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ABSTRACT 

 

CONICAL ORBITAL MECHANICS: 

A REWORK OF CLASSIC ORBIT TRANSFER MECHANICS 

Cian A. Branco 

Old Dominion University, 2020 

Director: Brett Newman 

 Simple orbital maneuvers obeying Kepler’s Laws, when taken with respect to Newton’s 

framework, require considerable time and effort to interpret and understand. Instead of a purely 

mathematical approach relying on the governing relations, a graphical geometric conceptual 

representation provides a useful alternative to the physical realities of orbits. Conic sections 

utilized within the full scope of a modified cone (frustum) were employed to demonstrate and 

develop a geometric approach to elliptical orbit transformations. The geometric model in-question 

utilizes the rotation of a plane intersecting the orbital frustum at some angle β (and the change in 

this angle) in a novel approach to analyze and develop two-body elliptical orbital transformations. 

Beginning with simple algebraic concepts such as Newton’s Second Law and the total specific 

orbital energy equation, equations combining two-body concepts with more general, Newtonian 

physics are explored; several equations relating eccentricity directly to a change in orbital energy 

are developed and applied; and conclusions regarding their importance and usefulness are drawn. 

Orbital energy exchange, eccentricity, and orbital shape from both inertial and non-inertial 

perspectives have been developed. Visualizations of transformations are presented throughout to 

aid in comprehension and clarity. Finally, efficacy of the model, extensions to non-stable orbits, 

and accuracy and precision with example calculations have been outlined in the Appendices.  
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CHAPTER 1 

INTRODUCTION 

        

1.1 Overview 

 Modern engineering practice in the instruction of orbital mechanics constitutes an ersatz 

mix of concepts, frameworks, approaches, and paradigms that are at times needlessly obtuse and 

opaque. Kepler’s Laws, when examined with respect to Newtonian mechanics, quickly become a 

complex soup of ideas that require considerable time and effort to grasp. Even simple orbital 

maneuvers such as raising its apsis are often reduced to rows of equations with little regard to what 

the spacecraft is actually doing. Such an approach need not be standard and would benefit 

immensely with an injection of new concepts.  

 The idea of the conic section is fundamental to Keplerian orbital mechanics. In 1605, 

Kepler1 realized that the orbit of Mars was in the shape of an ellipse, a conic section. From this 

discovery, he rapidly concluded that, in fact, any regular orbit about a large mass in space is an 

ellipse. This concept is fundamentally understood within the realm of orbital mechanics, but the 

conic itself, the concept of a plane bisecting a cone, is quickly dropped in favor of pure 

mathematical solutions to Newtonian and Keplerian orbital paths. This view is a mistake; 

discarding the cone completely ignores the usefulness of the underlying geometry for those with 

and without experience in orbital mechanics alike.  

 Within this thesis is discussed a new synthesis of ideas implicit in current orbital 

mechanics: Conical Orbital Mechanics, often shortened to just Conical Mechanics or just Conic 

Mechanics. While not new in topic, it offers a different, geometric approach to orbital maneuvers. 

The focus is kept firmly on stable orbital cases to build the best foundation of understanding and 
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provide background in concepts already well-understood. Basic maneuvers and transformations 

are highlighted as well as the unique ability of Conical Mechanics to demonstrate elliptical orbit 

transformations, a topic Keplerian mechanics often struggles to explain clearly. Limitations to the 

model are well defined alongside areas of further research. Finally, several examples are presented 

for review and proof of concept including error comparisons to existing methodologies. 

1.2 Literature Review 

 As a topic area for general research, a conical basis for elliptic orbit transformations is a 

subject that has little to no background. The areas of orbital transformation and orientation are well 

established across countless texts but use of a cone as an underpinning idea is essentially non-

existent. As-such, a thorough review of existing literature on the subject in a traditional style is 

almost impossible. Instead, the current approaches for orbital transformations as well as the 

physical basis for the potential energy perspective are reviewed, to further highlight the complexity 

existent in the topic at present.  

 Two books in particular, both Dover publications, are the main areas of review: these are 

Fundamentals of Astrodynamics by Bate, Mueller, and White2; and Introduction to Space 

Dynamics by William T. Thomson3. Each was only referenced cursorily throughout the 

development of this thesis, mainly for basic equations, but both are invaluable for development of 

higher-order, multi-body problems, trajectory analysis, and a better understanding of spacecraft 

maneuvering. That being said, they are also representative of the current paradigm for orbital 

mechanics instruction: dense, difficult, and requiring considerable contemplation to fully grasp 

and appreciate.  
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 Introduction to Space Dynamics3 devotes considerable effort toward a vector-based 

analysis of the two-body problem. Firmly rooted in classical dynamics, Thomson’s approach 

begins with the establishment of several coordinate systems and makes extensive use of them 

through the entire process of formalizing both orbital paths and transformations. The two-body 

problem is given roughly two pages of coverage, framing it as Newton did, and proceeding to 

develop much of the rest of the chapter (Chapter 4) from it. While certainly a fantastic reference 

for the dynamics of spacecraft (heavy emphasis on the dynamics), and certainly in good company 

with Meriam4, its usefulness as an introductory course is arguable.  

 Contrasting Introduction to Space Dynamics is Fundamentals of Astrodynamics2 which 

takes considerable time to develop the conic as a concept, even if its execution does not quite fully 

utilize the cone. Providing both historical basis, practical applications, and adjacent subject areas 

(tracking, launch angles, etc.), Fundamentals is a more practical book, even if it lacks some of the 

depth present in Introduction. Further, Figure 1.5-2 on page 22 does show a classic, double-cone 

conic diagram from which the orbital shapes are highlighted. Of course, the authors still drop the 

cone as soon as it is mentioned in favor of pure mathematical equations, so the reference can only 

be taken so far. Finally, many of the fundamental equations from literature utilized in Chapters 3 

and 4 can also be found in Fundamentals, highlighting again its immediate utility despite its 

shortcomings in the context of this thesis.  

1.3 Problem Statement 

Classic orbital mechanics relies on several paradigms to simplify orbital maneuvers and 

provide a better understanding of planetary motion, nominally known as Kepler’s Laws. Together, 

they describe very well the general systems of orbit that can be observed in space. Newton’s Laws 

of gravitation and motion can be added to this framework to develop a very accurate model for 



   

 

4 

planetary orbital determination. Within this theoretical structure, the concept of the two-body 

problem, specifically Kepler orbits, can be developed and explored. This concept has been 

examined extensively in the literature and an exhaustive elaboration will not be given here, but 

some brief discussion in terms of its limits provides context for the purpose of this thesis. 

Kepler orbits as a model of the classic two-body problem are subject to a few limitations. 

First, all Kepler orbits are regular, which is to say they represent standard conic sections as 

understood within classic geometry: circle, ellipse, parabola, and hyperbola. Unconventional 

orbital shapes or continuously varying orbital parameters quickly complicate Keplerian 

mathematics, and the model is most coherent when the orbits adhere to regular intervals. Second, 

transformations between orbital shapes require that the impulse or requisite change in velocity 

occurs over a very small, impulsive time interval relative to the total orbital period, nearly 

instantaneous. While this assumption holds up very well for conventional chemical propulsion 

systems, it rapidly degenerates as impulse period grows, or impulse force becomes very small. 

This breakdown has not been a serious problem thus far as most orbital maneuvers are 

continuously simulated for higher precision anyway, but many of these techniques are beyond the 

scope of the two-body framework leaving something to be desired in their execution for 

understanding and completeness sake. Finally, Kepler orbits, while predicated entirely on conic 

sections, makes no use of the eponymous cone basis. While an esoteric idea, the lack of a cone is 

still a fundamental gap in the way this system is often explored and utilized. 

The deficiencies are addressed within the scope of this thesis in an effort to better develop, 

reinforce, and demonstrate a geometric approach to transformations of elliptical orbits based on 

an analytic conic theory. Each step in the construction of the Conical Mechanics will deal with an 

explicit concept of the conical transform, starting with framing, and guiding through model 
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formulation so at the conclusion the full scope of the two-body conical transform may be 

completely utilized. 

1.4 Outline 

Chapter 2 is a brief review of elliptical conic sections as they relate to formulation and 

transformation between types of coordinate systems. In it, the three classic formulations of 

elliptical conic sections are outlined in addition to setting up the cone implicit in the conic sections, 

establishing a framing system that is utilized in later chapters. Chapter 3 formalizes the boundary 

conditions for the model and elaborates on how the model departs from the conic framework 

devised in Chapter 2. In addition, Chapter 3 introduces the relationship between cone height and 

specific orbital potential energy, which is essential to the later formulations. Chapter 3 also 

stipulates the two perspectives in evaluating a spacecraft using the conic transformation: the 

inertial and non-inertial frames. Chapter 4 begins outlining the numerical work-up of the conic 

transforms from an inertial perspective. The relationship between the conic transformation angle, 

β, eccentricity, and specific potential energy is introduced and developed. Chapter 4 also outlines 

typical stable obit transformations in the energy-height framework. 

 Chapter 5 builds on the Chapter 4 development moving into the non-inertial frame. Energy-

impulse relationships are enumerated, and proper, vehicle-centered orientation is discussed. 

Chapter 5 also includes a formal definition of the conic transformation angle rate of change, 𝛽̇, as 

a differential relation between plane angle and specific orbital energy. Finally, Chapter 5 discusses 

how the conical framework can be integrated with delta-v for maneuver planning. Chapter 6 

concludes with a summarization of the development as well as identifying remaining work and 

limitations to the model. Appendices are included for completeness sake. Appendix I explores how 

the model may handle unstable orbits initially. Appendix II presents examples of how the conic 
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model compares to established methodologies for evaluating the two-body problem. Finally, 

Appendix III contains the MATLAB code used to generate some of the figures contained in the 

document.  
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CHAPTER 2 

REVIEW OF CONIC SECTIONS 

 

2.1 Overview 

 With such a strong focus on the concept of the conic section, a brief but thorough review 

of their scope and mathematical underpinnings will provide context for the discussion going 

forward. The nature of the conic section has been known since antiquity, and its utility is a well-

understood part of elementary and secondary mathematical education. Most existing discourse on 

conic sections concerns itself with how a three-dimensional, right, circular cone interacts with a 

two-dimensional coordinate plane, nominally the bisecting plane that generates the conic section. 

This understanding, while well suited to basic math and the path of an orbiting spacecraft, finds 

some important relationships beyond just the path in the context of Conic Mechanics; this 

development is discussed later (Chapter 4). For now, discussion will be confined to a general 

discourse on the existing understanding of conics, specifically ellipses which are of particular 

importance to this thesis. The nature of these curves, how they transform, and the different 

approaches to formulating and quantifying ellipses are all covered. 

2.2 Three-Dimensional Conic Section Fundamentals  

An ellipse is formed when a right cone is fully bisected by a plane so long as that plane 

does not intersect the base of the cone. A circle is a special type of ellipse, formed when the plane 

is parallel to the base of the cone; at any other angle (up to a critical value), the plane will create a 

true ellipse. Examining the points where the plane and outer surface of the cone intersect creates 

either the elliptical or circular curve.  
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Figure 2-1a illustrates this geometry; it was generated following Figure 8.39 on page 547 

of Calculus and Analytical Geometry by Thomas5. Here, a sphere, inscribed tangent to the cone, 

also acts to generate the tangent point with the upper plane. The intersect between the upper, 

tangent plane, and the cone is the ellipse in question. Thomas5 goes into greater detail on the three-

dimensional, directrix-based derivation of eccentricity using this figure, but that is not a 

consideration in this study. Another helpful source of information on conic geometry was Hass, 

Weir, and G. Thomas6. 

From Figure 2-1a, a relatively shallow angle produces an ellipse that is nearly circular in 

shape. As the angle between the two planes increases, the ellipse changes shape, distorting 

considerably from the original circular shape. At a critical angle, the ellipse becomes another type 

Figure 2-1a Geometric Elliptical Definition 
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of conic section; the parabola, which serves as a boundary case between ellipses (closed-form 

conic sections) and hyperbolas (open-form conic sections). While parabolas and hyperbolas are 

not considered in the main body of this thesis, some thought is given to their utility within Conic 

Mechanics which is briefly addressed in Appendix I. Discussion will instead proceed with proper 

orientation of the ellipse and different systems of analysis.  

2.3 Elliptical Coordinate Systems 

To properly analyze an ellipse, a consistent coordinate system was essential. The cone itself 

served as the fixed reference for the rest of the analysis. The origin will be fixed as the tip of the 

cone, with the invariant X, Y, and Z axes extending from it.  X and Y are fixed parallel to the cone 

base-plane, while the Z axis is coincident with the cone centerline axis. Figure 2-1b illuminates 

this representation. 

 
Figure 2-1b Geometric Elliptical Definition with Axes 
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Note that initial orientation of the cone and invariant axes now becomes arbitrary. The 

classic methods of analysis can be employed by simply rotating these axes so that the new vertical 

axis is normal to the point-of-view of the observer, revealing a typical ellipse (Figure 2-2). 

Specifically, if axes x, y and z are initially aligned with the invariable Y, -X, and Z, and then are 

rotated about the negative X axis by some amount θ so that z is normal to the bisecting plane, then 

the relations between the two frames are as follows: 

𝑥 = 𝑌 cos 𝜃 − 𝑍 sin 𝜃 

𝑦 = −𝑋 

𝑧 = 𝑌 sin 𝜃 + 𝑍 cos 𝜃 

 

  

Figure 2-2 is composed of many different parts, each of which is described below; some 

familiarity with the function of each of the parts of the ellipse is assumed herein. The main 

dimension of the ellipse is defined by the semi-major axis, 𝑎, and the focal length, 𝑐. Both 

dimensions, with respect to the origin, 𝑂, are used together to define the eccentricity of the ellipse 

Figure 2-2 Typical Ellipse 

𝑐 

 

𝑎 

𝐹1 

 

𝐹2 

 

𝑟2 
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 𝑜 

𝑃 (𝑥, 𝑦) 
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(more on this in Section 2.4 and Chapter 3). Focal length also describes the position of the foci, F1 

and F2, with respect to the centered origin. The radius from each of the foci ultimately defines the 

position, 𝑃(𝑥, 𝑦), on the elliptical path within a geometric coordinate system. These radii can also 

be used to convert from geometric to algebraic (or Cartesian) coordinate systems with relative 

ease. This conversion is also elaborated upon in Section 2.4.  

Figure 2-2 will be important throughout this thesis and serves as the fundamental basis for 

how the cone is reincorporated herein. Elliptic path coordinate system conversions and their 

significance is covered next. Since the central theme of this thesis is conversion from typical 

Kepler coordinates to a more geometric, conic system, reviewing the mathematical fundamentals 

within the simple scope of the ellipse is essential. 

2.4 Coordinate System Conversions 

An algebraic analysis is the most familiar approach to analyzing ellipses, having been 

covered thoroughly in the pre-calculus and calculus segments of a standard engineering education. 

In this format, the ellipse is represented within a Cartesian coordinate plane: 

       
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1         (2-1) 

where a is equal to the semi-major axis length and b is the semi-minor axis length. Contrasting this 

is the geometric definition of an ellipse: 

       𝑟1 + 𝑟2 = 2𝑎                                              (2-2) 

In Equation (2-2), r1 and r2 refer to the distances from each focus of the ellipse to any given point 

on the curve of the ellipse, with r1 being equal to the shorter distance of the indicated position P, 

and r2 the longer distance. The length represented by the sum of the two distances is exactly equal 
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to twice the semi-major axis length, nominally the “width” of the ellipse. Note that r1 and r2 are 

generalized; depending on the absolute location of point P, their respective lengths vary.  

 Individually these equations describe the ellipse in very different ways, but they are still 

interconnected. An inspection of the nature of the ellipse even allows for the transformation of one 

into the other. Such a transform is predicated on the following generalization: for a given non-

circular ellipse, r1 and r2 will be equal if measuring to either end of the semi-minor axis, as shown 

in Figure 2-3. In this case:   

2𝑟1 = 2𝑎, 

𝑟1 = 𝑎 

With this relationship, a single quadrant of the ellipse is all that is needed to develop the 

generalization used to convert representation systems. 

 From Figure 2-3, it is clear that the relation for the semi-minor position can be reduced to 

a triangular problem, namely the relation between r1, the semi-minor axis length, b, and the focal 

length, c. Via Pythagoras; 

Figure 2-3 Quarter Section of an Ellipse 

𝑎 

𝑟1 

𝐹1 

𝑏 

𝑐 𝑂 
𝑋 

 

𝑌 
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𝑏2 + 𝑐2 = 𝑟1
2 

𝑟1 = 𝑎 

𝑏2 + 𝑐2 = 𝑎2 

⸫ 

       𝑐2 = 𝑎2 − 𝑏2         (2-3) 

 Equation (2-3) is the main generalization for ellipses: the square of the focal length is 

always equal to the square of the semi-major axis minus the square of the semi-minor axis. This 

relation is true regardless of ellipse shape and is critical for the subsequent analysis. With this in 

mind, an equivalence between the geometric and algebraic formulations can be derived. 

 Referring again to Figure 2-2, the absolute position P is determined from x and y 

coordinates. By rectifying r1 and r2 in terms of x and y, they can be combined with Equation (2-2) 

and simplified to yield Equation (2-1). First is a basic substitution: 

𝑟1
2 = (𝑥 − 𝑐)2 + 𝑦2,    𝑟2

2 = (𝑥 + 𝑐)2 + 𝑦2 

These values replace r1 and r2 in Equation (2-2). Some algebraic simplification follows: 

√[(𝑥 − 𝑐)2 + 𝑦2] + √[(𝑥 + 𝑐)2 + 𝑦2] = 2𝑎 

[(𝑥 + 𝑐)2 + 𝑦2] = 4𝑎2 − 4𝑎 [√(𝑥 − 𝑐)2 + 𝑦2] + [(𝑥 − 𝑐)2 + 𝑦2] 

(𝑥 + 𝑐)2 − (𝑥 − 𝑐)2 = 4𝑎2 − 4𝑎 [√(𝑥 − 𝑐)2 + 𝑦2] 

𝑐𝑥 − 𝑎2 = −𝑎 [√(𝑥 − 𝑐)2 + 𝑦2] 

𝑐2𝑥2 + 𝑎4 = 𝑎2𝑥2 + 𝑎2𝑐2 + 𝑎2𝑦2 

𝑎4 − 𝑎2𝑐2 = 𝑎2𝑥2 − 𝑐2𝑥2 + 𝑎2𝑦2 

Recall that 𝑏2 = 𝑎2 − 𝑐2 and substitute accordingly: 

𝑎2𝑏2 = 𝑥2𝑏2 + 𝑎2𝑦2 
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1 =
𝑥2

𝑎2
+

𝑦2

𝑏2
 

thus leading to the same relation as Equation (2-1). 

 

With just a little basic algebra, Equation (2-1) is converted back into Equation (2-2). While 

rather obtuse in execution, it nonetheless confirms that the geometric and algebraic perspectives 

are equivalent: learning one method allows for conversion to the other method and vice versa. 

However, there are three methods for analyzing ellipses. The conic form is a third form and is the 

approach used in later chapters; knowing how to convert to it is critically important. While it is 

possible to convert directly from geometric to conic, only the algebraic to conic conversion will 

be demonstrated for brevity, leaving an indirect but sufficient geometric-conic relation.  

To convert from algebraic to conic forms, two more generalizations of the ellipse are 

required: eccentricity, e: 

𝑒 =
𝑐

𝑎
 

and the distance d associated with the definition of the directrix of an ellipse: 

𝑑 ≡
𝑎2

𝑐
 

A directrix is defined as a line outside the area enclosed by the ellipse that provides a fixed 

reference location when examining points on the ellipse (see Figure 2-4). While the concept of the 

directrix is essential to understanding the other two major categories of conic sections (parabolas 

and hyperbolas), it is not generally introduced in discussion of ellipses because they can be defined 

more easily due to their closed paths. However, because eccentricity is a universal value applicable 

to any conic section, including the directrix is required for proper analysis and conversion. Note 
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that although Figure 2-4 shows a single directrix on the right side of the ellipse, there is another 

on the opposite side with the same distance from the origin.  

 

 

 

 

 

 

 

The directrix and eccentricity concepts are directly related in the conic definition of an 

ellipse:  

        𝑒 =
𝑟1

𝑑1
          (2-4) 

where r1 is again equal to the shorter, radial distance from the focus F1 to the indicated position P 

on the ellipse, and d1 is the distance from the directrix to that same point. Importantly, the values 

of d1 and d are not equal. The distance between the origin and the directrix, d, is constant for a 

given ellipse, while the distance from the directrix to a point on the ellipse, d1, varies depending 

on the actual point. Notably, the value of e is constant for a given ellipse and serves as an important 

parameter for the analysis of conic sections as a whole. This concept is discussed at length in 

Chapter 3 but should already be familiar to the reader. 

𝑐 

 

𝑎 

𝐹1 

 

𝐹2 

 

𝑟2 

 

𝑟1 

 𝑜 

 

𝑃 

 

𝑑 

 

𝑑1 

 

Figure 2-4 Ellipse with Directrix 
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Employing the definitions of the directrix and eccentricity along with Equation (2-4), 

conversion from algebraic to conic forms can begin. From Equation (2-1), some substitutions are 

made, recalling that 𝑏2 = 𝑎2 − 𝑐2 and 𝑒 =
𝑐

𝑎
 : 

1 =
𝑥2

𝑎2
+

𝑦2

𝑏2
 

𝑏2 =
𝑏2

𝑎2
𝑥2 + 𝑦2 

𝑎2 − 𝑐2 = [1 − 𝑒2]𝑥2 + 𝑦2 

Next, 𝑟1
2 = (𝑥 − 𝑐)2 + 𝑦2, or equivalently 𝑦2 = 𝑟1

2 − (𝑥 − 𝑐)2. Also, 𝑑 − 𝑑1 = 𝑥 and 𝑑 =
𝑎2

𝑐
 , 

so 𝑥 =
𝑎2

𝑐
− 𝑑1: 

𝑎2 − 𝑐2 = [1 − 𝑒2] (
𝑎2

𝑐
− 𝑑1)

2

+ 𝑟1
2 − (𝑥 − 𝑐)2 

Utilizing: 𝑒 =
𝑐

𝑎
, 𝑎𝑒 = 𝑐; thus 

1

𝑒
=

𝑎

𝑐
, after substituting and simplifying, the equation concludes 

with equivalence to the conic formulation. 

𝑎2 = 𝑟1
2 − 𝑎2 + 2𝑑1𝑎𝑒 − 𝑑1

2𝑒2 + 2𝑎2 − 2𝑑1𝑐 

2𝑎2 = 𝑟1
2 + 2𝑎2 − 𝑑1

2𝑒2 

(𝑒𝑑1)2 = 𝑟1
2 

        𝑒 =
𝑟1

𝑑1
          (2-4) 

Finally, Equation (2-4) evolves from the algebra, and the transformation from Cartesian to conic 

coordinates is concluded. Furthermore, the conversion above implies that the ratio of focal length 

to semi-major axis is exactly equal to the ratio of radius with respect to the directrix 

distance.  Formally: 
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𝑟1

𝑑1
=

𝑐

𝑎
= 𝑒 

As each of these values can be found in any given conic section, the conversion has utility even 

beyond working with elliptical orbits. Its implications for broader application of the Conic 

Mechanics (as discussed later) cannot be understated and may prove useful in the future.  

2.5 Conclusion 

 Regardless of perspective or approach, analysis of an ellipse can be carried out and 

converted from one coordinate system to another utilizing simple equivalencies and minor 

conversion. Each approach has value with regard to the analysis of the ellipse specifically and 

conics generally.  The focus in Chapter 3, will shift primarily to extensions of Equation (2-4), but 

conversion to either system can still be accomplished with the methods just outlined. While 

applications of the Conic Mechanics for parabolas and hyperbolas are only covered in Appendix 

I, utilization of the analysis and conversions presented in this chapter apply equally well to those 

cases, despite their deviation from the ellipse.  
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CHAPTER 3 

FRAMING AND BOUNDARIES 

 

3.1 Reference Frames  

All classic physics problems are built within the concept of the frame of reference. For 

Keplerian orbits, the frames of reference can be separated into inertial and non-inertial cases. As 

the proofs and history behind inertial and non-inertial framing are well-understood concepts, an 

in-depth investigation is not carried out here.  Zipfel7 provides a thorough development of 

reference frames, coordinate axes, and their fundamental differences.  

Consider a spacecraft in orbit about a large body, the inertial reference frame from the 

perspective of an observer is the frame that does not appear to be accelerating. The general orbital 

path of the spacecraft and how it proceeds in its orbit about the nearest celestial body can be treated 

as the inertial frame; that-is the frame containing the spacecraft, the orbital path, and a planet. In 

reality, the planet is likely orbiting a local star which, itself, is likely orbiting the center of a local 

galaxy, and all of these bodies will be subject to gravitational acceleration, so the inertial 

assumption is only approximate. However, as the focus is on the two-body case initially, an inertial 

state is an acceptable approximation. 

In addition to this inertial frame, another physical frame can be employed for the spacecraft. 

This frame is non-inertial and can experience accelerations (especially gravity) as it moves about 

the orbital path. This non-inertial frame is nested within the boundaries of the inertial frame which 

allows observations of craft from either perspective simultaneously. To elaborate, any orbital 

transformation will occur due to action of the spacecraft within the non-inertial reference frame, 

but the net result can only be observed from the perspective of the inertial reference frame. While 
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Einstein modified the context of these frames by discovering that the inertial assumption was 

generally an approximation, the errors generated by assuming only a two-body problem with non-

curved space-time are relatively small in the context of a typical space mission and can be corrected 

for missions traversing larger distances. Relativistic effects are not covered in this thesis. The lack 

of these effects does not diminish the overall utility of the approach, as the velocities involved 

herein do not approach any appreciable fraction of the speed of light (c). 

3.2 Model Boundary Conditions  

Already present within the inertial frame are a planet and a spacecraft. The planet is 

assumed to be smooth and airless, with a uniform density and spherical shape.  The representative 

planet mass and radius will match Earth mass (5.9724x1024 kg) and equatorial radius (6.3781x106 

m).  Even though Earth is an oblate spheroid of many layers with a dense atmosphere and variable 

terrain, to minimize complexity, those details have been ignored. The spacecraft is of arbitrary 

design with propulsion and attitude orientation systems capable of variable configuration as well 

as a known center of mass. The craft is assumed to have attained a parking orbit about the planet 

analogue with a circular orbit in the equatorial plane. 

To finalize this system, a brief detour to the realm beyond the inertial frame is required to 

better define the planet’s local environment. As the planet is functioning as an Earth analogue, so 

it will be assumed the planet is orbiting a star that is a Sol analogue. This star has a mass equal to 

that of the Sun (1.9885x1030
 kg), and the planet orbits the star at a distance of 1 Astronomical Unit 

(AU), or 149,597,870,700 m. Lastly, the planet’s orbit will be assumed circular.  The actual Earth 

orbit about the Sun has an eccentricity of only 0.0167. As-such, a circular orbit with a radius of 1 

AU is a reasonable approximation.  
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3.3 Kepler Elements 

To formally orient the spacecraft, and by extension the non-inertial frame, within the 

inertial frame, the six components that comprise the classical orbital elements are employed. These 

elements, traditionally known as Kepler orbital elements (as shown in Figure 3-1), are the 

eccentricity (e), semi-major axis (a), inclination (i), longitude of the ascending node (Ω), argument 

of periapsis (ω), and true anomaly (ν) of the orbit. To understand these elements properly, the 

reference direction (♈) is aligned with a relatively fixed point in the sky with respect to the local 

center of mass. 

Initial model calculations assume the spacecraft orbital plane is co-planar with the 

equatorial plane of the planet (the plane of reference), thus eliminating i and Ω. Proper orientation 

of the spacecraft thus only depends on the argument of periapsis and true anomaly. In conjunction 

with the semi-major axis length and the eccentricity of the orbit, the spacecraft and non-inertial 

reference frame can be located within the inertial frame about the planet, requiring as few as four 

coordinates. Semi-major axis length, and more importantly eccentricity, thus become paramount 

for inertial frame configurations of the model.  

♈ 

Eccentric Orbit 

Reference Orbit 

 

ν 

ω 

Ω 

i 

Celestial Body 

Figure 3-1 Classic Kepler Elements 
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3.4 Eccentricity and Model Overview 

As discussed before, all orbits, including ellipses, are forms of conic sections; the key to 

understanding how orbits are transformed is shaped by and directly affects the eccentricity 

parameter. Eccentricity is common to all conic sections and by extension, all closed orbits. 

Denoting a combined value representing the overall “shape” of an orbit, it is a well understood 

geometric concept that was defined in Chapter 2, but is presented here as a formal equation: 

           𝑒 =
𝑐

𝑎
            (3-1) 

Recall that c is the distance between the center of the conic and one of its foci (focal length), 

and a is the length of the semi-major axis; the “longer axis” of the ellipse. Ellipses have an 

eccentricity of less than 1 but greater than zero. A circle is the special case of an ellipse with an 

eccentricity of zero (the distance between its foci and center being zero since they are one in the 

same). Parabolas have an eccentricity of exactly 1, while hyperbolas have an eccentricity greater 

than 1. Eccentricity can be alternatively defined as the ratio of the sines of two angles α and β. 

These parameters represent the angle between the cone’s “slant” and the horizonal axis (for α); 

and the angle between an intersecting plane and again the horizontal axis (for β) (Figure 3-2): 

         𝑒 =
sin 𝛽

sin 𝛼
              (3-2) 

α β 

Figure 3-2 Classic Double-Cone Cross-Section 
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Angle β is denoted as the conic transformation angle and is central to the Conical 

Mechanics framework. From Chapter 2, ellipses are created when an intersecting plane completely 

bisects a cone without intersecting the cone tip or cone base. If it is assumed the cone is hollow 

and infinitely thin, the points of intersection between the cone and the plane constitute an elliptical 

orbital path. While discussion will be confined to stable orbits, not all elliptical orbits are 

necessarily stable; a discussion of unstable orbits can be found in Appendix I. This construct makes 

sense from a mathematical and logical basis, but for some spacecraft orbiting a planet, the nature 

of the cone is more esoteric.   

 Narrowing the discussion, just one “cone” representative of all stable orbital paths about 

the planet, will be considered. This conic boundary is defined as an inverted, right cone with 

rotated z-axis from Figure 2-2 whose nadir (or tip) is aligned with, but not equal to, the center of 

mass of the planet (offset between points o and F1 in Figure 2-2). To simplify boundaries, the 

inverted cone will be further modified into a frustum, that is a cone without a “tip”. This lower 

boundary is a circular sheet with edge exactly equal to the circumference of the Earth analogue 

and is parallel to the upper boundary, maintaining the property of the frustum being “right”; the 

surface of the planet or other celestial body physically prevents any orbit from continuing once it 

reaches the lower boundary; in reality, the spacecraft would crash. Although one could suppose 

that the tip of the cone may be equal to the body center of mass, this is not correct; the “why” is 

discussed later. Finally, if the cone “exists” as a means of defining orbital paths, the original 

vertical axis z representing a spatial property must be replaced with a coincident axis representing 

some non-spatial quantity. In fact, the vertical axis is energy: specific orbital potential energy. A 

subtle but important point to emphasize is that the vertically constructed cone is assumed to have 

sides that expand in a linear fashion. 
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3.5 Energy Boundaries and Hill Sphere 

 In classical Newtonian physics, the behavior of a ball tossed into the air is a trivial problem 

taught to highlight many of the features of Newton’s Laws of Motion as well as the effects of 

gravity. If thrown straight up in the air, the ball, after slowing from initial velocity due to gravity, 

would eventually reach a maximum altitude with zero velocity. At this zenith, the ball is said to 

have zero vertical kinetic energy and maximum potential energy, formulated classically as: 

𝐸𝑝 = 𝑚𝑔ℎ         (3-3) 

with potential energy Ep being equal to the mass m of the ball times the local acceleration of gravity 

g times height h. A trivial concept for sure, but an important one. As a spacecraft gains altitude, it 

increases its distance from a local source of gravity, consequently increasing its potential energy. 

Fortunately, the local acceleration due to gravity is not constant, decreasing as a function of the 

square of the distance from the center of mass. This is Newton’s Law of Gravitation, formulated 

as:  

        𝐹 = 𝐺
𝑚1𝑚2

𝑟2          (3-4) 

where G is the universal gravitational constant, m1 and m2 represent the masses of the two objects 

under gravitational interaction, r is the distance between the centers of mass of both objects, and 

F is the magnitude of the force due to gravitational attraction between both objects.  

To define the upper boundary of the orbital cone, Newton’s equation provides a way to 

investigate when the example planet’s gravity will no longer significantly influence the spacecraft. 

Respect must be given to the next largest local source of gravity, in this case the Sun analogue 

defined earlier, to formulate the upper boundary. This restriction is a caveat to the idea the model 
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is purely two-body, but because it concerns only a boundary, the assumption of two-body 

mechanics still holds within the model as defined. As a spacecraft continues to modify its orbital 

path and gain altitude, eventually it will move sufficiently far from the planet that the gravity of 

the local star will exceed the gravity of the planet. In the case of a spacecraft orbiting Earth, this 

point is relatively inexact and must factor in numerous parameters including the positions of Luna 

and Jupiter; for this model, only the planet and its local star are considered. 

 The concept of a stable orbital region about a celestial body is developed from the concept 

of the Hill Sphere. Complete formulation of Hill’s mathematics can be found in Hill8. The Hill 

Sphere is the region of space bounded by a zero-velocity virtual surface at which the influence of 

a celestial body and the next closest large source of gravity have equal gravitational attraction. 

Within the sphere, the gravity of the local body dominates the orbital properties of any object 

nearby. Consequently, any object within the Hill Sphere of a more massive body will find itself 

in-orbit about that body. The Moon is within the Hill Sphere of Earth, as are artificial satellites. 

From Hill’s calculations, any object within approximately 1.5 million kilometers of Earth will orbit  

the planet. Interestingly, this threshold is true for all orbits, including generally unstable ones.  

Stable orbits are bounded to a region between one half and one third the radius of the 

overall Hill Sphere, so placing an upper cone boundary radius of around 5x108 m is a conservative 

estimate with well-founded physical underpinnings. As a final note: this radius is with respect to 

the center of mass of the planet. Assuming the planet is analogous to Earth, but spherical, Earth’s 

average equatorial radius of 6.3781x106 m is the radius of the lower bounding circular sheet. Any 

physical orbital altitude measured with respect to the lower boundary must factor in the average 

planetary radius to correct for true distance from the planetary center of mass for correct orientation 

of the focus of a conic section.  
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3.6 Cone Height  

 As shown in Equation (3-3), potential energy is a function of spacecraft mass, its height 

above the planet surface, and the local influence of gravity. While this formulation may appear to 

create problems with regards to spacecraft mass; local acceleration of gravity rectified at increasing 

distance from the center; or even an infinite number of cones depending upon the properties of the 

object in orbit, the model is much simpler: Only one “cone” exists per celestial object. As before, 

the relevant cone height does not occupy a spatial dimension; instead, the vertical axis for the cone 

is replaced by energy per unit mass, a notional form of energy-height. This axis reassignment, of 

course, continues the assumption implicit in Kepler orbits, i.e. that the spacecraft is much less 

massive than the planet.  

  Taking the spacecraft and the planet as a system, total energy is defined from the 

summation of potential and kinetic energy. Potential energy was defined in Equation (3-3), but 

this formulation is limited in the context of celestial mechanics: as gravity decreases with the 

square of the distance, a different equation form is needed to take this into account.  

𝜖𝑝 = −
𝐺𝑀

𝑟
          (3-5) 

 Equation (3-5) is the specific orbital potential energy equation. Here, 𝜖𝑝 is specific orbital 

potential energy, G is the universal gravitational constant, M is the mass of the planet (or other 

larger center of mass), and r is the distance between the center of mass of the two objects 

responsible for gravitational interaction. Note that M is more properly defined as the sum of the 

mass of both objects, but because the spacecraft is significantly less massive than the planet, its 

mass is neglected here with negligible error. The specific orbital kinetic energy equation is: 
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𝜖𝑘 =
𝑣2

2
          (3-6) 

where 𝜖𝑘 is the specific orbital kinetic energy and v is the orbital velocity. Calculating exact orbital 

speed can be relatively difficult for non-circular orbits, but the upper and lower bounds of the 

truncated cone are taken to be circular, the equation becomes trivial: 

𝑣 = √
𝐺𝑀

𝑟
         (3-7) 

Note that relative speed for a circular orbit is constant and is, in fact, the square-root of the 

magnitude of its potential energy. Combining Equations (3-5), (3-6), and (3-7) yields the total 

specific orbital energy equation for 𝜖: 

𝜖 = 𝜖𝑘 + 𝜖𝑝  

           𝜖 =
𝑣2

2
−

𝐺𝑀

𝑟
            (3-8) 

Here the sign for energy is considered negative since the zero-energy reference state is chosen to 

be at an infinite distance at rest. For circular orbits, total energy is denoted by 𝜖𝑐: 

           𝜖𝑐 =
𝐺𝑀

2𝑟
−

𝐺𝑀

𝑟
= −

𝐺𝑀

2𝑟
          (3-9) 

Although use of Equation (3-9) for the orbital boundary formulations may be tempting, it 

would yield several errors. Frustum energy-height is built upon the specific orbital potential 

energy, not the total energy. If total energy is utilized instead, the calculational error is increased 

when comparing results to existing methods for determining orbital parameters. As-such, the 

calculations that follow are based, instead on Equation (3-5).  The specific orbital potential energy 

levels for the frustum boundaries calculations are trivial; only the results are shown.  The upper 

boundary calculation has employed 5x108 m as an average radius: 
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Lower bound, r = Earth Average Radius: 𝜖 = −62.4951 ∗ 106  
𝐽

𝑘𝑔
 

Upper bound, r = Hill Sphere Stability Boundary: 𝜖 = −0.7972 ∗ 106  
𝐽

𝑘𝑔
 

Limiting bound, r = Hill Sphere Absolute Boundary: 𝜖 = −0.2657 ∗ 106  
𝐽

𝑘𝑔
 

Another facet of the upper boundary limitation is now easily observed; namely that specific 

orbital potential energy is not zero at the upper cone boundary, it is not even zero at the true 

boundary for the Hill Sphere. In fact, the specific orbital potential energy only approaches zero at 

the infinite limit, so some approximations need to be made. The process of recalculating an orbit 

at some predetermined boundary (in this case, the limit of the Hill Sphere), is known as a patched 

conic method. Patched conics2 are standard in conventional orbital plots, are a well-understood 

part of modern celestial mechanics, and are not discussed at length. The only difference is putting 

the cone back in the patched conic to help make sense of transformations employing a geometric 

perspective. 

To form the frustum, the cone nadir has utilized the average equatorial circumference of 

the planet, as stated previously. Also, the requirement that the cone nadir could not be considered 

equal to the center of mass of the planet was stated; the reasoning here comes from Equation (3-

9). As radius decreases in Equation (3-9), the average orbital energy increases exponentially. The 

limit for zero radius is infinite energy, effectively a singularity. Given Earth does not have a black 

hole at its core, the frustum is formulated instead to side-step the implicit problem resulting from 

aligning the cone nadir with the center of mass, avoiding that singularity all together. Finally, the 

singularity is further circumvented by truncating the cone tip thereby restricting possible orbit radii 

to values only above the Earth analogue radius.  



   

 

28 

3.7 Conditional Limits, Energy Surface, and Cone Summary   

Using the information discussed in Sections 3.1-3.6, Figures 3-3 a and b demonstrate the 

physical boundary of the frustum. Notice in Figures 3-3a and 3-3b, the circle representing the 

circumference of the Earth analogue is significantly smaller than the upper boundary circle. This 

clearly demonstrates why having a lower boundary sheet, rather than a point, does not contribute 

significantly to error. 

Figure 3-3a Frustum Visualization, Equal Axis Lengths 

Figure 3-3b Frustum Visualization, Square Axes 
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To recap: a theoretical “energy frustum” about the smooth, airless, spherical planet has 

been developed to demonstrate a geometric approach to orbital transformations. The “lower” 

orbital boundary of the frustrum is equal to the planetary equatorial ring with radius of about 6378 

kilometers, and its “upper”, flat boundary is a circle with a radius of approximately half-a-million 

kilometers. Frustum height between boundaries is defined by subtracting the specific orbital 

potential energy of the lower bound from that of the upper (stability) bound, yielding an energy-

height quantity of approximately 62.4950x106 Joules per kilogram. As long as Keplerian 

assumptions apply, the body-derived gravity is relatively uniform, and relativistic effects do not 

significantly distort the reference frames, this approach can be used to frame a frustum about any 

celestial body. With formulation of the boundaries now complete, a proper mechanical analysis 

can be performed, and the utility of the model can be demonstrated.  

In Section 3.4, the eccentricity of an orbit was highlighted as a function of two values, c 

and a. Eccentricity was also formulated in terms of α and β in Equation (3-2). While β will prove 

useful as the calculations are carried forward, a closer examination of the frustum will reveal a 

problem with using the ratio in Equation (3-2) alone, since the vertical spatial axis has been 

replaced with potential energy. Determination of α relies upon the geometry of a right frustum 

cross-section: a trapezoid (Figure 3-4). 
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Extrapolating from Figure 3-2, α represents the inner angle between the upper surface and 

a side of the trapezoid. However, attention must be given to the slant sides of the trapezoid. If the 

vertical axis of the cone is defined as specific orbital potential energy, a differential movement 

vertically within the cone will yield a change in orbital radius consistent with the specific orbital 

potential energy equation:  

𝜖𝑝 = −
𝜇𝐸

𝑟
        (3-10) 

Figure 3-4 Simple Cross-Section of a Frustum: an Exaggerated Trapezoid 
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For Equation (3-10) (reformulated from Equation (3-5)), G and M, expressed herein as the 

standard gravitational parameter for Earth, μE, are constant, which means that the equation for 

𝜖𝑝(𝑟) cannot be linear, as the trapezoid suggests. Thus, Equation (3-2) cannot be used to define 

orbital eccentricity directly.  Figures 3-5a and 3-5b were generated to provide insight into the 

cross-section of the nonlinear relationship between orbital radius and energy demonstrating the 

characteristic bend in angle and constantly shifting slope.  

 

Figure 3-5b Frustum Energy Boundaries, Cross-Section 

Figure 3-5a Frustum Energy Boundaries 
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This information creates a dilemma: Keplerian orbits adhere to an overall shape defined by 

conic sections with a linear shape, but energy-height dictates that α must be a non-constant value 

for the non-linear shape from Equation (3-10) to be useful. To resolve this problem, an inspection 

of conventional orbital mechanics can allow the new formulation to proceed.  

 Keplerian orbits are defined using a concept known as a “gravity well”. While this idea is 

a misnomer given gravity applies irrespective of direction; the “shapes” of “gravity wells” very 

much resemble the shape generated for Figures 3-5a and 3-5b. Under existing paradigms in 

physics, the overall orbital shape is projected from the upper boundary “down” into the gravity 

well. This concept leaves much to be desired but does provide a possible solution. Rather than 

using Figures 3-4 or 3-5 separately, their combination will be employed. Figures 3-6a and 3-6b 

demonstrate this new shape. 

 

Figure 3-6a Physical and Energy Boundaries Overlaid 
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 These two figures demonstrate the overall, combined model. As any orbit can be defined 

as a conic section, an orbit to be investigated simply becomes a plane intersecting the frustum 

boundary represented by the outer, linear edges. To determine the energy level at any point in that 

orbit, a vertical projection to the inner construct of orbital potential energy (represented by the 

nonlinear, curved surface) will be equal to the potential energy at that point in the orbit. In this 

way, the many different properties of an orbit can be captured in a single, geometric model for 

rapid comprehension and greater utility. 

 Here, then, is the orbital cone from patched conics assembled as a single concept. This idea 

is not new and simply represents a refinement of existing ideas. What is novel is how this assembly 

can be used for orbital transformations that do not strictly adhere to Keplerian frameworks and 

simplification of concepts that can be confusing in purely numeric terms. The next chapter will 

cover the process of transforming established orbits.

Figure 3-6b Physical and Energy Boundary, Cross-Section 
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CHAPTER 4 

INERTIAL REFERENCE FRAME ORBITAL MANEUVERS 

 

4.1 Transformation Outline   

In the inertial framework formulation, orbital paths, and the relations between them, are 

the primary concern. How those transformations occur in terms of the non-inertial spacecraft frame 

is very important, but the overall orbital shape and its change can be discussed without reference 

to the behavior of the spacecraft itself. The paradigm set forth in Chapter 2 regarding orientation 

of the frustum to properly view an orbital path is retained herein and is of paramount importance 

going forward.  

 Any object in a fixed, stable orbit above a celestial body is considered to be in a state of 

continuous motion: it is constantly “falling” towards the center of gravity of the larger body. If its 

tangential velocity is high enough, then its orbital path never allows it to intersect the surface or 

atmosphere of the body. In such a stable orbit, the smaller object has several properties: it will 

always return to the same point in its orbit, it is constantly exchanging potential and kinetic energy, 

and it sweeps out equal areas under the orbital path in an equal amount of time, i.e. Kepler’s 2nd 

Law.  

 Essentially, an orbital transformation is a deviation from these steady-state conditions, 

generally when the smaller object in orbit is subjected to a net force. The origin of the applied 

force is generally defined in the non-inertial spacecraft frame, but the overall effect is clearly 

manifest in the inertial frame due to alterations in overall orbital shape and ultimately orbital 

transformations. While all orbital parameters are potentially affected by these transformations, 
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eccentricity, and the semi-major have the greatest direct effect on orbital path shape and are of 

chief concern in the inertial reference frame. 

 An orbital transformation, and thus orbital maneuvers in general, are driven by the gain or 

loss of orbital potential and kinetic energy. This relationship between the orbital potential and 

orbital kinetic energy was highlighted in Equations (3-8) and (3-9) wherein specific orbital 

energies were summed to total orbital energy. From framing, it was established that the frustum 

height was defined as specific orbital potential energy.  

 For any plane that fully bisects the frustum without intersecting the upper or lower 

boundaries, the “lowest point” of intersection is the periapsis, and the “highest point” is the 

apoapsis. This can be verified using the curved surface plots from Figures 3-5a and b: by locating 

the orbital radius at periapsis and apoapsis along the x-axis and tracing lines until they intersect 

the surface, the intersection points for each line are specific orbital potential energy for each apsis 

respectively. By subtracting the difference between these two values, the amount of energy 

exchanged as the spacecraft traverses between periapsis and apoapsis is easily determined. This is 

the first utility of the frustum: direct measurement of the exchange in specific orbital energy around 

an orbit. This property is demonstrated schematically in Figure 4-1. 

Figure 4-1 Frustum Cross Section with Orbit Plane 
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To transform the orbit, kinetic energy must be added or removed. The point at which this 

occurs can produce vastly different orbital shapes depending on several factors confined to the 

non-inertial frame; for simplicity, the analysis here will be conducted at one of the apses. This 

approach can be initiated away from the apses employing the frustum approach, but an apses 

maneuver is easier to describe. When energy is added at an apsis, as the orbit is already at its 

energetic maximum or minimum, the effect is magnified, thus allowing a clearer picture of how 

the transform behaves. 

4.2 Fundamental Transformation Process   

 A simple and useful transformation within celestial mechanics is the Hohmann Orbital 

Transfer2 which will be employed as an example to demonstrate the conic transform. This type of 

maneuver is used to transfer a spacecraft from one circular orbit to another employing an elliptical 

orbit as a go-between. This is accomplished via an impulse at the initial periapsis, followed by a 

second impulse at the apoapsis of transformed, elliptical orbit, resulting in a second, circular orbit 

with a larger orbital radius. Such a transformation is easy to demonstrate with the conic model and 

begins at the periapsis.  

Since kinetic energy is already maximized at a periapsis, any increase in kinetic energy 

will be reflected immediately as an increase in the “altitude” of the apoapsis: because the apoapsis 

is the point where the maximum exchange of potential and kinetic energy has occurred.  

Consequently, excess kinetic energy is reflected as an increase in overall potential energy. Such a 

transformation is known as an apsis-raising maneuver in celestial mechanics and is well defined 

in the literature. A similar maneuver at the apoapsis, namely gaining kinetic energy, will instead 

“raise” the altitude of the periapsis: since potential energy is maximized there, any increase in 
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kinetic energy will raise the overall energy of the orbit, reflected as an increase in periapsis 

potential energy.  

 

 

 

Figure 4-2b Frustum with Orbital Plane in Cross-Section 

Figure 4-2a Frustum with Orbital Plane 
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To transform an orbit using Conical Mechanics, a line parallel to the xy plane can be placed 

tangent to the outer, slanted boundary of the frustum.  In Figure 4-2a, this line would be coincident 

with the lower edge of the intercepting plane. This line is also coincident with one of the apses of 

the transfer orbit, in the case of 4-2a, the periapsis. Next, the initial orbital plane is rotated about 

this line, now the axis of rotation. As the plane is rotated, it will raise or lower the energy levels of 

all points of the orbit except the tangent point of intersect. In this way, the model reflects observed 

phenomena in the two-body problem: for any new, stable orbit transformation, the resulting 

spacecraft orbit will always pass through the original transformation point (in this case, an apsis) 

as long as no additional transformations are undertaken. The angle rotated through is equal to the 

quantity Δ𝛽 which is equal to the change in angle β from Equation (3-2). This process is 

highlighted in Figures 4-3 a and b.  

 

Figure 4-3a Hohmann Transfer Orbit 
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Figures 4-3 a and b demonstrate how a typical Hohmann Orbit Transformation can be 

represented with the cone; from bottom to top, the sequence is as follows: initial circular orbit of 

250x103 km; apoapsis raised to 350x103 km producing an elliptical orbit; and finally circularized 

at 350x103 km. In these figures, the lower plane is rotated about the given axis passing through 

what becomes the periapsis point for a change in angle β, herein Δ𝛽. This generates the second 

plane in which transforms the initial circular orbit into an elliptical transfer orbit. Once the 

spacecraft reaches apoapsis on the second plane, the plane is rotated about an axis coincident with 

the apoapsis (and the plane’s upper edge) to circularize the orbit, completing the transfer. 

Several things are immediately apparent: the axis of rotation should always be considered 

positive in the direction of the orbital path; the axis is positive in the orbital direction the spacecraft 

travels. In addition, the right-hand rule is implemented for sense of direction: counterclockwise 

rotations about the axis will “raise” an orbit and clockwise rotations will “lower” an orbit. 

Furthermore, rotations at the apses will always have the greatest immediate effect on orbital path. 

Figure 4-3b Hohmann Transfer Orbit, Side View 



   

 

40 

Rotational orbit maneuvers elsewhere still adhere to the properties just discussed, but their initial 

influences are diminished.  Finally, the transform is assumed to be instant, in-line with Kepler 

assumptions, and the magnitude of the transform is equivalent to the magnitude of Δ𝛽.  

If transforms are represented by changing the angle of the intersecting plane relative to the 

physical boundaries, then the plane represents a non-spatial synthesis of orbital radius and energy. 

The value of units in-plane have no meaningful definition. Referring back to Chapter 3, this is why 

the orbital path is not defined directly by the in-plane points of intersection between the plane and 

the frustum, but the projection of these points of intersect onto the upper or lower boundary planes; 

were the points of intersect defined in-plane, their values would be inscrutable.  

To ensure a given orbit adheres to basic Keplerian principles, the frustum can again be 

viewed from directly overhead, eliminating the energy axis and making only the projected orbital 

paths visible (Figure 4-4). 

Figure 4-4 Hohmann Transfer Orbit, viewed from x-y perspective 
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Figure 4-4 clearly demonstrates the classic orbital shapes typically associated with a 

Hohmann Transfer. Similarly, projection from the boundary intersects to the upper or lower 

boundary planes will pass through the curved energy surfaces generated via Equation (3-10) (as 

shown in Figure 4-1), allowing for immediate determination of the orbital energy states as well as 

their true physical positions. In this way, the model addresses all properties of the orbit 

simultaneously with easily understood geometric concepts.  

4.3 Supporting Equations   

 Discussion so far has been confined to a general, conceptual idea of how orbits are 

transformed using the frustum. For the mathematical work of more accurate orbital calculations, 

initial conditions and limits must be clearly defined. What follows is a work-up of the mathematical 

model for stable orbits. When the intersecting plane is rotated, the eccentricity of the projected 

path begins to change. This is due to the change in semi-major axis, a, and by extension the change 

in focal length, c. Any rotation which “raises” the apoapsis will increase the values of a and c, 

while a rotation which “lowers” the apoapsis will decrease their values. Consequently, any change 

in a is approximately equal to a change in c, more formally: 

∆𝑎 = ∆𝑐 

Coupled with Equation (3-1), this demonstrates that a change in eccentricity will be proportional 

to the change in these two orbital parameters. This is also true for a transformation which “raises” 

or “lowers” the periapsis, but in the reverse sense between the two parameters: a rotation which 

“raises” the periapsis will increase a but decrease c while “lowering” will decrease a and increase 

c: 

∆𝑎 = −∆𝑐 



   

 

42 

 To properly transform an orbit, the new orbital eccentricity must be determined based upon 

the inputs of Δ𝛽 and initial orbital radius. β is directly proportional to the orientation of the plane 

that bisects the frustum with respect to an invariable plane parallel to the upper and lower 

boundaries (Figure 3-2). The initial β angle for a stable orbit is most easily determined based on 

the orbit apoapsis and periapsis. Importantly, β is not orbital inclination; conical rotations from a 

purely physical perspective in which more orbital parameters are affected are not addressed in this 

thesis. 

 From Equation (3-2), eccentricity was defined as the ratio of the sines of the planar intersect 

angle β and the invariable boundary angle α. Determination of α for a given orbital frustum 

involves comparing the overall energy (height) and difference in orbital radii between the lower 

and the upper boundaries. Essentially, the side of the cone forms the hypotenuse of a triangle 

linking the boundary circles, with its vertical leg proportional to the difference in specific orbital 

potential energy, and a horizontal leg proportional to difference in radii.  

 Figure 4-5 demonstrates this relationship. Here an initial circular orbit of arbitrary 

diameter, d0, has been transformed to an inclined elliptical orbit through some change in angle β; 

note here the angle is β as the Δ𝛽 has already occurred. The difference in radius between the initial 

Figure 4-5 Conic Cross-Section with Planar Triangle 
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circular orbit and the circular orbit equivalent to the elliptical transfer orbit apoapsis is represented 

by Δrc while the difference in specific orbital potential energy between the initial orbit and the 

apoapsis of the new elliptical orbit is highlighted via Δ𝜖𝑝.  

To formally determine α: 

tan 𝛼 =
∆𝜖𝑝

∆𝑟𝑐
          (4-1) 

Here, the tangent of α is equal to the change in specific orbital potential energy between the top 

and bottom of the frustum, divided by the change in the equivalent circular orbit radii between the 

top and bottom boundaries.  

Calculating a value for the β of the new orbit (following the Δ𝛽) given an initial orbit 

follows a very similar process. Again using Figure 4-5, the vertical leg is the difference in specific 

orbital potential energy between the periapsis and apoapsis, and the horizontal leg is equal to the 

total semi-major axis of the orbit in question (using the projection to invariable planes paradigm 

discussed earlier). Thus, the tangent of β can be formulated: 

      tan 𝛽 =
∆𝜖𝑝

2𝑎
             (4-2) 

 Equation (4-2) is remarkably similar to Equation (4-1), with a notable exception; Equation 

(4-1) is constant for a given celestial body while Equation (4-2) can change with a particular orbit. 

Importantly, the value of ∆𝜖𝑝 depends on the outer cone boundary values, not the inner, energy 

surface. As-such, any formulation using (4-2) directly must take this into account. This problem 

can be avoided by examining the relationship between α and β. 

  To formulate angle β in terms of α, the change in radius for the specific orbit is compared 

with the change in outer energy height across the orbit and related via the tangent ratio in much 
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the same way for α. The difference is the outer energy height cannot be determined using Equation 

(3-10). As the outer cone boundaries are straight-line boundaries, they do not accurately represent 

energy: only projections from the outer boundary to the inner energy surface properly represents 

the potential energy at that point. However, because the outer cone angle α was established as 

constant for any given celestial object, its values can be used in the equation for β. In the 

calculations that follow, define the orbital diameter, 𝑑𝑜𝑟𝑏𝑖𝑡, as the diameter of a circular orbit with 

a radius equivalent to the orbital perigee: 

tan 𝛽 =
𝜖1 − 𝜖0

2𝑎
 

2𝑎 = 𝑑𝑜𝑟𝑏𝑖𝑡 + ∆𝑟𝑜𝑟𝑏𝑖𝑡 

tan β =
∆𝜖𝑜𝑟𝑏𝑖𝑡

𝑑𝑜𝑟𝑏𝑖𝑡 + ∆𝑟𝑜𝑟𝑏𝑖𝑡
 

tan α =
∆𝜖

∆𝑟
=

∆𝜖𝑜𝑟𝑏𝑖𝑡

∆𝑟𝑜𝑟𝑏𝑖𝑡
 

∆𝑟𝑜𝑟𝑏𝑖𝑡(tan α) = ∆𝜖𝑜𝑟𝑏𝑖𝑡 

tan β =
∆𝑟𝑜𝑟𝑏𝑖𝑡(tan α)

𝑑𝑜𝑟𝑏𝑖𝑡+∆𝑟𝑜𝑟𝑏𝑖𝑡
                      (4-3) 

 Equation (4-3) is an intermediate step in several derivations in this chapter and Chapter 5 

based upon the equations in Chapter 3. With Equations (4-1), (4-3), and (3-2), determination of 

the eccentricity of any orbit becomes a trivial exercise, expanding the utility of the conic approach. 

Specific examples of this approach are presented in Appendix II. 

4.4 Derivative of β with respect to Energy 

 Specific orbital potential energy is a fundamental base to this model but isn’t always useful 

when discussing spacecraft maneuvers. As a spacecraft operates by changing its kinetic energy 
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and thus influencing its overall potential energy, an equation relating a finite change in β 

(nominally designated Δ𝛽 previously) directly to a change in specific orbital energy can be more 

useful. This is captured employing: 

𝛽̇ =
𝑑𝛽

𝑑𝜖
          (4-4) 

Equation (4-4) relates a differential change in angle β directly to a differential change in 

total specific orbital energy, while Equations (4-1) and (4-2) only demonstrate a finite change in 

specific orbital potential energy.  To fully realize the expanded form of Equation (4-4), the 

equations for β, α, and specific orbital energy are all related. Note the continuous, full value for β 

is considered in the derivation below.  

tan 𝛽 =
𝜖𝑝 − 𝜖0

2𝑎
 

tan 𝛼 =
𝜖𝑝 − 𝜖0

(𝑟1 − 𝑟0)
 

𝜖𝑝 − 𝜖0 = tan 𝛼 (𝑟1 − 𝑟0) 

tan 𝛽 =
tan 𝛼 (𝑟1 − 𝑟0)

2𝑎
 

𝜖 = −
𝜇

2𝑎
, 2𝑎 = −

𝜇

𝜖
 

tan 𝛽 = −
tan 𝛼 (𝑟1 − 𝑟0)

𝜇
𝜖 

Equation (4-3) becomes critical at this point.  That is, 

tan β =
∆𝑟𝑜𝑟𝑏𝑖𝑡(tan α)

𝑑𝑜𝑟𝑏𝑖𝑡 + ∆𝑟𝑜𝑟𝑏𝑖𝑡
 

tan 𝛽 = −
tan 𝛼 (𝑟1 − 𝑟0)

𝜇
𝜖 
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tan 𝛽 = tan 𝛼 + (
2𝑟0 tan 𝛼

𝜇
) 𝜖 

       tan 𝛽 = tan 𝛼 [1 + 𝜖 (
2𝑟0

𝜇
)]         (4-5) 

This is the relation between specific orbital energy and angle β for a given orbital transform at an 

apsis.  The only term that is not a constant is the specific orbital energy, 𝜖, meaning the two are 

directly related with the planar rotations. The derivative of Equation (4-5) (expanded form of 

Equation (4-4)) follows.  

𝛽̇ =
𝑑𝛽

𝑑𝜖
=

2𝑟0𝜇 tan 𝛼

(tan2 𝛼)(𝜇+2𝑟0𝜖)2+𝜇2        (4-6) 

In Equation (4-6), the terms 𝑟0, µ, and α are all constants. Integrating (4-6) for any given change 

in energy level yields a corresponding change in angle β directly, utilizing the Keplerian 

approximations. As long as the impulse is instantaneous, Equation (4-6) applies.   
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CHAPTER 5 

NON-INERTIAL FRAME CONSIDERATIONS 

 

5.1 Non-Inertial Frame and Spacecraft Orientation   

With the inertial frame perspective and Equation (4-6) fully realized, Chapter 5 examines 

the non-inertial spacecraft frame including a general overview on proper orientation; energy 

exchange principles; and a comparison with existing methodologies for working with orbital 

transformations, including delta-v orbital adjustments.  

 The non-inertial frame refers specifically to the physical frame of reference centered on the 

spacecraft. This frame of reference can be considered accelerating; most of these accelerations will 

come from the spacecraft itself in the form of impulses, but gravitational acceleration must be 

considered as well. An in-depth discussion of full development of orientation within overlapping 

frameworks is beyond the scope of this thesis but Bate et. al.2, Thompson3, and Meriam4 all offer 

excellent insight and further reading. The non-inertial framework here has been developed 

primarily based on their concepts. 

 The spacecraft is one element of a two-body system, and the position of its body fixed non-

inertial frame is described generally with respect to the more massive object in the system.  Again, 

position of the non-inertial frame within the inertial frame will continue to be described utilizing 

the common system of orbital elements: eccentricity (e), semi-major axis (a), inclination (i), 

longitude of the ascending node (Ω), argument of periapsis (ω), and true anomaly (ν) and reference 

direction (♈). Eccentricity and semi-major axis are still the main elements.   
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 With the non-inertial frame centered on the spacecraft, a set of XYZ axes (different from 

that in Chapter 2) is fixed to its center of mass. The X and Y axes of the spacecraft orientation 

coordinates need only be mutually perpendicular with the third axis, Z, which passes through the 

center of mass and is parallel with the orbital tangential velocity vector. The absolute position of 

the X and Y axes is relatively unimportant as long as they maintain a physical frame of reference. 

Aligning one axis with the radial velocity vector (either the nadir or zenith direction) simplifies 

spacecraft rotational orientations. Rotations of the craft away from the fixed axes can be expressed 

with notations common to classical mechanics such as X’, Y’, and Z’. It is suggested that the Z’ 

axis be parallel to the primary propulsion vector of the craft as the remainder of this model 

discussion will assume such. 

Proper alignment of the axis of rotation for the radius-energy plane can now be outlined. 

For simplicity, the tangential axis of rotation needs to pass through one of the apses points, as in 

previous chapters. As long as the tangential axis is co-incident with an apsis, and tangent and co-

planar with the orbital path, it will be correctly aligned. Of-course this axis is not some ephemeral 

mathematical concept, but the Z reference direction of the spacecraft. Alignment of Z, Z’, and the 

axis of rotation are all critical in the next section.  

 

5.2 Orbital Transformations 

To transform an orbit, the spacecraft must undergo an impulse. In the physical plane, 

transformations of orbital parameters occur due to a change in momentum and thus energy. When 

the spacecraft changes its momentum, it increases its velocity; this in turn raises the total energy 

of the orbit. For a given impulse lasting a number of seconds, this momentum change corresponds 
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to a certain change in energy per second. Under classical orbital mechanics, this corresponded to 

increasing the velocity of the spacecraft at the point of impulse. This increase in kinetic energy 

corresponds exactly to a change in the energy height of the opposite apsis: “orbit raising”.  

The most efficient place to raise/lower an orbit is, again, at the apses where energy is 

maximized. As the spacecraft proceeds along its orbit, the Z’ axis may be rotated to any orientation. 

However, aligning Z and Z’ for an impulse at the apses maximizes the resulting change in β. A 

non-aligned burn here may still result in a change in β, but only from the component of the thrust 

vector in the Z direction. If all primary conditions are met (apsis, alignment, co-planar, Z and Z’ 

aligned), calculation of the change in β becomes trivial and utilization of Equation (4-6) is 

straightforward; the initial maneuver examples below will assume this is the case. 

Following the right-hand rule, a prograde burn at periapsis will “raise” the apoapsis. For 

retro-grade periapsis burns, the apoapsis is instead “lowered”. Intuitively this makes sense as a 

prograde burn increases kinetic energy while a retrograde burn decreases it. The opposite case is 

also true where apoapsis, prograde burns “raise” the periapsis and vice versa. Each of these cases 

constitutes a rotation of the plane intersecting the outer boundaries being rotated about the 

tangential axis which is, by definition, a change in angle β. This is the link between the non-inertial 

and inertial frameworks and how action in one reference frame affects the other. 

In addition to rotational changes with respect to the outer conical boundary, the energy plot 

is also affected by changes due to impulse. From the specific orbital energy equation (Equation (3-

8) and (3-9)), it was shown that the inner plot’s height directly corresponds to the specific potential 

energy of an orbit. Recall that the difference in heights between an orbit’s apoapsis and periapsis 

was directly equal to the amount of energy that transformed between kinetic and potential as the 

craft proceeded around the orbit. 
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Because the inner, curved surface deals directly with energy, formulating how an impulse 

will affect an orbit becomes very easy by examining the inner plot. Estimation (to a high degree 

of accuracy) of kinetic and potential energies, and consequently velocities, at any point in an orbit 

can be accomplished simply by comparing the energy height at a given level and working out the 

difference. Note the fact that a circular orbit with the same radius as a given apsis on a non-circular 

orbit will, at that point, possess the same specific potential energy as the target orbit, but not the 

same specific kinetic energy as the target orbit. Again, this makes sense: to transform between 

orbits, kinetic energy must be gained or lost.  

From Equation (3-8), formulation of the total specific orbital energy at the apses and 

subtracting out the specific orbital potential energy will yield the orbital kinetic energies at each 

apsis. If, for example, a spacecraft were approaching the periapsis of its orbit, by measuring how 

much difference in potential energy height there was between the craft’s current position and the 

periapsis, this would correspond directly to the remaining potential energy to be converted to 

kinetic. Consequently, calculating the craft’s current velocity can also be done from the current 

kinetic energy, as well as its orbital radius and several other orbital parameters. The utility of this 

approach cannot be understated: simply by examining the cross-section of the energy surface and 

plotting any orbital position, numerous orbital parameters are yielded simply through direct 

measurement.  

With these details in-mind, formulation of the effect of an impulse on the orbital plane 

angle (β) should now be obvious. A prograde impulse at periapsis to change a circular orbit into 

an elliptical orbit will be the first maneuver covered. Again, Z’ is aligned with the Z reference 

direction, and the impulse is assumed to be instantaneous; that is, the impulse begins and completes 

while the spacecraft is co-incident with the periapsis.  
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Just before impulse, the orbital path plane and orbital energy planes are both parallel, the 

initial β angle is equal to zero and the orbital path plane is parallel to the boundary planes. Upon 

initiation of the impulse, the orbital path plane is rotated about the tangential axis following the 

right-hand rule. On the opposite side of the circle, the apoapsis begins to rise and the difference 

between the periapsis’ and the new apoapsis’ projected heights onto the energy surface are exactly 

equal to the amount of energy gained during the impulse. The specific orbital kinetic energy total 

at the periapsis will now be equal to the initial amount plus the amount of kinetic energy added 

during the impulse. Again, this is directly measurable by comparing the apsis heights in the energy 

plane.  

Moving back from elliptical to circular requires a similar maneuver but in reverse. Again, 

at the periapsis, instead of the spacecraft pointing along the Z direction (a prograde burn), it will 

now be aligned so that its primary thruster is pointed in the leading direction, such that Z’ is still 

aligned with Z, but in the opposite direction. This is a retrograde burn and causes opposite rotation 

of the orbital path plane. Whereas before the rotation occurred counterclockwise, now the rotation 

will occur clockwise, decreasing apoapsis altitude and energy until the apoapsis and periapsis are 

again at the same altitude and the orbit returns to circular. Should this burn continue, the rotation 

about the tangential axis in a clockwise direction would also continue. The point at which the 

impulse was started now becomes the new apoapsis, while the opposite descending point becomes 

the new periapsis.  

This procedure will work for any stable orbital transformation that occurs at an apsis 

following this sense: prograde burns will rotate the physical plane in a counterclockwise direction 

about the tangential axis, retrograde will lead to clockwise. This occurs regardless of the direction 

of travel of the spacecraft as well. As long as the tangential axis is aligned with Z direction, 
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prograde (Z’ aligned) or retrograde (Z’ opposed) will lead to the rotations as described according 

to the right-hand rule. Successive maneuvers adhering to this paradigm will likewise produce the 

aforementioned results.  

Uncoordinated burns (impulses which occur unaligned with the Z axis) will produce 

changes in the other orbital parameters besides eccentricity and semi-major axis. The full result of 

an impulse on all of the orbital parameters is not discussed here. Suffice to say, rectifying the thrust 

vector components of an impulse to each of the other axes (X and Y) will be key to understanding 

how this transformation occurs.  

5.3 Impulse and 𝜷̇ 

A general outline for stable orbit maneuvers has now been covered. What follows are the 

key equations when working with typical elliptical orbital transformations and how they relate to 

𝛽̇. As orbital transformations are dependent on a change in the energy level of the current orbit, 

they are usually accomplished via a series of impulses from the spacecraft’s main thruster. An 

impulse fundamentally changes the spacecraft’s momentum resulting in a net energy change 

which, in turn leads to a change in β and thus an overall change in orbital shape. This process has 

a few wrinkles.  

First, impulse is defined as a known force integrated over a given period of time, 

classically:  

𝐽 = ∫ 𝐹 𝑑𝑡 

Or, for a constant force vector: 

     𝐽 = 𝐹𝐴𝑣𝑒𝑟𝑎𝑔𝑒∆𝑡          (5-1) 
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This analysis will assume the force vector is constant to simplify the calculation. In the case of the 

spacecraft orbiting the Earth analogue, the force vector is the thrust from the spacecraft’s main 

engine.  

 Impulse is also exactly equal to the change in the momentum of the spacecraft: 

𝐽 = ∆𝑝 = 𝑚2𝑉2 − 𝑚1𝑉1 

This leads to some problems. As a spacecraft expends propellant, its mass will decrease. From the 

above equation, this means that it takes less force to accomplish the same momentum change for 

a spacecraft near the end of its useful propellant load as compared with the start. Because of this 

fluctuating mass profile, a burn for a spacecraft low on fuel will result in a higher 𝛽̇ than for one 

with a “full tank”. In other words, a fixed maneuver thrust value will lead to a variable 𝛽̇, and vice 

versa. While assuming a fixed mass value would rectify the problem, such an assumption is highly 

inaccurate for conventional propulsion as reaction mass is usually a significant fraction of vehicle 

mass for most spacecraft interested in orbital maneuvers.  

 Thankfully, because impulse is exactly equal to momentum change, determining how 

impulse affects kinetic energy is relatively straightforward. First, initial momentum of the craft is 

calculated before the burn. Next, the total impulse of the burn is added to the initial momentum, 

denoting that a prograde burn will be a positive momentum change while a retrograde burn will 

result in a negative momentum change. After the burn is complete, final momentum is used to 

determine the resultant specific kinetic energy change and thus the change in overall orbital shape. 

While this process does develop a straightforward approach for dealing with impulse and energy, 

it still abstracts the time component from Equation (5-1), neglecting procession. Some discussion 

is made regarding procession in Appendix I. 



   

 

54 

 Impulse can also be used to calculate the overall change in the mass of the craft by rewriting 

the thrust force: 

𝐹𝑇ℎ𝑟𝑢𝑠𝑡 = 𝑚̇ ∙ 𝑉𝑒 

where 𝑚̇ is equal to mass flow rate, and Ve is the exhaust velocity of the craft’s primary propulsion 

system. Substituting this into Equation (5-1) yields a well-known reformulation of impulse: 

    𝐽 = 𝑚 ∙̇ 𝑉𝑒 ∙ ∆𝑡          (5-2) 

 Dividing the total impulse J by Ve yields the total change in mass of the spacecraft for a 

given orbital maneuver’s impulse. Combined with the process discussed previously, this allows 

for a direct determination of the final velocity for the craft following a burn and thus the ability to 

calculate the new specific kinetic energy, resulting in the change in orbital shape, etc. While it 

would be tempting to assume specific kinetic energy could be related to impulse by simply dividing 

out mass, as the mass value is not constant across the maneuver, this would be highly inaccurate 

and the change in mass must be accounted for in addition to the change in velocity.    

5.4 Comparison to Existing Methodologies 

 While the conic transform has thus far been underpinned by classic concepts, it still relies 

on its own terminology and methodologies for determination of orbital shape and thus changes in 

orbital parameters. Relating a change in β to an existing paradigm would prove helpful in further 

justifying the conic transform and go some way to ameliorating doubt over its precision. To that 

end, this section will relate the conic transform, and specifically the change in angle β, to the well-

trod concept of delta-v.  
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 Delta-v stands as a corner stone to much of orbital mechanics. Representing a somewhat 

abstracted concept of the change in velocity required for a given orbital maneuver, it nonetheless 

finds use at almost all levels of orbital calculation; from simple, two-body mechanics all the way 

up to and including continual orbital path simulation methodologies. It is especially useful when 

comparing different approaches for a given maneuver, and even appears in discussion regarding 

comparison of various propulsion methods. Delta-v is discussed at more length in Bate et. al2, 

Thomas3, and Fortescue9, so it is assumed the reader will be familiar with the basic idea and 

formulation for this section to avoid repetition of the finer details.  

 Under the conditions discussed within Chapter 5, the constant thrust version of delta-v will 

be used. That is to say delta-v is equal to the magnitude of final velocity minus initial velocity, or: 

∆𝑣 = |𝑣1 − 𝑣0| 

Change in angle β can be linked to delta-v through total orbital energy in Equations (4-5) or (4-6). 

As discussed, an impulse will change the specific orbital kinetic energy, 𝜖𝑘, of the spacecraft. By 

determining 𝜖𝑘 before a maneuver and examining the 𝜖𝑘 following a maneuver, the overall delta-

v is easily determined. Conversely, by treating the delta-v as a change in 𝜖𝑘 directly, change in β 

can, likewise, be examined directly. If the assumptions discussed thus far are held, delta-v may be 

assumed a change in  𝜖𝑘 directly for maneuvers occurring at an apse.  

 As an aside, delta-v often requires reference to the overall mass of the craft. Discussion of 

a change in β deals with specific orbital energies, thus neglecting spacecraft mass entirely. 

Judicious application of the rocket equations and proper momentum calculation will ensure that, 

though mass exchange is critical for impulses, it does not add error to calculations of change in β. 

Equation (3-6) related  𝜖𝑘 and velocity: 
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𝜖𝑘 =
𝑣2

2
 

By rearranging the equation, the velocity component can be isolated. 

𝑣 = √2𝜖𝑘  

Taking this formulation and plugging it into the definition for delta-v yields a new equation: 

∆𝑣 = |√2𝜖𝑘1
− √2𝜖𝑘0

|         (5-3) 

Equation (5-3) appears complicated, but it does represent something very important: as β 

was already shown to be a function of specific orbital energy, and the conic model allows for direct 

measurement of specific orbital potential energy, delta-v and β can be related directly. In addition, 

due to the instantaneous assumption of thrust duration, the specific orbital potential energy of a 

given maneuver will be constant for any burn at an apse. As-such, change in specific orbital kinetic 

energy corresponds directly with change in total specific orbital energy:   

∆𝜖 = ∆𝜖𝑘 

Equation (4-6) demonstrated the direct relation between change in specific orbital energy and angle 

β, therefore, any given delta-v can be related directly to a change in beta using existing equations. 

Formally, this relation is:  

∆𝑣 = 𝑓(∆𝜖𝑘) = 𝑓(∆𝜖) = 𝑓(𝛽̇) 

 

The algebraic process to expand this relation is quite complex. As-such, only the required 

equations and results are shown: 

𝜖 = 𝜖𝑝 + 𝜖𝑘 
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∆𝑣 = |√2𝜖𝑘1
− √2𝜖𝑘0

|  

𝜖𝑝 = −
𝜇

𝑟
 

tan 𝛽 = tan 𝛼 [1 + 𝜖 (
2𝑟0

𝜇
)] 

        ⸫ 

∆𝑣 = |√(−𝜖𝑝) (
tan 𝛽1

tan 𝛼
+ 1) − √(−𝜖𝑝) (

tan 𝛽0

tan 𝛼
+ 1)| 

      ∆𝑣 = |√(−𝜖𝑝) (
tan 𝛽

tan 𝛼
+ 1)|

𝛽0

𝛽1

|        (5-4) 

In Equation (5-4), both the tangent of α and the specific orbital potential energy values are constant, 

in-line with the understanding that delta-v can be expressed as a function of angle β alone. Equation 

(5-4) has a form that is highly reminiscent of the solution to a specific integral, although the form 

of such a derivative goes beyond the scope of this chapter.  

 Determination of angle β as a function of delta-v follows a similar process by simply 

rearranging the delta-v equation and proceeding as before: 

𝑣1 = |∆𝑣| + 𝑣0 

𝜖 = 𝜖𝑝 + 𝜖𝑘 

𝜖𝑝 = −
𝜇

𝑟
 

tan 𝛽 = tan 𝛼 [1 + 𝜖 (
2𝑟0

𝜇
)] 
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   ⸫ 

               tan 𝛽1 = tan 𝛼 (
(|∆𝑣|+√(−𝜖𝑝)(

tan 𝛽0
tan 𝛼

+1))

2

(−𝜖𝑝)
− 1)       (5-5) 

As in Equation (5-4), the specific orbital potential energy and tangent of α are both constant. 

Therefore, angle β remains purely a function of its initial value (β0) and the magnitude of the delta-

v for the maneuver.  

 That the change in angle beta can be related to delta-v directly brings the discussion of the 

conical transformation full-circle. If Kepler assumptions are held, and the required impulse is 

instantaneous, (5-4) should yield an intelligible answer for any transformation occurring at an apse.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

 Conical Orbital Mechanics has encompassed a more geometric approach to the Kepler two-

body problem that has otherwise been overlooked in modern engineering. For stable orbit 

transformations, a full framework representing spacecraft orientation and elliptical orbit 

transformations was developed to provide an alternative to the often obtuse and ersatz approach 

generally involving equations without reference to a geometric model such as a cone. This 

framework is an extension to the patched conic approach, focused firmly on the cone (or more 

properly, frustum) to provide a solid grounding from which the mathematical model was derived.  

 Beginning with the boundaries and limits to the model, the conical mechanics were based 

on the eccentricity relation within the typical methodologies for evaluating ellipses.  Utilizing the 

cross-section of the orbital frustum representation, angular relationships between conical energy 

height and planar angle were developed evolving a relation between planar angle and orbital 

energy. These basic algebraic relations were refined based on the behavior of the spacecraft itself, 

leading to a differential form of the relation.  Further refinements culminating in Equations (5-4) 

and (5-5) relate the conic transform directly to existing, well-established concepts regarding delta-

v management. 

 The model is self-consistent: fully derivable and invertible subject to the outlined 

restrictions; the primary challenges develop when these conditions aren’t met. Since orbital 

systems are not actually two-body systems, but are multi-body, actual orbital trajectories are, for 

lack of a better term, messy. The present model will not necessarily predict a transformation that 

departs significantly from the two-body case. This is not to say the conical approach cannot be 
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extended to an n-body case, only that the current formulations do not support it. In addition, the 

derived equations are based upon orbital transforms about a stable, Earth-mass prototype object 

with a not-insignificant Hill Sphere. Irregularly shaped primary objects, such as asteroids, or 

objects lacking uniform density such as Luna, may present a challenge to the exploitation of these 

equations.  

Further, the equations developed throughout rely on a perspective of orbital apsides.  If the 

frustrum model is used for an off-apsis maneuver, it would likely accumulate errors more rapidly. 

Finally, the transforms have been confined intentionally to elliptical orbits. In-plane orbital 

adjustments are the most fundamental transform encountered and offering an alternative 

perspective to traditional methods was the main goal of this thesis. A planar rotational approach 

to non-stable orbits is entirely feasible but presents challenges that go beyond the general scope of 

this document. 

Ultimately this thesis was an investigation and a starting point; as orbital mechanics is a 

very well-trod subject area, novel investigations into the subject matter tend not to deal with the 

fundamentals. While the derivations and examples are rather elementary given the scope of the 

subject, their utility in providing another way of thinking was the goal. In this vein, extensions of 

this work go beyond the basic cases and would explore situations and maneuvers more advanced 

than simply changing the orbital parameters of an ellipse.  

One notable problem is the differential form encountered in the following equation: 

𝛽̇ =
𝑑𝛽

𝑑𝑡
=

𝑑𝛽

𝑑𝜖
∙

𝑑𝜖

𝑑𝑡
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𝛽̇ derived as a change in β over time would offer a true, unique solution to the differential question 

of how an orbit transforms for a finite impulse maneuver. This is the area where the most progress 

could be made, since linking the change in specific orbital energy to a finite time interval should 

be relatively straightforward. Ultimately the Keplerian assumptions limit precise linking of real 

time to specific orbital energy explicitly because the impulses are assumed to be instantaneous, 

i.e. Keplerian assumptions, must be modified in order to progress.   

 While these Kepler-based, two-body, elliptical transformations represent limitations, the 

approximate model holds up very well. Even though such transformations are quite elementary 

within the scope of orbital mechanics, some refinement and new examinations, no matter how 

limited, may yet offer new insights and innovations in the exploration of this vast field.  

 



   

 

62 

APPENDIX I 

UNSTABLE ORBITS 

 

 

 

As discussion has now thoroughly covered the conic transform in the context of stable 

orbits, unstable orbits will be covered. Unstable orbits can be roughly broken down into 3 major 

types: degenerate elliptical orbits, hyperbolic orbits, and parabolic orbits. Each is given proper 

discussion, and some extension of the current equations are also provided. The discussion here is 

not nearly as detailed as the previous chapters for several reasons but still does justice within the 

scope of the document. 

 The unifying principle of all of the unstable orbits is the fact that their orbital plane passes 

through the upper boundary of the outer stability frustum. As the energy plane could be 

theoretically extended to infinity, its role is much reduced here, with primary concern given to 

boundary energy values and total energy required for a given transform as opposed to specific 

eccentric shifts. That being said, the limitations from the stable cases still apply here, and the 

Orbital frustum has not been changed.  

 Degenerate elliptical orbits represent the first category of unstable orbit. Briefly, these are 

elliptical orbits with an eccentricity very close to, but less than, one whose orbital plane passes 

through the upper conic boundary. Of further importance is that their β angle value has begun to 

approach the value of the outer boundary α angle. While still retaining all of the properties of an 

elliptical orbit, any craft which achieves such an orbit will begin to see all of its orbital parameters 

change over time. 
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 From Chapter 3, the Hill Sphere was outlined as the area in which all stable orbits can be 

found. Beyond about 500,000 km from the Earth analogue, orbits can no longer be considered 

stable. This does not mean a degenerate elliptical orbit (herein known as a DEO) will immediately 

degenerate as soon as it passes beyond the stability boundary, only that it will accumulate error 

over time. In-fact, many orbits exist, at least partly, well beyond the 500,000 km theoretical 

stability limit. However, the equations in Chapters 3 through 5 will not properly describe a DEO 

that does pass out of the region described by the cone. 

 Fundamentally, passing beyond the upper boundary essentially takes the problem from 

two-body to multi-body, requiring considerable simulation or extra measurement and recalculation 

at each orbit. If the stability equations are to be used in calculating a transformation for or to a 

DEO, caution is advised, and simulation would be the preferred methodology. Otherwise, DEOs 

can be treated like other elliptical orbits, with the knowledge that their apoapsis will pass beyond 

the upper boundary limit.  

 The level of instability in a DEO is directly proportional to the amount of the orbit that 

passes beyond the stability boundary. For a DEO with only its apoapsis beyond the stability 

boundary, it may take several dozen to hundred orbits before error comes up to a detectable level. 

In contrast, a highly Eccentric DEO with the majority of its orbit beyond the Stability boundary 

may require constant upkeep, depending upon how its orbit is structured and the other bodies with 

largest net gravitational pull on it.  

Finally, orbits entirely beyond the stability boundary are beyond the scope of this two-body 

formulation and would need to default to another system. While the orbits of such bodies could be 

reasonably described under Keplerian assumptions, they will accumulate errors faster than their 

DEO counterparts. Again, it may require a considerable amount of time before such errors become 
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detectable, but the fact that local gravity becomes increasingly perturbed by more than one body 

means the precision of the model will rapidly fail. This all being said, DEOs are still quasi-stable 

in that any spacecraft with a DEO will still be in orbit around the primary body, in this case the 

Earth analogue, even after the orbit is perturbed from its original parameters, over a long period of 

time. Contrasting, hyperbolic and parabolic orbits are both types of escape trajectories that will 

always take a spacecraft past the upper stability boundary and beyond the local Hill Sphere 

entirely. 

Like the DEOs, both escape trajectory-type orbits pass beyond the upper boundary of the 

frustum. Unlike the DEO’s, the perturbation due to the force of gravity is generally disregarded 

for a few reasons. First, the model relies on a patched conic concept when moving between local 

sources of gravity. This requires reformulation of orbital parameters once the spacecraft passes 

entirely out of the sphere of influence of the original orbit. Second, the amount of time it takes a 

craft to pass out of the sphere of influence in most non-stellar cases will not lead to an appreciable 

accumulation of error due to perturbation; a craft will proceed relatively quickly beyond the sphere 

of influence of most celestial bodies that do no approach stellar mass when placed upon an escape 

trajectory.  

 In Chapter 3, the stability boundary was taken from existing literature as a reasonable limit 

to stability within the framework of the Hill Sphere. In addition, the Hill Sphere was defined as a 

zero-velocity surface around the local celestial body. Formulating what this means in the context 

of the model will allow for a greater sense in the development of the hyperbolic and parabolic 

orbital cases. From Hill’s own definition, the true boundary of the sphere is defined with the 

following equation: 
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    𝑟𝐻 ≈ 𝑎(1 − 𝑒) ∙ √
𝑚

3𝑀

3
               (A-1-1) 

Where rH is the radius of the Hill Sphere, a is the orbit semi-major axis, e is the eccentricity 

of the orbit, m is the mass of the smaller object, and M is the mass of the larger object. Note that 

this will calculate the Hill Sphere for the smaller object, not the larger. To determine the Hill 

Sphere for the Earth analogue, the mass of the Sun and the orbital parameters for the Earth’s orbit 

must be included. Including these yields an rH of about 1.5*106 km. Any orbit that passes beyond 

this limit will need to be reformulated into an orbit about the next largest local source of gravity, 

generally the local star, and in the model case, the Sol analogue. The process for and derivation of 

patched conics, including Lagrange Points, can be found in Bate et al.2; only how the model is 

used in conjunction with the general approach is covered here. 

  At the Hill Sphere boundary, depending upon the type of escape trajectory, determination 

of the orbital parameters for the new orbit will follow a process similar to the one undertaken in 

Chapters 3 and 4. When the craft leaves the sphere of influence of the local body, its velocity 

vector and radial distance to the next closest large source of gravity are used to calculate the new 

orbital parameters for the object. Eccentricity and orbital potential energy will, again, allow the 

object’s orbit to be represented by a plane at some angle β intercepting an energy-height frustum 

for the new body. The lower boundary will be equivalent the surface or atmosphere of the new 

center of mass, and the upper boundary becomes equal to the Hill Stability Sphere. Once this 

occurs, all previously covered material will still apply and transforms, and navigations can be 

continued as before. As long as the orbital path does not pass beyond the upper boundary, or into 

the sphere of influence of another object, the conic transform continues to be relevant. This topic 

has considerably more depth than is discussed here but should be self-evident at this point. 
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 With boundary events now covered, discussion can proceed with hyperbolic orbits. By 

definition, a hyperbolic orbit is any orbit with an eccentricity greater than 1. From Equation (3-2), 

hyperbolic orbits must have a β greater than the local α angle. As with the maneuvers for stable 

orbits, hyperbolic orbits rely on rotations about the Z-tangent axis. Moving from an elliptical, or 

circular, orbit to a hyperbolic simply involves rotating the path plane about the Z tangent axis past 

the α angle value. If this rotation is continued until β equals 180°
, the top-down perspective on the 

orbit is that it appears to be a straight line, tangent to the boundary surface and separated by a 

distance equal to r1. In this position, the hyperbolic orbit comes to resemble the classic bi-conic 

hyperbola, even if its physical reality does not reflect the geometric concept.  

Hyperbolic orbits have a practical rotational limit of 180°. While the plane could, in theory 

be rotated past 180°, there is no physical precedent that would allow this: adding more energy when 

β is equal to 180° simply increases the velocity of the spacecraft and changes the shape of the 

craft’s orbit when it leaves the current Hill Sphere. A closer examination of the existing equations 

provides more information on how hyperbolic transformations occur. 

 As with elliptical orbits and DEO’s, hyperbolic orbits define their eccentricity with 

Equations (3-1) and (3-2). Equation (3-2) is key to understanding how the rotational transformation 

occurs, but Equation (3-1) provides insight into another important hyperbola property: reflectivity. 

From geometry, the hyperbola is, in-effect, a “double orbit”: its shape is symmetric about the center 

of the orbital shape. The distance between the focus and this center is actually the focal length, c, 

of the hyperbola. Consequently, the semi-major axis is the distance between the center and the 

path itself. With Equation (3-1), it is clear why hyperbolas possess an eccentricity greater than 1. 

To determine semi-major axis length and focal length of a given hyperbolic, parabolic orbits will 
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be required. As the hyperbolic must always transform from an elliptical to a parabolic first, a few 

constants found from formulation of the Parabolic will assist in calculation for the hyperbolic.  

 Parabolic orbits always have an eccentricity equal to 1. This is to say their focal length and 

semi-major axis are both equal. While this is not technically correct, as a Parabola has no true 

“center”, so the two parameters are equal to infinity, the Parabola does possess a directrix. 

Recalling from the elliptical formulations that the value r1 is constant across any rotation, the 

distance from the periapsis to the directrix is exactly equal to r1. In fact, for a continuous rotation 

from elliptical, passing through parabolic, continuing to hyperbolic, r1 is always constant. This, of 

course, makes sense under Kepler: the impulse occurs and completes instantly, and the orbit must 

return to the same point in space from which the impulse was initiated from. If periapsis is constant 

for a single rotation from stable to unstable, semi-major axis and focal length are determined 

trivially with the directrix. 

 The initial position of a hyperbola’s center is coincident with the directrix of the parabola 

that was transformed. This center/directrix lays in the intercept plane itself, is rotated along with 

the intercept plane about the tangential axis and does not change its position on that plane: only 

the projection of the center/directrix appears to move. This also means that eccentricity for 

hyperbolas is still a function of β alone, being readily calculated by simple trigonometry based 

upon the initial position of the directrix. As rotation proceeds, r1 must remain constant, so distance 

from the center of the hyperbola to the periapsis begins to decrease, from the perspective of the 

physical plane. On the energy surface, β is simply continuing to increase, so the center projection 

moves closer and closer to the periapsis. When β is equal to 180°, the hyperbola’s center and the 

periapsis appear to overlap, which leads to the eccentricity of a straight line: infinity. The energy 
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required to achieve this result is absurdly high and generally impractical, but that the concept still 

reflects general mathematical realities is reassuring.  

 As far as formulation of hyperbolic energy levels, the previously discussed formulas are 

all still correct as long as the total orbital specific energy is factored in: 

𝜖𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 =
𝜇𝐸

2𝑎
               (A-1-2) 

Notice that this energy equation is positive rather than before where the total energy was 

considered negative. This represents the fact that hyperbolic orbits occur where escape energies 

are exceeded. Consequently, parabolic orbits, where minimum escape energies are met, has a total 

orbital specific energy equal to zero. This also means velocity for either of these orbits is just as 

easy to calculate as the elliptical case: a simple measurement of height for potential energy along 

the cone and comparison to the total energy will yield the difference in energies which is equal to 

the kinetic energy, allowing for straightforward calculation of velocity and all of the parameters 

that follow.  
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APPENDIX II 

SUPPORTING CALCULATIONS 

 

 The conic model relies on several paradigms that work together to support the central idea 

of transformations being rotations or translations of a plane intersecting a frustum. This process is 

predicated on three major groups of equations from Chapters 3, 4, and 5, all relating back to a 

change in angle β resulting in orbital path transformations. Examples for each of the major 

equations discussed in each chapter are presented below for completeness and proof of the efficacy 

of the equations themselves.   

 Demonstration that (4-3) is correct within the scope of existing literature is critical to the 

major calculations present within the thesis. A proof can be devised to demonstrate that β derived 

from α is still correct. This property is especially useful in the case of a maneuver where only the 

change in beta is known without reference to the final semi-major axis length (as may be 

encountered when employing Equation (4-6)). An orbit about the Earth analogue will be used for 

the proof; here the periapsis is set at 250 km altitude while the apogee is 400 km. All other 

properties of the model are retained.  

 The value of α is determined by comparing the upper and lower boundaries for the cone. 

From Chapter 3, the upper and lower boundary values were outlined: 

Lower bound, r = Earth Average Radius: 𝜖 = −62.4951 ∗ 106  
𝐽

𝑘𝑔
 

Upper bound, r = Hill Sphere Stability Boundary: 𝜖 = −0.7972 ∗ 106  
𝐽

𝑘𝑔
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Here the average Earth radius at the equator was noted as 6.3781*106 meters, and the Hill Stability 

Boundary was established as 5*108 meters (with respect to the center of gravity of the planet). 

Simple trigonometry yields the value for α: 

tan α =
∆𝜖

∆𝑟
 

tan α =
𝜖𝑢 − 𝜖𝑙

𝑟𝑢 − 𝑟𝑙
, tan α = 0.12499, 

 α =  7.1245°, α =  .1243 𝑟𝑎𝑑   

The value of α for the Earth analogue is very shallow, befitting an orbital body with a nominally 

low mass. 

 As a known orbit is being investigated, the value for β can be determined two ways and 

then compared for precision. First, the eccentricity of the orbit will be determined from semimajor 

axis (a) and focal length (c). Then, β will be computed from Equation (3-2). Finally, (4-3) will be 

compared to this value for precision.  

2𝑎 = (2 ∗ 6378.1) + 250 + 400 = 13.4062 ∗ 106 𝑚 

𝑎 = 6703 𝑘𝑚, 𝑐 = 75 𝑘𝑚 

𝑒 =
𝑐

𝑎
= 0.01119 

This eccentricity value is in-line with the type of orbit under consideration: as the orbit is very 

nearly circular, the eccentricity is likewise very low, as expected. Next, (3-2) is utilized to 

determine β: 

𝑒 =
sin 𝛽

sin 𝛼
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α =  7.1245°, sin 𝛼 = 0.1240 

0.01119 =
sin 𝛽

0.1240
 

sin 𝛽 = 1.3876 ∗ 10−3, 𝛽 = 0.07950°, 𝛽 ≅ 0.08° 

 Again, following expectation, the value for angle β is very small, befitting an orbit of only 

minor eccentricity. With an established value for β based upon existing literature, (4-3) can now 

be verified. The perigee for the example orbit is at 250 km, so the dorbit in the equation will be in 

reference to that radius: 

tan β =
∆𝑟𝑜𝑟𝑏𝑖𝑡(tan α)

𝑑𝑜𝑟𝑏𝑖𝑡 + ∆𝑟𝑜𝑟𝑏𝑖𝑡
 

∆𝑟𝑜𝑟𝑏𝑖𝑡 = 400𝑘𝑚 − 250𝑘𝑚 = 150 𝑘𝑚 

𝑑𝑜𝑟𝑏𝑖𝑡 = 2(250𝑘𝑚 + 6378.1𝑘𝑚) = 13256.2𝑘𝑚 

tan β =
150 𝑘𝑚 (tan(7.1245°))

13406.2 𝑘𝑚
  

tan β = 1.3985 ∗ 10−4, 𝛽 = 0.08013°, 𝛽 ≅ 0.08°  

Both values calculated for β are well within the expected error for engineering calculations, 

deviating by less than 1%, well within acceptable engineering tolerance.  

 Having verified Equation (4-3), discussion will now shift to Equation (4-6). Unlike the 

previous calculations, Equation (4-6) relies on a derivate and subsequent integration to 

demonstrate its efficacy. Given Equation (4-6) is based upon (4-5), verifying (4-5) first would be 

useful. The same example orbit from before will be used: 

       tan 𝛽 = tan 𝛼 [1 + 𝜖 (
2𝑟0

𝜇
)] 
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𝜖 = −
𝜇

2𝑎
, 𝜖 = −

3.986 ∗ 1014  
𝑚3

𝑠2

13.4062 ∗ 106 𝑚
, 𝜖 ≅ −29.733 ∗ 106  

𝐽

𝑘𝑔
 

𝑟0 = 6628.1 ∗ 103 𝑚, tan 𝛼 = 0.1250  

tan 𝛽 = 0.1250 [1 + (−29.733 ∗ 106) (
2(6628.1 ∗ 103)

3.986 ∗ 1014
)] 

tan 𝛽 = 1.3966, 𝛽 = 0.080018°, 𝛽 ≅ 0.08° 

Equation (4-5) is thus verified. To verify Equation (4-6), two scenarios will be used: First, 

a transformation from a circular orbit of 250 km radius to the example orbit that has been utilized 

thus far. Second, to show that (4-6) will function irrespective of apsis, Equation (4-6) will be 

integrated from the apoapsis of an orbit with said apsis at 300 km and periapsis at 250 km. The 

target orbit in this case will be an orbit with periapsis of 300 km and apoapsis of 400 km. Both 

cases will compare their 𝛽̇ values to a summed value equivalent.  

Aiding in comprehension and ease of calculation, a standard integration will be employed 

for (4-6), demonstrating only the algebraic portions for proof. The integration is left to the reader 

to verify independently, but the author has ensured the integral does adhere to proper calculus: 

𝛽̇ =
𝑑𝛽

𝑑𝜖
=

2𝑟0𝜇 tan 𝛼

(tan2 𝛼)(𝜇 + 2𝑟0𝜖)2 + 𝜇2
 

∫ 𝑑𝛽
𝛽1

𝛽0

= ∫
2𝑟0𝜇 tan 𝛼

(tan2 𝛼)(𝜇 + 2𝑟0𝜖)2 + 𝜇2

𝜖1

𝜖0

𝑑𝜖 

∫ 𝑑𝛽
𝛽1

𝛽0

= 2 tan−1 [
tan 𝛼(𝜖 𝑟0 + 𝜇)

𝜇
]|

𝜖0

𝜖1

 

       ∆𝛽 = 2 tan−1 [
tan 𝛼(𝜖1 𝑟0+𝜇)

𝜇
] − 2 tan−1 [

tan 𝛼(𝜖0 𝑟0+𝜇)

𝜇
]             (A-2-1) 
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Equation (A-2-1) will be used for both test cases, itself representing the expanded specific integral 

of (4-6). The specific orbital energy of the first, circular orbit will be substituted for 𝜖0, while the 

elliptical orbit’s energy will be substituted for 𝜖1. Finally, the r0 in this equation is equal to the 

orbital radius of the initial, circular orbit.  

𝜖1 ≅ −29.733 ∗ 106  
𝐽

𝑘𝑔
 

𝜖0 = −
𝜇

2𝑎
, 𝜖0 = −

3.986 ∗ 1014  
𝑚3

𝑠2

13.2562 ∗ 106 𝑚
, 𝜖0 ≅ −30.0689 ∗ 106  

𝐽

𝑘𝑔
 

𝑟0 = 6628.1 ∗ 103 𝑚, tan 𝛼 = 0.1250 

∆𝛽 = 7.2324 − 7.1527, ∆𝛽 = 0.07972°, ∆𝛽 ≅ 0.08° 

 

What is important to note about this result is that this Δβ is equivalent to the planar angle β for the 

example 250-400 km orbit from before: recall that β is always measured in reference to a plane 

parallel to the boundary planes, in this case a plane coincident with the periapsis at 250 km. That 

a change in β can also be integrated for known energy values and it still yield the expected and 

correct value further reinforces the efficacy and utility of (4-6). While this exercise may at first 

appear trivial, it underscores the strength of utilizing equation (4-6) in a situation where only a 

change in energy is known, ensuring that the change in β calculated will be correct. 

 To this end, the last example concerning (4-6) will investigate the transformation from one 

elliptical orbit to another, undergoing an apsis flip in the process; the initial orbit’s apoapsis 

becomes the final orbit’s periapsis. As both the initial and final orbits are known, their respective 

β can be calculated ahead of time to compare to the integrated value yielded by (4-6) to confirm 
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the calculation is correct.  Note that the 𝑟0 for these equations will be equal to the 300 km circular 

orbit. This is a non-issue for the integration, but the confirmation calculations using (4-5) will have 

a negative value for β0. Intuitively this makes sense as the angle is being measured from below the 

parallel plane and with a plane at the apoapsis of the orbit. Only its magnitude should be used for 

verification for precision. Much of the calculation herein follows the process demonstrated earlier, 

and so only the results will be displayed: 

Initial Orbit (250 km-300 km): 𝜖0 ≅ −29.956 ∗ 106  
𝐽

𝑘𝑔
 

Final Orbit (300 km-400 km): 𝜖1 ≅ −29.622 ∗ 106  
𝐽

𝑘𝑔
 

𝑟0 = 6678.1 ∗ 103 𝑚, tan 𝛼 = 0.125 

𝛽 = |𝛽0| + 𝛽1 = |−0.02692°| + 0.05323° =  0.08015° 

This value for overall change in β is very similar to the change for the 250-400 km orbit. Again, 

intuitively this makes sense as the total orbit change is very similar, even though the final orbit 

only has a β value of 0.05323°. Now to compare this value to the value yielded with (4-6): 

∆𝛽 = 2 tan−1 [
tan 𝛼(𝜖1 𝑟0 + 𝜇)

𝜇
] − 2 tan−1 [

tan 𝛼(𝜖0 𝑟0 + 𝜇)

𝜇
] 

∆𝛽 = 7.2057 − 7.1259, ∆𝛽 = 0.0798° 

Based upon the similarities between both of these results, that (4-6) is consistent and robust is now 

self-evident: the error between both results is less than 1%.  

 A final proof regarding Equation (5-4) is all that remains to be covered. Verification of 

delta-v poses several extra challenges to the processes discussed thus far, however these are not 
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insurmountable. As delta-v is nominally the magnitude in the change in velocity of an orbit, it is 

in reality a measure of the exchange in energy, specifically addition or removal of specific orbital 

kinetic energy (as per Chapter 5). This knowledge will be used along with the prior orbital 

transformation to ensure that (5-4) is correct.  

 Converting a 250 km circular orbit to a 250-400 km elliptical orbit requires a single burn 

to accomplish. As the circular orbit does not possess apses, the point at which the maneuver is 

initiated is arbitrary. Recall from Chapter 5 that specific orbital potential energy at the new 

periapsis will remain constant as the burn will only be introducing kinetic energy. The difference 

in specific orbital energy between the periapsis and apoapsis corresponds exactly to the excess 

specific orbital kinetic energy added by the maneuver burn. This comparison can be accomplished 

several ways: Equation (3-10) will be employed for speed, and the results shown below: 

𝜖 = −
𝜇𝐸

2𝑎
 

2𝑎0 = 13256.2 𝑘𝑚, 𝜖0 = −30.0689 ∗ 106
𝐽

𝑘𝑔
 

2𝑎1 = 13406.2 𝑘𝑚, 𝜖1 = −29.7325 ∗ 106
𝐽

𝑘𝑔
 

∆𝜖 = ∆𝜖𝑘𝑏𝑢𝑟𝑛
= 336.4

𝑘𝐽

𝑘𝑔
 

This value can then be used with Equation (3-6) to calculate the change in velocity, nominally 

the delta-v. Initial velocity will correspond to the orbital velocity of the 250 km-radius circular 

orbit: 

∆𝜖𝑘 =
𝑣𝑓

2

2
−

𝑣𝑖
2

2
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𝑣𝑖 = √
𝜇

𝑟
= 7.7549 

𝑘𝑚

𝑠
 

336400 =
𝑣𝑓

2

2
−

(7.7549 ∗ 103)2

2
 

𝑣𝑓 = 7.7982 
𝑘𝑚

𝑠
 

∆𝑣 = |𝑣𝑓 − 𝑣𝑖| = 43.3 
𝑚

𝑠
 

A change of about 43.3 m/s is well within reasonable expectation for an orbital maneuver of this 

type. This delta-v will now be compared with the value yielded by Equation (5-4). Recall that the 

circular orbit has a β angle of zero, while the β for the final orbit will be taken from prior 

calculations. In addition, inline with the prior paradigm, the specific orbital potential energy is held 

at the initial orbital radius (250 km). Finally, note that the specific orbital potential energy in (5-4) 

is negative, canceling the negative value of the energy as calculated: 

∆𝑣 = |√(−𝜖𝑝) (
tan 𝛽

tan 𝛼
+ 1)|

𝛽0

𝛽1

| 

∆𝑣 = |√(60.1379 ∗ 106) (
tan 𝛽

0.062496
+ 1)|

0

0.08

| 

∆𝑣 = |√(60.1379 ∗ 106) (
tan 0.08

0.125
+ 1) − √(60.1379 ∗ 106) (

tan 0

0.125
+ 1)| 

∆𝑣 ≅ 43.2 𝑚/𝑠 
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With a percent error of well less than 1%, Equation (5-4) can be supported as correct with a high 

degree of confidence. 

All of the supporting calculations found herein have been verified as much as reasonably 

possible with existing methodologies and the information is presented as-is for the interested 

reader. Although the provided examples are simple, the nature of the derivation of each of the 

equations should allow their broad application within the boundaries of the model quite easily
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APPENDIX III 

MATLAB CODE 

 

 Contained in this Appendix is the raw MATLAB10 code used to generate some of the 

visuals found within the body of the document. The code is provided as-is for reference and the 

curious. MATLAB is a registered trademark of The MathWorks, Inc, Natick, Massachusetts. 

%Cone with Sphere 
figure(1) 

  
%Define Common Variables  
Rad=0.2;                                %Sphere Radius 
h=1.5;                                  %Cone Height 
r=0.375;                                %Cone Upper Circle Radius 
del=(Rad*sqrt(r^2+h^2))/(r);            %Variable: Slant Plane/Sphere 

orientation 
del2=(Rad*h^2)/(r*sqrt(r^2+h^2));       %Variable: Flat Plane orientation 

  
%Define Cone 
th=linspace(0,2*pi,21);                 %Memory Allocation 
x1=linspace(0,r,21);                    %Memory Allocation 
z1=linspace(0,h,21);                    %Memory Allocation 
[R,T] = meshgrid(x1,th);                %Memory Allocation 
X1 = R.*cos(T) ;                        %Calculate X values 
Y1 = R.*sin(T) ;                        %Calculate Y values 
Z1=repmat(z1,21,1);                     %Calculate Z values 

  
%Define Cone Upper Circle 
thta=linspace(0,2*pi,50);               %Define Theta 
Xc=r*cos(thta);                         %Calculate X values 
Yc=r*sin(thta);                         %Calculate Y values 
Zc=1.5*ones(1,50);                      %Calculate Z values 

  
%Define Sphere 
[X,Y,Z]=sphere;                         %Define Sphere 
X2=X*Rad;                               %Calculate X values 
Y2=Y*Rad;                               %Calculate Y values 
Z2=Z*Rad;                               %Calculate Z values 

  
%Define Sphere circles 
%Horizontal 
Xs1=Rad*cos(thta);                      %Calculate X values 
Ys1=Rad*sin(thta);                      %Calculate Y values 
Zs1=del*ones(1,50);                     %Calculate Z values 
%Vertical YZ 
Xs2= zeros(1,50);                       %Calculate X values 
Ys2=(Rad*sin(thta));                    %Calculate Y values 
Zs2=(Rad*cos(thta))+del;                %Calculate Z values 
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%Vertical XZ 
Xs3=(Rad*cos(thta));                    %Calculate X values 
Ys3=zeros(1,50);                        %Calculate Y values 
Zs3=(Rad*sin(thta))+del;                %Calculate Z values 

  

  
%Define Flat Plane 
X3=linspace(-0.5,0.5,2);                %Calculate X values 
Y3=linspace(-0.5,1,2);                  %Calculate Y values 
Z3=ones(2).*del2;                       %Calculate Z values 

  
%Define Slanted Plane 
thet=75;                                %Plane Angle 
dy=Rad*cosd(thet);                      %Change in y 
dz=Rad*sind(thet);                      %Change in x 
m=tand(thet-90);                        %Slope 
yint=-(m*dy)+(del+dz);                  %Y Interval 
zlim1=((-0.5)*m)+yint;                  %Z limit 
zlim2=((1)*m)+yint;                     %Z limit 
X4=linspace(-0.5,0.5,2);                %Calculate X values 
Y4=linspace(-0.5,1,2);                  %Calculate Y values 
z4=linspace(zlim1,zlim2,2);             %Calculate Z values 
z4=z4';                                 %Calculate Z values 
Z4=repelem(z4,1,2);                     %Calculate Z values 

                  
%Define Cone/Slant Plane Intercept Ellipse 
P1=[X4(2),Y4(1),Z4(1,2)];               %Memory Allocation 
P2=[X4(1),Y4(2),Z4(2,1)];               %Memory Allocation 
P3=[X4(1),Y4(1),Z4(1,1)];               %Memory Allocation 
V1=P3-P1;                               %Vector Definition 1 
V2=P2-P1;                               %Vector Definition 2 
Coeff=cross(V1,V2);                     %Cross Product 
d=dot(Coeff,P1);                        %Dot Product 
Coeff=[Coeff,d];                        %Lump Coefficient 
[X5,Y5]=meshgrid(linspace(-0.5,0.5));   %X & Y allocated 
ZCone=sqrt(X5.^2+Y5.^2)./(r/h);         %Cone Z values constraint 
Zplane=(Coeff(4)-((Coeff(1)).*(X5))-((Coeff(2)).*Y5))./(Coeff(3));%Plane Z 

values constrained 
ZDiff=ZCone-Zplane;                     %Cone-Plane difference 
ECont= contours(X5, Y5, ZDiff, [0 0]);  %Contour Values 
X5L = ECont(1, 2:end);                  %Calculate X Values 
Y5L = ECont(2, 2:end);                  %Calculate Y Values 
Z5L = interp2(X5, Y5, ZCone, X5L, Y5L); %Calculate Z Values 

  
%Plot All Sub-figures 
Cone=surf(X1,Y1,Z1); hold on            %Define Cone 
plot3(Xc,Yc,Zc,'- k');                  %Plot Cone 
Sph=surf(X2,Y2,Z2+(del));               %Plot Sphere 
plot3(Xs1,Ys1,Zs1,'-- k');              %Plot Sphere circle Horizontal 
plot3(Xs2,Ys2,Zs2,'-- k');              %Plot Sphere circle Vertical YZ 
plot3(Xs3,Ys3,Zs3,'-- k');              %Plot Sphere circle Vertical XZ 
Plane1=surf(X3,Y3,Z3);                  %Plot Flat Plane 
Plane2=surf(X4,Y4,Z4);                  %Plot Inclined Plane 
line(X5L, Y5L, Z5L, 'Color', 'k', 'LineWidth', 1);%Plot Intercept Circle 

  
%Set Parameters 
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set(Cone,'FaceColor','r','FaceAlpha',0.2,'EdgeColor','none') 
set(Sph,'FaceColor','y','FaceAlpha',0.2,'EdgeColor','none')  
set(Plane1,'FaceColor','b','FaceAlpha',0.2,'EdgeColor','k')  
set(Plane2,'FaceColor','g','FaceAlpha',0.2,'EdgeColor','k')                  

                  
%Format Figure 
title('Three-Dimensional Definition of an Ellipse')                  
%xlabel 'x'                  
%ylabel 'y'                  
%zlabel 'z'                  
xticklabels([])                  
yticklabels([])                  
zticklabels([])                  
axis equal                  
hold off       
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