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Abstract 
 
 
The adhesion between neighbouring plant cells is established as cells are 

formed during cytokinesis through the middle lamella that is made principally 

of pectins and proteins. Pectins are secreted into the cell wall in a highly 

methylesterified form and subsequently de-esterified in muro by pectin methyl 

esterase (PME, E.C. 3.1.11). The present study reports on the biochemical 

characterization and immunochemical analyses of phosphate buffer/EDTA 

pectic extracts associated with cell-cell adhesion in suspension cultures of 

wild type (WT), salt tolerant (HHS) cell lines and synchronized Arabidopsis 

suspension cultures. Using the synchronized cultures, The PME-mediated 

configuration of pectins at the onset of adhesion during cytokinesis, was 

assessed through the analysis of the expression patterns of the PME isoforms 

annotated to be expressed throughout the cell cycle  

  

The wild type Arabidopsis seemed to maintain the intercellular adhesion 

through the gelling of the highly methylated JIM7 recognized 

homogalacturonans that were shown to be abundant in the primary cell walls, 

middle lamellae and cellular junctions, possibly due to the hydrophobic 

interactions between the methoxy groups. The rhamnogalacturonan-I fraction 

was rich in arabinan side chains reflecting the proliferative state of the cells. 

The increase in arabinan content was accompanied by a reduction in the 

galactan content 4 days after subculturing. The cell walls of salt tolerant 

Arabidopsis contained the JIM7 and LM7recognized epitopes along with a 

high degree of branching of rhamnogalacturonan-I carrying galactans and 

arabinans as side chains. The change in the detected epitopes is thought to 

play a role in the ability of the cells to withstand the high osmotic pressure and 

increase the in the level of adhesion between cells.  The JIM5 low 

methylesterified HGs were less abundant in both cultures,  and the absence 

of the 2F4 antibody recognizing the Ca2+ egg boxes could be attributed to the 

scarce amounts of Ca2+ present in the culturing medium 
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 The immunochemical studies of the pectin extracted from the synchronized 

Arabidopsis suspension cultures after washing out aphidicolin indicated that 

the recognition of both of JIM7 and JIM5 varied in parallel during the cell 

cycle, whereas, the recognition of arabinan increased during the cell division.  

The sequence and phylogenetic analysis of ten PME isoforms that were 

annotated to be expressed at one or more phases of the cell cycle of 

synchronized Arabidopsis thaliana suspension cultures (Menges and Murray, 

2002 and 2003), revealed that only five of these genes could be PMEs. The 

genes At4g02330, At1g02810, At2g26440, and At2g47550 were thought to be 

of type II PMEs which have a pre-pro-catalytic domains and At5g47500 is a 

type I PME that lack the pro-region. The amino acid sequence of At4g12390 

showed similarities with the N-terminal pro-peptides of plant PME and 

invertase inhibitors. 

 

The expression of several PME genes was studied in suspension cultures of 

Arabidopsis thaliana synchronised using aphidicolin. Semi-quantitative PCR 

experiments showed that the expression of At5g47500 transcript was always 

detected during M phase of the cell cycle. The rest of the genes failed to show 

consistent patterns of expression. Northern blots revealed that mRNA coding 

for At5g47500 decreases during S and G2 phases and accumulates during 

the M phase of the cell cycle. Our results suggest that this PME isoform is 

involved in the modulations of the cell walls as the cells are going through 

division and cytokinesis. 
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General Introduction 
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1.1 Plant cell wall: Structure and function 
 

The presence of a cell wall is one of the major features that distinguish the 

plants from animals.  The plant extracellular matrix (cell wall) is an intricate 

structure that constitutes the raw material that is used to manufacture textiles, 

paper, lumber and other products. It is involved in maintaining the size, shape, 

growth and development of plant cells, and their protection from the adverse 

changes in the surrounding environment including the invasion of pathogens 

and predators, dehydration and mechanical abrasion (Gaffe et al., 1997; 

Willats et al., 2006). The cell wall material is also of great importance for 

human and animal nutrition. As the whole world is in a rush for the production 

of biofuels, cellulosic alcohol is increasingly becoming an option for liquid 

transportation fuels (Chapple et al., 2007). The cell wall is a characteristic, 

semi rigid, dynamic interface that surrounds the plant cell and defines the 

distinctive morphology of the entire plant.  

 

The plant cell deposits its wall through secretary pathways during cytokinesis. 

The mitotic spindle remnants give rise to a plant-specific polarized 

microtubular array known as a phragmoplast which is laid down in the center 

of the dividing cell, and serves as a framework for the assembly of the Golgi 

derived exocytic vesicles. More evidence is emerging supporting the turnover 

of parental cell wall components through plasma membrane and cell wall 

derived endocytic vesicles carrying the cargo to the developing cell plate 

(Baluška et al., 2002; Dhonukshe et al., 2006). The cell plate expands from 

the middle out through the addition of secretory vesicles at the periphery. It 

fuses with the parental cell plasma membrane/ primary cell wall at specific 

cortical sites previously defined by the preprophase band of microtubules 

(Verma, 2001). Once the attachment has taken place, the cell plate 

undergoes a process of maturation during which callose is replaced by 

cellulose and pectin (Assaad, 2001). The daughter cells proceed to deposit 

the primary cell wall on both sides of the cell plate, which becomes the middle 

lamella and the region of intercellular attachment. The internal turgor pressure 

developing in rapidly growing soft tissues keeps the primary cell walls in 

permanent tension. It tends to force the plant cells towards a spherical shape. 



 3

The cell junctions are subjected to forces tending towards cell separation 

(Jarvis, 1998). The tensile force initiates the development of an intercellular 

space at a predetermined controllably degrading localized region of the older 

parental primary cell wall, thus separating the cell from its neighbours at the 

tricellular junctions (Jarvis, 1998; Jarvis, 2003; Willats et al., 2001c). This 

space may be filled with pectins glueing the older middle lamella of the parent 

cell with the newly forming middle lamella (Parker et al., 2001) or open up to 

form an intercellular air space (Jarvis, 2003). The middle lamella is made 

principally of pectins and proteins (Swords and Staehelin, 1993; Smallwood et 

al., 1994 and 1995), and the primary cell wall consists of a rigid skeleton of 

cellulose microfibrils embedded in a gel-like matrix composed of pectic 

compounds, hemicellulose, enzymes and structural proteins (Carpita and 

Gibeaut, 1993; Willats et al., 2001b). 

 

Certain specialized cells lay down a further, thicker, more rigid and often 

multilayered secondary cell wall, that is deposited to the inside of the primary 

wall after the cell has stopped growing. It is mainly made of cellulose and 

hemicellulose impregnated with lignin (Brett and Waldron, 1996), however, 

the secondary cell walls of the macrosclereids and osteosclereids of pea testa 

and flax fibers are non-lignified with cellulose, hemicellulose and pectins 

constituting the major components (McCartney and Knox, 2002, His et al., 

2001).  In Arabidopsis anthers, the pollen mother cell develops a specialized 

secondary cell wall composed almost entirely of callose (Francis et al., 2006). 

Secondary cell walls are frequently a feature of cells specialized in providing 

mechanical support and structural reinforcement to the plant body. The 

presence of a secondary cell wall lining the water and solute conducting cell, 

allows the cell to resist forces of gravity and/or tensional forces associated 

with the transpirational pull of a column of water.  

 

Conduits called plasmodesmata penetrate cell walls, providing pathways for 

transporting cytoplasmic molecules from one cell to another (Brett and 

Waldron, 1996; Orfila and Knox, 2000). The plasmodesmata are laid down at 

cytokinesis during the formation of the new cell plate. Secondary 
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plasmodesmata are inserted into the cell wall during phases of rapid cell 

expansion.  

 

 

1.2 Architecture of mature cell walls 
 

The current model of the plant cell wall visualizes the wall structure as 

containing a number of structurally independent networks which, when 

superimposed upon one another,  interact further to give rise to the whole 

complex structure as shown in fig.1.1. 

 

A cellulose-hemicellulose network is a strong load bearing fibrillar network 

that gives each cell its stable shape (Cosgrove, 2001; Micheli, 2001). This 

network is composed of cellulose microfibrils that consist of many parallel 

chains of unbranched (1→4)-ß-D-glucose polymers. Hemicelluloses typically 

are branched polysaccharides characterized by a strong tendency to bind to 

the surface of cellulose, and may link two microfibrils together (Cosgrove, 

1997). Hemicelluloses are thought to form tethers that can hold the 

microfibrils in place and/or as a lubricating coating to prevent direct microfibril-

microfibril contact. During growth, the molecular tethers are assumed to relax 

to allow separation of the microfibrils (Brett and Waldron, 1996; Cosgrove, 

2001).  

 

A structurally independent and functionally interacting pectin network and 

protein (extensin) network are believed to occupy the space within the 

cellulose-hemicellulose network. The functional interaction between the pectin 

network and other networks seems to play a role in controlling the pore size in 

the wall, and accordingly the movements of molecules through the wall 

(Fleischer et al., 1999). The extensin network is made of a hydroxyproline rich 

glycoprotein. It is laid down in a pattern that is perpendicular to the cellulose-

hemicelluloses network, making the walls more rigid. The lignin network is the 

last to be formed, transforming the wall into a rigid impermeable structure 

specialized to provide extra strength. Cutins and suberins may also be 

present in certain cell types to decrease the permeability of the cell and to 
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provide an extra protective barrier. Once assembled, the cell wall architecture 

of growing cells has to be extensible. Plant growth and development rely on 

discrete and coordinated changes in the original cell wall structure with the 

deposition of newly synthesized wall material (Carpita et al., 1996; Carpita et 

al., 2001).  

 

The architecture and function of the cell wall of germinating pollen grain 

extending through the style seems to differ from the cell walls of other 

vegetative plant cells. The initial wall formed at the growing tip is made of 

pectin, while another mature secondary wall made of callose, proteins, 

arabinogalactan proteins and pollen extensin like proteins is deposited behind 

the growing tip. In some plant species, cellulose was found to be associated 

with the callose wall though no significant amounts of xyloglucan were 

detected in pollen tube cell walls (Lord, 2000; Abreu and Oliveira, 2004; 

Geitmann and Steer, 2006).  

 

 

 
 
Fig. 1.1: Diagrammatic representation of the architecture of the current 
model of the plant primary cell wall (Brett and Waldron, 1996). 
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1.3 Intercellular Adhesion 
 

Adhesion between plant cells is a fundamental feature of plant growth and 

development and is an essential part of the strategy by which growing plants 

achieve and maintain mechanical strength. The adhesion between 

neighbouring plant cells is established as cells are formed during cytokinesis 

through the middle lamella in order to create an apoplastic continuum. The 

plant cell remains in contact with the same neighbouring cells throughout its 

growth and development, except during the phases of intrusive growth, like 

the penetration of pollen tube through stylar tissue (Jauh and Lord, 1996; 

Bosch et al., 2005; Mollet et al., 2000), the differentiation of tracheids (Kalev 

and Aloni, 1998), elongation and increase in the diameter of vessel elements, 

xylem fibers, laticifers, and flax fiber cells (Ronald et al., 1995; Serpe et al., 

2001; Willats et al., 2001b; Jarvis, 2003; Siedlecka et al., 2008). The 

development of intercellular spaces in some tissues seems to occur as a 

response to the tensile forces created by turgor-imposed stresses that tend to 

make cells adopt a spherical shape, and then as a result of the controlled 

splitting at the middle lamella, the cells tear away from their neighbours at 

each corner (Jarvis, 1998). The tricellular junctions and their reinforcing zones 

act as the first line of defense against cell separation (Willats et al., 2001b and 

2001c; Jarvis et al., 2003). Several studies have shown the importance, 

degree of coordination, modification and localized targeted extracellular 

metabolism between a network of intercellular spaces, middle lamellae and 

the involved cells. The increase in the shelf life and crispness of fruits and 

vegetables is dependent on the modifications of pectin and maintenance of 

cell-cell adhesion (Orfila, et al., 2001; Guillon et al., 2008). The fruit of the 

Colourless non-ripening (Cnr) tomato mutant was characterized with a mealy 

phenotype and a much reduced cell-to-cell adhesion in the pericarp of the ripe 

fruit, as a result of the reduction in the activities of a variety of pectin 

degrading enzymes (Thompson et al., 1999; Eriksson et al., 2004). The 

occurrence and role of pectic polysaccharides at the outer face of unadhered 

cell walls at plant surfaces is less well documented. In many cases, a layer of 
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pectin is thought to occur between the cell wall and the cuticle in aerial parts 

of land plants (Willats et al., 2001b). 

 

 

1.4 Chemical structure of major wall polysaccharides 
 
Eukaryotic cell walls differ significantly in composition and physical structure 

from prokaryotic cell walls. The cell walls of fungi are made of chitin and beta 

glucans, while mannan is a major constituent of cell walls in yeast. Plants 

comprise ≈ 35-40 cell types, each of which is distinctive in its position, size, 

shape, and wall characteristics. All the plant cells possess a primary cell wall 

which mainly consists of cellulose, hemicellulose, pectin and protein. 

Cellulose is the most abundant polysaccharide in plants followed by 

hemicelluloses and pectin. The primary cell walls (type I) of dicots and non-

commelinoid monocots contain mainly cellulose, xyloglucan and pectin, with 

minor amounts of arabinoxylans, glucomannans and galactoglucomannans 

(Yong et al., 2005). The primary walls of grasses (type II) are composed of 

cellulose microfibrils, glucurono-arabinoxylans, and mixed-linkage 

(1→3),(1→4)-β-D-glucans, together with smaller amounts of glucomannans, 

xyloglucans, pectins, and a network of polyphenolic substances (McCann et 

al., 2007).  

 

 

1.4.1 Cellulose and callose 
 

Cellulose is a tightly packed aggregate of linear polymers of (1→ 4)-β-linked 

glucose residues, ranging in size from 2000 to 25000 glucose residue, 

forming long parallel chains of fibers. The structure of cellulose microfibrils is 

remarkably uniform throughout the higher plants (Brett and Waldron, 1996). 

They tend to have a very high tensile strength equivalent to steel. Cellulose is 

important industrially as it is the major constituent of cotton fibers, wood and 

paper.  Despite the fact that humans are incapable of digesting cellulose, it is 

an important ingredient in human diet, it is presence in the human diet aids in 
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the smooth working of the intestinal tract. Some animals can digest cellulose 

through the activity of cellulose hydrolyzing enzymes secreted by symbiotic 

bacteria living in their guts. 

 
Cellulose synthesis occurs at rosette like synthase complexes that consist of 

six hexagonally arranged subunits that are embedded in the plasma 

membrane. Each rosette subunit contains six CesA proteins, providing a total 

of thirty-six CesA proteins per rosette. Cellulose microfibrils are formed by the 

crystallization of 36 β-glucan parallel chains of intermediate length (20-40nm) 

held together by hydrogen bonds and van der Waals forces (fig. 1.2). CESA 

genes encoding cellulose synthases are regarded as the major sink for 

atmospheric carbon, and are known to occur in many isoforms, however, the 

various isoforms in each species are differentially expressed (Galway, 2006).  

Arabidopsis contains 10 CESA genes named AtCESA1- AtCESA10 forming a 

subfamily of the cellulose synthase like genes. CESA1, CESA3, and CESA6 

are required for cellulose biosynthesis in primary cell walls, whereas CESA4, 

CESA7, and CESA8 are required for cellulose biosynthesis during secondary 

wall deposition (Lerouxel et al., 2006). The orientation of cellulose microfibrils 

correlates well with the orientation of cortical microtubules, suggesting that 

microtubules somehow control the orientation of microfibril deposition 

(Lerouxel et al., 2006; Paredez et al., 2006). Using an Arabidopsis CESA6 

mutant (prc1-1) with a yellow fluorescent-tagged version of CESA6, the CesA 

protein within a rosette, was shown to move within the plasma membrane in a 

linear track that aligned with the cortical microtubule. A significant pool of the 

labelled CesA6 protein was located in the Golgi (Paredez et al., 2006).  

 

In plasmolysed Tradescantia virginiana leaf epidermal cells, the plasma 

membrane was pinned to the cell walls through cellulose microfibrils produced 

by the cellulose synthase complexes. Cellulase treatment resulted in the loss 

of some of the connecting fibres (Lang et al., 2004). The biochemical 

analyses of the cell wall components indicated that the plant compensates for 

the disruption in the synthesis of any of the components like cellulose, and 

depending on the plant species, through the construction of walls that are 

richer in pectin (Encina et al., 2002 and Manfield et al., 2004), and in some 
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cases structural proteins (Sabba et al., 1999). The reduction in cellulose 

formation due to the application of herbicide like isoxaben and dichlobenil 

(2,6-dichlorobenzonitrile) that interfere with cellulose synthesis to the 

suspension cultures of Phaseolus vulgaris and Arabidopsis thaliana 

respectively is partly compensated for by an increased production of pectic 

domains like homogalacturonan (HG). The calcium mediated cross-linking of 

HG is thought to compensate to some extent for the diminished load bearing 

capacity of the disrupted cellulose network (Encina et al., 2002; Manfield et 

al., 2004; Garcίa-Angulo, et al., 2006). 

 

Callose is a linear (1→3)-β-glucan with some (1→6)- branches that has been 

localised at cell plate of dividing cells, plasmodesmata, root hair, spiral 

thickenings in tracheids, around pollen mother cells, sieve plates and as a 

response to wounding, pathogen infection and physiological stress (Hong et 

al., 2001; Verma, 2001; Francis et al., 2006). In higher plants, the activity of 

callose synthase (CALS) is found to be associated with the cellulase synthase 

fraction of the plasma membrane. Callose synthesis occurs within the cell 

plate.  The developing immature cell plates are fluid and wrinkled, whereas 

mature cell plates are more stiff and flat as a result of the removal of callose 

and deposition of cellulose and pectin (Assaad, 2001). The presence of 

callose layer in pollen tubes is thought to help in the extensin and mechanical 

stabilization of the growing pollen tube (Mollet et al., 2000; Bosch et al., 2005; 

Geitmann and Steer, 2006). 
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Fig. 1.2 Structure of cellulose polymers (Festucci-Buselli, et al., 2007) 
 
 

1.4.2 Hemicellulose 
 

The non-cellulosic (hemicellulose and pectic) polysaccharides are assumed to 

be constructed in the Golgi apparatus, packaged in secretory vesicles, and 

exported to the cell plate forming zone, where they are integrated with 

cellulose microfibrils afterwards (Zhang and Staehelin, 1992; Ridley et 

al.,2001; Lord and Mollet, 2002; Reiter, 2002). Hemicelluloses can be 

grouped into four main classes according to the main type of sugar residues 

present: xylans, xyloglucans, mannans and mixed linkage β-glucans. Within 

each of these classes a number of sub-groups can be divided due to the 

chemical nature of their side chains (Lerouxel, et al., 2006; Hoch, 2007). It is 

thought that cellulose synthase like (CSL) genes might encode Golgi-localized 

glycan synthases that are involved in the biosynthesis of hemicelluloses. The 

Csls are a family of genes that have sequence similarity to the CESA genes 
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and appear to be present in all plant genomes. The cellulose synthase-like 

(CSL) genes are subdivided into groups CSLA to CSLH. Certain CSL groups 

are common to all plants, whereas others are present only in specific species 

of plants (Lerouxel et al., 2006).  

 

The dicots and monocots differ substantially in their hemicellulose 

composition.  Xyloglucan (XG) is the major hemicellulose in type I primary 

walls, and glucoronoarabinoxylans (GAX) are characteristic of type II cell 

walls (Cordenunsi et al., 2008). Xyloglucan is composed of ß-(1→4)-D-glucan 

backbone substituted with (1→6)-α-D-xylose or xylose-galactose-fucose 

moieties (Reiter, 2002). Glucuronoarabinoxylans have a linear β-(1→4)-linked 

D-xylose backbone with both neutral and acidic side chains attached at 

intervals along its length. The acidic side chains are terminated with 

glucuronosyl or 4-O-methyl glucuronosyl residues, whereas the neutral side 

chains are composed of arabinose and/or xylose residues. Xyloglucans are 

considered as the most important partners of cellulose microfibrils in 

rendering strong mechanical properties of type I cell walls.  

 

Glucuronoarabinoxylans are thought to have a similar role in type II cell walls 

(Cosgrove, 2000). Xyloglucan can either bind to the surface of cellulose 

microfibrils or cross link the adjacent microfibrils. Besides to their structural 

function, xyloglucans are also known to serve as reserves in seeds (Hoch, 

2007). The interaction between xyloglucan and cellulose was claimed to occur 

when the xyloglucan molecules assembled in the Golgi apparatus, are 

secreted into the cell wall in a soluble form and integrated with the newly 

synthesized cellulose microfibrils. The linkage between xyloglucan and pectin 

is thought to be formed through NDP-sugar-dependent chain elongation of 

xyloglucans upon an RG-I primer present within the endo-membrane system, 

most likely the Golgi bodies (Popper and Fry, 2008). In rose suspension 

culture cells, about one third of the xyloglucan is covalently linked to 

rhamnogalacturonan I (Thompson and Fry, 2000).The immuno-labelling of the 

mur1 Mutant of Arabidopsis using the CCRC-M1 monoclonal antibody, 

showed that the fucose containing xyloglucans were restricted to the apices of 

the primary and lateral roots, root hairs and the walls of the epidermis and 
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pericycle layers of the mature roots (Freshour et al., 2003). The mur1 mutant 

of Arabidopsis is deficient in fucose in the shoot system of the plant. The gene 

associated with mur1 was shown to be blocked at the first nucleotide sugar 

inter-conversion step, in which a GDP-mannose-4,6-dehydratase is used to 

biosynthesize GDP-fucose, which is the sugar nucleotide substrate required 

by the fucosyltransferase responsible for the incorporation of fucose.  

 

Xyloglucan metabolism plays a key role in the control of cell elongation and 

enlargement by serving as a substrate for xyloglucan endotransglucosylase 

(XET), which is capable of cutting and rejoining the intermicrofibrillar 

xyloglucan chains. Newly synthesized XG polymers are incorporated into the 

wall by the grafting activity of XET (Pilling and Hőfte, 2003; Chanliaud et al., 

2004; Popper and Fry, 2005). The exogenous application of auxin to intact 

plants is known to induce rapid elongation in the plant tissues. The cell wall 

acidification is an essential component of auxin-induced cell expansion. The 

reduction in apoplastic pH has been suggested to activate cell wall-modifying 

enzymes including expansins, which catalyze the breakage of bonds between 

cellulose and hemicellulose and rearrange cell wall polymers (Cosgrove, 

1997).  

 

Several varieties of the mannan polysaccharides have been characterized, 

including pure mannans, galactomannans, glucomannans, and 

galactoglucomannans. The backbones of mannan consist either of β-(1→4) 

linked D-mannose units (mannans), or of a combination of β-(1→4) linked D-

mannose and β-(1→4) linked D-glucose residues (glucomannans). Both of 

galactomannans and galactoglucomannans have D- galactose side chains in 

varying abundance (Hoch, 2007). Mannan polysaccharides are widespread 

among land plants, bryophytes and charophytes and are also present in many 

algal species (Popper and Fry, 2003).  They appear to have a structural 

reinforcing role and act as a major storage polysaccharides in the 

endosperms of some plant species (Liepman et al., 2007). In Arabidopsis, 

mannans were immunolocalized in the thickened secondary cell walls of 

xylem elements (Handford et al., 2003). Very little mannan could be detected 

in cells lacking secondary thickenings, such as leaves (Zablackis et al., 1995). 
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In wood cell walls of Sitka spruce, mannans were abundant in early and late 

wood and scarce at the resin channel forming cells (Altaner et al., 2007). 

In dicotyledonous plants, such as peas, Arabidopsis and tobacco, the 

occurrence of xylans and arabinoxylans was restricted to the secondary cell 

walls as in xylem and sclerified parenchyma (McCartney et al., 2005). 

 

 

1.4.3 Proteins 
 

There may be as much as several hundred proteins, whether structural 

proteins or enzymes, in the cell wall. Several proteomic studies performed on 

Arabidopsis revealed the presence of at least 404 cell wall proteins (CWPs, 

Pont-Lezica, 2008).  About 87% of these CWPs were described as functional 

proteins.  The remaining 13% are proteins of unknown functions. Proteins 

acting on polysaccharides are the most abundant. The apoplasmic enzymes 

are classified into three different categories, soluble, ionically bound and 

covalently bound- depending on the treatment necessary for their release 

from cell walls (Carpin et al., 2001; Jamet et al., 2008). Examples of proteins 

with enzymatic activities include peroxidases, pectinases, pectin 

methylesterases, cellulases, invertases and expansins.  

 

Proteins are involved in the regulation of several important events related to 

plant growth and development, including cell expansion and proliferation, 

formation and differentiation of vegetative and floral organs, and sexual 

reproduction. According to Showalter (2001), CWP could be classified 

according to their most abundant amino acid components into four major 

classes including:  hydroxyproline-rich glycoproteins (HRGP), proline-rich 

glycoproteins (PRP) and glycine-rich glycoproteins (GRP).  

  

Arabinogalactan proteins (AGPs) are a widely distributed hydroxyproline-

containing class of proteoglycans. The AGP consists of a hydroxyproline-rich 

core protein which is decorated by arabinose and galactose-rich 

polysaccharide units. Several AGPs are characterized by a C-terminal 

glycosylphosphatidylinositol (GPI) anchor that allows for their attachment to 



 14

the plasma membrane. They are present in the majority of plants. In 

bryophytes, AGPs were detected at the plasmalemma/wall interface of water 

conducting cells (Ligrone et al., 2002).   The AGPs are Golgi synthesized and 

are among the first components laid down in the developing cell plates 

(Freshour et al., 1996). In higher plants, these molecules are involved in the 

development and differentiation of cells and tissues (Smallwood et al., 1994; 

Freshour et al, 1996; Wiśniewska and Majewska-Sawka, 2007), in pollen- 

pistil adhesion, pollen tube germination and guidance through the style (Pilling 

and Hőfte, 2003; Abreu and Oliveira, 2004), in addition to their role in 

signalling for programmed cell death (Showalter, 2001; Ligrone et al., 2002). 

AGP-rich extracts isolated from the media of embryogenic and non-

embryogenic suspension cultures of sugar beet (Beta vulgaris L.) are able to 

enhance the organogenesis of guard protoplast-derived calli and to increase 

the number of shoots formed (Wiśniewska and Majewska-Sawka, 2007). 

Much of the evidence relating to AGP function has been based on the use of 

monoclonal antibodies directed against their carbohydrate moieties (Knox, 

1997; Ligrone et al., 2002). 
 

Extensin is a well-studied HRGP. It is described as a rodlike firmly bound 

highly insoluble wall protein that is reported to play a role in the cessation of 

growth; however, new evidence is emerging emphasizing its essential role in 

the initiation of growth during cytokinesis.  The positively charged extensin 

scaffold reacts with acidic pectin to form extensin pectate, which further 

templates the cell plate components in the new cross wall and enable its 

fusion with the mother cell wall (Cannon et al., 2008).  

Expansins are cellulose bound enzymes responsible for acid induced 

loosening and extension of cell walls (Cosgrove, 1997). They are categorized 

into two families called α-expansins and β-expansins. Grass pollen allergens 

have significant sequence similarities to β-expansins (Cosgrove, 2000). Both 

families have similar rheological effects though acting on different substrates. 

The expansins can disrupt the attachment sites between cellulose and 

xyloglucans promoting the slippage of the microfibrils followed by the growth 

and extension of cells.  Higher levels of α-expansins activities were found in 
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type I cell walls, whereas, β-expansins have stronger selectivity for type II 

walls (Valdivia et al., 2007). 

 

Yieldins and xyloglucan endotransglycolsylases (XET) are other apoplasmic 

proteins that appear to cause alterations to the tensile load bearing cellulose 

microfibrils- hemicellulose network. 

  

 

1.4.4 Pectin 
 

Pectins, one of the main components of the extracellular matrix, are complex 

polysaccharides containing homogalacturonans (HG), rhamnogalacturonan I 

(RG-I) and rhamnogalacturonan II (RG-II) domains. Xylogalacturonan (XGA) 

and apiogalacturonan can also be found in particular species. These 

polysaccharides appear to be present in all cells but their relative abundance 

and structural details differ between cell types and species. It was reported 

that one third (~35%) of the primary cell wall molecules of dicotyledonous and 

non-graminaceous monocotyledonous plants are made of pectin, and about 5 

-10% of the walls of grasses are made of pectins (Jarvis, 1984; Carpita & 

Gibeaut, 1993; Willats et al., 2001b; Lord and Mollet, 2002; Guillemin et al., 

2005). Pectin content is greatly reduced or absent in non-extendable 

secondary cell walls, however. Trees like Pinus sylvestris are reported to have 

lignified pectic middle lamellae to withstand the compressive force developing 

as the tree grows (Hafren et al., 2000). Pectin is the main charged component 

of plant cell walls. It consists partially of negatively charged polygalacturonic 

acid chains capable of interacting with positively charged molecules such as 

polyamines or cations. It can bind to proteins carrying positive charges and 

thus influence the cell wall properties during assembly and different 

developmental stages (Carpin et al., 2001).   

 

 
 
 



 16

1.4.4.1 Biosynthesis of pectin 
 

It is estimated that pectins are synthesized from nucleotide sugars by at least 

53 different enzymatic activities (Ridely 2001). The biosynthetic enzymes 

required are glycosyltransferases and decorating enzymes including 

methyltransferases, acetyltransferases and feruloyltransferases. 

Glycosyltransferases (GTs) constitute the largest portion of the pectin 

biosynthetic enzymes; they specialize in the transfer of one glycosyl residue 

from a nucleotide sugar donor to the non-reducing end of an oligo- or 

polysaccharide acceptor. Galacturonosyl transferases are present in the cell 

walls of all land plants. A HG-galacturonosyl transferase isoform (GAUT1) 

was purified from Arabidopsis and was shown to be involved in HG 

biosynthesis (Sterling et al. 2006). 

 

Pectins are synthesized in the cis-Golgi apparatus, methylesterified at the C-6 

carboxyl in the medial Golgi by pectin methyltransferase (PMT) and modified  

by the addition of side chains to the backbones in the trans Golgi apparatus,  

giving rise to  RGI , RGII and xylogalacturonan,  before exocytosis  to the 

apoplasmic space as highly methylesterified polymer. (Carpita and Gibeaut, 

1993; Ridley et al., 2001; Willats et al., 2001b; Mouille et al, 2007). Nucleotide 

sugars are the immediate substrates for the synthesis of pectin. They are 

synthesized on the cytosolic side of the Golgi and transported into the Golgi 

lumen by specific nucleotide-sugar: nucleoside monophosphate antiporters. 

The released nucleoside diphosphate (NDP) is hydrolyzed by Golgi-localized 

nucleoside diphosphatase into nucleotide monophosphate (NMP) and 

inorganic phosphate which are transported out of the Golgi through the 

antiporters (Ridely et al., 2001).  The activity of homogalacturonan methyl 

transferase (HG-PT) and polygalacturonic acid-GalA (PGA-GalA) transferase 

were detected in the microsomes of tobacco suspension cultures (Doong et 

al., 1995; Goubet et al, 1998). The (HG-PT) was capable of transferring the 

methyl group from S-adenosyl-methionine (SAM) to the C6 carboxyl of HG, 

and PGA-GalA transferase catalyses the transfer of GalA from UDP-GalA to a 

growing GalA- containing HG, RG-I or RG-II. 
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1.4.4.2   Functions of pectins 
 
Pectins are a family of structurally heterogeneous polymers. The fine structure 

of the pectic matrix is modified extensively in muro during development and in 

response to local functional requirements by an array of modifying enzymes, 

many of which have been identified. They play a distinct role in cell wall 

porosity, expansion and cell-cell adhesion that in turn determines the 

mechanical properties of the cell wall (Knox, 1992; Cosgrove, 2000; Jarvis et 

al., 2003; Jones et al., 2003; Orfila and Knox, 2000; McCartney and Knox, 

2002). Pectins have a wide spectrum of applications in several 

biotechnological, agricultural, nutritional and economical fields.  They are 

used as gelling and stabilizing agents in the production of jams and jellies, 

fruit juices, confectionary products and bakery fillings. Pectin is also used for 

the stabilisation of acidified milk drinks and yogurts (Thakur et al., 1997; 

Willats et al., 2006). Pectin has beneficial effects on human health. It is 

thought to lower cholesterol levels, serum glucose levels and may have 

anticancer activities inducing apoptosis in human colonic adenocarcenoma 

cells (Willats et al., 2006). Oligosaccharide fragments of pectins are thought to 

have roles in signalling, development and growth during the life cycle of the 

plant (Dumville and Fry, 2000; Ridely et al., 2001). Pectins are primary targets 

of attack by invading microbes. The pathogen or endogenous secreted 

enzymes release oligo-GalA (2-20) residues that would function as potent 

elicitors of plant defense response (Cosgrove, 2005, Pilling and Höfte, 2003, 

Bédouet, et al., 2005). The pectin network was reported to be a target for 

special developmental modifications during the life cycle of a plant, such as 

cell wall swelling and softening during fruit ripening (Steele  et al., 1997; 

Dumville and Fry, 2000; Barnavon et al, 2001; Brummell et al., 2004; Almeida 

et al., 2008), cell separation during abscission of fruits, leaves, floral parts, 

pods, and seeds, pollen grains dehiscence and root cap cell differentiation 

(Wen et al., 1999; Roberts et al., 2000).  
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1.4.4.3   Chemical structure of Pectic polysaccharide  
 
Three major classes of pectic polysaccharides are HG, RG-I and RG-II. The 

presence of D-galacturonic acid (GaIA) is common to all these classes. Pectin 

can be extracted from cell walls by a variety of methods, including hot acid, 

mild alkaline treatment and chelating compounds. 

 
 
1.4.4.3.1   Rhamnogalacturonan-I (RG-I)  
 

It is an acidic domain consisting of as many as 100 repeats of (1→2)-α–L-

rhamnose- and (1→ 4)–α-D-galacturonic acid in which 20-80% of the 

rhamnose residues are substituted at C-4 with branched side chains of neutral 

sugars. The neutral sugar side chains include linear chains of (1→ 4)-β-linked 

D-galactose residues,  chains of (1→5)-α-linked arabinose residues that are 

frequently branched at O-3 and sometimes at O-2 and arabinogalactans I or 

arabinogalactan II. The arabinogalactan I side chains are generally made of β-

(1→ 4) galactose chains with arabinose branches, while arabinogalactan II 

are highly branched made of (1→ 3)-β- and (1→ 6)- β-linked galactose 

residues which are more common in proteoglycans but may also be part of 

RGI (Brett and Waldron, 1996; Ros et al., 1996). In some species, for 

example sugar beet, the arabinose and galactose residues in RG-I side 

chains can be substituted with ferulic acid esters (Lévigne et al., 2004; 

Guillemin et al., 2005).  

 

RG-I side chains occur in distinct regions of cell walls and stages of cell 

development (Rhiouey, 1995 a and b; Jones et al., 1997; Willats et al. 2001a; 

McCartney et al., 2000; McCartney and Knox 2002; Guillemin et al. 2005).  

The presence of arabinan and galactan side chains was associated with cell 

proliferation and differentiation respectively (Jones et al., 1997; Willats et al., 

1998 and1999b; McCartney et al., 2000; Orfila and Knox 2000). Actively 

proliferating cells usually lack detectable amounts of galactan side chains but 

instead display large amounts of arabinose rich domains as shown in 

suspensions and callus cells of carrot (Kikuchi et al., 1996). In the 
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Amaranthaceae, of which spinach and sugar beet are members, arabinan and 

galactan side chains are esterified by ferulic acid. The RG-I associated 

galactans were found to occur in a restricted manner at the transition zone of 

Arabidopsis root marking the onset of rapid cell elongation. The occurrence of 

the galactan side chains appeared to be at the zone in which xyloglucan 

endotransglycolsylases activity and its donor substrate have been identified to 

be co-localized (McCartney et al., 2003). The sporogenous cells of sugar beet 

anthers were marked with the presence of arabinan that disappeared after the 

completion of the gametophytic phase, the entry in meiosis correlated with the 

appearance of galactans in the walls of meiocytes (Majewska-Sawka et al. 

2004). A study on guard cells indicated that arabinans are required to 

maintain cell wall flexibility by preventing homogalacturonan polymers from 

forming tight associations (Jones et al., 2003 and 2005). The cell walls of 

Sitka spruce contained the arabinans, lining the intercellular spaces between 

tracheids in severe compression wood and parenchymatic ray cells, possibly 

indicating the importance of this polymer in cell adhesion (Altaner et al., 

2007).    

 

 

1.4.4.3.2   Rhamnogalacturonan II (RG-II) 
 
 Rhamnogalacturonan II (RG-II) is a pectic polymer that is known to occur in 

all the primary cell walls studied to date , but is thought to be absent from the 

middle lamellae region (Matoh et al., 1998; Ridley et al., 2001; Vincken et al., 

2003). It is thought to be covalently linked to HG (Ishii and Matsunaga, 2001; 

O’Neill et al., 2004). It is a branched pectic domain containing a HG backbone 

of 9 GalA residues that are (1→4)–α-linked, and is substituted by 4 

heteropolymeric oligosaccharide side chains. RG-II consists of at least 12 

different monosaccharides in more than 20 different linkages (Scheller et al., 

2007). The Rha residues are much less abundant than in RG-I, and are 

present at the side chains of RG-II instead of in the backbone. Apiose 

residues in the side chain of separate RGII polymers can form a covalent 

cross-link in the form of a borate diester (Ishii et al, 1999; O’Neil et al., 1996). 

The cross linking of borate-RG-II is expected to control pore size in the wall 
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and plays a role in establishing a scaffold of pectic polymers to which other 

molecules in the wall can bind (Ridley et al., 2001). The RG-II dimer is thought 

to enhance intercellular attachment. The failure of the cells to form such 

dimers due to boron deficiency or a mutation in the plant genetic make up 

causes drastic morphological abnormalities. Boron is essential for pollen tube 

growth, it is thought to be involved in the binding of pollen tubes to the stylar 

matrix by means of RG-II borate cross links (Lord and Mollet, 2002). The 

growth of the pollen tube through pistil tissues was impaired with the absence 

of boron (Matoh et al., 1998). The loosely-attached callus cells of nolac-H18, 

a mutant of Nicotiana plumbaginifolia, failed to undergo organogenesis and 

shoot development due to a mutation in the glucuronosyltransferase gene 

(NpGUT1)  that synthesizes the β-D-GlcA-(1→4)-α-L-Fuc-(1→),   which is a 

part of one of the side chains of RGII. The lack of glucuronic acid moiety on 

RG-II side chain prevented the formation of borate dimers. Around 50% of 

RG-II in the mutant was present as monomers, whereas more than 95% of 

RG-II in the wild type tobacco was present as dimers (Iwai et al., 2002). 

Arabidopsis plants carrying the mur1 mutation are dwarfed and have brittle 

stems.  The dwarf phenotype of mur1 plants was a result of reduced RG-II 

cross linking as a result of replacing fucose with galactose residues (Glushka 

et al., 2003) 

 

 

1.4.4.3.3   Homogalacturonan (HG) 
 

This is a linear homopolymer of (1→4)-α-linked D- galacturonic acid (GalA). It 

is thought to contain 100-200 GalA residues of which 70-80% are methyl 

esterified in the Golgi at C-6 carboxyl before secretion into the wall (Fig. 1.3, 

Thibault et al., 1993; Relat et al., 2001; Le Goff et al., 2001). HG may, 

depending on the plant source, also be partially O-acetylated at C-3 or C-2. 

HG can be further substituted by apiose or xylose and is then referred to as 

apiogalacturonan or xylogalacturonan respectively (Kikuchi et al., 1996; 

Renard et al., 1997; Ishii, 1997; Le Goff et al., 2001). HG can be acted upon 

by several cell wall based enzymes like pectin methyl esterases (PMEs), 

polygalacturonases (PG) and pectate lyases (PL). The end product of the 
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action of these enzymes could influence and determine the properties of the 

pectic network (MacKinnon et al., 2002). The PME deesterifies the HG 

facilitating the accessibility of polygalacturonases and pectin lyases that would 

hydrolyse the HG chain. On the other hand, the presence of contiguous de-

esterified galacturonic acid residues allows cross-linking of HG chains by ionic 

interaction with calcium ions forming a network of calcium pectinate gel (Fig. 

1.4).  Calcium bound matrices are important in strengthening the cell wall. The 

combined action of PME and PG releases oligogalacturonides which are 

known to serve as signals in a range of plant processes. The difference in the 

levels of firmness between 12 varieties of strawberry was attributed to the 

activity of PME and PG; the softest varieties had the highest PME and PG 

activities (Lefever et al, 2004). The degree of methylesterification of the walls 

of xylem fibers appears to play an important factor in wood biotechnology and 

the determination of wood quality. One of the PME isoforms in aspen 

(PtPME1) was found to negatively affect wall plasticity of wood fibers, thus 

impairing its ability to intrusively grow and penetrate the middle lamellae of the 

adjacent cells, which ultimately led to the reduction in the length and width of 

xylem cells (Siedlecka et al., 2008).  

 

 

 

 

 

 

 

 

 

 

 
Fig.1.3 Chemical structure of HG carrying methyl ester groups (Jenkins 
et al., 2001). 
 

 

Homogalacturonan is known to be involved in a range of cell wall activities 

that influence cell adhesion, cell expansion, wall porosity and defense 
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(Minorsky, 2002; Derbyshire et al., 2007). They are abundant in the middle 

lamellae, and especially in reinforcing zones at the tricellular junctions and the 

corners of intercellular spaces, which are key load bearing locations (Parker 

et al., 2001; Willats et al., 1999b and 2001c).  Pectins of middle lamella are 

characterized with low or zero level of RGI (Jones et al., 1997; McCartney et 

al., 2000) and RGII (Matoh et al, 1998). The presence of acetylated 

homogalacturonan throughout cell walls of suspension-cultured sugar beet 

cells was associated with decreased levels of intercellular adhesion (Liners et 

al., 1994).  It was reported by Ralet et al (2003) that a degree of acetyl 

esterification of HG above 15% hinders pectin gel formation. 

 
 

 
 
Fig. 1.4 The interaction between Ca2+ and unesterified carboxyl groups 
of GA residues of two HG chains (Vincken et al, 2003). 
 
 
Xylogalacturonan (XGA) has a HG backbone with 25–75% of the galacturonic 

acid (GalA) units being substituted with xylose. The GalA sugar residues of 

the XGA backbone can be methyl-esterified (Schols et al., 1995; Le Goff et 

al., 2001). The presence of Xylogalacturonan (XGA) has been detected in the 

cell walls of tissues and organs of several plants such as peas, carrot 

suspension cultures and Arabidopsis seedlings (Kikuchi et. al, 1996; Le Goff 

et al., 2001; Willats et al., 2004; Zandleven et al., 2007). The presence of 
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XGA was restricted to the loosely attached inner parenchyma cells of pea 

testa, and root cap cells of carrot, maize and Arabidopsis root apices (Willats 

et al., 2004).  

 

 

1.5 Supramolecular architecture of pectins 
 
Two types of models for pectin structure have been proposed; earlier, it was 

thought that extended chains of covalently linked alternating RG-I, RG-II and 

HG domains constituted the backbone of pectic polymers with RG-I and RGII 

side chain residues interspersing the chains (Fig. 1.5). Another alternative 

model of pectin structure was proposed by Vincken et al (2003) states that 

RG-I could serve as the backbone of the network on which HG, RG-II, 

arabinans, galactans, arabinogalactans (AGs) and all other pectic domains 

are attached (Fig.1.7). Recently, the covalent linkage of a HG or a XGA 

domain to RGI was demonstrated at the oligomer level using controlled acid 

hydrolysis of apple MHR (modified pectic hairy regions) mixture of oligomers 

(Fig. 1.6). The presented results partly correspond with the first model in 

which the backbone consisted of consecutive HG and RGI structural elements 

(Coenen et al., 2007). The pectic network is thought to bind to cellulose 

through the neutral sugar side chains, and the extent of binding varies with 

respect to the nature and structure of side chains (Iwai et al., 2001; 

Zykwinska, et al., 2005). The ability of pectins in tethering of cellulose 

microfibrils could be of great significance, especially in the cell walls that are 

poor in xyloglucan like in the case of sugar beet, potato, celery, onion and 

carrot (Zykwinska et al., 2007). Some evidence for the occurrence of a 

covalent linkage between xyloglucan and pectin was reported by Femenia, et 

al (1999), Abdel-Massih et al. (2003), Cumming et al. (2005) and Popper and 

Fry (2008). The pectin hemicellulose association was reported to exist in a 

wide range of suspension cultures of angiosperms possessing type I and type 

II cell walls (Popper and Fry, 2005). Incubating pea Golgi membranes with 

UDP-[14C] galactose led to the synthesis of a large molecular weight 

compound that could bind to paper and could be digested by cellulase, the 

obtained result indicated that the radioactivity was incorporated into galactan 
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side-chains of RG-I, and that pectin-xyloglucan bond was formed during the 

biosynthesis of the two polymers in Golgi apparatus (Abdel-Massih et al., 

2003). The possible presence of covalent cross links between xyloglucan and 

RG-I was thought to occur via arabinan side chains of pectin (Brett et al, 

2005).  Abdel Massih et al (2007) proposed that the attachment between the 

xyloglucan and nascent pectin occurs after the formation of homo-

galacturonans, but before the pectin leaves the Golgi apparatus. The pectin 

backbone was thought to elongate while attached to a protein, which may act 

as a primer. When the galactan side-chains are added, the protein becomes 

detached from the pectin, and xyloglucan becomes linked to some of the 

galactan side-chains. Their proposed model in Fig. 1.8 agrees with the new 

publications suggesting the linear arrangement of RG-I and polygalacturonan 

in the backbone of pectin. In a recent paper, Popper and Fry (2008) reported 

that in Arabidopsis suspension cultures xyloglucan–pectin bonds are shown to 

be  formed intra-protoplasmically and the  xyloglucan chains are thought to be  

built up de novo, using NDP-sugars as donor substrates, on an RG-I side-

chain. The anionic xyloglucan–pectin complex formed is believed to remain 

stable in the primary cell wall, and to allow the efficient binding, assembly and 

correct deposition of cell wall polymers and maintenance of intercellular 

adhesion. 

 

Although according to the listed references, the constituents of the pectic 

network are linked to one another through glycosyl links, borate diesters, 

calcium ion cross-links and/or the oxidative coupling of arabinan and galactan 

side chains containing ferulic acid,  the arrangements, patterns and 

frequencies of specific domains within multi-domain chains have not been 

determined and thus the above proposed models remains to be elucidated 

and proven (Willats et al., 2001b; Ridley et al., 2001; Vincken et al., 2003; 

Clausen et al. 2003; Cosgrove, 2005; Abdel Massih et al., 2007; Coenen et 

al., 2007; Verhertbruggen and Knox 2007). 
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Fig. 1.5 diagrammatic representation of more possible recent 
macromolecular structure of pectin (Vincken et al, 2003; Scheller et al., 
2007) 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig 1.6 Representation of a connection between rhamnogalacturonan 
type I and homogalacturonan (Coenen et al., 2007). 
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Fig. 1.7 diagrammatic representation of macromolecular structure of 
pectin according to the model proposed by Vincken et al. (2003) and 
Willats et al. (2006) 
 
 
 

Early stage of synthesis: Nascent pectin-protein complex 

RG-I PGA
Protein

Later stage of synthesis: Nascent pectin-xyloglucan complex  

Xyloglucan
Galactan

RG-I PGA
 

 
Fig. 1.8 Possible model of sequential stages of pectin biosynthesis 
(Abdel-Massih et al., 2007) 
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1.6 Arabidopsis as a model to study Cell walls 
 

In recent years, Arabidopsis has become a key model species in plant 

biotechnology and agricultural research. Arabidopsis thaliana is a little 

flowering weed that is a member of the mustard (Brassicaceae) family, and is 

currently used as a model plant for the study of cellular and molecular sides of 

plant cell wall biogenesis, assembly and modification. Arabidopsis has a small 

completely sequenced genome with high transformation efficiency, and 

powerful reverse and forward genetics (Arabidopsis Genome Initiative, 2000; 

Chen et al., 2004). It is small in size and has a short generation cycle. The 

amount of its DNA per cell ranks among the least of all known plants. 

Arabidopsis roots offer several advantages for the study of cell wall dynamics. 

The epidermis, cortex, endodermis and pericycle, each is made of a single 

layer of cells except area closest to hypocotyle where two layers of cortical 

cells are present The root cap is made of 1 to 3 layers of cells (Freshour et al, 

1996). Studying the polysaccharide components of the Arabidopsis roots 

could give an insight into the structure of the cell walls of many roots systems 

of other higher plants.  

 

Recent functional genomics and mutant studies have allowed the 

identification and characterization of many Arabidopsis mutants with altered 

cell wall composition.  Several Arabidopsis mutants were characterized with 

phenotypic defects in cell adhesion, such as, qua1, qua2, quartet, mur1 and 

emb30 (Freshour et al., 2003).  The phenotype of Arabidopsis quasimodo1 

mutant showed a deficiency in cell adhesion and stunted growth. The analysis 

of the quasimodo1 (qua1-1) and (qua1-2) mutants showed several cell wall 

defects with a particularly large decrease in the activity of HG-galacturonosyl 

transferase in Arabidopsis seedlings and root calli suspension cultures 

(Bouton et al. 2002; Leboeuf et al., 2005). The quasimodo2 (qua2) mutant 

was related to a defect in a putative S-adenosyl methionine dependent 

methyltransferase gene (Mouille et al. 2003). Arabidopsis emb30 showed 

abnormal localization and accumulation of pectin in intercellular/interstitial 

spaces rather than in the corners (Capodicasa et al., 2004) The Arabidopsis 
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quartet mutant has microspores that fail to separate during pollen 

development as a result of the persistence of pectin in pollen mother cell wall 

(Francis et al., 2006). 
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1.7 Aims of the Project 
 

In this project, taking into consideration that pectin methylesterase is one of 

the wall based enzymes modulating pectin structure that is implicated in cell-

cell adhesion; we propose that the establishment of intercellular adhesion 

through the action of PMEs starts at the time of cytokinesis when the cell is 

laying down the cell plate which becomes the middle lamella. The degrees 

and patterns of deesterification of homogalacturonans will determine the 

onset, level and strength of intercellular adhesion. The project was designed 

to  
 

1. Characterize and assess the role of pectic polysaccharides in cell-cell 

adhesion of Arabidopsis suspension culture with respect to their 

biochemistry and epitope distribution within the middle lamellae, 

especially at tricellular junctions. 

 

2. Assess the role of pectin methyl esterases in generating epitopes 

important in intercellular adhesion, by determining which PME genes 

are expressed in culture and then down regulating these genes. 

 

3. Use synchronized suspension cultures to study the pectins laid down at 

cell division, especially during the formation of tricellular junctions, and 

PME genes expressed during cell division. 

 

4. Assess the possible modulations in the middle lamella and adhesion as 

a response to adaptation to salinity using salt tolerant Arabidopsis cell 

line. 
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Chapter 2 
 
 

Materials and method 
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All chemicals were purchased from Sigma (UK), unless stated otherwise.  
 

2.1 Plant material and growth conditions 
 
Wild type Arabidopsis thaliana L. ecotype Columbia cultures were originally 

initiated from stem explants by May and Leaver (1993). The suspension 

cultures were established by transferring approximately 2 g of healthy callus 

cells into 250 ml Erlenmeyer flasks containing 100 ml of the growth medium.  

The cells were grown in MSMO medium (Sigma, Murashige and Skoog basal 

salts with minimal organics containing macro, micronutrients and vitamins as 

described by Lensmaier and Skoog (1965)) supplemented with 3% (w/v) 

sucrose, 0.5 mg/l NAA (α-naphthalene acetic acid) and 0.05 mg/l kinetin. The 

pH of the culture media was adjusted to 5.8 using 2M KOH before autoclaving 

at 121oC for 20 min. The cultures were kept at 26°C under continuous light of 

PPFD (photon flux density) of 20 µmol m-2 s-1 on a rotary shaker at 150 rpm. 

The suspensions were maintained routinely by transferring 10 ml of the 

culture every 7 days at early stationary phase to a 250 ml flask containing 90 

ml fresh media. The suspension cells were used in the experiments after 

three months of regular subculturing  

 

The salt tolerant Arabidopsis HHS (Habituated to High Salt) cell line was 

established by Dr. Peter Dominy (University of Glasgow).  Successive 

subculturing of the wild type Arabidopsis over a period of two years into a 

medium of higher salinity resulted in the establishment of a suspension that 

can tolerate up to 300 mM NaCl. The HHS cell culture was maintained in a 

medium  made of the same Sigma MSMO, supplemented with 3% sucrose 

(w/v), 0.5 mg/l NAA, and 0.05 mg/l Kinetin and 300 mM NaCl (17.5 g/l), at PH 

5.8. The cultures (45 ml) were grown in 150 ml flasks at 20°C under 

continuous light of PPFD (photon flux density) of 20 µmol m-2 s-1 on a rotary 

shaker at 150 rpm.  

 

The growth curve of the culture was followed by determining the packed cell 

volume (PCV) every day over a growth period of 10 days. Aliquots (5 ml) of 
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suspension cultured cells were sampled, centrifuged at 300 xg for 3 min and 

PCV was calculated as the volume of the cell pellet divided by the total 

volume. The recorded data represent the average of three replicate samples 

taken every day during the culture cycle from stocks each containing 180 ml 

media and 20 ml cells in 500 ml conical flasks. 

 

 

2.2 Preparation of alcohol insoluble material (AIM)  
 
Arabidopsis cell cultures (100 ml) were allowed to settle in a measuring 

cylinder. The volume of settled cells was recorded and excess medium 

poured off into a 250 ml conical flask. Ethanol was added to the precipitated 

cells to give a final concentration of 70% (v/v) ethanol (Fry, 1988). After 

heating at 70oc for 30 min to inactivate the endogenous enzymes, the mixture 

was cooled and centrifuged at 4000 rpm for 10 min. The supernatant was 

collected and the alcohol insoluble residue (AIR) was resuspended and 

washed twice in 70% ethanol to remove low molecular weight sugars and 

other metabolites while retaining macromolecules like proteins, starch and 

wall polymers. 

 
The culture medium was adjusted to 70% (v/v) ethanol and incubated 

overnight at 4oC. The precipitated sugars were collected by centrifugation at 

4000 rpm for 10 min and the pellet was washed three times with 70% ethanol 

and stored at -20oC for further analysis. 

 

 

2.3 Extraction of cell wall pectin 
 

To solubilise the ionically-bound homogalacturonans (HGs), the alcohol 

insoluble material was extracted using 50 mM ethylenediamine-N,N,N',N'-

tetraacetic acid (EDTA) in sodium phosphate buffer pH 6.8  at 70oC for 30 min 

(Abdel-Massih et al., 2003 and 2007).  The mixture was cooled and 

centrifuged at 4000 rpm for 10 min. The supernatant was collected and the 
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pellet was washed twice with EDTA/phosphate buffer, each time collecting the 

supernatant. The extracted pectins were dialyzed overnight at 4oC against 

distilled water. The volume of the dialysed pectin was recorded and the pectin 

stored at -20oC.  

 

 

2.4   Analysis of the extracted pectin 
 

2.4.1 Determination of the total sugar content of the extracted 
pectin 

 
The amount of total carbohydrate in hydrolyzed and non-hydrolyzed 

EDTA/phosphate extracts was determined by the phenol-sulphuric acid 

method (Dubois, 1956).  Galactose was used as a reference to construct a 

standard curve.  Phenol (5%, 0.4 ml) was added to 0.4 ml of the sugar 

containing sample, then using a glass pipette, 2 ml of concentrated sulphuric 

acid was added rapidly making sure to direct the stream of acid against the 

liquid surface rather than the sides of the test tubes. Blanks were prepared by 

substituting distilled water for the sugar solution. The absorbance of the 

characteristic yellow orange color was measured at 490 nm. 

 

 

2.4.2 Determination of total galacturonic acid content of the 
extracted pectin 

 
The total uronic acid content was assayed using the m-hydroxydiphenyl 

method (Blumenkrantz and Asboe-Hansen, 1973; Wicker and Leiting, 1995) 

with galacturonic acid as a standard. Using 50mM sodium phosphate buffer 

pH 6.8, different dilutions of 1mg/ml D- galacturonic acid were distributed into 

screw capped test tubes. Concentrated sulphuric acid containing 0.0125 M 

sodium tetraborate (1.2 ml) was added taking care that the tetraborate 

solution hit the center of the liquid so the heat of dilution of sulphuric acid 

would drive the reaction.  The test tubes were left to cool down to room 

temperature after which 20 µl of 0.15% (w/v) m-hydroxydiphenyl in 0.5% (w/v) 
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NaOH were added to the tubes except the blank. To the blank 20 µl of 0.5% 

NaOH were added. The absorbance was measured at 520 nm and the uronic 

acid content was interpolated from the corresponding reference curve. 

 

2.4.3 Estimation of the degree of esterification of the 
extracted homogalacturonan  

 
2.4.3.1 Base catalysed deesterification  
 
Aliquots of the extracted pectin (1 ml) were treated with a mild alkali 

(saponified) by mixing the pectins with 40 µl of 1M NaOH in order to reach a 

pH of 12 as was detected by pH paper. The mixture was incubated at 4oC for 

1 h. Then the pH was adjusted to pH 7 using 60 µl of 0.49 M phosphoric acid. 

The alkaline deesterified solution was used to quantify the amounts of the 

released methyl esters. 

 

 

2.4.3.2 Determination of the released methyl groups  
 
The amount of methanol formed after saponification of the pectins was 

analysed by using a colorimetric method according to Klavons and Bennett 

(1986). To construct a methanol calibration curve, serial dilutions of stock 

methanol were prepared containing 0.0, 0.1, 0.2, 0.4, 0.5 and 0.6 µmol, to a 

final volume of 1 ml using 50mM sodium phosphate buffer pH 6.8. Alcohol 

oxidase from Pichia pastoris (EC 1.1.3.13, Sigma) 1unit/ml was added to all 

the test tubes and incubated at 25oC for 20 min. The enzyme oxidises 

methanol to formaldehyde.  A 2 ml solution containing 2 M ammonium 

acetate, 50 mM acetic acid and 20 mM 2,4-pentanedione was added to all the 

test tubes and the reaction mixture was incubated at 60oC for 15 min.  A 

colored product called 3,5-diacetyl-1,4-dihydro-2,6-dimethylpyridine is formed 

as a result of the condensation of the formaldehyde with 2,4-pentanedione. 

The samples were left to cool down to room temperature and the absorbance 

was determined with a spectrophotometer at 412 nm.    
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The amount of released methyl groups was estimated from the standard 

calibration curve. The ratio of methanol to galacturonic acid was used to 

calculate degree of methylesterification (DM %). Control reactions were done 

to detect a possible interference of background free methyl groups or residual 

ethanol in the extracted pectin.  Ethanol will compete with the released methyl 

groups for the alcohol oxidase forming acetaldehyde. 

 

 

2.4.4 Determination of sugar composition 
 
2.4.4.1 Preparation of the samples 
 
A portion (10 ml) of the phosphate/EDTA extracted dialysed pectins was 

added to 40 ml of ethanol and kept at 4oC for 48h. The precipitated pectin was 

withdrawn and concentrated to approximately 1ml with a rotating evaporator 

at 40oC and hydrolysed in 2M trifluoroacetic acid (TFA) for 1h at 121oC. TFA 

was evaporated under a stream of N2. The hydrolysates were re-dissolved in 

250 µl distilled water prior to the detection of the neutral fraction of TFA 

hydrolysates by paper chromatography (PC) and high performance anion 

exchange chromatography coupled with pulsed amperometric detection 

(HPAE-PAD).  

 
 
2.4.4.2 Paper chromatography 
 

Before placing any sugars on the paper, four horizontal straight lines were 

drawn at 6, 11, 13, 15 cm from top of Whatman no. 1 paper. Sample spots of 

the acid hydrolysates were loaded on the paper along the 15 cm line. The 

neutral sugars were separated by descending paper chromatography using a 

solvent system composed of pyridine: ethyl acetate: acetic acid: water 

(3:18:1:1). The chromatograms were allowed to run for 36 hr. Sugars were 

visualised on the paper chromatograms by staining with aniline hydrogen 

phthalate or silver nitrate (Fry, 1988).  The standard sugars were divided into 

two batches A and B and TFA treated under the same conditions.  Batch A 
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contained a mixture of 5mg/ml of each of fucose (Fuc), galacturonic acid 

(GalA), mannose (Man), xylose (Xyl) and galactose (Gal). Batch B included 5 

mg/ml of each of glucose (Glu), glucuronic acid (GluA), arabinose (Ara), 

rhamnose (Rha) and 1,2:3,5-di-o-isopropyl-idene-α-D apiose (Api). 

 

 

2.4.4.3 High performance anion exchange chromatography with 
pulsed amperometric detection (HPAEC- PAD) 

 

The composition of the neutral sugar content of the acid hydrolysates was 

detected using high performance anion exchange chromatography coupled 

with pulsed amperometric detection (HPEA-PAD, Sullivan and Douek, 1994). 

The samples were mixed with an anion exchange resin (Dulite) and filtered 

through sterile millipore filters prior to injection on a Dionex analytical 

Carbopac PA-10 column. The eluents included deionized water, 100mM 

NaOH and 350mM NaOH prepared from a carbonate free NaOH stock. 

Carbonate, being a divalent anion at pH > 12, binds strongly to the columns 

and interferes with carbohydrate binding, causing a drastic decrease in 

column sensitivity and a loss of resolution and efficiency. The eluent flow rate 

was 1ml/min at room temperature. Carbohydrates are detected by measuring 

the electrical current generated by their oxidation at the surface of a gold 

detector. The surface of the electrode was cleaned between measurements to 

remove any residues from previous runs. A post run flush of the column with 

350 mM NaOH was done to wash out the strongly retained species. 

The standards included arabinose, rhamnose, galactose, glucose, mannose 

and xylose. Standard curves were constructed relating the concentration of 

each of the standard sugars to the obtained peak area. The resulting linear 

equations were used to quantity the amounts of the detected sugars in the 

tested samples. The initial runs showed that fucose was present in low    

stable quantities so it was used as an internal standard. The components 

were compared to standard monosaccharides by their retention times. All the 

peak areas were normalized to the area of fucose before the calculations of 

the detected sugars. The detected fraction was expressed as % mol of the 

total detected neutral sugars.  
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2.5 Immunochemical studies 
 
The anti-pectin antibodies used in this study, including the rat monoclonal 

antibodies JIM5, JIM7, LM7, LM5 and LM6 and the mouse monoclonal 

antibody 2F4, were all purchased from PlantProbes – Leeds/ UK. 

 

 

2.5.1 Immuno-dot assay 
 
Equal amounts (10 µl) of the extracted pectic polysaccharides containing (1, 

0.5 or 0.2 µg sugars) were spotted as 1 µl aliquots onto nitrocellulose 

membranes and air dried at room temperature for at least 1h. All subsequent 

treatments were done at room temperature. Membranes were blocked with 

1M phosphate buffered saline (PBS, 0.14M NaCl, 2.7mM KCl, 7.8mM 

Na2HPO4.12 H2O, 1.5mM KH2PO4) pH 7.2 containing 5% Marvel fat free milk 

powder (MPBS, Marvel, Premier Beverages, UK) for 1 h. The membranes 

were then incubated with the following primary monoclonal antibodies: JIM5, 

JIM7, LM5, LM6 and LM7 according to Willats et al (2001c) and Clausen et al. 

(2003). All primary antibodies were diluted 1/10 (w/v) in MPBS for 2 hours. 

After washing extensively under running tap water, membranes were left for 

10 minutes rocking in PBS containing 0.1% (v/v) tween 20 prior to incubation 

for 2 h in secondary antibody (goat anti-rat-IgG, whole molecule,  coupled to 

horseradish peroxidase) diluted 1/1000 in MPBS. Membranes were washed 

again before development in substrate solution made of 25 ml deionized 

water, 5 ml methanol containing 10 mg/ml 4-chloro-1-naphthol and 30 µl 6% 

(v/v) H2O2. The reaction was stopped by replacing the substrate solution with 

tap water. Citrus fruit pectins with various degrees of esterification 89, 65 and 

34% were used as control standards.  
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2.5.2 Immunolocalization of cell wall pectic epitopes 
 
2.5.2.1 Preparation of plant material for microscopy 
 
Representative samples of Arabidopsis cells during the different phases of the 

culture cycle were fixed in 2.5% (v/v) glutaraldehyde in 0.1 M PBS, pH 7.2, for 

1 h at room temperature and then washed extensively in PBS.  The fixed cells 

were further processed and embedded in LR white resin as described by 

Willats et al. (1999b and 2001c).  

The cells were extra fixed in a 0.1M sodium cacodylate buffer containing 1% 

glutaraldehyde and 2% formaldehyde pH 7.0 for 1 h at room temperature. 

After 3 washes with the buffer, the cells were resuspended in buffer 

containing 3% agar at 40oC and vortexed. The blocks were dehydrated in a 

series of graded ethanol concentrations consisting of  10%, 20% at room 

temperature for 20 min and 30% at 40oC for 20 min, and infiltrated with 

LRWhite resin (London Resin, Reading, UK) containing 0.5% benzoin methyl 

ether with regular changes of resin over 2 days. Resin was polymerized in 

gelatine capsules using UV light for 12 h at -20oC and 12 h at room 

temperature. One micrometer (1µm) thick sections were used in the 

immunofluorescence analysis and 50 nm thick sections were used in the 

immunoelectron microscopy studies.  

 

 

2.5.2.2 Immunofluorescence localization of pectic epitopes 
 
The resin embedded plant material (1µm thick) was blocked in 5% fat free 

milk in phosphate buffered saline (MPBS) according to Willats et al. (1999 and 

2001c) for at least 2 h at room temperature. Gentle rocking was maintained 

during the immunolabelling steps. Sections were then incubated overnight in a 

solution containing one of the monoclonal antibodies; JIM5, JIM7, LM5, LM6 

and LM7 diluted 1:10 v/v in MPBS at 4oC. After washing the sections several 

times in an excess of PBS, they were incubated overnight at 4oC in darkness 

with the goat-anti rat fluorescein isothiocyanate (FITC) conjugated secondary 

antibody diluted 1:100 v/v in MPBS.  The same labelling steps were followed 
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with the monoclonal antibody 2F4 except that the buffer used (T/Ca/S) 

consisted of 20 mM Tris-HCl pH 8.2, 0.5 mM CaCl
2 
and 150 mM NaCl, and 

the goat-anti mouse FTIC conjugated secondary antibody was diluted 1:100 

v/v in free fat milk T/Ca/S. Sections were washed again in buffer before being 

mounted in anti fade solution (Citiflour AF3, Agar scientific, Stansted, UK) and 

examined with epifluorescence microscope. Control sections were treated in 

parallel but with the omission of the primary antibodies. 

 

In some cases, the embedded sections were submitted to enzymatic (Pectin 

methylesterase from orange peel (oPME)) and/or chemical (alkaline 

deesterification) treatment, before immunolabelling as described by Guillemin 

et al. (2005) and Leboeuf et al. (2005). The in situ deesterification of pectins 

was carried out by incubating the resin embedded sections with 100 µl of 

oPME (105 U/ml) in Tris-HCl pH 7.5 at 30oC for 30min, or using 100 µl of 

0.05M NaOH for 30 min at 4oC. Sections were rinsed thoroughly with 

deionized water before labelling with JIM5 or JIM7 as described above.  

 

 

2.5.2.3 Immunoelectron microscopy of pectic epitopes 
  
The resin embedded sections (~ 50 nm thick) were blocked using 1% (w/v) 

bovine serum albumin (BSA) in PBS containing 2% Tween 20 (PBST). The 

monoclonal antibodies JIM5, JIM7, and LM7 were diluted 1/5 in 1% 

BSA/PBST overnight at 4oC. After washing with PBST, sections were 

incubated overnight at 4oC in goat anti-rat secondary antibody conjugated to 

10 nm colloidal gold diluted 1/20 in BSA /PBST. Sections were washed with 

PBST and post-stained with 2% uranyl acetate. The same labelling procedure 

were followed with the monoclonal antibody 2F4 except that it was diluted in 

1% BSA in T/Ca/S buffer, and the use of goat anti mouse secondary antibody 

conjugated to10nm colloidal gold diluted in the same buffer. Sections were 

observed with an electron transmission microscope.  
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2.6 Synchronization of Arabidopsis of cell 
suspension 

 
Aphidicolin, which is a fungal toxin extracted from Cephalosporium 

aphidicolia, was used to reversibly block the cell cycle progression of the 

Arabidopsis cultures as described by Menges and Murray (2002). All 

glassware was thoroughly washed and autoclave sterilized. A 40 ml aliquot of 

7 days old culture was subcultured in 200ml fresh medium containing 4 µg/ml 

aphidicolin and incubated at 26°C under continuous light of PPFD (photon flux 

density) of 20 µmol m-2 s- on a rotary shaker at 150 rpm for 22 h.  Cells were 

washed with 1 liter MSMO through filter paper under mild suction making sure 

not to dry the cells. The cells were quickly resuspended in 250 ml MSMO and 

incubated under the same cultivation conditions as above. Representative 

samples were collected at regular intervals after washing out the aphidicolin, 

and were used to determine the mitotic index and for RNA extraction. RT-

PCR was then used to analyze the expression of cell cycle marker genes and 

pectin methylesterase genes.  

 

 

2.6.1 Cell number and mitotic index 
 

A 0.5 ml aliquot of cell suspension was collected every hour after washing out 

aphidicolin. After removing the supernatant, the cells were fixed with 3.7% 

formaldehyde in PMEG buffer (50 mM PIPES, 2 mM MgSO4, 5 mM EGTA, 

2% glycerol, pH 6.8) according to Menges and Murray (2002). Cells were 

washed with PBS buffer and the cells were separated by digestion for 2hr with 

1% cellulase and 1% pectinase (extracted from Trihoderma sp, Duchefa) and 

0.4 M mannitol at room temperature. The DNA of cells was stained with 

1µg/ml DAPI (4’, 6-diamidino-2-phenyl-indole) for ½ hr. After washing the cells 

several times with PBS, the number of dividing cells was estimated by UV 

light microscopy.  The mitotic index represented the percentage of cells with 

DAPI stained metaphase/anaphase figures.  
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2.6.2 RNA Extraction 
 
Arabidopsis cells were collected by the vacuum assisted filtration of 5 ml of 

suspension cells through a glass sintered funnel every 2 hours.  The cells 

were quickly collected in a pre-weighed sterile eppendorf tube, weighed 

again, frozen in liquid nitrogen and stored at -80oC until further use for RNA 

extraction. RNA was extracted using the Gentra kit (Qiagen) according to 

manufacturer’s instructions. The RNA precipitate was resuspended in 20 µl 

DEPC treated water. To eliminate residual genomic DNA present in the 

preparation, the samples were treated with DNA-free kit (Ambion). The total 

RNA concentration and purity were estimated by the measurement of 

absorbance at 230, 260 and 280. The quality of RNA was assessed by 

loading 5 µg of RNA denatured by glyoxal load buffer dye (Ambion) on a 1.5% 

agarose gel electrophoresis. RNA was stored at –80°C until further use 

 

Total RNA (5 µg) were used as templates for reverse transcription (RT) 

reactions to synthesize the first strand cDNA, using the Superscript first strand 

cDNA synthesis kit according to manufacturer’s instruction (Invitrogen).  An 

aliquot (1µl) of the cDNA mix was used as a template in a 25 µl volume for 

subsequent Reverse transcription-Polymerase chain reaction (RT-PCR) 

amplification using the primer combinations listed in tables 2.1 and 2.2. The 

PCR conditions were 95oC for 15 min and 30 cycles of 92oC for 45 sec, 58oC 

for 45 sec, 72oC for 45 sec with a final extension of 10 min at 72 oC. The 

resulting PCR products were separated by gel electrophoresis on 1.5 % 

agarose gel containing ethidium bromide, and photographed. Samples were 

treated identically but without reverse transcriptase as a negative control in 

order to exclude contamination with genomic DNA. 

 

 

2.6.3 Primers of cell cycle marker genes 
 

Progression into the different cell cycle stages (G1, S, G2 and M) was 

estimated by the expression data of four cell cycle marker genes (cyclin 

dependent kinase CDKB2, cyclin D3 (cycD3) and Histone (H4)). Using the 
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TAIR website (www.arabidopsis.org) we designed exon-exon primers. The 

primer sequences are given in table 2.1. As a control, primers specific to the 

actin7 gene were used. Gel images were analyzed quantitatively with image 

analysis software and the relative expression levels were normalised with 

respect to actin7.  

 

570TTTTCTCTCTGGCGG
TGCAA

CGTACAACCGGTATTGT
GCT

At5g09810 
(actin 7)

232GACAACATCCATGGC
GGTCA

TGGGAAAGGGAGGAGC
GAAGA

At1g76160 
(Histone, H4)

232TCGAGACAGCTGAGT
CCTTGTTCTT

CGATTCGGAAGGAGGA
AGAAAGTAG

At4g34160 
(cycD3)

228AGGCTTAAGATCCCT
GTGCAAA

CTCACATCGTTAGGTTG
ATGGAT 

At1g20930 
(CDKB2;2)

Reverse primerForward primerLocus Expected 
size of 
Amplified 
Product 
(bp)

 
 
Table 2.1 summarizes the accession number, amplified fragment size of 
each gene, and the specific primer pairs used of cell cycle marker genes 
 

 

2.6.4  Cell cycle pectin methylesterase genes 
 

The nucleotide sequences of six cell cycle expressed PMEs were retrieved 

from the TAIR website (www.arabidopsis.org), and used to design exon-exon 

primers. Primers were designed to obtain an amplified product in a range of 

200-650 bp. The primer sequences are given in table 2.2. The actin7 gene 

was used as a control. Gel images were analyzed quantitatively with image 

analysis software and the relative expression levels were normalised with 

respect to actin7.  
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212GCGCAGTATTCGTGA
AGCTAA

CGGATTTTACAGAGA
GAAAGTG

At5g47500

570TTTTCTCTCTGGCGGT
GCAA

CGTACAACCGGTATT
GTGCT

At5g09810
(Actin 7)

255GCCGTAACCTCGTTC
GATTGAC

TCAGCCACATTTATT
CTATCAGGTCC

At2g47550

243 AGCATAAACATCCCA
AGCCTACACA

TTATGGACGGTGTGG
TAAAATCAGC

At4g12390

439 AAAGTGTGTCCTGGT
AACCATCAAT

TTAGAAGATTCTAGC
GACGGGTATG

At2g26440

612 TGGAATTAATCACGT
GGTAACCAGG

CGCCACATTTGCTGT
GACAGC

At1g02810

205 AATTCCCCGTTCCGTT
TTGG

TCTTGGGCCCATCCA
AAGAA

At4g02330

Reverse primerForward primerLocus Expected size 
of Amplified 
Product (bp)

 
Table 2.2 summarizes the accession number, amplified fragment size of 
each gene, and the specific primer pairs used of PME isoform genes 
annotated to be expressed during the cell cycle.  
 
 

2.7 Phylogenetic analysis of cell cycle expressed 
PMEs 

 
A phylogenetic tree was constructed to show the possible structural and 

consequent relationship between the sequences of the cell cycle putative 

PME isoforms listed in Table (2.2).  The sequences were retrieved from the 

TAIR website (www.arabidopsis.org), and the phylogenetic tree was 

established with the neighbour-joining method using the MEGA program 

version 3.1 (Kumar et al., 2004).  

 

  

2.8 Northern hybridisation analysis 
 

All the glassware used and working area were treated with Ambion’s RNase 

Zap, followed by rinsing with high quality RNase-free water to make sure that 
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all were clean and RNase-free. RNA probes were generated by in vitro 

transcription from DNA templates. The RT-PCR product of At5g47500 (212 

bp) was extracted from the agarose gel using the gel extraction kit (Qiagen) 

and used to synthesize the template.  The extracted pure DNA was amplified 

with the primers linked to the bacteriophage promoter T3 (At5g47500-T3-r, 

AATTAACCCTCACTAAAGCAGTATTCGTG) and (At5g47500-f,  

AAGATTGCTCCCGGATTTTACAGAGAG) using the following PCR 

conditions: 95oC for 15 min, 30 cycles of 92oC for 45 sec, 58oC for 45sec and 

72oC for 45 sec with a final extension of 10 min at 72 oC. The RNA probe was 

synthesized through the transcription of the template using Maxiscript in vitro 

transcription kit (Ambion) in the presence of biotin-substituted nucleotides 

(biotin-UTP). After transcription the reaction was run on a denaturing 

polyacrylamide gel to separate the probe. The gel was either stained or UV 

shadowed to identify and cut the full-length probe from the gel. The probe was 

eluted in an overnight incubation at 30oC in elution buffer made of 0.5M NH4-

acetate/ 1mM EDTA/ 0.2% SDS. The amount and quality of the synthesized 

probe was estimated spectrophotometrically by measuring the absorbance at 

230, 260 and 280 nm. 

 

Equal amounts (15 µg) of total RNA were denatured with glyoxal dye and 

loaded on 1.2% (w/v) denaturing agarose formaldehyde gel electrophoresis. 

The gel was run at 5 v/cm according to the recommendations of the 

NorthernMax-Gly Kit (Ambion). The RNA on the gel was transferred onto a 

BrightStar-Plus Positively Charged Nylon Membrane (Ambion) and later 

crosslinked to the membrane in a non-covalent interaction via exposure to 

short wave ultraviolet light. The RNA sequences of At5g47500 were detected 

on the blot by overnight hybridization to the biotin labelled probe at 65oC. A 

marker mixture made of 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, and 9 kilobase 

nucleotide sequences  was included and hybridized with the marker Probe 

provided by the manufacturer (BrightStar Biotinylated RNA Millennium™ 

Markers, Ambion).  

 

After probe hybridization and washing to remove non-specific labelling, the 

hybridization signal was detected by BrightStar BioDetect kit (Ambion). The 
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chemiluminescent detection of probed mRNA involved blotting the membrane 

with a conjugate of the enzyme alkaline phosphatase and a ligand 

(Streptavidin) with a high binding affinity for biotin. The alkaline phosphatase 

caused the degradation of the added substrate CDP-Star which resulted in 

light emission. The blots were exposed to X-ray film overnight.  The resulting 

band identified by the probe indicated the size of the mRNA, and the intensity 

of the band corresponded to the relative abundance. 
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Chapter 3 
 
 
 

Biochemical and immunochemical analysis of 
pectins of Arabidopsis cell walls 
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3.1 Introduction 
 
Plant suspension cultures have been the favourite subjects for studies of cell 

growth and wall biochemistry, in part because their walls are relatively 

homogenous and can be conveniently studied in the absence of 

developmental processes. As in intact seedlings, the cell wall dynamics in 

cells growing in a suspension are achieved via two distinct steps: the 

biosynthesis of cell wall components by the actions of membrane-bound 

enzymes followed by the assembly and rearrangement of cell wall structures 

in muro via the actions of extracellular proteins.  Several studies reported 

about the biochemical macromolecular constituents of the cell walls of actively 

proliferating cells in suspension. The callus and suspension cultures of carrot 

and sugar beet, Sycamore, Tobacco BY-2 and Arabidopsis thaliana were 

investigated, all  the tested species showed the presence of the regular 

components of celluloses, hemicelluloses and pectins (Kikuchi, 1996; Willats 

et al., 2000b; Majewska-Sawka and Münster 2004; Leboeuf et al., 2004 and 

2005).  

 

Pectin rich cell wall interfaces, mainly middle lamella and cellular junctions, 

are reported to mediate intercellular adhesion and provide mechanical 

support. Unesterified homogalacturonan cross linked by calcium in the middle 

lamella is thought to play a major role in cell adhesion.  The strength of the 

interaction between Ca2+ and pectin increases with decreasing average 

degree of pectin methylesterification and increased length of the unsubstituted 

galacturonan back bone (Knox, 1992; Jarvis et al., 2003). The adhesion 

between the neighbouring cells living in a suspension culture resulted in the 

presence of cell aggregates forming clusters of varying sizes. It was reported 

by Leboeuf et al. (2004) that Arabidopsis suspension cells living in the 

stationary phase were less adherent than proliferating cells during the division 

and expansion phases, and they suggested that homogalacturonans, pectic 

side chains and arabinogalactan proteins were involved in the intercellular 

attachment. Earlier, in suspension cultures of Paul’s Scarlet Rose, galactose 

containing wall domains were thought to be involved in the maintenance 
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intercellular adhesion (Wallner and Nevins, 1974). In recent years, the use of 

monoclonal antibody probes directed against a range of polysaccharides and 

proteoglycan epitopes in pectic domains gave a more rapid and reliable 

insight into the occurrence, distribution and possible functions of pectins 

throughout intact plant tissues and cells living in cultures (Knox, 1997; Jones 

et al., 1997; Willats et al, 1998, 1999b and 2000a). 

 

Aims of this chapter: 
 

This chapter reports on the biochemical characterization and the 

immunochemical analyses of EDTA/phosphate pectic extracts and the in situ 

distribution of homogalacturonan and RG-I domains in muro in sections of 

resin embedded cells, in an attempt to study the role of pectins in the cell-cell 

adhesion of Arabidopsis thaliana ecotype Columbia suspension culture cells  

 

 

3.2 Growth kinetics of  Arabidopsis thaliana 
suspension cultures 

 

The cultures used were derived from an original line initiated by May and 

Leaver, 1993. The big cellular clumps were removed by sieving the culture 

under aseptic conditions in an attempt to produce a relatively finer and more 

homogeneous cell suspension of cell clusters less than 1mm in diameter.  

Microscopically, the green Arabidopsis cultures consisted of small cell 

aggregates and single cells.  The cell aggregates were made of cells varying 

in size and shape (Fig. 3.1). The stationary phase was characterised by a 

high degree of aggregation. 

 

The growth curve of the suspension cultured Arabidopsis thaliana is illustrated 

in Fig. 3.2. The packed cell volume (PCV) expressed as millilitre (ml) of cells 

per ml suspension culture was used to follow the growth of the cell 

suspensions. The growth of the culture progressed into two reproducible 

phases, an exponential phase between days 2 and 6 followed by the 

stationary phase. During the exponential phase, the PCV increased steadily 
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up to day 6 showing a 4-fold increase in PCV. After day 7 the PCV stayed at 

the same level as a characteristic of cells in the stationary phase. The 

doubling time of the culture was 3.1 days. Samples representing the lag 

phase between days 0-2 were not recorded as it was noticed that taking 

aliquots at these time intervals disrupted the growth curve possibly because of 

the reduction in the amount of initial inoculum transferred during subculturing.                            
 

 

Day 3 Day 4

 
Fig. 3.1 Light microscopic view of cell morphology and clump sizes of 
Arabidopsis suspension cultures, samples representing cells in 3 days 
(a) and 4 days (b) after subculturing. Scale bar representing 10 µm. 
 

 
Fig. 3.2 Growth curve of Arabidopsis suspension culture. The graph 
shows mean ± SD for three different cultures.  

a b 
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3.3 Chemical analysis of extracted pectin 
 
3.3.1  Sugar content of the extracted pectin  
 

The total extracted sugar and uronic acid (UA) contents of the 

phosphate/EDTA buffer extracts of the alcohol insoluble residue are illustrated 

in Fig.3.3. The alcohol insoluble residue includes the Arabidopsis cells with 

the intracellular proteins, RNA, starch and wall polymers. It is free from 

chlorophyll, low molecular weight sugars, amino acids, organic acids and 

inorganic salts (Fry, 1988). The extraction of dicot cell wall pectin with 

chelating agents brings Ca2+ crosslinked HG rich pectins into solution 

accompanied by some cell separation (Parker et al., 2001; McCartney and 

Knox, 2002; Jarvis, 2003; Vincken et al., 2003; Hepler, 2005). Ca2+ chelating 

agents alone were reported to be sufficient to extract HG anchored within the 

wall by calcium bridges, and covalently crosslinked RG-I, inducing separation 

of onion parenchyma cells (Ng et al., 2000). However, in cereals and related 

monocots the abundance of pectins in the primary cell wall is relatively low 

and cell separation by chelating agents is not generally possible. 

The ratio of UA to the total extracted carbohydrate ranged from 59% to 64% 

of the extracted pectin suggesting that significant quantities of 

homogalacturonans were present in the extracts. 

 

The total carbohydrate and uronic acid contents of the extracted pectin 

dialysed against water and expressed as µg sugar /ml cells, decreased 

significantly (at 5% level) after the first day of subculturing by 22 and 16% 

respectively. For the rest of the sampling period, the change in the total 

extract content of cell wall sugars was insignificant and in parallel with the 

changes of UA content. A slight increase of 11 and 19% in the total sugar and 

UA content respectively was observed at day 4. However, there were no 

significant changes in the proportions of UA along the culture cycle. This 

result is in agreement with the observation of Leboeuf et al. (2004) in the cell 

walls of Arabidopsis suspension cultures.   
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Fig. 3.3 Changes in the amounts of total extracted carbohydrates (●) and 
uronic acid (■) in the EDTA/phosphate buffer extracts during the culture 
cycle. The graph shows mean ± SD for three different cultures.  
 

 

3.3.2 Degree of methylesterification of extracted pectin 
 

The degree of methylesterification of HG fraction of the extracted pectin was 

determined by saponification for 1 h at pH 12 at 4oC, followed by the enzymic 

oxidation of the released methanol by alcohol oxidase (Klavons and Bennett 

1986; Guillemin et al., 2005). The ratio of methanol to uronic acid (UA) 

content was used to estimate the degree of methylesterification (%DM). 

Samples of the extracted pectin were tested for the presence of background 

free methyl groups before the alkali demethylation of the extracted HG. The 

results did not show any methyl contaminants that might interfere with 

estimates of the released methyl groups after the dilute alkali treatment. 

The % DM during the culture cycle varied from 36% to 60% (Fig. 3.4).  The 

%DM of buffer chelator soluble pectin increased during the linear and 

elongation stages of growth to 60% at day 6. However, its level decreased to 

40% at day 7 as the cells were proceeding into the stationary phase. 
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Fig. 3.4 Degree of methylation of EDTA/ phosphate buffer extracts 
during the culture cycle. The graph shows mean ± SD for three different 
cultures.  
 

 

3.3.3 The neural sugar composition of the extracted pectin 
 
The neutral fraction of trifluoroacetic acid (TFA) hydrolysates of the extracted 

pectin and ethanol precipitated was analysed by paper chromatography (PC) 

and high performance anion exchange chromatography with pulsed 

amperometric detection (HPAEC-PAD). The acid hydrolysis  (2M TFA, 120oC, 

1h) was used to essentially release the neutral non-cellulosic sugar residues 

present in the extracted pectin with little or no decomposition of the free 

monosaccharides (Fry, 1988; Popper and Fry, 2004).  

 

 

3.3.3.1 Precipitation of the extracted pectin 
 
The EDTA/phosphate extracted sugars were precipitated from the aqueous 

solution (10 ml) at 4oC for 48 h by the addition of ethanol (40 ml) to a final 

concentration of 80%. Some of sugars formed insoluble droplets that 

remained suspended in the solution and others formed a gel like layer at the 

bottom of the graduated cylinder. The sugar content of the samples during 

preparation was listed in Table 3.1. Most of the pectin was lost through the 

preparation whether during the precipitation, concentration and/or acid 
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hydrolysis, thus the chromatographic analysis of the released neutral sugars 

gave only a qualitative insight onto the component sugars. 

 

Days after sub-
culturing

Sugar content
(µg/ 10 ml pectic 

extracts)

Sugar content after 
TFA hydrolysis

(µg/ml cells)

% recovery of 
extracted pectin

1 1282.43 ± 85.49 207.56 ± 9.73 16 %

2 1143.59 ± 171.25 276.89 ± 32.64 24 %

3 1137.42 ± 167.13 341.89 ± 66.57 29 %

4 1218.35 ± 193.19 348 ± 23.46 28 %

5 1212.08 ± 135.36 222.08 ± 27.87 18 %

6 1321.03 ± 126.46 370.52 ± 42.27 28 %

7 1607.2 ± 128.0 312.1 ± 33.22 19 %
 

Table 3.1 Sugar content of the pectic extracts and TFA hydrolysed 
samples. The table shows mean ± SD for three different 
EDTA/phosphate extracts from three different cultures.  
 
 
 

 

3.3.3.2 Paper chromatography 
 
The pattern of separation of the standard sugars was studied before the 

analysis of the extracted pectin (Fig. 3.5). The standard sugars were divided 

into two batches A and B and developed in a system composed of ethyl 

acetate: pyridine: acetic acid: water (18:3:1:2). Batch A contained a mixture of 

fucose (Fuc), galacturonic acid (GalA), mannose (Man), xylose (Xyl) and 

galactose (Gal). Batch B included glucose (Glu), glucuronic acid (GluA), 

arabinose (Ara), rhamnose (Rha) and 1, 2:3, 5-di-o-isopropyl-idene-α-D 

apiose (Api).  Apiose was not detected on the chromatogram whether stained 

with aniline phthalate or sliver nitrate, possibly because the TFA hydrolysis of 

1, 2:3, 5-Di-O-isopropyl-idene-α-D-apiose did not release the requested 
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apiose or it has a high rate of migration and leaked into the developing 

solution.  A large faint spot of Rha was located on the chromatogram, the rest 

of the included sugars showed different mobilities. In order to study the 

component neutral sugars of the extracted pectin, the optimum separation 

was obtained after running the chromatogram for 36 h using the same solvent 

system (Fig. 3.6) 

 

 
 

Fuc      GalA       Man       Xyl        Gal Api GluA Glu      Ara       Rha

 
 
Fig. 3.5 Paper chromatography of standard sugars. Standard A contains  
5 mg/ml of fucose (Fuc), galacturonic acid (GalA), mannose (Man), 
xylose (Xyl) and galactose (Gal). Standard B contains 5 mg/ml of apiose 
(Api), glucuronic acid (GluA), glucose (Glu), arabinose (Ara) and 
rhamnose (Rha). 
 

The chromatogram obtained revealed the presence of galacturonic (GalA) 

and glucuronic acids (GluA), galactose (Gal), some glucose (Glu), arabinose 

(Ara), and a small portion of xylose (Xyl). Mannose (Man) was not detected in 

the chromatogram. Fucose (Fuc) was included in standard A but was not 

detected on the chromatogram; possibly it has leaked out of the Whatmann 

paper. The chromatogram did not detect the presence of Rha residues as part 

    Standard A                                           Standard B  
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of the neutral sugars, though it is an essential residue in the backbone of 

rhamnogalacturonan I (RG-I). There is an unidentified spot with mobility just 

less than the Rha standard. It could be a modified form of Rha or of another 

sugar. But it seems that most or all of the Rha was lost during the hydrolysis. 

Previous studies reported the EDTA/phosphate co-extraction of Rha and HG 

(Leboeuf et al., 2004). The same carbohydrates are components of the 

pectins obtained from other plant raw materials (Asamizu et al., 1984; Jones 

et al., 2003).  

 

 
         
Fig. 3.6a Paper chromatography of the extracted pectins during day 1, 2, 
3 and 4 after subculturing. The results were reproducible in three 
different EDTA/phosphate pectic extracts of three different cultures.  
 

Days 

Glu A

Glu

Ara 

Rha 

Gal A

Gal

Man

Xyl

Standard           1           2                 3 4               Standard 
A B 
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                                                      Days 
 
           Standard            5                     6                   7                  Standard   
               A                                                                                      B                                               
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.6b Paper chromatography of the extracted pectins during day 5, 6 
and 7 after subculturing. The results were reproducible in three different 
EDTA/phosphate pectic extracts of three different cultures. 
 

 

3.3.3.3 High performance anion exchange chromatography with 
pulsed amperometric detection (HPAEC-PAD). 

 
The HPAEC-PAD chromatogram of sugar hydrolysates of the phosphate 

buffer extracted pectic material showed that the major neutral sugars detected 

were characteristic of pectins and included Gal, Ara, Glu, and Rha, whereas 

Xyl, Man and Fuc represented the minor sugars (Fig. 3.7 and 3.8). Arabinose 

and galactose were not reliably resolved and the mannose peak tended to tail. 
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A comparison of the component sugar residues of pectic fractions extracted 

from Arabidopsis thaliana suspension cultures (Bouton et al., 2002), 

sycamore suspension cells (Ishii et al., 1989), Poplus alba suspension culture 

(Kakegawa et al., 2000), and our suspension cultured Arabidopsis showed the 

presence of Ara, Rha, Xyl, Gal, Glu, Man and Fuc as the main neutral 

component residues of the cell wall pectin matrix.  

 

The results in Fig 3.8 suggest that both Gal and Ara showed opposing 

changes between days 3 to 7. Arabinose content increased by 24% while Gal 

content decreased by 15%. The same period showed an increase in the 

detected Rha while there was no detectable change in the proportions of Glu, 

Xyl and Man. The obtained results suggest an increase in Rha residues 

commonly associated with rhamnogalacturonan-I (RG-I) decorated with 

arabinose side chains. Some type-I arabinogalactan could be synthesized 

during this period. Actively proliferating cells were reported to display large 

amounts of arabinose rich domains as shown in suspensions or callus cells of 

carrot and sugar beet (Kikuchi, 1996 and Majewska-Sawka and Münster 

2004).However in our culture we can not confirm these observations as we 

could not define which of the monosaccharides was/were lost during the 

sample preparation, and thus the results were just interpreted qualitatively.  
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Fig 3.7 The HPAEC-PAD Chromatograms showing the elution of the 
component neutral sugars during the culture cycle. 
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Fig. 3.8 Molar composition of neutral sugars detected on HPAEC-PAD of 
EDTA/ phosphate pectic extracts during culture cycle. The graph shows 
mean ± SD for three different cultures.  
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3.4 Detection of de-esterified and methylesterified 
homogalacturonans during culture cycle 

 
Binding of the different anti-HG and anti RG-I side chains monoclonal 

antibodies to the Arabidopsis extracted pectic polysaccharides, as seen in the 

obtained immuno-profiles, and immuno-labelling of the resin embedded 

sections using immuno-fluorescence and immuno-electron microscopy, were 

used to investigate the structural relationship between the patterns and 

extents of methylesterification of HG epitopes, RG-I side chains and the 

adhesion between cells through the culture cycle.  

 
3.4.1 Binding of monoclonal antibodies JIM7 and JIM5 to the 

extracted HG 
 
The appearance and the diffusion of the 50mM EDTA/ 50mM sodium 

phosphate solubilised polysaccharides, forming two rings away from the point 

of application could be attributed to the relative mobilities of the different 

pectic components within the sample.  Smaller and/or less branched HG 

components migrated further from the point of application while larger and/or 

branched components produced a dot or ring before attaching to the 

nitrocellulose during drying (Willats et al., 1999a and b). The same pattern of 

migration of pectin when applied on nitrocellulose membrane was observed 

using sugar beet extracted pectins (Guillemin et al., 2005) and lime pectins 

(Willats et al., 2000b and 2001c).  

 

The monoclonal antibody JIM7 recognizes highly methylesterified residues 

with adjacent or flanking unesterified GalA (Clausen et al., 2003). It bound 

strongly to the extracted pectins from Arabidopsis cells during the whole 

culture cycle (days 1-7). The signal appeared to decrease slightly between 

days 1 to 4. It increased again during late division and stationary phase. This 

might reflect the continuous production and investment of the cell in the 

already established and newly deposited and formed cell walls (Fig. 3.9).  

 
Samples of the same extracts were also probed with JIM5 (Fig 3.9) that 

bound strongly to methylesterified GalA residues up to a level of about 40% 
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degree of esterification (Willats, 2001c).  The EDTA extracted pectins 

containing the epitope appeared to be present through the culture cycle 

except on day 4 during the exponential phase of culture growth. The results 

showed that the amount of chelator extracted HG with a low degree of 

methylation was much less than the highly methylesterified HG detected by 

JIM7.  The JIM5 reactive epitope was recognized in both the unbranched and 

highly branched fractions of pectin.  

 

Days Standard pectin 
DM (%)

34     69     891       2       3       4       5      6       7

0.2 µg

1.0 µg

JIM5

0.5μg

1.0 µg

JIM7

 
Fig. 3.9 Immuno-dot assay of monoclonal antibody JIM7 and JIM5 
binding to the EDTA solubilised pectins during the culture cycle. The 
results were reproducible in two phosphate/EDTA pectic extracts of two 
different cultures. 
 

 

3.4.2 Immuno-labelling of Arabidopsis cell walls with 
monoclonal antibody JIM7  

 
The JIM7 epitope was abundantly distributed throughout the primary cell walls 

and middle lamellae of resin embedded Arabidopsis cells during the culture 

cycle (Fig. 3.10). Images representing the different phases of the culture cycle 

(day 1- lag/early exponential phase, day 3- mid exponential, day 5-late 

exponential and day 7- stationary phase) are shown to indicate the changes 
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of the recognized epitope.  The older mature cell walls (white arrow) exhibited 

a stronger labelling compared to newly formed cell walls (yellow arrow).  In 

day 7, the samples showed some patchy separated signals (pink arrow), 

maybe reflecting changes in the cell walls as the cells were entering the 

stationary phase. All control sections remained unlabelled when the primary 

antibodies were omitted. 
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Day 1 Day 3

 
 

Day 5 Day 7

 
 

                                                                 

Day 7

 

 Fig. 3.10 Immunolocalization of 
JIM7 epitopes in resin embedded 
sections of wild type Arabidopsis 
cells in days 1, 3, 5, and 7. 
Colored arrows were used to 
indicate strength of the signal; 
yellow to label newly formed 
walls, white to label mature walls 
and pink to indicate the patchy 
pattern of labelling. Black dots 
appearing in day 7 image are 
artefacts due to gain in software. 
Scale bar represents 10 µm. 
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The labelling with gold-conjugated secondary antibody demonstrated the 

presence of the epitope in the primary cell walls mainly facing the plasma 

membrane of day 1 sections. It was absent from the middle lamellae except at 

cell junctions (Fig. 3.11). The internally located gold dots are possibly 

indicating the active biosynthesis of highly methylesterified pectins 

transported in vesicles. As the culture proceeded through the exponential 

phase, the gold particles were distributed throughout the different wall zones 

including primary walls, middle lamellae and cellular junctions (Fig 3.12). In 

day 7, during the stationary phase, the distribution of JIM7 highly esterified 

HG was uneven and patchy around the same cell, possibly due to the loss of 

active epitope as a result of pectin methylesterase activity (fig 3.13). This 

result is in agreement with the reduction in the degree of methylesters 

released upon saponification of the EDTA/phosphate extracted pectin.  

Day 1 Day 1

PW

ML

PW

PW

ML

CJPW

 
Fig. 3.11 TEM images showing immunogold labelling of resin embedded 
sections of day 1 using monoclonal antibody JIM7. Yellow arrows show 
the JIM7 recognized epitopes. Abbreviations; Primary cell wall (PW), 
middle lamella (ML) and cellular junction (CJ).  Scale bar represents 10 
µm. 
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Fig. 3.12 TEM images showing immunogold labelling of resin embedded 
sections of days 3 and 5 using monoclonal antibody JIM7. 
Abbreviations; Primary cell wall (PW), middle lamella (ML) and cellular 
junction (CJ). Scale bar represents 10 µm. 
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DAY 7 DAY 7

PW

ML

PW

PW

ML

PW

 
Fig. 3.13 TEM images showing immunogold labelling of resin embedded 
sections of day 7 using monoclonal antibody JIM7. Yellow arrows show 
the JIM7 recognized epitopes. Abbreviations; Primary cell wall (PW), 
middle lamella (ML) and cellular junction (CJ). Scale bar represents 10 
µm. 
 
 

4.4.3 Immuno-Labelling of Arabidopsis cell walls with 
monoclonal antibody JIM5  

 
The JIM5 antibody binding to the resin embedded sections was visualized 

with FTIC and gold conjugated secondary antibodies (Fig3.14, 3.15). The 

immuno-fluorescent labelling with JIM5 indicated that HG with a low DM was 

less abundant in the cells of Arabidopsis cells (Fig 3.14). JIM5 HG epitope 

seemed to be restricted to some cells and cell wall domains, it occurred at 

lower levels with a weaker signal compared to JIM7 on the surfaces of cells 

during the different stages of culture cycle. The JIM5 epitope was unequally 

distributed between the different cells. A stronger signal existed at the mature 

cell wall especially between the neighbouring cells (Fig 3.14, white 

arrowhead). A weaker signal was obtained on the newly formed cells (Fig 

3.14, yellow arrowhead).  
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The immunogold labelling of low esterified pectins with JIM5 antibody showed 

few gold particles confined to the middle lamellae and the cell junctions during 

the different phases of growth (Fig. 3.15 yellow arrowhead). No JIM5 labelling 

was demonstrated in the primary cell walls at any of the studied phases. This 

observation fits with the immuno-profiles and immunofluorescent labelling that 

indicated that JIM5 epitope seemed to be less abundant than JIM7 in the 

walls of Arabidopsis. 

 

Day 3Day 1

 
 

Day 7Day 5

 
Fig. 3.14 Immunolocalization of JIM5 epitopes in resin embedded 
sections of wild type Arabidopsis cells in days 1, 3, 5 and 7.  Colored 
arrows were used to indicate strength of the signal; yellow to label 
newly formed walls and white to label mature walls. Scale bar represents 
10 µm. 
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Fig. 3.15 Immunogold labelling of JIM5 recognized HG in wild type 
Arabidopsis resin embedded cells in days 1, 3, 5 and 7 after 
subculturing. Yellow arrows are used to label the JIM5 recognized 
epitopes. Abbreviations: primary wall (PW), middle lamella (ML) and 
cellular junction (CJ). Scale bar represents 10 µm. 
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3.4.4 Immuno-labelling of Arabidopsis cell walls with 
monoclonal antibodies LM7 and 2F4 

 

LM7 is a monoclonal antibody that recognizes randomly methylated HG with a 

non blockwise distribution.  The epitopes recognized by LM7 were not 

detected in the immunoprofiles of the EDTA/phosphate solubilised pectin 

samples nor in the resin embedded sections labelled with the antibody.  

The absence of the LM7 epitope could be attributed to the instability of the 

epitope, which was reported to be extremely labile and tends to be lost during 

sample freeze/thawing and processing (Willats et al., 2001c). Labelling of the 

glutaraldehyde fixed un-embedded cells was not easy due to the 

autofluorescence of the chlorophyll inside the cells and the clumpy nature of 

the culture (results not shown).   

 

The monoclonal 2F4 antibody recognizes the calcium induced egg box dimers 

of nine acidic HG residues (Liners and Van Cutsem 1992; Willats et al., 

2000b). The 2F4 labelling pattern of the embedded cells was examined by 

immunofluorescence and immuno-electron microscopy in middle lamellae and 

junction zones. The 2F4 was not detected in the embedded cells possibly 

reflecting the absence of the Ca2+ bridges which apparently are not playing a 

strong role in the adhesion between cells in clusters (data not shown).  

 

 

3.4.5 De-esterification of resin embedded cells 
 
The methylesters localized on the HG of the cell walls of resin embedded cells 

were removed through the treatment of sections with pectin methylesterase 

(oPME) or 1M NaOH.  Pectin methylesterase isolated from orange peel 

(oPME) has been used in previous research works to modify to some extent 

the degree and patterns of HG esterification (Willats et al., 2001b; Leboeuf et 

al., 2005; Guillemin et al., 2005; Sobry et al., 2005). During the culture cycle, 

the JIM7 epitope was abundant and distributed in all the primary cell walls of 

Arabidopsis cells (fig. 3.10, 3.11 and 3.12). After the alkali treatment, no 

labelling was found in the cell walls using JIM7 or JIM5, while labelling with 
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JIM7 after the hydrolysis of methylesters using oPME was reduced 

suggesting that the epitope recognized by JIM7 was no longer present in the 

treated sections (Fig 3.16). In contrast, JIM5 epitope was less abundant and 

not evenly distributed through the primary cell walls of wild type Arabidopsis 

(Fig.3.14 and 3.15), and yet labelling the cells with JIM5 did not show an 

increase in the level of unmethylated GalA after treating the sections with 

oPME (results not shown).  The alkali seemed to have a stronger 

deesterification effect than oPME, possibly because NaOH can have a better 

access to pectin deep within the resin and oPMEs are large protein molecules 

that can only access the surface of the sections. These results indicate that 

the differences in labelling observed in the immersion labelling and electron 

microscopy experiments were not due merely to differences in the 

permeability to antibody probes but reflected the abundance of the epitope 

throughout the cell walls of the suspension cultured cells.  
 

a) b)

 

                                                                   

c)

 
 
 

Fig. 3.16 Labelling of cells after 
saponification or oPME 
hydrolysis of methylesters of the 
cell walls of resin embedded 
cells at Day 4; a) cells labelled 
with JIM7 before treatment, b) 
cells labelled with Jim7 after 
oPME treatment, c) cells labelled 
with JIM7 after NaOH treatment. 
Yellow arrows labels the JIM7 
recognized epitope. The colour 
inside the cells in b and c is an 
artefact due to gain in software. 
Scale bar represent 10 µm 
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3.5 Distribution of rhamnogalacturonan I-associated 
epitopes  

 
Anti galactan and anti arabinan probes, LM5 and LM6 respectively, were used 

to characterize the occurrence of RG-I in the extracted pectin and in situ 

localization of these epitopes in the suspension cultured Arabidopsis cells. 

The RG-I associated (1→4)-ß-D-galactan and (1→5)-α-Arabinan  epitopes 

are common features of the side chains attached to rhamnose residues in the 

backbone of RG-I. The citrus pectic polysaccharides with different degrees of 

esterification were used as standards as they were reported to bind to these 

two epitopes (Jones et al., 1997; Willats et al., 1998). All cell walls of 

embedded cells remained unlabelled when the primary monoclonal antibodies 

were omitted. 

 

The LM5 antibody was used to probe the presence of galactan side chains. It 

bound to the extracted pectin during all the days of the culture cycle indicating 

that these pectins contain at least four consecutive units of (1→4)-ß-linked 

Gal (Jones et al, 1997) (Fig. 3.15). The epitope was less abundant than the 

JIM7 epitope, and was more concentrated in the central dots as part of the 

large highly branched pectins. The LM5 detected epitopes could not be 

detected in the resin embedded sections using light microscopy. In previous 

studies, the recognition of LM5 binding (1→4)-ß- Gal was related to the 

differentiation and elongation of cells (Willats et al., 1999b; McCartney, et al., 

2003). The restricted occurrence of (1→4)-ß-D-galactan epitope at the 

surface of wild type Arabidopsis roots appears to be a molecular marker for 

rapid cell elongation. (McCartney et al., 2003 

    

The monoclonal antibody LM6 recognises five residues of (1→5)- α-linked 

arabinose residues (Willats et al., 1998). LM6 bound strongly to the two forms 

of extracted pectins; the highly branched immobile part showing at the central 

spot in comparison with the small less branched mobile fraction, during all the 

days of the culture cycle (Fig. 3.17). This result indicates that (1→5)-α-linked 

Ara  sequences are more abundant than the LM5 recognized epitope in the 

EDTA/phosphate extracted pectin fraction of the Arabidopsis suspension 
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cells.  This epitope is frequently associated with the primary cell walls of 

young proliferating cells (Willats et al., 1999b; McCartney et al., 2000). Large 

amounts of arabinose rich domains were detected in carrot meristems (Willats 

et al., 1999b) and suspension and callus cells of carrot and sugar beet 

(Kikuchi et al., 1996; Majewska-Sawka and Műnster,  2003). 

 

Standard pectin with 
different methylation 

(%)
34        69       89

Day
1          2          3          4           5         6        7

LM6

1.0 µg

0.5 µg

1.0 µg

0.5 µg

LM5

 
 
Fig. 3.17 Immuno-dot assay of monoclonal antibody LM6 and LM5 
binding to the extracted pectins during culture cycle. The results were 
reproducible in two phosphate/EDTA pectic extracts of two different 
cultures. 
 
 
 
During the culture cycle, the arabinan recognized by LM6, like the highly 

methylesterified HG, was abundant throughout the primary cell walls of LR 

White resin embedded Arabidopsis cells. No differences were observed in the 

abundance of LM6 between the different days. However, newly formed cell 

walls contained a lower level of the epitope (Fig. 3.18). 
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Day 5

Day 3Day 1

Day 7

 
Fig. 3.18 Immunolocalization of LM6 epitopes in resin embedded 
sections of wild type Arabidopsis cells in days 1, 3, 5, and 7. Colored 
arrows were used to indicate strength of the signal; yellow to label 
newly formed walls and white to label mature walls. Scale bar represents 
10 µm. 
 

 

3.6 Discussion 
 

The growth kinetics of Arabidopsis thaliana cell suspensions following their 

subculture into fresh medium could be divided into two reproducible phases, 

namely an exponential cell proliferation phase in days 2 to 7 and a stationary 

phase after day 7.There may have been a lag phase during days 0-2. The 

increase in packed cell volume (PCV) during the period of exponential phase 

could be associated with a high rate of cell division, whereas the stationary 

phase  was marked with a constant PCV, as a result of a reduction in the rate 

of cell division, as a consequence of the depletion of nutrient media and 

accumulation of metabolic by-products. The cell suspension culture used was 

composed of single cells and aggregates of less than 1mm in diameter. Very 
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few intercellular spaces located at the tricellular junctions of cells could be 

seen microscopically.  This could be related to the lack of the turgor 

generated tensile forces that tend to separate cells at the tricellular junctions 

(Jarvis et al., 2003).  

 

During the successive phases of culture cycle, as a result of cell division and 

growth, numerous new primary cell wall components are expected to 

synthesized, assembled, modified, and turned over, The primary cell wall is 

composed of cellulose, hemicellulose, pectin, and structural protein (Brett and 

Waldron, 1996). Pectic polysaccharides, especially polymers of HG, are 

enriched in intercellular matrices (middle lamellae) and are thought to play a 

key role in cell-cell adhesion (Willats et al. 2001a and b; Jarvis et al., 2003; 

Vincken et al. 2003).  The presence of these cell wall components was 

reported in the suspension cultured cells of Arabidopsis (Leboeuf, et al., 2005) 

and sycamore (Keegstra et al., 1973).  

 

The total amounts of the extracted sugars using a system of 

phosphate/chelator buffer did not show a marked change during the different 

days of our cultures. The sugar composition of the extracts was analysed 

using paper chromatography, high performance anion exchange 

chromatography with pulsed pad amperometric detection (HPEAC-PAD) and 

colorimetric assays. The pectic extract was precipitated by adding ethanol to a 

ratio of 80%, concentrated in vacuum and acid hydrolysed at 120oC for 1h. 

The percentage recovery of sugar was less than 10% of the initial sugar 

content extracted from the alcohol insoluble cellular residues, and thus the 

obtained results were analysed to provide a qualitative view of the changes of 

the composing monosaccharides during the culture cycle.  

 

The chelator/phosphate soluble fraction of Paul’s scarlet rose (Wallner and 

Nevins, 1974), sycamore (Ishii et al., 1989), soybean (Ishikawa et al., 2000), 

apple pectins (Zsivanovits, et al., 2004), Myrothamnus flabellifolius (Moore et 

al., 2006) and Arabidopsis suspension cultured cells (Manfield et al., 2004; 

Leboeuf et al., 2005) possessed a pectic character as shown by high GalA 

content with additional sugars as galactose, arabinose, rhamnose, fucose, 
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mannose, xylose and glucuronic acid. The chelator phosphate buffer 

solubilises the calcium associated and highly methylesterified 

homogalacturonans (HG) with some neutral sugars attached to 

rhamnogalacturonan (Willats, et al., 2001a; Garcia-Angulo, 2006). The 

primary cell walls of Arabidopsis leaves were reported to be remarkably rich in 

phosphate buffer soluble pectic polymers. This observation suggests that 

much of the pectic components of Arabidopsis leaves are relatively weakly 

held in the wall network (Zablackis et al., 1995). 

 

The UA assay used responds to both glucuronic and galacturonic acids 

(Blumenkrantz and Asboe-Hansen, 1973). The major uronic acid present in 

many of the tested land plants was GalA (Wallner and Nevins, 1974; Ishikawa 

et al., 2000; Popper and Fry, 2004; Abdel-Massih et al., 2007), and thus the 

UA assay is used to reflect the relative content of GalA; a major component of 

HG. The relative overall amount of the EDTA/phosphate extracted sugars 

expressed as µg sugars/ ml cells did not change significantly during the 

culture cycle. The GalA fraction constituted over half of the pectic extract and 

its quantity did not change prominently during the 7 days following 

subculturing. According to the observed results, the pectic matrix could be 

undergoing some structural modifications although there was no considerable 

change in the number of uronic acid residues.   

 

The presence of GalA, Rha, Gal and Ara in the EDTA/phosphate solubilised 

sugars suggested the release of pectins with HG and RG-1. The uronic acid 

content, as determined by the Blumenkrantz and Asboe-Hansen (1973) 

method, arabinose and galactose, as shown in PC and HPAEC –PAD 

chromatograms, were the major components of the EDTA/phosphate soluble 

extracts, while rhamnose, glucose, xylose and fucose are present in minor 

quantities. The presence of arabinose and galactose could be attributed to the 

presence of arabinans, galactans and arabinogalactans that are ubiquitous 

constituents of the side chains of RG-I in the primary walls of dicotyledonous 

species. The detection of glucose and xylose could be caused by the co-

extraction of some xyloglucan and/or xylogalacturonan covalently linked to 

pectin. Femenia et al. (1999) and Thompson and Fry (2000) provided 
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evidence for covalent linkages between pectin and xyloglucan in cell walls of 

cauliflower stems and rose suspension cultures, respectively. The covalent 

linkage between xyloglucan and pectin was proposed to be formed via 

arabinan side chains during the biosynthesis of the hemicellulosic and pectic 

matrices in the Golgi apparatus (Brett et al., 2005). In Arabidopsis roots and 

carrot suspension cultures, the presence of xylogalacturonan was restricted to 

the loosely attached cells of root caps and free surfaces of cell clusters, 

respectively (Willats et al., 2004). In another study, small quantities of 

xylogalacturonan were reported to be part of the pectic polysaccharides of 

Arabidopsis stems, young and mature leaves (Zandleven et al., 2007). Some 

of the glucose fraction could be coming from callose, a major component of 

the forming cell plates during cytokinesis (Minorsky, 2002). The small 

quantities of mannose (Man) detected in the EDTA/phosphate extracts could 

be related to the hemicellulosic galactoglucomannans, which have been 

shown to be synthesized by mannan synthase in the Golgi apparatus of 

Arabidopsis callus cells (Hanford et al., 2003). Fucose is detected in small 

quantities and possibly is a xyloglucan linked residue (Zablackis et al, 1995; 

Kakegawa et al., 2000). The system used could not detect the presence of 

apiose residues in tested pectic extracts 

 

The degree of methylesterification of the EDTA/phosphate extracts ranged 

from 40 to 60%. Most of the increase was recorded towards the end of the 

exponential phase at day 5 and 6. The increase in the degree of methylation 

between days 1 and 6, even though the total sugars and GA content didn’t 

change markedly during the days 1 to 6, reflects the continuous investment of 

cells in the primary cell walls with newly synthesized highly methylated HG. 

This observation is in agreement with previous studies of different suspension 

cultured cells. The degree of methylesterification of suspension cultured cells 

of tobacco, flax and maize increased during the phase of cell division and 

elongation, and decreased during the stationary phase (Kim and Carpita, 

1992; Schaumann et al., 1993; McCann et al., 1994).  

 

 The increase in hypocotyl length of Arabidopsis was accompanied by an 

increase in the degree of methylation (Derbyshire et al, 2007). During the 



 76

stationary phase at day 7, the percentage of methylester groups detected on 

the extracted HG was less than 40%, possibly reflecting an increase in the 

activity of pectin methylesterase. Leboeuf et al., 2005 reported a reduction in 

the cluster size and cell-cell adhesion of wild type Arabidopsis as the culture 

entered the stationary phase. In order to demonstrate and emphasize the 

effect of pectin methylesterase hydrolysis and saponification on the HG of 

Arabidopsis cells, day 4 harvested LR White resin embedded cells were 

subjected to the two treatments prior to immunolabelling with JIM7, which 

recognizes the highly esterified GalA backbone of pectin (Clausen et al., 

2003). The dilute alkali treatment at 4oC for 1 h removed the JIM7 epitopes, 

while the orange pectin methylesterase (oPME) resulted in a weaker dot like 

pattern of labelling. The JIM5 labelling of low-methyl HG disappeared after the 

NaOH treatment and did not increase significantly after the treatment with 

oPME. The results obtained strongly suggest that methylesters are removed 

more completely by saponification and the action of oPME seems to be more 

selective and recognizes specific patterns of methylesterification. 

 

The immunolabelling results supported the biochemical data and indicated the 

high methylester content of pectin in the Arabidopsis suspension cells. The 

use of the currently available monoclonal antibody probes directed against a 

range of polysaccharides has proven to be a valuable, rapid and reliable tool 

for studies of the dynamics of cell wall architecture and cell development 

(Knox, 1997; Willats, 2000a). JIM5 and JIM7 are rat monoclonal antibodies 

that recognize different patterns of methylesterification on HG; JIM7 binds to a 

HG with a high degree of methylesterified residues ((Knox, 1997; Willats, 

2000a, Clausen et al., 2003), whereas JIM5 preferentially recognizes a HG 

backbone with a low degree of methylesterified residues (Willats et al., 

2001b). The abundance of JIM7 detected highly methylesterified GalA in 

Arabidopsis suspension cultured cells has been reported earlier by Leboeuf et 

al (2005) and Manfield et al. (2004). In general, the pectic polysaccharides 

present in the walls of young or actively growing plant cells were found to be 

highly methylesterified whereas walls of mature cells contain strongly acidic 

pectin (Satoh, 1998). The JIM7 epitope was detected in the primary cell walls 

and cellular junctions of day 1 cells; however, it was not seen in the middle 
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lamellae.  During the exponential phase, the epitope was uniformly distributed 

over the primary cell walls, middle lamellae and cellular junctions.  Mature cell 

walls exhibited a stronger labelling signal compared with newly formed cell 

walls. This observation could be attributed to the biosynthesis and deposition 

of highly methylesterified homogalacturonans on the sides of the cell walls of 

daughter cells, after the completion of cytokinesis and separation between 

dividing cells (Vincken et al., 2003). In a study of Golgi apparati of suspension 

cultured sycamore maple (Acer pseudoplantus L.) cells, JIM7 antibodies 

strongly labelled the medial and trans Golgi cisternae suggesting that in plant 

cells the methylesterification of the carboxyl groups of the GA residues occurs 

in the medial and trans cisternae of Golgi bodies (Zhang and Staehlin, 1992). 

Immunocytolabelling of pea stem cortical cells indicated that low 

methylesterified or deesterified HG is often localized to middle lamellae, cell 

corners and around air spaces whereas more highly esterified pectins were 

distributed throughout the cell wall.  At day 7, as the cells were entering the 

stationary phase, the JIM7 labelling was uneven around the cells, possibly 

reflecting modifications in the degree of methylesterification as a result of the 

action of pectin methylesterase. This observation coincides with the reduction 

in the degree of methylesterification of the EDTA/phosphate HG extracts. 

 

 During the culture cycle the JIM5 HG epitope was restricted to some cells 

and cell wall domains as illustrated in Fig. 3.13. No considerable changes 

could be detected with light microscopy. Few immunogold labelled JIM5 

epitopes were recognized in the middle lamellae of the cells during the 

different phases of culture cycle. No labelling was seen in the primary cell 

walls.  In carrot cultured cells, highly acidic pectin and highly methylesterified 

pectin were reported to be present in the middle lamella and primary cell 

walls, respectively (Liners and Cutsem, 1992). A homogalacturonan epitope 

recognized by JIM5 was detected in the cell walls of carrot suspension culture 

cells (Willats et al., 1999b), pea root apex (Willats et al., 2004), tomato fruit 

particularly in the locular jelly-like cavity surrounding the seeds (Jones et al. 

1997, Steele et al., 1997), middle lamella and cell junctions of young and 

mature flax fibers (His et al., 2001) and in the endocytic vesicles involved in 

the turnover of plasma membrane proteins and cell wall pectins involved in 
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the initiation and formation of the cell plates of dividing cells of Arabidopsis 

and maize root cells and in tobacco BY-2 suspension cells (Dhonukshe et al., 

2006) . 

 

The homogalacturonans reactive to the 2F4 antibody that binds specifically to 

the calcium dimerized sequence of at least nine consecutive HG residues 

(Liners et al., 1992; Willats et al., 2001a), and LM7 antibody that recognizes 

non-blockwise partially methylesterified HG (Clausen, et al., 2003), were not 

detected in the resin embedded cell sections. The absence of Ca2+ bound 

matrices detected by the antibody 2F4 could be attributed to the scarcity of 

available calcium ions in the culturing medium. In pea stem cortical 

parenchyma, the LM7 epitope was located and restricted to the corners of the 

cell wall linings of the intercellular spaces at the point of cell to cell contact. In 

outer thickened cell walls of epidermal cells, the LM7 epitope occurred in 

discrete regions that were associated with cell junctions and maybe involved 

in maintaining the integrity of the outer cell layer (Willats et al, 2001b).  

 

A comparison between the immunoprofiles suggests the presence of the HG 

epitopes recognized by JIM5 and JIM7 in both of the two forms of pectins; that 

is the large branched and smaller un-branched pectins. A large proportion of 

the extracted HG is methylesterified.  A slight increase in its levels was 

noticed during the exponential and stationary phase. The binding of JIM5 was 

weaker than JIM7 reflecting that much of the chelator extracted pectins was 

highly methylesterified HG. The recognition level of JIM5 epitope reduced 

during the 3 days after subculturing, it disappeared during day 4 and picked 

up again towards the end of the exponential phase and during the stationary 

phase. The observed changes are possibly reflecting some modifications in 

the degrees of methylation of the HG backbone during those phases. 

 
The RG-I associated LM5 and LM6 monoclonal antibodies recognise four 

residues of (1→4)-ß-D galactan and five residues of (1→5)-α-L arabinan, 

respectively (Jones et al., 1997 and Willats, et al. 1998). The immunodot 

assay (IDA) revealed that the LM6 (1→5)-α-arabinan epitope was abundant in 

the EDTA/phosphate extracts during the culture cycle. The immunolabelling of 
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embedded sections showed that the LM6 epitope was more abundant in the 

mature primary cell walls. Differences in the labelling intensity between the old 

and newly deposited primary cell walls may reflect differences in the degree of 

RG-I branching. Presence of arabinan was reported to contribute to the 

elasticity and flexibility of the cell wall (Renard and Jarvis, 1999).  Arabinan in 

sugar beet can participate in pectin cross link via oxidative coupling of ferulic 

acid esterifying the arabinose and thus playing a direct role in the control of 

cell wall extensibility and mechanical properties (Guillemin et al., 2005). 
Ferulic acid dimers are thought to be involved in cell adhesion (Waldron et al., 

1997).  

 

The immunodot assay (IDA) of chelator/phosphate buffer extract probed with 

monoclonal antibody LM5 indicated the presence of (1→4)-β-galactan in small 

quantities during the different stages of the culture cycle. The failure of 

labelling of the embedded sections using LM5 could be attributed to the loss 

of the epitope during the processing of the sample  Actively proliferating cells 

usually have low  detectable amounts of LM5 recognizable epitopes, but 

instead display large amounts of LM6 reactive arabinan rich domains, as 

shown in both of the carrot (Willats et al., 1999b) and Arabidopsis (McCartney 

et al., 2003) root meristems, and suspension and callus cells of carrot, Poplus 

and sugar beet, (Kikuchi et al., 1996; Satoh, 1998; Willats et al., 1999b;  

Kakegawa et al., 2000; Majewska-Sawka and Munster, 2003).  

 

The results obtained indicate that although the Ca2+ bound matrices seem to 

be an important factor in cell adhesion in many plant systems, the abundance 

of epitopes  recognized by JIM7, along with the limited labelling of JIM5 and 

the absence of 2F4 reactive epitopes, rules out any significant contribution of 

calcium-pectate gels to the adhesion between the Arabidopsis suspension 

cells, and suggests that pectins with a level of esterification higher than 50% 

are probably making up the HG fraction of the cell wall.   

 

The highly methylesterified HG rich pectic network abundant in middle 

lamellae and cellular junctions could be playing a role in the adhesion 
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between cells possibly by forming hydrogen bridges and hydrophobic forces 

between methoxy groups. Highly methylesterified pectins are thought to be 

involved in cell-cell adhesion in many plant species. For instance they 

seemed to be responsible for the tight cell adhesion between Sinapis alba 

shoot meristematic cells (Sobry et al., 2005). The high levels of arabinan 

residues as side chains of RG1 and wall arabinogalactan proteins (AGP) have 

been proposed to have a role in cell adhesion (Johnson et al., 2003; Leboeuf 

et al., 2004). This observation is in  agreement with the reported results using 

tobacco wild type and nolac H14 (non-organogenic callus) mutant in which the 

loose intercellular attachment between the cells was related to low levels of 

arabinan residues in the side chains of pectic extracts (Iwai et al., 2001). 

 

As a conclusion, the analysis of the buffer/chelator extracted pectin indicated 

the abundance of highly methylated HGs that are possibly through 

hydrophobic interactions, playing a role in the gelling of the pectin and the 

maintenance of intercellular adhesion between the cells.  The pectic network 

of Arabidopsis cell walls was rich in Ara reflecting the proliferative state of the 

cultures. The other neutral sugars mainly Rha, Xyl, Gal, GluA, and Man are 

typical components of the pectic network of dicot plants. For future work, the 

use of a sequential extraction of all the pectin in the cell wall will give a better 

insight on the changes of the pectic network during the culture cycle. 
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Chapter 4 
 
 

Abundance of pectin esterase transcripts in 
synchronized Arabidopsis cultures across the 

cell cycle 
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4.1 Introduction 
 
Most of the photosynthetically fixed carbon is incorporated into cell wall 

assembly, making plant cell walls the most abundant source of terrestrial 

biomass and renewable energy (Coutinho et al., 2003; Reiter, 2002). The 

ability of plants to detect and respond to changes in their cell walls, and the 

cross talk between wall synthesizing and modifying mechanisms is organized 

through an array of enzymes, many of which have been identified. Based on 

genome sequencing, plants contain many more carbohydrate active enzymes 

than other types of organisms. Approximately 10% of the cell wall mass is 

made of proteins that are encoded by large gene families (Kwon et al., 2005). 

Pectin methylesterases (PMEs, EC 3.1.1.11) are enzymes belonging to family 

CE8 which is one out of 14 families classified within the Carbohydrate 

esterase category of the CAZY database (http://www.cazy.org/fam/CE8.html). 

Within a given sequence family, three dimensional (3D) structure fold and 

catalytic mechanisms are conserved. PMEs are involved in the demethyl-

esterification of pectin, producing methanol and a carboxylic acid moiety on 

the pectin polymer (Wojciechowski and Fall, 1996). 

 

The deesterification of pectins catalysed by PMEs leads to a complete 

reorganization of the cell wall in several ways. It contributes to the stiffening 

and rigidity of the cell wall by producing blocks of unesterified carboxyl groups 

that can associate with other HGA chains by calcium cross links, forming gel 

like matrices (Jarvis, 1984; Rihouey et al., 1995b;  Willats et al., 2001a, b and 

c), The mechanical properties and porosity of these gels depend strongly on 

whether the esterification pattern is random (non-block) or linear (block wise) 

giving rise to blocks of free carboxyl groups (Willats et al., 2001c, Micheli, 

2001). The strength of the interaction between Ca2+ and pectin increases with 

decreasing average degree of pectin methylestrification and increased length 

of the unsubstituted galacturonan back bone. The PME demethylesterfication 

of homogalacturonan releases protons that reduce the apoplasmic pH and 

promote the action of expansins (Carpita et al., 1996) and hydrolases, such 

as polygalacturonases and pectin lyases (Michei et al., 2001; Lefever et al., 
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2004; Arancibia and Motsenbocker, 2006) that will degrade the pectic matrix, 

contributing to the loosening and expansion of the cell wall. The treatment of 

epidermal strips of Vicia faba possessing a type I cell wall, and those of 

Commelina communis and Zea mays possessing a type II wall, with PME and 

endopolygalacturonase caused an increase in the stomatal aperture on 

opening despite the fact that the three species are representatives of different 

cell wall types, reflecting a conserved functional role of pectins in guard cells 

(Jones et al., 2005).  

 

PMEs are found in all species of higher plants, phytopathogenic bacteria and 

fungi and in symbiotic microorganisms (Raiola et al, 2004; Lievens et al., 

2002). PMEs were reported to be involved in important developmental 

processes such as Arabidopsis silique development (Louvet, et al., 2006), fruit 

maturation in tomato (Eriksson et al., 2004), Phaseolus (Stolle-Smits et al., 

1999), Strawberries (Castillejo et al., 2004), grape berries (Barnavon  et al., 

2001), and banana (Nguyen et al., 2002)., microsporogenesis (Francis et al., 

2006), pollen tube growth (Jiang et al., 2005; Tian et al., 2006), breaking seed 

dormancy and germination (Ren and Kermode, 2000), hypocotyl elongation 

(Al-Qsous et al., 2004), root development (Wen et al., 1999) and defence 

mechanisms against pathogens (Ridely et al., 2001). Recently, it has been 

proposed that the structural plant component pectin could contribute to up to 

40% of the total global greenhouse gas methane (CH4) emissions as a result 

the action of PMEs on the methyl groups (Keppler et al., 2006; Schiermeier, 

2006), followed by reduction of methanol to methane. 

 

Pectin methylesterase (PME) genes occur in multigene families and encode 

isoforms differing in molecular weight, isoelectric point (pI) and biochemical 

properties (Carbonell et al., 2006). It is often mentioned that plant PMEs with 

basic pI , which represent most isoforms, act in block wise fashion, while plant 

PMEs with an acidic pI act in a non block wise  more random fashion (Micheli, 

2001; Bosch et al., 2005), some PME isoforms are either constitutively 

expressed or differentially regulated in response to specific developmental or 

environmental cues (Manfield et al., 2004). In tomato plants, multiple isoforms 

of PME were reported to be either  tissue specific or ubiquitously expressed 
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(Gaffé et al., 1994 and 1997). In muro, the demethylation of pectins is 

spatially and temporally regulated according to the cell type and the 

developmental stage of organs.   

 

The sequencing of the Arabidopsis genome has emphasized the massive 

genetic investment that underpins pectin biosynthesis and modification within 

the primary cell wall matrix (Arabidopsis Genome Initiative 2000). This plant is 

known to possess around 25498 genes of which > 3800 genes, ~15% of its 

genome, are likely to participate in cell wall biogenesis, modification, 

assembly and disassembly during cell development (Carpita et al., 2001; 

Yokoyama and Nishitani, 2004). It is been reported that 66 PME-related 

genes occur and are fairly scattered within the Arabidopsis genome (TAIR, 

http://www.arabidopsis.org).  

 

PME genes can be divided into type I and type II genes depending on the 

expression of pre and pro proteins encoded by the PME genes and 

considered to be signatures of PME (Micheli, 2001). Type I genes contain five 

or six introns and a short or nonexistent pro region, and type II genes contain 

only two or three introns and a long pro region, The pre N-terminal region or 

signal peptide is required for protein targeting to the endoplasmic reticulum-

Golgi endomembrane system for processing and secretion (Dorokhov et al., 

2006). The pro region consists of a large peptide made of around 250 amino 

acids and is cleaved off at some point in the secretory pathway. The pro 

region could be acting as an inhibitor or intramolecular chaperone which could 

either prevent the correct folding of PME or directly inhibit the enzyme activity 

to prevent the premature demethylation of pectins before their insertion in the 

cell wall (Micheli et al., 2001; Di Matteo et al., 2005; Bosch et al., 2005). About 

65% the PME isoforms present in the Arabidopsis genome encode a pro-

region with a predicted molecular mass of 15-25 kDa and acidic to alkaline pIs 

(Pelloux et al., 2007). Numerous studies have shown that the pro region 

shows similarities with PME inhibitors (Bosch et al., 2005; Louvet, et al., 

2006). PME proteins of bacteria and fungi do not contain any pro region 

(Markovic and Janecek 2004) 
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To date, the structures of only two PMEs, one from carrot (Johansson et al., 

2002) and one from the bacterium Erwinia chrysanthemi (the agent of the soft 

rot of plants (Jenkins et al., 2001)) and one PMEI from Arabidopsis (At-PMEI, 

Hothorn et al., 2004b) have been resolved.  AtPMEI-1 and AtPMEI-2 are two 

genes encoding functional inhibitors of pectin methylesterase in wild type 

Arabidopsis that showed similarities to PME pro regions (Richard et al., 1994; 

Wolf et al., 2003; Giovane et al., 2004 and Raiola et al., 2004). Previous 

studies reported the isolation and characterization of AtPME1 (At1g53840), 

AtPME2 (At1g53830) and AtPME3 (At3g14310) (Richard et al., 1994 and 

1996; Micheli et al., 1998). The exogenous foliar application of methanol to 

the growing Arabidopsis seedlings induced the expression of AtPME1 isoform 

and promoted the growth of the leaves (Ramírez et al., 2006). AtPME1 was 

identified as an Arabidopsis pollen specific PME isoform (Tian et al., 2006). 

Recently, it was demonstrated by Röckel et al. (2008) that the PME isoform 

(AtPPME1, At1g69940) could interact in vitro with AtPMEI2 (At3g17220), 

leading to the inactivation of AtPPME1. The PMEI2 were shown to be 

localized to Brefeldin A-induced aggregates accumulating at the flanks of the 

growing tip of the tobacco pollen tube. Changes in the expression patterns of 

At4g12390, At4g02330, At2g26440 and At2g47550 in isoxaben-habituated 

Arabidopsis suspension cells were attributed to cell wall modifications to 

compensate for the disruption of cellulose synthase (Manfield, et al., 2004).  

At4g02330 (AtPMEpcrB ) was detected and reported to be expressed in 

Arabidopsis rosette leaves and floral branches (Micheli et al., 1998). 

 

Aims of the chapter 
 
The aim of this chapter was to use immunochemical analysis and transcript 

profiling of the cell cycle expressed annotated PME isoforms using fast- 

growing synchronized cultures of wild type Arabidopsis thaliana, in an attempt 

to define the biological role and expression timing of these isoforms. This 

information could then be compared with the biosynthesis and deposition of 

HG epitopes in parental cell walls during the different phases of mitotic cell 

division, the development of the cell plate in daughter cells and the onset of 

adhesion between parental and daughter newly formed cells. The purpose of 



86 
 

using synchronized cell culture is to have a high proportion of cells proceeding 

to the same event of the cell cycle at the same time in the absence of 

developmental processes. The first part of the work involved checking that the 

cultures progressed through the cell cycle in a detectable and reproducible 

fashion. The synchronous progression of cells into the cell cycle was followed 

through the mitotic index and expression pattern of some cell cycle marker 

genes including cyclin dependent kinase (CDKB2), cyclin (cycD3) and histone 

(H4). The synchronized cultures were used to assess the expression patterns 

of the PMEs annotated to be expressed during the cell cycle. 

 

 

4.2 Synchronization of Arabidopsis cultures 
 

The cell cycle consists of two major events, DNA replication (S phase) and 

mitosis (M phase) interrupted by two gap phases, G1 (between M and S 

phase) and G2 (between S and M phases). The G1 phase is assumed to be 

the gate through which most cells resume cell cycle progression.  

The progression of cells through the cell cycle is controlled by a conserved 

mechanism based on sequential transient formation and activation of 

complexes between cyclin-dependent kinases (CDKs) and their activating 

subunits, the cyclins (CYC).  Aphidicolin is a fungal toxin that was reported to 

reversibly block cell cycle progression by inhibiting the action of DNA 

polymerase α and δ at the late G1/early S phase boundary.  Washing out 

aphidicolin leads to the synchronous resumption of S phase with subsequent 

transition of cells through S and G2 phases until mitosis (Planchais et al., 

2000; Menges and Murray 2002). 

 

 

4.2.1 Cell cycle progression after washing out aphidicolin 
 

The efficiency of cell synchronization was monitored by recording the mitotic 

index and analysis of the transcriptional patterns of some cell cycle marker 

genes 
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4.2.1.1 Mitotic index after aphidicolin-induced synchronization 

 

The mitotic index was determined by UV light microscopic analysis of at least 

800 cells stained with DAPI (0.1 µg/ml 4',6-diamino-2-phenylindole) during cell 

cycle progression (Fig. 4.1). The maximal mitotic index of ~ 12% reflects the 

percentage of cells in pro-metaphase, metaphase and anaphase and was 

recorded 13-14 h after washing out aphidicolin.  Examples of the DAPI 

stained nuclei are illustrated in Fig 4.2. During different synchronizations, the 

pattern of the mitotic index curve was always similar to that in Fig. 4.1.  The 

maximum index reported was in the range of 8-12%. The increase in the 

number of dividing cells was first detectable some 6 h after the release of 

aphidicolin to reach a maximum at 13-14 h (M phase). The timing of the 

maximum mitotic index was reproducible in four separate synchronizations. 

According to the obtained curve the relative duration of each of the cell cycle 

phases was nominated as; G1 and S phases at t=0 to t=4, S and G2 phase at 

t=4 to t=8, G2 and M phase at t=8 to t=18, and the subsequent G1 phase at 

t=20 to the end of sampling period. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.1 Mitotic index as the culture progressed through the culture cycle 
after washing out aphidicolin.  
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(A) 

 

InterphaseI
Metaphase

T=4 h

 
 
  
(B) 

Anaphase
Interphase
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Fig. 4.2 Mitotic activity of synchronized Arabidopsis cells stained with 
Dapi after 4 and 10 hours of washing out aphidicolin. (A) A cell in 
metaphase and other cells in interphase. (B) A cell in anaphase and 
other cells in interphase. Scale bar represents 10 μm.  
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4.2.1.2 Analysis of cell cycle marker gene transcript profiles using 
reverse transcription-PCR  

 
Using cDNA synthesized from RNA isolated from samples collected every 2 

hours after the removal of aphidicolin, transcript profiles of three cell cycle 

marker genes including cyclin dependent kinase (CDKB2;2), cyclin (cycD3) 

and histone (H4) were analyzed by semiquantitative reverse transcription 

polymerase chain reaction (RT-PCR) to illustrate the progression of the cell 

cycle (Fig. 4.3 A, B). The constitutively expressed gene actin7 was used as a 

control that was not regulated by the cell cycle. 

 

The activity of Cyclin dependent kinase B2;2 (CDKB2;2, At1g20930) was 

associated with cells of high mitotic activity in Arabidopsis flowers and 

suspension cultures (Boudolf, et al., 2001; Menges et al., 2002 and 2003; 

Pina et al., 2005), suggesting that it might be  playing  a role at the onset of/or 

progression through mitosis. The expression levels of CDKB2;2  are higher 

during the  G2 and M phase as illustrated in Fig. 4.3.   The results showed a 

reduction in its levels as the cells were preparing for division during S phase 

between t=2 to t=6, however, it increased again and remained at high levels 

during the division phase. In the subsequent G1, its levels dropped again. 

During the different experiments, the expression levels of CDKB2 were higher 

from G2- to M-phase. This result is consistent with earlier reports suggesting 

a role of B-type CDKs in the control of mitosis  (Dewitte and Murray, 2003; 

Lee et al., 2004; Menges et al. 2005). 

 

The microarray data showed that CYCD3;1 (At4g34160), a member of the D-

type cyclins whose expression was mainly correlated with proliferating cells,  

was the highest cyclin expressed in the synchronized Arabidopsis suspension 

cultures (Menges et al., 2005). The analysis of CYCD3;1 expression profile 

(Fig. 4.3), showed a slight reduction in its levels progressively as the cells 

proceeded through S phase at t=0 to t= 4. Its levels were higher during the 

mitotic phase and peaked at t=18. During the different replicate experiments, 

the CYCD3;1 levels were higher during the M phase regardless of the time at 

which it showed the peak activity. 
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The mRNA of histone H4 (At5g07660) gene is known to accumulate during 

the DNA synthesis at the G1/S transition. The highest levels of H4 existed at 

S phase 2 h after removing the block (fig. 4.4).  Lower levels of the transcript 

were expressed to the end of the sampling period. Similar patterns of H4 

expression were recorded by Zhang et al., 2005 using Arabidopsis 

suspension cultures.  
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Fig. 4.3 Expression patterns (A) and Quantitative relative expression (B) 
of CDKB2;1 , cycD3;1, and H4 genes during the Cell cycle after washing 
out aphidicolin. 
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4.2.2 Characteristics of phosphate/EDTA extracted pectin     
during cell cycle 

 
4.2.2.1 Changes in the total sugar and GA content of extracted pectin. 
 
The total sugar content of EDTA/phosphate extracted pectin from cells over a 

period of 24 h (from t=0 to t=24 h) after the release from aphidicolin ranged 

between 800 and 1250 µg/ml cells reflecting an increase of 55% in the initial 

amount of pectic extracts from the cells (table 1, Fig 4.5). Most of this 

increase was recorded within the period of t=6 to t=18h after washing out 

aphidicolin at the time when the cells were entering the G2 phase at t= 6h and 

all through the M phase. As the cells were exiting the cell cycle and preparing 

for the second division the amount of extracted sugar was less by 14% and 

increased afterwards to the end of the sampling period at t=24h. 

The total extracted sugar refers to the sum of the solubilised pectin from the 

living cells preparing for division, and a portion of dead cells transferred into 

the culture during subculturing.  
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Time after 
washing out 
Aphidicolin  
(Hours) 

Total EDTA / 
phosphate  
extracted 
pectin  
(µg pectin/ ml 
packed cell 
volume) 
 

Total GA in 
extracted pectin 
(µg pectin/ ml 
packed cell 
volume) 
 

% GA 
content in 
extracted 
pectin 

% methyl 
esterified 
GA 
residues 

0 808 361 45 28 
2 767 408 53 25 
4 756 451 59 25 
6 823 488 58 26 
8 984 508 51 26 
10 1011 537 53 31 
12 937 577 61 34 
14 944 573 60 36 
16 1108 732 66 33 
18 1205 740 61 36 
20 1026 543 52 33 
22 1166 576 49 33 
24 1255 536 42 38 

 
Table 4.1 Total sugar, GA and degree of methylesterification of 50mM 
EDTA/ 50 mM phosphate buffer extracted pectin from alcohol insoluble 
cell wall materials 
 
 

The water and chelator solublized pectin extracted after the release of the 

block showed that the uronic acid fraction of the extracted pectin increased 

progressively through the cell cycle (t=0 to t=18 h). However, the UA content 

at t=16 was higher than at the other sampling periods, and it remained at the 

same level at t=18. At t=20, UA content was 27% less than its content at t=18 

h and remained at a constant level to the end of the sampling period. An 

earlier study of Arabidopsis thaliana wild type suspension cultures originated 

from root calli reported glucuronic and galacturonic acids as the major 

components of uronic acids (Leboeuf et al., 2005). (Table 4.1, Fig 4.4).   
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Fig. 4.4 Changes in the total extracted pectin and galacturonic acid after 
washing out aphidicolin. The graph shows the mean ± SD for three 
separate synchronization experiments. 
 

 

4.2.2.2 Degree of methylesterification of extracted homogalacturonan 
 

The amount of methylesterification of HGs was estimated through the 

saponification of the pectic extracts using 1M NaOH at 4oC. The released 

methanol was oxidized by alcohol oxidase, and the produced formaldehyde 

was determined colorimetrically with acetylacetone (pentane-2,4-dione) and 

ammonia according to Klavons and Bennett (1986).  Alcohol oxidase activity 

is not specific for methanol; other short-chain alcohols such as ethanol can 

also act as substrates.  Samples of the extracted pectin were tested for the 

presence of free methyl groups and/or remains of ethanol in which the 

Arabidopsis cells were originally boiled. Our results did not show any 

contaminants that might interfere with estimates of the released methyl 

groups after the dilute alkali treatment. 

 

The degree (percentage) of methylation (DM %) is calculated as the ratio of 

methyl groups released upon NaOH saponification to the UA fraction of 

EDTA/phosphate extracted pectin. During the cell cycle, the DM% of the 

extracted homogalacturonans increased through the sampling period from 

28% at t=0 to 38% at t=24 h after washing out the block (Fig. 4.5).The 

increase in DM% was recorded as the cells were in G2 phase and increased 
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further as the cells were actively dividing and depositing newly synthesized 

highly esterified pectins (t=6 to t=18).  

 

0

10

20

30

40

50

0 5 10 15 20 25 30

Hours after washing out aphidicolin

%
 m

et
hy

la
tio

n 
of

 e
xt

ra
ct

ed
 

pe
ct

in
 

 
 
Fig. 4.5 Degree of methylation of buffer/chelator soluble pectin from 
alcohol insoluble material. The graph shows mean ± SD for three 
separate synchronization experiments.  
 

 
 
4.2.3 Immuno-analysis of the extracted pectin 
  

The monoclonal antibodies directed against HG and RG-I were used to 

assess the dynamic deposition and assembly of methylesterified/deesterified 

epitopes, through the analysis of EDTA/phosphate solubilised pectin during 

cytokinesis and subsequent formation of the cell plate.  

 

 

4.2.3.1 Binding of monoclonal antibody JIM7 and JIM5 to the extracted 
homogalacturonan  during the cell cycle 

 
 Monoclonal antibodies JIM5 and JIM7 recognize partially methylesterified 

epitopes of HG with low and high degree of methylation (DM %) respectively 

(Clausen et al., 2003; Willats et al., 2000a and b). Immunodot assay (IDA) 

analysis of the extracted pectin indicated the presence of the two pectic 

components, each containing fractions of methylated HG. The highly 

branched polymer with a lower rate of mobility is localized in the central dot 
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while the unbranched fraction formed an outer ring away from the point of 

application on the nitrocellulose membrane. 

 

The immunoprofile of pectins reactive to JIM7 supported the biochemical data 

and indicated an increase in highly esterified pectin in the highly branched 

pectin localized in the central dot and the mobile linear pectin forming the 

outer ring during the G2 and M phases (Fig. 4.6).  The JIM 5 binding to the 

outer ring and central dot indicated that both pectic components contained 

low-ester HG (Fig.4.7). The darker stronger reaction at the central dots 

indicates that the higher level of low-ester HG is located in the highly 

branched fraction of the extracted pectin. Similar to the JIM7 reaction, the 

signal seemed to become weaker during the S phase and increase again 

through G2, M, and subsequent G1 phases. The amounts of the two epitopes 

recognized by JIM5 and JIM7 seemed to vary in parallel during the cell cycle. 

 
 

1 µg

0.2 µg

Time after removal of aphidicolin (h)

0              2               4            6              8    10           12           14

Standard pectin (%DM)
16          18           20            22            24 34            65              89

1 µg

0.2 µg

 
 
Fig. 4.6 Immuno-dot assay of monoclonal antibody JIM7 binding to the 
extracted pectins during the cell cycle. The results were reproducible in 
two separate EDTA/phosphate pectic extracts solubilised from two 
different cultures 
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Time after removal of aphidicolin (h)

1 µg

0.5 µg

1 µg

0.5 µg

0               2               4                6         8              10               12               14

Standard pectin  (% DM)

16               18               20              22         24             34               65               89

 
Fig. 4.7 Immuno-dot assay of monoclonal antibody JIM5 binding to the 
extracted pectins during the cell cycle.  The results were reproducible in 
two separate EDTA/phosphate pectic extracts solubilised from two 
different cultures 
 
 
The use of the monoclonal antibody LM7 failed to show any reaction 

regardless of the amount of applied pectin possibly due to the fact that the 

LM7 epitope is extremely labile as demonstrated by Willats et al.  (2001c). 

 

 

4.2.3.2 Binding of monoclonal antibody LM5 and LM6 to the extracted 
pectin during the cell cycle 

 
The neutral side chains of RG-I domain of pectic polysaccharides were 

probed with monoclonal antibodies LM5 and LM6 directed against defined 

epitopes of (1→4)-ß-galactan (Jones et al., 1997 and Willats, et al., 1998) and 

(1→5)-α- arabinan (Willats et al., 1998). The tested immuno profiles indicated 

that the (1→5)-α- arabinan epitope was abundantly present in the 

EDTA/phosphate solubilised fraction of cell wall pectins. The recognized 

epitope was present in the distinct pectic components of differing mobilities 
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(Fig. 4.8). The binding of LM6 to the extracted pectin increased after t=6 as 

the cells progressed from G2 into M phase, which suggests the occurrence of 

branching or further substitution of the side chains as the cells are 

progressing through the cell cycle. The LM6 reactive epitope increased again 

to the end of the sampling period as the cells are going into the next G1 

phase. The (1→4)-ß-galactan epitope was essentially absent or present at 

low levels in these extracts (data not shown). 

 

Time after removal of aphidicolin (h)

0                 2                 4                6          8                10               12              14

Standard pectin (% DM)
16                 18              20              22        34            65             89

1 µg

0.5µg

1 µg

0.5µg

 
Fig. 4.8 Immuno-dot assay of monoclonal antibody LM6 binding to the 
extracted pectins during the cell cycle.  The results were reproducible in 
two separate EDTA/phosphate pectic extracts solubilised from two 
different cultures 
 
 

 

4.2.4 Abundance of pectin methylesterases during the cell 
cycle. 

 

 
4.2.4.1 Phylogenetic analysis of cell cycle expressed PMEs. 
 

The phylogenetic tree (Fig. 4.9) of the protein sequences of the synchronized 

Arabidopsis cell cycle related putative PMEs isoforms listed in table (4.1) 

allows the distinction of three major groups named group A to C, possibly with 
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different putative functions. Group A is composed of five members, 

At4g02330, At1g02810, At2g47550, At2g26440 and At5g47500. Group B 

contains only one member, At4g12390, whereas At1g76160, At4g12420, 

At4g22010 and At4g25240 are members of Group C and are now annotated 

in databanks as multi-copper oxidases. 
 

Gene name LENGTH 
(aa) 

molecular 
weight 

isoelectric point Domains (# 
of 

domains) 

Cell 
cycle 

expres
sion 

phase 
At2g26440  548 60417.0 4.9298 PMEI & 

PME 
M 

At4g02330 574 63944.0 8.6243 PMEI & 
PME 

G1 

At1g02810 580 63953.0 8.9025 PMEI & 
PME 

G1 

At4g12390  207 23078.0 10.2591 PMEI G1 
At5g47500 363 40042.0 8.8961 PME M 
At2g47550 561 61498.0 9.0312 PMEI & 

PME 
S 

At1g76160 542 60041.0 8.5742 Multi- 
copper 
oxidase 

G1 

At4g12420 588 65638.0 9.4644 Multi-
cupper 
oxidase 

G1 

At4g22010 542 60456.0 10.2469 Multi-
copper 
oxidase 

G1 

At4g25240 590 65877.0 7.3968 Multi-
copper 
oxidase 

M 

 

Table 4.2  Cell cycle expressed annotated  PME  isoforms listed in 
Menges et al. (2003). 
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 At4g02330

 At1g02810

 At2g47550

 At2g26440

 At5g47500

 At4g12390

 At1g76160

 At4g22010

 At4g12420

 At4g25240

0.2
 

 
 
 
 Fig 4.9 Phylogenetic tree analysis of the cell cycle expressed PME 
sequences using MEGA version 3.1 based on Neighbour-Joining 
method (Kumar et al., 2004). 
 
A further alignment using ClustalW (www.ebi.ac.uk) of amino acid sequences 

of groups A, B and C against the functionally characterized type II AtPME3 

(At3g14310: Micheli et al., 1998) AtPMEI-1 and AtPMEI-2 (At3g17220  

At1g48020 respectively: Raiola et al., 2004), AcPMEI that have been detected 

in kiwi fruit and Nt-INH expressing an invertase inhibitor isoform identified in 

Nicotiana tabaccum (Scognamiglio et al., 2003) (Fig. 4.10), revealed that the 

genes At2g26440, At4g02330, At1g02810, At2g47550 and At4g12390 shared 

the presence of the four conserved cysteine residues in the N terminal region 

(Fig. 4.10 yellow shading).  These residues were reported to be involved in 

the formation of two intramolecular disulfide bridges critical for protein folding 

in PMEI and invertase inhibitors. However, AtPME1-1, AtPMEI1-2, AcPMEI 

and AtPME3 at the pro region shared the presence of the fifth Cysteine 

residue which was absent in all invertase inhibitor sequences identified so far 

(Scognamiglio et al., 2003). The cleavage site yielding mature PME as 

Group A 

Group B 

Group C 
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reported by Giovane et al. (2003), occurs close to the sequence RRKLLM and 

is conserved in At1g02810, At4g02330 and At 2g47550. At4g12390 is of 

lower similarity to Arabidopsis thaliana PMEIs and in the TAIR website is 

annotated as a putative invertase/ PMEI inhibitor.   Invertase inhibitors share 

some structural similarities with PMEIs though they have a completely 

different target enzyme. Earlier reports stated that individual members of the 

invertase inhibitor/ PMEI protein family are inhibitors of either PME or 

invertase but never both (Wolf et al., 2003).  

 

 
At4g02330       --------------MLSLKLFLVTLFLS--LQTLFIAS----------QTLLP--SNSSS  
At1g02810       --------------MESPIFILITLSFF--LQSVLASS----------QTLS-----NSS  
At2g47550       --------------MSQKLMFLFTLACLSSLPSPFISA----------QIPAIGNATSPS  
At2g26440       --------------MALSSFNLSSLLFLLFFTPSVFSYSY--------QPSLNPHETSAT  
At3g14310       MAPSMKEIFSKDNFKKNKKLVLLSAAVALLFVAAVAGISAGASKANEKRTLSPSSHAVLR  
At1g48020       -----------MAANLRNNAFLSSLMFLLLIGSSYAITSS-----------------EMS  
At3g17220       -----------MAAYLTNRVLMSSLMFFVMTGSLNAQVA------------------DIK  
AcPMEI          -----------------ENHLIS-------------------------------------  
At5g47500       ------------------------------------------------------------ 
Nt-INH          ---------------MKNLIFLTMFLTILLQTNANN---------------------LVE  
At4g12390       -----------MEPKLTHLCYCLLLFLPLLCQSTIAKPSS--------SPNPSSSINFIV  
                                                                             
 
At4g02330       TICKTTPDPKFCKSVFPQTS----QGDVREYGRFSLRKSLTQSRKFTRTIDRYLKRNNAL  
At1g02810       TICKTTPDPKYCKSVFPHS-----QGNVQQYGCFSIRKSLSQSRKFIRTVDRYIKRNAHL  
At2g47550       NICRFAPDPSYCRSVLPNQ-----PGDIYSYGRLSLRRSLSRARRFISMIDAELDRKGKV  
At2g26440       SFCKNTPYPDACFTSLKLSISINISPNILSFLLQTLQTALSEAGKLTDLLSGAGVSNN--  
At3g14310       SSCSSTRYPELCISAVVTAGG-VELTSQKDVIEASVNLTITAVEHNYFTVKKLIKKRKG-  
At1g48020       TICDKTLNPSFCLKFL--NTKFA-SPNLQALAKTTLDSTQARATQTLKKLQSIIDGGVD-  
At3g17220       AICGKAKNQSFCTSYMKSNPKTS-GADLQTLANITFGSAQTSASEGFRKIQSLVKTATN-  
AcPMEI          EICPKTRNPSLCLQALESDPRSA-SKDLKGLGQFSIDIAQASAKQTSKIIASLTNQATD-  
At5g47500       ------------------------------------------------------------ 
Nt-INH          TTCKNTPNYQLCLKTLLSDKRSA-TGDITTLALIMVDAIKAKANQAAVTISKLRHSNPP-  
At4g12390       SSCRVTRYQTLCVKCLAAFADKIRRNENQ-LAQTALAVTLVRVQSTTIYVGKLTKARRIK  
                                                                             
 
At4g02330       LSQSAVGALQDCRYLASLTTDY-LITSFETVNIT---TSSKTLSFSKADEIQTLLSAALT  
At1g02810       SQPAVIRALQDCRFLAGLTMDY-LLTSFETVNDTSAKTSFKPLSFPKADDIQTLLSAALT  
At2g47550       AAKSTVGALEDCKFLASLTMDY-LLSSSQTADST------KTLSLSRAEDVHTFLSAAIT  
At2g26440       LVEGQRGSLQDCKDLHHITSSF-LKRSISKIQDG-------VNDSRKLADARAYLSAALT  
At3g14310       LTPREKTALHDCLETIDETLDE-LHETVEDLHLYP----TKKTLREHAGDLKTLISSAIT  
At1g48020       --PRSKLAYRSCVDEYESAIGN-LEEAFEHLASG------------DGMGMNMKVSAALD  
At3g17220       --PTMKKAYTSCVQHYKSAISS-LNDAKQSLASG------------DGKGLNIKVSAAME  
AcPMEI          --PKLKGRYETCSENYADAIDS-LGQAKQFLTSG------------DYNSLNIYASAAFD  
At5g47500       -----MAQLTNSLNYLFSVSLL-LFVSFHCLCFR------------------FSLVAACS  
Nt-INH          --AAWKGPLKNCAFSYKVILTASLPEAIEALTKG------------DPKFAEDGMVGSSG  
At4g12390       --RREYLAVKDCVENLGDGLEM-LAQSMRELKQVGRSGRDRDEFLWRLSNVETWVSAALT  
                           .           *  :                             .:   
 
At4g02330       NEQTCLDGINTAAS--SSWTIRNGVALPLINDTKLFSVSLALFTKGWVPKKKKQVASYSW  
At1g02810       NEQTCLEGLTTAASYSATWTVRTGVALPLVNDTKLLGVSLALFTKGWVPKKKKRAG-FAW  
At2g47550       NEQTCLEGLKSTAS-------ENGLSGDLFNDTKLYGVSLALFSKGWVPRRQ-------R  
At2g26440       NKITCLEGLESASG-----PLKPKLVTSFTTTYKHISNSLSALPK---QRRT--------  
At3g14310       NQETCLDGFSHDDAD---KQVRKALLKGQIHVEHMCSNALAMIKNMTDTDIAN-------  
At1g48020       GADTCLDDVKRLRS------VDSSVVNNSKTIKNLCGIALVISNMLPRN-----------  
At3g17220       GPSTCEQDMADFK-------VDPSAVKNSGDFQNICGIVLVISNMM--------------  
AcPMEI          GAGTCEDSFEGPPN------IPTQLHQADLKLEDLCDIVLVISNLLPGS-----------  
At5g47500       NS-------------------TDDQQIQHHHHRKWVGPSG--------------------  
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Nt-INH          DAQECEEYFKGSKS---------PFSALNIAVHELSDVGRAIVRNLL-------------  
At4g12390       DETTCLDGFDGKVMDG---VVKSAIRRRVVHVARVTSNALALVNRFAARHKS--------  
                .                                   .                        
 
At4g02330       AHPKN-THSHTKPFRHFRNGALPLKMTEHTRAVYESLSRRKLADDD-----NDVNTVLVS  
At1g02810       AQPRSGSSTHTKPFRLFRNGALPLKMTEKTKAVYESLSRRKLADGDSNGDGDDGSMVLIS  
At2g47550       SRPIWQPQARFKKFFGFRNGKLPLKMTERARAVYNTVTRRKLLQSD-------ADAVQVS  
At2g26440       TNPKTGGNTKNRRLL----GLFP-------DWVYKKDHRFLEDSSD------GYDEYDPS  
At3g14310       FEQKAKITSNNRKLKEENQETTVAVDIAGAGELDSEGWPTWLSAGDR----RLLQGSGVK  
At1g48020       ------------------------------------------------------------ 
At3g17220       ------------------------------------------------------------ 
AcPMEI          ------------------------------------------------------------ 
At5g47500       -----------------------------------------------------------H  
Nt-INH          ------------------------------------------------------------ 
At4g12390       ------------------------------------------------------------ 
 
Fig 4.10 Clustal W alignment at the N-terminal of peptide sequences of 
At4g02330, At1g02810, At2g47550, At2g26440, At4g12390 and At5g47500 
against AtPME3 (At3g14310) and PMEI-1 and PMEI-2 (At1g48020 and 
At3g17220 respectively), AcPMEI and Nt-INH. 
 
Since the identity level in the deduced amino acid sequences of the N-

terminal pre (signal) region is not very high, it may suggest that the secretory 

pathways of these putative PME isoforms are different, and that this region 

may contribute to specify a biological function to each isoform. Both Type I 

and Type II showed the presence of short consensus motifs, motif I (GxYxE) 

with a conserved tyrosine residue, which has been proposed to play a role in 

the catalytic mechanism, motif II (QAVAL), motif III (QDTL), motif IV 

(GTXDFIFG) and motif V (YLGRPWK) within the carboxy terminal regions 

which correspond mainly to the catalytic domain of PME precursors (Fig. 4.11, 

yellow shading). These motifs have been recognized as a signature for PMEs 

in Arabidopsis shoots and other plant species (Micheli, et al 1998; Lievens et 

al., 2002, Pelloux et al., 2007). These conserved motifs were not detected in 

the alignment of the copper oxidase encoding genes; At4g25240, At4g22010, 

At4g12420 and At1g76160.  

 

The two aspartic acid residues, two glutamines and one arginine residue (Fig. 

4.11, yellow shading), characteristic of the active site of the enzyme, are 

conserved in the cell-cycle-related type I and II PMEs (Jenkins et al., 2001, 

Johansson et al., 2002, Dorokhov et al., 2006, Pelloux, et al., 2007). The 

At5g47500 showed a similarity to At3g14310 at the catalytic domain without a 

pro region and thus it could be a type I PME. 
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                                                        GxYxE 
At4g02330       DIVTVNQNGTGNFTTITEAVNSAPNKTDGTAGYFVIYVTSGVYEENVVIAKNKRYLMMIG 
At1g02810       DIVTVSQDGTGNFTNITAAVAAAPNNTDGSAGFFLIYVTAGIYEEYISIAKNKRYMMMIG  
At2g47550       DIVTVIQNGTGNFTTINAAIAAAPNKTDGSNGYFLIYVTAGLYEEYVEVPKNKRYVMMIG  
At2g26440       ESLVVAADGTGNFSTINEAISFAPNMSNDR---VLIYVKEGVYDENIDIPIYKTNIVLIG  
At3g14310       ADATVAADGSGTFKTVAAAVAAAPENSNKR---YVIHIKAGVYRENVEVAKKKKNIMFMG  
At1g48020       ------------------------------------------------------------ 
At3g17220       ------------------------------------------------------------ 
AcPMEI          ------------------------------------------------------------ 
At5g47500       KVITVSLNGHAQFRSVQDAVDSIPKNNNKS---ITIKIAPGFYREKVVVPATKPYITFKG  
Nt-INH          ------------------------------------------------------------ 
At4g12390       ------------------------------------------------------------ 
                                                                             
 
At4g02330       DGINRTVVTGNRNVVDG------WTTFNSATFAVTSPNFVAVNMTFRNTA-----GPEKH  
At1g02810       DGINQTVVTGNRSVVDG------WTTFNSATFAVTAPNFVAVNITFRNTA-----GPEKH  
At2g47550       DGINQTVITGNRSVVDG------WTTFNSATFILSGPNFIGVNITIRNTA-----GPTKG  
At2g26440       DGSDVTFITGNRSVGDG------WTTFRSATLAVSGEGFLARDIMITNTA-----GPEKH  
At3g14310       DGRTRTIITGSRNVVDG------STTFHSATVAAVGERFLARDITFQNTA-----GPSKH  
At1g48020       ------------------------------------------------------------ 
At3g17220       ------------------------------------------------------------ 
AcPMEI          ------------------------------------------------------------ 
At5g47500       AGRDVTAIEWHDRASDLGANGQQLRTYQTASVTVYANYFTARNISFTNTAPAPLPGMQGW  
Nt-INH          ------------------------------------------------------------ 
At4g12390       ------------------------------------------------------------ 
                                                                             
                QAVAL                 QDTL               GTxDFIFG 
At4g02330       QAVAMRSSADLSIFYSCSFEAYQDTLYTHSLRQFYRECDIYGTVDFIFGNAAVVFQDCNL  
At1g02810       QAVALRSGADFSIFYSCSFEAYQDTLYTHSLRQFYRECDVYGTVDFIFGNAAVVFQNCNL  
At2g47550       QAVALRSGGDLSVFYSCSFEAYQDTLYTHSLRQFYRECDVYGTVDFIFGNAAVVLQNCNL  
At2g26440       QAVALRVNADFVALYRCVIDGYQDTLYTHSFRQFYRECDIYGTIDYIFGNAAVVFQGCNI  
At3g14310       QAVALRVGSDFSAFYNCDMLAYQDTLYVHSNRQFFVKCLIAGTVDFIFGNAAVVLQDCDI  
At1g48020       ------------------------------------------------------------ 
At3g17220       ------------------------------------------------------------ 
AcPMEI          ------------------------------------------------------------ 
At5g47500       QAVAFRISGDKAFFSGCGFYGAQDTLCDDAGRHYFKECYIEGSIDFIFGNGRSMYKDCEL  
Nt-INH          ------------------------------------------------------------ 
At4g12390       ------------------------------------------------------------ 
                                                                             
                                                                 YLGRPWK 
At4g02330       YPRQPMQNQFNAITAQGRTDPNQNTGISIHNCTIKPADDLVSSNYTVKTYLGRPWKEYSR  
At1g02810       YPRKPMPNQFNAITAQGRSDPNQNTGTSIQNCTIKPADDLVSSNYTVKTYLGRPWKEYSR  
At2g47550       YPRQPRKGQSNEVTAQGRTDPNQNTGTAIHGCTIRPADDLATSNYTVKTYLGRPWKEYSR  
At2g26440       VSKLPMPGQFTVITAQSRDTQDEDTGISMQNCSILASEDLFNSSNKVKSYLGRPWREFSR  
At3g14310       HARRPNSGQKNMVTAQGRTDPNQNTGIVIQKCRIGATSDLQSVKGSFPTYLGRPWKEYSQ  
At1g48020       ------------------------------------------------------------ 
At3g17220       ------------------------------------------------------------ 
AcPMEI          ------------------------------------------------------------ 
At5g47500       HS---IASRFGSIAAHGRTCPEEKTGFAFVGCRVTGTG---------PLYVGRAMGQYSR  
Nt-INH          ------------------------------------------------------------ 
At4g12390       ------------------------------------------------------------ 
                                                                             
 
At4g02330       TVFMQSYIDEVVEPVGWREWNGDFALS-TLYYAEYNNTGSGSSTTDRVVWPGYHVIN-ST  
At1g02810       TVYMQSYIDGFVEPVGWREWNGDFALS-TLYYAEYNNTGPGSNTTNRVTWPGYHVIN-ST  
At2g47550       TVVMQTYIDGFLEPSGWNAWSGDFALS-TLYYAEYNNTGPGSDTTNRVTWPGYHVIN-AT  
At2g26440       TVVMESYIDEFIDGSGWSKWNGGEALD-TLYYGEYNNNGPGSETVKRVNWPGFHIMG-YE  
At3g14310       TVIMQSAISDVIRPEGWSEWTGTFALN-TLTYREYSNTGAGAGTANRVKWRGFKVITAAA  
At1g48020       ------------------------------------------------------------ 
At3g17220       ------------------------------------------------------------ 
AcPMEI          ------------------------------------------------------------ 
At5g47500       IVYAYTYFDALVAHGGWDDWDHKSNKSKTAFFGVYNCYGPGAAATRGVSWAR---ALDYE 
Nt-INH          ------------------------------------------------------------ 
At4g12390       ------------------------------------------------------------ 
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At4g02330       DANNFTVENFLLGDGWMVQSGVPYISGLLS 573 
At1g02810       DAANFTVTGLFIEADWIWKTGVPYTSGLIS 579 
At2g47550       DASNFTVTNFLVGEGWIGQTGVPFVGGLIA 560 
At2g26440       DAFNFTATEFITGDGWLGSTSFPYDNGI-- 547 
At3g14310       EAQKYTAGQFIGGGGWLSSTGFPFSLGL-- 592 
At1g48020       ------------------------------ 
At3g17220       ------------------------------ 
AcPMEI          ------------------------------ 
At5g47500       SAHPFIAKSFVNGRHWIAPRDA-------- 362 
Nt-INH          ------------------------------ 
At4g12390       ------------------------------ 
 
 

Fig. 4.11 Clustal W Alignment at the catalytic domain of the amino acid 
sequences of At4g02330, At1g02810, At2g47550, At2g26440, At4g12390 
and At5g47500 against AtPME3 (At3g14310), PMEI-1, PMEI-2, AcPMEI 
and Nt-INH.  
 

 
4.2.4.2  Patterns of PME transcripts during cell cycle 
 
To ensure specificity and efficiency of PME isoforms during PCR 

amplification, the total RNA was always treated with DNase prior to first strand 

cDNA synthesis, and the primers were designed to cover an exon-exon 

junction.  All primer pairs produced a single DNA product of the expected size. 

Menges et al. (2002) suggested that At4g02330 and At1g02810 genes were 

expressed during G1 phase, At2g47550 in S phase and At2g26440 genes in 

M phase.  However, the data obtained in this project were not consistent 

between the experiments and so are not shown. 

 

The At5g47500 (Fig.4.12) isoform displayed a more consistent expression 

during the M phase. However its expression during the G1 varied between the 

different synchronizations. 
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Fig 4.12. Quantitative relative expression of At5g47500 through the cell 
cycle after washing out aphidicolin, presented as relative expression 
after normalization with At5g09810 (Actin 7) 
 

 

4.2.4.3 Northern blot analysis of At5g47500 expression. 
  

The PME isoform At5g47500 PCR product of 212 bp was used to generate 

templates for T3 labelled antisense probe (238 bp) with (At5g47500-T3-r 

AATTAACCCTCACTAAAGCAGTATTCGTG and At5g47500-f 

AAGATTGCTCCCGGATTTTACAGAGAG) (Fig. 4.13). A MAXIscript Ambion 

kit was used to prepare a biotinlytaed RNA probe that was hybridized with 15 

µg of total RNA to detect the expression levels of At5g47500 mRNA during 

the different phases of cell cycle (Fig. 4.13). As a general control for the 

experiment, 18S and 25S rRNA profiles were checked after electrophoresis. 
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The Northern gel-blot analysis of gene expression pattern of At5g47500 

demonstrated a transcript of approximately 1.75 Kb of At5g47500 mRNA 

during the cell cycle (Fig 4.14). The transcript levels decreased after t=0 to as 

the cells were exiting G1 into S phase. No transcripts could be detected 

between t=4 to t=8 through the S and G2 of the cell cycle. The At5g47500 

mRNAs accumulated from t= 10 to t=24 h. The levels of expression increased 

progressively during M phase between t=10 and t= 18, slightly decreased at 

t=20 and remained steady up to t=24. Our results using the northern 

hybridization were consistent with the analyses using RT-PCR, indicating that 

the At5g47500 gene may play a role in pectin modulation during the cell cycle, 

especially the M phase.  

 
 
 
 
 
 
 
 
 
 
 
 

Standard 
DNA 
 
 
1000 bp 
 
 
 500 bp 
 
 
 
 100 bp Fig. 4.13 PCR product 

212bp amplified with a set 
of primers of T-3 reverse 
linked and a forward 
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(A) 
 
 
 
 
 
                      

             
 
 
(B) 
 

                 
  

 
Fig. 4.14 Northern blot analysis of At5g47500 gene expression in 
Arabidopsis suspension during cell cycle. (A) Northern blot of total RNA 
hybridized with biotin labelled probes. (B) Equal total RNA (15 µg) 
stained with ethidium bromide as a loading control.   
  

 

4.3  Discussion  
 

The fungal toxin aphidicolin has been found to be an effective method of 

reversibly blocking cell cycle progression in a number of plant systems like 

tobacco BY-2 (Nagata et al.,1992; Sorrell, et al., 1999) and Arabidopsis 

thaliana (Menges and Murray, 2002). The use of aphidicolin leads to 

cessation of cell cycle progression and accumulation of cells primarily in late 

G1/early S phase boundary (Planchais et al., 2000). After the release of the 

block, the synchronous resumption of the cell cycle was followed by 

monitoring changes in the mitotic index, and using RT-PCR to analyze the 

expression profiles of the cell cycle marker genes including CDKB2;2, 

CYCD3;1 and H4.  

Standards 
(Kb) 

                 2  
 
1.5  

Time after washing out aphidicolin 
 
                    0        2        4        6       8       10      12       14      16      18      20      22      24      

rRNA  25s 
 
rRNA 18s 
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Traditionally, the cell cycle is divided into four phases: G1, S, G2, and M 

phase of which G1 is considered as the most significant restriction point.  

During this phase the cells must integrate a variety of nutritional, hormonal 

and developmental signals necessary to irreversibly proceed through the cell 

cycle (Menges et al., 2006). The removal of aphidicolin resulted in the 

progression of the cell cycle, with a peak in the mitotic index after 13-14 h of 

washing out the inhibitor. The percentage of cells in mitosis (mitotic index) 

varied between 8 and 12% between the different synchronizations. It could 

have been underestimated due to the small genome size of Arabidopsis cells 

and as only the stages with highly condensed visible chromosomes in 

metaphase and anaphase were scored. However, the peaks of the mitotic 

indices reported in some published data are close to our value (Menges et al., 

2002; Zhang et al., 2005) 

 

D-type cyclin (CycD3;1) RNA was detected during the cell cycle as indicated 

by the expression profile of the cDNA amplified with  exon-exon designed 

primers. Higher levels of expression were recorded during the late G2 and M 

phases between t=10 to t=18 h. The expression of CycD3;1 is regulated by 

external signals such as the availability of sucrose and plant hormones 

particularly cytokinin (Menges et al., 2006). The data presented in this work is 

consistent with the abundance of tobacco (Nicta;CycD3;1) showing higher 

levels of the transcript in mitotic cells during the exponential phase of the 

culture cycle and M phase of the cell cycle of aphidicolin synchronized 

tobacco BY-2 suspensions (Sorrell, et al., 1999).  Similar results were 

observed in Arabidopsis thaliana suspension cultures originated from root calli 

and synchronized by a combination of sucrose starvation and cyclohexmide 

(Zhang et al., 2005), and in aphidicolin synchronized MM2d Arabidopsis cell 

line established by Menges and Murray (2002).   

 

B-type CDKs (CDKB)  make up a class of plant-specific CDKs that display a 

peak of activity at the G2 and M phases (Joubés et al., 2000; Inzé and De- 

Veylder, 2006). In Arabidopsis, CDKB2;2 as a core cell cycle regulator gene,  

was upregulated in the actively dividing cells of young leaves and  floral 

organs, whereas the microarray data of another study failed to detect any 
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expression of this gene in the mature organs (Wang and Yang, 2007). The 

increase in the expression of this gene was used as a marker to determine 

the G2 and the mitotic phase (M) in the synchronized suspension cultures of 

MM1d and MM2d Arabidopsis cell lines. (Menges et al., 2003 and 2005).   In 

our culture, a higher level of the transcript of CDKB2;2 was present in the 

blocked cells and during the G2 and M phase between t= 8 to t=18 h after the 

release of aphidicolin.  

 

Histones have been related to the condensation of the chromatin, which is 

one of the important morphological changes reported during the cell cycle 

(Kodama et al., 1994). The peak of Histone (H4) expression was recorded 

during the S phase at t= 2–4 h following the release of the cells from 

aphidicolin. This observation is in agreement with previous observations 

(Menges and Murray, 2002; Zhang et al., 2005). Thus the correlation between 

the mitotic index and the transcription profiles of CycD3;1, CDKB2;2,and H4 

indicated that the cells were reasonably arrested in the G1/S phase of the cell 

cycle. The synchronized cells entered the S phase at approximately 2 h after 

the release of aphidicolin,  passed through G2 at t=6 to t=10, and then into the 

M phase with a peak M/A index at t=14h. The cells proceeded into the 

subsequent G1 of the next cell cycle at t=20 h after washing out the block. 
 

In the last stage of the cell cycle during cytokinesis, Golgi-derived 

membranous vesicles carrying cell plate materials are transported to the 

equatorial zone of the phragmoplast. The arriving vesicles fuse forming a 

continuous, interwoven, tubulo-vesicular membranous network which is 

composed of various carbohydrate polymers, with callose, xyloglucan, pectin 

and arabinogalactans as the major lumenal components of the forming cell 

plates (Staehelin and Moore, 1995; Robertson et al., 1995; Verma, 2001; 

Yokoyama and Nishitani, 2001; Segui-Simarro et al., 2004). The cell plate 

undergoes a complex process of maturation during which callose is replaced 

by cellulose (Verma, 2001).  

 

The EDTA/phosphate solubilised the pectin that was loosely attached to the 

cell wall through ionic calcium bonds (Brummell et al., 2004). The sugar 
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content of the extract was quantified using the phenol sulphuric method 

(Dubois, 1956).  The amount of extracted sugar increased during G2 and M 

phases and peaked at t=18 h. It was significantly reduced (at 5% level) at 

t=20. It was 14% less than the extracted pectin at t=18. For the rest of the 

sampling period, the levels of extracted sugar increased again (t=22 to t=24 h) 

and returned to a level similar to that at t=18 (Fig. 4.4). The increase during 

G2 and M phase could be attributed to the cell wall soluble sugars stored in 

the Golgi stacks that have been reported to accumulate at the spindle poles, 

Golgi belt zone and around the phragmoplast where the cell plate will be 

formed, during the pro-metaphase, metaphase and cytokinesis respectively 

(Nebenführ et al., 2000). Golgi stacks are distributed roughly equally among 

the daughter cells to ensure optimal cell viability. In dividing somatic cells, the 

Golgi derived vesicles that give rise to cell plate and cell wall contains pectin, 

callose, xyloglucan and arabinogalactan (Matar and Catesson, 1988; 

Freshour et al., 1996; Staehelin and Moore, 1995; Sonobe et al., 2000; 

Verma; 2001).  Highly esterified pectins in these vesicles form gels through 

hydrophobic interactions facilitated by the removal of water and presenting a 

stable elongated cell plate building blocks that direct the fusion of the new 

vesicles to what is called the dumbbell ends of the fusing vesicles (Segui-

Simarro, et al., 2004).  The reduction at t=20 possibly reflects the cell wall 

resistance to hot buffer-EDTA extraction when the developing cell plate fuse 

with the parent cell plasmalemma, agreeing with previous observation in 

dividing meristematic cells of Phaseolus vulgaris root (Matar and Catesson, 

1988), or it could be attributed to the loss of small pectin molecules from 

extracts during the dialysis and sample preparation.  The primary walls are 

then deposited on each side of the middle lamella which might explain the 

increase in pectic extracts during the subsequent G1. The increase in the 

number of secretory vesicles associated with the active synthesis of the cell 

wall was observed in the second G1 phase of the synchronized Catharanthus 

roseus cultures (Amino et al. 1984; Hirose and Komamine, 1989). The final 

stage in the completion of the cell plate is the maturation stage, a process that 

is accompanied by the replacement of callose by cellulose transforming the 

fluid wrinkled cell plate to a stiff, flat, cellulose rich cell wall. (Nebenführ et al., 

2000).  
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The uronic acid content increased during the cell cycle after the release of 

aphidicolin and peaked at t=16 and t=18 h constituting 66% and 61% of the 

extracted pectin respectively. However, the UA level decreased in the 

subsequent G1 (Fig 4.4). The progressive increase in the UA acid content 

during S, G2 (t=2 to t=10) possibly could be related to the modulations in the 

parental cell walls as the cells are preparing for cytokinesis. The increase in 

methylated UA content during M phase could be related to the exocytotic 

Golgi derived vesicles (Freshour et al., 1996), and the endocytotic vesicles as 

a result of the turn over of the parental cell wall components to the 

phragmoplast where these vesicles will unload their cargo (Baluśka et al., 

2005). The methylesterification of HG is believed to take place in the Golgi 

bodies through the activities of pectin methyl transferase (PMT) (Vannier et 

al., 1992) and deesterified in muro by pectin methylesterase (PME) (Gaffe et 

al., 1994). The reduction in the extracted UA at t=20 although the total 

solubilised pectin increased possibly reflects the resistance of chelator 

extractable HG, due to the modulation in the newly developing cell wall,  and 

the deposition of other sugar components like weakly bound water soluble 

xyloglucans. 
 

The amount and pattern of HGA methylation is important for wall function in 

growth and development. Homogalacturonan (HG) in the walls of young cells 

is highly methylesterified, whereas a lower degree of esterification 

characterises the cell walls of older cells. (Schaumann et al., 1993).The 

immuno-dot assay (IDA) of  equal quantities of uronic acid for 24 h after 

washing out aphidicolin, using JIM7 and JIM5 detecting highly and low 

methylated HG respectively, showed the presence of the two epitopes in the 

cell walls of the treated cells at G1 phase (t=0). Both epitopes existed in the 

two extracted fractions of pectin; the branched, large in size, immobilized 

extracts and the less branched, smaller in size, highly mobile fraction of the 

extract.  

 

The reaction between JIM7 and its epitope during the cell cycle fits with the 

curve illustrating the changes in the degree of methylesterification of the 
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extracted HG, Higher levels of this epitope were detected during G2, M and 

subsequent G1 phase of the cell cycle, more pronounced in the larger highly 

branched fraction of extracted pectin during the M phase between t= 10 to 

t=18.  The IDA and the % of methylesterification seemed to stay at the same 

level during the following G1 phase despite the changes in the amount of 

extracted pectin and its UA fraction at t=20 and 24 h of the sampling period. 

The highly methylated HG detected during the M phase could be attributed to 

the Glogi derived vesicles transporting highly methylated HG that tend to 

accumulate in the phragmoplast and used in the assembly of the plate. 

 

The JIM5 recognized epitopes were detected during the cell cycle and the 

subsequent G1 phase. JIM5 binding to the outer ring and central dot indicated 

that both pectic components contained low-ester HG. The more intense 

binding of JIM5 at the central dot reflect the high level of deesterification of the 

highly branched fractions. The fraction of JIM5 reactive epitope seemed to 

decrease during late S and early G2 phases possibly reflecting changes in the 

parental cell walls Ca2+ bound matrices allowing the extension and increase in 

the cell size preparing for the cytokinesis. The intensity of the signal seemed 

to increase during the late G2 and M phase possibly due to the turn over of 

the parental cell wall components during cell division. Brefeldin-A induced 

compartments of growing maize (Zea mays) root apices demonstrated the 

presence of endosoms carrying xyloglucan, rhamnogalacturonan II dimers 

cross-linked by borate diol diester, partially esterified (up to 40%) 

homogalacturonan pectins, rhamnogalacturonan I decorated with galactan 

and arabinan side chains (Baluśka et al., 2002 and 2005).  

 

LM6 is a monoclonal antibody that recognizes five residues in (1→5)-α-

arabinan (Jones et al., 1997; Willats et al., 1998). Our results showed the 

presence of the epitope in the EDTA/buffer solubilised pectin during all the 

phases of the cell cycle, however, a significant intense labelling was noticed in 

G2 and M phases. This suggests the biosynthesis and secretion of linear 

stretches of arabinan of at least five residues associated with RG-I at the 

developing cell plate.  In carrot suspension cultures, LM6 labelling was 

abundant in the cell walls of cells in a proliferative state (Willats et al., 1999b). 
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The failure to detect galactan side chains of RGI of the extracted pectins 

using LM5 is possibly due to the proliferative state of culture cells. The 

presence of LM5 reactive (1→4)-ß-galactan epitope in carrot suspension 

cultures has been related to the developmentally regulated changes as the 

cells switch from the proliferation to elongation state (Willats et al., 1999b). 

 

The Phylogenetic analysis using MEGA version 3.1 based on Neighbour-

Joining method (Kumar et al., 2004) and clustalW alignment (www.ebi.ac.uk), 

of the cell cycle putative PME amino acid sequences, categorized these 

genes into three distinct groups of which Group A showed significant 

similarities to the characterized, AtPMEI1-1, AtPMEI1-2, AcPMEI, Nt-NIH and 

AtPME3 at the pro region. The members of group A could be either of type I 

PME which has a pre-catalytic domain represented by At5g47500, and type II 

which has a pre-pro-catalytic domains represented by At4g02330, At1g02810, 

At2g26440, and At2g47550. 

 

The comparative analysis of amino acid sequences of type II PMEs with 

AtPME3, AtPME1-1, AtPME1-2, AcPMEI and Nt-NIH have shown that they all 

shared the presence of four conserved Cysteine residues at the pro-region of 

At4g02330, At1g02810, At2g47550 and At2g26440. The pro region is thought 

to have an inhibitory function toward is own PME. The amino acid sequence 

of At4g12390 showed similarity with the N-terminal pro-peptides of plant PME 

and invertase inhibitors, in particular, the four cysteine residues involved in 

disulfide bridges. The invertase inhibitor shared similarities with PMEI though 

PMEI had extra fifth cysteine residues that have not been detected in all 

invertase inhibitor isoforms (NIHs) studied so far. The comparison at the C-

terminal region showed the presence of five characteristic sequence 

fragments (GxYxE, QAVAL, QDTL, DFIFG, YLGRPWK) that have been 

recognized as signatures of the PME structures and six amino acids residues 

strictly located at the active site; two aspartic acids (D), arginine (R) and two 

glutamines (Q) and many of aromatic residues lining the cleft where the 

substrate is likely to bind (Jenkins et al., 2001).  
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In all the repeated synchronizations, the expression levels of At5g47500 were 

always detected during M phase of the cell cycle. The rest of the genes failed 

to show consistent patterns of expression possibly.  The expression of 

At5g47500 was detected in the treated cells and decreased during S and G2 

phase at t=2 to t= 8 after which it increased during the division of the parent 

cells. Using biotin labelled probes, a positive signals of a single transcript of 

approximately 1.75 Kb were recognized during G1 at t=0, M phase at t=12 to 

t=18 h, and subsequent G1 at t=20 to t=24 h. The signal was stronger during 

the M phase. The obtained signals agree with the cell-cycle-expressed pattern 

reported by RT-PCR. The size of At5g47500 full genomic DNA is around 

1,925 Kb and the full cDNA size is 1,430kb as predicted by Tair website 

(www.arabidopsis.org). The At5g47500 cDNA annotated in Tair website could 

be starting at a point upstream to the predicted initiation code explaining the 

difference in the obtained and predicted size of mRNA.    At5g47500 is one of 

the PME isoforms with a basic isoelectric point (pI) which is likely to act in a 

linear block wise fashion as proposed by Micheli et al. (2001). It is possibly 

involved in the formation of a small fragment of deesterified stretches of 

homogalacturonan forming Ca2+ bound matrices. The differences in the 

expression profiles of cell cycle putative PMEs obtained in this study 

compared to those reported by Menges and Murray (2003) may be partly due 

to cultures being independently generated.  The studied suspension culture 

was quite recently generated and some genetic changes are thought to occur 

in cultures grown for many generations. 

 

As a conclusion, the obtained data are reflecting the importance of the 

methylated HG in the onset of intercellular adhesion. Out of  the five putative 

cell cycle expressed PMEs, only At5g47500 encoding a type I PME showed  a 

systemic consistency in its expression during M phase,  possibly attributing to 

the deesterification of the pectins as they are laid down in the site of 

developing cell plate. The exact mode and pattern of demethylation as a 

result of the activity of PME encoded by At5g4700 remains to be elucidated in 

future work.   
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Chapter 5 
 
 
 

Biochemistry of adhesion in suspension 
cultures of salt tolerant Arabidopsis 
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5.1 Introduction 
 

Plants have a remarkable ability to cope with variable biotic and abiotic 

environmental stresses like salinity, drought, wounding, heavy metal toxicity, 

nutrient deficiency and pathogen invasion. Soil salinity is one of the major 

environmental factors limiting agricultural productivity in many arid and semi-

arid regions of the world. Based on their ability to grow on high salt medium, 

plants are traditionally classified as glycophytes or halophytes. Glycophytes 

are sensitive and can not tolerate high salinity. Halophytes are more tolerant 

to high concentrations of NaCl and can grow in habitats excessively rich in 

salts, such as salt marshes, sea coasts, and saline deserts. For glycophytes, 

salinity imposes a major constraint on plant growth, development and survival. 

High levels of salts could lead to ionic stress especially sodium toxicity, 

physiological drought, osmotic stress due to the increase in osmotic potential, 

and secondary stresses such as nutritional disorders and oxidative stress 

(Zhu, 2001; Xiong and Zhu, 2002; Zhou et al., 2007). High salinity causes 

pleiotropic effects in plant growth such as reduced cell expansion, decreased 

protein synthesis, and accelerated cell death. A high level of Na+ is toxic to 

plants because it disturbs the cytoplasmic K+/Na+ homeostasis (Taji et al., 

2004). Tolerance of some plant species to soil salinity is achieved by either 

extruding Na+ out of cells, or compartmentalizing sodium ions into the vacuole 

away from the cytosol and excretion of Na+ via plasma membrane Na+/H+ 

antiporters. The Na+/H+ antiporters in the plasma membrane and tonoplast 

play a vital role in pumping Na+ either out of cells (plasma membrane 

antiporter) or into vacuole (vacuolar antiporter) in exchange of H+ (Chen et al., 

2007). A fundamental difference between true halophytes and salt-tolerant 

glycophytes is that in general halophytes are accumulators of salt whereas 

salt tolerant glycophytes or salt-tolerant ecotypes of normally salt-sensitive 

glycophytes are salt excluders (Chaudhary et al., 1996). 

 

The cell wall, as the site of interactions with abiotic and biotic environments, 

undergoes several physical and biochemical alterations as a response to 

living in a stressed environment (Degenhardt and Gimmler, 2000). Some data 
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are available describing the effect of salinity on the mass of cell walls and the 

structural modifications associated with the processes of withstanding the 

increased concentrations of salt. Some plant species had thicker cell wall with 

higher masses like Citrus limon calli (Piqueras et al., 1994), while others 

showed a reduction in the relative mass of their cell walls such as suspension 

cultured tobacco cells (Iraki et al., 1989b). The exposure of Aster tripolium 

leaves, Gossypium hirsutum roots, and tobacco suspension cultures to high 

NaCl concentrations imposed a reduction in their cellulose content and 

increased proportions of non-cellulosic components compared to the walls of 

unadapted cells (Binet, 1985; Zhang and Lauchli, 1993; Iraki et al., 1989b,). 

The leaves of Chloris gayana exhibited a reduced rate of expansion after 

exposure to NaCl (Ortega and Taleisnik, 2003; Ortega et al., 2006).  

 

Arabidopsis is a typical glycophyte and not particularly salt tolerant. However, 

a number of studies suggested that it may contain most, if not all, of the salt 

tolerance genes that one might expect to find in halophytes (Taji et al., 2004). 

These findings have led to the hypothesis that many halophytes may use the 

same mechanisms of salt tolerance found in glycophytes and that subtle 

differences in regulation may account for the large variations in tolerance or 

sensitivity between glycophytes and halophytes. A recent study of the 

transcript profiling data of Arabidopsis seedlings treated with 150mM NaCl for 

3h and 24h showed that the changes in the level of expression of 1500 genes 

were strongly regulated as a salt stress response. Fewer than 25% of these 

genes were salt stress specific, of which many are induced only in roots. Two 

cell wall modifying genes, xyloglucan endotransglycosylase and pectin 

methylesterase (PME; At1g21850), were reported to be exclusively up-

regulated by salt stress in roots (Ma et al., 2006). Normal tobacco cells cannot 

grow in the presence of 100 mM NaCl. After salt adaptation, some tobacco 

cells are able to tolerate five times that much salt (Hasegawa et al., 2000). 

Similarly, alfalfa cells as well as intact plants have been adapted to tolerate 

very high levels of NaCl (Winicov, 1991).  
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Aim of this chapter 
 
The aim of this chapter is to use salt tolerant Arabidopsis suspension cultures 

adapted to 300mM NaCl (HHS cell line) to study the pectin epitopes and their 

roles in mediating cell adhesion through in situ immunocytochemical 

analyses, along with the biochemical characterization of the pectic extracts 

during the proliferation of the culture. 

 
 

5.2 Growth kinetics of  Arabidopsis thaliana 
suspension cultures 

 
The Arabidopsis thaliana HHS (Habituated to High Salt) cell line tolerant to 

300 mM NaCl was generated by Dr. Peter Dominy - University of Glasgow. 

Non-treated wild type cell suspension cultures were accommodated to growth 

in high salt concentrations through successive subculturing with gradual 

increments of NaCl concentration over a period of 2 years. The HHS culture 

was green in color and contained a mixture of spherical and some more 

elongated cells. The cells formed larger clusters that seemed to be difficult to 

disaggregate by shaking.  

 

The pattern of growth of the salt tolerant Arabidopsis suspension cultured 

cells was similar to that of the previously described wild type. However, the 

maximal packed cell volume (PCV) achieved by the cells was much lower. 

The exponential phase lasted between days 2 to 6 followed by a marked 

reduction in the rate of increase in PCV. Seven days after the previous 

subculturing, the PCV increased by 150 % compared to the PCV at day 2 

during the early division phase. Days 0 to 2 could have represented the lag 

period after which the packed cell volume increased markedly due to increase 

in the division rate. 
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Fig. 5.1 Growth curve of suspension cultures of HHS cell line of 
Arabidopsis thaliana. The graph shows mean ± SD for three different 
cultures. 
  
 

5.3 Chemical analysis of extracted pectin 
 

5.3.1 Sugar content of the extracted pectin  
 
Pectins are known to be solubilised using EDTA/phosphate buffer by the 

breakage of egg box calcium cross-bridges between adjacent pectate 

sequences.  The total extracted sugar increased between days 1 to 5. A sharp 

increase was recorded at day 1 after subculturing, followed by a reduced rate 

of increase between days 2 to 5, after which it remained essentially 

unchanged for the rest of the culture cycle (Fig. 5.2).  At day 5, the amount of 

extracted sugar had increased by 79% compared to day 1. 

 

Galacturonic acid (GalA) is the most abundant plant cell wall (PCW) uronic 

acid (UA) (Popper and Fry, 2004; Abdel-Massih et al., 2007).  The UA fraction 

of the EDTA pectic extracts increased during the exponential phase.  It 

constituted 35% on day 2 and 68% on day 6 of the solubilised pectin (Fig 5.2), 

while this fraction constituted an almost constant proportion ranging between 

59 to 64% of the chelator extract of the wild type Arabidopsis line (Fig 3.3).  
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Fig. 5.2 Changes in the contents of phosphate/EDTA buffer extracted 
pectic sugars and GA fraction during the culture cycle of the HHS 
Arabidopsis thaliana cell lines. The graph shows mean ± SD for three 
separate experiments.  
   

 

5.3.2 Determination of the level of methylesterification of 
extracted homogalacturonan. 

 

The chelator/phosphate buffer extract contained both esterified and non 

esterified HG. The degree of esterification of the GalA fraction was deduced 

from the measurements of methanol released by saponification using a dilute 

alkali at 4Co.The extracted HG showed a reduction by about 30% in the 

degree of acid esterification compared with the wild type (wt), indicating 

possibly higher levels of Ca2+  bound matrices during mid/late exponential and 

early stationary phase. The degree of methylesterification (DM) of pectic 

extracts of wild type Arabidopsis increased (40 to 60%) during the exponential 

phase and was reduced at the onset of the stationary phase on day 7 (Fig. 

3.4) 
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Fig. 5.3 Degree of methylesterification of the EDTA/phosphate extracts 
of HHS Arabidopsis thaliana cell line during the culture cycle. The graph 
shows mean ± SD for three separate experiments.  
 
 

5.4 Detection and localization of homogalacturonans 
with low and high levels of methylesterification 
during culture cycle 

 
Anti-HG and RG-I side chains monoclonal antibodies JIM5, JIM7, LM7, LM5 

and LM6 were used to characterize the occurrence and methylesterification of 

HG in the cell walls of salt tolerant HHS Arabidopsis thaliana cell line cultured 

cells.  Both the degree and the pattern of de-esterification influence the 

binding capacity of these antibodies to HG domains whether in muro or in the 

EDTA/phosphate released pectin. The monoclonal JIM 7 antibody detects 

relatively high level of HG methylesterification with flanking unesterified GalA 

residues, and JIM5 binds to unesterified GalA residues with adjacent or 

flanking methylesterified units. LM7 preferentially recognizes HG with a 

random non-blockwise pattern of esterification (Willats et al., 2000b; Clausen 

et al., 2003), and 2F4 recognizes low methylesterified homogalacturonan 

associated with calcium (Liners et al., 1992). 
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5.4.1 Binding of monoclonal antibody JIM7 and JIM5 to the 
extracted pectins 

 
The immunodot analysis (IDA) revealed the presence of the JIM7 recognized 

epitope in all the EDTA/phosphate fractions of the HHS cell line, suggesting 

the abundance of highly esterified pectin across the cell walls during culture 

cycle (Fig. 5.4). The intensity of labelling was stronger in the central dots 

representing the larger highly branched fraction of the extracted pectin.  The 

JIM7 obtained immunoprofiles did not differ much from the blots of the wild 

type Arabidopsis extracts using the same antibody. 

 

The immuno dot blots using JIM5 demonstrated the presence of short 

stretches of contiguous GalA residues in the chelator/phosphate extracts of 

Arabidopsis salt tolerant cells which possibly were calcium-complexed. The 

profiles obtained showed stronger labelling during the exponential phase 

between days 2 to 5 (Fig. 5.4). The abundance of the JIM5 reactive epitope 

was more pronounced in the large highly branched fraction of the extracted 

pectin. This result fits with the reduction in the degree of methylesterification 

during the exponential phase, possibly through the action of PMEs.  

 
 

Days

1           2           3          4         5         6      7

Standard pectin 
DM (%)

34         69         89

JIM 7

1.0 µg

0.5 µg

0.5 µg

1.0 µg

JIM5

 Fig. 5.4 Immuno-dot assay of monoclonal antibody JIM7 and JIM5 
binding to the EDTA/phosphate buffer solubilised pectins from HHS 
Arabidopsis cells during the culture cycle. The results were 
reproducible in the extracts of two different cultures. 
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5.4.2 Immuno-Labelling of Arabidopsis cell walls with 
monoclonal antibodies  JIM7 and JIM5 

 
The signals resulting from JIM7 binding were found both in young thin walls 

formed just after cell division (white arrows), and in older thicker walls. Within 

one aggregate composed of several cells, a higher level of the signal was 

detected between neighbouring cells where a stronger adhesion seemed to 

prevail (yellow arrows), and in cell walls that surrounded aggregates and 

remained in direct contact with the environment (Fig. 5.5). The epitope is 

deposited in tricellular junctions developing between adjacent cells. 

 

The low ester HGs detected by the JIM5 antibody were deposited in the walls 

of salt tolerant Arabidopsis resin embedded cells. It seemed to exist in 

sporadic dot-like spots (Fig 5.6).  The labelling pattern indicated unevenness 

of distribution within cell walls of a cluster of cells. The JIM5 binding polymers 

appeared as irregular aggregates in some cells and in some wall areas. The 

level of labelling of the newly formed cells (white arrows) was less compared 

to the matured established primary cell walls. The label was distributed less 

homogeneously throughout a wall of a cell and the walls adjoining neighbour 

cells showed stronger signals (yellow arrow) compared to unadhered surfaces 

at the boundaries of cell clusters. The presence of JIM5 epitopes is thought to 

contribute to cell adhesion through Ca2+ cross-linking (Carpita & McCann 

2000). 
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Day 1 Day 3

 
 

Day 5 Day 7

 
 
Fig. 5.5 Immunolocalization of JIM7 recognized epitopes in resin 
embedded sections of HHS Arabidopsis cells in days 1,3,5, and 7. 
Colored arrows were used to indicate strength of the signal; yellow to 
label adhesion between neighbouring cells and white to label newly 
formed young cell walls. Scale bar representing 10 µm. 
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Day 1 Day 3

 
 
 

Day 5 Day 7

 
Fig. 5.6 Immunolocalization of JIM5 recognized epitopes in resin 
embedded sections of HHS Arabidopsis cells in days 1,3,5, and 7. 
Colored arrows were used to indicate strength of the signal; yellow to 
label adhesion between neighbouring cells, white to label newly formed 
young cell walls and blue to label the unadhered surfaces of cells in 
clusters. Scale bar representing 10 µm. 
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5.4.3 Immuno-Labelling of Arabidopsis cell walls with 
monoclonal antibody LM7 and 2F4 

 
The epitope recognized by LM7 was observed in the immunodot labelling of 

EDTA/ phosphate extracts from salt tolerant Arabidopsis cells (fig 5.7). A 

slight increase in the strength of the reaction was noticed as the cells 

proceeded through the culture cycle. Again, the epitope seemed to prevail in 

the two pectic extracts though was more pronounced in the central dot of 

more branched large fraction of the extract. The trials of the immuno in muro 

localization of the LM7 reactive epitope in the sections of the embedded cells 

of HHS cell line failed to detect the presence of the epitope. This observation 

is in agreement with previous studies referring to the instability, lability and 

loss of this epitope during the preparation of the tested plant material (Willats 

et al., 2001c). The HG microdomain detected by the monoclonal antibody 

LM7 was reported to occur specifically at the junction zones between 

separated and adhered cell walls during intercellular space formation in 

parenchyma systems (Willats et al. 2001c).  

 
The 2F4 monoclonal antibody recognizes only pectic polysaccharides of low 

ester content (DM < 30%) that possess oligomers of at least 9 GalA able to 

form calcium dimers inducing intermolecular associations (Liners et al. 1992). 

This epitope was not detected in the tested resin embedded cells possibly due 

to the absence of the epitope and/or conformational change in the GalA 

chains during the processing of the sample. 
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Days 

1         2          3          4         5         6          7

Standard pectin 
DM(%)

34            69         89

0.5 µg

1.0 µg

 
Fig. 5.7 Immuno-dot assay of monoclonal antibody LM7 binding to the 
EDTA/phosphate buffer solubilised pectins from HHS Arabidopsis cells 
during the culture cycle. The results were reproducible in the extracts of 
two different cultures. 
 
 
  

5.5 Distribution of Rhamnogalacturonan I-associated 
Epitopes. 

 
The location of RG-I associated epitopes were investigated using anti-

arabinan and anti-galactan monoclonal antibodies. LM5 recognizes an 

epitope of four residues of (1  4)-ß-D-galactan (Jones et al., 1997), and LM6 

recognizes five residues of (1  5)-α -L-arabinan (Willats et al., 1998). Control 

samples showed a complete lack of staining and no fluorescence signal 

 
 

5.5.1 Binding of monoclonal antibody LM5 and LM6 to the 
extracted pectins 

 
The immunoprofiles shown in Fig. 5.8 suggests that the EDTA/phosphate 

extracts were rich in epitopes that bind the two anti-pectin antibodies, LM5 

and LM6. The (1  4)-ß-D-galactan and (1  5)-α -L-arabinan mainly 

belonging to RGI side chains were mostly detected in the large highly 

branched fraction of the extracted pectin. No significant differences in the 

levels of the LM5 and LM6 epitopes were detected during the culture cycle, 

although a slight reduction in the strength of the signal for LM6 epitope was 

observed on days 6 and 7. In wild type Arabidopsis, LM6 epitopes were 

detected and appeared to be more abundant in the pectic extracts. The 
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results obtained may indicate the presence of a RG-I of a higher degree of 

branching with more galactan side chains, which possibly is playing a role in 

the adaptation of the cell walls to 300 mM NaCl. 

 

Standard pectins 
DM (%)

34          65        89

Days

1          2         3        4         5        6         7

LM6

LM5

0.5 µg

1.0 µg

0.5 µg

1.0 µg

 
 
Fig. 5.8 Immuno-dot assay of monoclonal antibody LM5 and LM6 
binding to the EDTA/phosphate buffer solubilised pectins from HHS 
Arabidopsis cells during the culture cycle. The results were 
reproducible in the extracts of two different cultures. 
 
 
 

5.5.2 Immuno-Labelling of Arabidopsis cell walls with 
monoclonal antibody LM5 

 
Surprisingly, the salt tolerant embedded cells displayed detectable amounts of 

the LM5 reactive epitope mainly at the external surfaces of cell clusters facing 

the culture media,  and through out the primary cell walls of single cells and 

small aggregates (Fig. 5.9). Mainly, the galactan epitopes were scarce and 

less abundant in the middle lamellae; however, the epitope could be located 

in few cell junctions as in Day 3.  
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Day 1 Day 3

 
Day 5 Day 7

 
Fig. 5.9 Immunolocalization of LM5 recognized epitopes in resin 
embedded sections of HHS Arabidopsis cells in days 1, 3, 5, and 7. 
Colored arrows were used to indicate strength of the signal; yellow to 
label adhesion between neighbouring cells and white to label newly 
formed young cell walls. Scale bar representing 10 µm.  
 

 

5.5.3 Immuno-Labelling of Arabidopsis cell walls with 
monoclonal antibody LM6 

 

The monoclonal anti-arabinan LM6 antibody could detect the presence of 

arabinose rich domains throughout the primary cell walls of the embedded 

suspension cells of Arabidopsis habituated to 300mM NaCl (Fig. 5.10. The 

distribution of (1  5)-α -L-arabinan was similar to that described for wild type 

Arabidopsis. The (1→5)-α-arabinan epitope was more abundant in older walls 
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and middle lamellae (yellow arrows) than in newly formed ones (white 

arrows).  

Day 1 Day 3

 
 

Day 5 Day 7

 
Fig. 5.10 Immunolocalization of LM6 recognized epitopes in resin 
embedded sections of HHS Arabidopsis cells in days 1, 3, 5, and 7. 
Colored arrows were used to indicate strength of the signal; yellow to 
label adhesion between neighbouring cells and white to label newly 
formed young cell walls. Scale bar representing 10 µm.  
 

 

5.6  Discussion 
 

Plant cell walls are dynamic entities that determine the morphology, growth, 

and development of plants. They form the borders between the plants and 

their environment and a site of communication through their structural and 

chemical adaptations. The HHS cell line Arabidopsis thaliana can tolerate over 

300 mM NaCl while the non-habituated cultures do not survive in more than 
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80 mM. The growth curve showed that the packed cell volume (PCV) rapidly 

increased during the exponential phase between days 2 to 6 after 

subculturing, and then entered a phase of much slower growth on day 7. The 

HHS suspension cells were highly aggregated into large clusters.  

 

The total EDTA-phosphate buffer is known to bring the water soluble loosely 

interacting polymers and calcium-interacting pectin into solution (Leboeuf et 

al., 2004). The increase in the amounts of the extracted pectins during the 

culture cycle could be related to the continuous biosynthesis of highly 

methylated pectic polysaccharides as a result of division and growth of cells 

(Willats et al., 2001), in addition to the ongoing demethylation of cell wall 

pectins by the action of pectin methylesterase (PME), which were 

subsequently complexed with Ca2+ to each other and thus becoming 

extractable by EDTA (Jarvis et al., 2003). The EDTA/phosphates extracts of 

the salt habituated cultures contained sugar levels close to those detected in 

the extracts of the non-habituated wild type cells, although the packed cell 

volume was much less. This could reflect the enrichment in the absolute 

amount of loosely bound pectic polysaccharides as the culture proceeded 

through its cycle. The total uronic acid fraction constituted 35% of the total 

pectic extracts during the early phase of active cell division, and increased up 

to 68% of the EDTA extract at day 6. Previous studies demonstrated the 

increase in total uronic acid exposed to different types of abiotic stress, for 

example, the total uronic acid content increased in cotton roots exposed to 

150mM NaCl (Zhang and Lauchli, 1993). The proportion of total esters in 

walls of Arabidopsis salt habituated cells was 52% on day 2 at the early 

exponential phase and dropped to 35% at day 7. The decrease in the degree 

of methylesterification of the extracted pectin probably resulted from an in 

muro enzymatic de-esterification of GalA residues catalysed by PME. High 

salt concentration up to 300mM and 500 mM NaCl concentrations resulted in 

an increase in the in vitro activity of pectin esterase enzyme extracted from 

the cell walls of Suaeda maritima leaves and etiolated hypocotyls of Vigna 

radiata (Thiyagarajah et al., 1996).  
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The EDTA/phosphate extract of salt habituated Arabidopsis cells resolved into 

two discrete components when probed with JIM5, JIM7 and LM7, indicating 

that the HG epitopes were present in at least two distinct pectic components.  

Using immuno dot labelling of EDTA fractions, both of JIM5 and JIM7 

recognizable epitopes were detected. The signal was more concentrated in 

the central dots, reflecting their abundance in the large immobile highly 

branched fraction of the extracted pectin, however, the highly methylesterified 

fraction constituted a higher proportion of the extract. The profile obtained 

suggests that the JIM5 epitope was increasing during the exponential phase 

(days 2 to 6) and decreased on days 6 and 7 when the degree of methyl-

esterification reached 35%. The 2F4 antibody failed to detect the presence of 

calcium-associated homogalacturonan. The epitope recognized by LM7 was 

detected in small amounts that increase slightly towards the end of the culture 

cycle. The detection of LM7 epitope reflects the presence of non blockwise 

deesterified residues on the extracted HG fraction. A similar labelling pattern 

was observed in the immuno blots of pectic extracts of non-habituated wild 

type Arabidopsis probed with JIM7. A high level of esterification makes pectin 

unable to form rigid egg box structures through Ca2+ bridges, making the cell 

walls potentially flexible.  

 

The immunoprofiles of pectin probed with JIM5 and JIM7 were 

complementary to the in situ histochemical immunolocalization of their 

epitopes.  The embedded cells probed with JIM5 showed the presence of the 

epitope in discrete micro-domains as localized dot like structures through all 

the boundaries of the cells.  The epitope was clearly visible between adjacent 

cells. The immunofluorescent labelling of embedded cells using JIM7 showed 

that the primary cell walls, middle lamellae and intercellular junctions are rich 

in the highly methylesterified HG.  

 

The antibody reactions in immuno dot assays directed against RG-I side 

chains indicated the presence of high levels of arabinan and galactan mostly 

attached to the immobile large highly branched fraction of the extracted 

pectins.  The LM5 binding was greater in the salt adapted cells compared to 

the wild type, possibly due to the increased accessibility of the antibody to the 
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epitope, as a result of some conformational changes because of the reduction 

in the degree of methylesterification. The restricted occurrence of the LM5 

epitope at the primary cell walls located at the interface between the cells 

living in large clusters and the surrounding medium appears to be a marker 

for the increased tolerance of the cells to the high salt concentration. This 

epitope did not seem to be significantly involved in the intercellular adhesion 

between cells in a cluster.  Higher levels of EDTA/Phosphate extract labelling 

was observed using LM5 in the bean cell suspensions habituated to 0.3 µM 

dichlobenil (Garcia-Angulo, et al., 2006). Intense signals were found in the 

primary cell walls of the resin embedded cells after the immuno reaction with 

the LM6 antibody, and the epitope was detected in the intercellular spaces 

and middle lamellae. Similar results were recorded in the non-habituated 

Arabidopsis embedded cells.   

 

Studies involving Nicotiana tabacum suspension cultures adapted to 428mM 

NaCl revealed that the total amount of cell wall content was almost the half 

the cell wall content of unadapted cultures, the EDTA extracted pectins 

contained higher proportions of loosely bound uronic acids and 

rhamnogalcturonan, and rhamnose units of RG-I were more highly substituted 

with polymers containing arabinose and galactose (Iraki et al., 1989a, b, c). In 

Aster tripolium adapted to 260mM NaCl, the pectic network contained 

elevated levels of arabinose and less galacturonic acid content, which was 

highly methylesterified allowing an easy expansion and enlargement of cell 

walls (Binet, 1985). 

 

The above biochemical and immunocytochemical analyses showed that the 

 EDTA/buffer solubilised pectic sugars of Arabidopsis habituated to 300mM 

NaCl (HHS cell line) generally conformed to the pattern found in non-

habituated Arabidopsis suspension cells. The HG domain is made up of a 

mixture of highly and low methylesterified micro-domains favouring the 

abundance of highly methylesterified GalA residues in which the hydrogen 

bond and hydrophobic interactions between the methoxy groups are involved 

in cell-cell adhesion. It seems that the roles of calcium associated pectin 

dimers are relatively insignificant in maintaining the adhesion between the 
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cells, although a set of JIM 5 reactive antigens were located between 

neighbouring cells suggesting the presence of unesterified micro domains that 

may be involved in the establishment of Ca2+ associated interactions. It seems 

that the primary cell wall is enriched with loosely bound RG-I carrying side 

chains of (1→4)-β-galactan and (1→5)-α-L-arabinan, with more galactan 

relative to arabinan in salt adapted cells compared to wild-type. The presence 

of galactan and arabinan could enable the cells to withstand the salinity that 

was imposed in the culture media. It has been shown that arabinan polymers 

act as plasticizers, increasing cell wall flexibility and diminishing strong 

interactions between homogalacturonan chains in pectin (Jones et al., 2003). 

Future studies involving the molecular biology and the expression patterns of 

pectin methylesterase could reveal the impact of salinity on the different PME 

isoforms annotated to occur during the cell cycle.  

 

As a conclusion, the obtained data are showing that the cell walls and middle 

lamellae of Arabidopsis suspensions habituated to high salts, seemed to show 

an increase in the level of adhesion between cells in clumps, as a result of 

increase in the level of the random methyl esterification of HG detected by the 

monoclonal antibody LM7 in the phosphate/chelator extracts, along with the 

increased branching of the rhamnogalacturonan-I polymers.  
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Dicotyledonous plants generally contain cell walls with about one-third each of 

cellulose, hemicellulose, and pectin components (Brett and Waldron, 1996).  

Pectins are established as adhesion molecules in somatic cells, reproductive 

tissues and transmitting tracts of pistils. After the deposition at the cell plate 

during cell division and later at the primary cell wall, high methylesterified 

homogalacturonan domains produced by the endomembrane system undergo 

several modulations in the pattern and degree of methylesterification.  The 

pectin methylesterases are responsible for the removal of methylesters in 

diverse patterns. Although rice contains about two fold more genes than 

Arabidopsis, it has 55 genes encoding pectin methylesterase (PME) while 

Arabidopsis genome contains 66 genes (Yokoyama and Nishitani, 2004). The 

size of the gene family encoding PMEs in Arabidopsis reflects the importance, 

diversity and complexity of the biological processes in which the gene family 

is involved. So far, the presence of the PME multi-gene family has limited the 

progress in the study of the function of single PME genes (Brummell and 

Harpster, 2001). Pectin methylesterases are members of the plant esterases 

family which were reported to contribute to cell wall construction and 

modulation (Willats et al., 2001a, b and c). Esterases could serve as a marker 

of organism development and growth of tissues and cell suspension cultures. 

When a cell was dying or had been damaged, the activity of these enzymes 

was decreasing or non existent (Vίtećek et al., 2004). Pectin esterase 

(U227174) was one of the cell wall carbohydrate hydrolases that were 

induced upon salt treatment of tomato seeds (Zhou et al., 2007).  

 

As rapidly dividing cells are limited in whole plants and are often difficult to 

manipulate (Pathirana and Eason, 2006), synchronized Arabidopsis 

suspension cultures were assessed as a model to approach the HG role in 

the adhesion of cells living in suspensions without the complications of 

development and differentiation. The first part of the project aimed at 

characterising the changes in the HG fraction in the middle lamellae during 

the culture cycle. Then, once a reasonably reproducible synchrony was 

achieved, the changes in the levels of PME transcripts along with the 

biochemical and imunohistochemical data were used to refine the impact of 

PME genes on the onset of adhesion through the cell cycle, and the 
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development of cellular junctions and intercellular spaces as the culture 

proceeded through its cycle.  

 

The growth of Arabidopsis suspension cultures of both the high salt 

habituated HHS and non-habituated cell lines followed a classical growth 

curve, which clearly showed the active reproduction phase to last between 

days 2 and 6, followed by reduced or zero growth 7 days after subculturing. 

Only viable cells could contribute to the linear increase in the packed cell 

volume during the exponential phase. Regardless of the osmolarity of the 

growth medium, Arabidopsis cells growing in a suspension tend to grow as 

individual cells and in aggregates of variable sizes due to the non-separation 

and adhesion between daughter cells during cytokinesis. However, salt 

habituated cultures were clumpier and cell clusters were of larger size.  

 

The extracellular matrix of cells growing in a suspension culture is typically 

present as primary cell walls. The middle lamellae are pectin rich and 

microfibril-free, and are widely considered to play a key role in cell-cell 

adhesion (Jarvis et al., 2003). A compositional analysis of the EDTA extract 

from normal cells showed that it was rich in components characteristic of a 

mixture of HG, RG-I, and possibly xylogalacturonan (XGA) and xyloglucan. 

The UA fraction accounted for about 50 to 60% of the total extracted sugar 

during the culture cycle of non-habituated cells. However in the HHS cell line, 

the UA content increased from 35% on day 2 to 68% on day 6. The degree of 

methylesterification (DM %) of the pectic extracts in the normal non-

habituated cultures ranged between 40 to 60%. Recently, it was reported that 

the %DM limits cell growth, and that a minimum level of about 60% was 

required for normal cell elongation in Arabidopsis hypocotyls (Derbyshire et 

al., 2007). Accordingly, our wild type normal culture seemed to go through a 

process of cell elongation on day 6.  In contrast, in the salt habituated cells, 

the DM% went down from 52 to 35% during the active division phase 

suggesting a minimum number of cells undergoing elongation, possibly due to 

the increased levels of adhesion between the cells. The observed changes in 

the %DM of the EDTA extracts were in agreement with the results reported for 



 138

tobacco suspension cells; the DM% of NaCl adapted cells was less than the 

control un-adapted cells (McCann et al., 1994). 

    
The immunodot assay and immunolabelling techniques were used to have an 

overview of the changes in the pectic epitopes in the middle lamellae during 

the culture cycle. The JIM7 monoclonal antibody binds to pectin with DM % 

ranging between 15 -80% (Willats et al. 2000a and b).  The abundance of 

JIM7 recognized epitopes in the EDTA extracts could suggest roles for 

methylesterified pectins in maintaining the adhesion between the cells in 

clusters, possibly through hydrophobic interactions between methoxy groups 

and hydrogen bonds between un-dissociated carboxyl and secondary alcohol 

groups.  Highly esterified HGs do not form stiff gels and are thought to help 

the expanding walls to remain pliant (Cosgrove, 2005). A similar observation 

was recorded in other suspension cultures of tobacco and wild type 

Arabidopsis, where highly methylesterified pectins were abundant throughout 

the cell walls (Iwai et al., 2001; Leboeuf et al., 2005).    

 

In both salt habituated and non-habituated cells, lower levels of the JIM5 

recognised epitopes were detected. The JIM 5 antibody binds weakly to 

completely de-esterified pectin, and binding is greatly increased by the 

presence of methylesterified GalA residues up to a level of about 40% (Willats 

et al., 2000a and b).  The low-methoxyl homogalacturonan epitopes were 

detected in the middle lamellae, suggesting a possible connection via Ca+2 

bridges. However, 2F4 monoclonal antibody could not detect calcium-binding 

sites forming egg boxes, thus dismissing the idea of a strong role of Ca+2 

bound matrices in maintaining adhesion between cells. In an earlier report, 

2F4 labelling was observed at tri-cellular junctions of mature wild type 

Arabidopsis suspension cells (Leboeuf et al., 2005). The LM7 non-blockwise 

de-esterified HGs were shown to exist in the EDTA extracts from salt 

habituated cells, possibly playing a role in maintaining adhesion between cells 

in a cluster. They were almost undetectable in the pectic extracts of normal 

non-habituated cells. The occurrence of the LM7 epitope at the tricellular 

junctions and the corners of the intercellular spaces were associated with the 

capacity of cells to withstand stress and stability of cell adhesion level.  
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Compared to pectins of non-habituated cell, the EDTA/phosphate extracts of 

salt habituated cells seemed to be more branched and hairy as revealed by 

the immunoprofiles using LM5 and LM6. The Rhamnogalacturonan I (RG-I) of 

the salt habituated cells seemed to be more highly substituted with polymers 

containing galactose. The presence of galactan side chains have often been 

related with cell wall rigidity and with firmer textures of tissues and organs 

(McCartney et al., 2000; McCartney and Knox, 2002). Both cultures were rich 

in arabinose.  The high levels of arabinose residues were suggested to play a 

role in the intercellular attachment in the carrot embryogenic cultures, tobacco 

callus cells, and Arabidopsis suspension cultures (Satoh, 1998; Iwai et al., 

2001).  

 
It is at the cell plate that the initial cell adhesion events take place that result 

in formation of the primary wall between cells and the cementing middle 

lamella (Verma, 2001). Both the semiquantitative PCR analysis of cell cycle 

genes including CDKB2, CycD3 and H4, and the determination of mitotic 

index indicated that a reasonable synchrony was achieved by the aphidicolin 

block. The EDTA soluble sugars increased during cytokinesis, which could be 

related to the formation of pectin rich cell plate, the enrichment of the entire 

cell wall with pectin and /or changes in the parental cell walls. Similar data 

were reported previously in synchronous cultures of Catharanthus roseus 

(Amino et al., 1984). Higher levels of PME activity were observed during the 

cell cycle of the cultures of Catharanthus roseus (Liners and Van Cutsem, 

1992). 

 

According to antibody localization, strong reactions of both of low esterified 

JIM5 detected and highly methylesterified JIM7 detected HGs reflected the 

abundance of both epitopes during the cell cycle. However, only small 

amounts of the Golgi synthesized pectins reactive to the JIM7 antibody were 

located in the cell plates of maize root meristems ((Baluska et al., 2005). The 

internalization of HG pectins characterised by a low level (up to 40%) of 

methylesterification was reported in the meristematic cells of maize (Zea 

mays) and wheat (Triticum aestivum) root apices (Yu et al., 2002).  
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During the cell cycle, RG-I was increasingly substituted with arabinose while 

galactose was not detected. In carrot root apices, the actively dividing cells of 

the meristems contain high levels of (1→5)-α-arabinan. When carrot 

suspension culture cells were induced to elongate, the (1→5)-α-arabinan 

epitope was depleted from the cell walls of proliferating cells (Willats et al., 

1999b).  By contrast, the cell proliferation zones in Arabidopsis root apices 

lack the (1→5)-α-arabinan epitope. It was more abundant in elongated cells 

and occasionally at the root caps (Willats et al., 2001a).  

 
 
The cell cycle related PMEs shared similarity with other identified PMEs like 

AtPME3 (At3g14310: Micheli et al., 1998), AtPMEI-1 and AtPMEI-2 

(At3g17220, At1g48020 respectively: Raiola et al., 2004) and AcPMEI 

(Scognamiglio et al., 2003). The amino acid residues at the active site are 

highly conserved; two aspartic acids, arginine, two glutamines ad most of the 

aromatic acids lining the active site cleft. A phylogenetic analysis of the cell 

cycle related PME isoforms clearly distinguishes type I from type II genes.  

The results suggested that At4g12390 might function as an invertase inhibitor 

as it groups with the functionally characterized tobacco invertase inhibitor. 

The observed similarity of the N-terminal extension of At4g02330, At1g02810, 

At2g26440 and At2g47550 PME isoforms with PMEI supports the suggested 

inhibitory role of the PME pro-peptide region.  

 

Transcript profiling shows that the expressions of many PMEs were 

fluctuating in the cell cycle and between the different synchronizations.   

Although no decisive conclusion could be drawn on the role of a particular 

isoform, the At5g47500 encoded isoform showed more reproducibility 

compared to the other cell cycle related PMEs. The levels of its messenger 

RNA (mRNA) were examined by Northern blot analysis. The expression levels 

of this gene were reduced during the S and G2 phase and increased again 

during the M and subsequent G1 phase. The detected degree of 

methylesterification of the extracted pectin increased slightly during the cell 

cycle ranging between 28 to 38%. However, pectins are thought to be 

deposited in a highly methylesterified form almost 75 to 80%, so it seems that 
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there is a rapid  demethylation as the Golgi derived vesicles are docking their 

cargo at the growing cell plate.  

 

As a summary, the results of the present work suggest that due to the lack of 

the tensile forces favouring the formation of intercellular spaces in growing 

seedlings, the cells of the wild type Arabidopsis suspension culture did not 

show appreciable presence of intercellular spaces, and tended to deposit 

highly methylesterified HG rich pectic network in primary cell walls, middle 

lamellae and cellular junctions which may play a role in the adhesion between 

cells possibly by forming hydrogen bridges and hydrophobic interactions. 

Calcium mediated cross linking of HG appears to play a minor role in the 

establishment of the adhesions between cells in clumps. The abundance of 

arabinan reflected the proliferating state of cells. However in the HHS 

Arabidopsis salt tolerant cell line, intercellular spaces were scarce, and the 

pectic network of cell walls, middle lamellae and cellular junctions appeared to 

contain higher levels of low esterified pectins possibly indicating a stronger 

role for calcium bridges maintaining the adhesion between the cells. The 

rhamnogalacturonan is highly branched decorated with galactan, arabinan 

and arabinogalactan possibly as a response to osmotic stress.  Out of  the 

five putative cell cycle expressed PMEs, only At5g47500 encoding a type I 

PME showed  a systemic consistency in its expression during M phase,  

possibly attributing to the deesterification of the pectins as they are laid down 

in the site of developing cell plate.  

 

Although the expression profiles do provide useful starting points some further 

work is needed to elucidate the substrate specifity, product and physiological 

role of At5g47500. Future work could involve knocking out the At5g47500 

gene, synchronize salt tolerant Arabidopsis and study the expression of the 

PME isoforms in cells adapted to living in high osmolarity.   
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