLAB documentation, the population size can be set in 

different ways and the default population size is 15 times the number of the design variables. 

Also, the maximum number of generations should not exceed 200× design variables. In this 

study, the population size and the number of generations is set to 50 × design variables. For 

comparison purposes, the global Pareto solutions were also obtained using the same settings. In 

terms of the robust solution, a finite set of 20 solutions are randomly created within the 

neighborhood of the design parameters to account for their expected variations and calculate the 

mean effective objectives. 

2.5 Results and Discussion  

The global and robust Pareto fronts and sets and robustness of the suspension system in 

terms of the objective functions are discussed here. The optimization process results in 200 

various solutions which means there are 200 different optimal and robust suspension 

configurations with different trade-offs among the design objectives. Projections of the global 

and mean-effective fronts are shown in Figures 3 and 4. The corresponding Pareto sets are shown 

in 5 and 6. The yellow color in these figures denotes the feasible regions in the objective and 

parameter space defined in Equation (38). The global and robust solutions are represented by the 

black star and blue dot, respectively. Both global and robust Pareto fronts demonstrate 

competing relationships among the design goals, which emphasizes the necessity of carrying out 

the design of the passive suspension system in multi-objective settings. The results also show 

that both global and robust regions are inside the feasible zone and the robust Pareto frontier 

avoids all the boundaries. Taking the robust Pareto front as an example, we notice that when 

𝐷𝑠
𝑒𝑓𝑓

= 0.0039 (maximum value), 𝐷𝑇
𝑒𝑓𝑓

and 𝑎𝐻
𝑒𝑓𝑓

read 0.0036 and 3.1182 respectively. While at 
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the minimum value of  𝐷𝑠
𝑒𝑓𝑓

=0.0021, 𝐷𝑇
𝑒𝑓𝑓

=0.0072 and 𝑎𝐻
𝑒𝑓𝑓

=3.6023. Meaning, both 𝐷𝑇
𝑒𝑓𝑓

and 

𝑎𝐻
𝑒𝑓𝑓

objectives increases when 𝐷𝑠
𝑒𝑓𝑓

 goes down and vice versa as it is evident from Figures 13

and 14. Between these two design options, there are many robust and optimal options that the 

decision-maker can choose to implement. It should be indicated that the smaller 𝑎𝐻
𝑒𝑓𝑓

, the better. 

Small values of 𝑎𝐻
𝑒𝑓𝑓

mean that the amount of the transmitted forces to the pelvis and thorax is 

the lowest. The optimization algorithm offers 200 global and robust solutions. Therefore, it is not 

practical to compare the robustness of the global Pareto front and mean effective Pareto frontier 

for all the solutions. Instead, two solutions from the robust and global Pareto set are chosen 

randomly. Then, a random perturbation is generated according to the uncertainty vector defined 

in equation (27). After that, the same amount of perturbation is added to both solutions. Finally, 

the profiles of the absolute error between the perturbed and nonperturbed solutions for both 

global and robust solutions are depicted in Figures (16)-(21). The deviations in the suspension 

traveling terms of its global ((𝐸𝐷𝑠) |G) and robust (|𝐸𝐷𝑠 |R) values are defined as follows  

(39) |𝐸𝐷𝑠|G = |𝐷𝑠𝐺 − 𝐷𝑠𝐺𝑃 |,     

 |𝐸𝐷𝑠|R = |𝐷𝑠𝑅 − 𝐷𝑠𝑅𝑃 |. (40) 

Where, 𝐷𝑠𝐺  and 𝐷𝑠𝑅  Represent the global and robust  Dswith no variations in the design 

parameter and 𝐷𝑠𝐺𝑃and 𝐷𝑠𝑅𝑃 denote their corresponding values as result of parametric 

uncertainties. Similarly, the deviations in the global and robust responses of DT and 𝑎𝐻 can be 

defined in the following equation
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|𝐸DT   |G = |𝐷𝑇𝐺 − 𝐷𝑇𝐺𝑃| (41) 

|𝐸DT  |R = |𝐷𝑇𝑅 − 𝐷𝑇𝑅𝑃  | (42) 

|𝐸𝑎𝐻  |G = |𝑎𝐻𝐺 − 𝑎𝐻𝐺𝑃  | (43) 

 |𝐸𝑎𝐻 |R  =  |𝑎𝐻𝑅 −𝑎𝐻𝑅𝑃| (44) 

Where, the subscripts G, R, and P mean respectively global, robust, and perturbed. As evident 

from these Figures (16) - (21), the global profiles of 𝐷𝑆, 𝐷𝑇, and 𝑎𝐻 are more sensitive to the 

perturbation than the robust ones. This stresses out the need to handle the problem at hand in 

robust settings. 

Figure 4.  Projection # 1 of the global and robust Pareto front (𝐷𝑇 versus 𝐷𝑆). Yellow region: 

feasible Pareto front, black (*): global Pareto front, and blue (·): robust Pareto front. 
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Figure 5. Projection # 2 of the global and robust Pareto front (𝑎𝐻 versus 𝐷𝑆). Yellow region: 

feasible Pareto front, black (*): global Pareto front, and blue (·) : robust Pareto front. 
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Figure 6. projection # 1 of the global and robust Pareto set ( (𝑘𝑠versus 𝑘𝑦).Yellow region: feasible

Pareto set, black (*): global Pareto set, and blue·: robust Pareto set. 

Figure 7. :  profiles of the absolute deviations in the suspension travel |EDs| for the perturbed 

non perturbed global (|EDs|G) and robust (|EDs|R)solutions from the first randomly selected

solution. 
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Figure 8. profiles of the absolute deviations in the suspension travel |EDs| for the perturbed and 

non-perturbed global (|EDs|G) and robust (|EDs|R) solutions from the second randomly selected 

solution 

Figure 9.  Profiles of the absolute deviations in the tire travel |EDT| for the perturbed and non-

perturbed global (|EDT| G ) and   robust (|EDT|R ) solutions from the first randomly selected 

solution. 
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Figure 10. Profiles of the absolute deviations in the tire travel |EDT | for the perturbed and non-

perturbed global (|EDT|G ) and robust (|EDT|R ) solutions from the second randomly selected solution. 

Figure 11. Profiles of the absolute deviations in the head acceleration |E𝑎𝐻 | for the perturbed 

and non-perturbed global (|E𝑎𝐻 |G ) and robust (|E𝑎𝐻 |R ) solutions from the first randomly

selected solution. 
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Figure 12. Profiles of the absolute deviations in the head acceleration |E𝑎𝐻 | for the perturbed 

and non-perturbed global (|E𝑎𝐻 |G) and robust (|E𝑎𝐻 |R) solutions from the first randomly

selected solution. 
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2.6 Conclusion 

We have studied the RMOD of a passive suspension system with an inerter device. The 

optimization problem with 4 design parameters and 3 objective functions is solved by the 

NSGA-II algorithm. The global and robust Pareto set, and front are obtained. The Pareto set 

includes multiple design options from which the decision-maker can choose to implement. 

Numerical simulations show that the robust multi-objective design (RMOD) is very effective and 

guarantees a robust behavior as compared to that of the classical multi-objective design (MOD). 

The results also show that the robust region is inside the feasible objective space and avoids all 

its boundaries. Also, the results show that the design goals are competing, and as a result, there 

are many optimal and robust passive suspensions with different degrees of compromises among 

the design objectives. As expected, the numerical simulations manifest that the solutions from 

the robust Pareto set are more robust than those from the global set. 
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CHAPTER 3: MULTI-OBJECTIVE ROBUST DESIGN OF A PASSENGER SPORTS 

CAR WITH SEMI-ACTIVE SUSPENSION SYSTEM 

3.1 Introduction 

This chapter presents a robust multi-objective optimal design (RMOP) of a passenger car 

with a semi-active suspension system. The mean-effective values of the root mean square of 

passenger’s head acceleration, suspension travel, and tire deflection are considered as design 

objectives. The passive components of the suspension and the design details of the Linear 

Quadratic Regulator (LQR) algorithm are used as design parameters. During the design, global 

sensitivity analysis is carried out using the Fourier Amplitude Sensitivity Test (FAST) to specify 

the elements of the model that can highly alter the design objectives. The mass of the passenger’s 

head and upper body, the mass of the passenger’s lower body and cushion, passenger and 

cushion’s elastic properties, and the sprung mass of the vehicle are selected for the sensitivity 

analysis. Results show that the design criteria are very sensitive to the variations in the sprung 

mass of the vehicle compared to the other parameters. As a result, the variations in this parameter 

and passive elements of the suspension system are considered. Similar to the design of passive 

suspension system, constraints are applied on the objectives in compliance with the requirements 

of ISO 2631-1 on the design of car suspension systems.  The optimization problem is solved by 

the NSGA-II and robust Pareto front and set are obtained. The car mathematical model, control 

system design, formulation of the multi-objective problem, sensitivity analysis, and the results of 

the optimization problem are introduced in the next sections.  
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3.2 Commercial Car Model 

A quarter car model of a passenger car implementing a semi-active suspension system is 

shown in Figure (13).  In this model, the passenger is modelled as a two-degree-of-freedom 

system by splitting the passenger’s body mass into two parts: 𝑚𝑡 and 𝑚𝑝 such that 𝑚𝑝 is 

connected to 𝑚𝑡 by an assumed spring 𝑘𝑡 and damper 𝑐𝑡. The cushion’s elastic properties are 

modeled as an equivalent spring 𝑘𝑐 and damper 𝑐𝑐 which couple 𝑚𝑝 to the sprung mass ms. The 

suspension system is modeled as a spring with constant 𝑘𝑠, and damper with coefficient 𝑐𝑠. 

These system parameters and matrices are defined in Appendix D (See Appendix D on page 78). 

The control force, 𝑢(𝑡),  is calculated by the LQR algorithm assuming that the vertical 

displacement of the sprung and un-sprung masses (𝑧𝑠 and 𝑧𝑢) and their derivatives 

(𝑑𝑧𝑠/𝑑𝑡 and 𝑑𝑧𝑢/𝑑𝑡) are available for feedback.  The modeling equations of the system read 

Figure 13. Commercial car model with semi active suspension system. 
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𝑚𝑡�̈�𝑡 = −𝑐𝑡(�̇�𝑡 − �̇�𝑝) −𝑘𝑡(𝑧𝑡 − 𝑧𝑝), 

𝑚𝑝�̈�𝑝 = 𝑐𝑡(�̇�𝑡 − �̇�𝑝) + 𝑘𝑡(𝑧𝑡 − 𝑧𝑝)  − 𝑐𝑐(�̇�𝑝-�̇�𝑠) − 𝑘𝑐(𝑧𝑝 − 𝑧𝑠), 

𝑚𝑠�̈�𝑠 = 𝑐𝑐(�̇�𝑝-�̇�𝑠) + 𝑘𝑐(𝑧𝑝 − 𝑧𝑠) − 𝑐𝑠(�̇�𝑠 − �̇�𝑢) − 𝑘𝑠(𝑧𝑠 − 𝑧𝑢) + 𝑢(𝑡) 

𝑚𝑢�̈�𝑢 = 𝑐𝑠(�̇�𝑠 − �̇�𝑢) + 𝑘𝑠(𝑧𝑠 − 𝑧𝑢) − 𝑘𝑦(𝑧𝑢 − 𝑧𝑦) − 𝑢(𝑡) 

      (45) 

If the seat and the driver are not included, the model reads 

𝑚𝑠�̈�𝑠 = −𝑐𝑠(�̇�𝑠 − �̇�𝑢) − 𝑘𝑠(𝑧𝑠 − 𝑧𝑢) + 𝑢(𝑡) 

𝑚𝑢�̈�𝑢 = 𝑐𝑠(�̇�𝑠 − �̇�𝑢) + 𝑘𝑠(𝑧𝑠 − 𝑧𝑢) − 𝑘𝑦(𝑧𝑢 − 𝑧𝑦) − 𝑢(𝑡) ,

(46) 

which can be written as 

�̈�𝑠 = − 
𝑘𝑠

𝑚𝑠
𝑧𝑠+ 

𝑘𝑠

𝑚𝑠
𝑧𝑢 −

𝑐𝑠

𝑚𝑠
�̇�𝑠 +

𝑐𝑠

𝑚𝑠
�̇�𝑢 +

1

𝑚𝑠
𝑢(𝑡)

�̈�𝑢 = 
𝑘𝑠

𝑚𝑢 
𝑧𝑠 − (

𝑘𝑠

𝑚𝑢 
+

𝑘𝑦

𝑚𝑢
)𝑧𝑢 +

𝑐𝑠

𝑚𝑢
�̇�𝑠 −

𝑐𝑠

𝑚𝑢
�̇�𝑢 +

𝑘𝑦

𝑚𝑢
𝑧𝑦 −

1

𝑚𝑢
𝑢(𝑡)     

(47) 

Defining the state-vector 𝒙𝒔 = [𝑥1 𝑥2 𝑥3 𝑥4]𝑇 = [𝑧𝑠 𝑧𝑢 �̇�𝑠 �̇�𝑢]𝑇,

the state variable equations are given by, 

�̇�1 = 𝑥3 

�̇�2 = 𝑥4 

�̇�3 = − 
𝑘𝑠

𝑚𝑠
𝑥1+ 

𝑘𝑠

𝑚𝑠
𝑥2 −

𝑐𝑠

𝑚𝑠
𝑥3 +

𝑐𝑠

𝑚𝑠
𝑥4 +

1

𝑚𝑠
𝑢(𝑡) 

�̇�3 = 
𝑘𝑠

𝑚𝑢 
𝑥1 − (

𝑘𝑠

𝑚𝑢 
+

𝑘𝑦

𝑚𝑢 
)𝑥2 +

𝑐𝑠

𝑚𝑢
𝑥3 −

𝑐𝑠

𝑚𝑢
𝑥4 +

𝑘𝑦

𝑚𝑢
𝑧𝑦 −

1

𝑚𝑢
𝑢(𝑡) 

(48)



39 

The matrix representation of these equations is given by, 

[

�̇�1
�̇�2
�̇�3
�̇�4

] =

[

0 0 1 0
0 0 0  1

−
𝑘𝑠
𝑚𝑠

𝑘𝑠
𝑚𝑢

𝑘𝑠
𝑚𝑠

− (
𝑘𝑠
𝑚𝑢

+
𝑘𝑦

𝑚𝑢
)

−
𝑐𝑠
𝑚𝑠
𝑐𝑠
𝑚𝑢

𝑐𝑠
𝑚𝑠

−
𝑐𝑠
𝑚𝑢]

[

𝑥1
𝑥2
𝑥3
𝑥4

] +

[

0
0
0
𝑘𝑦

𝑚𝑢]

𝑧𝑦(𝑡)

+

[

0
0
1

𝑚𝑠

−1

𝑚𝑢]

𝑢(𝑡) 

(49) 

A compact state-space model read 

�̇�𝒔(𝑡) = 𝑨𝒙𝒔(𝑡) + 𝑩𝒚𝑧𝑦(𝑡) + 𝑩𝒖𝑢(𝑡) (50) 

This model will be used in the next section in the design of the control system. 

3.3 Control Design 

The control force 𝑢(𝑡) can be designed in different ways. One of the popular methods in 

classical optimal control is the Linear Quadratic Regulator (LQR). The control force is given by, 

𝑢(𝑡) = −𝐊𝐬𝐱𝐬(𝑡),                                                                                                                        (51) 

The optimal state feedback control gain matrix 𝐊𝐬 can be obtained by minimizing the following 

quadratic cost function: 

J = ∫ [𝐱𝑇(𝑡)𝐐𝐱(𝑡) + u𝑇(𝑡)𝐑u(𝑡)]
∞

0
𝑑𝑡, (52) 

where Q = QT is a positive semidefinite matrix that penalizes the departure of system states from 

their equilibria, and R = RT is a positive definite matrix that penalizes the control force. Using 

Lagrange multiplier-based optimization method, the optimal 𝐊𝐬 is given by 

𝑲𝒔 = 𝐑−𝟏𝑩𝑷 (53)
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The matrix 𝑷 ∈  ℜ4×4 can be calculated by solving the following Algebraic Riccati Equation

(ARE): 

𝐀T𝐏 + 𝐏𝐀 − 𝐐 − 𝐏𝐁𝐑−1𝐁T𝐏 = 𝟎          (54)

Inspecting Eqs. (53) and (54), we can notice that the choice of Q and R will greatly affect the 

performance of the controlled system. Thus, these weighting matrices need to be tuned. 

Traditionally, Q and R are chosen based on the expert of the control system designer and 

tweaked iteratively to achieve the design requirements. Arbitrary settings of Q and R may result 

in non-optimal performance. The state space model and control design are defined in Appendix E 

(See Appendix E on page 80). Many works have been proposed about establishing systematic 

approaches for calculating Q and R. For example, Bryson developed a method for selecting these 

matrices, but his method shows only how the initial values should be selected and the designer 

still needs to tune the elements of Q and R for optimal performance (Bryson, 2018). Other 

examples can be found in (Oral, Çetin, & and Uyar, 2010) and (El Hajjaji & Ouladsine, 2001). 

Therein, analytical methods for selecting Q and R for second order and third-order systems were 

developed. So, these techniques cannot be used to calculate Q and R for the control algorithm 

applied to the semi-active suspension system because of its dimensionality. Hence, we suggest a 

numerical approach to tackle this problem.   

3.4 Robust multi-objective optimization optimal design of the semi-active suspension 

system 

We consider the RMOD for the semi-active suspension system. The design vector reads 

𝑲 = [𝑘𝑠, 𝑐𝑠, 𝑘𝑦,𝑄1, … , 𝑄4, 𝑅]. (55) 

The variables 𝑘𝑠, 𝑐𝑠, and 𝑘𝑦 are the passive elements of the suspension system shown in Figure 

(13). The variables 𝑄1, … , 𝑄4, are the diagonal elements of Q, and R is the control force 

weighting factor. The constraints on the design parameter space are given by 
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𝑫 =

{

𝒌 ∈ 𝕽8| 𝑄1, 𝑄2, 𝑄3, 𝑄4 ∈ [0,100],

𝑅 ∈ [1.0 × 10−6, 100],

𝑘𝑦 ∈ [95,285] × 10
3 ,

𝑘𝑠 ∈ [11750,35250],

𝑐𝑠 ∈ [350,1050] }

(56) 

The upper bounds of 𝑄1𝑄2, 𝑄3, 𝑄4, and 𝑅 are chosen so that the penalties on the departures of the 

states from their desired positions and control utilization are high. The upper and lower bounds of 

𝑘𝑦, 𝑘𝑠, and 𝑐𝑠 were chosen according to the work presented in (Nagarkar, Patil, & Patil, 2016).  

The tire stiffness depends on the inflation pressure and road temperature. It also varies 

from one manufacturer to another. Furthermore, 𝑘𝑦 changes due to wear while it is in service. 

To account for these factors, 𝑘𝑦 variations are initialized (𝑘𝑦 ± δ𝑘𝑦𝑘𝑦) (Loyer & Jézéquel, 

2009), where δ𝑘𝑦 = 10%. The spring and damping coefficients of the suspension system will 

degrade during the service due to aging and wear and their values will decrease over time. To 

simulate these variations, 𝑘𝑠 and 𝑐𝑠 uncertainties are defined as follows  

δ𝑘𝑠 ∈ [−25%, 0%] (57) 

δ𝑐𝑠 ∈ [−25%, 0%] (58) 

The design parameters defined in Equation (55) with their constraints given in Equation (56) and 

by considering δ𝑘𝑦, δ𝑘𝑠, and δ𝑐𝑠  are tuned to concurrently satisfy three objectives:   

{𝐷𝑠
𝑒𝑓𝑓
,𝑘∈𝑄

𝑚𝑖𝑛 𝐷𝑇
𝑒𝑓𝑓
, 𝑎𝐻
𝑒𝑓𝑓
}. (59) 

Where, 𝐷𝑠
𝑒𝑓𝑓

, 𝐷𝑇
𝑒𝑓𝑓

, and 𝑎𝐻
𝑒𝑓𝑓

 are respectively the mean-effective value of the suspension stroke, 

𝐷𝑠, the tire deflection, 𝐷𝑇 , and head acceleration 𝑎𝐻. Elaborated discussion of these objectives 

can be found in Section 3.4.  
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It is obvious that the environmental and operational variabilities of 𝑘𝑦, 𝑘𝑠, and 𝑐𝑠 can be 

simulated by considering their uncertainties δ𝑘𝑦, δ𝑘𝑠, and δ𝑐𝑠. But the question is: can the 

variations in the other system parameters, namely 𝑚𝑡, 𝑚𝑝, 𝑘𝑡 , 𝑐𝑡, 𝑘𝑐, 𝑐𝑐, and 𝑚𝑠, alter the design 

objectives?  To answer this question, sensitivity analysis is conducted.  
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3.5 Fourier Amplitude Sensitivity Test (FAST) 

Fourier Amplitude Sensitivity Test (FAST) is based on the Fourier transformation of the 

uncertain model’s input parameters into frequency domain. The algorithm provides with the 

most suitable computational efficiency to 

conduct global sensitivity analysis (GSA). The 

algorithm starts with calculating the uncertainty 

ranges of the input variables. Then, a unique 

frequency is assigned to each input parameter as 

shown in Figure 14. This frequency assignment 

is achieved by the conversion of multi-

dimensional integral to one-dimension integral 

using Fourier series (Lehman & Stoilov, 2015). 

The amplitude of frequencies obtained is used to 

indicate the effect of each parametric variation 

on a certain cost function. The obtained Fourier 

coefficients, calculations are provided in 

Appendix G (See Appendix G on page 83) are 

applied to calculate the partial variance of 

individual parameters of the system. The total 

variance for each input is thus calculated by computing the overall variances of the system. 

Figure 14: Flow chart of Fourier Amplitude 

Sensitivity Test (FAST) 
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3.5 Global Sensitivity Analysis (GSA) 

Global sensitivity analysis (GSA) is performed by using the Fourier Amplitude 

Sensitivity Test (FAST) based on Monte Carlo sampling, which is one of the commonly used 

methods for sensitivity analysis. The uncertainties in 𝑚𝑡, 𝑚𝑝, 𝑘𝑡, and 𝑐𝑡  are set to ±20%. The 

seat spring 𝑘𝑐 and damper 𝑐𝑐 is set between [ 𝑘𝑐 − 0.1 𝑘𝑐 ,  𝑘𝑐] and [ 𝑐𝑐 − 0.1𝑐𝑐 ,  𝑐𝑐],  

respectively. The sprung mass 𝑚𝑠 fluctuates due to the variation of car occupants and luggage. 

The sprung mass, 𝑚𝑠 is set to between 10% variations (𝑚𝑠 ± 0.1𝑚𝑠) (Qin, Wang, Yuan, & 

Zhang, 2019). The sensitivity indices of the seven parameters are demonstrated for the root mean 

square value (RMS) of the suspension deflection SD
RMS, occupant’s head acceleration aH

RMS, and

tire deflection  TD
RMS. Furthermore, the sensitivities of these objectives are evaluated at different

levels of the control force. Figures (15) and (16) show respectively the sensitivity indices when 

𝑢(𝑡) is large (the settings of the LQR algorithm are: 𝑅 = 1.0 × 10−6, 𝑄1 = 𝑄2 = 𝑄3 = 𝑄4 =

100) and when 𝑢(𝑡) is small (LQR settings: 𝑅 = 100, 𝑄1 = 𝑄2 = 𝑄3 = 𝑄4 = 0).  Similarly,

Figures (17) and (18) display the sensitivity indices at these different control forces.  It is evident 

from these figures that  SD
RMSand TD

RMS  are mainly affected by the variations of 𝑚𝑠, 𝑚𝑝, and 𝑚𝑡,

but 𝑚𝑠 is recording the highest impact. The upper bound of noise parameters are defined in 

Appendix F (See Appendix F on page 81). The other four parameters ct, cc, kc  and kt have 

almost no affect SD
RMSand TD

RMS, and hence are neglected. In a similar fashion, the sensitivity

indices of the model variables are calculated for aH
RMS at large 𝑢(𝑡) and small 𝑢(𝑡) and are 

depicted in Figures (19) and (20), respectively. The figures demonstrate that aH
RMS is insensitive 

to these elements.  
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To sum up, it is obvious that the deviations in 𝑚𝑠 will certainly influence the values of 

two cost functions from the selected three design objectives. As a result, 𝑚𝑠 is varied during the 

optimization to find less sensitive and robust solutions to the optimization problem at hand.   

Figure 15:  Sensitivity indices of the sprung mass, and body and seat elements on 𝑆𝐷
𝑅𝑀𝑆 when

u(t) is large.  

. 
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Figure 16 : Sensitivity indices of the sprung mass, and body and seat elements on 𝑆𝐷
𝑅𝑀𝑆 when

u(t) is small. 
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Figure 17: Sensitivity indices of the sprung mass, and body and seat elements on 𝑇𝐷
𝑅𝑀𝑆 when u(t)

is large.
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Figure 18: Sensitivity indices of the sprung mass, and body and seat elements on 𝑇𝐷
𝑅𝑀𝑆 when u(t)

is small. 

Figure 19: Sensitivity indices of the sprung mass, and body and seat elements on 𝑎𝐻
𝑅𝑀𝑆  when

u(t) is large.
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Figure 20: Sensitivity indices of the sprung mass, and body and seat elements on 𝑎𝐻
𝑅𝑀𝑆 when u(t)

is small. 

To solve this multi-optimization problem, the NSGA-II is used; the reader can refer to 

Section 1.4 for more details about this algorithm. During the optimization, the population size is 

set to 50 and the maximum number of function evaluations is set to 1000. For the robust 

solution, a finite set of 20 solutions are randomly created within the neighborhood of the nominal 

values of 𝑘𝑦, 𝑘𝑠, 𝑐𝑠, and 𝑚𝑠.  Then, the mean effective values of the objective functions are 

calculated.  The quarter-car model is simulated with MATLAB using ode15s for 10 seconds with 

a step size of 10 milliseconds. During the numerical simulation, the nominal value of 𝑚𝑠 is set to 

290 𝑘𝑔. According to (Kuznetsov et al., 2011), other parameters can be set to: 𝑚𝑝 = 46.43 𝑘𝑔, 

𝑚𝑡 = 18.57 𝑘𝑔, 𝑘𝑡 = 45005.3 𝑁/𝑚, 𝑐𝑡 =  1360 𝑁. 𝑠/𝑚, 𝑘𝑐 = 10000𝑁/𝑚, and 𝑐𝑐 =

900 𝑁. 𝑠/𝑚. The road profile 𝑧𝑦 is chosen as a sinusoidal shape with two successive slopes of 
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depth of ℎ =  0.05 𝑚,  and length  𝜆 =  20 𝑚 as shown in Figure (21) (Shirahatti, Prasad, 

Panzade, & Kulkarni, 2008). The vehicle velocity 𝑉  is  𝑣 =  20 𝑚/𝑠. In mathematical terms, 𝑧𝑦 

is given by 

𝑧𝑦 = {
ℎ

2
(1 − cos (

2𝜋𝑣

𝜆
𝑡)) ,    𝑖𝑓 0 ≤  𝑡 ≤

2𝜆

𝑣
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

} 
(60) 

Figure 21: Road Profile

Under these conditions, the robust multi-objective optimization problem is solved and its 

solution in terms if robust Pareto front and set are obtained.  
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3.6 Results and Discussion 

Projections of the robust Pareto front are shown in Figures (22) and (23).  The robust 

trade-offs between the effective-mean of the head acceleration and that of the suspension 

deflection (𝑎𝐻
𝑒𝑓𝑓

versus 𝐷𝑠
𝑒𝑓𝑓
) are depicted in Figure (22), while those between the suspension

deflection and tire deflection ( 𝐷𝑠
𝑒𝑓𝑓
 versus 𝐷𝑇

𝑒𝑓𝑓
) are plotted in Figure (23). Both projections 

exhibit competing relationships among the design objectives. For instance, by inspecting Figure 

(22), we notice that 𝑎𝐻
𝑒𝑓𝑓

decreases as 𝐷𝑠
𝑒𝑓𝑓
 goes up. Similarly,  𝐷𝑇

𝑒𝑓𝑓
 goes down as 

𝐷𝑠
𝑒𝑓𝑓
 increases. The competing nature of these objectives stresses out the fact that these

objectives need to be handled in multi-objective settings. Projections of the corresponding Pareto 

sets are graphed in Figure (24). The optimal passive components (cs versus  ks and the color is 

mapped to the value of  ky) are depicted in Figure (24-a).  The subplot shows that higher values 

of  cs are associated with higher levels of  ky. While the active design parameters of the 

suspension systems are plotted in subfigures (b) and (c). The color in these subfigures is mapped 

to the level of the control penalizing factor, 𝑅. These subplots demonstrate that the weighting 

elements of the LQR algorithm within the feasible ranges and different optimal solutions that can 

be found by optimal adjustment.  In order to show the robustness of these solutions, time-domain 

profiles of the suspension deflection, tire deflection, and head acceleration at random point from 

the Pareto set are discussed next.  
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Figure 22: Robust optimal Pareto front of the mean-effective value of the head acceleration versus 

suspension deflection

Figure 23:  Robust optimal Pareto front of the mean-effective value tire deflection versus 

suspension deflection 
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Figure 24: Robust Pareto Set (a) the color is mapped to the value 𝑘𝑦 (b) & (c) the color is 

mapped to the value of the control weighting factor R. 

The profiles of the suspension deflection at the lower and upper values of 𝑚𝑠, 𝑘𝑦, 𝑘𝑠, 𝑎𝑛𝑑 𝑐𝑠  are 

shown in Figures (25) and (26).  The responses manifest little deviations from the ideal response 

(labeled original in the legend). The sprung spring and damping constants seem to have more 

impact on the 𝑆𝐷 profile as compared to the other parameters. Inspecting the profiles of the tire 

deflection shown in Figures (27) and (28) at different conditions, we notice that the response is 

insensitive to variations in 𝑚𝑠, 𝑎𝑛𝑑 𝑐𝑠 and slightly deviate from its ideal profile when 𝑘𝑦, 𝑎𝑛𝑑 𝑘𝑠 

are degraded. Similarly, the passenger head acceleration (see Figures (29) and (30) show little 

corrupt from its ideal response when the passive elements of the suspension are perturbed. This 
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emphasizes the importance of the robust design of semi-active suspension systems to ensure that 

the results are less sensitive to the parametric variations and boost the system performance.  

Figure 25: Time response of suspension deflection at the lower levels of the suspension passive 

elements.

Figure 26: Time response of suspension deflection at the upper levels of the suspension passive 

elements.
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Figure 27: Time response of tire deflection at the lower levels of the suspension passive elements 

Figure 28: Time response of tire deflection at the upper levels of the suspension passive

elements.
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Figure 29: Time response of head acceleration at the lower levels of the suspension passive 
passive elements.

Figure 30: Time response of head acceleration at the upper levels of the suspension passive 

elements.
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3.7 Conclusion 

We have studied the robust multi-objective design of a semi-active suspension system 

used in a commercial car. The optimization problem with 8 design parameters and 3 objective 

functions is solved by the NSGA-II algorithm. The sprung mass of the vehicle, tire stiffness, and 

suspension stiffness and damping constants are assumed to be uncertain and varied during the 

optimization to account for their variability. The robust Pareto set, and front are obtained. The 

Pareto set includes multiple design options from which the decision-maker can choose to 

implement. Time profiles of the design objectives show that the robust multi-objective design 

algorithm (RMOA) is  effective, guarantees less sensitivity to the suspension passive 

components and provides with control within the system. 
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CHAPTER 4: SUMMARY 

Robust multi-objective design of a semi-active suspension system and passive suspension 

system is carried out for a commercial car & racing car. The passive suspension system consisted 

of pure passive components such as inerters; whereas the semi active suspension system includes 

active elements that are controlled by a compensator built by linear quadratic regulator (LQR) 

algorithm. The size of the design parameter space depends on the type of the suspension systems. 

For passive suspension system, the tire stiffness, inerter’s coefficient, and constants of the sprung 

spring and damper are selected as design parameters. In the case of the semi-active suspension 

system, the LQR weighting matrices, and coefficients of the tire stiffness, sprung spring, and 

sprung damper are chosen as decision variables. In both problems, the objectives are the same: 

minimization of the suspension travel, tire deflection, and passenger’ head acceleration.  The 

uncertainty ranges of the passive elements of the suspension systems are defined based on the 

literature. The robust optimization solutions in terms of Pareto set and front for both systems are 

obtained by the non- dominating algorithm. Global sensitivity Analysis (GSA) is performed for

the semi active suspension system, and the results for sensitivity indices for each individual 

parameter are obtained. The simulations show that the Pareto front is robust and less sensitive to

parametric variations.  

Future work will include designing an optimal and robust suspension system for aircraft 

landing gear, and motorcycles using steering compensators. Furthermore, the idea of robust 

design of semi-active suspension can be implemented in electric cars and full-car models can be 

evaluated to justify the success of the methodology.
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APPENDIX A: INSITITUTIONAL REVIEW BOARD LETTER 
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APPENDIX B: RACING CAR MODEL 

function dx= RacingCarModel(t,x,TunePars) 

%% Tunable Parameters 

% ky=233 KN/m ks=300KN/m cs=8000 B=4 

% TunePars= [10.0e3 5.0e3 200 50]. 

ky=TunePars (1); ks=TunePars (2); cs=TunePars (3);  

B=TunePars(4); 

%% System Paramters 

m=65; 

mt= (2*m)/7; 

mp=(5*m)/7; 

mu= 23; % it is about 8.5 kg without the wheel rim 

ms=180; % The weight of racing is between 702-734 kg 

ct=1360. 

kt=45005.3. 

kc=1000; 

cc=90;  

Ms=[mt 0 0 0;0 mp 0 0;0 0 ms+B -B; 0 0 -B mu+B]; 

Cs=[-ct ct 0 0;ct -ct-cc cc 0;0 cc -cc-cs cs;0 0 cs -cs]; 
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% Ks= [kt -kt 0 0;kt-kc kt kc 0;0 -kc kc-ks ks; 0 0 ks ks+ky]*(-1); 

Ks= [-kt kt 0 0;kt -kt-kc kc 0;0 kc -kc-ks ks; 0 0 ks -ks-ky];%  Bs= [0 0 0 ky]’. 

%% State-Space Model 

A= [zeros (4) eye(4); Ms\Ks Ms\Cs]; 

Ba=[zeros (4,1); Ms\Bs]. 

%% State-Space Equation 

dx=A*x+Ba*zr. 
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APPENDIX C: UNCERTAINTY RANGES FOR PASSIVE SUSPENSION SYSTEM 

rng (advance)

uncertainities = [0.1 0.05 .08 0.03]; % uncertianities in the design parameters samps=20;

CostFunction=@(TunePars) 

Supension_inerter_Objectives_Robust_V2(TunePars,uncertainities,samps);

% CostFunction=@(TunePars)Solver_SuspensionSystemObjs (TunePars);

% ky=TunePars(1); % Tire Stiffness 

% ks=TunePars(2);% Sprung-Mass Stiffness 

% cs=TunePars(3);% Sprung-Mass damper 

% B=TunePars(4);% inerter coefficient. 

%   ky  ks cs  B 

%   180e3 <ky<240e3 

%   10e3 <ks<25e3 

%   2e3 <cs<4e3 

%   0 <B<4 

ub =[240e3  25e3 4e3  4]; 

gens = 50*length(lb); 

obj=3; 

%    TunePars=[200.0e3 15.0e3 1000 2]; 

save(filename); 
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R_HA=Objs(:,1);

R_CF=Objs(:,2);

R_TD =Objs(:,3);

R_SD=Objs(:,4);

%Obj=[R_HA,CF,TD,SD]; 

plot(R_HA,R_SD, *)

ky=TunePars (:,1); 

ks=TunePars (:,2); 

cs=TunePars (:,3);

B=TunePars (:,4);
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APPENDIX D: SEMI-ACTIVE SUSPENSION SYSTEM PARAMETERS 

function dx=CommercialCarModel(t,x,TunePars) 

%% bold Parameters 

% ks in [11750,35250]  

%cs in [350,1050]  

% ky in [95000,285000] 

ky=TunePars(1);  ks=TunePars(2);  cs=TunePars(3);  

%% LQR 

R=TunePars(4); 

Q=zeros (4).  

Q (1,1) =TunePars(5); Q(2,2)=TunePars(6); 

Q (3,3) =TunePars(7); Q(4,4)=TunePars(8); 

%% System Paramters 

m=65; % checked 

mt= (2*m)/7; % checked 

mp=(5*m)/7; % checked 

mu= 40; % it is about 8.5 kg without the wheel rim 

ms=290; % Ref: 2016-Optimization of nonlinear quarter car suspension–seat–driver model 

ct=1360; % checked 

kt=45005.3; % checked 
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kc=10000 

cc=900; %  

%% System matrices Active 

Ms=[mt 0 0 0;0 mp 0 0;0 0 ms 0; 0 0 0 mu];% checked 

Cs=[-ct ct 0 0;ct -ct-cc cc 0;0 cc -cc-cs cs;0 0 cs -cs]; 

% Cs=[ct -ct 0 0;-ct ct+cc -cc 0;0 -cc cc+cs -cs;0 0 -cs cs]*(-1); 

% Ks=[kt -kt 0 0; kt-kc kt kc 0; 0 -kc kc-ks ks; 0 0 ks ks+ky]*(-1); 

Ks=[-kt kt 0 0;kt -kt-kc kc 0;0 kc -kc-ks ks; 0 0 ks -ks-ky];% checked 

Bzy=[0 0 0 ky]';% checked 

But=[0 0 1 -1]'; % checked 
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APPENDIX E: LINEAR QUADRATIC CONTROLLER 

%% State-Space Model 

A=[zeros(4) eye(4);Ms\Ks Ms\Cs];% checked Bd=[zeros(4,1);Ms\Bzy];% 

Bu=[zeros(4,1);Ms\But];%  

%% Control Design  

AZsZu=[0, 0, 1, 0;0 , 0, 0, 1;... 

-ks/ms, ks/ms, -cs/ms, cs/ms;...

ks/mu, -(ks/mu+ky/mu), cs/mu, -cs/mu];  

BZsZu=[0,0, 1/ms, -1/mu]'; 

K=lqr(AZsZu,BZsZu,Q,R); 

u=(K(1)*x(3)+K(2)*x(4)+K(3)*x(7)+K(4)*x(8)); 

% open loop  

dx=A*x+Bd*zy+Bu*u; 
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APPENDIX F: DEFINING NOISE PARAMETERS FOR GSA 

addpath('StrongSystem'). 

for opt=1:3 

% create a new project 

set = set_Create();

%%  adding Parameters 

% Nominal Values 

m=65. 

mt= (2*m)/7. 

mp=(5*m)/7. 

ms=290. 

ct=1360. 

kt=45005.3. 

cc=900; 

kc=10000; 

NoiseP=[   mt   mp  ms    ct  kt    cc   kc]; 

%NoiseP= [0.2  0.2   0.1  0.2  0.2   0     0];

up=NoiseP. *un_ub_KP+NoiseP ; 

% Set the number of samples for the quasi-random Monte Carlo 

sampling set.N = 1000; 
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% Initialize the project by calculating the model at the sample points 

% set = Add Input (set, @ () pdf_Uniform (up (1)),   parameter1) 

% set = Add Input (set, @ () pdf_Uniform (up (2)), parameter2) 

% set = Add Input (set, @ () pdf_Uniform (up (3)), parameter3) 

% set = Add Input (set, @ () pdf_Uniform (up (4)), parameter4) 

% set = Add Input (set, @ () pdf_Uniform (up (5)), parameter5) 

% set = Add Input (set, @ () pdf_Uniform (up (6)), parameter6) 

%   set =    Add   Input   (set,   @  ()   pdf_Uniform   (up   (7)),   parameter7) 

pro = GSA_Init(set); 

%Calculate the first order global sensitivity coefficients by using FAST Sfast 

= GSA_FAST_GetSi(set); 
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APPENDIX G: FOURIER COEFFICIENTS CALCULATION 

function Si = GSA_FAST_GetSi(set)

% retrieve the number of input variables 

k = length(pro.Inputs); 

% set the number of discrete intervals for numerical integration of (13) 

MAXHEIGHT = 6.2’  

% increasing this parameter makes more precise the numerical integration 

M = 11; 

% read the table of incommensurate frequencies for k variables 

W = _FAST_GETFreqs(k); 

% set the maximum integer frequency 

Wmax = W(k). 

% calculate the Nyquist frequency and multiply it for the number of 

% intervals 

K = 2*M*Wmax+1; 

q = (AS-1)/2; 

% integration 

K1 = pi/2*(2*(1:AS)-AS-1)/AS; 

alpha = W'*K1 
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