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Abstract 

Purpose:  We examined the effects of physiological arousal on speech motor control and speech 

motor practice effects in preschool-age children who do (CWS) and do not stutter (CWNS).  

Method: Participants included 18 CWS (mean age 4 years, 5 months) and 18 age- and gender-

matched CWNS. The participants repeated a phrase “buy bobby a puppy” interspersed with 

viewing pictures from the International Affective Picture System under two experimental 

conditions speaking after viewing pictures with (1) negative, and (2) neutral valence. 

Participants’ lip movements were tracked using Optotrak system. The spatio-temporal index 

(STI; Smith, Goffman, Zelaznik, Ying & McGillem, 1995) and mean utterance duration were 

calculated to examine speech motor control and speech motor practice effects. Skin conductance 

level was measured during the experimental conditions to assess participants’ physiological level 

of arousal.  

Results: Preschool-age CWS demonstrated greater speech movement variability across all 

conditions and trials than CWNS. Further, the younger participants produced more variable 

articulatory movements than the older participants. Participants’ speech movement variability 

did not significantly differ between the negative and neutral experimental conditions and the 

level of physiological arousal did not have a significant effect on it. There was a non-significant 

trend of decrease in speech movement variability across the repeated trials in both groups. Last, 

CWS and CWNS did not differ in their mean utterance duration, suggesting that their articulation 

rate was similar across all conditions and trials.  

Conclusions:  Our findings indicate that, compared to preschool-age CWNS, CWS demonstrate 

less mature speech motor control. However, present findings do not support the hypothesis that 

CWS benefit less from motor practice relative to CWNS. Given that our conditions elicited 
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similar levels of arousal in the participants, future research is needed to examine whether 

physiological arousal disrupts speech motor control in preschool-age children potentially 

contributing to disruptions of speech fluency and the development of stuttering.   
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Stuttering typically emerges in preschool years during the time when children undergo 

rapid development of their speech, language, and emotional regulatory processes. The concurrent 

development of these various processes has contributed to the formulation of a multifactorial 

perspective on the etiology and persistence of stuttering (Conture & Walden, 2012; Smith & 

Weber, 2017). This perspective suggests that speech motor control, linguistic as well as 

emotional processes may act together to contribute to the onset of stuttering and its progression. 

However, despite the possibility that emotional processes (i.e., emotional reactivity and 

regulation) are thought to contribute to childhood stuttering, the effects of emotion on speech 

motor control in young children who do and do not stutter have not been studied to date.  Thus, 

the purpose of the present study was to investigate potential effects of emotional processes on 

speech motor control and speech motor practice effects in preschool-age children who do (CWS) 

and do not stutter (CWNS). What follows is an overview of the effects of emotional processes on 

kinematic and acoustic parameters of speech, and a description of physiological measures of 

emotional processes. Further, we consider the potential role of physiological reactivity during 

speaking on the development of stuttering, leading to our research questions and hypotheses. 

Effects of stress on speech motor control. Empirical evidence from fields outside of 

communication sciences and disorders points to potential ways emotional processes can affect 

speech motor control and motor learning involved in establishing fluent speech. It is proposed 

that emotional processes affect motor control through pathways in the central nervous system 

that involve amygdala and basal ganglia loops (Alm, 2004). Alm (2004) further suggested that 

the effect of emotion on speech motor control may be related to emotionally-induced variations 

of dopamine release, a hypothesis that is yet to be confirmed. Multiple studies showed that stress 

alters learning and memory (e.g., McEwen, 1999, 2000) and can affect performance in learning 
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tasks as well as motor performance in humans (Maki & McIlroy, 1996) and rodents (Metz, 

Schwab & Welzl, 2001; Metz, Jadavji, & Smith, 2005). Studies in sport psychology and music 

performance (e.g., Yoshie, Kudo, Murakoshi, & Ohtsuki, 2009) have uncovered debilitating 

impact of pre-competition anxiety on skilled performance. Given that speaking is a skilled motor 

activity, it has been proposed that stress (with the associated increased autonomic nervous 

system arousal, as reviewed below) can disrupt speech motor control (Adams, 1971; Kleinow & 

Smith, 2006; Van Riper, 1963).  

Accordingly, variations in speech motor control in stressful speaking situations have been 

reported in both normally fluent and stuttering adults (Arenas & Zebrowski, 2013; Caruso, 

Chodzko-Zajko, Bidinger, & Sommers, 1994; van Lieshout, Ben-David, Lipski, & 

Namasivayam, 2014; Jackson, Tiede, Beal, & Whalen, 2016), with the latter group showing 

greater effect of stress on speech than the former. Additionally, for adults who stutter, an 

increase in stuttering frequency and severity has been observed when speaking under feared or 

stressful conditions, such as a challenging job interview (Caruso, Chodzko-Zajko, Bidinger, & 

Sommers, 1994; Brundage, Graap, Gibbons, Ferrer, & Brooks, 2006). These findings, however, 

cannot be extended to young children who stutter as their speech motor control and other skills 

are not yet mature and undergo development well into school-age years (Smith, 2006; Walsh & 

Smith, 2002; Walsh, Smith & Weber-Fox, 2006). Despite that, the effects of stress on speech 

kinematics have not been studied in children who stutter. 

The effect of stress on speech motor control may be more pronounced in children given 

that their speech motor control (Smith & Zelaznik, 2004) and emotional regulatory processes are 

less developed than those of adults. Given the evidence that children who stutter may lag behind 

their normally fluent peers in speech motor control development (Smith, Goffman, Sasisekaran, 
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& Weber-Fox, 2012; MacPherson & Smith, 2013), they may be especially susceptible to the 

effects of concurrent emotional processes. Of note are also the research findings indicating that 

preschool-age CWS may be more emotionally reactive and less able to regulate their emotions 

than preschool-age CWNS (Eggers, Luc, & Van den Bergh, 2010; Howell et al., 2004; Johnson, 

Walden, Conture, & Karrass, 2010; Karrass, Walden & Conture, 2006; Ntourou, Conture & 

Walden, 2013), which could make CWS more vulnerable to higher emotional arousal, potentially 

affecting their speech motor control. Clinically, there are numerous reports of increased 

disfluency in stuttering children when they experience emotional arousal, even when it is 

positive in nature. This association also has some empirical support (e.g., Arnold, Conture, Key, 

& Walden, 2011). Importantly, recent longitudinal research indicates that preschool-age children 

who subsequently developed chronic stuttering (relative to those preschoolers who recovered) 

exhibit more variable speech articulation (Ambrose et al., 2015; Usler, Smith, & Weber, 2017), 

and stronger and more frequent negative emotions (such as fear) per parent report (Ambrose et 

al., 2015). Thus, the association between emotional arousal and speech articulation in children 

who stutter warrants further research.      

Effects of stress on speech motor practice. 

 Motor practice is the initial stage of motor learning. Its effects are typically defined as 

within-session improvement in motor control, which could be indexed by a decrease in 

movement variability and duration (Schmidt & Wrisberg, 2004). Research has shown that 

children’s motor movements, including those for speech production, require a certain degree of 

practice to become adult-like (Green, Moore, Higashikawa, & Steeve, 2000; Green & Nip, 2010; 

Smith, 2006; Smith & Zelaznik, 2004). Typically-fluent school-age children have been shown to 

learn novel nonwords by decreasing their speech movement variability and duration with within-
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session practice (Sasisekaran, Smith, Sadagopan, & Weber-Fox, 2010; Walsh, Smith & Weber-

Fox, 2006). Limited research evidence is available on whether CWS differ in speech motor 

practice effects compared to CWNS (Sasisekaran, Basu & Weathers, 2019). Sasisekaran and 

colleagues (2019) reported no differences in speech motor practice effects between school-age 

CWS and CWNS, with both groups displaying a nonsignificant trend of decreased articulatory 

variability in nonword repetition over within-session practice. Although considerable progress 

has been made in identifying differences in speech motor control and emotional reactivity in 

CWS and CWNS, very little information is available on how these processes may interact in 

typically fluent children (Shirkey & Manning, 1987) and no studies have examined the 

intersection of these processes in CWS.   

Evidence from neuroscience research points to potential mechanisms by which stress 

affects motor control. Brain regions involved in motor control (including the motor cortex, 

cerebellum and basal ganglia) have a high number of stress hormone receptors (Metz, 2007), 

which makes them particularly susceptible to the effects of stress. This link is supported by 

evidence from animal and human research showing that stress can adversely affect skilled motor 

performance and motor learning (for review see Metz, 2007). Considering the evidence that 

stuttering is a neurodevelopmental multifactorial disorder with speech motor, linguistic, and 

temperamental domains implicated in its development (e.g., Smith & Weber, 2017), it is crucial 

to examine how emotional factors interact with speech motor factors and whether emotional 

factors promote or interfere with speech motor learning in developing systems of CWS.  

Vocal parameters associated with stress. Compared to the relative paucity of research 

on the effects of stress on speech motor control, there is body of research on vocal markers of 

stress (for review see van Puyvelde, Neyt, McGlone, & Pattyn, 2018; Scherer & Moors, 2019). 
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Psychological stress of cognitive and emotional nature has been shown to affect vocal 

parameters such as vocal loudness, fundamental frequency and speech rate.  

Research findings regarding the effects of stress on adult speech rate are somewhat 

inconsistent. Some reported a decrease in speech rate under stress conditions (Hicks, 1979 as 

cited in Kirchhubel, Howard & Stedmon, 2011), whereas other research indicated that speech 

rate increased with stress (Hecker, Stevens, von Bismarck, & Williams, 1968, Karlsson et al. 

2000, Siegman 1993). Other research did not identify any association between stress and 

speaking rate (Scherer et al. 2002). Specific to adults who stutter, a recent study found no effect 

of a social stress condition (i.e., delivering a speech in front of a video camera) on the speaking 

rate. Similarly, typically fluent adults in the study also did not change their speaking rate in 

response to the social stress condition. However, across all (stress and no-stress) conditions, 

adults who stutter were speaking faster than typically fluent adults (Bauerly, Jones, Miller, 

2019). To our knowledge, only one study examined the effect of emotion on speech rate in 

preschool-age children who do and do not stutter (Erdemir, Walden, Jefferson, Choi, & Jones, 

2018). In that study, the articulatory rate during a narrative was examined in three groups of 

preschool-age participants: those preschool-age CWS who subsequently developed chronic 

stuttering, those CWS who subsequently recovered from stuttering and their peers who did not 

stutter. To elicit an emotional arousal, the participants watched a 4-min video clip designed to 

elicit negative emotion (such as fear). The study results indicated that only those preschool-age 

CWS who subsequently developed chronic stuttering had a significantly slower articulation rate 

(compared to the other two groups) following presentation of the negatively valenced video clip.  

Articulatory rates of CWS who later recovered from stuttering and CWNS were not affected by 

the video. Given the somewhat inconsistent findings on whether speech rate increases or 
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decreases during emotional arousal and limited information regarding effects of physiological 

arousal on speech rate in preschool-age children, we examined the effects of arousal on mean 

utterance duration for the repeated productions of the same utterance in preschool-age CWS and 

CWNS in our study.     

Neurophysiological correlates of emotional arousal. Neurophysiologic research 

indicates that activity of the autonomic nervous system is particularly relevant to emotional 

arousal, cognitive effort and stress (Bradley, Codispoti, Cuthbert, & Lang, 2001; Lang, 2014). 

The sympathetic branch of the autonomic nervous system activates in response to environmental 

stimuli (such as psychological, emotional or cognitive stressors) to prepare the body for action. 

Although the activity of the sympathetic branch of the autonomic nervous system is not sensitive 

to the valence of the stimulus (e.g., pleasant or unpleasant), it is sensitive to the level of arousal 

elicited by the stimulus (e.g., being calm or being excited or stressed). The sympathetic nervous 

system activity can be reliably indexed by measuring the degree of electrodermal activity 

(Bouscein, 2012). The electrodermal activity measurements are traditionally divided into tonic 

activity, such as skin conductance level (SCL), and phasic activity, such as frequency of skin 

conductance responses (SCR). Whereas tonic activity is measured continuously and is associated 

with the overall state of physiologic arousal, phasic activity (or phasic response) is associated 

with discrete fluctuations in electrodermal activity elicited by specific stimuli. Both tonic and 

phasic measures are used to objectively assess the degree of speaker’s emotional arousal elicited 

by certain task.  

Purpose of the study. There is a paucity of research on the effects of physiological 

arousal on speech motor control. The existing research is inconclusive and limited to adults. 

Further, few studies have objectively assessed or reported whether the emotion elicitation 
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conditions did, in fact, elicit increased arousal in the participants. The present study was carried 

out to address this gap in knowledge and examine the effects of physiological arousal on speech 

motor control and speech motor practice effects (the latter defined as the immediate 

improvement in speech motor control as a result of practice) in preschool-age children who do 

and do not stutter. We posed the following research questions:  

1. Do preschool-age CWS have greater articulatory movement variability than CWNS 

overall and under emotionally arousing conditions? 

2. Do preschool-age CWS have longer utterance duration than CWNS overall and under 

emotionally arousing conditions?  

3. Do preschool-age CWS have a lesser speech motor practice effect than CWNS overall 

and under emotionally arousing conditions? 

We hypothesized that increased physiological arousal during emotionally arousing 

conditions would result in more variable articulatory coordination in both CWS and CWNS, but 

that the effects of increased physiological arousal on coordination variability would be 

significantly greater in CWS compared with their typically developing peers. Given research 

indicating that an increase in coordination variability may reflect more variable neuromotor 

commands to achieve movement goals (Wohlert & Smith, 2002), we, like others (MacPherson & 

Smith, 2013), interpreted an increase in coordination variability as decreased stability in the 

speech motor system.  We also hypothesized that increased physiological arousal during 

emotionally arousing conditions would be associated with longer utterance duration, particularly 

for CWS. Findings consistent with these predictions would indicate that the speech motor system 

of CWS is particularly susceptible to physiological arousal during emotionally arousing 
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conditions, which may contribute to the development of stuttering and to disruptions of speech 

fluency characteristic of stuttering. 

Method 

Thirty-six preschool-age children (age range: 38-69 months) and their caregivers 

completed the study. Participants included 18 CWS (16 boys and 2 girls; mean age 53.89 months 

or 4 years, 5 months) and 18 CWNS (16 boys and 2 girls; mean age 54.39 months or 4 years, 6 

months). CWS were 15 Caucasians, two African Americans, and one child with more than one 

reported race. CWNS were 16 Caucasians, and two children with more than one reported race. 

All were paid volunteers recruited through an advertisement in a monthly parent magazine 

circulated throughout Syracuse and an e-mail advertisement sent to Syracuse University 

employees. The study procedures were approved by the Syracuse University Institutional Review 

board. Informed consent by parents and verbal assent by children were obtained.  

General Procedures 

Data collection procedures took place during two visits to the Syracuse University 

Stuttering Research Laboratory. Participants’ speech, language and fluency skills were assessed 

during the first visit. The experimental tasks were conducted during the second visit. At the first 

visit to the lab, participants initially engaged in a spontaneous conversation with the examiner. 

The conversation was centered on age appropriate toys and was elicited during free play. This 

conversation was transcribed and analyzed for the frequency of occurrence of stuttered and 

normal disfluencies (please see the section titled Group classification). Then, the “Sounds in 

Words” subtest of the Goldman-Fristoe Test of Articulation-2 (GFTA-2; Goldman & Fristoe, 

2000) was administered to assess children’s articulation. Clinical Assessment of Language 

Fundamentals – Preschool 2 (CELF-P2; Wiig, Secord & Semel, 2004) was administered to 
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assess participants’ overall language ability. Table 1 provides a summary of participants’ speech 

and language characteristics. Lastly, all participants passed a bilateral pure tone hearing 

screening at 20dB loudness level (frequencies of 1000, 2000 and 4000Hz were tested). 

Caregivers of all participants reported that their children had normal vision, English as the 

primary language and no history of neurological diseases or diagnosed speech-language 

disorders apart from stuttering (for the participants in the CWS group). 

Group classification. Participants were assigned to the CWS group if they (a) produced 

3% or more of stuttered disfluencies (i.e., sound/syllable repetitions, sound prolongations, or 

monosyllabic whole-word repetitions) in a 300 word conversational speech sample obtained 

during free play between the child and the examiner (Tumanova, Conture, Lambert, & Walden, 

2014), (b) scored 10 or greater on the Stuttering Severity Instrument-4 (SSI-4; Riley, 2009), and 

(c) their caregivers expressed concern regarding stuttering. Children whose parents expressed no 

concern about their child’s fluency and who produced less than 3% stuttered disfluencies were 

assigned to CWNS group. The frequency of stuttered disfluencies was calculated using percent 

words stuttered. Stuttering frequency and severity characteristics for CWS are presented in Table 

2.  

Experimental Tasks and Conditions. Figure 1 provides an overview of the time course 

of the experimental conditions. First, to establish a pre-experimental baseline for each 

participant’s resting skin conductance level, participants viewed an animated screensaver of a 

three-dimensional fish tank for four minutes. The screensaver contained minimal action and had 

been previously successfully used to establish baseline levels of skin conductance activity in 

preschool-age children (e.g., Jones et al., 2014; Tumanova & Backes, 2019). Next, the 

participants completed two experimental conditions: (1) speaking after viewing pictures with 
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negative valence, and (2) speaking after viewing pictures with neutral valence. The order of the 

condition presentation (negative vs. neutral) was counterbalanced between the participants. To 

physiologically validate the levels of emotional arousal that are targeted in each of the 

experimental conditions, skin conductance level and phasic skin conductance responses were 

measured during the baseline (screensaver viewing) and two experimental conditions (neutral 

picture viewing and negative picture viewing conditions). Each experimental condition included 

two trials, comprising a total of 4 trials for the entire experiment (2 conditions x 2 trials per 

condition).  

One trial lasted approximately 4 minutes. Figure 2 shows the sequence of events for a 

trial. During each of the four trials participants viewed five pictures (either negative or neutral in 

valence depending on the condition). The pictures were presented on a 27-inch (diagonal size) 

computer screen positioned approximately 6 feet away at a participant’s eye level directly in 

front of them.  A fixation cross preceded picture presentation to center participant’s gaze at the 

center of the screen. Each of the pictures was displayed at 75% screen size (approx. 20 inches in 

diagonal size) for 3 seconds. After viewing each picture, the participant was prompted to repeat 

the target phrase three times following presentations of a voice recording of the target phrase, 

which was pre-recorded by a female native speaker of American English. This procedure was 

repeated five times during a trial (see figure 2). For each trial, five different pictures were 

presented and three repetitions of the target phrase were elicited for a total of 15 repetitions per 

trial. This number of repetitions per trial was chosen based on the existing research in limb and 

speech motor control that suggests that the majority of kinematic changes are evidenced early in 

practice, within 30 repetitions of the task (e.g., Namasivayam & van Lieshout, 2008). After the 

completion of the first trial participants were given a short break (approx. 2 minutes) during 
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which they were given a sticker. Then, the participants completed the second trial of the first 

condition. Finally, to re-establish the baseline for autonomic activity measurement before the 

second condition the participants viewed the animated screensaver again for four minutes. After 

the second baseline was completed, the second experimental condition was presented (as shown 

in figure 1).  

Speech stimuli. The target phrase that participants repeated was “Buy Bobby a puppy”. 

This phrase was chosen because it had been previously employed to study speech motor 

coordination in preschool-age children (e.g., Smith & Zelaznik, 2004). The phrase contained a 

large proportion of bilabial consonants to ensure that upper and lower lips would be engaged 

during articulation and preschool-age children produced it without difficulty. Only fluent, error-

less productions of the target phrase were included in the analysis. It should be noted that all of 

the CWS were able to repeat the phrase fluently; there were no instances of stuttering on this 

phrase throughout the experiment. 

Emotion elicitation stimuli. To elicit emotional arousal a set of age-appropriate color 

photographs from the International Affective Picture System (IAPS; Lang, Bradley & Cuthbert, 

2005, 2008) was shown to participants. The IAPS was used because it is widely implemented in 

experimental investigations of emotion and attention worldwide. The subjective, 

psychophysiological, behavioral and neurophysiological reactions that are elicited by the 

affective stimuli in the IAPS have been well documented (for review see Lang & Bradley, 2007).  

Each IAPS photograph has an emotional valence rating made by men and women, some 

pictures have also been rated by children (McManis, Bradley, Berg, Cuthbert, & Lang, 2001). 

Each IAPS photograph is standardized on the basis of ratings of pleasure/displeasure and level of 

arousal it elicits. To ensure that the pictures elicit predicted emotional responses in participants, 
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ten pictures with negative valence and ten neutral pictures were selected based on event-related 

potential studies of children’s emotional processing using these specific pictures as stimuli 

(Hajcak & Dennis, 2009; Solomon et al., 2012). Five IAPS pictures were presented per one trial 

of a given condition. Two sets of IAPS pictures in each condition were balanced for their valence 

and arousal ratings and for content. An example of a picture with negative emotional valence is 

that of a threatening animal, such as an attacking snake. An example of a neutral valence picture 

is that of household objects, such as a plate. Table 3 and 4 provide detailed information on the 

IAPS pictures used in this study. 

Experimental setup. At the second visit to the lab, participants were seated in front of a 

computer screen. A microphone was positioned approximately one foot from participant’s mouth 

to record the target phrases spoken by the participants. E-prime software (2016, Psychology 

Software Tools, Inc.) was used to visually present picture stimuli and a voice recording of the 

target phrase that participants repeated. E-prime was also used to time-lock picture presentations 

to the recorded physiological responses. 

Movement data of upper lip, lower lip and the jaw during the child’s speech was 

collected using the Optotrak camera system (Northern Digital, Waterloo, Ontario, Canada), an 

optoelectronic position measurement system that tracks the three-dimensional motion of 

infrared-emitting diodes (IREDs). IREDs were attached to the participant’s upper lip, lower lip, 

jaw and head. Upper and lower lip markers were attached to the skin using a medical adhesive 

tape. To correct for potential artifact from movements of the head, participants wore modified 

transparent sport goggles that had IREDs attached to them. Data collection guidelines established 

by Smith and colleagues were followed (e.g., Smith, Johnson, McGillem & Goffman, 2000; 
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Kleinow & Smith, 2006; Smith & Zelaznik, 2004). The Optotrak 16 channel A/D converter 

allowed the kinematic signal to be acquired with time-aligned audio. 

Electrodermal activity was acquired using Biopac MP150 hardware system (Biopac 

Systems, Inc.) and recorded and analyzed using AcqKnowledge software (ver. 4.3 for PC, 

Biopac). Hypoallergenic electrodes were attached to the skin of the distal phalanges of the index 

and middle finger of the left hand (Venables & Christie, 1980) for acquisition of electrodermal 

activity throughout the experimental tasks. We also collected electrocardiogram data from each 

of the participants. These data were used to address separate research questions about group 

differences in emotional reactivity and regulation, not included in this report. 

Standardized procedures for electrodermal activity recordings were implemented 

(Boucsein et al., 2012). The electrodes were connected to a Biopac GSR100C skin conductance 

amplifier. The electrodermal activity (expressed in microSiemens, μS) was sampled at 1,250 Hz 

with the gain set at 10 μS/V and a low-pass filter at 1 Hz and subsequently downsampled for the 

analysis. The data were visually inspected during data collection to monitor for any instances of 

artifacts. In rare cases when participants pulled off the electrodes during the data collection 

resulting in intervals of missing data, the “Connect Endpoints” math function of the Biopac 

AcqKnowledge 4.3 software was then used to correct these artifacts. No more than five percent 

of the total data for any one condition were corrected using this procedure. To measure tonic 

arousal, mean skin conductance level was calculated for the baselines and the picture viewing 

and speaking conditions using AcqKnowledge 4.3 software from a continuous electrodermal 

activity signal. Following common procedures (e.g., Boucsein et al., 2012) skin conductance 

level was calculated after phasic responses were removed from the signal. The law of initial 

values (Wilder, 1958) suggests that baseline skin conductance level values could influence a skin 
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conductance level in other experimental conditions. Thus, we calculated residualized change 

score for skin conductance level in the two experimental conditions (neutral picture viewing and 

negative picture viewing conditions) by regressing the skin conductance level during these 

conditions to the skin conductance level during the first baseline (Llabre, Spitzer, Saab, Ironson, 

& Schneiderman, 1991; Jones et al. 2014; Zengin-Bolatkale, Conture & Walden, 2015). The 

residualized skin conductance level change score served as an independent variable (covariate) in 

the subsequent analyses to examine whether the level of physiological arousal during each of the 

experimental conditions had an effect on the outcome variables.  

Dependent Measures. The spatiotemporal index (STI), a measure of speech coordination 

developed by Smith and her colleagues (e.g., Smith, Goffman, Zelaznik, Ying & McGillem, 

1995) served to quantify speech motor control ability and speech motor practice effects. The STI 

reflects the degree to which repeated performance of a task produces movement trajectories that 

converge on a single pattern. Children produce less stable movement trajectories, as reflected in 

higher values of the STI (e.g. Smith & Goffman, 1998); whereas adults produce more stable 

movement trajectories as reflected in lower STI values. The STI was chosen due to several 

advantages including: (1) it has been widely used in published research studies of speech motor 

control and practice of both young children and adults, (2) the entire movement waveform is 

used to characterize the observed pattern of behavior and its variability, (3) no assumptions are 

made about the units of speech production, which is a debated issue.  

The kinematic data from the target phrases were processed in custom MATLAB routines 

(The Mathworks, 2016) following the procedures established by Smith and colleagues (Smith, 

Goffman, Zelaznik, Ying & McGillem, 1995). In brief, we listened to each repetition of the 

target phrase and included only those productions that contained no errors or moments of 
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stuttering in the STI calculations. To calculate the STI, the onsets and offsets of each target 

phrase (e.g., the opening movement following the first [b] in “buy” and the closing movement 

for the last [p] in “puppy”) were extracted from lower lip movement signal. The movement 

trajectories for the target phrase were visually inspected and the onsets and offsets of each phrase 

were manually selected using the peak velocity for the two articulatory gestures (for further 

details, see Walsh, Mettel, & Smith, 2015). An algorithm then established the minimum value, 

determining the point at which velocity crossed zero within a 100-ms window of the point 

selected by the researcher. We measured the movement variability within that entire time 

window. The movement trajectories for the selected segments were then linearly time 

normalized by setting each extracted record to a time base of 1,000 points and using a cubic 

spline algorithm to interpolate between points. These segments were then amplitude normalized 

by setting the mean to 0 and the standard deviation to 1. The rationale for time and amplitude 

normalization was to rule out differences in rate and loudness; the goal was to assess 

spatiotemporal patterning. After normalizing the data, standard deviations were computed at 2% 

intervals in relative time across the extracted records and then summed. The sum of the 50 

standard deviations is the STI; a higher value reflects greater movement variability (Smith & 

Goffman, 1998). 

Mean duration of the target phrase, “Buy bobby a puppy”, served as the second 

dependent measure. Duration of each spoken target phrase repeated by the participant was 

assessed from the same kinematic record as those used to calculate the STI. Movement duration 

was computed as the time (in seconds, with the precision to the thousandth decimal place) of 

each original (non-normalized) target phrase, starting at the first [b] in “buy” and ending at the 

last [p] in “puppy”.     
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Statistical Analyses 

Statistical analyses of the data were performed in IBM SPSS version 24 statistics 

software using linear mixed-effects models (Oleson, Brown, McCreery, 2019). The mixed model 

design included Group (CWS, CWNS) as a between-participant fixed factor, and Condition 

(neutral picture viewing, negative picture viewing) and Trial (first, second) as two within-

participant fixed factors. Participants’ age measured in months and skin conductance level 

residualized change score were included as independent variables in the model design. We 

separately examined two outcome variables, speech movement variability (STI for the lower lip) 

and mean utterance duration.  

The mixed-effects model allowed us to test for the overall Group effect, Condition effect 

and the interaction between Group and Condition to answer Research Question 1. We also tested 

for the interaction between Group, Condition and Trial to answer Research Question 2. The 

alpha level was set to .05.  

Results 

Tests for the main effects and interactions from the linear mixed-effects regression model 

were completed using Type III F tests. Different interaction terms were tested within the model 

to address Research Question 1 and Research Question 2. Model results for the lower lip STI 

show that there was neither a significant Group X Condition interaction (F1,133 = .163, p = .687), 

nor Group X Condition X Trial interaction (F1,89 = .053, p = .984), but there was a significant 

main effect of Group (F1,133 = 6.001, p = .016). This indicates that CWS produced more variable 

articulatory movements than CWNS in all conditions and trials. There was also a significant 

main effect of Age (F1,133 = 7.468, p = .007), indicating that the younger participants produced 

more variable articulatory movements than the older participants (see Figure 3). The effects of 
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Condition (F1,133 = .066, p = .798) and Trial (F1,133 = 1.963, p = .163) were not significant in the 

model indicating that there is not enough evidence to conclude that participants’ speech motor 

control differs between the negative and the neutral picture viewing conditions or between the 

first and the second trial of the conditions. The skin conductance level also did not have a 

significant effect (F1,132 = 2.059, p = .154) on the lower lip STI (see Figure 4). See Figure 5 for 

descriptive statistics for lower lip STI for CWS and CWNS across Conditions and Trials. See 

Table 5 for group mean lower lip STI and effect sizes for the group difference in lower lip STI 

across the conditions and trials.  

These results indicate that preschool-age CWS have a greater speech movement 

variability under all conditions (both neutral and negative) than CWNS. This conclusion is 

supported by medium to large effect sizes for the between-group difference in articulatory 

variability. Further, the two speaking conditions had similar effects on both CWS and CWNS. 

There was a non-significant trend of decrease in lower lip STI across repeated trials, indicating 

improvement in movement stability over short-term practice in both groups. Notably, there was a 

large effect size for the group difference in the lower lip STI in the second trial of negative 

condition, which warrants further study.  

Model results for the second dependent variable, mean utterance duration, showed neither 

significant Group X Condition interaction (F1,133 = .023., p = .880), nor Group X Condition X 

Trial interaction (F1,88 = .238, p = .870). Also, neither Group effect (F1,133 = .285, p = .594), nor 

Condition effect (F1,133 = .925, p = .338), nor Trial effect (F1,133 = .044, p = .835) were observed. 

See Figure 6 for descriptive statistics for the mean utterance duration for CWS and CWNS 

across Conditions and Trials. See Table 6 for group mean utterance duration and effect sizes for 

the group difference in mean utterance duration across the conditions and trials. Given that the 



 
 

22 
 

participants repeated the same phrase, we can draw conclusions about their articulation rate from 

their mean utterance duration. These results indicate that CWS and CWNS did not differ in their 

articulation rate across all conditions and trials. Small effect sizes for between-group differences 

in utterance durations further support this conclusion. 

Ancillary Analyses 

Physiological arousal during picture viewing.  

To better understand participants’ physiological arousal during neutral and negative 

picture viewing, an ancillary analysis was performed to examine condition differences in 

physiological arousal.  Recall that neutral and negatively-valenced IAPS picture stimuli were 

presented to our participants to elicit physiologic arousal, which was objectively measured by the 

skin conductance level. The order of the condition presentation (neutral vs. negative picture 

viewing) was counterbalanced between the participants (half of the participants in each group 

saw the neutral pictures first and half saw the negative pictures first). However, by 

counterbalancing the order of the conditions, it is possible that negative stimuli have residual 

effects on subsequent neutral stimuli. To examine whether the two conditions elicited a different 

level of arousal in our participants, we conducted a linear mixed model analysis. The model 

included Condition and Trial as two within-participant (repeated measures) factors and one 

between-participant fixed factor, the order of condition presentation (neutral vs. negative pictures 

first). The order of condition presentation was included to examine whether viewing negative 

pictures first had a priming effect on the level of arousal in the subsequent neutral condition. 

Skin conductance level in the first baseline was included as a covariate, given that it could 

influence the skin conductance level in other experimental conditions (Wilder, 1958). The linear 
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mixed effects model tested for the main effect of Condition, and a Condition X Order of 

Condition Presentation effect. 

Model results for the skin conductance level as the dependent variable showed a 

significant Condition X Order of Condition Presentation interaction (F1,71 = 8.127, p = .001) in 

the absence of a significant Condition effect (F1,138 = .036, p = .851). There was also a significant 

effect of baseline skin conductance level (F1,138 = 260.356, p < .0001), which was expected. A 

follow up analysis for the interaction effect indicated that the participants who were presented 

with neutral pictures first, had a significantly lower skin conductance level in the neutral 

condition (t = -2.676, p = 0.009, β = -2.185) and a significantly higher skin conductance level in 

the negative condition (t = 2.989, p = 0.004, β = 2.583) than the participants who viewed 

negative pictures first. These results suggest that although all participants increased their skin 

conductance level from baseline to the picture viewing conditions (see Figure 7), seeing negative 

pictures first had a priming effect on preschool-age children’s physiological arousal. Those 

participants who saw negative pictures first may have been primed to respond to neutral pictures 

with a higher level of arousal. As we discuss in the caveats below, although we included 

physiologic level of arousal in our models examining the two outcome variables (speech 

movement variability and utterance duration), this priming effect may have influenced our 

results and should be considered for future studies. 

Discussion 

The purpose of the present study was to examine the effects of physiological arousal on 

speech movement variability and speech movement practice effects of preschool-age CWS and 

CWNS. To the best of our knowledge, this is the first kinematic study to examine the effects of 

physiological arousal on speech motor control in very young CWS and CWNS. We examined 



 
 

24 
 

the articulatory kinematics in children as young as 3 years of age, which is very close to the 

typical age of stuttering onset. We also objectively verified whether our emotional conditions 

elicited increased arousal in the participants and whether their physiological arousal had an effect 

on speech movement variability.  

The present study resulted in four main findings. First, preschool-age CWS exhibited 

greater speech movement variability in perceptually fluent speech across all conditions and trials 

than CWNS. Second, participants’ speech motor control did not significantly differ between the 

negative and the neutral picture viewing conditions and the level of physiological arousal did not 

significantly predict speech movement variability. Third, although we did not see a significant 

speech motor practice effect from trial 1 to trial 2 of the target phrase repetition, both groups 

showed a non-significant trend of decrease in lower lip STI across the repeated trials, indicating 

improvement in movement stability over short-term practice. Last, the younger participants 

produced more variable articulatory movements than the older participants. These findings are 

discussed below. 

Higher speech movement variability in CWS 

We hypothesized that increased physiological arousal during an emotionally arousing 

condition, such as viewing of pictures with negative valence, would result in more variable 

articulatory coordination in both CWS and CWNS, but that the effects of increased physiological 

arousal on coordination variability would be significantly greater in CWS compared with their 

typically developing peers. Our results do not support these hypotheses. These results suggest 

several possible interpretations. Unlike adults, it may be that preschool-age children are not 

prone to the effects of physiological arousal. Another possibility is that the physiological arousal 

elicited in our participants was not strong enough to interfere with speech motor control. Indeed, 
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research suggests that that the response to stress depends on the nature, intensity and duration of 

a stressor following an “inverted U-shape function” (Sapolsky, 2015). Further, the stress reaction 

in response to a psychological stressor is not determined solely by the actual presence of the 

stressor and is affected by the individual’s cognitive and psychological evaluation of it, resulting 

in an individualization of the stress response (Kirchhubel, Howard, & Stedmon, 2011). The IAPS 

pictures used to evoke a stress response in this study may not have elicited a strong enough level 

of arousal to interfere with speech motor control. Acknowledging that it can be challenging to 

select stimuli that are potent enough to elicit sufficient stress, yet ethically appropriate to use 

with children, future studies should try different approaches to evoking arousal strong enough to 

impact speech motor control. 

Whereas the level of physiological arousal did not affect speech motor control in our 

participants, we found that that preschool-age CWS exhibited greater speech movement 

variability across all conditions and trials than CWNS. Following the existing research, we 

interpreted greater speech movement variability as a sign of less mature speech motor control 

(MacPherson & Smith, 2013; Wohlert & Smith, 2002). Our findings add to the published 

evidence that preschool-age CWS tend to have more variable speech motor control and may lag 

their typically fluent peers in speech motor development (Ambrose, Yairi, Loucks, Seery, & 

Throneburg, 2015; MacPherson & Smith, 2013; Walsh, Mettel, & Smith, 2015; Usler, Smith, & 

Weber, 2017). The greater speech movement variability observed in CWS has also been 

observed in adults who stutter (Smith, Sadagopan, Walsh & Weber-Fox, 2010; Namasivayam & 

van Lieshout, 2011; Frisch, Maxfield & Belmont, 2016). Specific to preschool-age CWS, the 

large degree of variability within this population suggests the existence of subgroups (e.g., 

Schwartz & Conture, 1988; Seery, Watkins, Mangelsdorf, & Shigeto, 2007; Yairi, 2007). The 



 
 

26 
 

developmental course of stuttering itself, with many preschool-age CWS outgrowing stuttering 

and some developing chronic stuttering, has provided the evidence for the existence of subgroups 

(Yairi & Ambrose, 2005). Accordingly, speech movement variability has been examined for its 

relevance to recovery or persistence of stuttering in young children. Usler and colleagues (2017) 

reported that CWS who developed chronic stuttering (at the age of 5 to 7 years) had higher 

speech movement variability than CWNS and those CWS who, by the age of 5 to 7 years, no 

longer stuttered. Descriptive analysis and visual examination of our data suggest that the 

variability in speech movement coordination is larger in preschool-age CWS than in CWNS. We 

conjecture that this variability may be due to the presence of subgroups within our sample of 

CWS. Given that our participants were preschool-age children, it is likely that some of the CWS 

in our sample will outgrow stuttering whereas others will not. However, given the cross-sectional 

design of this study, we cannot make any conclusions regarding the persistence or recovery from 

stuttering among our participants and its association with speech movement variability.     

Our findings that the younger participants produced more variable articulatory 

movements than the older participants align with the Speech Motor Skill Approach (van 

Lieshout, Hulstijn, & Peters, 2004). These results suggest that young children’s speech motor 

coordination becomes more stable and the movement variability decreases with maturation, and 

lend support to the growing number of studies that demonstrated a decrease in speech movement 

variability in children through maturation and development (Goffman & Smith, 1999; Green, 

Moore, Higashikawa, & Steeve, 2000; Green, Moore, & Reilly, 2002; Grigos & Patel, 2007; 

Smith, & Goffman, 1998; Walsh & Smith, 2002).  

We also hypothesized that increased physiological arousal during emotionally arousing 

conditions would be associated with longer utterance duration, particularly for CWS. Our data, 
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however, did not support this hypothesis: we found no significant differences in utterance 

duration between viewing pictures with neutral or negative valence. Neither were there 

differences between CWS and CWNS’s mean utterance duration, suggesting that the observed 

significant differences in articulatory variability between CWS and CWNS were not driven by 

speech rate differences. However, similar to the observed speech kinematic trends, descriptive 

analysis of our data suggests greater variability in CWS’s articulatory rate. Only one published 

study examined the effect of emotion on articulatory rate with consideration to the existing 

subgroups of preschool-age CWS (Erdemir et al., 2018). The participants were grouped into 

those who subsequently developed chronic stuttering, those who subsequently recovered from 

stuttering and those who did not stutter at any point in their life. Erdemir et al. reported that only 

those preschool-age CWS who subsequently developed chronic stuttering had a significantly 

slower articulation rate following presentation of a negatively valenced video clip. Articulatory 

rates of CWS who later recovered from stuttering and CWNS were not affected by the video. 

Considering these findings, it is possible a higher variability of articulatory rate in our CWS 

participants could be due to the existence of subgroups within CWS, a hypothesis that must await 

further study.      

Non-significant trend of improved movement stability over short-term practice 

In the context of the simple repetition tasks used in this study, the present findings do not 

support the hypothesis that CWS benefit less from motor practice relative to CWNS. In general, 

both groups showed a trend of decreased speech movement variability over two trials (i.e., 

practice effects). These findings are similar those of Sasisekaran et al. (2019) who examined 

speech motor practice effects in school-age CWS and CWNS using a non-word repetition task. 

Similar to our results, Sasisekaran et al. reported no differences in speech motor practice effects 
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between school-age CWS and CWNS, with both groups displaying a non-significant trend of 

decreased articulatory variability over within-session practice.  

Our participants, however, did not show a significant speech motor practice effect from 

the first to the second trial of the target phrase repetition. Two factors may have influenced these 

results. The first factor is the relative ease of the target phrase. We chose the target phrase so that 

our younger, 3-year-old, participants could repeat it successfully. The task in our study was 

linguistically simple and likely not very taxing to our participants (all them were able to repeat 

our target sentence without apparent difficulty). The second factor is the number of repetitions 

participants completed. Guided by prior research, we chose to examine the practice effect over 

the 15 productions of the target phrase (Namasivayam & van Lieshout, 2008). Given the relative 

ease of the phrase, the learning may have occurred with fewer repetitions than what we expected. 

For example, Walsh et al. (2006) reported that typically fluent school-age children showed a 

reduced articulatory variability between the first and the second five trials of non-word repetition 

within a single practice session.  

Physiological arousal in picture-viewing conditions 

Our two experimental conditions elicited a similar level of physiological arousal, which 

was unexpected. Although all participants increased their skin conductance level from baseline 

to the picture viewing conditions, there was no significant difference in physiological arousal 

between the negative and neutral condition. Given that the picture stimuli have been validated 

for school-age children and adults by numerous research studies, we speculated that the order of 

condition presentation could have affected the participant’s response to the pictures (recall the 

order of condition presentation was counterbalanced). Our data confirmed this speculation as we 

observed the priming effect of seeing the negative pictures before the neutral pictures on 
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preschool-age children’s level of physiological arousal. However, IAPS pictures have not been 

validated for preschool-age children. This leaves a possibility that preschool-age children may 

find neutral IAPS images more stimulating and respond to them differently from school-age 

children and adults.  

Limitations 

This study presents the first attempt to induce emotional arousal in preschool-age children 

for purposes of studying their speech kinematics and it is not without limitations. One of the 

limitations was that those participants who saw negative pictures first, had a significantly higher 

physiological arousal during the subsequent neutral condition. This priming effect may have 

influenced the lack of significant difference in speech motor control between the two conditions 

and should be considered for future studies. 

Another limitation of the study has to do with the number of repetitions we used to assess 

speech motor practice effects, combined with the relative ease of the target phrase. We chose the 

target phrase so that our younger, 3-year-old, participants could repeat it successfully. Based on 

prior research (Namasivayam & van Lieshout, 2008), we chose to examine the practice effect 

over the 15 productions of the target phrase. Given the relative ease of the phrase, the learning 

may have occurred within fewer repetitions than what we had expected. Future studies should 

consider using a more challenging phrase or examining the changes in STI over fewer repetitions 

(e.g., Walsh et al., 2006).   

 

Conclusions 

The study provides an initial examination of the effects of emotional arousal on speech 

motor control and speech motor practice effects in preschool-age CWS and CWNS. We used an 
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objective psychophysiological measure to assess the level of arousal and its effects on 

articulatory kinematics in children as young as 3 years of age, which is very close to the typical 

age of stuttering onset.  

Our findings indicate that, compared to preschool-age CWNS, CWS demonstrate less 

mature speech motor control. Present findings do not support the hypothesis that CWS benefit 

less from motor practice relative to CWNS. Our results also do not support the hypothesis that 

the speech motor system of CWS is particularly susceptible to the effects of physiological 

arousal. However, given that the two picture viewing conditions elicited a similar level of 

physiological arousal in the participants, future research is needed to examine whether CWS and 

CWNS differ in their speech motor control under low vs. high arousal conditions. 

Considering that people who stutter and their families often report a higher frequency of 

stuttering when the speaker is excited, nervous or upset (situations associated with increased 

physiological arousal) we must determine how emotional factors interact with speech motor 

factors and whether emotional factors promote or interfere with speech motor control and 

learning in developing systems of CWS. This line of work is clinically significant in its potential 

to elucidate situational variability of stuttering and inform our assessment and treatment of 

stuttering in children. 
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Table 1: Summary of participants’ age, speech and language characteristics by group. 

Characteristic 

 

Group Mean Std N 

Difference 

Significant 

Age (months) CWNS 54.39 8.28 18 n.s 

CWS 53.89 8.84 18  

GFTA-2 Standard Score CWNS 107.44 9.12 18 n.s 

CWS 102.56 12.35 18  

CELF-P2 Core Language Score CWNS 113.33 10.19 18 p = .012 

CWS 104.06 10.65 18  

Note: GFTA-2 = Goldman-Fristoe Test of Articulation – 2; CELF-P2 = Clinical Assessment of 

Language Fundamentals – Preschool 2; Std = standard deviation;  
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Table 2: Stuttering severity, assessed by the Stuttering Severity Instrument – 4 (SSI-4; Riley, 

2009), for children who stutter (CWS). 

Participant 

Number 

Group Gender Stuttering 

Frequency 

(%)  

SSI-4 

score 

Stuttering severity 

1 CWS F 3 12 mild 

2 CWS F 5 16 mild-moderate 

3 CWS M 7 20 moderate 

4 CWS M 4 12 mild 

5 CWS M 4 14 mild-moderate 

6 CWS M 5 12 mild 

7 CWS M 8 18 moderate 

8 CWS M 6 14 mild-moderate 

9 CWS M 8 20 moderate 

10 CWS M 7 18 moderate 

11 CWS M 9 16 mild-moderate 

12 CWS M 4 10 very mild-mild 

13 CWS M 14 20 moderate 

14 CWS M 5 14 mild-moderate 

15 CWS M 4 10 very mild-mild 

16 CWS M 6 16 mild-moderate 

17 CWS M 3 10 very mild-mild 

18 CWS M 4 16 mild-moderate 
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Table 3: IAPS pictures presented to the participants in Negative Condition. 

Picture ID Set Valence Arousal Mean Valence Mean Arousal 

Difference 

Significant 

Shark 1930 1 3.79 (3.91) 6.42 (7.71) 

3.17 6.01 n.s. 

Angry man 2120 

Snake 1120 

1 

1 

3.34 (4.14) 

3.79 (3.92) 

5.18 (5.83) 

6.93 (6.58) 

Soldier 9421 1 2.21 (4.19) 5.04 (5.56)  

Fire 8485 1 2.73 6.46 

Snake 1050 2 3.46 6.87 

3.71 6.05 n.s. 

Crying boy 2900 2 2.45 5.09 

Face painted man 2780 2 4.77 (6.00) 4.86 (5.69) 

Dog 1300 2 3.55 (4.11) 6.79 (7.11) 

Bear 1321 2 4.32 6.64 

Note: Ratings of valence and arousal taken from IAPS technical report (Lang, Bradley, & 

Cuthbert, 2008). Rating are based on adult respondents (females and males). For selected 

pictures ratings by 7-9-year-old children were available, those are included in brackets.   
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Table 4: IAPS pictures presented to the participants in Neutral Condition. 

Picture ID Set Valence Arousal Mean Valence 

Mean 

Arousal 

Difference 

Significant 

Towel 7002 1 4.97 3.16 

4.92 2.43 n.s 

Spoon 7004 

Bowl 7006 

1 

1 

5.04 

4.88 

2 

2.33 

Shoes 7031 1 4.52 2.03 

Book 7090 1 5.19 (5.97) 2.61 (3.11) 

Fire hydrant 7100 2 6.06 (6.06) 2.94 (2.94) 

5.23 2.79 n.s. 

Umbrella 7150 2 4.72 (5.89) 2.61 (2.75) 

Lamp 7175 2 4.87 1.72 

Watch 7190 2 5.55 3.84 

Chair 7235 2 4.96 2.83 

Note: Ratings of valence and arousal taken from IAPS technical report (Lang, Bradley, & 

Cuthbert, 2008). Rating are based on adult respondents (females and males). For selected 

pictures ratings by 7-9-year-old children were available, those are included in brackets. 
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Table 5: Descriptive statistics for Lower Lip STI and effect size for the group differences in 

Lower Lip STI. 

Condition 

 

Group Mean Std N Effect Size (interpretation)   

Neutral Trial 1 CWNS 26.763 6.278 18 Cohen's d  = .33, (medium)   

CWS 29.088 7.821 18    

Neutral Trial 2 CWNS 24.975 7.297 18 Cohen's d = .33, (medium)   

CWS 27.385 7.238 18    

Negative Trial 1 CWNS 26.936 6.136 18 Cohen's d = .38, (medium)   

CWS 29.532 7.501 18    

Negative Trial 2 CWNS 24.600 5.152 18 Cohen's d = .58, (large)   

CWS 28.404 7.677 18    

Note: Std = standard deviation 
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Table 6: Descriptive statistics for mean utterance duration times (in seconds) and effect size for 

the group differences in mean utterance duration times. 

Condition 

 

Group Mean Std N Effect Size (interpretation)  

Neutral Trial 1 CWNS 1.682 .124 18 
Cohen's d  = -.17, (small) 

 

CWS 1.641 .309 18  

Neutral Trial 2 CWNS 1.694 .131 18 
Cohen's d  = -.03, (small) 

 

CWS 1.686 .298 18  

Negative Trial 1 CWNS 1.740 .172 18 
Cohen's d  = -.19, (small) 

 

CWS 1.695 .277 18  

Negative Trial 2 CWNS 1.697 .150 18 
Cohen's d  = .09, (small) 

 

CWS 1.717 .271 18  
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Figure 1: Time course of the entire experiment. 

 

Figure 2: Time course of an individual trial. 
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Figure 3: Association between age (months) and lower lip STI for the participants (18 CWS; 18 

CWNS). 

 

Figure 4: Association between level of physiological arousal during picture viewing and lower 

lip STI for the participants (18 CWS; 18 CWNS). 
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Figure 5: Tukey boxplot of lower lip STI by Group (18 CWS; 18 CWNS), Condition and Trial. 

The whiskers denote the minima and maxima of the data set. The box is drawn from the first 

quartile (25th percentile) to third quartile (75th percentile) with a horizontal line denoting the 

median. 
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Figure 6: Tukey boxplot of mean utterance duration by Group (18 CWS; 18 CWNS), Condition 

and Trial. The whiskers denote the minima and maxima of the data set. The box is drawn from 

the first quartile (25th percentile) to third quartile (75th percentile) with a horizontal line denoting 

the median. 

 

Figure 7: Mean increase in skin conductance level from baseline 1 to picture viewing conditions 

by order of condition presentation. Data for all participants (N = 36). 
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