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1. INTRODUCTION 

 
Marine zooplankton communities of high latitudes are often dominated by copepod 

crustaceans belonging to the order Calanus (Fig. 1). They are a link between primary 

producers (phytoplankton) and higher levels of the food chain, thus making a significant 

contribution to energy flows in the marine ecosystem. A characteristic feature of 

calanoid copepods is the so-called winter diapause, which is accompanied by 

hibernation at a great depth (more than 500 m). In spring, the crustaceans migrate back 

upwards. The mechanism of buoyancy regulation is not completely clear. It may be 

based on a change in the density of lipids contained in a special fat bag, depending on the 

water pressure during vertical migration. Body density can also be regulated through 

the exchange of heavy ions for lighter ones (e.g. Na+ for NH4+). In addition to ammonium 

ions, lithium ions can also reduce the density. The Li content in seawater is 28 mmol/l 

(about 200 mg/l), while in calanoids it can be 2-3 orders of magnitude higher. 

Accumulation of lithium through the food chain and passive uptake from the 

environment are considered unlikely. Thus, it should be assumed that there is a 

physiological mechanism for active accumulation and that lithium has some biological 

function which is yet to be clarified [Lobus 2016, Freese 2015, Lobus 2018]. 

 

 

Figure 1. Calanus glacialis (the scale bar is 2 mm) 

[http://www.arcodiv.org/watercolumn/copepod/Calanus_glacialis.html, retrieved Nov. 09, 2020]. 
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The main components of copepod tissues in terms of molecular composition are 

proteins, fats, and chitin [Freese 2016]. There is also intense coloration due to the 

presence of carotenoid pigments, whose signals are clearly visible in absorption and/or 

Raman spectra (e.g. [Zagalsky 1985]). The goal of the present study was to find 

correlations between atomic and molecular composition of copepod tissues to provide 

insight into reasons behind lithium accumulation. To this end, analyses by LIBS and 

Raman spectroscopy were performed. 

 

 

2. EXPERIMENTAL 
 

Samples. We analyzed 29 zooplankton samples, 14 of which were calanoid copepods. 

The animals were caught during expeditions in the Arctic seas and in the Black Sea in 

2014–2017 (typically from August to October). They were washed with deionized water, 

dried at 50° C for 12 hours and pelletized under a moderate pressure (d = 8 mm, 20–

1000 bar, typically 30 bar). 

Equipment. LIBS was performed using the Applied Spectra J200 Tandem LA-LIBS 

instrument (excitation laser: 266 nm Nd:YAG, 20 mJ/pulse, 10 Hz, spot diameter: 

200 μm; acquisition delay: 500 ns). Since the instrument was equipped with a CCD 

detector, we obtained time-integrated spectra (integration time ~ 3 ms). The spectra 

covered the entire optical range (186–1049 nm). Resolving power depended on the 

wavelength range and was typically around 3000. 

Raman scattering spectra were recorded using the Thermo Scientific DXR Raman 

Microscope (780 nm laser, energy 1-14 mW, spot size 1–2 μm) in the range of 45–

3500 cm-1. We applied different energies depending on the fluorescent background 

intensity and resistance of samples to burning. Aperture was selected individually for 

each sample to attain sufficient signal-to-noise ratio and avoid CCD overflow at the same 

time. The following apertures were used: 25 and 50 μm slits, and 25 and 50 μm pinholes. 

Acquisition time ranged from 30 s to 5 min. Spectra were instantaneously fluorescence 

corrected in the instrument software using a 6th order polynomial function. 

Experimental procedures. Due to inhomogeneity of the samples, we distinguished 

dark, light, and medium coloured spots on the pellet surfaces. For each of the colours, 

LIBS and Raman spectroscopy were carried out in at least 3 spots of that colour, i.e., a 

total of at least 18 spots were examined on each pellet by these techniques. In the case of 

LIBS, typically 10 laser shots per spot were delivered. 

 

2.1. DATA PROCESSING METHODS 

 

a. Data pretreatment. The obtained arrays of emission spectra were filtered for outliers. 

To this end, several prominent peaks, including analytical lines, were selected. The list 

typically included peaks at 610.34 (Li I and Ca I), 247.84 (C I), 473.60 (C2 band head), 

568.30 (Na I) and 396.85 (Ca II) nm. Their background corrected heights were checked 

for outliers using the Grubbs’ criterion, which was applied repetitively until there were 
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no outliers at any peak. This procedure was supervised in a home-made graphical 

interface, so that results could be corrected if necessary. The remaining spectra were 

averaged for each of the zooplankton samples, and an array of averaged spectra 

(29 samples × 12 275 wavelengths, 186–1049 nm) was composed. We performed no 

background correction for emission spectra. 

 Raman spectra were first manually background corrected since the automatic 

correction was not always satisfactory. Then we divided each spectrum by its mean to 

reduce the effect of different experimental conditions. After that, the spectra were 

averaged. Dimensions of the resulting matrix were 29 samples × 2801 wavenumbers 

(450–3150 cm-1). 

 Bulk composition data (elements from Li to U except non-metals), obtained by 

ICP-AES and ICP-MS after digestion, were also available. 

 Data processing was carried out in Origin 8.5, GNU Octave, Microsoft Excel, 

Wolfram Mathematica 8, and Matlab 2020 software. In order to perform an exploratory 

analysis of the data, we used various matrix decomposition techniques described below. 

b. Principal component analysis (PCA). Decompositions by PCA were a starting 

point for all further considerations. To determine the optimum number of principal 

components, we used conventional scree plots of eigenvalues. The same number of 

components was implied in NMF decompositions (see below). 

c. Non-negative matrix factorization (NMF). A detailed discussion of this technique, 

which may be considered as one of the methods for blind source separation, can be 

found in [Cichocki 2009]. The approach is a matrix factorization constrained by 

assumption that resulting components should be non-negative. This helps to obtain 

physically interpretable components. The problem may be formulated as follows: given 

a matrix X with m descriptors (rows) and n samples (columns), factorize it into two 

terms W (m×n) and H (n×p), with p < min (m, n): 

 

𝑋 = 𝑊𝐻 + 𝐸 

 

Here, the matrix E represents approximation error. Columns of W are called basis 

vectors, and rows of H are decomposition coefficients. Contrary to other decomposition 

techniques like PCA, the additive nature of NMF does not allow factors to vanish due to 

their equal values and opposite signs. The technique has become popular in several 

areas, such as facial recognition and processing of electroencephalographic data. The 

drawback of NMF is that the solution is not unique since optimization only leads to a 

local minimum of cost function. Additionally, the results depend on the initial 

approximation of W and H. Therefore, it is advisable to perform multiple (10–1000) 

algorithm runs to obtain a reliable factorization [Buciu 2008, Brunet 2004]. 

d. ComDim—PCA and ComDim—ICA. The common component and specific weights 

analysis, also known briefly as ComDim, was first introduced in 1995 [Qannari 2004]. It 

deals with several blocks of data (e.g., LIBS and Raman data) and seeks to factorize them 

independently, without concatenation. To this end, the ComDim defines underlying 

common dimensions relevant to each block and assesses how much each dimension is 
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relevant to each data block. The measure of the "relevance" is called specific weight, or 

salience. 

If each of N samples is represented by a line in a block of measurements Xk, it is 

possible to define the Wk matrix as a scalar product Xk XkT. This matrix is modelled as 

 

𝑊𝑘 = 𝑄𝛬(𝑘)𝑄𝑇 + 𝐸𝑘 

 

Here Q is an orthogonal matrix of dimensions (N, N), which contains the common 

components in its columns. The matrix Λ(k) is a diagonal (N, N) matrix of specific 

weights; it can be different depending on the block Xk, while Q is the same for all the 

blocks Xk. Sum of saliences in Λ(k) describes to what extent a particular Xk is contributing 

to Q. 

 ComDim components are calculated one by one. These steps may be 

implemented to involve PCA or ICA (independent component analysis). Contrary to PCA, 

ICA does not assume orthogonality of components, which brings it closer to reality, but 

at a cost of solution being non-unique. Like NMF, it is a blind source separation 

technique and seeks to find components as independent as possible by maximizing a 

certain function which defines the independence [Hyvärinen 1999]. 

 

 

3. RESULTS AND DISCUSSION 
 

3.1. The whole dataset 

 

We have first investigated the whole dataset which contained data about all the 29 

samples of crustaceans. We have concatenated LIBS spectra to obtain matrices 

containing data from dark, medium-coloured, and light spots (29 samples × 36825 

predictors). In this fashion, all the available information is used. PCA decomposition of 

this matrix yielded 5 components (explained variance 99%). One of the obtained 

loadings contained emission signals of Li, Na, and Mg. Calanoid crustaceans formed a 

group on the score graphs, which was however not well separated from the other 

samples. To improve this result, we cut out all resonance lines from the data matrix (like 

C I 247, Na I 589, K I 769 nm, etc.) to avoid nonlinear signals. Spectral range with 

wavelengths longer than 947.8 nm was also discarded.  There was clearer clustering in 

score graphs obtained for this shortened matrix than in the previous case. 

Same operations were tried with concatenated Raman spectra (8403 predictors). 

PCA decomposition yielded 5 PCs, but loadings were not easy to interpret, and no clear 

clustering was observed on score graphs. Discarding wavenumbers greater than 

1921 cm-1 helped to avoid strong and non-characteristic hydrocarbon chain signals 

around 3000 cm-1 and a large uninformative area between 1921 and 2700 cm-1. Score 

graphs obtained from the shortened matrix allowed to distinguish crustaceans (incl. 

Calanoida) from other animals (sea snails and arrow worms). However, it was 
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impossible to distinguish calanoids from other crustaceans according to their Raman 

spectra (in contrast to the LIBS results). 

LIBS and Raman spectra can also be concatenated together to give a hybrid 

dataset. For these data, both PCA and NMF gave 2 “Li-containing” loadings. In the Raman 

domain, one of them contained signals of amino acids like tryptophan (758 cm-1), and 

the other one showed carotenoid peaks. Both methods provided reasonably good 

clustering allowing to distinguish calanoids from other crustaceans and snails, but not 

from arrow worms (Figure 2.). 

 

  

Figure 2. Results of the PCA decomposition of the combined LIBS+Raman dataset (loadings Nos. 2 and 5); 

a, b: LIBS domain; c, d: Raman domain; e: score graph (PC5 vs. PC2). Calanoid copepods are shown in red. 

 

We also compared performance of ComDim—PCA and ComDim—ICA regarding 

our data. In both cases there were 6 separate blocks of data, corresponding to 3 spot 

colours in LIBS and Raman spectra. Spectra were shortened as described above. 

e 
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Although both kinds of ComDim revealed correlation between Li signals, carotenoid and 

amino acid bands, loadings were easier to interpret in ComDim—ICA. It should be noted 

that the correlation with Trp band is stronger in dark and light spots compared to 

medium-coloured ones. Classification was better in ComDim—PCA. 

 

3.2. Calanoida samples only 

 

This section deals with the data subset related to 14 samples belonging to the Calanoida 

order. These spectra were pre-treated as described in the previous section (resonance 

lines discarded, etc.). PCA and NMF decomposition of the LIBS spectra readily gave a 

component dominated by Li signals, and on the score graphs, samples showing 

anomalously high Li content tended to be located separately from other samples. Raman 

spectra yielded separate loadings corresponding to carotenoids and to amino acids. This 

trend was more distinct for the PCA than for NMF. The Raman score graphs are less 

informative than the LIBS-related graphs; classification is apparently driven mainly by 

the intensity of carotenoid bands. 

As for combined LIBS+Raman data, both PCA and NMF mainly underline the 

correlation between Li signals and carotenoid bands, although bands of amino acid are 

also present in the relevant loadings. There is reasonably distinct clustering of samples 

on the score graphs according to their Li content. 

ComDim—PCA (Figure 3.) again placed Li together with carotenoid pigments and 

amino acids. It is interesting that ComDim—ICA suggested 2 carotenoid-containing 

loadings with roughly equal proportions of explained variance. Lithium signals 

dominated in the loading which contained more tryptophan signal. This may suggest 

that Li accumulation is more importantly related to amino acids than to pigments. 
 

  

Figure 3. The Li-related common component in ComDim. Left: LIBS data. Right: Raman data. “Carot.” = 

carotenoid compounds, “Val” = valine. 

 

Indeed, there is a distinct pair correlation between Li bulk content (as determined 

by ICP-MS) and the intensity of Trp peak in Raman spectra (Figure 4.). There is no 

comparable correlation between Li and carotenoid bands. 
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Figure 4. Linear correlation between Li content and Trp band in Raman spectra of calanoid copepods. 

Samples marked in red are considered anomalous and not included into the regression. 

 

 

4. CONCLUSIONS 

 

Matrix decomposition techniques used in this study for exploratory analysis of LIBS and 

Raman spectra revealed correlation between Li content, amino acids, and carotenoid 

pigments in marine zooplankton. The most interesting correlation is that with 

tryptophan. Results obtained by PCA, NMF, ComDim—PCA, and ComDim—ICA are 

generally the same, although PCA-based approaches are often more precise in 

classification and yield higher explained variance. Discarding resonance emission lines 

and uninformative regions of LIBS and Raman spectra helped to improve results of 

matrix decomposition. The most productive way of analysing LIBS and Raman spectra is 

data fusion, either by simple (low-level) concatenation or by more sophisticated 

techniques such as ComDim. 
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